Elements of the group are displayed as words in the presentation $\langle a, b, c, d, e \mid a^{2}=b^{6}=d^{2}=e^{20}=[c,d]=1, c^{2}=e^{10}, b^{a}=b^{5}e^{10}, c^{a}=e^{15}, d^{a}=cde^{5}, e^{a}=ce^{6}, c^{b}=ce^{5}, d^{b}=de^{5}, e^{b}=ce^{4}, e^{c}=e^{11}, e^{d}=e^{11} \rangle$ .
Group
Label
Order
Size
Centralizer
Powers
Representative
2P
3P
5P
$\GL(2,3):D_{10}$
1A
$1$
$1$
$\GL(2,3):D_{10}$
1A
1A
1A
$1$
$\GL(2,3):D_{10}$
2A
$2$
$1$
$\GL(2,3):D_{10}$
1A
2A
2A
$e^{10}$
$\GL(2,3):D_{10}$
2B
$2$
$6$
$C_8:D_{10}$
1A
2B
2B
$d$
$\GL(2,3):D_{10}$
2C
$2$
$10$
$\SL(2,3):C_2^2$
1A
2C
2C
$b^{3}e^{14}$
$\GL(2,3):D_{10}$
2D
$2$
$12$
$C_4\times D_{10}$
1A
2D
2D
$a$
$\GL(2,3):D_{10}$
2E
$2$
$30$
$D_4:C_2^2$
1A
2E
2E
$b^{3}d$
$\GL(2,3):D_{10}$
2F
$2$
$60$
$C_2^2\times C_4$
1A
2F
2F
$ab^{3}cde^{8}$
$\GL(2,3):D_{10}$
3A
$3$
$8$
$D_5\times C_{12}$
3A
1A
3A
$b^{4}ce^{15}$
$\GL(2,3):D_{10}$
4A1
$4$
$1$
$\GL(2,3):D_{10}$
2A
4A-1
4A1
$cd$
$\GL(2,3):D_{10}$
4A-1
$4$
$1$
$\GL(2,3):D_{10}$
2A
4A1
4A-1
$cde^{10}$
$\GL(2,3):D_{10}$
4B
$4$
$6$
$C_8:D_{10}$
2A
4B
4B
$ce^{15}$
$\GL(2,3):D_{10}$
4C
$4$
$10$
$\SL(2,3):C_2^2$
2A
4C
4C
$b^{3}cde^{6}$
$\GL(2,3):D_{10}$
4D
$4$
$12$
$C_4\times D_{10}$
2A
4D
4D
$ade^{5}$
$\GL(2,3):D_{10}$
4E
$4$
$30$
$D_4:C_2^2$
2A
4E
4E
$b^{3}e$
$\GL(2,3):D_{10}$
4F
$4$
$60$
$C_2^2\times C_4$
2A
4F
4F
$ab^{3}ce^{7}$
$\GL(2,3):D_{10}$
5A1
$5$
$2$
$\GL(2,3):C_{10}$
5A2
5A2
1A
$e^{8}$
$\GL(2,3):D_{10}$
5A2
$5$
$2$
$\GL(2,3):C_{10}$
5A1
5A1
1A
$e^{16}$
$\GL(2,3):D_{10}$
6A
$6$
$8$
$D_5\times C_{12}$
3A
2A
6A
$b^{2}ce^{10}$
$\GL(2,3):D_{10}$
6B1
$6$
$40$
$C_2\times C_{12}$
3A
2C
6B-1
$be^{14}$
$\GL(2,3):D_{10}$
6B-1
$6$
$40$
$C_2\times C_{12}$
3A
2C
6B1
$b^{5}e^{14}$
$\GL(2,3):D_{10}$
8A
$8$
$12$
$C_2\times C_{40}$
4B
8A
8A
$ae^{15}$
$\GL(2,3):D_{10}$
8B
$8$
$12$
$C_2\times C_{40}$
4B
8B
8B
$ade^{10}$
$\GL(2,3):D_{10}$
8C
$8$
$60$
$C_2\times C_8$
4B
8C
8C
$ab^{3}de^{12}$
$\GL(2,3):D_{10}$
8D
$8$
$60$
$C_2\times C_8$
4B
8D
8D
$ab^{3}ce^{10}$
$\GL(2,3):D_{10}$
10A1
$10$
$2$
$\GL(2,3):C_{10}$
5A2
10A3
2A
$e^{2}$
$\GL(2,3):D_{10}$
10A3
$10$
$2$
$\GL(2,3):C_{10}$
5A1
10A1
2A
$e^{6}$
$\GL(2,3):D_{10}$
10B1
$10$
$12$
$C_2\times C_{40}$
5A1
10B3
2B
$de^{4}$
$\GL(2,3):D_{10}$
10B3
$10$
$12$
$C_2\times C_{40}$
5A2
10B1
2B
$de^{2}$
$\GL(2,3):D_{10}$
10C1
$10$
$24$
$C_2\times C_{20}$
5A1
10C3
2D
$ae^{4}$
$\GL(2,3):D_{10}$
10C3
$10$
$24$
$C_2\times C_{20}$
5A2
10C1
2D
$ae^{2}$
$\GL(2,3):D_{10}$
12A1
$12$
$8$
$D_5\times C_{12}$
6A
4A1
12A1
$b^{4}de^{15}$
$\GL(2,3):D_{10}$
12A-1
$12$
$8$
$D_5\times C_{12}$
6A
4A-1
12A-1
$b^{2}de^{10}$
$\GL(2,3):D_{10}$
12B1
$12$
$40$
$C_2\times C_{12}$
6A
4C
12B5
$b^{5}cde$
$\GL(2,3):D_{10}$
12B5
$12$
$40$
$C_2\times C_{12}$
6A
4C
12B1
$bde^{16}$
$\GL(2,3):D_{10}$
15A1
$15$
$16$
$C_{60}$
15A2
5A1
3A
$b^{2}ce^{16}$
$\GL(2,3):D_{10}$
15A2
$15$
$16$
$C_{60}$
15A1
5A2
3A
$b^{4}ce^{7}$
$\GL(2,3):D_{10}$
20A1
$20$
$2$
$\GL(2,3):C_{10}$
10A3
20A3
4A1
$cde^{12}$
$\GL(2,3):D_{10}$
20A-1
$20$
$2$
$\GL(2,3):C_{10}$
10A3
20A-3
4A-1
$cde^{18}$
$\GL(2,3):D_{10}$
20A3
$20$
$2$
$\GL(2,3):C_{10}$
10A1
20A1
4A-1
$cde^{6}$
$\GL(2,3):D_{10}$
20A-3
$20$
$2$
$\GL(2,3):C_{10}$
10A1
20A-1
4A1
$cde^{4}$
$\GL(2,3):D_{10}$
20B1
$20$
$12$
$C_2\times C_{40}$
10A3
20B3
4B
$ce^{7}$
$\GL(2,3):D_{10}$
20B3
$20$
$12$
$C_2\times C_{40}$
10A1
20B1
4B
$ce$
$\GL(2,3):D_{10}$
20C1
$20$
$24$
$C_2\times C_{20}$
10A1
20C3
4D
$ade$
$\GL(2,3):D_{10}$
20C3
$20$
$24$
$C_2\times C_{20}$
10A3
20C1
4D
$ade^{3}$
$\GL(2,3):D_{10}$
30A1
$30$
$16$
$C_{60}$
15A1
10A3
6A
$b^{4}ce^{13}$
$\GL(2,3):D_{10}$
30A7
$30$
$16$
$C_{60}$
15A2
10A1
6A
$b^{4}ce$
$\GL(2,3):D_{10}$
40A1
$40$
$12$
$C_2\times C_{40}$
20B1
40A3
8A
$ae$
$\GL(2,3):D_{10}$
40A3
$40$
$12$
$C_2\times C_{40}$
20B3
40A9
8A
$ae^{13}$
$\GL(2,3):D_{10}$
40A9
$40$
$12$
$C_2\times C_{40}$
20B1
40A13
8A
$ae^{9}$
$\GL(2,3):D_{10}$
40A13
$40$
$12$
$C_2\times C_{40}$
20B3
40A1
8A
$ae^{3}$
Next
Download
displayed columns for
results
to
Text