Refine search
Results (13 matches)
Download displayed columns for resultsElements of the group are displayed as matrices in $\SL(2,9)$.
Group | Label | Order | Size | Centralizer | Powers | Representative | ||
---|---|---|---|---|---|---|---|---|
2P | 3P | 5P | ||||||
$\SL(2,9)$ | 1A | $1$ | $1$ | $\SL(2,9)$ | 1A | 1A | 1A | $\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ \end{array}\right)$ |
$\SL(2,9)$ | 2A | $2$ | $1$ | $\SL(2,9)$ | 1A | 2A | 2A | $\left(\begin{array}{ll}\alpha^{4} & 0 \\ 0 & \alpha^{4} \\ \end{array}\right)$ |
$\SL(2,9)$ | 3A | $3$ | $40$ | $C_3\times C_6$ | 3A | 1A | 3A | $\left(\begin{array}{ll}\alpha & \alpha^{6} \\ \alpha^{4} & \alpha^{6} \\ \end{array}\right)$ |
$\SL(2,9)$ | 3B | $3$ | $40$ | $C_3\times C_6$ | 3B | 1A | 3B | $\left(\begin{array}{ll}\alpha^{6} & \alpha \\ \alpha & \alpha \\ \end{array}\right)$ |
$\SL(2,9)$ | 4A | $4$ | $90$ | $C_8$ | 2A | 4A | 4A | $\left(\begin{array}{ll}\alpha^{6} & 0 \\ 0 & \alpha^{2} \\ \end{array}\right)$ |
$\SL(2,9)$ | 5A1 | $5$ | $72$ | $C_{10}$ | 5A2 | 5A2 | 1A | $\left(\begin{array}{ll}\alpha^{5} & \alpha^{7} \\ \alpha^{5} & 0 \\ \end{array}\right)$ |
$\SL(2,9)$ | 5A2 | $5$ | $72$ | $C_{10}$ | 5A1 | 5A1 | 1A | $\left(\begin{array}{ll}\alpha & \alpha^{4} \\ \alpha^{2} & \alpha^{4} \\ \end{array}\right)$ |
$\SL(2,9)$ | 6A | $6$ | $40$ | $C_3\times C_6$ | 3A | 2A | 6A | $\left(\begin{array}{ll}\alpha^{2} & \alpha^{6} \\ \alpha^{4} & \alpha^{5} \\ \end{array}\right)$ |
$\SL(2,9)$ | 6B | $6$ | $40$ | $C_3\times C_6$ | 3B | 2A | 6B | $\left(\begin{array}{ll}\alpha^{5} & \alpha \\ \alpha & \alpha^{2} \\ \end{array}\right)$ |
$\SL(2,9)$ | 8A1 | $8$ | $90$ | $C_8$ | 4A | 8A3 | 8A3 | $\left(\begin{array}{ll}\alpha^{3} & 0 \\ 0 & \alpha^{5} \\ \end{array}\right)$ |
$\SL(2,9)$ | 8A3 | $8$ | $90$ | $C_8$ | 4A | 8A1 | 8A1 | $\left(\begin{array}{ll}\alpha & 0 \\ 0 & \alpha^{7} \\ \end{array}\right)$ |
$\SL(2,9)$ | 10A1 | $10$ | $72$ | $C_{10}$ | 5A1 | 10A3 | 2A | $\left(\begin{array}{ll}1 & \alpha^{4} \\ \alpha^{2} & \alpha^{5} \\ \end{array}\right)$ |
$\SL(2,9)$ | 10A3 | $10$ | $72$ | $C_{10}$ | 5A2 | 10A1 | 2A | $\left(\begin{array}{ll}0 & \alpha^{7} \\ \alpha^{5} & \alpha \\ \end{array}\right)$ |