Refine search
Results (15 matches)
Download displayed columns for resultsElements of the group are displayed as matrices in $\SL(2,11)$.
Group | Label | Order | Size | Centralizer | Powers | Representative | |||
---|---|---|---|---|---|---|---|---|---|
2P | 3P | 5P | 11P | ||||||
$\SL(2,11)$ | 1A | $1$ | $1$ | $\SL(2,11)$ | 1A | 1A | 1A | 1A | $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) $ |
$\SL(2,11)$ | 2A | $2$ | $1$ | $\SL(2,11)$ | 1A | 2A | 2A | 2A | $ \left(\begin{array}{rr} 10 & 0 \\ 0 & 10 \end{array}\right) $ |
$\SL(2,11)$ | 3A | $3$ | $110$ | $C_{12}$ | 3A | 1A | 3A | 3A | $ \left(\begin{array}{rr} 6 & 8 \\ 7 & 4 \end{array}\right) $ |
$\SL(2,11)$ | 4A | $4$ | $110$ | $C_{12}$ | 2A | 4A | 4A | 4A | $ \left(\begin{array}{rr} 7 & 1 \\ 5 & 4 \end{array}\right) $ |
$\SL(2,11)$ | 5A1 | $5$ | $132$ | $C_{10}$ | 5A2 | 5A2 | 1A | 5A1 | $ \left(\begin{array}{rr} 9 & 0 \\ 0 & 5 \end{array}\right) $ |
$\SL(2,11)$ | 5A2 | $5$ | $132$ | $C_{10}$ | 5A1 | 5A1 | 1A | 5A2 | $ \left(\begin{array}{rr} 4 & 0 \\ 0 & 3 \end{array}\right) $ |
$\SL(2,11)$ | 6A | $6$ | $110$ | $C_{12}$ | 3A | 2A | 6A | 6A | $ \left(\begin{array}{rr} 7 & 8 \\ 7 & 5 \end{array}\right) $ |
$\SL(2,11)$ | 10A1 | $10$ | $132$ | $C_{10}$ | 5A1 | 10A3 | 2A | 10A1 | $ \left(\begin{array}{rr} 8 & 0 \\ 0 & 7 \end{array}\right) $ |
$\SL(2,11)$ | 10A3 | $10$ | $132$ | $C_{10}$ | 5A2 | 10A1 | 2A | 10A3 | $ \left(\begin{array}{rr} 6 & 0 \\ 0 & 2 \end{array}\right) $ |
$\SL(2,11)$ | 11A1 | $11$ | $60$ | $C_{22}$ | 11A-1 | 11A1 | 11A1 | 1A | $ \left(\begin{array}{rr} 1 & 7 \\ 0 & 1 \end{array}\right) $ |
$\SL(2,11)$ | 11A-1 | $11$ | $60$ | $C_{22}$ | 11A1 | 11A-1 | 11A-1 | 1A | $ \left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right) $ |
$\SL(2,11)$ | 12A1 | $12$ | $110$ | $C_{12}$ | 6A | 4A | 12A5 | 12A1 | $ \left(\begin{array}{rr} 6 & 6 \\ 8 & 10 \end{array}\right) $ |
$\SL(2,11)$ | 12A5 | $12$ | $110$ | $C_{12}$ | 6A | 4A | 12A1 | 12A5 | $ \left(\begin{array}{rr} 1 & 6 \\ 8 & 5 \end{array}\right) $ |
$\SL(2,11)$ | 22A1 | $22$ | $60$ | $C_{22}$ | 11A1 | 22A1 | 22A1 | 2A | $ \left(\begin{array}{rr} 10 & 2 \\ 0 & 10 \end{array}\right) $ |
$\SL(2,11)$ | 22A-1 | $22$ | $60$ | $C_{22}$ | 11A-1 | 22A-1 | 22A-1 | 2A | $ \left(\begin{array}{rr} 10 & 9 \\ 0 & 10 \end{array}\right) $ |