Learn more

Refine search


Results (1-50 of 224 matches)

Next   displayed columns for results

Elements of the group are displayed as matrices in $\GL_{2}(\Z/{28}\Z)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 7P
$C_2^5\times F_7$ 1A $1$ $1$ $C_2^5\times F_7$ 1A 1A 1A $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2A $2$ $1$ $C_2^5\times F_7$ 1A 2A 2A $ \left(\begin{array}{rr} 15 & 0 \\ 0 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2B $2$ $1$ $C_2^5\times F_7$ 1A 2B 2B $ \left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2C $2$ $1$ $C_2^5\times F_7$ 1A 2C 2C $ \left(\begin{array}{rr} 1 & 14 \\ 14 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2D $2$ $1$ $C_2^5\times F_7$ 1A 2D 2D $ \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2E $2$ $1$ $C_2^5\times F_7$ 1A 2E 2E $ \left(\begin{array}{rr} 1 & 14 \\ 14 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2F $2$ $1$ $C_2^5\times F_7$ 1A 2F 2F $ \left(\begin{array}{rr} 15 & 14 \\ 0 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2G $2$ $1$ $C_2^5\times F_7$ 1A 2G 2G $ \left(\begin{array}{rr} 15 & 14 \\ 14 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2H $2$ $1$ $C_2^5\times F_7$ 1A 2H 2H $ \left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2I $2$ $1$ $C_2^5\times F_7$ 1A 2I 2I $ \left(\begin{array}{rr} 27 & 0 \\ 0 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2J $2$ $1$ $C_2^5\times F_7$ 1A 2J 2J $ \left(\begin{array}{rr} 13 & 14 \\ 0 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2K $2$ $1$ $C_2^5\times F_7$ 1A 2K 2K $ \left(\begin{array}{rr} 13 & 14 \\ 14 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2L $2$ $1$ $C_2^5\times F_7$ 1A 2L 2L $ \left(\begin{array}{rr} 15 & 14 \\ 14 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2M $2$ $1$ $C_2^5\times F_7$ 1A 2M 2M $ \left(\begin{array}{rr} 1 & 0 \\ 14 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2N $2$ $1$ $C_2^5\times F_7$ 1A 2N 2N $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2O $2$ $1$ $C_2^5\times F_7$ 1A 2O 2O $ \left(\begin{array}{rr} 13 & 14 \\ 14 & 27 \end{array}\right) $
$C_2^5\times F_7$ 2P $2$ $1$ $C_2^5\times F_7$ 1A 2P 2P $ \left(\begin{array}{rr} 15 & 0 \\ 14 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2Q $2$ $1$ $C_2^5\times F_7$ 1A 2Q 2Q $ \left(\begin{array}{rr} 27 & 14 \\ 0 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2R $2$ $1$ $C_2^5\times F_7$ 1A 2R 2R $ \left(\begin{array}{rr} 27 & 14 \\ 14 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2S $2$ $1$ $C_2^5\times F_7$ 1A 2S 2S $ \left(\begin{array}{rr} 13 & 0 \\ 14 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2T $2$ $1$ $C_2^5\times F_7$ 1A 2T 2T $ \left(\begin{array}{rr} 15 & 0 \\ 14 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2U $2$ $1$ $C_2^5\times F_7$ 1A 2U 2U $ \left(\begin{array}{rr} 15 & 0 \\ 0 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2V $2$ $1$ $C_2^5\times F_7$ 1A 2V 2V $ \left(\begin{array}{rr} 1 & 14 \\ 0 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2W $2$ $1$ $C_2^5\times F_7$ 1A 2W 2W $ \left(\begin{array}{rr} 27 & 14 \\ 14 & 27 \end{array}\right) $
$C_2^5\times F_7$ 2X $2$ $1$ $C_2^5\times F_7$ 1A 2X 2X $ \left(\begin{array}{rr} 13 & 0 \\ 14 & 27 \end{array}\right) $
$C_2^5\times F_7$ 2Y $2$ $1$ $C_2^5\times F_7$ 1A 2Y 2Y $ \left(\begin{array}{rr} 13 & 0 \\ 0 & 27 \end{array}\right) $
$C_2^5\times F_7$ 2Z $2$ $1$ $C_2^5\times F_7$ 1A 2Z 2Z $ \left(\begin{array}{rr} 27 & 0 \\ 14 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2AA $2$ $1$ $C_2^5\times F_7$ 1A 2AA 2AA $ \left(\begin{array}{rr} 15 & 14 \\ 0 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2AB $2$ $1$ $C_2^5\times F_7$ 1A 2AB 2AB $ \left(\begin{array}{rr} 27 & 0 \\ 14 & 27 \end{array}\right) $
$C_2^5\times F_7$ 2AC $2$ $1$ $C_2^5\times F_7$ 1A 2AC 2AC $ \left(\begin{array}{rr} 27 & 0 \\ 0 & 27 \end{array}\right) $
$C_2^5\times F_7$ 2AD $2$ $1$ $C_2^5\times F_7$ 1A 2AD 2AD $ \left(\begin{array}{rr} 13 & 14 \\ 0 & 27 \end{array}\right) $
$C_2^5\times F_7$ 2AE $2$ $1$ $C_2^5\times F_7$ 1A 2AE 2AE $ \left(\begin{array}{rr} 27 & 14 \\ 0 & 27 \end{array}\right) $
$C_2^5\times F_7$ 2AF $2$ $7$ $C_2^5\times C_6$ 1A 2AF 2AF $ \left(\begin{array}{rr} 13 & 0 \\ 0 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2AG $2$ $7$ $C_2^5\times C_6$ 1A 2AG 2AG $ \left(\begin{array}{rr} 27 & 24 \\ 0 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2AH $2$ $7$ $C_2^5\times C_6$ 1A 2AH 2AH $ \left(\begin{array}{rr} 13 & 14 \\ 0 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2AI $2$ $7$ $C_2^5\times C_6$ 1A 2AI 2AI $ \left(\begin{array}{rr} 13 & 14 \\ 14 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2AJ $2$ $7$ $C_2^5\times C_6$ 1A 2AJ 2AJ $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2AK $2$ $7$ $C_2^5\times C_6$ 1A 2AK 2AK $ \left(\begin{array}{rr} 13 & 14 \\ 14 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2AL $2$ $7$ $C_2^5\times C_6$ 1A 2AL 2AL $ \left(\begin{array}{rr} 27 & 10 \\ 0 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2AM $2$ $7$ $C_2^5\times C_6$ 1A 2AM 2AM $ \left(\begin{array}{rr} 27 & 10 \\ 14 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2AN $2$ $7$ $C_2^5\times C_6$ 1A 2AN 2AN $ \left(\begin{array}{rr} 13 & 0 \\ 14 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2AO $2$ $7$ $C_2^5\times C_6$ 1A 2AO 2AO $ \left(\begin{array}{rr} 15 & 4 \\ 0 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2AP $2$ $7$ $C_2^5\times C_6$ 1A 2AP 2AP $ \left(\begin{array}{rr} 1 & 14 \\ 0 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2AQ $2$ $7$ $C_2^5\times C_6$ 1A 2AQ 2AQ $ \left(\begin{array}{rr} 1 & 14 \\ 14 & 13 \end{array}\right) $
$C_2^5\times F_7$ 2AR $2$ $7$ $C_2^5\times C_6$ 1A 2AR 2AR $ \left(\begin{array}{rr} 27 & 10 \\ 14 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2AS $2$ $7$ $C_2^5\times C_6$ 1A 2AS 2AS $ \left(\begin{array}{rr} 13 & 0 \\ 14 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2AT $2$ $7$ $C_2^5\times C_6$ 1A 2AT 2AT $ \left(\begin{array}{rr} 13 & 0 \\ 0 & 15 \end{array}\right) $
$C_2^5\times F_7$ 2AU $2$ $7$ $C_2^5\times C_6$ 1A 2AU 2AU $ \left(\begin{array}{rr} 1 & 14 \\ 14 & 27 \end{array}\right) $
$C_2^5\times F_7$ 2AV $2$ $7$ $C_2^5\times C_6$ 1A 2AV 2AV $ \left(\begin{array}{rr} 27 & 24 \\ 14 & 1 \end{array}\right) $
$C_2^5\times F_7$ 2AW $2$ $7$ $C_2^5\times C_6$ 1A 2AW 2AW $ \left(\begin{array}{rr} 15 & 18 \\ 0 & 13 \end{array}\right) $
Next   displayed columns for results