Learn more

Refine search


Results (1-50 of 72 matches)

Next   displayed columns for results

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,139)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 5P 7P 23P 139P
$\PSL(2,139)$ 1A $1$ $1$ $\PSL(2,139)$ 1A 1A 1A 1A 1A 1A $ \left[ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) \right] $
$\PSL(2,139)$ 2A $2$ $9591$ $D_{70}$ 1A 2A 2A 2A 2A 2A $ \left[ \left(\begin{array}{rr} 52 & 35 \\ 22 & 87 \end{array}\right) \right] $
$\PSL(2,139)$ 3A $3$ $19460$ $C_{69}$ 3A 1A 3A 3A 3A 3A $ \left[ \left(\begin{array}{rr} 125 & 36 \\ 137 & 15 \end{array}\right) \right] $
$\PSL(2,139)$ 5A1 $5$ $19182$ $C_{70}$ 5A2 5A2 1A 5A2 5A1 5A2 $ \left[ \left(\begin{array}{rr} 123 & 108 \\ 52 & 92 \end{array}\right) \right] $
$\PSL(2,139)$ 5A2 $5$ $19182$ $C_{70}$ 5A1 5A1 1A 5A1 5A2 5A1 $ \left[ \left(\begin{array}{rr} 34 & 7 \\ 60 & 41 \end{array}\right) \right] $
$\PSL(2,139)$ 7A1 $7$ $19182$ $C_{70}$ 7A2 7A3 7A2 1A 7A3 7A2 $ \left[ \left(\begin{array}{rr} 83 & 117 \\ 10 & 61 \end{array}\right) \right] $
$\PSL(2,139)$ 7A2 $7$ $19182$ $C_{70}$ 7A3 7A1 7A3 1A 7A1 7A3 $ \left[ \left(\begin{array}{rr} 3 & 110 \\ 89 & 113 \end{array}\right) \right] $
$\PSL(2,139)$ 7A3 $7$ $19182$ $C_{70}$ 7A1 7A2 7A1 1A 7A2 7A1 $ \left[ \left(\begin{array}{rr} 98 & 111 \\ 38 & 70 \end{array}\right) \right] $
$\PSL(2,139)$ 10A1 $10$ $19182$ $C_{70}$ 5A1 10A3 2A 10A3 10A1 10A3 $ \left[ \left(\begin{array}{rr} 107 & 8 \\ 9 & 115 \end{array}\right) \right] $
$\PSL(2,139)$ 10A3 $10$ $19182$ $C_{70}$ 5A2 10A1 2A 10A1 10A3 10A1 $ \left[ \left(\begin{array}{rr} 45 & 79 \\ 2 & 124 \end{array}\right) \right] $
$\PSL(2,139)$ 14A1 $14$ $19182$ $C_{70}$ 7A1 14A3 14A5 2A 14A3 14A5 $ \left[ \left(\begin{array}{rr} 86 & 21 \\ 41 & 107 \end{array}\right) \right] $
$\PSL(2,139)$ 14A3 $14$ $19182$ $C_{70}$ 7A3 14A5 14A1 2A 14A5 14A1 $ \left[ \left(\begin{array}{rr} 19 & 55 \\ 114 & 74 \end{array}\right) \right] $
$\PSL(2,139)$ 14A5 $14$ $19182$ $C_{70}$ 7A2 14A1 14A3 2A 14A1 14A3 $ \left[ \left(\begin{array}{rr} 42 & 18 \\ 55 & 60 \end{array}\right) \right] $
$\PSL(2,139)$ 23A1 $23$ $19460$ $C_{69}$ 23A2 23A3 23A5 23A7 23A11 1A $ \left[ \left(\begin{array}{rr} 45 & 64 \\ 120 & 112 \end{array}\right) \right] $
$\PSL(2,139)$ 23A2 $23$ $19460$ $C_{69}$ 23A4 23A6 23A10 23A9 23A1 1A $ \left[ \left(\begin{array}{rr} 25 & 99 \\ 64 & 70 \end{array}\right) \right] $
$\PSL(2,139)$ 23A3 $23$ $19460$ $C_{69}$ 23A6 23A9 23A8 23A2 23A10 1A $ \left[ \left(\begin{array}{rr} 61 & 100 \\ 118 & 18 \end{array}\right) \right] $
$\PSL(2,139)$ 23A4 $23$ $19460$ $C_{69}$ 23A8 23A11 23A3 23A5 23A2 1A $ \left[ \left(\begin{array}{rr} 128 & 47 \\ 36 & 23 \end{array}\right) \right] $
$\PSL(2,139)$ 23A5 $23$ $19460$ $C_{69}$ 23A10 23A8 23A2 23A11 23A9 1A $ \left[ \left(\begin{array}{rr} 137 & 27 \\ 68 & 124 \end{array}\right) \right] $
$\PSL(2,139)$ 23A6 $23$ $19460$ $C_{69}$ 23A11 23A5 23A7 23A4 23A3 1A $ \left[ \left(\begin{array}{rr} 47 & 23 \\ 130 & 108 \end{array}\right) \right] $
$\PSL(2,139)$ 23A7 $23$ $19460$ $C_{69}$ 23A9 23A2 23A11 23A3 23A8 1A $ \left[ \left(\begin{array}{rr} 10 & 24 \\ 45 & 122 \end{array}\right) \right] $
$\PSL(2,139)$ 23A8 $23$ $19460$ $C_{69}$ 23A7 23A1 23A6 23A10 23A4 1A $ \left[ \left(\begin{array}{rr} 6 & 8 \\ 15 & 136 \end{array}\right) \right] $
$\PSL(2,139)$ 23A9 $23$ $19460$ $C_{69}$ 23A5 23A4 23A1 23A6 23A7 1A $ \left[ \left(\begin{array}{rr} 21 & 110 \\ 102 & 71 \end{array}\right) \right] $
$\PSL(2,139)$ 23A10 $23$ $19460$ $C_{69}$ 23A3 23A7 23A4 23A1 23A5 1A $ \left[ \left(\begin{array}{rr} 106 & 42 \\ 44 & 24 \end{array}\right) \right] $
$\PSL(2,139)$ 23A11 $23$ $19460$ $C_{69}$ 23A1 23A10 23A9 23A8 23A6 1A $ \left[ \left(\begin{array}{rr} 80 & 90 \\ 134 & 83 \end{array}\right) \right] $
$\PSL(2,139)$ 35A1 $35$ $19182$ $C_{70}$ 35A2 35A3 7A1 5A1 35A11 35A12 $ \left[ \left(\begin{array}{rr} 138 & 30 \\ 138 & 29 \end{array}\right) \right] $
$\PSL(2,139)$ 35A2 $35$ $19182$ $C_{70}$ 35A4 35A6 7A2 5A2 35A13 35A11 $ \left[ \left(\begin{array}{rr} 29 & 133 \\ 28 & 23 \end{array}\right) \right] $
$\PSL(2,139)$ 35A3 $35$ $19182$ $C_{70}$ 35A6 35A9 7A3 5A2 35A2 35A1 $ \left[ \left(\begin{array}{rr} 116 & 1 \\ 88 & 117 \end{array}\right) \right] $
$\PSL(2,139)$ 35A4 $35$ $19182$ $C_{70}$ 35A8 35A12 7A3 5A1 35A9 35A13 $ \left[ \left(\begin{array}{rr} 22 & 34 \\ 73 & 56 \end{array}\right) \right] $
$\PSL(2,139)$ 35A6 $35$ $19182$ $C_{70}$ 35A12 35A17 7A1 5A1 35A4 35A2 $ \left[ \left(\begin{array}{rr} 61 & 94 \\ 71 & 16 \end{array}\right) \right] $
$\PSL(2,139)$ 35A8 $35$ $19182$ $C_{70}$ 35A16 35A11 7A1 5A2 35A17 35A9 $ \left[ \left(\begin{array}{rr} 92 & 128 \\ 5 & 81 \end{array}\right) \right] $
$\PSL(2,139)$ 35A9 $35$ $19182$ $C_{70}$ 35A17 35A8 7A2 5A1 35A6 35A3 $ \left[ \left(\begin{array}{rr} 81 & 61 \\ 86 & 3 \end{array}\right) \right] $
$\PSL(2,139)$ 35A11 $35$ $19182$ $C_{70}$ 35A13 35A2 7A3 5A1 35A16 35A8 $ \left[ \left(\begin{array}{rr} 113 & 56 \\ 63 & 30 \end{array}\right) \right] $
$\PSL(2,139)$ 35A12 $35$ $19182$ $C_{70}$ 35A11 35A1 7A2 5A2 35A8 35A4 $ \left[ \left(\begin{array}{rr} 30 & 129 \\ 93 & 20 \end{array}\right) \right] $
$\PSL(2,139)$ 35A13 $35$ $19182$ $C_{70}$ 35A9 35A4 7A1 5A2 35A3 35A16 $ \left[ \left(\begin{array}{rr} 20 & 85 \\ 113 & 105 \end{array}\right) \right] $
$\PSL(2,139)$ 35A16 $35$ $19182$ $C_{70}$ 35A3 35A13 7A2 5A1 35A1 35A17 $ \left[ \left(\begin{array}{rr} 70 & 96 \\ 108 & 27 \end{array}\right) \right] $
$\PSL(2,139)$ 35A17 $35$ $19182$ $C_{70}$ 35A1 35A16 7A3 5A2 35A12 35A6 $ \left[ \left(\begin{array}{rr} 112 & 19 \\ 4 & 131 \end{array}\right) \right] $
$\PSL(2,139)$ 69A1 $69$ $19460$ $C_{69}$ 69A2 23A1 69A5 69A7 69A11 3A $ \left[ \left(\begin{array}{rr} 106 & 89 \\ 80 & 58 \end{array}\right) \right] $
$\PSL(2,139)$ 69A2 $69$ $19460$ $C_{69}$ 69A4 23A2 69A10 69A14 69A22 3A $ \left[ \left(\begin{array}{rr} 8 & 1 \\ 54 & 59 \end{array}\right) \right] $
$\PSL(2,139)$ 69A4 $69$ $19460$ $C_{69}$ 69A8 23A4 69A20 69A28 69A25 3A $ \left[ \left(\begin{array}{rr} 118 & 67 \\ 4 & 60 \end{array}\right) \right] $
$\PSL(2,139)$ 69A5 $69$ $19460$ $C_{69}$ 69A10 23A5 69A25 69A34 69A14 3A $ \left[ \left(\begin{array}{rr} 76 & 71 \\ 81 & 83 \end{array}\right) \right] $
$\PSL(2,139)$ 69A7 $69$ $19460$ $C_{69}$ 69A14 23A7 69A34 69A20 69A8 3A $ \left[ \left(\begin{array}{rr} 133 & 95 \\ 126 & 113 \end{array}\right) \right] $
$\PSL(2,139)$ 69A8 $69$ $19460$ $C_{69}$ 69A16 23A8 69A29 69A13 69A19 3A $ \left[ \left(\begin{array}{rr} 14 & 111 \\ 17 & 115 \end{array}\right) \right] $
$\PSL(2,139)$ 69A10 $69$ $19460$ $C_{69}$ 69A20 23A10 69A19 69A1 69A28 3A $ \left[ \left(\begin{array}{rr} 10 & 109 \\ 48 & 9 \end{array}\right) \right] $
$\PSL(2,139)$ 69A11 $69$ $19460$ $C_{69}$ 69A22 23A11 69A14 69A8 69A17 3A $ \left[ \left(\begin{array}{rr} 89 & 16 \\ 30 & 71 \end{array}\right) \right] $
$\PSL(2,139)$ 69A13 $69$ $19460$ $C_{69}$ 69A26 23A10 69A4 69A22 69A5 3A $ \left[ \left(\begin{array}{rr} 47 & 60 \\ 43 & 49 \end{array}\right) \right] $
$\PSL(2,139)$ 69A14 $69$ $19460$ $C_{69}$ 69A28 23A9 69A1 69A29 69A16 3A $ \left[ \left(\begin{array}{rr} 52 & 18 \\ 138 & 136 \end{array}\right) \right] $
$\PSL(2,139)$ 69A16 $69$ $19460$ $C_{69}$ 69A32 23A7 69A11 69A26 69A31 3A $ \left[ \left(\begin{array}{rr} 137 & 2 \\ 108 & 100 \end{array}\right) \right] $
$\PSL(2,139)$ 69A17 $69$ $19460$ $C_{69}$ 69A34 23A6 69A16 69A19 69A20 3A $ \left[ \left(\begin{array}{rr} 87 & 77 \\ 127 & 122 \end{array}\right) \right] $
$\PSL(2,139)$ 69A19 $69$ $19460$ $C_{69}$ 69A31 23A4 69A26 69A5 69A2 3A $ \left[ \left(\begin{array}{rr} 11 & 96 \\ 41 & 42 \end{array}\right) \right] $
$\PSL(2,139)$ 69A20 $69$ $19460$ $C_{69}$ 69A29 23A3 69A31 69A2 69A13 3A $ \left[ \left(\begin{array}{rr} 50 & 125 \\ 78 & 31 \end{array}\right) \right] $
Next   displayed columns for results