Learn more

Refine search


Results (1-50 of 54 matches)

Next   displayed columns for results

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,103)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 13P 17P 103P
$\PSL(2,103)$ 1A $1$ $1$ $\PSL(2,103)$ 1A 1A 1A 1A 1A $ \left[ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) \right] $
$\PSL(2,103)$ 2A $2$ $5253$ $D_{52}$ 1A 2A 2A 2A 2A $ \left[ \left(\begin{array}{rr} 67 & 78 \\ 56 & 36 \end{array}\right) \right] $
$\PSL(2,103)$ 3A $3$ $10712$ $C_{51}$ 3A 1A 3A 3A 3A $ \left[ \left(\begin{array}{rr} 26 & 94 \\ 38 & 78 \end{array}\right) \right] $
$\PSL(2,103)$ 4A $4$ $10506$ $C_{52}$ 2A 4A 4A 4A 4A $ \left[ \left(\begin{array}{rr} 18 & 40 \\ 34 & 47 \end{array}\right) \right] $
$\PSL(2,103)$ 13A1 $13$ $10506$ $C_{52}$ 13A2 13A3 1A 13A4 13A1 $ \left[ \left(\begin{array}{rr} 97 & 31 \\ 83 & 86 \end{array}\right) \right] $
$\PSL(2,103)$ 13A2 $13$ $10506$ $C_{52}$ 13A4 13A6 1A 13A5 13A2 $ \left[ \left(\begin{array}{rr} 34 & 8 \\ 48 & 81 \end{array}\right) \right] $
$\PSL(2,103)$ 13A3 $13$ $10506$ $C_{52}$ 13A6 13A4 1A 13A1 13A3 $ \left[ \left(\begin{array}{rr} 48 & 94 \\ 49 & 8 \end{array}\right) \right] $
$\PSL(2,103)$ 13A4 $13$ $10506$ $C_{52}$ 13A5 13A1 1A 13A3 13A4 $ \left[ \left(\begin{array}{rr} 98 & 96 \\ 61 & 44 \end{array}\right) \right] $
$\PSL(2,103)$ 13A5 $13$ $10506$ $C_{52}$ 13A3 13A2 1A 13A6 13A5 $ \left[ \left(\begin{array}{rr} 67 & 67 \\ 93 & 10 \end{array}\right) \right] $
$\PSL(2,103)$ 13A6 $13$ $10506$ $C_{52}$ 13A1 13A5 1A 13A2 13A6 $ \left[ \left(\begin{array}{rr} 94 & 92 \\ 37 & 68 \end{array}\right) \right] $
$\PSL(2,103)$ 17A1 $17$ $10712$ $C_{51}$ 17A2 17A3 17A4 1A 17A1 $ \left[ \left(\begin{array}{rr} 100 & 12 \\ 18 & 65 \end{array}\right) \right] $
$\PSL(2,103)$ 17A2 $17$ $10712$ $C_{51}$ 17A4 17A6 17A8 1A 17A2 $ \left[ \left(\begin{array}{rr} 84 & 80 \\ 17 & 91 \end{array}\right) \right] $
$\PSL(2,103)$ 17A3 $17$ $10712$ $C_{51}$ 17A6 17A8 17A5 1A 17A3 $ \left[ \left(\begin{array}{rr} 55 & 28 \\ 42 & 42 \end{array}\right) \right] $
$\PSL(2,103)$ 17A4 $17$ $10712$ $C_{51}$ 17A8 17A5 17A1 1A 17A4 $ \left[ \left(\begin{array}{rr} 30 & 8 \\ 12 & 41 \end{array}\right) \right] $
$\PSL(2,103)$ 17A5 $17$ $10712$ $C_{51}$ 17A7 17A2 17A3 1A 17A5 $ \left[ \left(\begin{array}{rr} 49 & 47 \\ 19 & 75 \end{array}\right) \right] $
$\PSL(2,103)$ 17A6 $17$ $10712$ $C_{51}$ 17A5 17A1 17A7 1A 17A6 $ \left[ \left(\begin{array}{rr} 81 & 38 \\ 57 & 56 \end{array}\right) \right] $
$\PSL(2,103)$ 17A7 $17$ $10712$ $C_{51}$ 17A3 17A4 17A6 1A 17A7 $ \left[ \left(\begin{array}{rr} 29 & 43 \\ 13 & 101 \end{array}\right) \right] $
$\PSL(2,103)$ 17A8 $17$ $10712$ $C_{51}$ 17A1 17A7 17A2 1A 17A8 $ \left[ \left(\begin{array}{rr} 34 & 50 \\ 75 & 77 \end{array}\right) \right] $
$\PSL(2,103)$ 26A1 $26$ $10506$ $C_{52}$ 13A1 26A3 2A 26A9 26A1 $ \left[ \left(\begin{array}{rr} 81 & 68 \\ 99 & 17 \end{array}\right) \right] $
$\PSL(2,103)$ 26A3 $26$ $10506$ $C_{52}$ 13A3 26A9 2A 26A1 26A3 $ \left[ \left(\begin{array}{rr} 95 & 87 \\ 7 & 1 \end{array}\right) \right] $
$\PSL(2,103)$ 26A5 $26$ $10506$ $C_{52}$ 13A5 26A11 2A 26A7 26A5 $ \left[ \left(\begin{array}{rr} 44 & 79 \\ 62 & 6 \end{array}\right) \right] $
$\PSL(2,103)$ 26A7 $26$ $10506$ $C_{52}$ 13A6 26A5 2A 26A11 26A7 $ \left[ \left(\begin{array}{rr} 10 & 21 \\ 23 & 69 \end{array}\right) \right] $
$\PSL(2,103)$ 26A9 $26$ $10506$ $C_{52}$ 13A4 26A1 2A 26A3 26A9 $ \left[ \left(\begin{array}{rr} 68 & 47 \\ 76 & 48 \end{array}\right) \right] $
$\PSL(2,103)$ 26A11 $26$ $10506$ $C_{52}$ 13A2 26A7 2A 26A5 26A11 $ \left[ \left(\begin{array}{rr} 94 & 73 \\ 26 & 98 \end{array}\right) \right] $
$\PSL(2,103)$ 51A1 $51$ $10712$ $C_{51}$ 51A2 17A1 51A13 3A 51A1 $ \left[ \left(\begin{array}{rr} 70 & 34 \\ 51 & 91 \end{array}\right) \right] $
$\PSL(2,103)$ 51A2 $51$ $10712$ $C_{51}$ 51A4 17A2 51A25 3A 51A2 $ \left[ \left(\begin{array}{rr} 61 & 88 \\ 29 & 79 \end{array}\right) \right] $
$\PSL(2,103)$ 51A4 $51$ $10712$ $C_{51}$ 51A8 17A4 51A1 3A 51A4 $ \left[ \left(\begin{array}{rr} 93 & 63 \\ 43 & 38 \end{array}\right) \right] $
$\PSL(2,103)$ 51A5 $51$ $10712$ $C_{51}$ 51A10 17A5 51A14 3A 51A5 $ \left[ \left(\begin{array}{rr} 62 & 66 \\ 99 & 24 \end{array}\right) \right] $
$\PSL(2,103)$ 51A7 $51$ $10712$ $C_{51}$ 51A14 17A7 51A11 3A 51A7 $ \left[ \left(\begin{array}{rr} 72 & 42 \\ 63 & 1 \end{array}\right) \right] $
$\PSL(2,103)$ 51A8 $51$ $10712$ $C_{51}$ 51A16 17A8 51A2 3A 51A8 $ \left[ \left(\begin{array}{rr} 28 & 13 \\ 71 & 33 \end{array}\right) \right] $
$\PSL(2,103)$ 51A10 $51$ $10712$ $C_{51}$ 51A20 17A7 51A23 3A 51A10 $ \left[ \left(\begin{array}{rr} 25 & 92 \\ 35 & 100 \end{array}\right) \right] $
$\PSL(2,103)$ 51A11 $51$ $10712$ $C_{51}$ 51A22 17A6 51A10 3A 51A11 $ \left[ \left(\begin{array}{rr} 56 & 55 \\ 31 & 93 \end{array}\right) \right] $
$\PSL(2,103)$ 51A13 $51$ $10712$ $C_{51}$ 51A25 17A4 51A16 3A 51A13 $ \left[ \left(\begin{array}{rr} 67 & 3 \\ 56 & 84 \end{array}\right) \right] $
$\PSL(2,103)$ 51A14 $51$ $10712$ $C_{51}$ 51A23 17A3 51A22 3A 51A14 $ \left[ \left(\begin{array}{rr} 2 & 79 \\ 67 & 72 \end{array}\right) \right] $
$\PSL(2,103)$ 51A16 $51$ $10712$ $C_{51}$ 51A19 17A1 51A4 3A 51A16 $ \left[ \left(\begin{array}{rr} 44 & 31 \\ 98 & 48 \end{array}\right) \right] $
$\PSL(2,103)$ 51A19 $51$ $10712$ $C_{51}$ 51A13 17A2 51A8 3A 51A19 $ \left[ \left(\begin{array}{rr} 89 & 32 \\ 48 & 30 \end{array}\right) \right] $
$\PSL(2,103)$ 51A20 $51$ $10712$ $C_{51}$ 51A11 17A3 51A5 3A 51A20 $ \left[ \left(\begin{array}{rr} 34 & 67 \\ 49 & 36 \end{array}\right) \right] $
$\PSL(2,103)$ 51A22 $51$ $10712$ $C_{51}$ 51A7 17A5 51A20 3A 51A22 $ \left[ \left(\begin{array}{rr} 0 & 45 \\ 16 & 49 \end{array}\right) \right] $
$\PSL(2,103)$ 51A23 $51$ $10712$ $C_{51}$ 51A5 17A6 51A7 3A 51A23 $ \left[ \left(\begin{array}{rr} 29 & 78 \\ 14 & 59 \end{array}\right) \right] $
$\PSL(2,103)$ 51A25 $51$ $10712$ $C_{51}$ 51A1 17A8 51A19 3A 51A25 $ \left[ \left(\begin{array}{rr} 89 & 41 \\ 10 & 81 \end{array}\right) \right] $
$\PSL(2,103)$ 52A1 $52$ $10506$ $C_{52}$ 26A1 52A3 4A 52A17 52A1 $ \left[ \left(\begin{array}{rr} 38 & 22 \\ 29 & 90 \end{array}\right) \right] $
$\PSL(2,103)$ 52A3 $52$ $10506$ $C_{52}$ 26A3 52A9 4A 52A1 52A3 $ \left[ \left(\begin{array}{rr} 3 & 74 \\ 32 & 0 \end{array}\right) \right] $
$\PSL(2,103)$ 52A5 $52$ $10506$ $C_{52}$ 26A5 52A15 4A 52A19 52A5 $ \left[ \left(\begin{array}{rr} 53 & 83 \\ 86 & 90 \end{array}\right) \right] $
$\PSL(2,103)$ 52A7 $52$ $10506$ $C_{52}$ 26A7 52A21 4A 52A15 52A7 $ \left[ \left(\begin{array}{rr} 56 & 32 \\ 89 & 38 \end{array}\right) \right] $
$\PSL(2,103)$ 52A9 $52$ $10506$ $C_{52}$ 26A9 52A25 4A 52A3 52A9 $ \left[ \left(\begin{array}{rr} 82 & 26 \\ 53 & 3 \end{array}\right) \right] $
$\PSL(2,103)$ 52A11 $52$ $10506$ $C_{52}$ 26A11 52A19 4A 52A21 52A11 $ \left[ \left(\begin{array}{rr} 49 & 44 \\ 58 & 50 \end{array}\right) \right] $
$\PSL(2,103)$ 52A15 $52$ $10506$ $C_{52}$ 26A11 52A7 4A 52A5 52A15 $ \left[ \left(\begin{array}{rr} 41 & 53 \\ 9 & 82 \end{array}\right) \right] $
$\PSL(2,103)$ 52A17 $52$ $10506$ $C_{52}$ 26A9 52A1 4A 52A23 52A17 $ \left[ \left(\begin{array}{rr} 19 & 84 \\ 92 & 49 \end{array}\right) \right] $
$\PSL(2,103)$ 52A19 $52$ $10506$ $C_{52}$ 26A7 52A5 4A 52A11 52A19 $ \left[ \left(\begin{array}{rr} 33 & 61 \\ 57 & 18 \end{array}\right) \right] $
$\PSL(2,103)$ 52A21 $52$ $10506$ $C_{52}$ 26A5 52A11 4A 52A7 52A21 $ \left[ \left(\begin{array}{rr} 60 & 88 \\ 13 & 62 \end{array}\right) \right] $
Next   displayed columns for results