Learn more

Refine search


Results (1-50 of 59 matches)

Next   displayed columns for results

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,113)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 7P 19P 113P
$\PSL(2,113)$ 1A $1$ $1$ $\PSL(2,113)$ 1A 1A 1A 1A 1A $ \left[ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) \right] $
$\PSL(2,113)$ 2A $2$ $6441$ $D_{56}$ 1A 2A 2A 2A 2A $ \left[ \left(\begin{array}{rr} 81 & 98 \\ 106 & 32 \end{array}\right) \right] $
$\PSL(2,113)$ 3A $3$ $12656$ $C_{57}$ 3A 1A 3A 3A 3A $ \left[ \left(\begin{array}{rr} 15 & 106 \\ 99 & 97 \end{array}\right) \right] $
$\PSL(2,113)$ 4A $4$ $12882$ $C_{56}$ 2A 4A 4A 4A 4A $ \left[ \left(\begin{array}{rr} 107 & 100 \\ 9 & 57 \end{array}\right) \right] $
$\PSL(2,113)$ 7A1 $7$ $12882$ $C_{56}$ 7A2 7A3 1A 7A2 7A1 $ \left[ \left(\begin{array}{rr} 105 & 16 \\ 15 & 97 \end{array}\right) \right] $
$\PSL(2,113)$ 7A2 $7$ $12882$ $C_{56}$ 7A3 7A1 1A 7A3 7A2 $ \left[ \left(\begin{array}{rr} 35 & 45 \\ 21 & 69 \end{array}\right) \right] $
$\PSL(2,113)$ 7A3 $7$ $12882$ $C_{56}$ 7A1 7A2 1A 7A1 7A3 $ \left[ \left(\begin{array}{rr} 57 & 47 \\ 37 & 90 \end{array}\right) \right] $
$\PSL(2,113)$ 8A1 $8$ $12882$ $C_{56}$ 4A 8A3 8A1 8A3 8A1 $ \left[ \left(\begin{array}{rr} 98 & 69 \\ 100 & 7 \end{array}\right) \right] $
$\PSL(2,113)$ 8A3 $8$ $12882$ $C_{56}$ 4A 8A1 8A3 8A1 8A3 $ \left[ \left(\begin{array}{rr} 80 & 53 \\ 85 & 110 \end{array}\right) \right] $
$\PSL(2,113)$ 14A1 $14$ $12882$ $C_{56}$ 7A1 14A3 2A 14A5 14A1 $ \left[ \left(\begin{array}{rr} 65 & 29 \\ 6 & 107 \end{array}\right) \right] $
$\PSL(2,113)$ 14A3 $14$ $12882$ $C_{56}$ 7A3 14A5 2A 14A1 14A3 $ \left[ \left(\begin{array}{rr} 85 & 102 \\ 25 & 34 \end{array}\right) \right] $
$\PSL(2,113)$ 14A5 $14$ $12882$ $C_{56}$ 7A2 14A1 2A 14A3 14A5 $ \left[ \left(\begin{array}{rr} 54 & 46 \\ 29 & 31 \end{array}\right) \right] $
$\PSL(2,113)$ 19A1 $19$ $12656$ $C_{57}$ 19A2 19A3 19A7 1A 19A1 $ \left[ \left(\begin{array}{rr} 25 & 63 \\ 13 & 78 \end{array}\right) \right] $
$\PSL(2,113)$ 19A2 $19$ $12656$ $C_{57}$ 19A4 19A6 19A5 1A 19A2 $ \left[ \left(\begin{array}{rr} 25 & 65 \\ 17 & 103 \end{array}\right) \right] $
$\PSL(2,113)$ 19A3 $19$ $12656$ $C_{57}$ 19A6 19A9 19A2 1A 19A3 $ \left[ \left(\begin{array}{rr} 112 & 22 \\ 44 & 48 \end{array}\right) \right] $
$\PSL(2,113)$ 19A4 $19$ $12656$ $C_{57}$ 19A8 19A7 19A9 1A 19A4 $ \left[ \left(\begin{array}{rr} 35 & 71 \\ 29 & 75 \end{array}\right) \right] $
$\PSL(2,113)$ 19A5 $19$ $12656$ $C_{57}$ 19A9 19A4 19A3 1A 19A5 $ \left[ \left(\begin{array}{rr} 103 & 59 \\ 5 & 106 \end{array}\right) \right] $
$\PSL(2,113)$ 19A6 $19$ $12656$ $C_{57}$ 19A7 19A1 19A4 1A 19A6 $ \left[ \left(\begin{array}{rr} 48 & 96 \\ 79 & 5 \end{array}\right) \right] $
$\PSL(2,113)$ 19A7 $19$ $12656$ $C_{57}$ 19A5 19A2 19A8 1A 19A7 $ \left[ \left(\begin{array}{rr} 38 & 110 \\ 107 & 57 \end{array}\right) \right] $
$\PSL(2,113)$ 19A8 $19$ $12656$ $C_{57}$ 19A3 19A5 19A1 1A 19A8 $ \left[ \left(\begin{array}{rr} 7 & 13 \\ 26 & 0 \end{array}\right) \right] $
$\PSL(2,113)$ 19A9 $19$ $12656$ $C_{57}$ 19A1 19A8 19A6 1A 19A9 $ \left[ \left(\begin{array}{rr} 5 & 99 \\ 85 & 56 \end{array}\right) \right] $
$\PSL(2,113)$ 28A1 $28$ $12882$ $C_{56}$ 14A1 28A3 4A 28A9 28A1 $ \left[ \left(\begin{array}{rr} 105 & 41 \\ 102 & 28 \end{array}\right) \right] $
$\PSL(2,113)$ 28A3 $28$ $12882$ $C_{56}$ 14A3 28A9 4A 28A1 28A3 $ \left[ \left(\begin{array}{rr} 65 & 87 \\ 18 & 78 \end{array}\right) \right] $
$\PSL(2,113)$ 28A5 $28$ $12882$ $C_{56}$ 14A5 28A13 4A 28A11 28A5 $ \left[ \left(\begin{array}{rr} 1 & 7 \\ 56 & 54 \end{array}\right) \right] $
$\PSL(2,113)$ 28A9 $28$ $12882$ $C_{56}$ 14A5 28A1 4A 28A3 28A9 $ \left[ \left(\begin{array}{rr} 97 & 17 \\ 23 & 32 \end{array}\right) \right] $
$\PSL(2,113)$ 28A11 $28$ $12882$ $C_{56}$ 14A3 28A5 4A 28A13 28A11 $ \left[ \left(\begin{array}{rr} 79 & 112 \\ 105 & 23 \end{array}\right) \right] $
$\PSL(2,113)$ 28A13 $28$ $12882$ $C_{56}$ 14A1 28A11 4A 28A5 28A13 $ \left[ \left(\begin{array}{rr} 69 & 76 \\ 43 & 31 \end{array}\right) \right] $
$\PSL(2,113)$ 56A1 $56$ $12882$ $C_{56}$ 28A1 56A3 8A1 56A19 56A1 $ \left[ \left(\begin{array}{rr} 74 & 27 \\ 103 & 4 \end{array}\right) \right] $
$\PSL(2,113)$ 56A3 $56$ $12882$ $C_{56}$ 28A3 56A9 8A3 56A1 56A3 $ \left[ \left(\begin{array}{rr} 15 & 61 \\ 36 & 41 \end{array}\right) \right] $
$\PSL(2,113)$ 56A5 $56$ $12882$ $C_{56}$ 28A5 56A15 8A3 56A17 56A5 $ \left[ \left(\begin{array}{rr} 0 & 63 \\ 52 & 25 \end{array}\right) \right] $
$\PSL(2,113)$ 56A9 $56$ $12882$ $C_{56}$ 28A9 56A27 8A1 56A3 56A9 $ \left[ \left(\begin{array}{rr} 74 & 39 \\ 86 & 111 \end{array}\right) \right] $
$\PSL(2,113)$ 56A11 $56$ $12882$ $C_{56}$ 28A11 56A23 8A3 56A15 56A11 $ \left[ \left(\begin{array}{rr} 4 & 55 \\ 101 & 33 \end{array}\right) \right] $
$\PSL(2,113)$ 56A13 $56$ $12882$ $C_{56}$ 28A13 56A17 8A3 56A23 56A13 $ \left[ \left(\begin{array}{rr} 72 & 104 \\ 41 & 20 \end{array}\right) \right] $
$\PSL(2,113)$ 56A15 $56$ $12882$ $C_{56}$ 28A13 56A11 8A1 56A5 56A15 $ \left[ \left(\begin{array}{rr} 88 & 101 \\ 17 & 94 \end{array}\right) \right] $
$\PSL(2,113)$ 56A17 $56$ $12882$ $C_{56}$ 28A11 56A5 8A1 56A13 56A17 $ \left[ \left(\begin{array}{rr} 106 & 108 \\ 73 & 52 \end{array}\right) \right] $
$\PSL(2,113)$ 56A19 $56$ $12882$ $C_{56}$ 28A9 56A1 8A3 56A25 56A19 $ \left[ \left(\begin{array}{rr} 2 & 88 \\ 26 & 71 \end{array}\right) \right] $
$\PSL(2,113)$ 56A23 $56$ $12882$ $C_{56}$ 28A5 56A13 8A1 56A11 56A23 $ \left[ \left(\begin{array}{rr} 93 & 95 \\ 82 & 102 \end{array}\right) \right] $
$\PSL(2,113)$ 56A25 $56$ $12882$ $C_{56}$ 28A3 56A19 8A1 56A27 56A25 $ \left[ \left(\begin{array}{rr} 94 & 81 \\ 83 & 110 \end{array}\right) \right] $
$\PSL(2,113)$ 56A27 $56$ $12882$ $C_{56}$ 28A1 56A25 8A3 56A9 56A27 $ \left[ \left(\begin{array}{rr} 52 & 20 \\ 47 & 42 \end{array}\right) \right] $
$\PSL(2,113)$ 57A1 $57$ $12656$ $C_{57}$ 57A2 19A1 57A7 3A 57A1 $ \left[ \left(\begin{array}{rr} 63 & 32 \\ 64 & 11 \end{array}\right) \right] $
$\PSL(2,113)$ 57A2 $57$ $12656$ $C_{57}$ 57A4 19A2 57A14 3A 57A2 $ \left[ \left(\begin{array}{rr} 85 & 5 \\ 10 & 91 \end{array}\right) \right] $
$\PSL(2,113)$ 57A4 $57$ $12656$ $C_{57}$ 57A8 19A4 57A28 3A 57A4 $ \left[ \left(\begin{array}{rr} 70 & 24 \\ 48 & 31 \end{array}\right) \right] $
$\PSL(2,113)$ 57A5 $57$ $12656$ $C_{57}$ 57A10 19A5 57A22 3A 57A5 $ \left[ \left(\begin{array}{rr} 70 & 18 \\ 36 & 69 \end{array}\right) \right] $
$\PSL(2,113)$ 57A7 $57$ $12656$ $C_{57}$ 57A14 19A7 57A8 3A 57A7 $ \left[ \left(\begin{array}{rr} 28 & 67 \\ 21 & 18 \end{array}\right) \right] $
$\PSL(2,113)$ 57A8 $57$ $12656$ $C_{57}$ 57A16 19A8 57A1 3A 57A8 $ \left[ \left(\begin{array}{rr} 63 & 51 \\ 102 & 79 \end{array}\right) \right] $
$\PSL(2,113)$ 57A10 $57$ $12656$ $C_{57}$ 57A20 19A9 57A13 3A 57A10 $ \left[ \left(\begin{array}{rr} 11 & 16 \\ 32 & 98 \end{array}\right) \right] $
$\PSL(2,113)$ 57A11 $57$ $12656$ $C_{57}$ 57A22 19A8 57A20 3A 57A11 $ \left[ \left(\begin{array}{rr} 22 & 76 \\ 39 & 68 \end{array}\right) \right] $
$\PSL(2,113)$ 57A13 $57$ $12656$ $C_{57}$ 57A26 19A6 57A23 3A 57A13 $ \left[ \left(\begin{array}{rr} 31 & 20 \\ 40 & 55 \end{array}\right) \right] $
$\PSL(2,113)$ 57A14 $57$ $12656$ $C_{57}$ 57A28 19A5 57A16 3A 57A14 $ \left[ \left(\begin{array}{rr} 44 & 31 \\ 62 & 36 \end{array}\right) \right] $
$\PSL(2,113)$ 57A16 $57$ $12656$ $C_{57}$ 57A25 19A3 57A2 3A 57A16 $ \left[ \left(\begin{array}{rr} 95 & 103 \\ 93 & 83 \end{array}\right) \right] $
Next   displayed columns for results