Learn more

Refine search


Results (1-50 of 87 matches)

Next   displayed columns for results

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,169)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 5P 7P 13P 17P
$\PSL(2,169)$ 1A $1$ $1$ $\PSL(2,169)$ 1A 1A 1A 1A 1A 1A $ \left[ \left(\begin{array}{rr} 0 & -1 \\ -1 & 0 \end{array}\right) \right] $
$\PSL(2,169)$ 2A $2$ $14365$ $D_{84}$ 1A 2A 2A 2A 2A 2A $ \left[ \left(\begin{array}{rr} 67 & 46 \\ 55 & 151 \end{array}\right) \right] $
$\PSL(2,169)$ 3A $3$ $28730$ $C_{84}$ 3A 1A 3A 3A 3A 3A $ \left[ \left(\begin{array}{rr} 68 & 144 \\ 153 & 63 \end{array}\right) \right] $
$\PSL(2,169)$ 4A $4$ $28730$ $C_{84}$ 2A 4A 4A 4A 4A 4A $ \left[ \left(\begin{array}{rr} 110 & 39 \\ 48 & 106 \end{array}\right) \right] $
$\PSL(2,169)$ 5A1 $5$ $28392$ $C_{85}$ 5A2 5A2 1A 5A2 5A2 5A2 $ \left[ \left(\begin{array}{rr} 22 & 12 \\ 34 & 79 \end{array}\right) \right] $
$\PSL(2,169)$ 5A2 $5$ $28392$ $C_{85}$ 5A1 5A1 1A 5A1 5A1 5A1 $ \left[ \left(\begin{array}{rr} 57 & 42 \\ 64 & 102 \end{array}\right) \right] $
$\PSL(2,169)$ 6A $6$ $28730$ $C_{84}$ 3A 2A 6A 6A 6A 6A $ \left[ \left(\begin{array}{rr} 134 & 116 \\ 125 & 16 \end{array}\right) \right] $
$\PSL(2,169)$ 7A1 $7$ $28730$ $C_{84}$ 7A2 7A3 7A2 1A 7A1 7A3 $ \left[ \left(\begin{array}{rr} 78 & 53 \\ 62 & 47 \end{array}\right) \right] $
$\PSL(2,169)$ 7A2 $7$ $28730$ $C_{84}$ 7A3 7A1 7A3 1A 7A2 7A1 $ \left[ \left(\begin{array}{rr} 146 & 109 \\ 118 & 15 \end{array}\right) \right] $
$\PSL(2,169)$ 7A3 $7$ $28730$ $C_{84}$ 7A1 7A2 7A1 1A 7A3 7A2 $ \left[ \left(\begin{array}{rr} 13 & 95 \\ 104 & 164 \end{array}\right) \right] $
$\PSL(2,169)$ 12A1 $12$ $28730$ $C_{84}$ 6A 4A 12A5 12A5 12A1 12A5 $ \left[ \left(\begin{array}{rr} 13 & 151 \\ 160 & 45 \end{array}\right) \right] $
$\PSL(2,169)$ 12A5 $12$ $28730$ $C_{84}$ 6A 4A 12A1 12A1 12A5 12A1 $ \left[ \left(\begin{array}{rr} 44 & 165 \\ 6 & 150 \end{array}\right) \right] $
$\PSL(2,169)$ 13A $13$ $14280$ $C_{13}^2$ 13A 13A 13A 13A 1A 13A $ \left[ \left(\begin{array}{rr} 145 & 124 \\ 76 & 59 \end{array}\right) \right] $
$\PSL(2,169)$ 13B $13$ $14280$ $C_{13}^2$ 13B 13B 13B 13B 1A 13B $ \left[ \left(\begin{array}{rr} 105 & 123 \\ 139 & 32 \end{array}\right) \right] $
$\PSL(2,169)$ 14A1 $14$ $28730$ $C_{84}$ 7A1 14A3 14A5 2A 14A1 14A3 $ \left[ \left(\begin{array}{rr} 5 & 74 \\ 83 & 66 \end{array}\right) \right] $
$\PSL(2,169)$ 14A3 $14$ $28730$ $C_{84}$ 7A3 14A5 14A1 2A 14A3 14A5 $ \left[ \left(\begin{array}{rr} 93 & 102 \\ 111 & 72 \end{array}\right) \right] $
$\PSL(2,169)$ 14A5 $14$ $28730$ $C_{84}$ 7A2 14A1 14A3 2A 14A5 14A1 $ \left[ \left(\begin{array}{rr} 14 & 4 \\ 13 & 116 \end{array}\right) \right] $
$\PSL(2,169)$ 17A1 $17$ $28392$ $C_{85}$ 17A2 17A3 17A5 17A7 17A4 1A $ \left[ \left(\begin{array}{rr} 88 & 60 \\ 82 & 139 \end{array}\right) \right] $
$\PSL(2,169)$ 17A2 $17$ $28392$ $C_{85}$ 17A4 17A6 17A7 17A3 17A8 1A $ \left[ \left(\begin{array}{rr} 109 & 139 \\ 161 & 62 \end{array}\right) \right] $
$\PSL(2,169)$ 17A3 $17$ $28392$ $C_{85}$ 17A6 17A8 17A2 17A4 17A5 1A $ \left[ \left(\begin{array}{rr} 83 & 19 \\ 41 & 10 \end{array}\right) \right] $
$\PSL(2,169)$ 17A4 $17$ $28392$ $C_{85}$ 17A8 17A5 17A3 17A6 17A1 1A $ \left[ \left(\begin{array}{rr} 87 & 78 \\ 100 & 97 \end{array}\right) \right] $
$\PSL(2,169)$ 17A5 $17$ $28392$ $C_{85}$ 17A7 17A2 17A8 17A1 17A3 1A $ \left[ \left(\begin{array}{rr} 11 & 49 \\ 71 & 105 \end{array}\right) \right] $
$\PSL(2,169)$ 17A6 $17$ $28392$ $C_{85}$ 17A5 17A1 17A4 17A8 17A7 1A $ \left[ \left(\begin{array}{rr} 51 & 11 \\ 33 & 39 \end{array}\right) \right] $
$\PSL(2,169)$ 17A7 $17$ $28392$ $C_{85}$ 17A3 17A4 17A1 17A2 17A6 1A $ \left[ \left(\begin{array}{rr} 26 & 113 \\ 135 & 106 \end{array}\right) \right] $
$\PSL(2,169)$ 17A8 $17$ $28392$ $C_{85}$ 17A1 17A7 17A6 17A5 17A2 1A $ \left[ \left(\begin{array}{rr} 159 & 97 \\ 119 & 5 \end{array}\right) \right] $
$\PSL(2,169)$ 21A1 $21$ $28730$ $C_{84}$ 21A2 7A1 21A5 3A 21A8 21A4 $ \left[ \left(\begin{array}{rr} 76 & 76 \\ 85 & 103 \end{array}\right) \right] $
$\PSL(2,169)$ 21A2 $21$ $28730$ $C_{84}$ 21A4 7A2 21A10 3A 21A5 21A8 $ \left[ \left(\begin{array}{rr} 128 & 147 \\ 156 & 158 \end{array}\right) \right] $
$\PSL(2,169)$ 21A4 $21$ $28730$ $C_{84}$ 21A8 7A3 21A1 3A 21A10 21A5 $ \left[ \left(\begin{array}{rr} 49 & 83 \\ 92 & 137 \end{array}\right) \right] $
$\PSL(2,169)$ 21A5 $21$ $28730$ $C_{84}$ 21A10 7A2 21A4 3A 21A2 21A1 $ \left[ \left(\begin{array}{rr} 64 & 99 \\ 108 & 106 \end{array}\right) \right] $
$\PSL(2,169)$ 21A8 $21$ $28730$ $C_{84}$ 21A5 7A1 21A2 3A 21A1 21A10 $ \left[ \left(\begin{array}{rr} 73 & 16 \\ 25 & 126 \end{array}\right) \right] $
$\PSL(2,169)$ 21A10 $21$ $28730$ $C_{84}$ 21A1 7A3 21A8 3A 21A4 21A2 $ \left[ \left(\begin{array}{rr} 155 & 23 \\ 32 & 60 \end{array}\right) \right] $
$\PSL(2,169)$ 28A1 $28$ $28730$ $C_{84}$ 14A1 28A3 28A5 4A 28A13 28A11 $ \left[ \left(\begin{array}{rr} 155 & 113 \\ 122 & 130 \end{array}\right) \right] $
$\PSL(2,169)$ 28A3 $28$ $28730$ $C_{84}$ 14A3 28A9 28A13 4A 28A11 28A5 $ \left[ \left(\begin{array}{rr} 31 & 73 \\ 82 & 42 \end{array}\right) \right] $
$\PSL(2,169)$ 28A5 $28$ $28730$ $C_{84}$ 14A5 28A13 28A3 4A 28A9 28A1 $ \left[ \left(\begin{array}{rr} 68 & 72 \\ 81 & 20 \end{array}\right) \right] $
$\PSL(2,169)$ 28A9 $28$ $28730$ $C_{84}$ 14A5 28A1 28A11 4A 28A5 28A13 $ \left[ \left(\begin{array}{rr} 133 & 48 \\ 57 & 16 \end{array}\right) \right] $
$\PSL(2,169)$ 28A11 $28$ $28730$ $C_{84}$ 14A3 28A5 28A1 4A 28A3 28A9 $ \left[ \left(\begin{array}{rr} 149 & 61 \\ 70 & 158 \end{array}\right) \right] $
$\PSL(2,169)$ 28A13 $28$ $28730$ $C_{84}$ 14A1 28A11 28A9 4A 28A1 28A3 $ \left[ \left(\begin{array}{rr} 76 & 77 \\ 86 & 24 \end{array}\right) \right] $
$\PSL(2,169)$ 42A1 $42$ $28730$ $C_{84}$ 21A1 14A1 42A5 6A 42A13 42A17 $ \left[ \left(\begin{array}{rr} 58 & 85 \\ 94 & 24 \end{array}\right) \right] $
$\PSL(2,169)$ 42A5 $42$ $28730$ $C_{84}$ 21A5 14A5 42A17 6A 42A19 42A1 $ \left[ \left(\begin{array}{rr} 149 & 31 \\ 40 & 91 \end{array}\right) \right] $
$\PSL(2,169)$ 42A11 $42$ $28730$ $C_{84}$ 21A10 14A3 42A13 6A 42A17 42A19 $ \left[ \left(\begin{array}{rr} 110 & 124 \\ 133 & 90 \end{array}\right) \right] $
$\PSL(2,169)$ 42A13 $42$ $28730$ $C_{84}$ 21A8 14A1 42A19 6A 42A1 42A11 $ \left[ \left(\begin{array}{rr} 61 & 133 \\ 142 & 20 \end{array}\right) \right] $
$\PSL(2,169)$ 42A17 $42$ $28730$ $C_{84}$ 21A4 14A3 42A1 6A 42A11 42A5 $ \left[ \left(\begin{array}{rr} 115 & 136 \\ 145 & 45 \end{array}\right) \right] $
$\PSL(2,169)$ 42A19 $42$ $28730$ $C_{84}$ 21A2 14A5 42A11 6A 42A5 42A13 $ \left[ \left(\begin{array}{rr} 83 & 19 \\ 28 & 130 \end{array}\right) \right] $
$\PSL(2,169)$ 84A1 $84$ $28730$ $C_{84}$ 42A1 28A1 84A5 12A1 84A13 84A17 $ \left[ \left(\begin{array}{rr} 151 & 91 \\ 100 & 144 \end{array}\right) \right] $
$\PSL(2,169)$ 84A5 $84$ $28730$ $C_{84}$ 42A5 28A5 84A25 12A5 84A19 84A1 $ \left[ \left(\begin{array}{rr} 83 & 9 \\ 18 & 80 \end{array}\right) \right] $
$\PSL(2,169)$ 84A11 $84$ $28730$ $C_{84}$ 42A11 28A11 84A29 12A1 84A25 84A19 $ \left[ \left(\begin{array}{rr} 157 & 112 \\ 121 & 32 \end{array}\right) \right] $
$\PSL(2,169)$ 84A13 $84$ $28730$ $C_{84}$ 42A13 28A13 84A19 12A1 84A1 84A31 $ \left[ \left(\begin{array}{rr} 14 & 127 \\ 136 & 63 \end{array}\right) \right] $
$\PSL(2,169)$ 84A17 $84$ $28730$ $C_{84}$ 42A17 28A11 84A1 12A5 84A31 84A37 $ \left[ \left(\begin{array}{rr} 61 & 104 \\ 113 & 15 \end{array}\right) \right] $
$\PSL(2,169)$ 84A19 $84$ $28730$ $C_{84}$ 42A19 28A9 84A11 12A5 84A5 84A13 $ \left[ \left(\begin{array}{rr} 62 & 153 \\ 162 & 6 \end{array}\right) \right] $
$\PSL(2,169)$ 84A23 $84$ $28730$ $C_{84}$ 42A19 28A5 84A31 12A1 84A37 84A29 $ \left[ \left(\begin{array}{rr} 148 & 66 \\ 75 & 156 \end{array}\right) \right] $
Next   displayed columns for results