-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '1728.34722', 'ambient_counter': 34722, 'ambient_order': 1728, 'ambient_tex': '(C_2\\times C_4).S_3^3', 'central': False, 'central_factor': False, 'centralizer_order': 4, 'characteristic': True, 'core_order': 864, 'counter': 14, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '1728.34722.2.m1.a1', 'maximal': True, 'maximal_normal': True, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '2.m1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '2.1', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': 1, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 2, 'quotient_simple': True, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2', 'simple': False, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '864.3636', 'subgroup_hash': 3636, 'subgroup_order': 864, 'subgroup_tex': '(C_6\\times C_{12}).D_6', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1728.34722', 'aut_centralizer_order': None, 'aut_label': '2.m1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '432.a1.a1', 'complements': ['864.d1.a1', '864.e1.b1', '864.e1.a1'], 'conjugacy_class_count': 1, 'contained_in': ['1.a1.a1'], 'contains': ['4.p1.a1', '4.q1.a1', '4.r1.a1', '4.bf1.a1', '4.bg1.a1', '4.bh1.a1', '4.bi1.a1', '6.bl1.a1', '6.bp1.a1', '6.bt1.a1'], 'core': '2.m1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [37, 864, 4, 42, 936, 576, 48, 432], 'label': '1728.34722.2.m1.a1', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '2.m1.a1', 'normal_contained_in': ['1.a1.a1'], 'normal_contains': ['4.q1.a1', '4.p1.a1', '4.r1.a1', '4.bf1.a1', '4.bh1.a1', '4.bg1.a1', '4.bi1.a1'], 'normalizer': '1.a1.a1', 'old_label': '2.m1.a1', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '2.m1.a1', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [6, 6, 2, 6, 6, 6, 6, 6, 6, 6], 'aut_gens': [[1, 2, 24, 72], [609, 146, 24, 84], [613, 158, 24, 852], [17, 10, 24, 84], [173, 586, 48, 528], [785, 346, 48, 108], [437, 466, 24, 516], [609, 634, 24, 516], [617, 626, 48, 372], [341, 734, 24, 504], [5, 38, 48, 96]], 'aut_group': None, 'aut_hash': 7528112664506936341, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 13824, 'aut_permdeg': 76, 'aut_perms': [638215327721466427420521469386802530991917444023043354531473931757532421740067074075657548400747833335570801339, 450334078043648800260359205720806628403751264171472297940117788386185494313462595242594925762546952202262301871, 84047150923666114557383646160309490156352679073658419906153243577851140861805879638236947718515412765439530594, 1665805787703349350059730749115965161293263462269799554092120846812473712773330176094136487081644532273457047202, 440276057625062139248433593743796598667247796763894274070232520521290115000331867134570733321676112027522629824, 179962525574840341409244490199254574322099222102945606989956242738639580451280852085289662375006846152790701885, 635569257465299866225690345010130975791091084253103136564166375142423331187917863245378236877102107785693763819, 1601308691012342122106310718264416194733562457966758354210441395417528461407959634638703751196758194468266423953, 1879287788362655137522980271257625136987183873398858482316478314136406621282167572609246043987877893104064321595, 802725121525431517898843545299649033619956929606507384669382422744771789020882186968590939653935578996143096951], 'aut_phi_ratio': 48.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [3, 2, 1, 3], [3, 4, 1, 3], [3, 4, 2, 1], [4, 4, 1, 1], [4, 18, 2, 3], [4, 36, 1, 3], [6, 2, 1, 9], [6, 4, 1, 9], [6, 4, 2, 3], [12, 4, 2, 3], [12, 4, 4, 3], [12, 4, 8, 1], [12, 36, 2, 6]], 'aut_supersolvable': True, 'aut_tex': 'C_3^3.C_2^6.C_2^3', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '64.267', 'autcent_hash': 267, 'autcent_nilpotent': True, 'autcent_order': 64, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^6', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '216.162', 'autcentquo_hash': 162, 'autcentquo_nilpotent': False, 'autcentquo_order': 216, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3^3', 'cc_stats': [[1, 1, 1], [2, 1, 3], [3, 2, 3], [3, 4, 5], [4, 4, 1], [4, 18, 6], [4, 36, 3], [6, 2, 9], [6, 4, 15], [12, 4, 26], [12, 36, 12]], 'center_label': '4.2', 'center_order': 4, 'central_product': False, 'central_quotient': '216.172', 'commutator_count': 1, 'commutator_label': '108.45', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 3636, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [3, 2, 1, 3], [3, 4, 1, 3], [3, 4, 2, 1], [4, 4, 1, 1], [4, 18, 1, 2], [4, 18, 2, 2], [4, 36, 1, 3], [6, 2, 1, 9], [6, 4, 1, 9], [6, 4, 2, 3], [12, 4, 2, 5], [12, 4, 4, 4], [12, 36, 1, 2], [12, 36, 2, 5]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 10752, 'exponent': 12, 'exponents_of_order': [5, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '216.172', 'hash': 3636, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 6, 3, 6], 'inner_gens': [[1, 10, 24, 420], [17, 2, 48, 792], [1, 50, 24, 72], [613, 146, 24, 72]], 'inner_hash': 172, 'inner_nilpotent': False, 'inner_order': 216, 'inner_split': True, 'inner_tex': 'C_6:S_3^2', 'inner_used': [1, 2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8], [2, 30], [4, 46]], 'label': '864.3636', 'linC_count': 448, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 20, 'linQ_dim': 12, 'linQ_dim_count': 6, 'linR_count': 4, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': '(C6*C12).D6', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 52, 'number_characteristic_subgroups': 71, 'number_conjugacy_classes': 84, 'number_divisions': 56, 'number_normal_subgroups': 75, 'number_subgroup_autclasses': 302, 'number_subgroup_classes': 318, 'number_subgroups': 1468, 'old_label': None, 'order': 864, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 3], [3, 26], [4, 220], [6, 78], [12, 536]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2, 2, 2, 2, 2], 'outer_gen_pows': [0, 0, 0, 0, 0, 0], 'outer_gens': [[13, 2, 24, 408], [433, 2, 24, 408], [1, 22, 24, 408], [1, 442, 24, 72], [1, 2, 48, 372], [1, 10, 24, 72]], 'outer_group': '64.267', 'outer_hash': 267, 'outer_nilpotent': True, 'outer_order': 64, 'outer_permdeg': 12, 'outer_perms': [39916800, 362880, 5040, 120, 6, 1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^6', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 25, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 14], [4, 18], [8, 14], [16, 2]], 'representations': {'PC': {'code': 1138909637631003664636213816448132785793782904090519321, 'gens': [1, 2, 5, 6], 'pres': [8, 2, 2, 2, 3, 3, 2, 2, 3, 3456, 161, 41, 482, 66, 515, 972, 20165, 19021, 141, 41670, 20174, 166, 39943, 18447]}, 'Perm': {'d': 25, 'gens': [622798591500376277016383, 1320859237101453793497607, 104590463802255441158400, 1969256573858811863404800, 86418678124800, 325, 435, 45360]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(C_6\\times C_{12}).D_6', 'transitive_degree': 96, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': None, 'aut_cyclic': None, 'aut_derived_length': None, 'aut_exponent': None, 'aut_gen_orders': None, 'aut_gens': [[1, 2, 12, 144], [937, 10, 12, 720], [865, 2, 60, 144], [1, 946, 12, 144], [1, 866, 60, 720], [1, 2, 996, 720], [1, 10, 924, 144], [1, 10, 60, 1080], [1, 10, 60, 1584], [1, 10, 12, 144], [1, 2, 60, 144], [1, 2, 12, 720], [5, 2, 12, 144], [1, 50, 12, 144], [1, 2, 588, 144]], 'aut_group': None, 'aut_hash': None, 'aut_nilpotency_class': None, 'aut_nilpotent': None, 'aut_order': 55296, 'aut_permdeg': None, 'aut_perms': None, 'aut_phi_ratio': None, 'aut_solvable': None, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 12, 1, 1], [2, 54, 2, 1], [3, 2, 1, 3], [3, 4, 1, 3], [3, 8, 1, 1], [4, 4, 1, 1], [4, 6, 2, 2], [4, 12, 1, 3], [4, 18, 2, 2], [4, 36, 1, 4], [4, 54, 2, 1], [6, 2, 1, 9], [6, 4, 1, 9], [6, 8, 1, 3], [6, 24, 1, 2], [6, 24, 2, 1], [12, 8, 1, 3], [12, 8, 2, 3], [12, 8, 4, 1], [12, 12, 2, 6], [12, 24, 1, 4], [12, 24, 2, 5], [12, 36, 2, 3], [12, 72, 1, 3]], 'aut_supersolvable': None, 'aut_tex': None, 'autcent_abelian': None, 'autcent_cyclic': None, 'autcent_exponent': None, 'autcent_group': None, 'autcent_hash': None, 'autcent_nilpotent': None, 'autcent_order': None, 'autcent_solvable': None, 'autcent_split': None, 'autcent_supersolvable': None, 'autcent_tex': None, 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': None, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 12, 1], [2, 54, 2], [3, 2, 3], [3, 4, 3], [3, 8, 1], [4, 4, 1], [4, 6, 4], [4, 12, 3], [4, 18, 4], [4, 36, 4], [4, 54, 2], [6, 2, 9], [6, 4, 9], [6, 8, 3], [6, 24, 4], [12, 8, 13], [12, 12, 12], [12, 24, 14], [12, 36, 6], [12, 72, 3]], 'center_label': '4.2', 'center_order': 4, 'central_product': False, 'central_quotient': '432.759', 'commutator_count': 1, 'commutator_label': '108.45', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 9, 'conjugacy_classes_known': True, 'counter': 34722, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 12, 1, 1], [2, 54, 1, 2], [3, 2, 1, 3], [3, 4, 1, 3], [3, 8, 1, 1], [4, 4, 1, 1], [4, 6, 2, 2], [4, 12, 1, 3], [4, 18, 2, 2], [4, 36, 1, 4], [4, 54, 1, 2], [6, 2, 1, 9], [6, 4, 1, 9], [6, 8, 1, 3], [6, 24, 1, 4], [12, 8, 1, 5], [12, 8, 2, 4], [12, 12, 2, 6], [12, 24, 1, 4], [12, 24, 2, 5], [12, 36, 2, 3], [12, 72, 1, 3]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 44291520, 'exponent': 12, 'exponents_of_order': [6, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '432.759', 'hash': 34722, 'hyperelementary': 1, 'inner_abelian': None, 'inner_cyclic': None, 'inner_exponent': None, 'inner_gen_orders': None, 'inner_gens': None, 'inner_hash': None, 'inner_nilpotent': None, 'inner_order': 432, 'inner_split': None, 'inner_tex': 'C_2\\times S_3^3', 'inner_used': None, 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16], [2, 32], [4, 43], [8, 14]], 'label': '1728.34722', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': '(C2*C4).S3^3', 'ngens': 9, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 78, 'number_characteristic_subgroups': 164, 'number_conjugacy_classes': 105, 'number_divisions': 83, 'number_normal_subgroups': 168, 'number_subgroup_autclasses': 1018, 'number_subgroup_classes': 1170, 'number_subgroups': 9796, 'old_label': None, 'order': 1728, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 123], [3, 26], [4, 388], [6, 174], [12, 1016]], 'outer_abelian': None, 'outer_cyclic': None, 'outer_equivalence': False, 'outer_exponent': None, 'outer_gen_orders': None, 'outer_gen_pows': None, 'outer_gens': None, 'outer_group': '128.2328', 'outer_hash': None, 'outer_nilpotent': None, 'outer_order': 128, 'outer_permdeg': None, 'outer_perms': None, 'outer_solvable': None, 'outer_supersolvable': None, 'outer_tex': 'C_2^7', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 25, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 24], [4, 17], [8, 23], [16, 3]], 'representations': {'PC': {'code': 32979869872870226435799038531461208780492439401225679692093699657, 'gens': [1, 2, 4, 7], 'pres': [9, 2, 2, 3, 2, 2, 3, 2, 2, 3, 8424, 15733, 46, 218, 16644, 102, 2713, 130, 2606, 68046, 6819, 8349, 186, 8674, 214, 7811]}, 'Perm': {'d': 25, 'gens': [623980975470036191078536, 1347733072688843114668943, 1991836343782403665752240, 1914175678801465745568000, 2642730324466417016832000, 21204442828800, 325, 435, 45360]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(C_2\\times C_4).S_3^3', 'transitive_degree': 96, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '2.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 0, 'aut_exponent': 1, 'aut_gen_orders': [], 'aut_gens': [[1]], 'aut_group': '1.1', 'aut_hash': 1, 'aut_nilpotency_class': 0, 'aut_nilpotent': True, 'aut_order': 1, 'aut_permdeg': 1, 'aut_perms': [], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_1', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [1], 'factors_of_aut_order': [], 'factors_of_order': [2], 'faithful_reps': [[1, 1, 1]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '2.1', 'hash': 1, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 1, 'irrQ_dim': 1, 'irrR_degree': 1, 'irrep_stats': [[1, 2]], 'label': '2.1', 'linC_count': 1, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 1, 'linQ_degree_count': 1, 'linQ_dim': 1, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 1, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 2, 'number_divisions': 2, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': 2, 'number_subgroup_classes': 2, 'number_subgroups': 2, 'old_label': None, 'order': 2, 'order_factorization_type': 1, 'order_stats': [[1, 1], [2, 1]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 1, 'outer_gen_orders': [], 'outer_gen_pows': [], 'outer_gens': [], 'outer_group': '1.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 1, 'outer_permdeg': 1, 'outer_perms': [], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_1', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 2, 'pgroup': 2, 'primary_abelian_invariants': [2], 'quasisimple': False, 'rank': 1, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 2]], 'representations': {'PC': {'code': 0, 'gens': [1], 'pres': [1, -2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [12]}, 'Lie': [{'d': 2, 'q': 2, 'gens': [6], 'family': 'CSOPlus'}, {'d': 2, 'q': 2, 'gens': [6], 'family': 'COPlus'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'AGL'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'AGammaL'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'ASigmaL'}], 'GLFp': {'d': 2, 'p': 2, 'gens': [11]}, 'Perm': {'d': 2, 'gens': [1]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [2], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2', 'transitive_degree': 2, 'wreath_data': None, 'wreath_product': False}