| Label |
Name |
Family name |
Order |
Exponent |
Nilp. class |
Der. length |
Comp. length |
Rank |
$\card{\mathrm{conj}(G)}$ |
Subgroups |
Subgroup classes |
Normal subgroups |
Center |
Central quotient |
Commutator |
Abelianization |
$\card{\mathrm{Aut}(G)}$ |
$\card{\mathrm{Out}(G)}$ |
Tr. deg |
Perm. deg |
$\C$-irrep deg |
$\R$-irrep deg |
$\Q$-irrep deg |
$\C$-rep deg |
$\R$-rep deg |
$\Q$-rep deg |
Type - length |
| 60.5 |
$A_5$ |
$\POmegaMinus(4,2)$ |
$2^{2} \cdot 3 \cdot 5$ |
$2 \cdot 3 \cdot 5$ |
$-1$ |
$0$ |
$1$ |
$2$ |
5 |
$59$ |
$9$ |
$2$ |
$C_1$ |
$A_5$ |
$A_5$ |
$C_1$ |
$2^{3} \cdot 3 \cdot 5$ |
$2$ |
$5$ |
$5$ |
$3$ |
$3$ |
$4$ |
$3$ |
$3$ |
$4$ |
Simple |
| 360.118 |
$A_6$ |
$\POmegaMinus(4,3)$ |
$2^{3} \cdot 3^{2} \cdot 5$ |
$2^{2} \cdot 3 \cdot 5$ |
$-1$ |
$0$ |
$1$ |
$2$ |
7 |
$501$ |
$22$ |
$2$ |
$C_1$ |
$A_6$ |
$A_6$ |
$C_1$ |
$2^{5} \cdot 3^{2} \cdot 5$ |
$2^{2}$ |
$6$ |
$6$ |
$5$ |
$5$ |
$5$ |
$5$ |
$5$ |
$5$ |
Simple |
| 4080.a |
$\SL(2,16)$ |
$\POmegaMinus(4,4)$ |
$2^{4} \cdot 3 \cdot 5 \cdot 17$ |
$2 \cdot 3 \cdot 5 \cdot 17$ |
$-1$ |
$0$ |
$1$ |
$2$ |
17 |
$3455$ |
$21$ |
$2$ |
$C_1$ |
$\SL(2,16)$ |
$\SL(2,16)$ |
$C_1$ |
$2^{6} \cdot 3 \cdot 5 \cdot 17$ |
$2^{2}$ |
$17$ |
$17$ |
$15$ |
$15$ |
$16$ |
$15$ |
$15$ |
$16$ |
Simple |
| 7800.a |
$\PSL(2,25)$ |
$\POmegaMinus(4,5)$ |
$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$ |
$2^{2} \cdot 3 \cdot 5 \cdot 13$ |
$-1$ |
$0$ |
$1$ |
$2$ |
15 |
$9559$ |
$37$ |
$2$ |
$C_1$ |
$\PSL(2,25)$ |
$\PSL(2,25)$ |
$C_1$ |
$2^{5} \cdot 3 \cdot 5^{2} \cdot 13$ |
$2^{2}$ |
$26$ |
$26$ |
$13$ |
$13$ |
$13$ |
$13$ |
$13$ |
$13$ |
Simple |
| 25920.a |
$\SU(4,2)$ |
$\POmegaMinus(6,2)$ |
$2^{6} \cdot 3^{4} \cdot 5$ |
$2^{2} \cdot 3^{2} \cdot 5$ |
$-1$ |
$0$ |
$1$ |
$2$ |
20 |
$45649$ |
$116$ |
$2$ |
$C_1$ |
$\SU(4,2)$ |
$\SU(4,2)$ |
$C_1$ |
$2^{7} \cdot 3^{4} \cdot 5$ |
$2$ |
$27$ |
$27$ |
$5$ |
$6$ |
$6$ |
$5$ |
$6$ |
$6$ |
Simple |
| 58800.a |
$\PSL(2,49)$ |
$\POmegaMinus(4,7)$ |
$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$ |
$2^{3} \cdot 3 \cdot 5^{2} \cdot 7$ |
$-1$ |
$0$ |
$1$ |
$2$ |
27 |
$73945$ |
$51$ |
$2$ |
$C_1$ |
$\PSL(2,49)$ |
$\PSL(2,49)$ |
$C_1$ |
$2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}$ |
$2^{2}$ |
$50$ |
$50$ |
$25$ |
$25$ |
$25$ |
$25$ |
$25$ |
$25$ |
Simple |
| 262080.a |
$\SL(2,64)$ |
$\POmegaMinus(4,8)$ |
$2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ |
$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ |
$-1$ |
$0$ |
$1$ |
$2$ |
65 |
$360787$ |
$76$ |
$2$ |
$C_1$ |
$\SL(2,64)$ |
$\SL(2,64)$ |
$C_1$ |
$2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13$ |
$2 \cdot 3$ |
$65$ |
$65$ |
$63$ |
$63$ |
$64$ |
$63$ |
$63$ |
$64$ |
Simple |
| 265680.a |
$\PSL(2,81)$ |
$\POmegaMinus(4,9)$ |
$2^{4} \cdot 3^{4} \cdot 5 \cdot 41$ |
$2^{3} \cdot 3 \cdot 5 \cdot 41$ |
$-1$ |
$0$ |
$1$ |
$2$ |
43 |
$433087$ |
$69$ |
$2$ |
$C_1$ |
$\PSL(2,81)$ |
$\PSL(2,81)$ |
$C_1$ |
$2^{7} \cdot 3^{4} \cdot 5 \cdot 41$ |
$2^{3}$ |
$82$ |
$82$ |
$41$ |
$41$ |
$41$ |
$41$ |
$41$ |
$41$ |
Simple |
| 885720.a |
$\PSL(2,121)$ |
$\POmegaMinus(4,11)$ |
$2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 61$ |
$2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 61$ |
$-1$ |
$0$ |
$1$ |
$2$ |
63 |
$976309$ |
$63$ |
$2$ |
$C_1$ |
$\PSL(2,121)$ |
$\PSL(2,121)$ |
$C_1$ |
$2^{5} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 61$ |
$2^{2}$ |
$122$ |
$122$ |
$61$ |
$61$ |
$61$ |
$61$ |
$61$ |
$61$ |
Simple |
| 2413320.a |
$\PSL(2,169)$ |
$\POmegaMinus(4,13)$ |
$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17$ |
$2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17$ |
$-1$ |
$0$ |
$1$ |
$2$ |
87 |
$2782197$ |
$71$ |
$2$ |
$C_1$ |
$\PSL(2,169)$ |
$\PSL(2,169)$ |
$C_1$ |
$2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17$ |
$2^{2}$ |
$170$ |
$170$ |
$85$ |
$85$ |
$85$ |
$85$ |
$85$ |
$85$ |
Simple |
| 3265920.a |
$\PSU(4,3)$ |
$\POmegaMinus(6,3)$ |
$2^{7} \cdot 3^{6} \cdot 5 \cdot 7$ |
$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ |
$-1$ |
$0$ |
$1$ |
$2$ |
20 |
$10009764$ |
$381$ |
$2$ |
$C_1$ |
$\PSU(4,3)$ |
$\PSU(4,3)$ |
$C_1$ |
$2^{10} \cdot 3^{6} \cdot 5 \cdot 7$ |
$2^{3}$ |
$112$ |
$112$ |
$21$ |
$21$ |
$21$ |
? |
? |
? |
Simple |
| 12068640.a |
$\PSL(2,289)$ |
$\POmegaMinus(4,17)$ |
$2^{5} \cdot 3^{2} \cdot 5 \cdot 17^{2} \cdot 29$ |
$2^{4} \cdot 3^{2} \cdot 5 \cdot 17 \cdot 29$ |
$-1$ |
$0$ |
$1$ |
$2$ |
147 |
$13798153$ |
$82$ |
$2$ |
$C_1$ |
$\PSL(2,289)$ |
$\PSL(2,289)$ |
$C_1$ |
$2^{7} \cdot 3^{2} \cdot 5 \cdot 17^{2} \cdot 29$ |
$2^{2}$ |
$290$ |
$290$ |
$145$ |
$145$ |
$145$ |
? |
? |
? |
Simple |
| 16776960.a |
$\SL(2,256)$ |
$\POmegaMinus(4,16)$ |
$2^{8} \cdot 3 \cdot 5 \cdot 17 \cdot 257$ |
$2 \cdot 3 \cdot 5 \cdot 17 \cdot 257$ |
$-1$ |
$0$ |
$1$ |
$2$ |
257 |
|
|
$2$ |
$C_1$ |
$\SL(2,256)$ |
$\SL(2,256)$ |
$C_1$ |
$2^{11} \cdot 3 \cdot 5 \cdot 17 \cdot 257$ |
$2^{3}$ |
$257$ |
$257$ |
$255$ |
$255$ |
$256$ |
? |
? |
? |
Simple |
| 23522760.a |
$\PSL(2,361)$ |
$\POmegaMinus(4,19)$ |
$2^{3} \cdot 3^{2} \cdot 5 \cdot 19^{2} \cdot 181$ |
$2^{2} \cdot 3^{2} \cdot 5 \cdot 19 \cdot 181$ |
$-1$ |
$0$ |
$1$ |
$2$ |
183 |
$26654969$ |
$89$ |
$2$ |
$C_1$ |
$\PSL(2,361)$ |
$\PSL(2,361)$ |
$C_1$ |
$2^{5} \cdot 3^{2} \cdot 5 \cdot 19^{2} \cdot 181$ |
$2^{2}$ |
$362$ |
$362$ |
$181$ |
$181$ |
$181$ |
? |
? |
? |
Simple |
| 74017680.a |
$\PSL(2,529)$ |
$\POmegaMinus(4,23)$ |
$2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 23^{2} \cdot 53$ |
$2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 23 \cdot 53$ |
$-1$ |
$0$ |
$1$ |
$2$ |
267 |
$78076325$ |
$83$ |
$2$ |
$C_1$ |
$\PSL(2,529)$ |
$\PSL(2,529)$ |
$C_1$ |
$2^{6} \cdot 3 \cdot 5 \cdot 11 \cdot 23^{2} \cdot 53$ |
$2^{2}$ |
$530$ |
$530$ |
$265$ |
$265$ |
$265$ |
? |
? |
? |
Simple |
| 122070000.a |
$\PSL(2,625)$ |
$\POmegaMinus(4,25)$ |
$2^{4} \cdot 3 \cdot 5^{4} \cdot 13 \cdot 313$ |
$2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 313$ |
$-1$ |
$0$ |
$1$ |
$2$ |
315 |
$164077421$ |
$131$ |
$2$ |
$C_1$ |
$\PSL(2,625)$ |
$\PSL(2,625)$ |
$C_1$ |
$2^{7} \cdot 3 \cdot 5^{4} \cdot 13 \cdot 313$ |
$2^{3}$ |
$626$ |
$626$ |
$313$ |
$313$ |
$313$ |
? |
? |
? |
Simple |
| 193709880.a |
$\PSL(2,729)$ |
$\POmegaMinus(4,27)$ |
$2^{3} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 13 \cdot 73$ |
$2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 73$ |
$-1$ |
$0$ |
$1$ |
$2$ |
367 |
|
|
|
$C_1$ |
$\PSL(2,729)$ |
$\PSL(2,729)$ |
$C_1$ |
$2^{5} \cdot 3^{7} \cdot 5 \cdot 7 \cdot 13 \cdot 73$ |
$2^{2} \cdot 3$ |
|
$730$ |
$365$ |
$365$ |
? |
? |
? |
? |
Simple |
| 197406720.a |
$\OmegaMinus(8,2)$ |
$\POmegaMinus(8,2)$ |
$2^{12} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17$ |
$2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17$ |
$-1$ |
$0$ |
$1$ |
$2$ |
39 |
|
|
|
$C_1$ |
$\OmegaMinus(8,2)$ |
$\OmegaMinus(8,2)$ |
$C_1$ |
$2^{13} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17$ |
$2$ |
|
$119$ |
$34$ |
$34$ |
$34$ |
? |
? |
? |
Simple |
| 297411240.a |
$\PSL(2,841)$ |
$\POmegaMinus(4,29)$ |
$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 29^{2} \cdot 421$ |
$2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 421$ |
$-1$ |
$0$ |
$1$ |
$2$ |
423 |
$349672921$ |
$111$ |
$2$ |
$C_1$ |
$\PSL(2,841)$ |
$\PSL(2,841)$ |
$C_1$ |
$2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 29^{2} \cdot 421$ |
$2^{2}$ |
$842$ |
$842$ |
$421$ |
$421$ |
$421$ |
? |
? |
? |
Simple |
| 443751360.a |
$\PSL(2,961)$ |
$\POmegaMinus(4,31)$ |
$2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 31^{2} \cdot 37$ |
$2^{5} \cdot 3 \cdot 5 \cdot 13 \cdot 31 \cdot 37$ |
$-1$ |
$0$ |
$1$ |
$2$ |
483 |
|
|
|
$C_1$ |
$\PSL(2,961)$ |
$\PSL(2,961)$ |
$C_1$ |
$2^{8} \cdot 3 \cdot 5 \cdot 13 \cdot 31^{2} \cdot 37$ |
$2^{2}$ |
|
$962$ |
$481$ |
$481$ |
? |
? |
? |
? |
Simple |
| 1018368000.a |
$\SU(4,4)$ |
$\POmegaMinus(6,4)$ |
$2^{12} \cdot 3^{2} \cdot 5^{3} \cdot 13 \cdot 17$ |
$2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17$ |
$-1$ |
$0$ |
$1$ |
$2$ |
94 |
|
|
$2$ |
$C_1$ |
$\SU(4,4)$ |
$\SU(4,4)$ |
$C_1$ |
$2^{14} \cdot 3^{2} \cdot 5^{3} \cdot 13 \cdot 17$ |
$2^{2}$ |
$325$ |
$325$ |
$51$ |
$52$ |
$52$ |
? |
? |
? |
Simple |
| 1073740800.a |
$\SL(2,1024)$ |
$\POmegaMinus(4,32)$ |
$2^{10} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 31 \cdot 41$ |
$2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 31 \cdot 41$ |
$-1$ |
$0$ |
$1$ |
$2$ |
1025 |
|
|
$2$ |
$C_1$ |
$\SL(2,1024)$ |
$\SL(2,1024)$ |
$C_1$ |
$2^{11} \cdot 3 \cdot 5^{3} \cdot 11 \cdot 31 \cdot 41$ |
$2 \cdot 5$ |
$1025$ |
$1025$ |
$1023$ |
? |
? |
? |
? |
? |
Simple |
| 1282862520.a |
$\PSL(2,1369)$ |
$\POmegaMinus(4,37)$ |
$2^{3} \cdot 3^{2} \cdot 5 \cdot 19 \cdot 37^{2} \cdot 137$ |
$2^{2} \cdot 3^{2} \cdot 5 \cdot 19 \cdot 37 \cdot 137$ |
$-1$ |
$0$ |
$1$ |
$2$ |
687 |
$1276306807$ |
$99$ |
$2$ |
$C_1$ |
$\PSL(2,1369)$ |
$\PSL(2,1369)$ |
$C_1$ |
$2^{5} \cdot 3^{2} \cdot 5 \cdot 19 \cdot 37^{2} \cdot 137$ |
$2^{2}$ |
$1370$ |
$1370$ |
$685$ |
? |
? |
? |
? |
? |
Simple |
| 2375051280.a |
$\PSL(2,1681)$ |
$\POmegaMinus(4,41)$ |
$2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 29^{2} \cdot 41^{2}$ |
$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 29^{2} \cdot 41$ |
$-1$ |
$0$ |
$1$ |
$2$ |
843 |
$3072707069$ |
$149$ |
$2$ |
$C_1$ |
$\PSL(2,1681)$ |
$\PSL(2,1681)$ |
$C_1$ |
$2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 29^{2} \cdot 41^{2}$ |
$2^{2}$ |
$1682$ |
$1682$ |
$841$ |
? |
? |
? |
? |
? |
Simple |
| 3160680600.a |
$\PSL(2,1849)$ |
$\POmegaMinus(4,43)$ |
$2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2}$ |
$2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43$ |
$-1$ |
$0$ |
$1$ |
$2$ |
927 |
$3627279905$ |
$123$ |
$2$ |
$C_1$ |
$\PSL(2,1849)$ |
$\PSL(2,1849)$ |
$C_1$ |
$2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2}$ |
$2^{2}$ |
$1850$ |
$1850$ |
$925$ |
? |
? |
? |
? |
? |
Simple |
| 5389606560.a |
$\PSL(2,2209)$ |
$\POmegaMinus(4,47)$ |
$2^{5} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \cdot 23 \cdot 47^{2}$ |
$2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \cdot 23 \cdot 47$ |
$-1$ |
$0$ |
$1$ |
$2$ |
1107 |
$5820432553$ |
$107$ |
$2$ |
$C_1$ |
$\PSL(2,2209)$ |
$\PSL(2,2209)$ |
$C_1$ |
$2^{7} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \cdot 23 \cdot 47^{2}$ |
$2^{2}$ |
$2210$ |
$2210$ |
$1105$ |
? |
? |
? |
? |
? |
Simple |
| 6920642400.a |
$\PSL(2,2401)$ |
$\POmegaMinus(4,49)$ |
$2^{5} \cdot 3 \cdot 5^{2} \cdot 7^{4} \cdot 1201$ |
$2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 1201$ |
$-1$ |
$0$ |
$1$ |
$2$ |
1203 |
|
|
$2$ |
$C_1$ |
$\PSL(2,2401)$ |
$\PSL(2,2401)$ |
$C_1$ |
$2^{8} \cdot 3 \cdot 5^{2} \cdot 7^{4} \cdot 1201$ |
$2^{3}$ |
$2402$ |
$2402$ |
$1201$ |
? |
? |
? |
? |
? |
Simple |
| 14742000000.a |
$\PSU(4,5)$ |
$\POmegaMinus(6,5)$ |
$2^{7} \cdot 3^{4} \cdot 5^{6} \cdot 7 \cdot 13$ |
$2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ |
$-1$ |
$0$ |
$1$ |
$2$ |
97 |
|
|
$2$ |
$C_1$ |
$\PSU(4,5)$ |
$\PSU(4,5)$ |
$C_1$ |
$2^{9} \cdot 3^{4} \cdot 5^{6} \cdot 7 \cdot 13$ |
$2^{2}$ |
$756$ |
$756$ |
$104$ |
$105$ |
$105$ |
? |
? |
? |
Simple |
| 1165572172800.a |
$\PSU(4,7)$ |
$\POmegaMinus(6,7)$ |
$2^{10} \cdot 3^{2} \cdot 5^{2} \cdot 7^{6} \cdot 43$ |
$2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 43$ |
$-1$ |
$0$ |
$1$ |
$2$ |
116 |
|
|
$2$ |
$C_1$ |
$\PSU(4,7)$ |
$\PSU(4,7)$ |
$C_1$ |
$2^{13} \cdot 3^{2} \cdot 5^{2} \cdot 7^{6} \cdot 43$ |
$2^{3}$ |
$2752$ |
$2752$ |
$300$ |
? |
? |
? |
? |
? |
Simple |
| 10151968619520.a |
$\OmegaMinus(8,3)$ |
$\POmegaMinus(8,2)$ |
$2^{10} \cdot 3^{12} \cdot 5 \cdot 7 \cdot 13 \cdot 41$ |
$2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 41$ |
$-1$ |
$0$ |
$1$ |
$2$ |
112 |
|
|
|
$C_1$ |
$\OmegaMinus(8,3)$ |
$\OmegaMinus(8,3)$ |
$C_1$ |
$2^{12} \cdot 3^{12} \cdot 5 \cdot 7 \cdot 13 \cdot 41$ |
$2^{2}$ |
|
$1066$ |
$246$ |
? |
? |
? |
? |
? |
Simple |
| 25015379558400.a |
$\OmegaMinus(10,2)$ |
$\POmegaMinus(10,2)$ |
$2^{20} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17$ |
$2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 17$ |
$-1$ |
$0$ |
$1$ |
$2$ |
115 |
|
|
$2$ |
$C_1$ |
$\OmegaMinus(10,2)$ |
$\OmegaMinus(10,2)$ |
$C_1$ |
$2^{21} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17$ |
$2$ |
$495$ |
$495$ |
$154$ |
? |
? |
? |
? |
? |
Simple |
| 34693789777920.a |
$\SU(4,8)$ |
$\POmegaMinus(6,8)$ |
$2^{18} \cdot 3^{7} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 19$ |
$2^{2} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \cdot 19$ |
$-1$ |
$0$ |
$1$ |
$2$ |
602 |
|
|
$2$ |
$C_1$ |
$\SU(4,8)$ |
$\SU(4,8)$ |
$C_1$ |
$2^{19} \cdot 3^{8} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 19$ |
$2 \cdot 3$ |
|
$4617$ |
$455$ |
? |
? |
? |
? |
? |
Simple |