-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '192.1389', 'ambient_counter': 1389, 'ambient_order': 192, 'ambient_tex': '(C_2\\times C_{12}):D_4', 'central': False, 'central_factor': False, 'centralizer_order': 24, 'characteristic': False, 'core_order': 16, 'counter': 49, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '192.1389.12.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '12.a1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '12.4', 'quotient_Agroup': True, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 4, 'quotient_metabelian': True, 'quotient_nilpotent': False, 'quotient_order': 12, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'D_6', 'simple': False, 'solvable': True, 'special_labels': [], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '16.11', 'subgroup_hash': 11, 'subgroup_order': 16, 'subgroup_tex': 'C_2\\times D_4', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '192.1389', 'aut_centralizer_order': None, 'aut_label': '12.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '8.d1', 'complements': [], 'conjugacy_class_count': 2, 'contained_in': ['4.a1', '6.a1', '6.b1'], 'contains': ['24.a1', '24.b1', '24.e1', '24.k1'], 'core': '12.a1', 'coset_action_label': None, 'count': 2, 'diagramx': None, 'generators': [1, 2, 8], 'label': '192.1389.12.a1', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '12.a1', 'normal_contained_in': ['4.a1', '6.a1'], 'normal_contains': ['24.a1', '24.b1', '24.e1'], 'normalizer': '1.a1', 'old_label': '12.a1', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '12.a1', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [2, 2, 2, 2, 2, 2], 'aut_gens': [[126, 55, 289, 288], [127, 55, 289, 288], [126, 265, 1, 288], [54, 127, 289, 288], [414, 55, 289, 288], [127, 54, 289, 288], [414, 265, 289, 288]], 'aut_group': '64.138', 'aut_hash': 138, 'aut_nilpotency_class': 3, 'aut_nilpotent': True, 'aut_order': 64, 'aut_permdeg': 8, 'aut_perms': [2309, 526, 5329, 3043, 12316, 18498], 'aut_phi_ratio': 8.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 2, 4, 1], [4, 2, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\wr C_2^2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '32.27', 'autcent_hash': 27, 'autcent_nilpotent': True, 'autcent_order': 32, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2\\wr C_2', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 2, 'autcentquo_group': '2.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 2, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 2, 4], [4, 2, 2]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '4.2', 'commutator_count': 1, 'commutator_label': '2.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 11, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['8.3', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 1, 4], [4, 2, 1, 2]], 'element_repr_type': 'Perm', 'elementary': 2, 'eulerian_function': 21, 'exponent': 4, 'exponents_of_order': [4], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '8.5', 'hash': 11, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [2, 2, 1, 1], 'inner_gens': [[126, 265, 289, 288], [414, 55, 289, 288], [126, 55, 289, 288], [126, 55, 289, 288]], 'inner_hash': 2, 'inner_nilpotent': True, 'inner_order': 4, 'inner_split': False, 'inner_tex': 'C_2^2', 'inner_used': [1, 2], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8], [2, 2]], 'label': '16.11', 'linC_count': 8, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 3, 'linQ_degree_count': 8, 'linQ_dim': 3, 'linQ_dim_count': 8, 'linR_count': 8, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2*D4', 'ngens': 4, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 5, 'number_characteristic_subgroups': 5, 'number_conjugacy_classes': 10, 'number_divisions': 10, 'number_normal_subgroups': 19, 'number_subgroup_autclasses': 12, 'number_subgroup_classes': 27, 'number_subgroups': 35, 'old_label': None, 'order': 16, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 11], [4, 4]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2], 'outer_gen_pows': [0, 0, 151, 0], 'outer_gens': [[54, 127, 289, 288], [127, 55, 289, 288], [415, 54, 1, 288], [127, 54, 289, 288]], 'outer_group': '16.11', 'outer_hash': 11, 'outer_nilpotent': True, 'outer_order': 16, 'outer_permdeg': 6, 'outer_perms': [126, 55, 289, 288], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times D_4', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 6, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 2]], 'representations': {'PC': {'code': 8772, 'gens': [1, 2, 3], 'pres': [4, -2, 2, 2, -2, 78, 34]}, 'GLZ': {'b': 3, 'd': 3, 'gens': [16322, 16432, 3198]}, 'GLFp': {'d': 3, 'p': 3, 'gens': [8912, 8156, 13286, 14044]}, 'Perm': {'d': 6, 'gens': [126, 55, 289, 288]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times D_4', 'transitive_degree': 8, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 12, 'aut_gen_orders': [4, 4, 4, 12, 4, 4, 4], 'aut_gens': [[1, 2, 4, 16], [97, 59, 109, 24], [9, 98, 77, 80], [9, 10, 148, 16], [9, 59, 140, 16], [1, 106, 109, 112], [9, 51, 109, 24], [105, 10, 141, 176]], 'aut_group': None, 'aut_hash': 1286015808903731890, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 12288, 'aut_permdeg': 56, 'aut_perms': [279980791546124166911820583160470243360576055540144871133260661658475002335, 137824567443142225060196656969373686443744958536646126945526363093521141873, 635177337120067243715164656842737911109653272292133487083717807745357142853, 51486083001315656997134806347158933425481233078272170481050454239616296053, 467935458414002851243094483805437801750328861925156631325916167642489717029, 553190642739276459172481373581910786636615720815015844358678940341165768576, 347539641326482022698591729345829292894126267268469704678109848967561956306], 'aut_phi_ratio': 192.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 2, 2, 1], [2, 4, 2, 1], [2, 12, 4, 1], [3, 2, 1, 1], [4, 2, 2, 2], [4, 4, 2, 1], [4, 12, 4, 1], [6, 2, 1, 1], [6, 2, 2, 1], [6, 4, 2, 1], [6, 4, 4, 1], [12, 2, 4, 1], [12, 4, 2, 1], [12, 4, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_3:(C_2^8.C_2^4)', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': None, 'autcent_hash': 56092, 'autcent_nilpotent': True, 'autcent_order': 256, 'autcent_solvable': True, 'autcent_split': None, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^8', 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': 48, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 2, 2], [2, 4, 2], [2, 12, 4], [3, 2, 1], [4, 2, 4], [4, 4, 2], [4, 12, 4], [6, 2, 3], [6, 4, 6], [12, 2, 4], [12, 4, 6]], 'center_label': '4.2', 'center_order': 4, 'central_product': False, 'central_quotient': '48.51', 'commutator_count': 1, 'commutator_label': '12.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 1389, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 1, 2], [2, 4, 1, 2], [2, 12, 1, 4], [3, 2, 1, 1], [4, 2, 1, 4], [4, 4, 1, 2], [4, 12, 1, 4], [6, 2, 1, 3], [6, 4, 1, 2], [6, 4, 2, 2], [12, 2, 2, 2], [12, 4, 1, 2], [12, 4, 2, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 32760, 'exponent': 12, 'exponents_of_order': [6, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '48.51', 'hash': 1389, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 2, 2, 6], 'inner_gens': [[1, 98, 100, 16], [97, 2, 12, 16], [97, 10, 4, 176], [1, 2, 36, 16]], 'inner_hash': 51, 'inner_nilpotent': False, 'inner_order': 48, 'inner_split': None, 'inner_tex': 'C_2^2\\times D_6', 'inner_used': [1, 2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16], [2, 20], [4, 6]], 'label': '192.1389', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': '(C2*C12):D4', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 18, 'number_characteristic_subgroups': 23, 'number_conjugacy_classes': 42, 'number_divisions': 36, 'number_normal_subgroups': 111, 'number_subgroup_autclasses': 116, 'number_subgroup_classes': 334, 'number_subgroups': 1032, 'old_label': None, 'order': 192, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 63], [3, 2], [4, 64], [6, 30], [12, 32]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 4, 'outer_gen_orders': [4, 2, 2, 4, 2], 'outer_gen_pows': [0, 0, 1, 0, 1], 'outer_gens': [[105, 51, 101, 120], [105, 2, 52, 112], [1, 106, 53, 16], [9, 2, 60, 88], [1, 51, 148, 16]], 'outer_group': '256.29080', 'outer_hash': 29080, 'outer_nilpotent': True, 'outer_order': 256, 'outer_permdeg': 64, 'outer_perms': [78718014919286510208432875902956308600986727037962697456377196875274440506772477806341770, 60024490347253868244376475270617105744743374953009946442325521808847449196004096316359476, 30591622903078453594868295771475659707043711669323681223523758872870281451680267394688817, 34633247613647002893380564808450299667115198852745467162410672854697985893131906251354967, 94910863367006238427300820512192772439338862674381685158636896989940926708477175930067770], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2:D_4^2', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 15, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 12], [4, 6], [8, 2]], 'representations': {'PC': {'code': 32061896446940385266484410881, 'gens': [1, 2, 3, 5], 'pres': [7, -2, -2, -2, -2, -2, -2, -3, 1373, 2102, 135, 58, 1558, 102, 1699, 124, 1588]}, 'GLZN': {'d': 2, 'p': 48, 'gens': [111361, 111745, 1527595, 2821273, 2130091, 4119565, 3954349]}, 'Perm': {'d': 15, 'gens': [89704339225, 87665276904, 187895676264, 288369851280, 744, 381924305280, 3]}}, 'schur_multiplier': [2, 2, 2, 2, 4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(C_2\\times C_{12}):D_4', 'transitive_degree': 48, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 6], 'aut_gens': [[1, 2], [1, 10], [3, 2]], 'aut_group': '12.4', 'aut_hash': 4, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 12, 'aut_permdeg': 5, 'aut_perms': [6, 49], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 2, 1], [3, 2, 1, 1], [6, 2, 1, 1]], 'aut_supersolvable': True, 'aut_tex': 'D_6', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '6.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 6, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 3, 2], [3, 2, 1], [6, 2, 1]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '6.1', 'commutator_count': 1, 'commutator_label': '3.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 4, 'cyclic': False, 'derived_length': 2, 'dihedral': True, 'direct_factorization': [['2.1', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [3, 2, 1, 1], [6, 2, 1, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 3, 'exponent': 6, 'exponents_of_order': [2, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[2, 1, 1]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '12.4', 'hash': 4, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 3], 'inner_gens': [[1, 10], [5, 2]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 6, 'inner_split': True, 'inner_tex': 'S_3', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 2, 'irrQ_dim': 2, 'irrR_degree': 2, 'irrep_stats': [[1, 4], [2, 2]], 'label': '12.4', 'linC_count': 1, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 1, 'linQ_dim': 2, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'D6', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 5, 'number_characteristic_subgroups': 5, 'number_conjugacy_classes': 6, 'number_divisions': 6, 'number_normal_subgroups': 7, 'number_subgroup_autclasses': 8, 'number_subgroup_classes': 10, 'number_subgroups': 16, 'old_label': None, 'order': 12, 'order_factorization_type': 22, 'order_stats': [[1, 1], [2, 7], [3, 2], [6, 2]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[7, 2]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 5, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 2]], 'representations': {'PC': {'code': 43377, 'gens': [1, 2], 'pres': [3, -2, -2, -3, 61, 16, 74]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [17, 35]}, 'GLFp': {'d': 2, 'p': 3, 'gens': [31, 55, 56]}, 'Perm': {'d': 5, 'gens': [6, 1, 30]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_6', 'transitive_degree': 6, 'wreath_data': None, 'wreath_product': False}