Learn more

Refine search


Results (36 matches)

  displayed columns for results

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,67)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 11P 17P 67P
$\PSL(2,67)$ 1A $1$ $1$ $\PSL(2,67)$ 1A 1A 1A 1A 1A $ \left[ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) \right] $
$\PSL(2,67)$ 2A $2$ $2211$ $D_{34}$ 1A 2A 2A 2A 2A $ \left[ \left(\begin{array}{rr} 65 & 21 \\ 54 & 2 \end{array}\right) \right] $
$\PSL(2,67)$ 3A $3$ $4556$ $C_{33}$ 3A 1A 3A 3A 3A $ \left[ \left(\begin{array}{rr} 66 & 61 \\ 34 & 2 \end{array}\right) \right] $
$\PSL(2,67)$ 11A1 $11$ $4556$ $C_{33}$ 11A2 11A3 11A5 1A 11A5 $ \left[ \left(\begin{array}{rr} 27 & 8 \\ 44 & 23 \end{array}\right) \right] $
$\PSL(2,67)$ 11A2 $11$ $4556$ $C_{33}$ 11A4 11A5 11A1 1A 11A1 $ \left[ \left(\begin{array}{rr} 9 & 65 \\ 56 & 10 \end{array}\right) \right] $
$\PSL(2,67)$ 11A3 $11$ $4556$ $C_{33}$ 11A5 11A2 11A4 1A 11A4 $ \left[ \left(\begin{array}{rr} 46 & 41 \\ 58 & 59 \end{array}\right) \right] $
$\PSL(2,67)$ 11A4 $11$ $4556$ $C_{33}$ 11A3 11A1 11A2 1A 11A2 $ \left[ \left(\begin{array}{rr} 31 & 38 \\ 8 & 12 \end{array}\right) \right] $
$\PSL(2,67)$ 11A5 $11$ $4556$ $C_{33}$ 11A1 11A4 11A3 1A 11A3 $ \left[ \left(\begin{array}{rr} 30 & 50 \\ 7 & 5 \end{array}\right) \right] $
$\PSL(2,67)$ 17A1 $17$ $4422$ $C_{34}$ 17A2 17A3 17A5 17A6 1A $ \left[ \left(\begin{array}{rr} 28 & 52 \\ 38 & 6 \end{array}\right) \right] $
$\PSL(2,67)$ 17A2 $17$ $4422$ $C_{34}$ 17A4 17A6 17A7 17A5 1A $ \left[ \left(\begin{array}{rr} 13 & 26 \\ 19 & 2 \end{array}\right) \right] $
$\PSL(2,67)$ 17A3 $17$ $4422$ $C_{34}$ 17A6 17A8 17A2 17A1 1A $ \left[ \left(\begin{array}{rr} 12 & 28 \\ 5 & 62 \end{array}\right) \right] $
$\PSL(2,67)$ 17A4 $17$ $4422$ $C_{34}$ 17A8 17A5 17A3 17A7 1A $ \left[ \left(\begin{array}{rr} 60 & 55 \\ 17 & 29 \end{array}\right) \right] $
$\PSL(2,67)$ 17A5 $17$ $4422$ $C_{34}$ 17A7 17A2 17A8 17A4 1A $ \left[ \left(\begin{array}{rr} 49 & 34 \\ 30 & 14 \end{array}\right) \right] $
$\PSL(2,67)$ 17A6 $17$ $4422$ $C_{34}$ 17A5 17A1 17A4 17A2 1A $ \left[ \left(\begin{array}{rr} 51 & 5 \\ 32 & 36 \end{array}\right) \right] $
$\PSL(2,67)$ 17A7 $17$ $4422$ $C_{34}$ 17A3 17A4 17A1 17A8 1A $ \left[ \left(\begin{array}{rr} 10 & 2 \\ 53 & 4 \end{array}\right) \right] $
$\PSL(2,67)$ 17A8 $17$ $4422$ $C_{34}$ 17A1 17A7 17A6 17A3 1A $ \left[ \left(\begin{array}{rr} 46 & 4 \\ 39 & 34 \end{array}\right) \right] $
$\PSL(2,67)$ 33A1 $33$ $4556$ $C_{33}$ 33A2 11A1 33A5 3A 33A16 $ \left[ \left(\begin{array}{rr} 43 & 14 \\ 10 & 36 \end{array}\right) \right] $
$\PSL(2,67)$ 33A2 $33$ $4556$ $C_{33}$ 33A4 11A2 33A10 3A 33A1 $ \left[ \left(\begin{array}{rr} 46 & 34 \\ 53 & 29 \end{array}\right) \right] $
$\PSL(2,67)$ 33A4 $33$ $4556$ $C_{33}$ 33A8 11A4 33A13 3A 33A2 $ \left[ \left(\begin{array}{rr} 35 & 63 \\ 45 & 37 \end{array}\right) \right] $
$\PSL(2,67)$ 33A5 $33$ $4556$ $C_{33}$ 33A10 11A5 33A8 3A 33A14 $ \left[ \left(\begin{array}{rr} 9 & 56 \\ 40 & 48 \end{array}\right) \right] $
$\PSL(2,67)$ 33A7 $33$ $4556$ $C_{33}$ 33A14 11A4 33A2 3A 33A13 $ \left[ \left(\begin{array}{rr} 35 & 13 \\ 38 & 62 \end{array}\right) \right] $
$\PSL(2,67)$ 33A8 $33$ $4556$ $C_{33}$ 33A16 11A3 33A7 3A 33A4 $ \left[ \left(\begin{array}{rr} 40 & 47 \\ 24 & 50 \end{array}\right) \right] $
$\PSL(2,67)$ 33A10 $33$ $4556$ $C_{33}$ 33A13 11A1 33A16 3A 33A5 $ \left[ \left(\begin{array}{rr} 43 & 43 \\ 2 & 55 \end{array}\right) \right] $
$\PSL(2,67)$ 33A13 $33$ $4556$ $C_{33}$ 33A7 11A2 33A1 3A 33A10 $ \left[ \left(\begin{array}{rr} 29 & 7 \\ 5 & 59 \end{array}\right) \right] $
$\PSL(2,67)$ 33A14 $33$ $4556$ $C_{33}$ 33A5 11A3 33A4 3A 33A7 $ \left[ \left(\begin{array}{rr} 23 & 12 \\ 66 & 17 \end{array}\right) \right] $
$\PSL(2,67)$ 33A16 $33$ $4556$ $C_{33}$ 33A1 11A5 33A14 3A 33A8 $ \left[ \left(\begin{array}{rr} 19 & 58 \\ 51 & 57 \end{array}\right) \right] $
$\PSL(2,67)$ 34A1 $34$ $4422$ $C_{34}$ 17A1 34A3 34A5 34A11 2A $ \left[ \left(\begin{array}{rr} 16 & 31 \\ 51 & 57 \end{array}\right) \right] $
$\PSL(2,67)$ 34A3 $34$ $4422$ $C_{34}$ 17A3 34A9 34A15 34A1 2A $ \left[ \left(\begin{array}{rr} 18 & 13 \\ 43 & 46 \end{array}\right) \right] $
$\PSL(2,67)$ 34A5 $34$ $4422$ $C_{34}$ 17A5 34A15 34A9 34A13 2A $ \left[ \left(\begin{array}{rr} 7 & 58 \\ 63 & 34 \end{array}\right) \right] $
$\PSL(2,67)$ 34A7 $34$ $4422$ $C_{34}$ 17A7 34A13 34A1 34A9 2A $ \left[ \left(\begin{array}{rr} 55 & 42 \\ 41 & 63 \end{array}\right) \right] $
$\PSL(2,67)$ 34A9 $34$ $4422$ $C_{34}$ 17A8 34A7 34A11 34A3 2A $ \left[ \left(\begin{array}{rr} 13 & 37 \\ 9 & 36 \end{array}\right) \right] $
$\PSL(2,67)$ 34A11 $34$ $4422$ $C_{34}$ 17A6 34A1 34A13 34A15 2A $ \left[ \left(\begin{array}{rr} 39 & 40 \\ 55 & 53 \end{array}\right) \right] $
$\PSL(2,67)$ 34A13 $34$ $4422$ $C_{34}$ 17A4 34A5 34A3 34A7 2A $ \left[ \left(\begin{array}{rr} 1 & 10 \\ 64 & 38 \end{array}\right) \right] $
$\PSL(2,67)$ 34A15 $34$ $4422$ $C_{34}$ 17A2 34A11 34A7 34A5 2A $ \left[ \left(\begin{array}{rr} 6 & 45 \\ 20 & 5 \end{array}\right) \right] $
$\PSL(2,67)$ 67A1 $67$ $2244$ $C_{67}$ 67A-1 67A-1 67A-1 67A-1 67A1 $ \left[ \left(\begin{array}{rr} 14 & 57 \\ 56 & 51 \end{array}\right) \right] $
$\PSL(2,67)$ 67A-1 $67$ $2244$ $C_{67}$ 67A1 67A1 67A1 67A1 67A-1 $ \left[ \left(\begin{array}{rr} 16 & 57 \\ 56 & 53 \end{array}\right) \right] $
  displayed columns for results