Refine search
Results (22 matches)
Download displayed columns for resultsElements of the group are displayed as matrices in $\SU(3,4)$.
Group | Label | Order | Size | Centralizer | Powers | Representative | |||
---|---|---|---|---|---|---|---|---|---|
2P | 3P | 5P | 13P | ||||||
$\SU(3,4)$ | 1A | $1$ | $1$ | $\SU(3,4)$ | 1A | 1A | 1A | 1A | $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}\right)$ |
$\SU(3,4)$ | 2A | $2$ | $195$ | $C_2^2.C_2^4:C_5$ | 1A | 2A | 2A | 2A | $\left(\begin{array}{lll}\alpha^{11} & \alpha^{2} & 1 \\ \alpha^{5} & \alpha^{5} & \alpha^{8} \\ 1 & \alpha^{5} & \alpha^{14} \\ \end{array}\right)$ |
$\SU(3,4)$ | 3A | $3$ | $4160$ | $C_{15}$ | 3A | 1A | 3A | 3A | $\left(\begin{array}{lll}\alpha^{5} & 0 & 0 \\ \alpha^{14} & 1 & 0 \\ \alpha^{13} & \alpha^{6} & \alpha^{10} \\ \end{array}\right)$ |
$\SU(3,4)$ | 4A | $4$ | $3900$ | $C_4^2$ | 2A | 4A | 4A | 4A | $\left(\begin{array}{lll}\alpha^{7} & \alpha^{3} & \alpha^{6} \\ \alpha^{3} & \alpha^{8} & \alpha \\ \alpha^{4} & \alpha^{10} & \alpha^{12} \\ \end{array}\right)$ |
$\SU(3,4)$ | 5A1 | $5$ | $208$ | $C_5\times A_5$ | 5A2 | 5A-2 | 1A | 5A-2 | $\left(\begin{array}{lll}\alpha^{12} & 0 & 0 \\ \alpha^{8} & \alpha^{6} & 0 \\ \alpha^{9} & \alpha^{5} & \alpha^{12} \\ \end{array}\right)$ |
$\SU(3,4)$ | 5A-1 | $5$ | $208$ | $C_5\times A_5$ | 5A-2 | 5A2 | 1A | 5A2 | $\left(\begin{array}{lll}\alpha^{3} & 0 & 0 \\ \alpha^{5} & \alpha^{9} & 0 \\ \alpha^{6} & \alpha^{2} & \alpha^{3} \\ \end{array}\right)$ |
$\SU(3,4)$ | 5A2 | $5$ | $208$ | $C_5\times A_5$ | 5A-1 | 5A1 | 1A | 5A1 | $\left(\begin{array}{lll}\alpha^{9} & 0 & 0 \\ \alpha^{12} & \alpha^{12} & 0 \\ \alpha^{13} & \alpha^{9} & \alpha^{9} \\ \end{array}\right)$ |
$\SU(3,4)$ | 5A-2 | $5$ | $208$ | $C_5\times A_5$ | 5A1 | 5A-1 | 1A | 5A-1 | $\left(\begin{array}{lll}\alpha^{6} & 0 & 0 \\ \alpha^{6} & \alpha^{3} & 0 \\ \alpha^{7} & \alpha^{3} & \alpha^{6} \\ \end{array}\right)$ |
$\SU(3,4)$ | 5B1 | $5$ | $2496$ | $C_5^2$ | 5B2 | 5B2 | 1A | 5B2 | $\left(\begin{array}{lll}\alpha^{9} & \alpha & \alpha \\ \alpha^{2} & \alpha^{8} & \alpha^{13} \\ \alpha^{6} & \alpha^{2} & \alpha^{3} \\ \end{array}\right)$ |
$\SU(3,4)$ | 5B2 | $5$ | $2496$ | $C_5^2$ | 5B1 | 5B1 | 1A | 5B1 | $\left(\begin{array}{lll}\alpha^{7} & \alpha^{8} & \alpha^{13} \\ \alpha^{9} & \alpha^{7} & \alpha^{5} \\ \alpha^{3} & \alpha^{9} & \alpha^{5} \\ \end{array}\right)$ |
$\SU(3,4)$ | 10A1 | $10$ | $3120$ | $C_2\times C_{10}$ | 5A-2 | 10A3 | 2A | 10A3 | $\left(\begin{array}{lll}\alpha & \alpha^{13} & \alpha^{2} \\ \alpha^{7} & \alpha^{7} & \alpha^{14} \\ \alpha^{5} & \alpha^{7} & \alpha^{4} \\ \end{array}\right)$ |
$\SU(3,4)$ | 10A-1 | $10$ | $3120$ | $C_2\times C_{10}$ | 5A2 | 10A-3 | 2A | 10A-3 | $\left(\begin{array}{lll}\alpha & \alpha^{11} & \alpha^{8} \\ \alpha^{13} & \alpha^{13} & \alpha^{7} \\ \alpha^{5} & \alpha^{13} & \alpha^{4} \\ \end{array}\right)$ |
$\SU(3,4)$ | 10A3 | $10$ | $3120$ | $C_2\times C_{10}$ | 5A-1 | 10A-1 | 2A | 10A-1 | $\left(\begin{array}{lll}\alpha^{12} & \alpha^{10} & \alpha^{10} \\ 1 & 1 & 0 \\ \alpha & 1 & 1 \\ \end{array}\right)$ |
$\SU(3,4)$ | 10A-3 | $10$ | $3120$ | $C_2\times C_{10}$ | 5A1 | 10A1 | 2A | 10A1 | $\left(\begin{array}{lll}1 & 0 & \alpha^{10} \\ 1 & 1 & \alpha^{10} \\ \alpha^{4} & 1 & \alpha^{3} \\ \end{array}\right)$ |
$\SU(3,4)$ | 13A1 | $13$ | $4800$ | $C_{13}$ | 13A2 | 13A1 | 13A2 | 1A | $\left(\begin{array}{lll}\alpha^{14} & \alpha^{5} & \alpha \\ \alpha^{4} & \alpha^{3} & 0 \\ \alpha^{13} & \alpha^{10} & \alpha^{6} \\ \end{array}\right)$ |
$\SU(3,4)$ | 13A-1 | $13$ | $4800$ | $C_{13}$ | 13A-2 | 13A-1 | 13A-2 | 1A | $\left(\begin{array}{lll}\alpha^{9} & 0 & \alpha^{4} \\ \alpha^{10} & \alpha^{12} & \alpha^{5} \\ \alpha^{7} & \alpha & \alpha^{11} \\ \end{array}\right)$ |
$\SU(3,4)$ | 13A2 | $13$ | $4800$ | $C_{13}$ | 13A-1 | 13A2 | 13A-1 | 1A | $\left(\begin{array}{lll}\alpha^{11} & \alpha^{3} & \alpha^{9} \\ \alpha^{4} & \alpha^{5} & \alpha^{5} \\ \alpha^{8} & \alpha^{10} & \alpha^{5} \\ \end{array}\right)$ |
$\SU(3,4)$ | 13A-2 | $13$ | $4800$ | $C_{13}$ | 13A1 | 13A-2 | 13A1 | 1A | $\left(\begin{array}{lll}\alpha^{5} & \alpha^{5} & \alpha^{6} \\ \alpha^{10} & \alpha^{5} & \alpha^{12} \\ \alpha^{2} & \alpha & \alpha^{14} \\ \end{array}\right)$ |
$\SU(3,4)$ | 15A1 | $15$ | $4160$ | $C_{15}$ | 15A2 | 5A1 | 3A | 15A-2 | $\left(\begin{array}{lll}\alpha^{4} & 0 & 0 \\ \alpha^{10} & \alpha^{12} & 0 \\ \alpha^{12} & \alpha^{6} & \alpha^{14} \\ \end{array}\right)$ |
$\SU(3,4)$ | 15A-1 | $15$ | $4160$ | $C_{15}$ | 15A-2 | 5A-1 | 3A | 15A2 | $\left(\begin{array}{lll}\alpha^{11} & 0 & 0 \\ \alpha^{9} & \alpha^{3} & 0 \\ \alpha^{3} & \alpha^{10} & \alpha \\ \end{array}\right)$ |
$\SU(3,4)$ | 15A2 | $15$ | $4160$ | $C_{15}$ | 15A-1 | 5A2 | 3A | 15A1 | $\left(\begin{array}{lll}\alpha^{8} & 0 & 0 \\ \alpha & \alpha^{9} & 0 \\ \alpha^{11} & \alpha^{11} & \alpha^{13} \\ \end{array}\right)$ |
$\SU(3,4)$ | 15A-2 | $15$ | $4160$ | $C_{15}$ | 15A1 | 5A-2 | 3A | 15A-1 | $\left(\begin{array}{lll}\alpha^{7} & 0 & 0 \\ \alpha^{14} & \alpha^{6} & 0 \\ \alpha^{14} & \alpha^{4} & \alpha^{2} \\ \end{array}\right)$ |