Learn more

Refine search


Results (1-50 of 66 matches)

Next   displayed columns for results

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,127)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 7P 127P
$\PSL(2,127)$ 1A $1$ $1$ $\PSL(2,127)$ 1A 1A 1A 1A $ \left[ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) \right] $
$\PSL(2,127)$ 2A $2$ $8001$ $D_{64}$ 1A 2A 2A 2A $ \left[ \left(\begin{array}{rr} 33 & 118 \\ 107 & 94 \end{array}\right) \right] $
$\PSL(2,127)$ 3A $3$ $16256$ $C_{63}$ 3A 1A 3A 3A $ \left[ \left(\begin{array}{rr} 105 & 123 \\ 84 & 21 \end{array}\right) \right] $
$\PSL(2,127)$ 4A $4$ $16002$ $C_{64}$ 2A 4A 4A 4A $ \left[ \left(\begin{array}{rr} 2 & 55 \\ 94 & 109 \end{array}\right) \right] $
$\PSL(2,127)$ 7A1 $7$ $16256$ $C_{63}$ 7A2 7A3 1A 7A1 $ \left[ \left(\begin{array}{rr} 89 & 35 \\ 27 & 62 \end{array}\right) \right] $
$\PSL(2,127)$ 7A2 $7$ $16256$ $C_{63}$ 7A3 7A1 1A 7A2 $ \left[ \left(\begin{array}{rr} 24 & 49 \\ 114 & 37 \end{array}\right) \right] $
$\PSL(2,127)$ 7A3 $7$ $16256$ $C_{63}$ 7A1 7A2 1A 7A3 $ \left[ \left(\begin{array}{rr} 97 & 59 \\ 31 & 66 \end{array}\right) \right] $
$\PSL(2,127)$ 8A1 $8$ $16002$ $C_{64}$ 4A 8A3 8A1 8A1 $ \left[ \left(\begin{array}{rr} 9 & 38 \\ 28 & 76 \end{array}\right) \right] $
$\PSL(2,127)$ 8A3 $8$ $16002$ $C_{64}$ 4A 8A1 8A3 8A3 $ \left[ \left(\begin{array}{rr} 34 & 65 \\ 88 & 45 \end{array}\right) \right] $
$\PSL(2,127)$ 9A1 $9$ $16256$ $C_{63}$ 9A2 3A 9A2 9A1 $ \left[ \left(\begin{array}{rr} 102 & 3 \\ 64 & 38 \end{array}\right) \right] $
$\PSL(2,127)$ 9A2 $9$ $16256$ $C_{63}$ 9A4 3A 9A4 9A2 $ \left[ \left(\begin{array}{rr} 55 & 39 \\ 70 & 112 \end{array}\right) \right] $
$\PSL(2,127)$ 9A4 $9$ $16256$ $C_{63}$ 9A1 3A 9A1 9A4 $ \left[ \left(\begin{array}{rr} 40 & 36 \\ 6 & 34 \end{array}\right) \right] $
$\PSL(2,127)$ 16A1 $16$ $16002$ $C_{64}$ 8A1 16A3 16A7 16A1 $ \left[ \left(\begin{array}{rr} 34 & 98 \\ 119 & 33 \end{array}\right) \right] $
$\PSL(2,127)$ 16A3 $16$ $16002$ $C_{64}$ 8A3 16A7 16A5 16A3 $ \left[ \left(\begin{array}{rr} 2 & 104 \\ 90 & 45 \end{array}\right) \right] $
$\PSL(2,127)$ 16A5 $16$ $16002$ $C_{64}$ 8A3 16A1 16A3 16A5 $ \left[ \left(\begin{array}{rr} 118 & 21 \\ 89 & 18 \end{array}\right) \right] $
$\PSL(2,127)$ 16A7 $16$ $16002$ $C_{64}$ 8A1 16A5 16A1 16A7 $ \left[ \left(\begin{array}{rr} 1 & 16 \\ 92 & 76 \end{array}\right) \right] $
$\PSL(2,127)$ 21A1 $21$ $16256$ $C_{63}$ 21A2 7A1 3A 21A1 $ \left[ \left(\begin{array}{rr} 23 & 93 \\ 79 & 71 \end{array}\right) \right] $
$\PSL(2,127)$ 21A2 $21$ $16256$ $C_{63}$ 21A4 7A2 3A 21A2 $ \left[ \left(\begin{array}{rr} 2 & 106 \\ 60 & 69 \end{array}\right) \right] $
$\PSL(2,127)$ 21A4 $21$ $16256$ $C_{63}$ 21A8 7A3 3A 21A4 $ \left[ \left(\begin{array}{rr} 113 & 94 \\ 58 & 55 \end{array}\right) \right] $
$\PSL(2,127)$ 21A5 $21$ $16256$ $C_{63}$ 21A10 7A2 3A 21A5 $ \left[ \left(\begin{array}{rr} 119 & 38 \\ 91 & 28 \end{array}\right) \right] $
$\PSL(2,127)$ 21A8 $21$ $16256$ $C_{63}$ 21A5 7A1 3A 21A8 $ \left[ \left(\begin{array}{rr} 67 & 83 \\ 35 & 32 \end{array}\right) \right] $
$\PSL(2,127)$ 21A10 $21$ $16256$ $C_{63}$ 21A1 7A3 3A 21A10 $ \left[ \left(\begin{array}{rr} 93 & 125 \\ 42 & 51 \end{array}\right) \right] $
$\PSL(2,127)$ 32A1 $32$ $16002$ $C_{64}$ 16A1 32A3 32A7 32A1 $ \left[ \left(\begin{array}{rr} 121 & 63 \\ 13 & 75 \end{array}\right) \right] $
$\PSL(2,127)$ 32A3 $32$ $16002$ $C_{64}$ 16A3 32A9 32A11 32A3 $ \left[ \left(\begin{array}{rr} 54 & 94 \\ 96 & 66 \end{array}\right) \right] $
$\PSL(2,127)$ 32A5 $32$ $16002$ $C_{64}$ 16A5 32A15 32A3 32A5 $ \left[ \left(\begin{array}{rr} 59 & 115 \\ 58 & 98 \end{array}\right) \right] $
$\PSL(2,127)$ 32A7 $32$ $16002$ $C_{64}$ 16A7 32A11 32A15 32A7 $ \left[ \left(\begin{array}{rr} 70 & 52 \\ 45 & 28 \end{array}\right) \right] $
$\PSL(2,127)$ 32A9 $32$ $16002$ $C_{64}$ 16A7 32A5 32A1 32A9 $ \left[ \left(\begin{array}{rr} 68 & 60 \\ 91 & 0 \end{array}\right) \right] $
$\PSL(2,127)$ 32A11 $32$ $16002$ $C_{64}$ 16A5 32A1 32A13 32A11 $ \left[ \left(\begin{array}{rr} 73 & 119 \\ 81 & 99 \end{array}\right) \right] $
$\PSL(2,127)$ 32A13 $32$ $16002$ $C_{64}$ 16A3 32A7 32A5 32A13 $ \left[ \left(\begin{array}{rr} 6 & 32 \\ 57 & 29 \end{array}\right) \right] $
$\PSL(2,127)$ 32A15 $32$ $16002$ $C_{64}$ 16A1 32A13 32A9 32A15 $ \left[ \left(\begin{array}{rr} 75 & 120 \\ 55 & 66 \end{array}\right) \right] $
$\PSL(2,127)$ 63A1 $63$ $16256$ $C_{63}$ 63A2 21A1 9A1 63A1 $ \left[ \left(\begin{array}{rr} 0 & 11 \\ 23 & 104 \end{array}\right) \right] $
$\PSL(2,127)$ 63A2 $63$ $16256$ $C_{63}$ 63A4 21A2 9A2 63A2 $ \left[ \left(\begin{array}{rr} 126 & 1 \\ 106 & 20 \end{array}\right) \right] $
$\PSL(2,127)$ 63A4 $63$ $16256$ $C_{63}$ 63A8 21A4 9A4 63A4 $ \left[ \left(\begin{array}{rr} 107 & 19 \\ 109 & 125 \end{array}\right) \right] $
$\PSL(2,127)$ 63A5 $63$ $16256$ $C_{63}$ 63A10 21A5 9A4 63A5 $ \left[ \left(\begin{array}{rr} 56 & 105 \\ 81 & 102 \end{array}\right) \right] $
$\PSL(2,127)$ 63A8 $63$ $16256$ $C_{63}$ 63A16 21A8 9A1 63A8 $ \left[ \left(\begin{array}{rr} 58 & 90 \\ 15 & 43 \end{array}\right) \right] $
$\PSL(2,127)$ 63A10 $63$ $16256$ $C_{63}$ 63A20 21A10 9A1 63A10 $ \left[ \left(\begin{array}{rr} 43 & 47 \\ 29 & 14 \end{array}\right) \right] $
$\PSL(2,127)$ 63A11 $63$ $16256$ $C_{63}$ 63A22 21A10 9A2 63A11 $ \left[ \left(\begin{array}{rr} 65 & 27 \\ 68 & 124 \end{array}\right) \right] $
$\PSL(2,127)$ 63A13 $63$ $16256$ $C_{63}$ 63A26 21A8 9A4 63A13 $ \left[ \left(\begin{array}{rr} 3 & 97 \\ 122 & 8 \end{array}\right) \right] $
$\PSL(2,127)$ 63A16 $63$ $16256$ $C_{63}$ 63A31 21A5 9A2 63A16 $ \left[ \left(\begin{array}{rr} 15 & 73 \\ 118 & 24 \end{array}\right) \right] $
$\PSL(2,127)$ 63A17 $63$ $16256$ $C_{63}$ 63A29 21A4 9A1 63A17 $ \left[ \left(\begin{array}{rr} 28 & 10 \\ 44 & 111 \end{array}\right) \right] $
$\PSL(2,127)$ 63A19 $63$ $16256$ $C_{63}$ 63A25 21A2 9A1 63A19 $ \left[ \left(\begin{array}{rr} 111 & 26 \\ 89 & 22 \end{array}\right) \right] $
$\PSL(2,127)$ 63A20 $63$ $16256$ $C_{63}$ 63A23 21A1 9A2 63A20 $ \left[ \left(\begin{array}{rr} 37 & 12 \\ 2 & 35 \end{array}\right) \right] $
$\PSL(2,127)$ 63A22 $63$ $16256$ $C_{63}$ 63A19 21A1 9A4 63A22 $ \left[ \left(\begin{array}{rr} 35 & 104 \\ 102 & 60 \end{array}\right) \right] $
$\PSL(2,127)$ 63A23 $63$ $16256$ $C_{63}$ 63A17 21A2 9A4 63A23 $ \left[ \left(\begin{array}{rr} 106 & 25 \\ 110 & 123 \end{array}\right) \right] $
$\PSL(2,127)$ 63A25 $63$ $16256$ $C_{63}$ 63A13 21A4 9A2 63A25 $ \left[ \left(\begin{array}{rr} 4 & 98 \\ 101 & 30 \end{array}\right) \right] $
$\PSL(2,127)$ 63A26 $63$ $16256$ $C_{63}$ 63A11 21A5 9A1 63A26 $ \left[ \left(\begin{array}{rr} 95 & 76 \\ 55 & 40 \end{array}\right) \right] $
$\PSL(2,127)$ 63A29 $63$ $16256$ $C_{63}$ 63A5 21A8 9A2 63A29 $ \left[ \left(\begin{array}{rr} 66 & 120 \\ 20 & 46 \end{array}\right) \right] $
$\PSL(2,127)$ 63A31 $63$ $16256$ $C_{63}$ 63A1 21A10 9A4 63A31 $ \left[ \left(\begin{array}{rr} 81 & 53 \\ 30 & 51 \end{array}\right) \right] $
$\PSL(2,127)$ 64A1 $64$ $16002$ $C_{64}$ 32A1 64A3 64A7 64A1 $ \left[ \left(\begin{array}{rr} 85 & 124 \\ 78 & 63 \end{array}\right) \right] $
$\PSL(2,127)$ 64A3 $64$ $16002$ $C_{64}$ 32A3 64A9 64A21 64A3 $ \left[ \left(\begin{array}{rr} 86 & 50 \\ 97 & 114 \end{array}\right) \right] $
Next   displayed columns for results