Learn more

Refine search


Results (1-50 of 56 matches)

Next   displayed columns for results

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,107)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 53P 107P
$\PSL(2,107)$ 1A $1$ $1$ $\PSL(2,107)$ 1A 1A 1A 1A $ \left[ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) \right] $
$\PSL(2,107)$ 2A $2$ $5671$ $D_{54}$ 1A 2A 2A 2A $ \left[ \left(\begin{array}{rr} 83 & 67 \\ 92 & 24 \end{array}\right) \right] $
$\PSL(2,107)$ 3A $3$ $11342$ $C_{54}$ 3A 1A 3A 3A $ \left[ \left(\begin{array}{rr} 56 & 39 \\ 28 & 52 \end{array}\right) \right] $
$\PSL(2,107)$ 6A $6$ $11342$ $C_{54}$ 3A 2A 6A 6A $ \left[ \left(\begin{array}{rr} 86 & 87 \\ 46 & 3 \end{array}\right) \right] $
$\PSL(2,107)$ 9A1 $9$ $11342$ $C_{54}$ 9A2 3A 9A4 9A1 $ \left[ \left(\begin{array}{rr} 16 & 60 \\ 76 & 51 \end{array}\right) \right] $
$\PSL(2,107)$ 9A2 $9$ $11342$ $C_{54}$ 9A4 3A 9A1 9A2 $ \left[ \left(\begin{array}{rr} 106 & 46 \\ 44 & 8 \end{array}\right) \right] $
$\PSL(2,107)$ 9A4 $9$ $11342$ $C_{54}$ 9A1 3A 9A2 9A4 $ \left[ \left(\begin{array}{rr} 99 & 1 \\ 94 & 55 \end{array}\right) \right] $
$\PSL(2,107)$ 18A1 $18$ $11342$ $C_{54}$ 9A1 6A 18A5 18A1 $ \left[ \left(\begin{array}{rr} 86 & 23 \\ 22 & 37 \end{array}\right) \right] $
$\PSL(2,107)$ 18A5 $18$ $11342$ $C_{54}$ 9A4 6A 18A7 18A5 $ \left[ \left(\begin{array}{rr} 70 & 74 \\ 1 & 24 \end{array}\right) \right] $
$\PSL(2,107)$ 18A7 $18$ $11342$ $C_{54}$ 9A2 6A 18A1 18A7 $ \left[ \left(\begin{array}{rr} 3 & 56 \\ 21 & 0 \end{array}\right) \right] $
$\PSL(2,107)$ 27A1 $27$ $11342$ $C_{54}$ 27A2 9A1 27A13 27A1 $ \left[ \left(\begin{array}{rr} 30 & 7 \\ 16 & 43 \end{array}\right) \right] $
$\PSL(2,107)$ 27A2 $27$ $11342$ $C_{54}$ 27A4 9A2 27A1 27A2 $ \left[ \left(\begin{array}{rr} 49 & 83 \\ 98 & 35 \end{array}\right) \right] $
$\PSL(2,107)$ 27A4 $27$ $11342$ $C_{54}$ 27A8 9A4 27A2 27A4 $ \left[ \left(\begin{array}{rr} 58 & 90 \\ 7 & 57 \end{array}\right) \right] $
$\PSL(2,107)$ 27A5 $27$ $11342$ $C_{54}$ 27A10 9A4 27A11 27A5 $ \left[ \left(\begin{array}{rr} 30 & 4 \\ 55 & 68 \end{array}\right) \right] $
$\PSL(2,107)$ 27A7 $27$ $11342$ $C_{54}$ 27A13 9A2 27A10 27A7 $ \left[ \left(\begin{array}{rr} 64 & 45 \\ 57 & 10 \end{array}\right) \right] $
$\PSL(2,107)$ 27A8 $27$ $11342$ $C_{54}$ 27A11 9A1 27A4 27A8 $ \left[ \left(\begin{array}{rr} 35 & 78 \\ 56 & 27 \end{array}\right) \right] $
$\PSL(2,107)$ 27A10 $27$ $11342$ $C_{54}$ 27A7 9A1 27A5 27A10 $ \left[ \left(\begin{array}{rr} 50 & 71 \\ 40 & 29 \end{array}\right) \right] $
$\PSL(2,107)$ 27A11 $27$ $11342$ $C_{54}$ 27A5 9A2 27A8 27A11 $ \left[ \left(\begin{array}{rr} 39 & 21 \\ 48 & 78 \end{array}\right) \right] $
$\PSL(2,107)$ 27A13 $27$ $11342$ $C_{54}$ 27A1 9A4 27A7 27A13 $ \left[ \left(\begin{array}{rr} 10 & 13 \\ 45 & 80 \end{array}\right) \right] $
$\PSL(2,107)$ 53A1 $53$ $11556$ $C_{53}$ 53A2 53A3 53A13 1A $ \left[ \left(\begin{array}{rr} 44 & 6 \\ 2 & 100 \end{array}\right) \right] $
$\PSL(2,107)$ 53A2 $53$ $11556$ $C_{53}$ 53A4 53A6 53A26 1A $ \left[ \left(\begin{array}{rr} 22 & 8 \\ 74 & 61 \end{array}\right) \right] $
$\PSL(2,107)$ 53A3 $53$ $11556$ $C_{53}$ 53A6 53A9 53A14 1A $ \left[ \left(\begin{array}{rr} 86 & 31 \\ 46 & 90 \end{array}\right) \right] $
$\PSL(2,107)$ 53A4 $53$ $11556$ $C_{53}$ 53A8 53A12 53A1 1A $ \left[ \left(\begin{array}{rr} 101 & 85 \\ 64 & 74 \end{array}\right) \right] $
$\PSL(2,107)$ 53A5 $53$ $11556$ $C_{53}$ 53A10 53A15 53A12 1A $ \left[ \left(\begin{array}{rr} 94 & 96 \\ 32 & 27 \end{array}\right) \right] $
$\PSL(2,107)$ 53A6 $53$ $11556$ $C_{53}$ 53A12 53A18 53A25 1A $ \left[ \left(\begin{array}{rr} 59 & 1 \\ 36 & 104 \end{array}\right) \right] $
$\PSL(2,107)$ 53A7 $53$ $11556$ $C_{53}$ 53A14 53A21 53A15 1A $ \left[ \left(\begin{array}{rr} 77 & 81 \\ 27 & 84 \end{array}\right) \right] $
$\PSL(2,107)$ 53A8 $53$ $11556$ $C_{53}$ 53A16 53A24 53A2 1A $ \left[ \left(\begin{array}{rr} 88 & 105 \\ 35 & 105 \end{array}\right) \right] $
$\PSL(2,107)$ 53A9 $53$ $11556$ $C_{53}$ 53A18 53A26 53A11 1A $ \left[ \left(\begin{array}{rr} 16 & 7 \\ 38 & 10 \end{array}\right) \right] $
$\PSL(2,107)$ 53A10 $53$ $11556$ $C_{53}$ 53A20 53A23 53A24 1A $ \left[ \left(\begin{array}{rr} 76 & 47 \\ 87 & 51 \end{array}\right) \right] $
$\PSL(2,107)$ 53A11 $53$ $11556$ $C_{53}$ 53A22 53A20 53A16 1A $ \left[ \left(\begin{array}{rr} 93 & 87 \\ 29 & 49 \end{array}\right) \right] $
$\PSL(2,107)$ 53A12 $53$ $11556$ $C_{53}$ 53A24 53A17 53A3 1A $ \left[ \left(\begin{array}{rr} 93 & 56 \\ 90 & 45 \end{array}\right) \right] $
$\PSL(2,107)$ 53A13 $53$ $11556$ $C_{53}$ 53A26 53A14 53A10 1A $ \left[ \left(\begin{array}{rr} 76 & 48 \\ 16 & 96 \end{array}\right) \right] $
$\PSL(2,107)$ 53A14 $53$ $11556$ $C_{53}$ 53A25 53A11 53A23 1A $ \left[ \left(\begin{array}{rr} 91 & 94 \\ 67 & 41 \end{array}\right) \right] $
$\PSL(2,107)$ 53A15 $53$ $11556$ $C_{53}$ 53A23 53A8 53A17 1A $ \left[ \left(\begin{array}{rr} 88 & 5 \\ 73 & 99 \end{array}\right) \right] $
$\PSL(2,107)$ 53A16 $53$ $11556$ $C_{53}$ 53A21 53A5 53A4 1A $ \left[ \left(\begin{array}{rr} 77 & 42 \\ 14 & 41 \end{array}\right) \right] $
$\PSL(2,107)$ 53A17 $53$ $11556$ $C_{53}$ 53A19 53A2 53A9 1A $ \left[ \left(\begin{array}{rr} 48 & 61 \\ 56 & 11 \end{array}\right) \right] $
$\PSL(2,107)$ 53A18 $53$ $11556$ $C_{53}$ 53A17 53A1 53A22 1A $ \left[ \left(\begin{array}{rr} 94 & 75 \\ 25 & 45 \end{array}\right) \right] $
$\PSL(2,107)$ 53A19 $53$ $11556$ $C_{53}$ 53A15 53A4 53A18 1A $ \left[ \left(\begin{array}{rr} 6 & 39 \\ 13 & 49 \end{array}\right) \right] $
$\PSL(2,107)$ 53A20 $53$ $11556$ $C_{53}$ 53A13 53A7 53A5 1A $ \left[ \left(\begin{array}{rr} 21 & 84 \\ 28 & 56 \end{array}\right) \right] $
$\PSL(2,107)$ 53A21 $53$ $11556$ $C_{53}$ 53A11 53A10 53A8 1A $ \left[ \left(\begin{array}{rr} 22 & 73 \\ 60 & 97 \end{array}\right) \right] $
$\PSL(2,107)$ 53A22 $53$ $11556$ $C_{53}$ 53A9 53A13 53A21 1A $ \left[ \left(\begin{array}{rr} 44 & 49 \\ 52 & 2 \end{array}\right) \right] $
$\PSL(2,107)$ 53A23 $53$ $11556$ $C_{53}$ 53A7 53A16 53A19 1A $ \left[ \left(\begin{array}{rr} 106 & 79 \\ 62 & 23 \end{array}\right) \right] $
$\PSL(2,107)$ 53A24 $53$ $11556$ $C_{53}$ 53A5 53A19 53A6 1A $ \left[ \left(\begin{array}{rr} 100 & 24 \\ 8 & 3 \end{array}\right) \right] $
$\PSL(2,107)$ 53A25 $53$ $11556$ $C_{53}$ 53A3 53A22 53A7 1A $ \left[ \left(\begin{array}{rr} 46 & 103 \\ 70 & 80 \end{array}\right) \right] $
$\PSL(2,107)$ 53A26 $53$ $11556$ $C_{53}$ 53A1 53A25 53A20 1A $ \left[ \left(\begin{array}{rr} 17 & 17 \\ 77 & 33 \end{array}\right) \right] $
$\PSL(2,107)$ 54A1 $54$ $11342$ $C_{54}$ 27A1 18A1 54A13 54A1 $ \left[ \left(\begin{array}{rr} 94 & 19 \\ 74 & 7 \end{array}\right) \right] $
$\PSL(2,107)$ 54A5 $54$ $11342$ $C_{54}$ 27A5 18A5 54A11 54A5 $ \left[ \left(\begin{array}{rr} 59 & 93 \\ 75 & 33 \end{array}\right) \right] $
$\PSL(2,107)$ 54A7 $54$ $11342$ $C_{54}$ 27A7 18A7 54A17 54A7 $ \left[ \left(\begin{array}{rr} 48 & 25 \\ 103 & 18 \end{array}\right) \right] $
$\PSL(2,107)$ 54A11 $54$ $11342$ $C_{54}$ 27A11 18A7 54A19 54A11 $ \left[ \left(\begin{array}{rr} 94 & 44 \\ 70 & 84 \end{array}\right) \right] $
$\PSL(2,107)$ 54A13 $54$ $11342$ $C_{54}$ 27A13 18A5 54A7 54A13 $ \left[ \left(\begin{array}{rr} 100 & 89 \\ 20 & 36 \end{array}\right) \right] $
Next   displayed columns for results