Refine search
Results (36 matches)
Download displayed columns for resultsElements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,67)$.
Group | Label | Order | Size | Centralizer | Powers | Representative | ||||
---|---|---|---|---|---|---|---|---|---|---|
2P | 3P | 11P | 17P | 67P | ||||||
$\PSL(2,67)$ | 1A | $1$ | $1$ | $\PSL(2,67)$ | 1A | 1A | 1A | 1A | 1A | $ \left[ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 2A | $2$ | $2211$ | $D_{34}$ | 1A | 2A | 2A | 2A | 2A | $ \left[ \left(\begin{array}{rr} 65 & 21 \\ 54 & 2 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 3A | $3$ | $4556$ | $C_{33}$ | 3A | 1A | 3A | 3A | 3A | $ \left[ \left(\begin{array}{rr} 66 & 61 \\ 34 & 2 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 11A1 | $11$ | $4556$ | $C_{33}$ | 11A2 | 11A3 | 11A5 | 1A | 11A5 | $ \left[ \left(\begin{array}{rr} 27 & 8 \\ 44 & 23 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 11A2 | $11$ | $4556$ | $C_{33}$ | 11A4 | 11A5 | 11A1 | 1A | 11A1 | $ \left[ \left(\begin{array}{rr} 9 & 65 \\ 56 & 10 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 11A3 | $11$ | $4556$ | $C_{33}$ | 11A5 | 11A2 | 11A4 | 1A | 11A4 | $ \left[ \left(\begin{array}{rr} 46 & 41 \\ 58 & 59 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 11A4 | $11$ | $4556$ | $C_{33}$ | 11A3 | 11A1 | 11A2 | 1A | 11A2 | $ \left[ \left(\begin{array}{rr} 31 & 38 \\ 8 & 12 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 11A5 | $11$ | $4556$ | $C_{33}$ | 11A1 | 11A4 | 11A3 | 1A | 11A3 | $ \left[ \left(\begin{array}{rr} 30 & 50 \\ 7 & 5 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 17A1 | $17$ | $4422$ | $C_{34}$ | 17A2 | 17A3 | 17A5 | 17A6 | 1A | $ \left[ \left(\begin{array}{rr} 28 & 52 \\ 38 & 6 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 17A2 | $17$ | $4422$ | $C_{34}$ | 17A4 | 17A6 | 17A7 | 17A5 | 1A | $ \left[ \left(\begin{array}{rr} 13 & 26 \\ 19 & 2 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 17A3 | $17$ | $4422$ | $C_{34}$ | 17A6 | 17A8 | 17A2 | 17A1 | 1A | $ \left[ \left(\begin{array}{rr} 12 & 28 \\ 5 & 62 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 17A4 | $17$ | $4422$ | $C_{34}$ | 17A8 | 17A5 | 17A3 | 17A7 | 1A | $ \left[ \left(\begin{array}{rr} 60 & 55 \\ 17 & 29 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 17A5 | $17$ | $4422$ | $C_{34}$ | 17A7 | 17A2 | 17A8 | 17A4 | 1A | $ \left[ \left(\begin{array}{rr} 49 & 34 \\ 30 & 14 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 17A6 | $17$ | $4422$ | $C_{34}$ | 17A5 | 17A1 | 17A4 | 17A2 | 1A | $ \left[ \left(\begin{array}{rr} 51 & 5 \\ 32 & 36 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 17A7 | $17$ | $4422$ | $C_{34}$ | 17A3 | 17A4 | 17A1 | 17A8 | 1A | $ \left[ \left(\begin{array}{rr} 10 & 2 \\ 53 & 4 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 17A8 | $17$ | $4422$ | $C_{34}$ | 17A1 | 17A7 | 17A6 | 17A3 | 1A | $ \left[ \left(\begin{array}{rr} 46 & 4 \\ 39 & 34 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 33A1 | $33$ | $4556$ | $C_{33}$ | 33A2 | 11A1 | 33A5 | 3A | 33A16 | $ \left[ \left(\begin{array}{rr} 43 & 14 \\ 10 & 36 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 33A2 | $33$ | $4556$ | $C_{33}$ | 33A4 | 11A2 | 33A10 | 3A | 33A1 | $ \left[ \left(\begin{array}{rr} 46 & 34 \\ 53 & 29 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 33A4 | $33$ | $4556$ | $C_{33}$ | 33A8 | 11A4 | 33A13 | 3A | 33A2 | $ \left[ \left(\begin{array}{rr} 35 & 63 \\ 45 & 37 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 33A5 | $33$ | $4556$ | $C_{33}$ | 33A10 | 11A5 | 33A8 | 3A | 33A14 | $ \left[ \left(\begin{array}{rr} 9 & 56 \\ 40 & 48 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 33A7 | $33$ | $4556$ | $C_{33}$ | 33A14 | 11A4 | 33A2 | 3A | 33A13 | $ \left[ \left(\begin{array}{rr} 35 & 13 \\ 38 & 62 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 33A8 | $33$ | $4556$ | $C_{33}$ | 33A16 | 11A3 | 33A7 | 3A | 33A4 | $ \left[ \left(\begin{array}{rr} 40 & 47 \\ 24 & 50 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 33A10 | $33$ | $4556$ | $C_{33}$ | 33A13 | 11A1 | 33A16 | 3A | 33A5 | $ \left[ \left(\begin{array}{rr} 43 & 43 \\ 2 & 55 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 33A13 | $33$ | $4556$ | $C_{33}$ | 33A7 | 11A2 | 33A1 | 3A | 33A10 | $ \left[ \left(\begin{array}{rr} 29 & 7 \\ 5 & 59 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 33A14 | $33$ | $4556$ | $C_{33}$ | 33A5 | 11A3 | 33A4 | 3A | 33A7 | $ \left[ \left(\begin{array}{rr} 23 & 12 \\ 66 & 17 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 33A16 | $33$ | $4556$ | $C_{33}$ | 33A1 | 11A5 | 33A14 | 3A | 33A8 | $ \left[ \left(\begin{array}{rr} 19 & 58 \\ 51 & 57 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 34A1 | $34$ | $4422$ | $C_{34}$ | 17A1 | 34A3 | 34A5 | 34A11 | 2A | $ \left[ \left(\begin{array}{rr} 16 & 31 \\ 51 & 57 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 34A3 | $34$ | $4422$ | $C_{34}$ | 17A3 | 34A9 | 34A15 | 34A1 | 2A | $ \left[ \left(\begin{array}{rr} 18 & 13 \\ 43 & 46 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 34A5 | $34$ | $4422$ | $C_{34}$ | 17A5 | 34A15 | 34A9 | 34A13 | 2A | $ \left[ \left(\begin{array}{rr} 7 & 58 \\ 63 & 34 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 34A7 | $34$ | $4422$ | $C_{34}$ | 17A7 | 34A13 | 34A1 | 34A9 | 2A | $ \left[ \left(\begin{array}{rr} 55 & 42 \\ 41 & 63 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 34A9 | $34$ | $4422$ | $C_{34}$ | 17A8 | 34A7 | 34A11 | 34A3 | 2A | $ \left[ \left(\begin{array}{rr} 13 & 37 \\ 9 & 36 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 34A11 | $34$ | $4422$ | $C_{34}$ | 17A6 | 34A1 | 34A13 | 34A15 | 2A | $ \left[ \left(\begin{array}{rr} 39 & 40 \\ 55 & 53 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 34A13 | $34$ | $4422$ | $C_{34}$ | 17A4 | 34A5 | 34A3 | 34A7 | 2A | $ \left[ \left(\begin{array}{rr} 1 & 10 \\ 64 & 38 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 34A15 | $34$ | $4422$ | $C_{34}$ | 17A2 | 34A11 | 34A7 | 34A5 | 2A | $ \left[ \left(\begin{array}{rr} 6 & 45 \\ 20 & 5 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 67A1 | $67$ | $2244$ | $C_{67}$ | 67A-1 | 67A-1 | 67A-1 | 67A-1 | 67A1 | $ \left[ \left(\begin{array}{rr} 14 & 57 \\ 56 & 51 \end{array}\right) \right] $ |
$\PSL(2,67)$ | 67A-1 | $67$ | $2244$ | $C_{67}$ | 67A1 | 67A1 | 67A1 | 67A1 | 67A-1 | $ \left[ \left(\begin{array}{rr} 16 & 57 \\ 56 & 53 \end{array}\right) \right] $ |