Refine search
Label | Name | Order | Exponent | $\card{\mathrm{conj}(G)}$ | Center | Type - length |
---|---|---|---|---|---|---|
2.1 | $C_2$ | $2$ | $2$ | 2 | $C_2$ | Cyclic |
3.1 | $C_3$ | $3$ | $3$ | 3 | $C_3$ | Cyclic |
4.1 | $C_4$ | $2^{2}$ | $2^{2}$ | 4 | $C_4$ | Cyclic |
4.2 | $C_2^2$ | $2^{2}$ | $2$ | 4 | $C_2^2$ | Abelian - 2 |
5.1 | $C_5$ | $5$ | $5$ | 5 | $C_5$ | Cyclic |
6.2 | $C_6$ | $2 \cdot 3$ | $2 \cdot 3$ | 6 | $C_6$ | Cyclic |
7.1 | $C_7$ | $7$ | $7$ | 7 | $C_7$ | Cyclic |
8.1 | $C_8$ | $2^{3}$ | $2^{3}$ | 8 | $C_8$ | Cyclic |
8.2 | $C_2\times C_4$ | $2^{3}$ | $2^{2}$ | 8 | $C_2\times C_4$ | Abelian - 2 |
8.5 | $C_2^3$ | $2^{3}$ | $2$ | 8 | $C_2^3$ | Abelian - 3 |
9.1 | $C_9$ | $3^{2}$ | $3^{2}$ | 9 | $C_9$ | Cyclic |
9.2 | $C_3^2$ | $3^{2}$ | $3$ | 9 | $C_3^2$ | Abelian - 2 |
10.2 | $C_{10}$ | $2 \cdot 5$ | $2 \cdot 5$ | 10 | $C_{10}$ | Cyclic |
11.1 | $C_{11}$ | $11$ | $11$ | 11 | $C_{11}$ | Cyclic |
12.2 | $C_{12}$ | $2^{2} \cdot 3$ | $2^{2} \cdot 3$ | 12 | $C_{12}$ | Cyclic |
12.5 | $C_2\times C_6$ | $2^{2} \cdot 3$ | $2 \cdot 3$ | 12 | $C_2\times C_6$ | Abelian - 2 |
13.1 | $C_{13}$ | $13$ | $13$ | 13 | $C_{13}$ | Cyclic |
14.2 | $C_{14}$ | $2 \cdot 7$ | $2 \cdot 7$ | 14 | $C_{14}$ | Cyclic |
15.1 | $C_{15}$ | $3 \cdot 5$ | $3 \cdot 5$ | 15 | $C_{15}$ | Cyclic |
16.1 | $C_{16}$ | $2^{4}$ | $2^{4}$ | 16 | $C_{16}$ | Cyclic |
16.2 | $C_4^2$ | $2^{4}$ | $2^{2}$ | 16 | $C_4^2$ | Abelian - 2 |
16.5 | $C_2\times C_8$ | $2^{4}$ | $2^{3}$ | 16 | $C_2\times C_8$ | Abelian - 2 |
16.10 | $C_2^2\times C_4$ | $2^{4}$ | $2^{2}$ | 16 | $C_2^2\times C_4$ | Abelian - 3 |
16.14 | $C_2^4$ | $2^{4}$ | $2$ | 16 | $C_2^4$ | Abelian - 4 |
17.1 | $C_{17}$ | $17$ | $17$ | 17 | $C_{17}$ | Cyclic |
18.2 | $C_{18}$ | $2 \cdot 3^{2}$ | $2 \cdot 3^{2}$ | 18 | $C_{18}$ | Cyclic |
18.5 | $C_3\times C_6$ | $2 \cdot 3^{2}$ | $2 \cdot 3$ | 18 | $C_3\times C_6$ | Abelian - 2 |
19.1 | $C_{19}$ | $19$ | $19$ | 19 | $C_{19}$ | Cyclic |
20.2 | $C_{20}$ | $2^{2} \cdot 5$ | $2^{2} \cdot 5$ | 20 | $C_{20}$ | Cyclic |
20.5 | $C_2\times C_{10}$ | $2^{2} \cdot 5$ | $2 \cdot 5$ | 20 | $C_2\times C_{10}$ | Abelian - 2 |
21.2 | $C_{21}$ | $3 \cdot 7$ | $3 \cdot 7$ | 21 | $C_{21}$ | Cyclic |
22.2 | $C_{22}$ | $2 \cdot 11$ | $2 \cdot 11$ | 22 | $C_{22}$ | Cyclic |
23.1 | $C_{23}$ | $23$ | $23$ | 23 | $C_{23}$ | Cyclic |
24.2 | $C_{24}$ | $2^{3} \cdot 3$ | $2^{3} \cdot 3$ | 24 | $C_{24}$ | Cyclic |
24.9 | $C_2\times C_{12}$ | $2^{3} \cdot 3$ | $2^{2} \cdot 3$ | 24 | $C_2\times C_{12}$ | Abelian - 2 |
24.15 | $C_2^2\times C_6$ | $2^{3} \cdot 3$ | $2 \cdot 3$ | 24 | $C_2^2\times C_6$ | Abelian - 3 |
25.1 | $C_{25}$ | $5^{2}$ | $5^{2}$ | 25 | $C_{25}$ | Cyclic |
25.2 | $C_5^2$ | $5^{2}$ | $5$ | 25 | $C_5^2$ | Abelian - 2 |
26.2 | $C_{26}$ | $2 \cdot 13$ | $2 \cdot 13$ | 26 | $C_{26}$ | Cyclic |
27.1 | $C_{27}$ | $3^{3}$ | $3^{3}$ | 27 | $C_{27}$ | Cyclic |
27.2 | $C_3\times C_9$ | $3^{3}$ | $3^{2}$ | 27 | $C_3\times C_9$ | Abelian - 2 |
27.5 | $C_3^3$ | $3^{3}$ | $3$ | 27 | $C_3^3$ | Abelian - 3 |
28.2 | $C_{28}$ | $2^{2} \cdot 7$ | $2^{2} \cdot 7$ | 28 | $C_{28}$ | Cyclic |
28.4 | $C_2\times C_{14}$ | $2^{2} \cdot 7$ | $2 \cdot 7$ | 28 | $C_2\times C_{14}$ | Abelian - 2 |
29.1 | $C_{29}$ | $29$ | $29$ | 29 | $C_{29}$ | Cyclic |
30.4 | $C_{30}$ | $2 \cdot 3 \cdot 5$ | $2 \cdot 3 \cdot 5$ | 30 | $C_{30}$ | Cyclic |
31.1 | $C_{31}$ | $31$ | $31$ | 31 | $C_{31}$ | Cyclic |
32.1 | $C_{32}$ | $2^{5}$ | $2^{5}$ | 32 | $C_{32}$ | Cyclic |
32.3 | $C_4\times C_8$ | $2^{5}$ | $2^{3}$ | 32 | $C_4\times C_8$ | Abelian - 2 |
32.16 | $C_2\times C_{16}$ | $2^{5}$ | $2^{4}$ | 32 | $C_2\times C_{16}$ | Abelian - 2 |