Learn more

Refine search


Results (14 matches)

  displayed columns for results

Elements of the group are displayed as matrices in $\SU(3,3)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 7P
$\SU(3,3)$ 1A $1$ $1$ $\SU(3,3)$ 1A 1A 1A $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}\right)$
$\SU(3,3)$ 2A $2$ $63$ $\Unitary(2,3)$ 1A 2A 2A $\left(\begin{array}{lll}\alpha^{3} & \alpha^{2} & \alpha^{4} \\ 1 & 1 & \alpha^{6} \\ \alpha^{4} & 1 & \alpha \\ \end{array}\right)$
$\SU(3,3)$ 3A $3$ $56$ $\He_3:C_4$ 3A 1A 3A $\left(\begin{array}{lll}\alpha^{3} & \alpha^{6} & \alpha^{6} \\ \alpha^{5} & \alpha^{5} & \alpha^{6} \\ \alpha^{2} & \alpha^{3} & \alpha^{6} \\ \end{array}\right)$
$\SU(3,3)$ 3B $3$ $672$ $C_3^2$ 3B 1A 3B $\left(\begin{array}{lll}\alpha^{2} & \alpha^{5} & \alpha^{5} \\ \alpha^{5} & 0 & \alpha^{2} \\ \alpha^{3} & \alpha^{4} & \alpha^{6} \\ \end{array}\right)$
$\SU(3,3)$ 4A1 $4$ $63$ $\Unitary(2,3)$ 2A 4A-1 4A-1 $\left(\begin{array}{lll}1 & \alpha & \alpha^{3} \\ \alpha^{7} & \alpha^{4} & \alpha^{5} \\ \alpha^{3} & \alpha^{7} & \alpha^{3} \\ \end{array}\right)$
$\SU(3,3)$ 4A-1 $4$ $63$ $\Unitary(2,3)$ 2A 4A1 4A1 $\left(\begin{array}{lll}\alpha & \alpha^{7} & \alpha \\ \alpha^{5} & \alpha^{4} & \alpha^{3} \\ \alpha & \alpha^{5} & 1 \\ \end{array}\right)$
$\SU(3,3)$ 4B $4$ $378$ $C_4^2$ 2A 4B 4B $\left(\begin{array}{lll}0 & 0 & \alpha^{5} \\ 0 & \alpha^{6} & 0 \\ \alpha & 0 & \alpha^{7} \\ \end{array}\right)$
$\SU(3,3)$ 6A $6$ $504$ $C_{12}$ 3A 2A 6A $\left(\begin{array}{lll}\alpha^{2} & \alpha & \alpha^{5} \\ \alpha^{4} & \alpha^{5} & \alpha^{4} \\ \alpha^{7} & \alpha^{2} & 1 \\ \end{array}\right)$
$\SU(3,3)$ 7A1 $7$ $864$ $C_7$ 7A1 7A-1 1A $\left(\begin{array}{lll}\alpha^{2} & \alpha^{4} & \alpha^{2} \\ \alpha^{4} & \alpha^{3} & \alpha^{3} \\ \alpha^{7} & \alpha^{4} & \alpha^{3} \\ \end{array}\right)$
$\SU(3,3)$ 7A-1 $7$ $864$ $C_7$ 7A-1 7A1 1A $\left(\begin{array}{lll}\alpha & \alpha & \alpha^{6} \\ \alpha^{4} & \alpha & \alpha^{4} \\ \alpha^{5} & \alpha^{4} & \alpha^{6} \\ \end{array}\right)$
$\SU(3,3)$ 8A1 $8$ $756$ $C_8$ 4A1 8A-1 8A-1 $\left(\begin{array}{lll}\alpha^{4} & \alpha^{6} & \alpha^{4} \\ \alpha^{7} & \alpha^{2} & \alpha^{5} \\ \alpha^{5} & \alpha^{4} & 1 \\ \end{array}\right)$
$\SU(3,3)$ 8A-1 $8$ $756$ $C_8$ 4A-1 8A1 8A1 $\left(\begin{array}{lll}1 & \alpha^{7} & \alpha^{4} \\ \alpha^{4} & \alpha^{6} & \alpha^{2} \\ \alpha^{7} & \alpha^{5} & \alpha^{4} \\ \end{array}\right)$
$\SU(3,3)$ 12A1 $12$ $504$ $C_{12}$ 6A 4A-1 12A-1 $\left(\begin{array}{lll}\alpha & \alpha^{7} & \alpha \\ 1 & 0 & \alpha^{4} \\ \alpha^{2} & \alpha^{6} & \alpha^{2} \\ \end{array}\right)$
$\SU(3,3)$ 12A-1 $12$ $504$ $C_{12}$ 6A 4A1 12A1 $\left(\begin{array}{lll}\alpha^{6} & \alpha^{4} & \alpha^{3} \\ \alpha^{2} & 0 & \alpha^{5} \\ \alpha^{6} & 1 & \alpha^{3} \\ \end{array}\right)$
  displayed columns for results