Learn more

Refine search


Results (1-50 of 71 matches)

Next   displayed columns for results

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,137)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 17P 23P 137P
$\PSL(2,137)$ 1A $1$ $1$ not computed 1A 1A 1A 1A 1A $ \left[ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) \right] $
$\PSL(2,137)$ 2A $2$ $9453$ not computed 1A 2A 2A 2A 2A $ \left[ \left(\begin{array}{rr} 40 & 89 \\ 99 & 97 \end{array}\right) \right] $
$\PSL(2,137)$ 3A $3$ $18632$ not computed 3A 1A 3A 3A 3A $ \left[ \left(\begin{array}{rr} 47 & 100 \\ 114 & 91 \end{array}\right) \right] $
$\PSL(2,137)$ 4A $4$ $18906$ not computed 2A 4A 4A 4A 4A $ \left[ \left(\begin{array}{rr} 125 & 78 \\ 96 & 118 \end{array}\right) \right] $
$\PSL(2,137)$ 17A1 $17$ $18906$ not computed 17A2 17A3 17A6 1A 17A6 $ \left[ \left(\begin{array}{rr} 112 & 77 \\ 21 & 12 \end{array}\right) \right] $
$\PSL(2,137)$ 17A2 $17$ $18906$ not computed 17A4 17A6 17A5 1A 17A5 $ \left[ \left(\begin{array}{rr} 87 & 42 \\ 136 & 20 \end{array}\right) \right] $
$\PSL(2,137)$ 17A3 $17$ $18906$ not computed 17A6 17A8 17A1 1A 17A1 $ \left[ \left(\begin{array}{rr} 60 & 58 \\ 103 & 111 \end{array}\right) \right] $
$\PSL(2,137)$ 17A4 $17$ $18906$ not computed 17A8 17A5 17A7 1A 17A7 $ \left[ \left(\begin{array}{rr} 8 & 27 \\ 107 & 53 \end{array}\right) \right] $
$\PSL(2,137)$ 17A5 $17$ $18906$ not computed 17A7 17A2 17A4 1A 17A4 $ \left[ \left(\begin{array}{rr} 44 & 19 \\ 55 & 30 \end{array}\right) \right] $
$\PSL(2,137)$ 17A6 $17$ $18906$ not computed 17A5 17A1 17A2 1A 17A2 $ \left[ \left(\begin{array}{rr} 121 & 54 \\ 77 & 74 \end{array}\right) \right] $
$\PSL(2,137)$ 17A7 $17$ $18906$ not computed 17A3 17A4 17A8 1A 17A8 $ \left[ \left(\begin{array}{rr} 27 & 101 \\ 40 & 104 \end{array}\right) \right] $
$\PSL(2,137)$ 17A8 $17$ $18906$ not computed 17A1 17A7 17A3 1A 17A3 $ \left[ \left(\begin{array}{rr} 61 & 134 \\ 49 & 56 \end{array}\right) \right] $
$\PSL(2,137)$ 23A1 $23$ $18632$ not computed 23A2 23A3 23A11 23A6 1A $ \left[ \left(\begin{array}{rr} 106 & 33 \\ 2 & 126 \end{array}\right) \right] $
$\PSL(2,137)$ 23A2 $23$ $18632$ not computed 23A4 23A6 23A1 23A11 1A $ \left[ \left(\begin{array}{rr} 68 & 121 \\ 53 & 50 \end{array}\right) \right] $
$\PSL(2,137)$ 23A3 $23$ $18632$ not computed 23A6 23A9 23A10 23A5 1A $ \left[ \left(\begin{array}{rr} 52 & 91 \\ 101 & 103 \end{array}\right) \right] $
$\PSL(2,137)$ 23A4 $23$ $18632$ not computed 23A8 23A11 23A2 23A1 1A $ \left[ \left(\begin{array}{rr} 60 & 107 \\ 48 & 129 \end{array}\right) \right] $
$\PSL(2,137)$ 23A5 $23$ $18632$ not computed 23A10 23A8 23A9 23A7 1A $ \left[ \left(\begin{array}{rr} 2 & 19 \\ 134 & 109 \end{array}\right) \right] $
$\PSL(2,137)$ 23A6 $23$ $18632$ not computed 23A11 23A5 23A3 23A10 1A $ \left[ \left(\begin{array}{rr} 113 & 131 \\ 37 & 72 \end{array}\right) \right] $
$\PSL(2,137)$ 23A7 $23$ $18632$ not computed 23A9 23A2 23A8 23A4 1A $ \left[ \left(\begin{array}{rr} 47 & 96 \\ 93 & 18 \end{array}\right) \right] $
$\PSL(2,137)$ 23A8 $23$ $18632$ not computed 23A7 23A1 23A4 23A2 1A $ \left[ \left(\begin{array}{rr} 105 & 84 \\ 30 & 131 \end{array}\right) \right] $
$\PSL(2,137)$ 23A9 $23$ $18632$ not computed 23A5 23A4 23A7 23A8 1A $ \left[ \left(\begin{array}{rr} 64 & 75 \\ 17 & 97 \end{array}\right) \right] $
$\PSL(2,137)$ 23A10 $23$ $18632$ not computed 23A3 23A7 23A5 23A9 1A $ \left[ \left(\begin{array}{rr} 53 & 83 \\ 59 & 95 \end{array}\right) \right] $
$\PSL(2,137)$ 23A11 $23$ $18632$ not computed 23A1 23A10 23A6 23A3 1A $ \left[ \left(\begin{array}{rr} 107 & 123 \\ 132 & 57 \end{array}\right) \right] $
$\PSL(2,137)$ 34A1 $34$ $18906$ not computed 17A1 34A3 34A11 2A 34A11 $ \left[ \left(\begin{array}{rr} 71 & 69 \\ 106 & 49 \end{array}\right) \right] $
$\PSL(2,137)$ 34A3 $34$ $18906$ not computed 17A3 34A9 34A1 2A 34A1 $ \left[ \left(\begin{array}{rr} 52 & 7 \\ 114 & 18 \end{array}\right) \right] $
$\PSL(2,137)$ 34A5 $34$ $18906$ not computed 17A5 34A15 34A13 2A 34A13 $ \left[ \left(\begin{array}{rr} 80 & 115 \\ 131 & 89 \end{array}\right) \right] $
$\PSL(2,137)$ 34A7 $34$ $18906$ not computed 17A7 34A13 34A9 2A 34A9 $ \left[ \left(\begin{array}{rr} 4 & 5 \\ 101 & 58 \end{array}\right) \right] $
$\PSL(2,137)$ 34A9 $34$ $18906$ not computed 17A8 34A7 34A3 2A 34A3 $ \left[ \left(\begin{array}{rr} 132 & 43 \\ 74 & 21 \end{array}\right) \right] $
$\PSL(2,137)$ 34A11 $34$ $18906$ not computed 17A6 34A1 34A15 2A 34A15 $ \left[ \left(\begin{array}{rr} 69 & 131 \\ 98 & 59 \end{array}\right) \right] $
$\PSL(2,137)$ 34A13 $34$ $18906$ not computed 17A4 34A5 34A7 2A 34A7 $ \left[ \left(\begin{array}{rr} 70 & 102 \\ 115 & 103 \end{array}\right) \right] $
$\PSL(2,137)$ 34A15 $34$ $18906$ not computed 17A2 34A11 34A5 2A 34A5 $ \left[ \left(\begin{array}{rr} 19 & 99 \\ 27 & 47 \end{array}\right) \right] $
$\PSL(2,137)$ 68A1 $68$ $18906$ not computed 34A1 68A3 68A11 4A 68A23 $ \left[ \left(\begin{array}{rr} 60 & 126 \\ 134 & 133 \end{array}\right) \right] $
$\PSL(2,137)$ 68A3 $68$ $18906$ not computed 34A3 68A9 68A33 4A 68A1 $ \left[ \left(\begin{array}{rr} 80 & 39 \\ 48 & 8 \end{array}\right) \right] $
$\PSL(2,137)$ 68A5 $68$ $18906$ not computed 34A5 68A15 68A13 4A 68A21 $ \left[ \left(\begin{array}{rr} 87 & 33 \\ 9 & 5 \end{array}\right) \right] $
$\PSL(2,137)$ 68A7 $68$ $18906$ not computed 34A7 68A21 68A9 4A 68A25 $ \left[ \left(\begin{array}{rr} 85 & 85 \\ 73 & 44 \end{array}\right) \right] $
$\PSL(2,137)$ 68A9 $68$ $18906$ not computed 34A9 68A27 68A31 4A 68A3 $ \left[ \left(\begin{array}{rr} 112 & 29 \\ 120 & 69 \end{array}\right) \right] $
$\PSL(2,137)$ 68A11 $68$ $18906$ not computed 34A11 68A33 68A15 4A 68A19 $ \left[ \left(\begin{array}{rr} 71 & 30 \\ 58 & 121 \end{array}\right) \right] $
$\PSL(2,137)$ 68A13 $68$ $18906$ not computed 34A13 68A29 68A7 4A 68A27 $ \left[ \left(\begin{array}{rr} 136 & 70 \\ 44 & 70 \end{array}\right) \right] $
$\PSL(2,137)$ 68A15 $68$ $18906$ not computed 34A15 68A23 68A29 4A 68A5 $ \left[ \left(\begin{array}{rr} 88 & 73 \\ 132 & 27 \end{array}\right) \right] $
$\PSL(2,137)$ 68A19 $68$ $18906$ not computed 34A15 68A11 68A5 4A 68A29 $ \left[ \left(\begin{array}{rr} 18 & 117 \\ 7 & 76 \end{array}\right) \right] $
$\PSL(2,137)$ 68A21 $68$ $18906$ not computed 34A13 68A5 68A27 4A 68A7 $ \left[ \left(\begin{array}{rr} 20 & 12 \\ 78 & 40 \end{array}\right) \right] $
$\PSL(2,137)$ 68A23 $68$ $18906$ not computed 34A11 68A1 68A19 4A 68A15 $ \left[ \left(\begin{array}{rr} 89 & 50 \\ 51 & 81 \end{array}\right) \right] $
$\PSL(2,137)$ 68A25 $68$ $18906$ not computed 34A9 68A7 68A3 4A 68A31 $ \left[ \left(\begin{array}{rr} 111 & 97 \\ 14 & 90 \end{array}\right) \right] $
$\PSL(2,137)$ 68A27 $68$ $18906$ not computed 34A7 68A13 68A25 4A 68A9 $ \left[ \left(\begin{array}{rr} 79 & 82 \\ 122 & 33 \end{array}\right) \right] $
$\PSL(2,137)$ 68A29 $68$ $18906$ not computed 34A5 68A19 68A21 4A 68A13 $ \left[ \left(\begin{array}{rr} 84 & 121 \\ 33 & 103 \end{array}\right) \right] $
$\PSL(2,137)$ 68A31 $68$ $18906$ not computed 34A3 68A25 68A1 4A 68A33 $ \left[ \left(\begin{array}{rr} 116 & 57 \\ 28 & 74 \end{array}\right) \right] $
$\PSL(2,137)$ 68A33 $68$ $18906$ not computed 34A1 68A31 68A23 4A 68A11 $ \left[ \left(\begin{array}{rr} 107 & 26 \\ 32 & 59 \end{array}\right) \right] $
$\PSL(2,137)$ 69A1 $69$ $18632$ not computed 69A2 23A1 69A11 69A17 3A $ \left[ \left(\begin{array}{rr} 21 & 113 \\ 11 & 131 \end{array}\right) \right] $
$\PSL(2,137)$ 69A2 $69$ $18632$ not computed 69A4 23A2 69A22 69A34 3A $ \left[ \left(\begin{array}{rr} 40 & 51 \\ 28 & 46 \end{array}\right) \right] $
$\PSL(2,137)$ 69A4 $69$ $18632$ not computed 69A8 23A4 69A25 69A1 3A $ \left[ \left(\begin{array}{rr} 123 & 135 \\ 58 & 18 \end{array}\right) \right] $
Next   displayed columns for results