Properties

Label ab/2.2.2.2.2.2.2.4
Order \( 2^{9} \)
Exponent \( 2^{2} \)
Abelian yes
$\card{\Aut(G)}$ \( 2^{36} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \cdot 127 \)
Trans deg. $512$
Rank $8$

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_{2}^{7} \times C_{4}$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism group:Group of order 5369036568306647040
Nilpotency class:$1$
Derived length:$1$

This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary). Whether it is metacyclic or rational has not been computed.

Group statistics

Order 1 2 4
Elements 1 255 256 512
Conjugacy classes   1 255 256 512
Divisions data not computed
Autjugacy classes data not computed

Dimension 1
Irr. complex chars.   512 512

Constructions

Rank: $8$
Inequivalent generating 8-tuples: not computed

Homology

Primary decomposition: $C_{2}^{7} \times C_{4}$

Subgroups

Center: $Z \simeq$ $C_{2}^{7} \times C_{4}$ $G/Z \simeq$ $C_1$
Commutator: $G' \simeq$ $C_1$ $G/G' \simeq$ $C_{2}^{7} \times C_{4}$
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $C_2^8$
Fitting: $\operatorname{Fit} \simeq$ $C_{2}^{7} \times C_{4}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_{2}^{7} \times C_{4}$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2^8$ $G/S \simeq$ $C_2$