Learn more

Refine search


Results (20 matches)

  displayed columns for results

Elements of the group are displayed as matrices in $\SU(4,2)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 5P
$\SU(4,2)$ 1A $1$ $1$ $\SU(4,2)$ 1A 1A 1A $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right)$
$\SU(4,2)$ 2A $2$ $45$ $\OmegaPlus(4,3):C_2$ 1A 2A 2A $\left(\begin{array}{llll}\alpha & 1 & \alpha^{2} & 1 \\ 1 & \alpha^{2} & 1 & \alpha \\ \alpha^{2} & 1 & \alpha & 1 \\ 1 & \alpha & 1 & \alpha^{2} \\ \end{array}\right)$
$\SU(4,2)$ 2B $2$ $270$ $\GL(2,\mathbb{Z}/4)$ 1A 2B 2B $\left(\begin{array}{llll}0 & \alpha & \alpha & 1 \\ \alpha^{2} & 1 & 0 & \alpha^{2} \\ \alpha^{2} & 0 & 1 & \alpha^{2} \\ 1 & \alpha & \alpha & 0 \\ \end{array}\right)$
$\SU(4,2)$ 3A1 $3$ $40$ $\Unitary(3,2)$ 3A-1 1A 3A-1 $\left(\begin{array}{llll}0 & 0 & \alpha & \alpha^{2} \\ \alpha^{2} & \alpha & \alpha^{2} & 1 \\ 0 & 0 & \alpha & 0 \\ \alpha^{2} & 0 & \alpha^{2} & \alpha^{2} \\ \end{array}\right)$
$\SU(4,2)$ 3A-1 $3$ $40$ $\Unitary(3,2)$ 3A1 1A 3A1 $\left(\begin{array}{llll}\alpha & 0 & 1 & \alpha \\ \alpha & \alpha^{2} & \alpha & \alpha^{2} \\ 0 & 0 & \alpha^{2} & 0 \\ \alpha & 0 & \alpha & 0 \\ \end{array}\right)$
$\SU(4,2)$ 3B $3$ $240$ $C_3\times S_3^2$ 3B 1A 3B $\left(\begin{array}{llll}\alpha^{2} & 0 & 0 & 0 \\ 1 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 1 & \alpha^{2} \\ \end{array}\right)$
$\SU(4,2)$ 3C $3$ $480$ $S_3\times C_3^2$ 3C 1A 3C $\left(\begin{array}{llll}0 & 0 & \alpha^{2} & 1 \\ \alpha & 1 & \alpha^{2} & \alpha^{2} \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ \end{array}\right)$
$\SU(4,2)$ 4A $4$ $540$ $\SL(2,3):C_2$ 2A 4A 4A $\left(\begin{array}{llll}\alpha^{2} & 1 & 0 & 0 \\ \alpha^{2} & \alpha^{2} & 0 & 0 \\ 1 & \alpha & \alpha & 1 \\ \alpha & \alpha & \alpha & \alpha \\ \end{array}\right)$
$\SU(4,2)$ 4B $4$ $3240$ $C_2\times C_4$ 2B 4B 4B $\left(\begin{array}{llll}\alpha^{2} & \alpha & 1 & 1 \\ 0 & 0 & \alpha & \alpha^{2} \\ \alpha & \alpha^{2} & 1 & 1 \\ 0 & 0 & \alpha^{2} & \alpha \\ \end{array}\right)$
$\SU(4,2)$ 5A $5$ $5184$ $C_5$ 5A 5A 1A $\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ \alpha^{2} & \alpha & 0 & 0 \\ 1 & 0 & 1 & 1 \\ \alpha & 1 & \alpha & \alpha^{2} \\ \end{array}\right)$
$\SU(4,2)$ 6A1 $6$ $360$ $C_3\times \SL(2,3)$ 3A1 2A 6A-1 $\left(\begin{array}{llll}\alpha & 0 & 1 & \alpha \\ \alpha & \alpha^{2} & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha^{2} & 0 \\ 1 & \alpha & \alpha & 0 \\ \end{array}\right)$
$\SU(4,2)$ 6A-1 $6$ $360$ $C_3\times \SL(2,3)$ 3A-1 2A 6A1 $\left(\begin{array}{llll}0 & 0 & \alpha & \alpha^{2} \\ \alpha^{2} & \alpha & \alpha^{2} & 1 \\ \alpha^{2} & \alpha & \alpha & 0 \\ 1 & 1 & \alpha^{2} & \alpha^{2} \\ \end{array}\right)$
$\SU(4,2)$ 6B1 $6$ $720$ $C_6\times S_3$ 3B 2A 6B-1 $\left(\begin{array}{llll}0 & \alpha & \alpha & 0 \\ \alpha^{2} & \alpha^{2} & \alpha^{2} & \alpha^{2} \\ 0 & \alpha & \alpha & \alpha^{2} \\ \alpha^{2} & 1 & \alpha^{2} & 1 \\ \end{array}\right)$
$\SU(4,2)$ 6B-1 $6$ $720$ $C_6\times S_3$ 3B 2A 6B1 $\left(\begin{array}{llll}1 & \alpha & \alpha & 0 \\ \alpha & \alpha^{2} & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha & \alpha^{2} \\ \alpha & 0 & \alpha & 0 \\ \end{array}\right)$
$\SU(4,2)$ 6C $6$ $1440$ $C_3\times C_6$ 3C 2A 6C $\left(\begin{array}{llll}\alpha & 1 & 1 & 0 \\ 0 & \alpha^{2} & \alpha^{2} & 0 \\ \alpha^{2} & 1 & \alpha & 1 \\ 0 & \alpha & \alpha & \alpha \\ \end{array}\right)$
$\SU(4,2)$ 6D $6$ $2160$ $C_2\times C_6$ 3B 2B 6D $\left(\begin{array}{llll}0 & 0 & \alpha & \alpha \\ \alpha^{2} & \alpha^{2} & \alpha & \alpha \\ \alpha^{2} & \alpha^{2} & \alpha^{2} & 0 \\ 1 & \alpha^{2} & \alpha^{2} & 0 \\ \end{array}\right)$
$\SU(4,2)$ 9A1 $9$ $2880$ $C_9$ 9A-1 3A1 9A-1 $\left(\begin{array}{llll}0 & \alpha & 0 & 0 \\ 0 & 0 & 0 & \alpha^{2} \\ \alpha^{2} & \alpha & 0 & 0 \\ 0 & 0 & \alpha & \alpha^{2} \\ \end{array}\right)$
$\SU(4,2)$ 9A-1 $9$ $2880$ $C_9$ 9A1 3A-1 9A1 $\left(\begin{array}{llll}\alpha & 0 & \alpha & 0 \\ \alpha^{2} & 0 & 0 & 0 \\ 0 & \alpha^{2} & 0 & \alpha^{2} \\ 0 & \alpha & 0 & 0 \\ \end{array}\right)$
$\SU(4,2)$ 12A1 $12$ $2160$ $C_{12}$ 6A1 4A 12A-1 $\left(\begin{array}{llll}\alpha^{2} & \alpha & \alpha & \alpha^{2} \\ \alpha & 1 & \alpha^{2} & 1 \\ 1 & 1 & \alpha^{2} & \alpha \\ \alpha & \alpha & 0 & \alpha \\ \end{array}\right)$
$\SU(4,2)$ 12A-1 $12$ $2160$ $C_{12}$ 6A-1 4A 12A1 $\left(\begin{array}{llll}\alpha^{2} & \alpha^{2} & 1 & \alpha \\ 0 & \alpha & \alpha & \alpha^{2} \\ \alpha^{2} & 1 & 1 & \alpha^{2} \\ \alpha^{2} & 1 & \alpha^{2} & \alpha \\ \end{array}\right)$
  displayed columns for results