Refine search
Results (26 matches)
Download displayed columns for resultsElements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,47)$.
Group | Label | Order | Size | Centralizer | Powers | Representative | |||
---|---|---|---|---|---|---|---|---|---|
2P | 3P | 23P | 47P | ||||||
$\PSL(2,47)$ | 1A | $1$ | $1$ | $\PSL(2,47)$ | 1A | 1A | 1A | 1A | $ \left[ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 2A | $2$ | $1081$ | $D_{24}$ | 1A | 2A | 2A | 2A | $ \left[ \left(\begin{array}{rr} 16 & 39 \\ 38 & 31 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 3A | $3$ | $2162$ | $C_{24}$ | 3A | 1A | 3A | 3A | $ \left[ \left(\begin{array}{rr} 25 & 46 \\ 40 & 21 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 4A | $4$ | $2162$ | $C_{24}$ | 2A | 4A | 4A | 4A | $ \left[ \left(\begin{array}{rr} 29 & 19 \\ 39 & 11 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 6A | $6$ | $2162$ | $C_{24}$ | 3A | 2A | 6A | 6A | $ \left[ \left(\begin{array}{rr} 2 & 43 \\ 19 & 33 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 8A1 | $8$ | $2162$ | $C_{24}$ | 4A | 8A3 | 8A3 | 8A1 | $ \left[ \left(\begin{array}{rr} 22 & 25 \\ 34 & 28 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 8A3 | $8$ | $2162$ | $C_{24}$ | 4A | 8A1 | 8A1 | 8A3 | $ \left[ \left(\begin{array}{rr} 15 & 35 \\ 10 & 14 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 12A1 | $12$ | $2162$ | $C_{24}$ | 6A | 4A | 12A1 | 12A1 | $ \left[ \left(\begin{array}{rr} 15 & 34 \\ 3 & 10 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 12A5 | $12$ | $2162$ | $C_{24}$ | 6A | 4A | 12A5 | 12A5 | $ \left[ \left(\begin{array}{rr} 4 & 6 \\ 42 & 28 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 23A1 | $23$ | $2256$ | $C_{23}$ | 23A2 | 23A3 | 23A11 | 1A | $ \left[ \left(\begin{array}{rr} 34 & 6 \\ 22 & 44 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 23A2 | $23$ | $2256$ | $C_{23}$ | 23A4 | 23A6 | 23A1 | 1A | $ \left[ \left(\begin{array}{rr} 28 & 2 \\ 23 & 0 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 23A3 | $23$ | $2256$ | $C_{23}$ | 23A6 | 23A9 | 23A10 | 1A | $ \left[ \left(\begin{array}{rr} 38 & 26 \\ 17 & 3 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 23A4 | $23$ | $2256$ | $C_{23}$ | 23A8 | 23A11 | 23A2 | 1A | $ \left[ \left(\begin{array}{rr} 31 & 9 \\ 33 & 46 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 23A5 | $23$ | $2256$ | $C_{23}$ | 23A10 | 23A8 | 23A9 | 1A | $ \left[ \left(\begin{array}{rr} 17 & 29 \\ 28 & 34 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 23A6 | $23$ | $2256$ | $C_{23}$ | 23A11 | 23A5 | 23A3 | 1A | $ \left[ \left(\begin{array}{rr} 41 & 15 \\ 8 & 19 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 23A7 | $23$ | $2256$ | $C_{23}$ | 23A9 | 23A2 | 23A8 | 1A | $ \left[ \left(\begin{array}{rr} 32 & 13 \\ 32 & 38 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 23A8 | $23$ | $2256$ | $C_{23}$ | 23A7 | 23A1 | 23A4 | 1A | $ \left[ \left(\begin{array}{rr} 11 & 12 \\ 44 & 31 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 23A9 | $23$ | $2256$ | $C_{23}$ | 23A5 | 23A4 | 23A7 | 1A | $ \left[ \left(\begin{array}{rr} 27 & 30 \\ 16 & 30 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 23A10 | $23$ | $2256$ | $C_{23}$ | 23A3 | 23A7 | 23A5 | 1A | $ \left[ \left(\begin{array}{rr} 20 & 22 \\ 18 & 41 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 23A11 | $23$ | $2256$ | $C_{23}$ | 23A1 | 23A10 | 23A6 | 1A | $ \left[ \left(\begin{array}{rr} 36 & 7 \\ 10 & 32 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 24A1 | $24$ | $2162$ | $C_{24}$ | 12A1 | 8A1 | 24A11 | 24A1 | $ \left[ \left(\begin{array}{rr} 4 & 3 \\ 21 & 16 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 24A5 | $24$ | $2162$ | $C_{24}$ | 12A5 | 8A3 | 24A7 | 24A5 | $ \left[ \left(\begin{array}{rr} 29 & 11 \\ 30 & 26 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 24A7 | $24$ | $2162$ | $C_{24}$ | 12A5 | 8A1 | 24A5 | 24A7 | $ \left[ \left(\begin{array}{rr} 2 & 32 \\ 36 & 36 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 24A11 | $24$ | $2162$ | $C_{24}$ | 12A1 | 8A3 | 24A1 | 24A11 | $ \left[ \left(\begin{array}{rr} 46 & 33 \\ 43 & 37 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 47A1 | $47$ | $1104$ | $C_{47}$ | 47A1 | 47A1 | 47A-1 | 47A-1 | $ \left[ \left(\begin{array}{rr} 14 & 15 \\ 32 & 31 \end{array}\right) \right] $ |
$\PSL(2,47)$ | 47A-1 | $47$ | $1104$ | $C_{47}$ | 47A-1 | 47A-1 | 47A1 | 47A1 | $ \left[ \left(\begin{array}{rr} 16 & 15 \\ 32 & 33 \end{array}\right) \right] $ |