Label |
Name |
Family name |
Order |
Exponent |
Nilp. class |
Der. length |
Comp. length |
Rank |
$\card{\mathrm{conj}(G)}$ |
Subgroups |
Subgroup classes |
Normal subgroups |
Center |
Central quotient |
Commutator |
Abelianization |
$\card{\mathrm{Aut}(G)}$ |
$\card{\mathrm{Out}(G)}$ |
Tr. deg |
Perm. deg |
$\C$-irrep deg |
$\R$-irrep deg |
$\Q$-irrep deg |
$\C$-rep deg |
$\R$-rep deg |
$\Q$-rep deg |
Type - length |
6.1 |
$S_3$ |
$\PSU(2,2)$ |
$2 \cdot 3$ |
$2 \cdot 3$ |
$-1$ |
$2$ |
$2$ |
$2$ |
3 |
$6$ |
$4$ |
$3$ |
$C_1$ |
$S_3$ |
$C_3$ |
$C_{2}$ |
$2 \cdot 3$ |
$1$ |
$3$ |
$3$ |
$2$ |
$2$ |
$2$ |
$2$ |
$2$ |
$2$ |
Solvable - 2 |
12.3 |
$A_4$ |
$\PSU(2,3)$ |
$2^{2} \cdot 3$ |
$2 \cdot 3$ |
$-1$ |
$2$ |
$3$ |
$2$ |
4 |
$10$ |
$5$ |
$3$ |
$C_1$ |
$A_4$ |
$C_2^2$ |
$C_{3}$ |
$2^{3} \cdot 3$ |
$2$ |
$4$ |
$4$ |
$3$ |
$3$ |
$3$ |
$3$ |
$3$ |
$3$ |
Solvable - 2 |
60.5 |
$A_5$ |
$\PSU(2,4), \PSU(2,5)$ |
$2^{2} \cdot 3 \cdot 5$ |
$2 \cdot 3 \cdot 5$ |
$-1$ |
$0$ |
$1$ |
$2$ |
5 |
$59$ |
$9$ |
$2$ |
$C_1$ |
$A_5$ |
$A_5$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 5$ |
$2$ |
$5$ |
$5$ |
$3$ |
$3$ |
$4$ |
$3$ |
$3$ |
$4$ |
Simple |
72.41 |
$\PSU(3,2)$ |
$\PSU(3,2)$ |
$2^{3} \cdot 3^{2}$ |
$2^{2} \cdot 3$ |
$-1$ |
$3$ |
$5$ |
$2$ |
6 |
$68$ |
$14$ |
$7$ |
$C_1$ |
$\PSU(3,2)$ |
$C_3:S_3$ |
$C_{2}^{2}$ |
$2^{4} \cdot 3^{3}$ |
$2 \cdot 3$ |
$9$ |
$9$ |
$8$ |
$8$ |
$8$ |
$8$ |
$8$ |
$8$ |
Solvable - 3 |
168.42 |
$\PSL(2,7)$ |
$\PSU(2,7)$ |
$2^{3} \cdot 3 \cdot 7$ |
$2^{2} \cdot 3 \cdot 7$ |
$-1$ |
$0$ |
$1$ |
$2$ |
6 |
$179$ |
$15$ |
$2$ |
$C_1$ |
$\PSL(2,7)$ |
$\PSL(2,7)$ |
$C_1$ |
$2^{4} \cdot 3 \cdot 7$ |
$2$ |
$7$ |
$7$ |
$3$ |
$6$ |
$6$ |
$3$ |
$6$ |
$6$ |
Simple |
360.118 |
$A_6$ |
$\PSU(2,9)$ |
$2^{3} \cdot 3^{2} \cdot 5$ |
$2^{2} \cdot 3 \cdot 5$ |
$-1$ |
$0$ |
$1$ |
$2$ |
7 |
$501$ |
$22$ |
$2$ |
$C_1$ |
$A_6$ |
$A_6$ |
$C_1$ |
$2^{5} \cdot 3^{2} \cdot 5$ |
$2^{2}$ |
$6$ |
$6$ |
$5$ |
$5$ |
$5$ |
$5$ |
$5$ |
$5$ |
Simple |
504.156 |
$\SL(2,8)$ |
$\PSU(2,8)$ |
$2^{3} \cdot 3^{2} \cdot 7$ |
$2 \cdot 3^{2} \cdot 7$ |
$-1$ |
$0$ |
$1$ |
$2$ |
9 |
$386$ |
$12$ |
$2$ |
$C_1$ |
$\SL(2,8)$ |
$\SL(2,8)$ |
$C_1$ |
$2^{3} \cdot 3^{3} \cdot 7$ |
$3$ |
$9$ |
$9$ |
$7$ |
$7$ |
$7$ |
$7$ |
$7$ |
$7$ |
Simple |
660.13 |
$\PSL(2,11)$ |
$\PSU(2,11)$ |
$2^{2} \cdot 3 \cdot 5 \cdot 11$ |
$2 \cdot 3 \cdot 5 \cdot 11$ |
$-1$ |
$0$ |
$1$ |
$2$ |
8 |
$620$ |
$16$ |
$2$ |
$C_1$ |
$\PSL(2,11)$ |
$\PSL(2,11)$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 5 \cdot 11$ |
$2$ |
$11$ |
$11$ |
$5$ |
$10$ |
$10$ |
$5$ |
$10$ |
$10$ |
Simple |
1092.25 |
$\PSL(2,13)$ |
$\PSU(2,13)$ |
$2^{2} \cdot 3 \cdot 7 \cdot 13$ |
$2 \cdot 3 \cdot 7 \cdot 13$ |
$-1$ |
$0$ |
$1$ |
$2$ |
9 |
$942$ |
$16$ |
$2$ |
$C_1$ |
$\PSL(2,13)$ |
$\PSL(2,13)$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 7 \cdot 13$ |
$2$ |
$14$ |
$14$ |
$7$ |
$7$ |
$13$ |
$7$ |
$7$ |
$13$ |
Simple |
2448.a |
$\PSL(2,17)$ |
$\PSU(2,17)$ |
$2^{4} \cdot 3^{2} \cdot 17$ |
$2^{3} \cdot 3^{2} \cdot 17$ |
$-1$ |
$0$ |
$1$ |
$2$ |
11 |
$2420$ |
$22$ |
$2$ |
$C_1$ |
$\PSL(2,17)$ |
$\PSL(2,17)$ |
$C_1$ |
$2^{5} \cdot 3^{2} \cdot 17$ |
$2$ |
$18$ |
$18$ |
$9$ |
$9$ |
$16$ |
$9$ |
$9$ |
$16$ |
Simple |
3420.a |
$\PSL(2,19)$ |
$\PSU(2,19)$ |
$2^{2} \cdot 3^{2} \cdot 5 \cdot 19$ |
$2 \cdot 3^{2} \cdot 5 \cdot 19$ |
$-1$ |
$0$ |
$1$ |
$2$ |
12 |
$2912$ |
$19$ |
$2$ |
$C_1$ |
$\PSL(2,19)$ |
$\PSL(2,19)$ |
$C_1$ |
$2^{3} \cdot 3^{2} \cdot 5 \cdot 19$ |
$2$ |
$20$ |
$20$ |
$9$ |
$18$ |
$18$ |
$9$ |
$18$ |
$18$ |
Simple |
4080.a |
$\SL(2,16)$ |
$\PSU(2,16)$ |
$2^{4} \cdot 3 \cdot 5 \cdot 17$ |
$2 \cdot 3 \cdot 5 \cdot 17$ |
$-1$ |
$0$ |
$1$ |
$2$ |
17 |
$3455$ |
$21$ |
$2$ |
$C_1$ |
$\SL(2,16)$ |
$\SL(2,16)$ |
$C_1$ |
$2^{6} \cdot 3 \cdot 5 \cdot 17$ |
$2^{2}$ |
$17$ |
$17$ |
$15$ |
$15$ |
$16$ |
$15$ |
$15$ |
$16$ |
Simple |
6048.a |
$\SU(3,3)$ |
$\PSU(3,3)$ |
$2^{5} \cdot 3^{3} \cdot 7$ |
$2^{3} \cdot 3 \cdot 7$ |
$-1$ |
$0$ |
$1$ |
$2$ |
14 |
$5150$ |
$36$ |
$2$ |
$C_1$ |
$\SU(3,3)$ |
$\SU(3,3)$ |
$C_1$ |
$2^{6} \cdot 3^{3} \cdot 7$ |
$2$ |
$28$ |
$28$ |
$6$ |
$7$ |
$7$ |
$6$ |
$7$ |
$7$ |
Simple |
6072.a |
$\PSL(2,23)$ |
$\PSU(2,23)$ |
$2^{3} \cdot 3 \cdot 11 \cdot 23$ |
$2^{2} \cdot 3 \cdot 11 \cdot 23$ |
$-1$ |
$0$ |
$1$ |
$2$ |
14 |
$5915$ |
$23$ |
$2$ |
$C_1$ |
$\PSL(2,23)$ |
$\PSL(2,23)$ |
$C_1$ |
$2^{4} \cdot 3 \cdot 11 \cdot 23$ |
$2$ |
$24$ |
$24$ |
$11$ |
$22$ |
$22$ |
$11$ |
$22$ |
$22$ |
Simple |
7800.a |
$\PSL(2,25)$ |
$\PSU(2,25)$ |
$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$ |
$2^{2} \cdot 3 \cdot 5 \cdot 13$ |
$-1$ |
$0$ |
$1$ |
$2$ |
15 |
$9559$ |
$37$ |
$2$ |
$C_1$ |
$\PSL(2,25)$ |
$\PSL(2,25)$ |
$C_1$ |
$2^{5} \cdot 3 \cdot 5^{2} \cdot 13$ |
$2^{2}$ |
$26$ |
$26$ |
$13$ |
$13$ |
$13$ |
$13$ |
$13$ |
$13$ |
Simple |
9828.a |
$\PSL(2,27)$ |
$\PSU(2,27)$ |
$2^{2} \cdot 3^{3} \cdot 7 \cdot 13$ |
$2 \cdot 3 \cdot 7 \cdot 13$ |
$-1$ |
$0$ |
$1$ |
$2$ |
16 |
$5286$ |
$16$ |
$2$ |
$C_1$ |
$\PSL(2,27)$ |
$\PSL(2,27)$ |
$C_1$ |
$2^{3} \cdot 3^{4} \cdot 7 \cdot 13$ |
$2 \cdot 3$ |
$28$ |
$28$ |
$13$ |
$26$ |
$26$ |
$13$ |
$26$ |
$26$ |
Simple |
12180.a |
$\PSL(2,29)$ |
$\PSU(2,29)$ |
$2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 29$ |
$2 \cdot 3 \cdot 5 \cdot 7 \cdot 29$ |
$-1$ |
$0$ |
$1$ |
$2$ |
17 |
$10040$ |
$22$ |
$2$ |
$C_1$ |
$\PSL(2,29)$ |
$\PSL(2,29)$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 29$ |
$2$ |
$30$ |
$30$ |
$15$ |
$15$ |
$28$ |
$15$ |
$15$ |
$28$ |
Simple |
14880.a |
$\PSL(2,31)$ |
$\PSU(2,31)$ |
$2^{5} \cdot 3 \cdot 5 \cdot 31$ |
$2^{4} \cdot 3 \cdot 5 \cdot 31$ |
$-1$ |
$0$ |
$1$ |
$2$ |
18 |
$15413$ |
$29$ |
$2$ |
$C_1$ |
$\PSL(2,31)$ |
$\PSL(2,31)$ |
$C_1$ |
$2^{6} \cdot 3 \cdot 5 \cdot 31$ |
$2$ |
$32$ |
$32$ |
$15$ |
$30$ |
$30$ |
$15$ |
$30$ |
$30$ |
Simple |
25308.a |
$\PSL(2,37)$ |
$\PSU(2,37)$ |
$2^{2} \cdot 3^{2} \cdot 19 \cdot 37$ |
$2 \cdot 3^{2} \cdot 19 \cdot 37$ |
$-1$ |
$0$ |
$1$ |
$2$ |
21 |
$17731$ |
$23$ |
$2$ |
$C_1$ |
$\PSL(2,37)$ |
$\PSL(2,37)$ |
$C_1$ |
$2^{3} \cdot 3^{2} \cdot 19 \cdot 37$ |
$2$ |
$38$ |
$38$ |
$19$ |
$19$ |
$37$ |
$19$ |
$19$ |
$37$ |
Simple |
25920.a |
$\SU(4,2)$ |
$\PSU(4,2)$ |
$2^{6} \cdot 3^{4} \cdot 5$ |
$2^{2} \cdot 3^{2} \cdot 5$ |
$-1$ |
$0$ |
$1$ |
$2$ |
20 |
$45649$ |
$116$ |
$2$ |
$C_1$ |
$\SU(4,2)$ |
$\SU(4,2)$ |
$C_1$ |
$2^{7} \cdot 3^{4} \cdot 5$ |
$2$ |
$27$ |
$27$ |
$5$ |
$6$ |
$6$ |
$5$ |
$6$ |
$6$ |
Simple |
32736.a |
$\SL(2,32)$ |
$\PSU(2,32)$ |
$2^{5} \cdot 3 \cdot 11 \cdot 31$ |
$2 \cdot 3 \cdot 11 \cdot 31$ |
$-1$ |
$0$ |
$1$ |
$2$ |
33 |
$22328$ |
$24$ |
$2$ |
$C_1$ |
$\SL(2,32)$ |
$\SL(2,32)$ |
$C_1$ |
$2^{5} \cdot 3 \cdot 5 \cdot 11 \cdot 31$ |
$5$ |
$33$ |
$33$ |
$31$ |
$31$ |
$31$ |
$31$ |
$31$ |
$31$ |
Simple |
34440.a |
$\PSL(2,41)$ |
$\PSU(2,41)$ |
$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 41$ |
$2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 41$ |
$-1$ |
$0$ |
$1$ |
$2$ |
23 |
$36129$ |
$33$ |
$2$ |
$C_1$ |
$\PSL(2,41)$ |
$\PSL(2,41)$ |
$C_1$ |
$2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 41$ |
$2$ |
$42$ |
$42$ |
$21$ |
$21$ |
$40$ |
$21$ |
$21$ |
$40$ |
Simple |
39732.a |
$\PSL(2,43)$ |
$\PSU(2,43)$ |
$2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43$ |
$2 \cdot 3 \cdot 7 \cdot 11 \cdot 43$ |
$-1$ |
$0$ |
$1$ |
$2$ |
24 |
$25462$ |
$20$ |
$2$ |
$C_1$ |
$\PSL(2,43)$ |
$\PSL(2,43)$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 43$ |
$2$ |
$44$ |
$44$ |
$21$ |
$42$ |
$42$ |
$21$ |
$42$ |
$42$ |
Simple |
51888.a |
$\PSL(2,47)$ |
$\PSU(2,47)$ |
$2^{4} \cdot 3 \cdot 23 \cdot 47$ |
$2^{3} \cdot 3 \cdot 23 \cdot 47$ |
$-1$ |
$0$ |
$1$ |
$2$ |
26 |
$48837$ |
$29$ |
$2$ |
$C_1$ |
$\PSL(2,47)$ |
$\PSL(2,47)$ |
$C_1$ |
$2^{5} \cdot 3 \cdot 23 \cdot 47$ |
$2$ |
$48$ |
$48$ |
$23$ |
$46$ |
$46$ |
$23$ |
$46$ |
$46$ |
Simple |
58800.a |
$\PSL(2,49)$ |
$\PSU(2,49)$ |
$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$ |
$2^{3} \cdot 3 \cdot 5^{2} \cdot 7$ |
$-1$ |
$0$ |
$1$ |
$2$ |
27 |
$73945$ |
$51$ |
$2$ |
$C_1$ |
$\PSL(2,49)$ |
$\PSL(2,49)$ |
$C_1$ |
$2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}$ |
$2^{2}$ |
$50$ |
$50$ |
$25$ |
$25$ |
$25$ |
$25$ |
$25$ |
$25$ |
Simple |
62400.a |
$\SU(3,4)$ |
$\PSU(3,4)$ |
$2^{6} \cdot 3 \cdot 5^{2} \cdot 13$ |
$2^{2} \cdot 3 \cdot 5 \cdot 13$ |
$-1$ |
$0$ |
$1$ |
$2$ |
22 |
$31373$ |
$34$ |
$2$ |
$C_1$ |
$\SU(3,4)$ |
$\SU(3,4)$ |
$C_1$ |
$2^{8} \cdot 3 \cdot 5^{2} \cdot 13$ |
$2^{2}$ |
$65$ |
$65$ |
$12$ |
$24$ |
$24$ |
$12$ |
$24$ |
$24$ |
Simple |
74412.a |
$\PSL(2,53)$ |
$\PSU(2,53)$ |
$2^{2} \cdot 3^{3} \cdot 13 \cdot 53$ |
$2 \cdot 3^{3} \cdot 13 \cdot 53$ |
$-1$ |
$0$ |
$1$ |
$2$ |
29 |
$43254$ |
$20$ |
$2$ |
$C_1$ |
$\PSL(2,53)$ |
$\PSL(2,53)$ |
$C_1$ |
$2^{3} \cdot 3^{3} \cdot 13 \cdot 53$ |
$2$ |
$54$ |
$54$ |
$27$ |
$27$ |
$52$ |
$27$ |
$27$ |
$52$ |
Simple |
102660.a |
$\PSL(2,59)$ |
$\PSU(2,59)$ |
$2^{2} \cdot 3 \cdot 5 \cdot 29 \cdot 59$ |
$2 \cdot 3 \cdot 5 \cdot 29 \cdot 59$ |
$-1$ |
$0$ |
$1$ |
$2$ |
32 |
$82368$ |
$26$ |
$2$ |
$C_1$ |
$\PSL(2,59)$ |
$\PSL(2,59)$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 5 \cdot 29 \cdot 59$ |
$2$ |
$60$ |
$60$ |
$29$ |
$58$ |
$58$ |
$29$ |
$58$ |
$58$ |
Simple |
113460.a |
$\PSL(2,61)$ |
$\PSU(2,61)$ |
$2^{2} \cdot 3 \cdot 5 \cdot 31 \cdot 61$ |
$2 \cdot 3 \cdot 5 \cdot 31 \cdot 61$ |
$-1$ |
$0$ |
$1$ |
$2$ |
33 |
$91144$ |
$32$ |
$2$ |
$C_1$ |
$\PSL(2,61)$ |
$\PSL(2,61)$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 5 \cdot 31 \cdot 61$ |
$2$ |
$62$ |
$62$ |
$31$ |
$31$ |
$61$ |
$31$ |
$31$ |
$61$ |
Simple |
126000.a |
$\PSU(3,5)$ |
$\PSU(3,5)$ |
$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$ |
$2^{3} \cdot 3 \cdot 5 \cdot 7$ |
$-1$ |
$0$ |
$1$ |
$2$ |
14 |
$179308$ |
$80$ |
$2$ |
$C_1$ |
$\PSU(3,5)$ |
$\PSU(3,5)$ |
$C_1$ |
$2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 7$ |
$2 \cdot 3$ |
$50$ |
$50$ |
$20$ |
$21$ |
$21$ |
$20$ |
$21$ |
$21$ |
Simple |
150348.a |
$\PSL(2,67)$ |
$\PSU(2,67)$ |
$2^{2} \cdot 3 \cdot 11 \cdot 17 \cdot 67$ |
$2 \cdot 3 \cdot 11 \cdot 17 \cdot 67$ |
$-1$ |
$0$ |
$1$ |
$2$ |
36 |
$79602$ |
$20$ |
$2$ |
$C_1$ |
$\PSL(2,67)$ |
$\PSL(2,67)$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 11 \cdot 17 \cdot 67$ |
$2$ |
$68$ |
$68$ |
$33$ |
$66$ |
$66$ |
$33$ |
$66$ |
$66$ |
Simple |
178920.a |
$\PSL(2,71)$ |
$\PSU(2,71)$ |
$2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 71$ |
$2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 71$ |
$-1$ |
$0$ |
$1$ |
$2$ |
38 |
$203705$ |
$39$ |
$2$ |
$C_1$ |
$\PSL(2,71)$ |
$\PSL(2,71)$ |
$C_1$ |
$2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 71$ |
$2$ |
$72$ |
$72$ |
$35$ |
$70$ |
$70$ |
$35$ |
$70$ |
$70$ |
Simple |
194472.a |
$\PSL(2,73)$ |
$\PSU(2,73)$ |
$2^{3} \cdot 3^{2} \cdot 37 \cdot 73$ |
$2^{2} \cdot 3^{2} \cdot 37 \cdot 73$ |
$-1$ |
$0$ |
$1$ |
$2$ |
39 |
$176087$ |
$38$ |
$2$ |
$C_1$ |
$\PSL(2,73)$ |
$\PSL(2,73)$ |
$C_1$ |
$2^{4} \cdot 3^{2} \cdot 37 \cdot 73$ |
$2$ |
$74$ |
$74$ |
$37$ |
$37$ |
$73$ |
$37$ |
$37$ |
$73$ |
Simple |
246480.a |
$\PSL(2,79)$ |
$\PSU(2,79)$ |
$2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 79$ |
$2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 79$ |
$-1$ |
$0$ |
$1$ |
$2$ |
42 |
$247355$ |
$37$ |
$2$ |
$C_1$ |
$\PSL(2,79)$ |
$\PSL(2,79)$ |
$C_1$ |
$2^{5} \cdot 3 \cdot 5 \cdot 13 \cdot 79$ |
$2$ |
$80$ |
$80$ |
$39$ |
$78$ |
$78$ |
$39$ |
$78$ |
$78$ |
Simple |
262080.a |
$\SL(2,64)$ |
$\PSU(2,64)$ |
$2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ |
$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ |
$-1$ |
$0$ |
$1$ |
$2$ |
65 |
$360787$ |
$76$ |
$2$ |
$C_1$ |
$\SL(2,64)$ |
$\SL(2,64)$ |
$C_1$ |
$2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13$ |
$2 \cdot 3$ |
$65$ |
$65$ |
$63$ |
$63$ |
$64$ |
$63$ |
$63$ |
$64$ |
Simple |
265680.a |
$\PSL(2,81)$ |
$\PSU(2,81)$ |
$2^{4} \cdot 3^{4} \cdot 5 \cdot 41$ |
$2^{3} \cdot 3 \cdot 5 \cdot 41$ |
$-1$ |
$0$ |
$1$ |
$2$ |
43 |
$433087$ |
$69$ |
$2$ |
$C_1$ |
$\PSL(2,81)$ |
$\PSL(2,81)$ |
$C_1$ |
$2^{7} \cdot 3^{4} \cdot 5 \cdot 41$ |
$2^{3}$ |
$82$ |
$82$ |
$41$ |
$41$ |
$41$ |
$41$ |
$41$ |
$41$ |
Simple |
285852.a |
$\PSL(2,83)$ |
$\PSU(2,83)$ |
$2^{2} \cdot 3 \cdot 7 \cdot 41 \cdot 83$ |
$2 \cdot 3 \cdot 7 \cdot 41 \cdot 83$ |
$-1$ |
$0$ |
$1$ |
$2$ |
44 |
$190904$ |
$24$ |
$2$ |
$C_1$ |
$\PSL(2,83)$ |
$\PSL(2,83)$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 7 \cdot 41 \cdot 83$ |
$2$ |
$84$ |
$84$ |
$41$ |
$82$ |
$82$ |
$41$ |
$82$ |
$82$ |
Simple |
352440.a |
$\PSL(2,89)$ |
$\PSU(2,89)$ |
$2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 89$ |
$2^{2} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 89$ |
$-1$ |
$0$ |
$1$ |
$2$ |
47 |
$341323$ |
$37$ |
$2$ |
$C_1$ |
$\PSL(2,89)$ |
$\PSL(2,89)$ |
$C_1$ |
$2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 89$ |
$2$ |
$90$ |
$90$ |
$45$ |
$45$ |
$88$ |
$45$ |
$45$ |
$88$ |
Simple |
456288.a |
$\PSL(2,97)$ |
$\PSU(2,97)$ |
$2^{5} \cdot 3 \cdot 7^{2} \cdot 97$ |
$2^{4} \cdot 3 \cdot 7^{2} \cdot 97$ |
$-1$ |
$0$ |
$1$ |
$2$ |
51 |
$451547$ |
$45$ |
$2$ |
$C_1$ |
$\PSL(2,97)$ |
$\PSL(2,97)$ |
$C_1$ |
$2^{6} \cdot 3 \cdot 7^{2} \cdot 97$ |
$2$ |
$98$ |
$98$ |
$49$ |
$49$ |
$97$ |
$49$ |
$49$ |
$97$ |
Simple |
515100.a |
$\PSL(2,101)$ |
$\PSU(2,101)$ |
$2^{2} \cdot 3 \cdot 5^{2} \cdot 17 \cdot 101$ |
$2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 101$ |
$-1$ |
$0$ |
$1$ |
$2$ |
53 |
$343307$ |
$29$ |
$2$ |
$C_1$ |
$\PSL(2,101)$ |
$\PSL(2,101)$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 5^{2} \cdot 17 \cdot 101$ |
$2$ |
$102$ |
$102$ |
$51$ |
$51$ |
$100$ |
$51$ |
$51$ |
$100$ |
Simple |
546312.a |
$\PSL(2,103)$ |
$\PSU(2,103)$ |
$2^{3} \cdot 3 \cdot 13 \cdot 17 \cdot 103$ |
$2^{2} \cdot 3 \cdot 13 \cdot 17 \cdot 103$ |
$-1$ |
$0$ |
$1$ |
$2$ |
54 |
$396865$ |
$29$ |
$2$ |
$C_1$ |
$\PSL(2,103)$ |
$\PSL(2,103)$ |
$C_1$ |
$2^{4} \cdot 3 \cdot 13 \cdot 17 \cdot 103$ |
$2$ |
$104$ |
$104$ |
$51$ |
$102$ |
$102$ |
$51$ |
$102$ |
$102$ |
Simple |
612468.a |
$\PSL(2,107)$ |
$\PSU(2,107)$ |
$2^{2} \cdot 3^{3} \cdot 53 \cdot 107$ |
$2 \cdot 3^{3} \cdot 53 \cdot 107$ |
$-1$ |
$0$ |
$1$ |
$2$ |
56 |
$374718$ |
$24$ |
$2$ |
$C_1$ |
$\PSL(2,107)$ |
$\PSL(2,107)$ |
$C_1$ |
$2^{3} \cdot 3^{3} \cdot 53 \cdot 107$ |
$2$ |
$108$ |
$108$ |
$53$ |
$106$ |
$106$ |
$53$ |
$106$ |
$106$ |
Simple |
647460.a |
$\PSL(2,109)$ |
$\PSU(2,109)$ |
$2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \cdot 109$ |
$2 \cdot 3^{3} \cdot 5 \cdot 11 \cdot 109$ |
$-1$ |
$0$ |
$1$ |
$2$ |
57 |
$523864$ |
$36$ |
$2$ |
$C_1$ |
$\PSL(2,109)$ |
$\PSL(2,109)$ |
$C_1$ |
$2^{3} \cdot 3^{3} \cdot 5 \cdot 11 \cdot 109$ |
$2$ |
$110$ |
$110$ |
$55$ |
$55$ |
$109$ |
$55$ |
$55$ |
$109$ |
Simple |
721392.a |
$\PSL(2,113)$ |
$\PSU(2,113)$ |
$2^{4} \cdot 3 \cdot 7 \cdot 19 \cdot 113$ |
$2^{3} \cdot 3 \cdot 7 \cdot 19 \cdot 113$ |
$-1$ |
$0$ |
$1$ |
$2$ |
59 |
$622753$ |
$39$ |
$2$ |
$C_1$ |
$\PSL(2,113)$ |
$\PSL(2,113)$ |
$C_1$ |
$2^{5} \cdot 3 \cdot 7 \cdot 19 \cdot 113$ |
$2$ |
$114$ |
$114$ |
$57$ |
$57$ |
$112$ |
$57$ |
$57$ |
$112$ |
Simple |
885720.a |
$\PSL(2,121)$ |
$\PSU(2,121)$ |
$2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 61$ |
$2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 61$ |
$-1$ |
$0$ |
$1$ |
$2$ |
63 |
$976309$ |
$63$ |
$2$ |
$C_1$ |
$\PSL(2,121)$ |
$\PSL(2,121)$ |
$C_1$ |
$2^{5} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 61$ |
$2^{2}$ |
$122$ |
$122$ |
$61$ |
$61$ |
$61$ |
$61$ |
$61$ |
$61$ |
Simple |
976500.a |
$\PSL(2,125)$ |
$\PSU(2,125)$ |
$2^{2} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 31$ |
$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$ |
$-1$ |
$0$ |
$1$ |
$2$ |
65 |
$708273$ |
$29$ |
$2$ |
$C_1$ |
$\PSL(2,125)$ |
$\PSL(2,125)$ |
$C_1$ |
$2^{3} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 31$ |
$2 \cdot 3$ |
$126$ |
$126$ |
$63$ |
$63$ |
$124$ |
$63$ |
$63$ |
$124$ |
Simple |
1024128.a |
$\PSL(2,127)$ |
$\PSU(2,127)$ |
$2^{7} \cdot 3^{2} \cdot 7 \cdot 127$ |
$2^{6} \cdot 3^{2} \cdot 7 \cdot 127$ |
$-1$ |
$0$ |
$1$ |
$2$ |
66 |
$926727$ |
$39$ |
$2$ |
$C_1$ |
$\PSL(2,127)$ |
$\PSL(2,127)$ |
$C_1$ |
$2^{8} \cdot 3^{2} \cdot 7 \cdot 127$ |
$2$ |
$128$ |
$128$ |
$63$ |
$126$ |
$126$ |
$63$ |
$126$ |
$126$ |
Simple |
1123980.a |
$\PSL(2,131)$ |
$\PSU(2,131)$ |
$2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \cdot 131$ |
$2 \cdot 3 \cdot 5 \cdot 11 \cdot 13 \cdot 131$ |
$-1$ |
$0$ |
$1$ |
$2$ |
68 |
$858318$ |
$32$ |
$2$ |
$C_1$ |
$\PSL(2,131)$ |
$\PSL(2,131)$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \cdot 131$ |
$2$ |
$132$ |
$132$ |
$65$ |
$130$ |
$130$ |
$65$ |
$130$ |
$130$ |
Simple |
1285608.a |
$\PSL(2,137)$ |
$\PSU(2,137)$ |
$2^{3} \cdot 3 \cdot 17 \cdot 23 \cdot 137$ |
$2^{2} \cdot 3 \cdot 17 \cdot 23 \cdot 137$ |
$-1$ |
$0$ |
$1$ |
$2$ |
71 |
$875849$ |
$31$ |
$2$ |
$C_1$ |
$\PSL(2,137)$ |
$\PSL(2,137)$ |
$C_1$ |
$2^{4} \cdot 3 \cdot 17 \cdot 23 \cdot 137$ |
$2$ |
$138$ |
$138$ |
$69$ |
$69$ |
$136$ |
? |
? |
? |
Simple |
1342740.a |
$\PSL(2,139)$ |
$\PSU(2,139)$ |
$2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 23 \cdot 139$ |
$2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 \cdot 139$ |
$-1$ |
$0$ |
$1$ |
$2$ |
72 |
$1002196$ |
$32$ |
$2$ |
$C_1$ |
$\PSL(2,139)$ |
$\PSL(2,139)$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 23 \cdot 139$ |
$2$ |
$140$ |
$140$ |
$69$ |
$138$ |
$138$ |
$69$ |
$138$ |
$138$ |
Simple |