Refine search
Results (14 matches)
Download displayed columns for resultsElements of the group are displayed as matrices in $\SU(3,3)$.
Group | Label | Order | Size | Centralizer | Powers | Representative | ||
---|---|---|---|---|---|---|---|---|
2P | 3P | 7P | ||||||
$\SU(3,3)$ | 1A | $1$ | $1$ | $\SU(3,3)$ | 1A | 1A | 1A | $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}\right)$ |
$\SU(3,3)$ | 2A | $2$ | $63$ | $\Unitary(2,3)$ | 1A | 2A | 2A | $\left(\begin{array}{lll}\alpha^{3} & \alpha^{2} & \alpha^{4} \\ 1 & 1 & \alpha^{6} \\ \alpha^{4} & 1 & \alpha \\ \end{array}\right)$ |
$\SU(3,3)$ | 3A | $3$ | $56$ | $\He_3:C_4$ | 3A | 1A | 3A | $\left(\begin{array}{lll}\alpha^{3} & \alpha^{6} & \alpha^{6} \\ \alpha^{5} & \alpha^{5} & \alpha^{6} \\ \alpha^{2} & \alpha^{3} & \alpha^{6} \\ \end{array}\right)$ |
$\SU(3,3)$ | 3B | $3$ | $672$ | $C_3^2$ | 3B | 1A | 3B | $\left(\begin{array}{lll}\alpha^{2} & \alpha^{5} & \alpha^{5} \\ \alpha^{5} & 0 & \alpha^{2} \\ \alpha^{3} & \alpha^{4} & \alpha^{6} \\ \end{array}\right)$ |
$\SU(3,3)$ | 4A1 | $4$ | $63$ | $\Unitary(2,3)$ | 2A | 4A-1 | 4A-1 | $\left(\begin{array}{lll}1 & \alpha & \alpha^{3} \\ \alpha^{7} & \alpha^{4} & \alpha^{5} \\ \alpha^{3} & \alpha^{7} & \alpha^{3} \\ \end{array}\right)$ |
$\SU(3,3)$ | 4A-1 | $4$ | $63$ | $\Unitary(2,3)$ | 2A | 4A1 | 4A1 | $\left(\begin{array}{lll}\alpha & \alpha^{7} & \alpha \\ \alpha^{5} & \alpha^{4} & \alpha^{3} \\ \alpha & \alpha^{5} & 1 \\ \end{array}\right)$ |
$\SU(3,3)$ | 4B | $4$ | $378$ | $C_4^2$ | 2A | 4B | 4B | $\left(\begin{array}{lll}0 & 0 & \alpha^{5} \\ 0 & \alpha^{6} & 0 \\ \alpha & 0 & \alpha^{7} \\ \end{array}\right)$ |
$\SU(3,3)$ | 6A | $6$ | $504$ | $C_{12}$ | 3A | 2A | 6A | $\left(\begin{array}{lll}\alpha^{2} & \alpha & \alpha^{5} \\ \alpha^{4} & \alpha^{5} & \alpha^{4} \\ \alpha^{7} & \alpha^{2} & 1 \\ \end{array}\right)$ |
$\SU(3,3)$ | 7A1 | $7$ | $864$ | $C_7$ | 7A1 | 7A-1 | 1A | $\left(\begin{array}{lll}\alpha^{2} & \alpha^{4} & \alpha^{2} \\ \alpha^{4} & \alpha^{3} & \alpha^{3} \\ \alpha^{7} & \alpha^{4} & \alpha^{3} \\ \end{array}\right)$ |
$\SU(3,3)$ | 7A-1 | $7$ | $864$ | $C_7$ | 7A-1 | 7A1 | 1A | $\left(\begin{array}{lll}\alpha & \alpha & \alpha^{6} \\ \alpha^{4} & \alpha & \alpha^{4} \\ \alpha^{5} & \alpha^{4} & \alpha^{6} \\ \end{array}\right)$ |
$\SU(3,3)$ | 8A1 | $8$ | $756$ | $C_8$ | 4A1 | 8A-1 | 8A-1 | $\left(\begin{array}{lll}\alpha^{4} & \alpha^{6} & \alpha^{4} \\ \alpha^{7} & \alpha^{2} & \alpha^{5} \\ \alpha^{5} & \alpha^{4} & 1 \\ \end{array}\right)$ |
$\SU(3,3)$ | 8A-1 | $8$ | $756$ | $C_8$ | 4A-1 | 8A1 | 8A1 | $\left(\begin{array}{lll}1 & \alpha^{7} & \alpha^{4} \\ \alpha^{4} & \alpha^{6} & \alpha^{2} \\ \alpha^{7} & \alpha^{5} & \alpha^{4} \\ \end{array}\right)$ |
$\SU(3,3)$ | 12A1 | $12$ | $504$ | $C_{12}$ | 6A | 4A-1 | 12A-1 | $\left(\begin{array}{lll}\alpha & \alpha^{7} & \alpha \\ 1 & 0 & \alpha^{4} \\ \alpha^{2} & \alpha^{6} & \alpha^{2} \\ \end{array}\right)$ |
$\SU(3,3)$ | 12A-1 | $12$ | $504$ | $C_{12}$ | 6A | 4A1 | 12A1 | $\left(\begin{array}{lll}\alpha^{6} & \alpha^{4} & \alpha^{3} \\ \alpha^{2} & 0 & \alpha^{5} \\ \alpha^{6} & 1 & \alpha^{3} \\ \end{array}\right)$ |