Learn more

Refine search


Results (1-50 of 65 matches)

Next   displayed columns for results

Elements of the group are displayed as matrices in $\SL(2,64)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 5P 7P 13P
$\SL(2,64)$ 1A $1$ $1$ $\SL(2,64)$ 1A 1A 1A 1A 1A $\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ \end{array}\right)$
$\SL(2,64)$ 2A $2$ $4095$ $C_2^6$ 1A 2A 2A 2A 2A $\left(\begin{array}{ll}\alpha^{42} & \alpha^{40} \\ \alpha^{2} & \alpha^{42} \\ \end{array}\right)$
$\SL(2,64)$ 3A $3$ $4160$ $C_{63}$ 3A 1A 3A 3A 3A $\left(\begin{array}{ll}\alpha^{51} & \alpha^{39} \\ \alpha^{56} & \alpha^{40} \\ \end{array}\right)$
$\SL(2,64)$ 5A1 $5$ $4032$ $C_{65}$ 5A2 5A2 1A 5A2 5A2 $\left(\begin{array}{ll}\alpha^{14} & \alpha^{61} \\ \alpha^{47} & \alpha^{22} \\ \end{array}\right)$
$\SL(2,64)$ 5A2 $5$ $4032$ $C_{65}$ 5A1 5A1 1A 5A1 5A1 $\left(\begin{array}{ll}\alpha^{4} & \alpha^{19} \\ \alpha^{5} & \alpha^{37} \\ \end{array}\right)$
$\SL(2,64)$ 7A1 $7$ $4160$ $C_{63}$ 7A2 7A3 7A2 1A 7A1 $\left(\begin{array}{ll}\alpha^{22} & \alpha^{3} \\ \alpha^{20} & \alpha^{52} \\ \end{array}\right)$
$\SL(2,64)$ 7A2 $7$ $4160$ $C_{63}$ 7A3 7A1 7A3 1A 7A2 $\left(\begin{array}{ll}\alpha^{2} & \alpha^{30} \\ \alpha^{47} & \alpha^{14} \\ \end{array}\right)$
$\SL(2,64)$ 7A3 $7$ $4160$ $C_{63}$ 7A1 7A2 7A1 1A 7A3 $\left(\begin{array}{ll}\alpha^{30} & \alpha^{21} \\ \alpha^{38} & \alpha \\ \end{array}\right)$
$\SL(2,64)$ 9A1 $9$ $4160$ $C_{63}$ 9A2 3A 9A4 9A2 9A4 $\left(\begin{array}{ll}\alpha^{11} & \alpha^{57} \\ \alpha^{11} & \alpha^{19} \\ \end{array}\right)$
$\SL(2,64)$ 9A2 $9$ $4160$ $C_{63}$ 9A4 3A 9A1 9A4 9A1 $\left(\begin{array}{ll}\alpha^{44} & \alpha^{12} \\ \alpha^{29} & \alpha^{43} \\ \end{array}\right)$
$\SL(2,64)$ 9A4 $9$ $4160$ $C_{63}$ 9A1 3A 9A2 9A1 9A2 $\left(\begin{array}{ll}\alpha^{39} & \alpha^{48} \\ \alpha^{2} & \alpha^{14} \\ \end{array}\right)$
$\SL(2,64)$ 13A1 $13$ $4032$ $C_{65}$ 13A2 13A3 13A5 13A6 1A $\left(\begin{array}{ll}\alpha^{7} & \alpha^{3} \\ \alpha^{52} & \alpha^{55} \\ \end{array}\right)$
$\SL(2,64)$ 13A2 $13$ $4032$ $C_{65}$ 13A4 13A6 13A3 13A1 1A $\left(\begin{array}{ll}\alpha^{38} & \alpha^{29} \\ \alpha^{15} & \alpha^{54} \\ \end{array}\right)$
$\SL(2,64)$ 13A3 $13$ $4032$ $C_{65}$ 13A6 13A4 13A2 13A5 1A $\left(\begin{array}{ll}\alpha^{27} & \alpha^{15} \\ \alpha & \alpha^{50} \\ \end{array}\right)$
$\SL(2,64)$ 13A4 $13$ $4032$ $C_{65}$ 13A5 13A1 13A6 13A2 1A $\left(\begin{array}{ll}\alpha^{9} & \alpha^{18} \\ \alpha^{4} & \alpha^{37} \\ \end{array}\right)$
$\SL(2,64)$ 13A5 $13$ $4032$ $C_{65}$ 13A3 13A2 13A1 13A4 1A $\left(\begin{array}{ll}\alpha^{34} & \alpha^{59} \\ \alpha^{45} & \alpha^{53} \\ \end{array}\right)$
$\SL(2,64)$ 13A6 $13$ $4032$ $C_{65}$ 13A1 13A5 13A4 13A3 1A $\left(\begin{array}{ll}\alpha^{49} & \alpha^{53} \\ \alpha^{39} & \alpha^{58} \\ \end{array}\right)$
$\SL(2,64)$ 21A1 $21$ $4160$ $C_{63}$ 21A2 7A1 21A5 3A 21A8 $\left(\begin{array}{ll}\alpha^{44} & \alpha^{29} \\ \alpha^{46} & \alpha^{8} \\ \end{array}\right)$
$\SL(2,64)$ 21A2 $21$ $4160$ $C_{63}$ 21A4 7A2 21A10 3A 21A5 $\left(\begin{array}{ll}\alpha^{15} & \alpha^{19} \\ \alpha^{36} & \alpha^{47} \\ \end{array}\right)$
$\SL(2,64)$ 21A4 $21$ $4160$ $C_{63}$ 21A8 7A3 21A1 3A 21A10 $\left(\begin{array}{ll}\alpha^{25} & \alpha^{62} \\ \alpha^{16} & \alpha^{9} \\ \end{array}\right)$
$\SL(2,64)$ 21A5 $21$ $4160$ $C_{63}$ 21A10 7A2 21A4 3A 21A2 $\left(\begin{array}{ll}\alpha^{23} & \alpha^{5} \\ \alpha^{22} & \alpha^{49} \\ \end{array}\right)$
$\SL(2,64)$ 21A8 $21$ $4160$ $C_{63}$ 21A5 7A1 21A2 3A 21A1 $\left(\begin{array}{ll}\alpha^{19} & \alpha^{22} \\ \alpha^{39} & \alpha^{28} \\ \end{array}\right)$
$\SL(2,64)$ 21A10 $21$ $4160$ $C_{63}$ 21A1 7A3 21A8 3A 21A4 $\left(\begin{array}{ll}\alpha^{12} & \alpha^{34} \\ \alpha^{51} & \alpha^{34} \\ \end{array}\right)$
$\SL(2,64)$ 63A1 $63$ $4160$ $C_{63}$ 63A2 21A1 63A5 9A1 63A13 $\left(\begin{array}{ll}\alpha^{62} & \alpha^{51} \\ \alpha^{5} & \alpha^{2} \\ \end{array}\right)$
$\SL(2,64)$ 63A2 $63$ $4160$ $C_{63}$ 63A4 21A2 63A10 9A2 63A26 $\left(\begin{array}{ll}\alpha^{23} & 1 \\ \alpha^{17} & \alpha^{16} \\ \end{array}\right)$
$\SL(2,64)$ 63A4 $63$ $4160$ $C_{63}$ 63A8 21A4 63A20 9A4 63A11 $\left(\begin{array}{ll}\alpha^{61} & \alpha^{24} \\ \alpha^{41} & \alpha^{51} \\ \end{array}\right)$
$\SL(2,64)$ 63A5 $63$ $4160$ $C_{63}$ 63A10 21A5 63A25 9A4 63A2 $\left(\begin{array}{ll}\alpha^{25} & \alpha^{37} \\ \alpha^{54} & \alpha^{7} \\ \end{array}\right)$
$\SL(2,64)$ 63A8 $63$ $4160$ $C_{63}$ 63A16 21A8 63A23 9A1 63A22 $\left(\begin{array}{ll}\alpha^{22} & \alpha^{9} \\ \alpha^{26} & \alpha^{45} \\ \end{array}\right)$
$\SL(2,64)$ 63A10 $63$ $4160$ $C_{63}$ 63A20 21A10 63A13 9A1 63A4 $\left(\begin{array}{ll}\alpha^{11} & \alpha^{35} \\ \alpha^{52} & \alpha^{30} \\ \end{array}\right)$
$\SL(2,64)$ 63A11 $63$ $4160$ $C_{63}$ 63A22 21A10 63A8 9A2 63A17 $\left(\begin{array}{ll}\alpha^{15} & \alpha^{32} \\ \alpha^{49} & \alpha^{39} \\ \end{array}\right)$
$\SL(2,64)$ 63A13 $63$ $4160$ $C_{63}$ 63A26 21A8 63A2 9A4 63A20 $\left(\begin{array}{ll}\alpha^{61} & \alpha^{53} \\ \alpha^{7} & \alpha^{12} \\ \end{array}\right)$
$\SL(2,64)$ 63A16 $63$ $4160$ $C_{63}$ 63A31 21A5 63A17 9A2 63A19 $\left(\begin{array}{ll}\alpha^{62} & \alpha^{42} \\ \alpha^{59} & \alpha^{34} \\ \end{array}\right)$
$\SL(2,64)$ 63A17 $63$ $4160$ $C_{63}$ 63A29 21A4 63A22 9A1 63A31 $\left(\begin{array}{ll}1 & \alpha^{7} \\ \alpha^{24} & \alpha^{59} \\ \end{array}\right)$
$\SL(2,64)$ 63A19 $63$ $4160$ $C_{63}$ 63A25 21A2 63A31 9A1 63A5 $\left(\begin{array}{ll}\alpha^{16} & \alpha^{11} \\ \alpha^{28} & \alpha \\ \end{array}\right)$
$\SL(2,64)$ 63A20 $63$ $4160$ $C_{63}$ 63A23 21A1 63A26 9A2 63A8 $\left(\begin{array}{ll}\alpha^{8} & \alpha^{31} \\ \alpha^{48} & \alpha^{6} \\ \end{array}\right)$
$\SL(2,64)$ 63A22 $63$ $4160$ $C_{63}$ 63A19 21A1 63A16 9A4 63A29 $\left(\begin{array}{ll}\alpha^{7} & \alpha^{25} \\ \alpha^{42} & \alpha^{28} \\ \end{array}\right)$
$\SL(2,64)$ 63A23 $63$ $4160$ $C_{63}$ 63A17 21A2 63A11 9A4 63A16 $\left(\begin{array}{ll}\alpha^{47} & \alpha^{23} \\ \alpha^{40} & 0 \\ \end{array}\right)$
$\SL(2,64)$ 63A25 $63$ $4160$ $C_{63}$ 63A13 21A4 63A1 9A2 63A10 $\left(\begin{array}{ll}\alpha^{45} & \alpha^{46} \\ 1 & \alpha^{40} \\ \end{array}\right)$
$\SL(2,64)$ 63A26 $63$ $4160$ $C_{63}$ 63A11 21A5 63A4 9A1 63A23 $\left(\begin{array}{ll}\alpha^{52} & \alpha^{4} \\ \alpha^{21} & \alpha^{6} \\ \end{array}\right)$
$\SL(2,64)$ 63A29 $63$ $4160$ $C_{63}$ 63A5 21A8 63A19 9A2 63A1 $\left(\begin{array}{ll}\alpha^{9} & \alpha^{38} \\ \alpha^{55} & \alpha^{59} \\ \end{array}\right)$
$\SL(2,64)$ 63A31 $63$ $4160$ $C_{63}$ 63A1 21A10 63A29 9A4 63A25 $\left(\begin{array}{ll}\alpha^{43} & \alpha^{45} \\ \alpha^{62} & \alpha^{49} \\ \end{array}\right)$
$\SL(2,64)$ 65A1 $65$ $4032$ $C_{65}$ 65A2 65A3 13A1 65A7 5A1 $\left(\begin{array}{ll}\alpha^{2} & \alpha^{50} \\ \alpha^{36} & \alpha^{9} \\ \end{array}\right)$
$\SL(2,64)$ 65A2 $65$ $4032$ $C_{65}$ 65A4 65A6 13A2 65A14 5A2 $\left(\begin{array}{ll}\alpha^{52} & \alpha^{60} \\ \alpha^{46} & \alpha^{48} \\ \end{array}\right)$
$\SL(2,64)$ 65A3 $65$ $4032$ $C_{65}$ 65A6 65A9 13A3 65A21 5A2 $\left(\begin{array}{ll}\alpha^{12} & \alpha^{44} \\ \alpha^{30} & \alpha^{11} \\ \end{array}\right)$
$\SL(2,64)$ 65A4 $65$ $4032$ $C_{65}$ 65A8 65A12 13A4 65A28 5A1 $\left(\begin{array}{ll}\alpha^{27} & \alpha^{17} \\ \alpha^{3} & \alpha^{30} \\ \end{array}\right)$
$\SL(2,64)$ 65A6 $65$ $4032$ $C_{65}$ 65A12 65A18 13A6 65A23 5A1 $\left(\begin{array}{ll}\alpha^{14} & \alpha^{48} \\ \alpha^{34} & \alpha^{34} \\ \end{array}\right)$
$\SL(2,64)$ 65A7 $65$ $4032$ $C_{65}$ 65A14 65A21 13A6 65A16 5A2 $\left(\begin{array}{ll}\alpha^{46} & \alpha^{2} \\ \alpha^{51} & \alpha^{4} \\ \end{array}\right)$
$\SL(2,64)$ 65A8 $65$ $4032$ $C_{65}$ 65A16 65A24 13A5 65A9 5A2 $\left(\begin{array}{ll}\alpha^{35} & \alpha^{57} \\ \alpha^{43} & \alpha^{8} \\ \end{array}\right)$
$\SL(2,64)$ 65A9 $65$ $4032$ $C_{65}$ 65A18 65A27 13A4 65A2 5A1 $\left(\begin{array}{ll}\alpha^{38} & \alpha^{51} \\ \alpha^{37} & \alpha^{20} \\ \end{array}\right)$
$\SL(2,64)$ 65A11 $65$ $4032$ $C_{65}$ 65A22 65A32 13A2 65A12 5A1 $\left(\begin{array}{ll}\alpha^{35} & \alpha^{28} \\ \alpha^{14} & \alpha^{49} \\ \end{array}\right)$
Next   displayed columns for results