/* Group 960.4620 downloaded from the LMFDB on 06 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -2, -2, -2, -3, -5, 3904, 161, 41, 66, 3532, 116, 8461, 141, 19726, 222]); a,b,c := Explode([GPC.1, GPC.2, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "b4", "c", "c2", "c4", "c12"]); GPerm := PermutationGroup< 24 | (1,2)(3,6)(4,5)(7,8)(9,10,12,14,11,13,15,16)(18,19), (2,5)(6,8)(9,11)(10,13)(12,15)(14,16), (1,3,4,7)(2,6,5,8)(10,13)(14,16), (20,21,22,23,24), (9,12,11,15)(10,14,13,16), (1,4)(2,5)(3,7)(6,8), (9,11)(10,13)(12,15)(14,16), (17,18,19) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_960_4620 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b^4>,< 2, 1, c^30>,< 2, 1, b^4*c^30>,< 2, 2, a*b^2*c^45>,< 2, 2, a*b^6*c^45>,< 3, 2, c^40>,< 4, 1, b^2>,< 4, 1, b^6>,< 4, 1, b^2*c^30>,< 4, 1, b^6*c^30>,< 4, 2, c^15>,< 4, 2, b^4*c^15>,< 4, 2, b^6*c^15>,< 4, 2, b^2*c^45>,< 4, 2, a*b^4*c^30>,< 4, 2, a>,< 4, 2, a*b^4*c^45>,< 4, 2, a*c^45>,< 4, 2, a*b^2*c^30>,< 4, 2, a*b^2>,< 5, 1, c^36>,< 5, 1, c^24>,< 5, 1, c^12>,< 5, 1, c^48>,< 6, 2, c^10>,< 6, 2, b^4*c^40>,< 6, 2, b^4*c^10>,< 6, 2, a*b^2*c^5>,< 6, 2, a*b^2*c^25>,< 6, 2, a*b^6*c^5>,< 6, 2, a*b^6*c^25>,< 8, 12, b^5>,< 8, 12, b^3>,< 8, 12, b^5*c^25>,< 8, 12, b^3*c^25>,< 8, 12, a*b^5>,< 8, 12, a*b^3*c^30>,< 8, 12, a*b^5*c^25>,< 8, 12, a*b^3*c^55>,< 10, 1, b^4*c^48>,< 10, 1, b^4*c^12>,< 10, 1, b^4*c^24>,< 10, 1, b^4*c^36>,< 10, 1, c^6>,< 10, 1, c^54>,< 10, 1, c^18>,< 10, 1, c^42>,< 10, 1, b^4*c^6>,< 10, 1, b^4*c^54>,< 10, 1, b^4*c^18>,< 10, 1, b^4*c^42>,< 10, 2, a*b^2*c^33>,< 10, 2, a*b^2*c^57>,< 10, 2, a*b^2*c^9>,< 10, 2, a*b^2*c^21>,< 10, 2, a*b^6*c^33>,< 10, 2, a*b^6*c^57>,< 10, 2, a*b^6*c^9>,< 10, 2, a*b^6*c^21>,< 12, 2, c^5>,< 12, 2, c^25>,< 12, 2, b^4*c^5>,< 12, 2, b^4*c^25>,< 12, 2, b^2*c^20>,< 12, 2, b^6*c^40>,< 12, 2, b^2*c^10>,< 12, 2, b^6*c^50>,< 12, 2, b^2*c^5>,< 12, 2, b^6*c^55>,< 12, 2, b^2*c^25>,< 12, 2, b^6*c^35>,< 12, 2, a*c^20>,< 12, 2, a*b^4*c^10>,< 12, 2, a*c^40>,< 12, 2, a*b^4*c^50>,< 12, 2, a*c^5>,< 12, 2, a*b^4*c^25>,< 12, 2, a*c^25>,< 12, 2, a*b^4*c^5>,< 12, 2, a*b^2*c^20>,< 12, 2, a*b^2*c^10>,< 12, 2, a*b^2*c^40>,< 12, 2, a*b^2*c^50>,< 15, 2, c^32>,< 15, 2, c^28>,< 15, 2, c^4>,< 15, 2, c^56>,< 20, 1, b^2*c^24>,< 20, 1, b^6*c^36>,< 20, 1, b^6*c^12>,< 20, 1, b^2*c^48>,< 20, 1, b^6*c^48>,< 20, 1, b^2*c^12>,< 20, 1, b^2*c^36>,< 20, 1, b^6*c^24>,< 20, 1, b^2*c^54>,< 20, 1, b^6*c^6>,< 20, 1, b^6*c^42>,< 20, 1, b^2*c^18>,< 20, 1, b^6*c^18>,< 20, 1, b^2*c^42>,< 20, 1, b^2*c^6>,< 20, 1, b^6*c^54>,< 20, 2, c^3>,< 20, 2, c^57>,< 20, 2, c^9>,< 20, 2, c^51>,< 20, 2, b^4*c^3>,< 20, 2, b^4*c^57>,< 20, 2, b^4*c^9>,< 20, 2, b^4*c^51>,< 20, 2, b^6*c^3>,< 20, 2, b^2*c^57>,< 20, 2, b^2*c^9>,< 20, 2, b^6*c^51>,< 20, 2, b^2*c^21>,< 20, 2, b^6*c^39>,< 20, 2, b^6*c^27>,< 20, 2, b^2*c^33>,< 20, 2, a*b^4*c^42>,< 20, 2, a*c^48>,< 20, 2, a*c^36>,< 20, 2, a*b^4*c^54>,< 20, 2, a*c^24>,< 20, 2, a*b^4*c^6>,< 20, 2, a*b^4*c^18>,< 20, 2, a*c^12>,< 20, 2, a*b^4*c^33>,< 20, 2, a*c^57>,< 20, 2, a*c^9>,< 20, 2, a*b^4*c^21>,< 20, 2, a*c^21>,< 20, 2, a*b^4*c^9>,< 20, 2, a*b^4*c^57>,< 20, 2, a*c^33>,< 20, 2, a*b^2*c^42>,< 20, 2, a*b^2*c^48>,< 20, 2, a*b^2*c^36>,< 20, 2, a*b^2*c^54>,< 20, 2, a*b^2*c^24>,< 20, 2, a*b^2*c^6>,< 20, 2, a*b^2*c^18>,< 20, 2, a*b^2*c^12>,< 30, 2, c^2>,< 30, 2, c^58>,< 30, 2, c^14>,< 30, 2, c^46>,< 30, 2, b^4*c^8>,< 30, 2, b^4*c^52>,< 30, 2, b^4*c^56>,< 30, 2, b^4*c^4>,< 30, 2, b^4*c^2>,< 30, 2, b^4*c^58>,< 30, 2, b^4*c^14>,< 30, 2, b^4*c^46>,< 30, 2, a*b^2*c>,< 30, 2, a*b^2*c^29>,< 30, 2, a*b^2*c^37>,< 30, 2, a*b^2*c^53>,< 30, 2, a*b^2*c^41>,< 30, 2, a*b^2*c^49>,< 30, 2, a*b^2*c^13>,< 30, 2, a*b^2*c^17>,< 30, 2, a*b^6*c>,< 30, 2, a*b^2*c^19>,< 30, 2, a*b^6*c^37>,< 30, 2, a*b^2*c^43>,< 30, 2, a*b^2*c^31>,< 30, 2, a*b^6*c^49>,< 30, 2, a*b^6*c^13>,< 30, 2, a*b^2*c^7>,< 40, 12, b*c^12>,< 40, 12, b^3*c^8>,< 40, 12, b^3*c^36>,< 40, 12, b*c^4>,< 40, 12, b^3*c^4>,< 40, 12, b*c^36>,< 40, 12, b*c^8>,< 40, 12, b^3*c^12>,< 40, 12, b*c>,< 40, 12, b^3*c^9>,< 40, 12, b^3*c^13>,< 40, 12, b*c^37>,< 40, 12, b^3*c^37>,< 40, 12, b*c^13>,< 40, 12, b*c^9>,< 40, 12, b^3*c>,< 40, 12, a*b*c^12>,< 40, 12, a*b^3*c^8>,< 40, 12, a*b^3*c^36>,< 40, 12, a*b*c^4>,< 40, 12, a*b^3*c^4>,< 40, 12, a*b*c^36>,< 40, 12, a*b*c^8>,< 40, 12, a*b^3*c^12>,< 40, 12, a*b*c>,< 40, 12, a*b^3*c^9>,< 40, 12, a*b^3*c^13>,< 40, 12, a*b*c^37>,< 40, 12, a*b^3*c^37>,< 40, 12, a*b*c^13>,< 40, 12, a*b*c^9>,< 40, 12, a*b^3*c>,< 60, 2, c>,< 60, 2, c^49>,< 60, 2, c^17>,< 60, 2, c^53>,< 60, 2, c^13>,< 60, 2, c^37>,< 60, 2, c^29>,< 60, 2, c^41>,< 60, 2, b^4*c>,< 60, 2, b^4*c^49>,< 60, 2, b^4*c^17>,< 60, 2, b^4*c^53>,< 60, 2, b^4*c^13>,< 60, 2, b^4*c^37>,< 60, 2, b^4*c^29>,< 60, 2, b^4*c^41>,< 60, 2, b^2*c^4>,< 60, 2, b^6*c^16>,< 60, 2, b^6*c^8>,< 60, 2, b^2*c^32>,< 60, 2, b^6*c^4>,< 60, 2, b^2*c^16>,< 60, 2, b^2*c^8>,< 60, 2, b^6*c^32>,< 60, 2, b^2*c^2>,< 60, 2, b^6*c^38>,< 60, 2, b^6*c^14>,< 60, 2, b^2*c^26>,< 60, 2, b^6*c^2>,< 60, 2, b^2*c^38>,< 60, 2, b^2*c^14>,< 60, 2, b^6*c^26>,< 60, 2, b^2*c>,< 60, 2, b^6*c^49>,< 60, 2, b^6*c^17>,< 60, 2, b^2*c^53>,< 60, 2, b^6*c>,< 60, 2, b^2*c^49>,< 60, 2, b^2*c^13>,< 60, 2, b^6*c^37>,< 60, 2, b^2*c^17>,< 60, 2, b^6*c^53>,< 60, 2, b^6*c^29>,< 60, 2, b^2*c^41>,< 60, 2, b^6*c^13>,< 60, 2, b^2*c^37>,< 60, 2, b^2*c^29>,< 60, 2, b^6*c^41>,< 60, 2, a*c^4>,< 60, 2, a*b^4*c^26>,< 60, 2, a*c^38>,< 60, 2, a*c^32>,< 60, 2, a*b^4*c^14>,< 60, 2, a*c^16>,< 60, 2, a*c^52>,< 60, 2, a*b^4*c^38>,< 60, 2, a*c^8>,< 60, 2, a*c^2>,< 60, 2, a*c^26>,< 60, 2, a*b^4*c^4>,< 60, 2, a*b^4*c^2>,< 60, 2, a*c^28>,< 60, 2, a*c^56>,< 60, 2, a*c^14>,< 60, 2, a*c>,< 60, 2, a*c^19>,< 60, 2, a*b^4*c^37>,< 60, 2, a*c^53>,< 60, 2, a*c^31>,< 60, 2, a*c^49>,< 60, 2, a*c^13>,< 60, 2, a*c^7>,< 60, 2, a*c^17>,< 60, 2, a*b^4*c^13>,< 60, 2, a*b^4*c^49>,< 60, 2, a*c^41>,< 60, 2, a*c^43>,< 60, 2, a*c^37>,< 60, 2, a*c^29>,< 60, 2, a*b^4*c>,< 60, 2, a*b^2*c^4>,< 60, 2, a*b^2*c^26>,< 60, 2, a*b^6*c^38>,< 60, 2, a*b^2*c^32>,< 60, 2, a*b^2*c^14>,< 60, 2, a*b^2*c^16>,< 60, 2, a*b^2*c^52>,< 60, 2, a*b^2*c^38>,< 60, 2, a*b^2*c^8>,< 60, 2, a*b^6*c^2>,< 60, 2, a*b^6*c^26>,< 60, 2, a*b^6*c^4>,< 60, 2, a*b^2*c^2>,< 60, 2, a*b^2*c^28>,< 60, 2, a*b^2*c^56>,< 60, 2, a*b^6*c^14>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,1,1,1,1,-1,-1,1,-1,-1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,-1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,1,1,1,1,-1,-1,1,-1,-1,1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,-1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,1,1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,1,1,-1,1,1,1,1,1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^-1,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1,K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1,K.1^-2,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^-2,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,K.1^-2,K.1,K.1^-1,K.1^2,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1,-1*K.1^2,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^2,K.1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^2,-1*K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^-1,K.1^-2,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^2,K.1^-1,-1*K.1^2,K.1,-1*K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,-1*K.1^2,K.1^2,K.1^-1,-1*K.1,K.1^2,K.1,K.1^2,K.1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-2,K.1^2,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,K.1^2,K.1^-1,K.1,K.1^-2,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^-2,K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1^2,-1*K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-2,-1*K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1,K.1^2,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1,K.1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-2,K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,-1*K.1^-2,K.1^-2,K.1,-1*K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1^2,K.1^-2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,K.1^-1,K.1^-2,K.1^2,K.1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^-2,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1,K.1^-2,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,K.1,-1*K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^2,K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1^2,-1*K.1,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^-1,-1*K.1,K.1^2,K.1,K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,-1*K.1,K.1,K.1^2,-1*K.1^-2,K.1,K.1^-2,K.1,K.1^-2,-1*K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,K.1,K.1^2,K.1^-2,K.1^-1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1^-2,K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-2,K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-1,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,K.1,K.1,K.1^2,K.1^2,K.1,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,K.1^-1,K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,K.1^-2,-1*K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,K.1^-2,K.1,K.1^-1,K.1^2,-1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1,-1*K.1^2,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^2,K.1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,K.1^-2,-1*K.1,K.1,K.1^-2,K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^-1,K.1^-2,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^2,K.1^-1,-1*K.1^2,K.1,-1*K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,-1*K.1^2,K.1^2,K.1^-1,-1*K.1,K.1^2,K.1,K.1^2,K.1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-2,K.1^2,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,K.1^2,K.1^-1,K.1,K.1^-2,-1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^-2,K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1^2,-1*K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^2,-1*K.1^-1,K.1^-1,K.1^2,K.1,-1*K.1^2,K.1^2,-1*K.1,K.1^-2,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1,K.1^2,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1,K.1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-2,K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,-1*K.1^-2,K.1^-2,K.1,-1*K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1^2,K.1^-2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,K.1^-1,K.1^-2,K.1^2,K.1,-1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^-2,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1,K.1^-2,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-2,K.1^-1,-1*K.1^-2,K.1^-2,K.1^-1,K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^2,K.1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^-2,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^2,K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1^2,-1*K.1,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^-1,-1*K.1,K.1^2,K.1,K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,-1*K.1,K.1,K.1^2,-1*K.1^-2,K.1,K.1^-2,K.1,K.1^-2,-1*K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,K.1,K.1^2,K.1^-2,K.1^-1,-1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,K.1,-1*K.1^2,K.1^2,K.1,K.1^-2,-1*K.1,K.1,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^2,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1^-2,K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-2,K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-1,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,K.1,K.1,K.1^2,K.1^2,K.1,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,K.1^-1,K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,K.1^-2,-1*K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,1,-1,1,K.1^-2,K.1,K.1^-1,K.1^2,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,1,1,-1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,K.1,K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^-1,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,-1*K.1,K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-2,K.1^-1,K.1^2,K.1^-1,-1*K.1,K.1^-1,K.1^-1,K.1,K.1^2,-1*K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1,K.1^-2,K.1^-2,-1*K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,K.1,K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,1,-1,1,K.1^2,K.1^-1,K.1,K.1^-2,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,1,1,-1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,-1*K.1^2,K.1^2,K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1^2,-1*K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^2,-1*K.1,K.1^2,-1*K.1^2,K.1,K.1^-2,K.1,-1*K.1^-1,K.1,K.1,K.1^-1,K.1^-2,-1*K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1,K.1^2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,-1*K.1^-2,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^2,K.1^2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^2,K.1^-2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,1,-1,1,K.1^-1,K.1^-2,K.1^2,K.1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,1,1,-1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^2,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^2,K.1,K.1^2,-1*K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,-1*K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1,-1*K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1,K.1^2,K.1^-2,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1,K.1^-1,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,1,-1,1,K.1,K.1^2,K.1^-2,K.1^-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,1,1,-1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,-1*K.1,K.1,K.1^2,K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,-1*K.1^2,K.1,-1*K.1^-2,K.1,-1*K.1,K.1^-2,K.1^-1,K.1^-2,-1*K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,-1*K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^-2,K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,-1*K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^2,K.1,K.1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1,K.1,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,1,-1,1,K.1^-2,K.1,K.1^-1,K.1^2,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,1,1,-1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,K.1,K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^-1,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,-1*K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,-1*K.1,K.1,-1*K.1^-2,K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1,K.1^-2,K.1^-2,-1*K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,K.1,K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,1,-1,1,K.1^2,K.1^-1,K.1,K.1^-2,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,1,1,-1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,-1*K.1^2,K.1^2,K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1^2,-1*K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-2,K.1,K.1^-1,K.1^2,K.1,-1*K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^2,K.1,-1*K.1^2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1,K.1^2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,-1*K.1^-2,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^2,K.1^2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^2,K.1^-2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,1,-1,1,K.1^-1,K.1^-2,K.1^2,K.1,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,1,1,-1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^2,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,-1*K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1,-1*K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1,K.1^2,K.1^-2,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1,K.1^-1,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,1,-1,1,K.1,K.1^2,K.1^-2,K.1^-1,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,1,1,-1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,-1*K.1,K.1,K.1^2,K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1,-1*K.1^2,K.1^2,-1*K.1,K.1^-2,-1*K.1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,K.1^-1,K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^-2,K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,-1*K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^2,K.1,K.1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1,K.1,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,K.1^-2,K.1,K.1^-1,K.1^2,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,1,1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^2,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,K.1,K.1^2,-1*K.1,K.1,-1*K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1,K.1^-2,K.1^-1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^2,K.1,K.1^-1,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,-1*K.1^-1,K.1^2,K.1,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,K.1^2,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,K.1^2,K.1^-1,K.1,K.1^-2,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,1,1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-2,K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^2,K.1^2,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1,K.1^-1,K.1^2,K.1,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^-2,K.1,K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,K.1,K.1^2,-1*K.1^-2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^2,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^2,K.1^-2,K.1,K.1^-2,-1*K.1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,K.1^-1,K.1^-2,K.1^2,K.1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,1,1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^-2,K.1,-1*K.1^-2,K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1^2,K.1^-2,K.1^-1,K.1^2,-1*K.1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1,K.1^2,K.1^-2,-1*K.1^2,K.1^2,K.1^-2,K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1,K.1^-2,K.1^2,K.1^-1,-1*K.1,K.1^2,-1*K.1,-1*K.1,K.1^-1,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^2,K.1,-1*K.1^2,K.1,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,K.1,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,K.1,K.1^2,K.1^-2,K.1^-1,1,1,1,1,1,1,1,-1,1,1,-1,-1,-1,1,1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1^2,K.1^-1,-1*K.1^2,K.1^2,-1*K.1,K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1,K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^-1,K.1^2,K.1^-2,K.1,-1*K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1,K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,K.1^-2,K.1,K.1^-1,K.1^2,1,1,1,1,1,1,1,1,-1,-1,1,1,1,-1,-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^2,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,K.1,K.1^2,-1*K.1,K.1,-1*K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,K.1^-2,K.1,K.1,-1*K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^2,K.1,K.1^-1,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,-1*K.1^-1,K.1^2,K.1,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,K.1^2,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,K.1^2,K.1^-1,K.1,K.1^-2,1,1,1,1,1,1,1,1,-1,-1,1,1,1,-1,-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-2,K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^2,K.1^2,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-1,-1*K.1^2,K.1,K.1^2,K.1^2,K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,K.1,K.1^2,-1*K.1^-2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^2,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^2,K.1^-2,K.1,K.1^-2,-1*K.1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,K.1^-1,K.1^-2,K.1^2,K.1,1,1,1,1,1,1,1,1,-1,-1,1,1,1,-1,-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^-2,K.1,-1*K.1^-2,K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-2,-1*K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1,K.1^-2,K.1^2,K.1^-1,-1*K.1,K.1^2,-1*K.1,-1*K.1,K.1^-1,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^2,K.1,-1*K.1^2,K.1,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,K.1,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,K.1,K.1^2,K.1^-2,K.1^-1,1,1,1,1,1,1,1,1,-1,-1,1,1,1,-1,-1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1^2,K.1^-1,-1*K.1^2,K.1^2,-1*K.1,K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,K.1,K.1^2,K.1^2,-1*K.1,K.1^-2,K.1,K.1,K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^-1,K.1^2,K.1^-2,K.1,-1*K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1,K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^-1,K.1^2,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1,K.1^-2,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,K.1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1,K.1^-2,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^-2,K.1^-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1,-1,1,-1,-1,1,1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^8,K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^6,K.1^6,K.1^4,K.1^8,-1*K.1^6,K.1^6,K.1^2,K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^8,-1*K.1^4,K.1^4,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^2,K.1^8,K.1^2,K.1^8,-1*K.1^2,-1*K.1^2,K.1^6,K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^6,K.1^4,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^3,K.1,-1*K.1^9,K.1^7,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^7,K.1^3,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^7,-1*K.1,K.1^3,-1*K.1,K.1^9,K.1,K.1,K.1^9,-1*K.1^3,K.1,K.1^9,K.1^7,-1*K.1^9,K.1^7,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^4,K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^2,K.1^8,-1*K.1^2,-1*K.1^8,K.1^4,-1*K.1^2,K.1^8,K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,K.1^6,K.1^8,K.1^8,K.1^2,-1*K.1^6,K.1^4,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^6,-1*K.1^8,K.1^6,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^8,K.1^4,K.1^6,K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^4,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^8,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1,-1,1,-1,-1,1,1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,K.1^6,K.1^2,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^2,K.1^2,K.1^4,-1*K.1^8,K.1^8,K.1^8,K.1^6,-1*K.1^6,K.1^8,K.1^2,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,K.1^8,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^2,K.1^8,K.1^8,-1*K.1^4,-1*K.1^6,K.1^4,K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^4,-1*K.1^8,K.1^8,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^6,K.1^4,K.1^7,-1*K.1^9,K.1,-1*K.1^3,K.1^9,-1*K.1^7,K.1^7,-1*K.1^7,K.1^3,-1*K.1^7,K.1^7,-1*K.1,K.1^3,K.1,K.1,K.1^3,K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^7,K.1^9,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1,K.1^7,-1*K.1^9,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^2,-1*K.1^8,K.1^4,K.1^6,K.1^8,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^2,K.1^8,K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,K.1^6,K.1^4,K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^2,-1*K.1^4,K.1^6,K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^6,K.1^6,K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,K.1^6,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^8,K.1^2,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1,-1,1,-1,-1,1,1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^8,K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^6,K.1^6,K.1^4,K.1^8,-1*K.1^6,K.1^6,K.1^2,K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^8,-1*K.1^4,K.1^4,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^2,K.1^8,K.1^2,K.1^8,-1*K.1^2,-1*K.1^2,K.1^6,K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^6,K.1^4,K.1^6,-1*K.1^4,-1*K.1^6,K.1^3,-1*K.1,K.1^9,-1*K.1^7,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^7,-1*K.1^3,K.1^3,-1*K.1^9,K.1^7,K.1^9,K.1^9,K.1^7,K.1,K.1^7,-1*K.1^7,K.1,-1*K.1^3,K.1,-1*K.1^9,-1*K.1,-1*K.1,-1*K.1^9,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^7,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^4,K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^2,K.1^8,-1*K.1^2,-1*K.1^8,K.1^4,-1*K.1^2,K.1^8,K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,K.1^6,K.1^8,K.1^8,K.1^2,-1*K.1^6,K.1^4,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^6,-1*K.1^8,K.1^6,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^8,K.1^4,K.1^6,K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^4,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^8,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1,-1,1,-1,-1,1,1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,K.1^6,K.1^2,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^2,K.1^2,K.1^4,-1*K.1^8,K.1^8,K.1^8,K.1^6,-1*K.1^6,K.1^8,K.1^2,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,K.1^8,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^2,K.1^8,K.1^8,-1*K.1^4,-1*K.1^6,K.1^4,K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^4,-1*K.1^8,K.1^8,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^6,K.1^4,-1*K.1^7,K.1^9,-1*K.1,K.1^3,-1*K.1^9,K.1^7,-1*K.1^7,K.1^7,-1*K.1^3,K.1^7,-1*K.1^7,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^7,-1*K.1^9,K.1,K.1^9,K.1^9,K.1,-1*K.1^7,K.1^9,K.1,K.1^3,-1*K.1,K.1^3,K.1^2,-1*K.1^8,K.1^4,K.1^6,K.1^8,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^2,K.1^8,K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,K.1^6,K.1^4,K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^2,-1*K.1^4,K.1^6,K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^6,K.1^6,K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,K.1^6,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^8,K.1^2,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1,-1,1,-1,-1,1,1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^2,K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^4,K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^8,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^2,K.1^4,K.1^8,-1*K.1^8,K.1^6,K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^6,K.1^4,K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^8,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^8,K.1^2,K.1^8,K.1^9,-1*K.1^3,K.1^7,-1*K.1,K.1^3,-1*K.1^9,K.1^9,-1*K.1^9,K.1,-1*K.1^9,K.1^9,-1*K.1^7,K.1,K.1^7,K.1^7,K.1,K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^9,K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1,K.1^7,-1*K.1,-1*K.1^4,K.1^6,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^6,K.1^6,K.1^8,K.1^6,K.1^6,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^8,K.1^4,K.1^4,K.1^6,K.1^8,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^4,K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,-1*K.1^8,K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^6,-1*K.1^4,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1,-1,1,-1,-1,1,1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^8,K.1^4,K.1^4,K.1^6,K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^8,K.1^4,K.1^6,-1*K.1^2,K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,K.1^8,-1*K.1^6,-1*K.1^8,K.1^8,-1*K.1^4,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^6,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^4,K.1^4,K.1^2,K.1^8,-1*K.1^2,K.1^6,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^2,K.1^8,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1,K.1^7,-1*K.1^3,K.1^9,-1*K.1^7,K.1,-1*K.1,K.1,-1*K.1^9,K.1,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^9,K.1^9,-1*K.1^7,K.1,-1*K.1^7,K.1^3,K.1^7,K.1^7,K.1^3,-1*K.1,K.1^7,K.1^3,K.1^9,-1*K.1^3,K.1^9,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^4,K.1^6,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^6,K.1^4,K.1^6,K.1^8,K.1^4,-1*K.1^6,K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^8,K.1^4,K.1^8,K.1^4,K.1^6,K.1^2,-1*K.1^8,K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^6,K.1^8,K.1^2,-1*K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,K.1^2,-1*K.1^8,-1*K.1^8,K.1^4,K.1^6,K.1^8,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1,-1,1,-1,-1,1,1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^2,K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^4,K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^8,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^2,K.1^4,K.1^8,-1*K.1^8,K.1^6,K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^6,K.1^4,K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^8,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^8,K.1^2,K.1^8,-1*K.1^9,K.1^3,-1*K.1^7,K.1,-1*K.1^3,K.1^9,-1*K.1^9,K.1^9,-1*K.1,K.1^9,-1*K.1^9,K.1^7,-1*K.1,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^9,-1*K.1^3,K.1^7,K.1^3,K.1^3,K.1^7,-1*K.1^9,K.1^3,K.1^7,K.1,-1*K.1^7,K.1,-1*K.1^4,K.1^6,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^6,K.1^6,K.1^8,K.1^6,K.1^6,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^8,K.1^4,K.1^4,K.1^6,K.1^8,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^4,K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,-1*K.1^8,K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^6,-1*K.1^4,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1,-1,1,-1,-1,1,1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^8,K.1^4,K.1^4,K.1^6,K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^8,K.1^4,K.1^6,-1*K.1^2,K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,K.1^8,-1*K.1^6,-1*K.1^8,K.1^8,-1*K.1^4,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^6,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^4,K.1^4,K.1^2,K.1^8,-1*K.1^2,K.1^6,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^2,K.1^8,K.1^2,-1*K.1^8,-1*K.1^2,K.1,-1*K.1^7,K.1^3,-1*K.1^9,K.1^7,-1*K.1,K.1,-1*K.1,K.1^9,-1*K.1,K.1,-1*K.1^3,K.1^9,K.1^3,K.1^3,K.1^9,K.1^7,K.1^9,-1*K.1^9,K.1^7,-1*K.1,K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1,-1*K.1^7,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^4,K.1^6,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^6,K.1^4,K.1^6,K.1^8,K.1^4,-1*K.1^6,K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^8,K.1^4,K.1^8,K.1^4,K.1^6,K.1^2,-1*K.1^8,K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^6,K.1^8,K.1^2,-1*K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,K.1^2,-1*K.1^8,-1*K.1^8,K.1^4,K.1^6,K.1^8,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1,-1,1,-1,-1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^6,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^8,K.1^8,K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,K.1^8,K.1^6,-1*K.1^6,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^2,K.1^8,K.1^2,K.1^8,-1*K.1^2,-1*K.1^2,K.1^6,K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^6,K.1^4,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^3,K.1,K.1^9,-1*K.1^7,K.1,K.1^3,K.1^3,K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^9,K.1^7,-1*K.1,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^3,K.1,-1*K.1^9,K.1,-1*K.1,-1*K.1^9,K.1^3,-1*K.1,K.1^9,K.1^7,K.1^9,-1*K.1^7,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^8,K.1^2,K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^4,K.1^6,K.1^2,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^4,K.1^6,K.1^4,K.1^2,K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^4,K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^8,K.1^6,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^4,K.1^4,K.1^2,K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^8,K.1^8,K.1^6,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^4,K.1^4,K.1^2,K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1,-1,1,-1,-1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,K.1^6,K.1^2,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,K.1^2,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^6,K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,K.1^6,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^2,K.1^8,K.1^8,-1*K.1^4,-1*K.1^6,K.1^4,K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^4,-1*K.1^8,K.1^8,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^6,K.1^4,K.1^7,-1*K.1^9,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1^7,K.1^7,-1*K.1,K.1^3,K.1,K.1,-1*K.1^3,K.1^9,K.1^3,-1*K.1^3,K.1^9,K.1^7,-1*K.1^9,K.1,-1*K.1^9,K.1^9,K.1,-1*K.1^7,K.1^9,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^2,-1*K.1^8,K.1^4,K.1^6,-1*K.1^8,K.1^2,K.1^6,K.1^8,K.1^8,-1*K.1^4,-1*K.1^8,K.1^8,K.1^2,-1*K.1^8,-1*K.1^2,K.1^6,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^2,K.1^4,K.1^2,K.1^2,K.1^8,K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^6,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,K.1^6,K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^6,K.1^2,K.1^6,K.1^2,K.1^6,K.1^4,K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^6,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^8,K.1^2,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1,-1,1,-1,-1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^6,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^8,K.1^8,K.1^6,-1*K.1^2,K.1^2,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,K.1^8,K.1^6,-1*K.1^6,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,K.1^2,K.1^8,K.1^2,K.1^8,-1*K.1^2,-1*K.1^2,K.1^6,K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^6,K.1^4,K.1^6,-1*K.1^4,-1*K.1^6,K.1^3,-1*K.1,-1*K.1^9,K.1^7,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1^3,K.1^3,-1*K.1^9,K.1^7,K.1^9,K.1^9,-1*K.1^7,K.1,K.1^7,-1*K.1^7,K.1,K.1^3,-1*K.1,K.1^9,-1*K.1,K.1,K.1^9,-1*K.1^3,K.1,-1*K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^2,-1*K.1^8,K.1^2,K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^4,K.1^6,K.1^2,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^4,K.1^6,K.1^4,K.1^2,K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^4,K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^8,K.1^6,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^4,K.1^4,K.1^2,K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^8,K.1^8,K.1^6,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^4,K.1^4,K.1^2,K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1,-1,1,-1,-1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,K.1^6,K.1^2,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,K.1^2,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^6,K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,K.1^6,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^2,K.1^8,K.1^8,-1*K.1^4,-1*K.1^6,K.1^4,K.1^2,K.1^6,-1*K.1^6,K.1^6,K.1^4,-1*K.1^8,K.1^8,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^6,K.1^4,-1*K.1^7,K.1^9,K.1,-1*K.1^3,K.1^9,K.1^7,K.1^7,K.1^7,K.1^3,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1,K.1^9,-1*K.1^9,-1*K.1,K.1^7,-1*K.1^9,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^2,-1*K.1^8,K.1^4,K.1^6,-1*K.1^8,K.1^2,K.1^6,K.1^8,K.1^8,-1*K.1^4,-1*K.1^8,K.1^8,K.1^2,-1*K.1^8,-1*K.1^2,K.1^6,K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^2,K.1^4,K.1^2,K.1^2,K.1^8,K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^6,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,K.1^6,K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^6,K.1^2,K.1^6,K.1^2,K.1^6,K.1^4,K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^6,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^8,K.1^2,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1,-1,1,-1,-1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^2,K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^4,K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^4,-1*K.1^8,K.1^8,K.1^2,K.1^4,K.1^8,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^6,K.1^4,K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^8,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^8,K.1^2,K.1^8,K.1^9,-1*K.1^3,-1*K.1^7,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1,K.1^9,K.1^9,-1*K.1^7,K.1,K.1^7,K.1^7,-1*K.1,K.1^3,K.1,-1*K.1,K.1^3,K.1^9,-1*K.1^3,K.1^7,-1*K.1^3,K.1^3,K.1^7,-1*K.1^9,K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,K.1,K.1^4,K.1^6,K.1^8,K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^4,K.1^6,K.1^4,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^6,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^2,-1*K.1^6,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^2,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^4,-1*K.1^8,-1*K.1^4,K.1^8,K.1^4,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^8,-1*K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,K.1^8,-1*K.1^2,-1*K.1^2,K.1^6,K.1^4,K.1^2,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1,-1,1,-1,-1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^8,K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^4,K.1^4,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^6,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^4,K.1^4,K.1^2,K.1^8,-1*K.1^2,K.1^6,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^2,K.1^8,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1,K.1^7,K.1^3,-1*K.1^9,K.1^7,K.1,K.1,K.1,K.1^9,-1*K.1,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1^9,K.1^9,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1^3,K.1,-1*K.1^7,K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^4,K.1^4,K.1^2,-1*K.1^4,K.1^4,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^8,K.1^4,K.1^6,K.1^8,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^4,-1*K.1^2,K.1^6,K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^2,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^8,K.1^2,K.1^2,K.1^2,K.1^4,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^4,K.1^6,-1*K.1^6,K.1^2,K.1^8,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^8,K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^6,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1,-1,1,-1,-1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^2,K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^4,K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^4,-1*K.1^8,K.1^8,K.1^2,K.1^4,K.1^8,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^6,K.1^4,K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^8,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,K.1^8,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^8,K.1^2,K.1^8,-1*K.1^9,K.1^3,K.1^7,-1*K.1,K.1^3,K.1^9,K.1^9,K.1^9,K.1,-1*K.1^9,-1*K.1^9,K.1^7,-1*K.1,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^7,K.1^3,-1*K.1^3,-1*K.1^7,K.1^9,-1*K.1^3,K.1^7,K.1,K.1^7,-1*K.1,K.1^4,K.1^6,K.1^8,K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^4,K.1^6,K.1^4,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^6,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^2,-1*K.1^6,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^2,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^4,-1*K.1^8,-1*K.1^4,K.1^8,K.1^4,K.1^2,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^8,-1*K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,K.1^8,-1*K.1^2,-1*K.1^2,K.1^6,K.1^4,K.1^2,K.1^8,K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1,-1,1,-1,-1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^8,K.1^4,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^4,K.1^4,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^6,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^4,K.1^4,K.1^2,K.1^8,-1*K.1^2,K.1^6,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^2,K.1^8,K.1^2,-1*K.1^8,-1*K.1^2,K.1,-1*K.1^7,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1,-1*K.1^9,K.1,K.1,-1*K.1^3,K.1^9,K.1^3,K.1^3,-1*K.1^9,K.1^7,K.1^9,-1*K.1^9,K.1^7,K.1,-1*K.1^7,K.1^3,-1*K.1^7,K.1^7,K.1^3,-1*K.1,K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^4,K.1^4,K.1^2,-1*K.1^4,K.1^4,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^8,K.1^4,K.1^6,K.1^8,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^4,-1*K.1^2,K.1^6,K.1^8,K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^2,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^8,K.1^2,K.1^2,K.1^2,K.1^4,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^4,K.1^6,-1*K.1^6,K.1^2,K.1^8,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^8,K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^6,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,1,1,1,1,1,1,1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,K.1^8,-1*K.1^6,K.1^6,K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^4,K.1^8,K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^8,-1*K.1^4,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^3,K.1,-1*K.1^9,K.1^7,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^7,K.1^3,-1*K.1^3,K.1^9,-1*K.1^7,K.1^9,-1*K.1^9,K.1^7,-1*K.1,K.1^7,K.1^7,K.1,-1*K.1^3,K.1,K.1^9,-1*K.1,-1*K.1,-1*K.1^9,K.1^3,K.1,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^7,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^8,K.1^2,K.1^8,K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^8,K.1^6,K.1^8,-1*K.1^8,K.1^2,K.1^6,K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,K.1^4,K.1^6,-1*K.1^4,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^8,K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,K.1^4,-1*K.1^4,-1*K.1^2,K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,1,1,1,1,1,1,1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^4,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,K.1^2,K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^8,K.1^2,K.1^2,K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^4,K.1^4,K.1^8,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,K.1^8,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^7,-1*K.1^9,K.1,-1*K.1^3,K.1^9,K.1^7,K.1^7,-1*K.1^7,K.1^3,-1*K.1^7,K.1^7,-1*K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^9,K.1^7,-1*K.1^9,-1*K.1,K.1^9,K.1^9,K.1,-1*K.1^7,-1*K.1^9,K.1,K.1^3,-1*K.1,K.1^3,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^8,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^4,K.1^6,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^4,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^4,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^4,-1*K.1^6,K.1^6,K.1^8,-1*K.1^2,K.1^6,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,1,1,1,1,1,1,1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,K.1^8,-1*K.1^6,K.1^6,K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^4,K.1^8,K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^8,-1*K.1^4,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^7,K.1,K.1^3,K.1^3,-1*K.1^3,K.1^7,-1*K.1^3,K.1^3,-1*K.1^9,K.1^7,-1*K.1^9,K.1^9,-1*K.1^7,K.1,-1*K.1^7,-1*K.1^7,-1*K.1,K.1^3,-1*K.1,-1*K.1^9,K.1,K.1,K.1^9,-1*K.1^3,-1*K.1,K.1^9,K.1^7,-1*K.1^9,K.1^7,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^2,K.1^8,K.1^2,K.1^8,K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^8,K.1^6,K.1^8,-1*K.1^8,K.1^2,K.1^6,K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,K.1^4,K.1^6,-1*K.1^4,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^8,K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^6,K.1^4,-1*K.1^4,-1*K.1^2,K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,1,1,1,1,1,1,1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^4,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,K.1^2,K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^8,K.1^2,K.1^2,K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^4,K.1^4,K.1^8,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,K.1^8,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,K.1^7,K.1^9,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^3,K.1^7,-1*K.1^7,K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^9,K.1^3,K.1^3,K.1^9,-1*K.1^7,K.1^9,K.1,-1*K.1^9,-1*K.1^9,-1*K.1,K.1^7,K.1^9,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^8,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^4,K.1^6,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^4,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^4,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^4,-1*K.1^6,K.1^6,K.1^8,-1*K.1^2,K.1^6,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,1,1,1,1,1,1,1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^8,K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^4,K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^4,-1*K.1^8,K.1^8,-1*K.1^6,K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1,K.1^3,K.1^9,K.1^9,-1*K.1^9,K.1,-1*K.1^9,K.1^9,-1*K.1^7,K.1,-1*K.1^7,K.1^7,-1*K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^7,K.1^3,K.1^3,K.1^7,-1*K.1^9,-1*K.1^3,K.1^7,K.1,-1*K.1^7,K.1,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^6,-1*K.1^6,K.1^4,K.1^6,K.1^4,-1*K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,K.1^4,K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,K.1^2,K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^2,K.1^2,-1*K.1^6,K.1^4,K.1^2,-1*K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,1,1,1,1,1,1,1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^4,K.1^6,K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^2,K.1^2,K.1^8,K.1^6,K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^8,K.1^6,K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1,K.1^7,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1,-1*K.1,K.1,-1*K.1^9,K.1,-1*K.1,K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^7,K.1^9,K.1^9,K.1^7,-1*K.1,K.1^7,K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1,K.1^7,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^8,K.1^2,-1*K.1^8,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^2,K.1^8,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,1,1,1,1,1,1,1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^8,K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^4,K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^4,-1*K.1^8,K.1^8,-1*K.1^6,K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,K.1^9,K.1^3,-1*K.1^7,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1,K.1^9,-1*K.1^9,K.1^7,-1*K.1,K.1^7,-1*K.1^7,K.1,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1^9,K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1^9,K.1^3,-1*K.1^7,-1*K.1,K.1^7,-1*K.1,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^6,-1*K.1^6,K.1^4,K.1^6,K.1^4,-1*K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,K.1^4,K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^2,-1*K.1^8,K.1^2,K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^2,K.1^2,-1*K.1^6,K.1^4,K.1^2,-1*K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,1,1,1,1,1,1,1,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^4,K.1^6,K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^8,K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^2,K.1^2,K.1^8,K.1^6,K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^8,K.1^6,K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1,-1*K.1^7,K.1^3,-1*K.1^9,K.1^7,K.1,K.1,-1*K.1,K.1^9,-1*K.1,K.1,-1*K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1,-1*K.1^7,-1*K.1^3,K.1^7,K.1^7,K.1^3,-1*K.1,-1*K.1^7,K.1^3,K.1^9,-1*K.1^3,K.1^9,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^6,K.1^6,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^8,K.1^2,-1*K.1^8,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^4,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^2,K.1^8,-1*K.1^8,K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,1,1,1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^8,K.1^2,K.1^8,K.1^4,-1*K.1^2,K.1^2,K.1^8,K.1^8,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^8,K.1^4,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^3,K.1,K.1^9,-1*K.1^7,K.1,-1*K.1^3,K.1^3,K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^7,-1*K.1,K.1^7,K.1^7,K.1,K.1^3,-1*K.1,-1*K.1^9,-1*K.1,K.1,K.1^9,-1*K.1^3,-1*K.1,-1*K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^2,K.1^6,K.1^4,-1*K.1^4,-1*K.1^6,K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,K.1^6,K.1^4,-1*K.1^8,-1*K.1^4,K.1^8,K.1^4,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^4,K.1^4,K.1^2,-1*K.1^8,K.1^4,-1*K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,1,1,1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^4,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^4,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^6,K.1^2,K.1^6,K.1^6,K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,K.1^8,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^7,-1*K.1^9,-1*K.1,K.1^3,-1*K.1^9,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1^7,K.1^7,-1*K.1,K.1^3,-1*K.1,K.1,K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^7,K.1^9,K.1,K.1^9,-1*K.1^9,-1*K.1,K.1^7,K.1^9,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^2,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,K.1^4,K.1^2,K.1^2,K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,K.1^4,-1*K.1^6,-1*K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^6,K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^2,-1*K.1^4,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^8,K.1^2,-1*K.1^6,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^8,K.1^2,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,1,1,1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^8,K.1^4,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^8,K.1^2,K.1^8,K.1^4,-1*K.1^2,K.1^2,K.1^8,K.1^8,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^8,K.1^4,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1,-1*K.1^9,K.1^7,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1^3,K.1^3,-1*K.1^9,K.1^7,-1*K.1^9,K.1^9,K.1^7,K.1,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1^3,K.1,K.1^9,K.1,-1*K.1,-1*K.1^9,K.1^3,K.1,K.1^9,K.1^7,K.1^9,-1*K.1^7,K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^2,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^8,K.1^6,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^2,K.1^6,K.1^4,-1*K.1^4,-1*K.1^6,K.1^4,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,K.1^6,K.1^4,-1*K.1^8,-1*K.1^4,K.1^8,K.1^4,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^6,-1*K.1^4,K.1^4,K.1^2,-1*K.1^8,K.1^4,-1*K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,1,1,1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^4,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^4,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^6,K.1^2,K.1^6,K.1^6,K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,K.1^8,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,K.1^7,K.1^9,K.1,-1*K.1^3,K.1^9,-1*K.1^7,K.1^7,K.1^7,K.1^3,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^9,K.1^3,K.1^3,K.1^9,K.1^7,-1*K.1^9,-1*K.1,-1*K.1^9,K.1^9,K.1,-1*K.1^7,-1*K.1^9,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^2,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,K.1^4,K.1^2,K.1^2,K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,K.1^4,-1*K.1^6,-1*K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^6,K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^2,-1*K.1^4,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^8,K.1^2,-1*K.1^6,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^8,K.1^2,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,1,1,1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^4,K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^6,K.1^4,K.1^4,-1*K.1^8,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^8,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^4,-1*K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^9,-1*K.1^3,-1*K.1^7,K.1,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1,K.1^9,K.1^9,-1*K.1^7,K.1,-1*K.1^7,K.1^7,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^9,K.1^3,K.1^7,K.1^3,-1*K.1^3,-1*K.1^7,K.1^9,K.1^3,K.1^7,K.1,K.1^7,-1*K.1,K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,K.1^6,-1*K.1^8,K.1^6,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^2,K.1^6,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^2,K.1^8,-1*K.1^2,-1*K.1^8,K.1^8,K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,K.1^2,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^2,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,1,1,1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^2,K.1^4,K.1^4,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^2,-1*K.1^8,K.1^6,K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1,K.1^7,K.1^3,-1*K.1^9,K.1^7,-1*K.1,K.1,K.1,K.1^9,-1*K.1,-1*K.1,K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^7,K.1^9,K.1^9,K.1^7,K.1,-1*K.1^7,-1*K.1^3,-1*K.1^7,K.1^7,K.1^3,-1*K.1,-1*K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^2,K.1^6,K.1^6,K.1^4,K.1^2,K.1^8,-1*K.1^8,-1*K.1^2,K.1^8,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^8,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,K.1^2,K.1^8,K.1^6,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^8,K.1^8,-1*K.1^4,K.1^6,K.1^8,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^4,K.1^6,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,1,1,1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^4,K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^6,K.1^4,K.1^4,-1*K.1^8,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^8,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^4,-1*K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,K.1^9,K.1^3,K.1^7,-1*K.1,K.1^3,-1*K.1^9,K.1^9,K.1^9,K.1,-1*K.1^9,-1*K.1^9,K.1^7,-1*K.1,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^3,K.1,K.1,K.1^3,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^3,K.1^3,K.1^7,-1*K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,K.1,K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,K.1^6,-1*K.1^8,K.1^6,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,K.1^4,-1*K.1^8,K.1^2,K.1^6,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^2,K.1^2,K.1^8,-1*K.1^2,-1*K.1^8,K.1^8,K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^8,K.1^2,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^2,K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,1,1,1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^6,K.1^2,K.1^4,K.1^4,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^2,-1*K.1^8,K.1^6,K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^8,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^6,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,-1*K.1^6,K.1^4,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1,-1*K.1^7,-1*K.1^3,K.1^9,-1*K.1^7,K.1,-1*K.1,-1*K.1,-1*K.1^9,K.1,K.1,-1*K.1^3,K.1^9,-1*K.1^3,K.1^3,K.1^9,K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^7,-1*K.1,K.1^7,K.1^3,K.1^7,-1*K.1^7,-1*K.1^3,K.1,K.1^7,K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^2,K.1^6,K.1^6,K.1^4,K.1^2,K.1^8,-1*K.1^8,-1*K.1^2,K.1^8,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^8,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,K.1^2,K.1^8,K.1^6,-1*K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^8,K.1^8,-1*K.1^4,K.1^6,K.1^8,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^4,K.1^6,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -1, 2, 2, 2, 2, -2, 2, -2, -2, 2, 2, -2, -2, 2, -2, 2, 2, 2, 2, 1, 1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, 2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -1, 2, 2, 2, 2, 2, -2, 2, -2, -2, -2, -2, 2, -2, 2, 2, 2, 2, 2, 1, 1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, -2, 2, 2, 2, -2, -2, 2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, 2, -2, -2, -2, 2, -2, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -1, 2, 2, 2, 2, -2, -2, -2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, -2, -2, -2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, -2, 2, -2, 2, -2, -2, -2, 2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -1, -2, -2, -2, -2, -2, -2, 2, 2, -2, 2, 2, -2, 2, 2, 2, 2, 2, 2, 1, 1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, 2, 2, 2, 2, -2, -2, 2, -2, 2, 2, -2, 2, 2, -2, 2, -2, 2, 2, 2, -2, -2, 2, -2, -2, -2, 2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, 2, 2, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, -1, -2, -2, -2, -2, 2, 2, -2, 2, 2, -2, 2, 2, -2, -2, 2, 2, 2, 2, 1, 1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, -2, -2, -2, 2, 2, -2, 2, -2, -2, 2, -2, 2, 2, -2, 2, -2, 2, 2, 2, 2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, 2, 2, 2, -2, -2, -2, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -1, -2, -2, -2, -2, -2, 2, 2, -2, 2, -2, -2, -2, -2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, -2, -2, 2, -2, -2, 2, -2, -2, 2, -2, 2, -2, 2, 2, -2, 2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, 2, -2, -2, -2, -2, -2, 2, -2, -2, 2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, -1, -2, -2, -2, -2, 2, -2, -2, -2, -2, 2, -2, 2, 2, -2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, 2, 2, 2, -2, 2, 2, -2, 2, 2, -2, 2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, 2, 2, -2, -2, 2, -2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,-2*K.1,0,0,2*K.1,0,0,0,2,2,2,2,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,2,2,-2,-2,-2,2,2,-2,0,0,0,0,-2*K.1,2*K.1,0,-2*K.1,0,0,0,2*K.1,0,0,0,0,-2*K.1,2*K.1,-2*K.1,0,0,2*K.1,0,0,2,2,2,2,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,0,2*K.1,2*K.1,0,0,0,0,0,0,-2*K.1,-2*K.1,0,2*K.1,0,2*K.1,0,0,0,-2*K.1,0,0,0,2,-2,2,2,2,-2,-2,2,-2,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,-2,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,2*K.1,0,2*K.1,0,0,0,0,-2*K.1,0,0,0,0,0,2*K.1,0,2*K.1,-2*K.1,2*K.1,0,-2*K.1,0,0,-2*K.1,-2*K.1,0,-2*K.1,-2*K.1,0,0,0,0,0,0,0,2*K.1,0,0,2*K.1,-2*K.1,-2*K.1,0,-2*K.1,-2*K.1,0,2*K.1,0,0,0,0,0,0,0,2*K.1,2*K.1,2*K.1,-2*K.1,0,2*K.1,-2*K.1,0,0,-2*K.1,0,0,0,0,0,-2*K.1,0,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,2*K.1,0,0,-2*K.1,0,0,0,2,2,2,2,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,2,2,-2,-2,-2,2,2,-2,0,0,0,0,2*K.1,-2*K.1,0,2*K.1,0,0,0,-2*K.1,0,0,0,0,2*K.1,-2*K.1,2*K.1,0,0,-2*K.1,0,0,2,2,2,2,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,0,-2*K.1,-2*K.1,0,0,0,0,0,0,2*K.1,2*K.1,0,-2*K.1,0,-2*K.1,0,0,0,2*K.1,0,0,0,2,-2,2,2,2,-2,-2,2,-2,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,-2,2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,-2*K.1,0,-2*K.1,0,0,0,0,2*K.1,0,0,0,0,0,-2*K.1,0,-2*K.1,2*K.1,-2*K.1,0,2*K.1,0,0,2*K.1,2*K.1,0,2*K.1,2*K.1,0,0,0,0,0,0,0,-2*K.1,0,0,-2*K.1,2*K.1,2*K.1,0,2*K.1,2*K.1,0,-2*K.1,0,0,0,0,0,0,0,-2*K.1,-2*K.1,-2*K.1,2*K.1,0,-2*K.1,2*K.1,0,0,2*K.1,0,0,0,0,0,2*K.1,0,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,2*K.1,0,0,-2*K.1,0,0,0,2,2,2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,-2,-2,2,2,2,-2,-2,2,0,0,0,0,-2*K.1,2*K.1,0,-2*K.1,0,0,0,2*K.1,0,0,0,0,2*K.1,-2*K.1,2*K.1,0,0,-2*K.1,0,0,2,2,2,2,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,0,-2*K.1,-2*K.1,0,0,0,0,0,0,2*K.1,2*K.1,0,-2*K.1,0,-2*K.1,0,0,0,2*K.1,0,0,0,-2,-2,-2,-2,2,2,-2,2,-2,2,-2,-2,2,2,2,2,2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,0,2*K.1,0,0,0,0,-2*K.1,0,0,0,0,0,-2*K.1,0,-2*K.1,-2*K.1,2*K.1,0,2*K.1,0,0,2*K.1,2*K.1,0,2*K.1,2*K.1,0,0,0,0,0,0,0,-2*K.1,0,0,2*K.1,-2*K.1,2*K.1,0,2*K.1,2*K.1,0,-2*K.1,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,-2*K.1,0,-2*K.1,-2*K.1,0,0,-2*K.1,0,0,0,0,0,-2*K.1,0,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,-2*K.1,0,0,2*K.1,0,0,0,2,2,2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,-2,-2,2,2,2,-2,-2,2,0,0,0,0,2*K.1,-2*K.1,0,2*K.1,0,0,0,-2*K.1,0,0,0,0,-2*K.1,2*K.1,-2*K.1,0,0,2*K.1,0,0,2,2,2,2,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,0,2*K.1,2*K.1,0,0,0,0,0,0,-2*K.1,-2*K.1,0,2*K.1,0,2*K.1,0,0,0,-2*K.1,0,0,0,-2,-2,-2,-2,2,2,-2,2,-2,2,-2,-2,2,2,2,2,2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,0,-2*K.1,0,0,0,0,2*K.1,0,0,0,0,0,2*K.1,0,2*K.1,2*K.1,-2*K.1,0,-2*K.1,0,0,-2*K.1,-2*K.1,0,-2*K.1,-2*K.1,0,0,0,0,0,0,0,2*K.1,0,0,-2*K.1,2*K.1,-2*K.1,0,-2*K.1,-2*K.1,0,2*K.1,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,2*K.1,0,2*K.1,2*K.1,0,0,2*K.1,0,0,0,0,0,2*K.1,0,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1,2*K.1,-2*K.1,2*K.1,-2,0,-2*K.1,0,0,0,0,2,0,2*K.1,2,2,2,2,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,2,2*K.1,0,2,-2*K.1,2*K.1,-2*K.1,2*K.1,-2,-2*K.1,0,-2*K.1,0,0,0,-2,0,0,0,0,0,0,0,2*K.1,2,2,2,2,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,-2*K.1,-2,2,-2*K.1,-2,0,2*K.1,-2,-2*K.1,0,0,2*K.1,-2,2*K.1,0,0,0,0,2*K.1,2,0,0,0,0,0,0,2,0,0,2,0,0,0,-2*K.1,0,0,2,0,0,-2,0,-2,-2,-2,0,2,-2,0,0,-2,0,-2,0,2,0,0,0,0,0,-2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2*K.1,0,2*K.1,0,-2*K.1,2*K.1,0,0,-2*K.1,-2*K.1,0,-2*K.1,0,0,-2*K.1,0,0,0,-2*K.1,-2*K.1,0,0,-2*K.1,0,0,0,2*K.1,0,0,-2*K.1,-2*K.1,2*K.1,0,-2*K.1,-2,0,0,2*K.1,-2,-2*K.1,-2*K.1,0,-2,0,0,2,0,0,2*K.1,0,0,2*K.1,0,0,0,0,2*K.1,2*K.1,0,0,2*K.1,2,0,2*K.1,0,0,0,2*K.1,0,2*K.1,-2,-2*K.1,-2*K.1,0,0,2,0,2,-2,-2,2,0,0,2,-2*K.1,0,0,2,0,2*K.1,0,0,2,2*K.1,-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1,-2*K.1,2*K.1,-2*K.1,-2,0,2*K.1,0,0,0,0,2,0,-2*K.1,2,2,2,2,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,2,-2*K.1,0,2,2*K.1,-2*K.1,2*K.1,-2*K.1,-2,2*K.1,0,2*K.1,0,0,0,-2,0,0,0,0,0,0,0,-2*K.1,2,2,2,2,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,2*K.1,-2,2,2*K.1,-2,0,-2*K.1,-2,2*K.1,0,0,-2*K.1,-2,-2*K.1,0,0,0,0,-2*K.1,2,0,0,0,0,0,0,2,0,0,2,0,0,0,2*K.1,0,0,2,0,0,-2,0,-2,-2,-2,0,2,-2,0,0,-2,0,-2,0,2,0,0,0,0,0,-2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2*K.1,0,-2*K.1,0,2*K.1,-2*K.1,0,0,2*K.1,2*K.1,0,2*K.1,0,0,2*K.1,0,0,0,2*K.1,2*K.1,0,0,2*K.1,0,0,0,-2*K.1,0,0,2*K.1,2*K.1,-2*K.1,0,2*K.1,-2,0,0,-2*K.1,-2,2*K.1,2*K.1,0,-2,0,0,2,0,0,-2*K.1,0,0,-2*K.1,0,0,0,0,-2*K.1,-2*K.1,0,0,-2*K.1,2,0,-2*K.1,0,0,0,-2*K.1,0,-2*K.1,-2,2*K.1,2*K.1,0,0,2,0,2,-2,-2,2,0,0,2,2*K.1,0,0,2,0,-2*K.1,0,0,2,-2*K.1,-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1,2*K.1,-2*K.1,2*K.1,2,0,2*K.1,0,0,0,0,-2,0,-2*K.1,2,2,2,2,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-2,-2*K.1,0,-2,-2*K.1,2*K.1,2*K.1,2*K.1,2,2*K.1,0,-2*K.1,0,0,0,2,0,0,0,0,0,0,0,-2*K.1,2,2,2,2,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,2*K.1,2,-2,2*K.1,2,0,-2*K.1,2,2*K.1,0,0,-2*K.1,2,-2*K.1,0,0,0,0,-2*K.1,-2,0,0,0,0,0,0,-2,0,0,-2,0,0,0,2*K.1,0,0,2,0,0,-2,0,-2,-2,-2,0,2,-2,0,0,-2,0,-2,0,2,0,0,0,0,0,-2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2*K.1,0,2*K.1,0,-2*K.1,-2*K.1,0,0,2*K.1,-2*K.1,0,2*K.1,0,0,2*K.1,0,0,0,-2*K.1,-2*K.1,0,0,2*K.1,0,0,0,-2*K.1,0,0,2*K.1,2*K.1,-2*K.1,0,2*K.1,2,0,0,-2*K.1,2,-2*K.1,-2*K.1,0,2,0,0,-2,0,0,-2*K.1,0,0,-2*K.1,0,0,0,0,2*K.1,2*K.1,0,0,2*K.1,-2,0,2*K.1,0,0,0,-2*K.1,0,2*K.1,2,-2*K.1,-2*K.1,0,0,-2,0,-2,2,2,-2,0,0,-2,2*K.1,0,0,-2,0,-2*K.1,0,0,-2,2*K.1,2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1,-2*K.1,2*K.1,-2*K.1,2,0,-2*K.1,0,0,0,0,-2,0,2*K.1,2,2,2,2,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-2,2*K.1,0,-2,2*K.1,-2*K.1,-2*K.1,-2*K.1,2,-2*K.1,0,2*K.1,0,0,0,2,0,0,0,0,0,0,0,2*K.1,2,2,2,2,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,-2*K.1,2,-2,-2*K.1,2,0,2*K.1,2,-2*K.1,0,0,2*K.1,2,2*K.1,0,0,0,0,2*K.1,-2,0,0,0,0,0,0,-2,0,0,-2,0,0,0,-2*K.1,0,0,2,0,0,-2,0,-2,-2,-2,0,2,-2,0,0,-2,0,-2,0,2,0,0,0,0,0,-2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2*K.1,0,-2*K.1,0,2*K.1,2*K.1,0,0,-2*K.1,2*K.1,0,-2*K.1,0,0,-2*K.1,0,0,0,2*K.1,2*K.1,0,0,-2*K.1,0,0,0,2*K.1,0,0,-2*K.1,-2*K.1,2*K.1,0,-2*K.1,2,0,0,2*K.1,2,2*K.1,2*K.1,0,2,0,0,-2,0,0,2*K.1,0,0,2*K.1,0,0,0,0,-2*K.1,-2*K.1,0,0,-2*K.1,-2,0,-2*K.1,0,0,0,2*K.1,0,-2*K.1,2,2*K.1,2*K.1,0,0,-2,0,-2,2,2,-2,0,0,-2,-2*K.1,0,0,-2,0,2*K.1,0,0,-2,-2*K.1,2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,-2,2,2,0,-2*K.1,0,0,2*K.1,2*K.1,0,0,-2*K.1,0,2,2,2,2,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,-2,-2,0,2,0,0,-2*K.1,2,2*K.1,-2*K.1,2*K.1,0,0,0,0,-2*K.1,2*K.1,0,2*K.1,0,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-2,2,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,-2*K.1,0,0,0,0,-2*K.1,0,0,0,0,0,-2*K.1,-2*K.1,0,0,2*K.1,2*K.1,0,0,-2*K.1,0,0,0,2*K.1,0,2*K.1,0,-2*K.1,0,2*K.1,0,-2,0,0,-2,0,2,-2,2,0,-2,2,0,0,-2,0,-2,0,-2,0,0,0,0,0,2,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-2,-2*K.1,2,0,-2*K.1,2*K.1,0,-2,2*K.1,0,2*K.1,-2*K.1,0,0,2*K.1,0,-2,2,2*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,2*K.1,0,0,2*K.1,0,0,0,2,-2,0,0,0,0,0,0,2*K.1,0,2*K.1,2*K.1,0,-2*K.1,2*K.1,0,0,-2,2,-2*K.1,0,2,0,-2*K.1,2,-2*K.1,-2*K.1,-2*K.1,0,-2*K.1,2,0,-2,2,-2*K.1,-2*K.1,0,-2*K.1,0,0,0,0,-2*K.1,2*K.1,0,0,2*K.1,-2*K.1,0,2*K.1,0,2*K.1,-2*K.1,0,-2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,-2,2,2,0,2*K.1,0,0,-2*K.1,-2*K.1,0,0,2*K.1,0,2,2,2,2,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1,0,-2,-2,0,2,0,0,2*K.1,2,-2*K.1,2*K.1,-2*K.1,0,0,0,0,2*K.1,-2*K.1,0,-2*K.1,0,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-2,2,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,2*K.1,0,0,0,0,2*K.1,0,0,0,0,0,2*K.1,2*K.1,0,0,-2*K.1,-2*K.1,0,0,2*K.1,0,0,0,-2*K.1,0,-2*K.1,0,2*K.1,0,-2*K.1,0,-2,0,0,-2,0,2,-2,2,0,-2,2,0,0,-2,0,-2,0,-2,0,0,0,0,0,2,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-2,2*K.1,2,0,2*K.1,-2*K.1,0,-2,-2*K.1,0,-2*K.1,2*K.1,0,0,-2*K.1,0,-2,2,-2*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,-2*K.1,0,0,-2*K.1,0,0,0,2,-2,0,0,0,0,0,0,-2*K.1,0,-2*K.1,-2*K.1,0,2*K.1,-2*K.1,0,0,-2,2,2*K.1,0,2,0,2*K.1,2,2*K.1,2*K.1,2*K.1,0,2*K.1,2,0,-2,2,2*K.1,2*K.1,0,2*K.1,0,0,0,0,2*K.1,-2*K.1,0,0,-2*K.1,2*K.1,0,-2*K.1,0,-2*K.1,2*K.1,0,-2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2,-2,-2,0,-2*K.1,0,0,2*K.1,-2*K.1,0,0,2*K.1,0,2,2,2,2,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,2,2,0,-2,0,0,-2*K.1,-2,2*K.1,2*K.1,-2*K.1,0,0,0,0,2*K.1,-2*K.1,0,2*K.1,0,2,2,2,2,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,-2,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,2*K.1,0,0,0,0,-2*K.1,0,0,0,0,0,-2*K.1,-2*K.1,0,0,2*K.1,2*K.1,0,0,-2*K.1,0,0,0,-2*K.1,0,2*K.1,0,2*K.1,0,-2*K.1,0,-2,0,0,-2,0,2,-2,2,0,-2,2,0,0,-2,0,-2,0,-2,0,0,0,0,0,2,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,2*K.1,-2,0,-2*K.1,2*K.1,0,2,2*K.1,0,-2*K.1,-2*K.1,0,0,-2*K.1,0,2,-2,2*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,2*K.1,0,0,-2*K.1,0,0,0,-2,2,0,0,0,0,0,0,-2*K.1,0,-2*K.1,-2*K.1,0,2*K.1,-2*K.1,0,0,2,-2,-2*K.1,0,-2,0,2*K.1,-2,-2*K.1,-2*K.1,-2*K.1,0,-2*K.1,-2,0,2,-2,2*K.1,2*K.1,0,2*K.1,0,0,0,0,-2*K.1,2*K.1,0,0,2*K.1,2*K.1,0,2*K.1,0,2*K.1,2*K.1,0,2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2,-2,-2,0,2*K.1,0,0,-2*K.1,2*K.1,0,0,-2*K.1,0,2,2,2,2,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,2*K.1,0,2,2,0,-2,0,0,2*K.1,-2,-2*K.1,-2*K.1,2*K.1,0,0,0,0,-2*K.1,2*K.1,0,-2*K.1,0,2,2,2,2,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,-2,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,-2*K.1,0,0,0,0,2*K.1,0,0,0,0,0,2*K.1,2*K.1,0,0,-2*K.1,-2*K.1,0,0,2*K.1,0,0,0,2*K.1,0,-2*K.1,0,-2*K.1,0,2*K.1,0,-2,0,0,-2,0,2,-2,2,0,-2,2,0,0,-2,0,-2,0,-2,0,0,0,0,0,2,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,-2*K.1,-2,0,2*K.1,-2*K.1,0,2,-2*K.1,0,2*K.1,2*K.1,0,0,2*K.1,0,2,-2,-2*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,-2*K.1,0,0,2*K.1,0,0,0,-2,2,0,0,0,0,0,0,2*K.1,0,2*K.1,2*K.1,0,-2*K.1,2*K.1,0,0,2,-2,2*K.1,0,-2,0,-2*K.1,-2,2*K.1,2*K.1,2*K.1,0,2*K.1,-2,0,2,-2,-2*K.1,-2*K.1,0,-2*K.1,0,0,0,0,2*K.1,-2*K.1,0,0,-2*K.1,-2*K.1,0,-2*K.1,0,-2*K.1,-2*K.1,0,2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^2,2*K.1,2*K.1,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1^-2,2*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1,2*K.1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,-2*K.1^3,0,0,2*K.1^3,2*K.1^3,0,0,-2*K.1^3,0,2,2,2,2,1-2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,-1+2*K.1^2,1,-1,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1-K.1^-1,1,1,-1*K.1-K.1^-1,-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,K.1^3,-1*K.1^3,-1+2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1,-1,-1,-1,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-2,2,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,-2*K.1^3,0,0,0,0,-2*K.1^3,0,0,0,0,0,-2*K.1^3,-2*K.1^3,0,0,2*K.1^3,2*K.1^3,0,0,-2*K.1^3,0,0,0,2*K.1^3,0,2*K.1^3,0,-2*K.1^3,0,2*K.1^3,-1+2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,1,1-2*K.1^2,-1,1,-1,1-2*K.1^2,1,-1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,-1+2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,1,-1+2*K.1^2,1,K.1^3,-1,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,1,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,-1+2*K.1^2,1,-1,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1,1,-1+2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,K.1^3,-1*K.1^3,1-2*K.1^2,1-2*K.1^2,1,-1,K.1^3,-1+2*K.1^2,-1,-1*K.1-K.1^-1,K.1^3,-1,K.1^3,K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,-1,-1*K.1-K.1^-1,1,-1,K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,2*K.1^3,0,0,-2*K.1^3,-2*K.1^3,0,0,2*K.1^3,0,2,2,2,2,-1+2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1-2*K.1^2,1,-1,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,1,1,-1*K.1-K.1^-1,-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1,K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1*K.1^3,K.1^3,1-2*K.1^2,K.1^3,K.1+K.1^-1,-1,-1,-1,-1,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-2,2,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,2*K.1^3,0,0,0,0,2*K.1^3,0,0,0,0,0,2*K.1^3,2*K.1^3,0,0,-2*K.1^3,-2*K.1^3,0,0,2*K.1^3,0,0,0,-2*K.1^3,0,-2*K.1^3,0,2*K.1^3,0,-2*K.1^3,1-2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,1,-1+2*K.1^2,-1,1,-1,-1+2*K.1^2,1,-1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,1-2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,1,1-2*K.1^2,1,-1*K.1^3,-1,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,1,K.1^3,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,1-2*K.1^2,1,-1,K.1^3,-1+2*K.1^2,K.1+K.1^-1,K.1^3,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1,1,1-2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,K.1^3,K.1+K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,-1*K.1^3,K.1^3,-1+2*K.1^2,-1+2*K.1^2,1,-1,-1*K.1^3,1-2*K.1^2,-1,-1*K.1-K.1^-1,-1*K.1^3,-1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1,-1*K.1-K.1^-1,1,-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,-2*K.1^3,0,0,2*K.1^3,2*K.1^3,0,0,-2*K.1^3,0,2,2,2,2,-1+2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1-2*K.1^2,1,-1,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,K.1+K.1^-1,1,1,K.1+K.1^-1,-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,-1,-1*K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,K.1^3,-1*K.1^3,1-2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1,-1,-1,-1,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-2,2,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,-2*K.1^3,0,0,0,0,-2*K.1^3,0,0,0,0,0,-2*K.1^3,-2*K.1^3,0,0,2*K.1^3,2*K.1^3,0,0,-2*K.1^3,0,0,0,2*K.1^3,0,2*K.1^3,0,-2*K.1^3,0,2*K.1^3,1-2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,1,-1+2*K.1^2,-1,1,-1,-1+2*K.1^2,1,-1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,1-2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,1,1-2*K.1^2,1,K.1^3,-1,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,1,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,1-2*K.1^2,1,-1,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1,1,1-2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,-1+2*K.1^2,-1+2*K.1^2,1,-1,K.1^3,1-2*K.1^2,-1,K.1+K.1^-1,K.1^3,-1,K.1^3,K.1^3,K.1^3,K.1+K.1^-1,K.1^3,-1,K.1+K.1^-1,1,-1,K.1^3,K.1^3,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,2*K.1^3,0,0,-2*K.1^3,-2*K.1^3,0,0,2*K.1^3,0,2,2,2,2,1-2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,-1+2*K.1^2,1,-1,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1+K.1^-1,1,1,K.1+K.1^-1,-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1,K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1*K.1^3,K.1^3,-1+2*K.1^2,K.1^3,-1*K.1-K.1^-1,-1,-1,-1,-1,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-2,2,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,2*K.1^3,0,0,0,0,2*K.1^3,0,0,0,0,0,2*K.1^3,2*K.1^3,0,0,-2*K.1^3,-2*K.1^3,0,0,2*K.1^3,0,0,0,-2*K.1^3,0,-2*K.1^3,0,2*K.1^3,0,-2*K.1^3,-1+2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,1,1-2*K.1^2,-1,1,-1,1-2*K.1^2,1,-1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,-1+2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,1,-1+2*K.1^2,1,-1*K.1^3,-1,K.1+K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,1,K.1^3,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,-1+2*K.1^2,K.1^3,-1+2*K.1^2,1,-1,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1,1,-1+2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,1-2*K.1^2,1-2*K.1^2,1,-1,-1*K.1^3,-1+2*K.1^2,-1,K.1+K.1^-1,-1*K.1^3,-1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1,K.1+K.1^-1,1,-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,-2*K.1^3,0,0,2*K.1^3,-2*K.1^3,0,0,2*K.1^3,0,2,2,2,2,1-2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,-1+2*K.1^2,1,-1,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,-1,-1,-1*K.1-K.1^-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,1,-1*K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1*K.1^3,K.1^3,1-2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1,-1,-1,-1,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,-2,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^3,0,0,0,0,0,-2*K.1^3,-2*K.1^3,0,0,2*K.1^3,2*K.1^3,0,0,-2*K.1^3,0,0,0,-2*K.1^3,0,2*K.1^3,0,2*K.1^3,0,-2*K.1^3,-1+2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,1,1-2*K.1^2,-1,1,-1,1-2*K.1^2,1,-1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,-1+2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1,1-2*K.1^2,-1,-1*K.1^3,1,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1,-1*K.1^3,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,1-2*K.1^2,-1,1,-1*K.1^3,-1+2*K.1^2,K.1+K.1^-1,K.1^3,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,1,-1,1-2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,K.1^3,K.1+K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,-1*K.1^3,K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1,1,K.1^3,1-2*K.1^2,1,K.1+K.1^-1,-1*K.1^3,1,K.1^3,K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,1,K.1+K.1^-1,-1,1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,2*K.1^3,0,0,-2*K.1^3,2*K.1^3,0,0,-2*K.1^3,0,2,2,2,2,-1+2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1-2*K.1^2,1,-1,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,-1,-1,-1*K.1-K.1^-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,1,K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,K.1^3,-1*K.1^3,-1+2*K.1^2,K.1^3,K.1+K.1^-1,-1,-1,-1,-1,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,-2,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^3,0,0,0,0,0,2*K.1^3,2*K.1^3,0,0,-2*K.1^3,-2*K.1^3,0,0,2*K.1^3,0,0,0,2*K.1^3,0,-2*K.1^3,0,-2*K.1^3,0,2*K.1^3,1-2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,1,-1+2*K.1^2,-1,1,-1,-1+2*K.1^2,1,-1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,1-2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1,-1+2*K.1^2,-1,K.1^3,1,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1,K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,-1+2*K.1^2,-1,1,K.1^3,1-2*K.1^2,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,1,-1,-1+2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,K.1^3,-1*K.1^3,1-2*K.1^2,1-2*K.1^2,-1,1,-1*K.1^3,-1+2*K.1^2,1,K.1+K.1^-1,K.1^3,1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,1,K.1+K.1^-1,-1,1,K.1^3,K.1^3,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,-1*K.1-K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,-2*K.1^3,0,0,2*K.1^3,-2*K.1^3,0,0,2*K.1^3,0,2,2,2,2,-1+2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1-2*K.1^2,1,-1,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,-1,-1,K.1+K.1^-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1*K.1^3,K.1^3,-1+2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1,-1,-1,-1,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,-2,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^3,0,0,0,0,0,-2*K.1^3,-2*K.1^3,0,0,2*K.1^3,2*K.1^3,0,0,-2*K.1^3,0,0,0,-2*K.1^3,0,2*K.1^3,0,2*K.1^3,0,-2*K.1^3,1-2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,1,-1+2*K.1^2,-1,1,-1,-1+2*K.1^2,1,-1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,1-2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1,-1+2*K.1^2,-1,-1*K.1^3,1,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,-1,-1*K.1^3,K.1+K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,-1+2*K.1^2,K.1^3,-1+2*K.1^2,-1,1,-1*K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,1,-1,-1+2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,1-2*K.1^2,K.1^3,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,1-2*K.1^2,1-2*K.1^2,-1,1,K.1^3,-1+2*K.1^2,1,-1*K.1-K.1^-1,-1*K.1^3,1,K.1^3,K.1^3,K.1^3,K.1+K.1^-1,K.1^3,1,-1*K.1-K.1^-1,-1,1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,2*K.1^3,0,0,-2*K.1^3,2*K.1^3,0,0,-2*K.1^3,0,2,2,2,2,1-2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,-1+2*K.1^2,1,-1,0,0,0,0,0,0,0,0,2,-2,2,2,2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1,-1,K.1+K.1^-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,1,K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,K.1^3,-1*K.1^3,1-2*K.1^2,K.1^3,-1*K.1-K.1^-1,-1,-1,-1,-1,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,-2,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^3,0,0,0,0,0,2*K.1^3,2*K.1^3,0,0,-2*K.1^3,-2*K.1^3,0,0,2*K.1^3,0,0,0,2*K.1^3,0,-2*K.1^3,0,-2*K.1^3,0,2*K.1^3,-1+2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,1,1-2*K.1^2,-1,1,-1,1-2*K.1^2,1,-1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,-1+2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1,1-2*K.1^2,-1,K.1^3,1,K.1+K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,-1,K.1^3,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,1-2*K.1^2,-1,1,K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,1,-1,1-2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1,1,-1*K.1^3,1-2*K.1^2,1,-1*K.1-K.1^-1,K.1^3,1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,1,-1*K.1-K.1^-1,-1,1,K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,K.1^3,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,-2*K.1^3,0,0,2*K.1^3,0,0,0,2,2,2,2,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,2,2,-2,-2,-2,2,2,-2,-1*K.1-K.1^-1,1-2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1^3,-1*K.1^3,-1+2*K.1^2,K.1^3,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1,-1,-1,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^3,2*K.1^3,0,0,0,0,0,0,-2*K.1^3,-2*K.1^3,0,2*K.1^3,0,2*K.1^3,0,0,0,-2*K.1^3,0,0,0,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,K.1^3,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,1-2*K.1^2,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,K.1^3,K.1^3,-1+2*K.1^2,K.1^3,K.1^3,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1+2*K.1^2,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,K.1^3,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,2*K.1^3,0,0,-2*K.1^3,0,0,0,2,2,2,2,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,2,2,-2,-2,-2,2,2,-2,-1*K.1-K.1^-1,-1+2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,K.1^3,1-2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1^3,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,1-2*K.1^2,-1,-1,-1,-1,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,2*K.1^3,2*K.1^3,0,-2*K.1^3,0,-2*K.1^3,0,0,0,2*K.1^3,0,0,0,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1^3,K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1^3,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1^3,-1+2*K.1^2,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,1-2*K.1^2,-1*K.1^3,-1*K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,K.1+K.1^-1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1^3,K.1^3,K.1^3,-1*K.1^3,1-2*K.1^2,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,-2*K.1^3,0,0,2*K.1^3,0,0,0,2,2,2,2,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,2,2,-2,-2,-2,2,2,-2,K.1+K.1^-1,-1+2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,1-2*K.1^2,K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,1-2*K.1^2,-1,-1,-1,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^3,2*K.1^3,0,0,0,0,0,0,-2*K.1^3,-2*K.1^3,0,2*K.1^3,0,2*K.1^3,0,0,0,-2*K.1^3,0,0,0,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,-1+2*K.1^2,K.1^3,-1+2*K.1^2,K.1+K.1^-1,K.1^3,K.1^3,1-2*K.1^2,K.1^3,K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,K.1^3,K.1+K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,1-2*K.1^2,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,K.1^3,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,1-2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,2*K.1^3,0,0,-2*K.1^3,0,0,0,2,2,2,2,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,2,2,-2,-2,-2,2,2,-2,K.1+K.1^-1,1-2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1+2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1,-1,-1,-1,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,2*K.1^3,2*K.1^3,0,-2*K.1^3,0,-2*K.1^3,0,0,0,2*K.1^3,0,0,0,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3,K.1^3,K.1^3,K.1+K.1^-1,K.1^3,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1^3,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,K.1^3,1-2*K.1^2,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1+2*K.1^2,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,2*K.1^3,0,0,-2*K.1^3,0,0,0,2,2,2,2,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,-2,-2,2,2,2,-2,-2,2,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1^3,-1*K.1^3,-1+2*K.1^2,K.1^3,K.1+K.1^-1,1-2*K.1^2,1-2*K.1^2,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,1-2*K.1^2,-1+2*K.1^2,-1,-1,-1,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,2*K.1^3,2*K.1^3,0,-2*K.1^3,0,-2*K.1^3,0,0,0,2*K.1^3,0,0,0,1,1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,-1+2*K.1^2,K.1^3,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1^3,-1+2*K.1^2,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1^3,K.1^3,1-2*K.1^2,K.1^3,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,K.1^3,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,-2*K.1^3,0,0,2*K.1^3,0,0,0,2,2,2,2,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,-2,-2,2,2,2,-2,-2,2,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1*K.1^3,K.1^3,1-2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1+2*K.1^2,-1+2*K.1^2,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,-1,-1,-1,-1,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^3,2*K.1^3,0,0,0,0,0,0,-2*K.1^3,-2*K.1^3,0,2*K.1^3,0,2*K.1^3,0,0,0,-2*K.1^3,0,0,0,1,1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1*K.1^3,1-2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,1-2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,1-2*K.1^2,K.1^3,-1+2*K.1^2,K.1+K.1^-1,K.1^3,K.1^3,1-2*K.1^2,K.1^3,K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,2*K.1^3,0,0,-2*K.1^3,0,0,0,2,2,2,2,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,-2,-2,2,2,2,-2,-2,2,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,1-2*K.1^2,K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,-1+2*K.1^2,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1,-1,-1,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,2*K.1^3,2*K.1^3,0,-2*K.1^3,0,-2*K.1^3,0,0,0,2*K.1^3,0,0,0,1,1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,K.1^3,1-2*K.1^2,1-2*K.1^2,K.1+K.1^-1,1-2*K.1^2,1-2*K.1^2,K.1^3,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1^3,1-2*K.1^2,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,1-2*K.1^2,-1*K.1^3,-1*K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,K.1^3,K.1+K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1+2*K.1^2,K.1^3,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,K.1^3,K.1+K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,-2*K.1^3,0,0,2*K.1^3,0,0,0,2,2,2,2,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,2,-2,-2,2,2,2,-2,-2,2,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,-1+2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,1-2*K.1^2,K.1^3,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,-1,-1,-1,-1,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^3,2*K.1^3,0,0,0,0,0,0,-2*K.1^3,-2*K.1^3,0,2*K.1^3,0,2*K.1^3,0,0,0,-2*K.1^3,0,0,0,1,1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,-1*K.1^3,-1+2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,-1+2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,-1+2*K.1^2,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,K.1^3,K.1^3,-1+2*K.1^2,K.1^3,K.1^3,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,-1*K.1^3,K.1+K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,1-2*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2,0,-2*K.1^3,0,0,0,0,2,0,2*K.1^3,2,2,2,2,1-2*K.1^2,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,1,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1*K.1^3,K.1+K.1^-1,-1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,1,K.1^3,-1*K.1-K.1^-1,K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1,-1,-1,-1,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,-2*K.1^3,-2,2,-2*K.1^3,-2,0,2*K.1^3,-2,-2*K.1^3,0,0,2*K.1^3,-2,2*K.1^3,0,0,0,0,2*K.1^3,2,0,0,0,0,0,0,2,0,0,2,0,0,0,-2*K.1^3,0,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,1,1,-1+2*K.1^2,-1,1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,-1+2*K.1^2,-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,K.1+K.1^-1,K.1^3,K.1+K.1^-1,-1+2*K.1^2,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1^3,1,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,1,K.1^3,K.1^3,-1*K.1-K.1^-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,-1,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,1-2*K.1^2,1-2*K.1^2,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1,1-2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,1,K.1^3,K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1,1-2*K.1^2,-1,1,1,-1,K.1+K.1^-1,K.1+K.1^-1,-1,K.1^3,K.1+K.1^-1,1-2*K.1^2,-1,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,-1+2*K.1^2,-1,-1*K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2,0,2*K.1^3,0,0,0,0,2,0,-2*K.1^3,2,2,2,2,-1+2*K.1^2,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,1,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,K.1^3,K.1+K.1^-1,-1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,1,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1,-1,-1,-1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,2*K.1^3,-2,2,2*K.1^3,-2,0,-2*K.1^3,-2,2*K.1^3,0,0,-2*K.1^3,-2,-2*K.1^3,0,0,0,0,-2*K.1^3,2,0,0,0,0,0,0,2,0,0,2,0,0,0,2*K.1^3,0,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,1,1,1-2*K.1^2,-1,1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,1-2*K.1^2,-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1^3,K.1+K.1^-1,K.1^3,1-2*K.1^2,-1*K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,K.1+K.1^-1,-1*K.1^3,K.1+K.1^-1,1-2*K.1^2,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1^3,1,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,1,-1*K.1-K.1^-1,K.1+K.1^-1,-1,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,-1+2*K.1^2,-1+2*K.1^2,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1,-1+2*K.1^2,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1-K.1^-1,K.1^3,1,-1*K.1^3,-1*K.1^3,1-2*K.1^2,1-2*K.1^2,-1,-1+2*K.1^2,-1,1,1,-1,K.1+K.1^-1,K.1+K.1^-1,-1,-1*K.1^3,K.1+K.1^-1,-1+2*K.1^2,-1,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,1-2*K.1^2,-1,K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2,0,-2*K.1^3,0,0,0,0,2,0,2*K.1^3,2,2,2,2,-1+2*K.1^2,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,1,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,-1*K.1^3,-1*K.1-K.1^-1,-1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,1,K.1^3,K.1+K.1^-1,K.1^3,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1,-1,-1,-1,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,-2*K.1^3,-2,2,-2*K.1^3,-2,0,2*K.1^3,-2,-2*K.1^3,0,0,2*K.1^3,-2,2*K.1^3,0,0,0,0,2*K.1^3,2,0,0,0,0,0,0,2,0,0,2,0,0,0,-2*K.1^3,0,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,1,1,1-2*K.1^2,-1,1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,1-2*K.1^2,-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1^3,1,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,1,K.1^3,K.1^3,K.1+K.1^-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,-1,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1,-1+2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,1,K.1^3,K.1^3,1-2*K.1^2,1-2*K.1^2,-1,-1+2*K.1^2,-1,1,1,-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1,K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,-1,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,-1,-1*K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2,0,2*K.1^3,0,0,0,0,2,0,-2*K.1^3,2,2,2,2,1-2*K.1^2,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,1,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-1,K.1^3,-1*K.1-K.1^-1,-1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,1,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,-1,-1,-1,-1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,2*K.1^3,-2,2,2*K.1^3,-2,0,-2*K.1^3,-2,2*K.1^3,0,0,-2*K.1^3,-2,-2*K.1^3,0,0,0,0,-2*K.1^3,2,0,0,0,0,0,0,2,0,0,2,0,0,0,2*K.1^3,0,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,1,1,-1+2*K.1^2,-1,1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,-1+2*K.1^2,-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,K.1^3,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,-1*K.1^3,1,1-2*K.1^2,K.1+K.1^-1,K.1^3,1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,1,K.1+K.1^-1,-1*K.1-K.1^-1,-1,K.1+K.1^-1,-1+2*K.1^2,K.1^3,1-2*K.1^2,1-2*K.1^2,K.1^3,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1,1-2*K.1^2,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,K.1+K.1^-1,K.1^3,1,-1*K.1^3,-1*K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1,1-2*K.1^2,-1,1,1,-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1,-1*K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,-1,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,-1,K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2,0,2*K.1^3,0,0,0,0,-2,0,-2*K.1^3,2,2,2,2,1-2*K.1^2,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,1,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,1,K.1^3,-1*K.1-K.1^-1,1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1,-1*K.1^3,K.1+K.1^-1,K.1^3,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1,-1,-1,-1,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,2*K.1^3,2,-2,2*K.1^3,2,0,-2*K.1^3,2,2*K.1^3,0,0,-2*K.1^3,2,-2*K.1^3,0,0,0,0,-2*K.1^3,-2,0,0,0,0,0,0,-2,0,0,-2,0,0,0,2*K.1^3,0,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,1,1,-1+2*K.1^2,-1,1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,-1+2*K.1^2,-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1^3,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1^3,K.1+K.1^-1,-1*K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,1-2*K.1^2,K.1+K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1+2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1+K.1^-1,-1*K.1^3,-1,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,-1,K.1^3,K.1^3,-1*K.1-K.1^-1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,1,-1*K.1-K.1^-1,1-2*K.1^2,K.1^3,-1+2*K.1^2,-1+2*K.1^2,K.1^3,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,1,-1+2*K.1^2,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,K.1+K.1^-1,-1*K.1^3,-1,K.1^3,K.1^3,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,-1,-1,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,-1*K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,1,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,1,-1*K.1^3,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2,0,-2*K.1^3,0,0,0,0,-2,0,2*K.1^3,2,2,2,2,-1+2*K.1^2,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,1,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,1,-1*K.1^3,-1*K.1-K.1^-1,1,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1,K.1^3,K.1+K.1^-1,-1*K.1^3,K.1+K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1,-1,-1,-1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,-2*K.1^3,2,-2,-2*K.1^3,2,0,2*K.1^3,2,-2*K.1^3,0,0,2*K.1^3,2,2*K.1^3,0,0,0,0,2*K.1^3,-2,0,0,0,0,0,0,-2,0,0,-2,0,0,0,-2*K.1^3,0,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,1,1,1-2*K.1^2,-1,1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,1-2*K.1^2,-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,K.1^3,K.1+K.1^-1,K.1^3,-1+2*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,1-2*K.1^2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1^3,K.1+K.1^-1,K.1^3,-1,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,1,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1^3,1-2*K.1^2,1-2*K.1^2,-1*K.1^3,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,1,1-2*K.1^2,K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1+K.1^-1,K.1^3,-1,-1*K.1^3,-1*K.1^3,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,-1,-1,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1,K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,1,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,1,K.1^3,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2,0,2*K.1^3,0,0,0,0,-2,0,-2*K.1^3,2,2,2,2,-1+2*K.1^2,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,1,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,1,K.1^3,K.1+K.1^-1,1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1,-1*K.1^3,-1*K.1-K.1^-1,K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1,-1,-1,-1,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,0,0,0,0,0,2*K.1^3,2,-2,2*K.1^3,2,0,-2*K.1^3,2,2*K.1^3,0,0,-2*K.1^3,2,-2*K.1^3,0,0,0,0,-2*K.1^3,-2,0,0,0,0,0,0,-2,0,0,-2,0,0,0,2*K.1^3,0,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,1,1,1-2*K.1^2,-1,1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,1-2*K.1^2,-1,1-2*K.1^2,-1+2*K.1^2,-1+2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1,-1+2*K.1^2,-1+2*K.1^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,K.1^3,K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,-1*K.1-K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,1-2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1,1-2*K.1^2,K.1+K.1^-1,K.1^3,-1,K.1^3,K.1^3,K.1+K.1^-1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,1,K.1+K.1^-1,-1+2*K.1^2,K.1^3,1-2*K.1^2,1-2*K.1^2,K.1^3,1-2*K.1^2,-1+2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,1,1-2*K.1^2,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1,K.1^3,K.1^3,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,-1,-1,1,K.1+K.1^-1,K.1+K.1^-1,1,-1*K.1^3,K.1+K.1^-1,1-2*K.1^2,1,-1*K.1-K.1^-1,K.1^3,K.1+K.1^-1,-1+2*K.1^2,1,-1*K.1^3,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2,0,-2*K.1^3,0,0,0,0,-2,0,2*K.1^3,2,2,2,2,1-2*K.1^2,1-2*K.1^2,-1,-1+2*K.1^2,-1+2*K.1^2,1,1,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,-2,2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,1,-1*K.1^3,K.1+K.1^-1,1,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1,K.1^3,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,-1+2*K.1^2,1-2*K.1^2,-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,1-2*K.1^2,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1,-1,-1,-1,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^3,0,0,0,0,0,-2*K.1^3,2,-2,-2*K.1^3,2,0,2*K.1^3,2,-2*K.1^3,0,0,2*K.1^3,2,2*K.1^3,0,0,0,0,2*K.1^3,-2,0,0,0,0,0,0,-2,0,0,-2,0,0,0,-2*K.1^3,0,-1+2*K.1^2,-1,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,1,1,-1+2*K.1^2,-1,1,-1+2*K.1^2,-1+2*K.1^2,1,1-2*K.1^2,1,-1+2*K.1^2,-1,-1+2*K.1^2,1-2*K.1^2,1-2*K.1^2,-1+2*K.1^2,1-2*K.1^2,1,1-2*K.1^2,1-2*K.1^2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,K.1^3,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,K.1+K.1^-1,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1^3,1-2*K.1^2,K.1+K.1^-1,K.1^3,-1*K.1-K.1^-1,1-2*K.1^2,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,-1+2*K.1^2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1^3,-1*K.1-K.1^-1,K.1^3,-1,-1+2*K.1^2,K.1+K.1^-1,-1*K.1^3,-1,-1*K.1^3,-1*K.1^3,K.1+K.1^-1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,1,K.1+K.1^-1,1-2*K.1^2,-1*K.1^3,-1+2*K.1^2,-1+2*K.1^2,-1*K.1^3,-1+2*K.1^2,1-2*K.1^2,K.1+K.1^-1,K.1+K.1^-1,K.1^3,K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3,1,-1+2*K.1^2,K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3,-1*K.1-K.1^-1,K.1^3,-1,-1*K.1^3,-1*K.1^3,1-2*K.1^2,1-2*K.1^2,1,-1+2*K.1^2,1,-1,-1,1,K.1+K.1^-1,K.1+K.1^-1,1,K.1^3,K.1+K.1^-1,-1+2*K.1^2,1,-1*K.1-K.1^-1,-1*K.1^3,K.1+K.1^-1,1-2*K.1^2,1,K.1^3,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,2,2,2,2,-2,2,-2,-2,2,2,-2,-2,2,-2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^-2,2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^-2,-2*K.1^2,-2*K.1,2*K.1^2,2*K.1,-2*K.1,-2*K.1^2,2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1,K.1^2,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-2,-1*K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-2,K.1^-2,-1*K.1,K.1^-1,K.1,-1*K.1^-2,K.1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,K.1^2,-1*K.1,K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,K.1,K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,2,2,2,2,-2,2,-2,-2,2,2,-2,-2,2,-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1,2*K.1^2,-2*K.1^-2,-2*K.1^-1,2*K.1^-2,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^2,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1^-2,2*K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1,K.1^-2,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^2,-1*K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-2,-1*K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1^2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,K.1^-1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,2,2,2,2,-2,2,-2,-2,2,2,-2,-2,2,-2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1^-2,K.1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^2,K.1,-1*K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^-1,K.1,-1*K.1^2,-1*K.1,-1*K.1^2,K.1,-1*K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1,K.1^-1,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,2,2,2,2,-2,2,-2,-2,2,2,-2,-2,2,-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-2,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^-2,K.1,-1*K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^-2,-1*K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1,K.1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,K.1^2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1^2,K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,2,2,2,2,2,-2,2,-2,-2,-2,-2,2,-2,2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,1,1,1,1,1,1,-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^-2,2*K.1,2*K.1,-2*K.1^-2,-2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^2,2*K.1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1,-2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^2,-2*K.1,K.1^2,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-2,-1*K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1,K.1^-2,K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1^2,K.1^2,K.1^-2,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1,K.1^-2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^-2,K.1^-1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^-2,-1*K.1^-2,K.1,K.1,K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-2,K.1^2,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,2,2,2,2,2,-2,2,-2,-2,-2,-2,2,-2,2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,1,1,1,1,1,1,-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-1,-2*K.1^2,-2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^2,2*K.1^-2,2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1^-2,-2*K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1,K.1^-2,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^2,-1*K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,K.1^2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,K.1^-2,K.1,-1*K.1^-2,K.1^-2,K.1^2,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^2,K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1,K.1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^-1,K.1^-1,K.1^2,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,2,2,2,2,2,-2,2,-2,-2,-2,-2,2,-2,2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,1,1,1,1,1,1,-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^-2,-2*K.1^-1,-2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1,-2*K.1^-2,K.1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-2,K.1^-1,K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,K.1,K.1^2,-1*K.1,K.1,K.1^-1,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^2,K.1^2,K.1^2,K.1^-1,K.1,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-2,K.1^-2,K.1^-1,-1*K.1,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,2,2,2,2,2,-2,2,-2,-2,-2,-2,2,-2,2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-2,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,1,1,1,1,1,1,-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1,2*K.1,2*K.1^2,2*K.1^2,-2*K.1,-2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,2*K.1,-2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^-2,K.1,-1*K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1^-2,-1*K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^2,K.1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,K.1^-1,K.1^-2,-1*K.1^-1,K.1^-1,K.1,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1,K.1^-2,K.1^2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1,-1*K.1,K.1^2,K.1^2,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,K.1^-1,K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,2,2,2,2,-2,-2,-2,2,-2,-2,2,-2,-2,-2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1,2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1,2*K.1,2*K.1^2,-2*K.1,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,-1*K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,-1*K.1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^2,-1*K.1,K.1,K.1^-2,-1*K.1^-2,K.1,K.1,K.1^-2,K.1^2,K.1^2,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,-1*K.1^2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,2,2,2,2,-2,-2,-2,2,-2,-2,2,-2,-2,-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,2*K.1^-1,2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,-1*K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^2,-1*K.1^-2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,2,2,2,2,-2,-2,-2,2,-2,-2,2,-2,-2,-2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,K.1^-2,K.1^-1,K.1^-1,K.1^2,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^2,K.1,K.1,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,K.1^-1,-1*K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,2,2,2,2,-2,-2,-2,2,-2,-2,2,-2,-2,-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^2,2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,K.1^2,K.1,K.1,K.1^-2,-1*K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^2,K.1,-1*K.1^2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,K.1,-1*K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,-2,-2,-2,-2,-2,-2,2,2,-2,2,2,-2,2,2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,1,-1,1,1,1,1,-1,1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-2,-2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^-2,-2*K.1,2*K.1,2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1,2*K.1,2*K.1^2,-2*K.1,2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1,K.1^2,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-2,-1*K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^-1,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^2,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1^-2,K.1^-2,K.1,K.1,K.1^-2,-1*K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,-2,-2,-2,-2,-2,-2,2,2,-2,2,2,-2,2,2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1,1,-1,1,1,1,1,-1,1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^2,-2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1,-2*K.1^2,2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,2*K.1^-1,2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1^-2,2*K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1,K.1^-2,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^2,-1*K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-2,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-2,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,-1*K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1^2,K.1^-2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,-2,-2,-2,-2,-2,-2,2,2,-2,2,2,-2,2,2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,1,-1,1,1,1,1,-1,1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1,-2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1,2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1^2,-2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-2,K.1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^2,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^2,K.1,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,-1*K.1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,-2,-2,-2,-2,-2,-2,2,2,-2,2,2,-2,2,2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-2,1,-1,1,1,1,1,-1,1,1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-2,-2*K.1,2*K.1,2*K.1,-2*K.1^2,2*K.1^2,2*K.1,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^-2,K.1,-1*K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1^-2,K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-1,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1,K.1,K.1^2,K.1^2,K.1,-1*K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,-2,-2,-2,-2,2,2,-2,2,2,-2,2,2,-2,-2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-2,2*K.1^2,2*K.1^2,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1,2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^-2,-2*K.1^2,2*K.1,2*K.1^2,2*K.1,2*K.1,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1,K.1^2,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-2,-1*K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1^-2,K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1,K.1^-2,K.1^-2,-1*K.1,K.1^-1,-1*K.1,K.1^-2,-1*K.1,K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1,K.1^-2,K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^2,K.1^-1,-1*K.1,K.1^2,K.1,K.1^2,K.1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,-2,-2,-2,-2,2,2,-2,2,2,-2,2,2,-2,-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1,-1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,2*K.1^-2,2*K.1^-2,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,2*K.1^2,2*K.1^-2,-2*K.1,2*K.1,-2*K.1^-1,2*K.1^-2,2*K.1,2*K.1,2*K.1^2,-2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^2,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1,K.1^-2,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^2,-1*K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^2,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1,K.1^2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1^2,-1*K.1^-2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-1,K.1^2,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^2,K.1^-2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,-2,-2,-2,-2,2,2,-2,2,2,-2,2,2,-2,-2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1,-2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^-2,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-2,K.1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1^-1,K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1,-1*K.1^2,K.1,K.1,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^2,-1*K.1^-1,-1*K.1,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1,K.1^2,-1*K.1^-2,K.1,K.1^-2,K.1,K.1^-2,-1*K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,-2,-2,-1,-2,-2,-2,-2,2,2,-2,2,2,-2,2,2,-2,-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,1,1,-1,1,1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-2,-1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1^-2,2*K.1,-2*K.1,-2*K.1,2*K.1^2,-2*K.1^2,2*K.1,2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^-2,K.1,-1*K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1,K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^-2,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^2,-1*K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1,-1*K.1^-1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^2,K.1,K.1,-1*K.1^2,K.1^-2,-1*K.1^2,K.1,-1*K.1^2,K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,K.1,K.1,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,-2,-2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1,2*K.1,-2*K.1^-2,2*K.1^2,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1,2*K.1^2,2*K.1,-2*K.1,-2*K.1^2,2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^2,-2*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^2,K.1^2,K.1^-2,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1,K.1^-2,K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,-1*K.1^-1,K.1^2,K.1,K.1,K.1^-2,K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-2,-1*K.1^2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,-2,-2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1^-2,2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1,2*K.1^2,2*K.1^-2,-2*K.1^-1,2*K.1^-2,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1^-2,-2*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,-1*K.1^-2,K.1,-1*K.1^-2,K.1^-2,K.1^2,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,K.1^2,K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,-1*K.1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^2,K.1^-2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,-2,-2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1,-2*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,-1*K.1,K.1^2,-1*K.1,K.1,K.1^-1,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^-1,K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^2,K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1,-1*K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,-2,-2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,1,-1,-1,1,1,1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1,2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1,2*K.1,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,-1*K.1^-1,K.1^-2,-1*K.1^-1,K.1^-1,K.1,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1,K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^-2,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,-2,-2,-2,-2,2,-2,-2,-2,-2,2,-2,2,2,-2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,-1,1,1,-1,1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1^2,2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,2*K.1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1,-2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,K.1^2,K.1,K.1^-2,-1*K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,-1*K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1^-1,K.1^2,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,-1*K.1,-1*K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1^-1,-1*K.1,K.1^2,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1,-1*K.1,K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,-2,-2,-2,-2,2,-2,-2,-2,-2,2,-2,2,2,-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,-1,1,1,-1,1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^-2,2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-2,2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1^-2,2*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1^-2,-1*K.1^2,K.1^-2,K.1^-1,K.1^2,-1*K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,-1*K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1,K.1^-2,K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,K.1^-1,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,-2,-2,-2,-2,2,-2,-2,-2,-2,2,-2,2,2,-2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,-1,1,1,-1,1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1,-2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1,-2*K.1^2,2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-2,K.1^-1,-1*K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,K.1,-1*K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^2,K.1,K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^2,K.1,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^2,-1*K.1^-2,K.1,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,K.1^-2,-1*K.1^-2,K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,-1,-2,-2,-2,-2,2,-2,-2,-2,-2,2,-2,2,2,-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,-1,1,1,-1,1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1^2,2*K.1,-2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,2*K.1,-2*K.1,2*K.1^-2,2*K.1^-2,-2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1,K.1^-1,K.1^2,K.1,K.1,K.1^-2,K.1,K.1,K.1^-1,-1*K.1,K.1^-1,K.1^2,K.1,-1*K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,-1*K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^-2,K.1^-1,K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1,K.1,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-2,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^2,K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,-2*K.1^5,0,0,2*K.1^5,0,0,0,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^2,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^6,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,0,0,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1,2*K.1,2*K.1^3,-2*K.1,2*K.1^9,2*K.1,-2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7,0,0,0,0,-2*K.1^3,2*K.1,0,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,2*K.1^9,0,-2*K.1^7,0,0,0,-2*K.1,0,0,0,2*K.1^8,-2*K.1^8,2*K.1^8,-2*K.1^2,2*K.1^8,2*K.1^2,-2*K.1^8,-2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^2,2*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^6,2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,2*K.1,2*K.1^9,0,-2*K.1^3,0,0,0,0,2*K.1^7,0,0,0,0,0,-2*K.1^7,0,2*K.1^9,-2*K.1,-2*K.1^7,0,-2*K.1,0,0,2*K.1^7,-2*K.1,0,-2*K.1^9,-2*K.1^9,0,0,0,0,0,0,0,2*K.1^9,0,0,2*K.1,-2*K.1^9,2*K.1^7,0,2*K.1^3,2*K.1^3,0,2*K.1,0,0,0,0,0,0,0,-2*K.1^7,-2*K.1^3,2*K.1,2*K.1^3,0,-2*K.1^3,-2*K.1^9,0,0,2*K.1^7,0,0,0,0,0,-2*K.1,0,2*K.1^3,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,2*K.1^5,0,0,-2*K.1^5,0,0,0,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^8,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^2,-2*K.1^6,2*K.1^4,-2*K.1^6,-2*K.1^2,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^4,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,0,0,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^7,2*K.1^7,2*K.1,2*K.1^9,-2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1,-2*K.1^9,2*K.1,2*K.1^3,-2*K.1,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^7,-2*K.1^9,0,0,0,0,0,0,2*K.1,-2*K.1^7,0,-2*K.1,0,2*K.1^3,0,0,0,2*K.1^9,0,0,0,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^8,-2*K.1^2,-2*K.1^8,2*K.1^2,2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^8,-2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^4,-2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,-2*K.1^9,-2*K.1,0,2*K.1^7,0,0,0,0,-2*K.1^3,0,0,0,0,0,2*K.1^3,0,-2*K.1,2*K.1^9,2*K.1^3,0,2*K.1^9,0,0,-2*K.1^3,2*K.1^9,0,2*K.1,2*K.1,0,0,0,0,0,0,0,-2*K.1,0,0,-2*K.1^9,2*K.1,-2*K.1^3,0,-2*K.1^7,-2*K.1^7,0,-2*K.1^9,0,0,0,0,0,0,0,2*K.1^3,2*K.1^7,-2*K.1^9,-2*K.1^7,0,2*K.1^7,2*K.1,0,0,-2*K.1^3,0,0,0,0,0,2*K.1^9,0,-2*K.1^7,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,-2*K.1^5,0,0,2*K.1^5,0,0,0,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^8,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^2,-2*K.1^6,2*K.1^4,-2*K.1^6,-2*K.1^2,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^4,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,0,0,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^7,-2*K.1^7,-2*K.1,-2*K.1^9,2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1,2*K.1^9,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^7,2*K.1^9,0,0,0,0,0,0,-2*K.1,2*K.1^7,0,2*K.1,0,-2*K.1^3,0,0,0,-2*K.1^9,0,0,0,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^8,-2*K.1^2,-2*K.1^8,2*K.1^2,2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^8,-2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^4,-2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,2*K.1^9,2*K.1,0,-2*K.1^7,0,0,0,0,2*K.1^3,0,0,0,0,0,-2*K.1^3,0,2*K.1,-2*K.1^9,-2*K.1^3,0,-2*K.1^9,0,0,2*K.1^3,-2*K.1^9,0,-2*K.1,-2*K.1,0,0,0,0,0,0,0,2*K.1,0,0,2*K.1^9,-2*K.1,2*K.1^3,0,2*K.1^7,2*K.1^7,0,2*K.1^9,0,0,0,0,0,0,0,-2*K.1^3,-2*K.1^7,2*K.1^9,2*K.1^7,0,-2*K.1^7,-2*K.1,0,0,2*K.1^3,0,0,0,0,0,-2*K.1^9,0,2*K.1^7,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,2*K.1^5,0,0,-2*K.1^5,0,0,0,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^2,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^6,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,0,0,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^9,-2*K.1,2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,0,0,0,0,2*K.1^3,-2*K.1,0,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,-2*K.1^9,0,2*K.1^7,0,0,0,2*K.1,0,0,0,2*K.1^8,-2*K.1^8,2*K.1^8,-2*K.1^2,2*K.1^8,2*K.1^2,-2*K.1^8,-2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^2,2*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^6,2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7,-2*K.1,-2*K.1^9,0,2*K.1^3,0,0,0,0,-2*K.1^7,0,0,0,0,0,2*K.1^7,0,-2*K.1^9,2*K.1,2*K.1^7,0,2*K.1,0,0,-2*K.1^7,2*K.1,0,2*K.1^9,2*K.1^9,0,0,0,0,0,0,0,-2*K.1^9,0,0,-2*K.1,2*K.1^9,-2*K.1^7,0,-2*K.1^3,-2*K.1^3,0,-2*K.1,0,0,0,0,0,0,0,2*K.1^7,2*K.1^3,-2*K.1,-2*K.1^3,0,2*K.1^3,2*K.1^9,0,0,-2*K.1^7,0,0,0,0,0,2*K.1,0,-2*K.1^3,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,-2*K.1^5,0,0,2*K.1^5,0,0,0,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^2,2*K.1^8,-2*K.1^2,2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^8,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,0,0,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1,2*K.1,-2*K.1,-2*K.1^9,2*K.1^9,2*K.1^7,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^7,-2*K.1^3,2*K.1^7,2*K.1,-2*K.1^7,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,2*K.1^7,-2*K.1^9,0,-2*K.1^7,0,2*K.1,0,0,0,2*K.1^3,0,0,0,2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^6,2*K.1^4,2*K.1^6,-2*K.1^4,-2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^6,-2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^8,-2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1^3,-2*K.1^7,0,2*K.1^9,0,0,0,0,-2*K.1,0,0,0,0,0,2*K.1,0,-2*K.1^7,2*K.1^3,2*K.1,0,2*K.1^3,0,0,-2*K.1,2*K.1^3,0,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,-2*K.1^7,0,0,-2*K.1^3,2*K.1^7,-2*K.1,0,-2*K.1^9,-2*K.1^9,0,-2*K.1^3,0,0,0,0,0,0,0,2*K.1,2*K.1^9,-2*K.1^3,-2*K.1^9,0,2*K.1^9,2*K.1^7,0,0,-2*K.1,0,0,0,0,0,2*K.1^3,0,-2*K.1^9,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,2*K.1^5,0,0,-2*K.1^5,0,0,0,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^8,-2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^4,2*K.1^2,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,0,0,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^7,2*K.1^7,2*K.1,-2*K.1^7,2*K.1^3,2*K.1^7,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,0,0,0,0,-2*K.1,2*K.1^7,0,0,0,0,0,0,-2*K.1^3,2*K.1,0,2*K.1^3,0,-2*K.1^9,0,0,0,-2*K.1^7,0,0,0,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^4,-2*K.1^6,-2*K.1^4,2*K.1^6,2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^8,2*K.1^8,-2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^4,2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^2,2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,2*K.1^7,2*K.1^3,0,-2*K.1,0,0,0,0,2*K.1^9,0,0,0,0,0,-2*K.1^9,0,2*K.1^3,-2*K.1^7,-2*K.1^9,0,-2*K.1^7,0,0,2*K.1^9,-2*K.1^7,0,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,2*K.1^3,0,0,2*K.1^7,-2*K.1^3,2*K.1^9,0,2*K.1,2*K.1,0,2*K.1^7,0,0,0,0,0,0,0,-2*K.1^9,-2*K.1,2*K.1^7,2*K.1,0,-2*K.1,-2*K.1^3,0,0,2*K.1^9,0,0,0,0,0,-2*K.1^7,0,2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,-2*K.1^5,0,0,2*K.1^5,0,0,0,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^8,-2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^4,2*K.1^2,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,0,0,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1,2*K.1,2*K.1^3,2*K.1^7,-2*K.1^7,-2*K.1,2*K.1^7,-2*K.1^3,-2*K.1^7,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,0,0,0,0,2*K.1,-2*K.1^7,0,0,0,0,0,0,2*K.1^3,-2*K.1,0,-2*K.1^3,0,2*K.1^9,0,0,0,2*K.1^7,0,0,0,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^4,-2*K.1^6,-2*K.1^4,2*K.1^6,2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^8,2*K.1^8,-2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^4,2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^2,2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,-2*K.1^7,-2*K.1^3,0,2*K.1,0,0,0,0,-2*K.1^9,0,0,0,0,0,2*K.1^9,0,-2*K.1^3,2*K.1^7,2*K.1^9,0,2*K.1^7,0,0,-2*K.1^9,2*K.1^7,0,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,-2*K.1^3,0,0,-2*K.1^7,2*K.1^3,-2*K.1^9,0,-2*K.1,-2*K.1,0,-2*K.1^7,0,0,0,0,0,0,0,2*K.1^9,2*K.1,-2*K.1^7,-2*K.1,0,2*K.1,2*K.1^3,0,0,-2*K.1^9,0,0,0,0,0,2*K.1^7,0,-2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,2*K.1^5,0,0,-2*K.1^5,0,0,0,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,2,-2,-2,-2,2,2,-2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^2,2*K.1^8,-2*K.1^2,2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^8,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,0,0,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1,-2*K.1,2*K.1,2*K.1^9,-2*K.1^9,-2*K.1^7,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^7,2*K.1^3,-2*K.1^7,-2*K.1,2*K.1^7,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,-2*K.1^7,2*K.1^9,0,2*K.1^7,0,-2*K.1,0,0,0,-2*K.1^3,0,0,0,2*K.1^4,-2*K.1^4,2*K.1^4,-2*K.1^6,2*K.1^4,2*K.1^6,-2*K.1^4,-2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^6,-2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^8,-2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1^3,2*K.1^7,0,-2*K.1^9,0,0,0,0,2*K.1,0,0,0,0,0,-2*K.1,0,2*K.1^7,-2*K.1^3,-2*K.1,0,-2*K.1^3,0,0,2*K.1,-2*K.1^3,0,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,2*K.1^7,0,0,2*K.1^3,-2*K.1^7,2*K.1,0,2*K.1^9,2*K.1^9,0,2*K.1^3,0,0,0,0,0,0,0,-2*K.1,-2*K.1^9,2*K.1^3,2*K.1^9,0,-2*K.1^9,-2*K.1^7,0,0,2*K.1,0,0,0,0,0,-2*K.1^3,0,2*K.1^9,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,2*K.1^5,0,0,-2*K.1^5,0,0,0,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^2,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^6,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,0,0,2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1,2*K.1,2*K.1^3,-2*K.1,2*K.1^9,2*K.1,-2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,0,0,0,0,2*K.1^3,-2*K.1,0,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,-2*K.1^9,0,2*K.1^7,0,0,0,2*K.1,0,0,0,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^8,-2*K.1^2,-2*K.1^8,-2*K.1^2,2*K.1^2,-2*K.1^6,-2*K.1^4,2*K.1^6,2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^6,2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^2,2*K.1^8,2*K.1^6,-2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,-2*K.1,2*K.1^9,0,-2*K.1^3,0,0,0,0,2*K.1^7,0,0,0,0,0,2*K.1^7,0,-2*K.1^9,-2*K.1,-2*K.1^7,0,2*K.1,0,0,-2*K.1^7,2*K.1,0,2*K.1^9,2*K.1^9,0,0,0,0,0,0,0,-2*K.1^9,0,0,2*K.1,-2*K.1^9,-2*K.1^7,0,-2*K.1^3,-2*K.1^3,0,-2*K.1,0,0,0,0,0,0,0,2*K.1^7,2*K.1^3,2*K.1,2*K.1^3,0,2*K.1^3,-2*K.1^9,0,0,2*K.1^7,0,0,0,0,0,-2*K.1,0,2*K.1^3,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,-2*K.1^5,0,0,2*K.1^5,0,0,0,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^8,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^2,-2*K.1^6,2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^4,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,0,0,-2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^7,2*K.1^7,2*K.1,2*K.1^9,-2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1,-2*K.1^9,2*K.1,2*K.1^3,-2*K.1,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^7,2*K.1^9,0,0,0,0,0,0,-2*K.1,2*K.1^7,0,2*K.1,0,-2*K.1^3,0,0,0,-2*K.1^9,0,0,0,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^2,2*K.1^8,2*K.1^2,2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^6,-2*K.1^4,-2*K.1^2,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1^9,-2*K.1,0,2*K.1^7,0,0,0,0,-2*K.1^3,0,0,0,0,0,-2*K.1^3,0,2*K.1,2*K.1^9,2*K.1^3,0,-2*K.1^9,0,0,2*K.1^3,-2*K.1^9,0,-2*K.1,-2*K.1,0,0,0,0,0,0,0,2*K.1,0,0,-2*K.1^9,2*K.1,2*K.1^3,0,2*K.1^7,2*K.1^7,0,2*K.1^9,0,0,0,0,0,0,0,-2*K.1^3,-2*K.1^7,-2*K.1^9,-2*K.1^7,0,-2*K.1^7,2*K.1,0,0,-2*K.1^3,0,0,0,0,0,2*K.1^9,0,-2*K.1^7,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,2*K.1^5,0,0,-2*K.1^5,0,0,0,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^8,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^2,-2*K.1^6,2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^4,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,0,0,2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^7,-2*K.1^7,-2*K.1,-2*K.1^9,2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1,2*K.1^9,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^7,-2*K.1^9,0,0,0,0,0,0,2*K.1,-2*K.1^7,0,-2*K.1,0,2*K.1^3,0,0,0,2*K.1^9,0,0,0,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^2,2*K.1^8,2*K.1^2,2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^6,-2*K.1^4,-2*K.1^2,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,-2*K.1^9,2*K.1,0,-2*K.1^7,0,0,0,0,2*K.1^3,0,0,0,0,0,2*K.1^3,0,-2*K.1,-2*K.1^9,-2*K.1^3,0,2*K.1^9,0,0,-2*K.1^3,2*K.1^9,0,2*K.1,2*K.1,0,0,0,0,0,0,0,-2*K.1,0,0,2*K.1^9,-2*K.1,-2*K.1^3,0,-2*K.1^7,-2*K.1^7,0,-2*K.1^9,0,0,0,0,0,0,0,2*K.1^3,2*K.1^7,2*K.1^9,2*K.1^7,0,2*K.1^7,-2*K.1,0,0,2*K.1^3,0,0,0,0,0,-2*K.1^9,0,2*K.1^7,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,-2*K.1^5,0,0,2*K.1^5,0,0,0,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^2,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^6,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,0,0,-2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^9,-2*K.1,2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7,0,0,0,0,-2*K.1^3,2*K.1,0,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,2*K.1^9,0,-2*K.1^7,0,0,0,-2*K.1,0,0,0,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^8,-2*K.1^2,-2*K.1^8,-2*K.1^2,2*K.1^2,-2*K.1^6,-2*K.1^4,2*K.1^6,2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^6,2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^2,2*K.1^8,2*K.1^6,-2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7,2*K.1,-2*K.1^9,0,2*K.1^3,0,0,0,0,-2*K.1^7,0,0,0,0,0,-2*K.1^7,0,2*K.1^9,2*K.1,2*K.1^7,0,-2*K.1,0,0,2*K.1^7,-2*K.1,0,-2*K.1^9,-2*K.1^9,0,0,0,0,0,0,0,2*K.1^9,0,0,-2*K.1,2*K.1^9,2*K.1^7,0,2*K.1^3,2*K.1^3,0,2*K.1,0,0,0,0,0,0,0,-2*K.1^7,-2*K.1^3,-2*K.1,-2*K.1^3,0,-2*K.1^3,2*K.1^9,0,0,-2*K.1^7,0,0,0,0,0,2*K.1,0,-2*K.1^3,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,2*K.1^5,0,0,-2*K.1^5,0,0,0,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^2,2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^6,2*K.1^4,-2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^8,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,0,0,2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1,2*K.1,-2*K.1,-2*K.1^9,2*K.1^9,2*K.1^7,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^7,-2*K.1^3,2*K.1^7,2*K.1,-2*K.1^7,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,-2*K.1^7,2*K.1^9,0,2*K.1^7,0,-2*K.1,0,0,0,-2*K.1^3,0,0,0,-2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^4,-2*K.1^6,-2*K.1^4,-2*K.1^6,2*K.1^6,2*K.1^8,2*K.1^2,-2*K.1^8,2*K.1^4,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^6,2*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^2,-2*K.1^8,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^3,-2*K.1^7,0,2*K.1^9,0,0,0,0,-2*K.1,0,0,0,0,0,-2*K.1,0,2*K.1^7,2*K.1^3,2*K.1,0,-2*K.1^3,0,0,2*K.1,-2*K.1^3,0,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,2*K.1^7,0,0,-2*K.1^3,2*K.1^7,2*K.1,0,2*K.1^9,2*K.1^9,0,2*K.1^3,0,0,0,0,0,0,0,-2*K.1,-2*K.1^9,-2*K.1^3,-2*K.1^9,0,-2*K.1^9,2*K.1^7,0,0,-2*K.1,0,0,0,0,0,2*K.1^3,0,-2*K.1^9,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,-2*K.1^5,0,0,2*K.1^5,0,0,0,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^4,-2*K.1^6,2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^2,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,0,0,-2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^7,2*K.1^7,2*K.1,-2*K.1^7,2*K.1^3,2*K.1^7,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,0,0,0,0,2*K.1,-2*K.1^7,0,0,0,0,0,0,2*K.1^3,-2*K.1,0,-2*K.1^3,0,2*K.1^9,0,0,0,2*K.1^7,0,0,0,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^6,2*K.1^4,2*K.1^6,2*K.1^4,-2*K.1^4,-2*K.1^2,-2*K.1^8,2*K.1^2,-2*K.1^6,2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^2,-2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^4,-2*K.1^6,2*K.1^2,-2*K.1^2,-2*K.1^8,2*K.1^2,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,-2*K.1^7,2*K.1^3,0,-2*K.1,0,0,0,0,2*K.1^9,0,0,0,0,0,2*K.1^9,0,-2*K.1^3,-2*K.1^7,-2*K.1^9,0,2*K.1^7,0,0,-2*K.1^9,2*K.1^7,0,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,-2*K.1^3,0,0,2*K.1^7,-2*K.1^3,-2*K.1^9,0,-2*K.1,-2*K.1,0,-2*K.1^7,0,0,0,0,0,0,0,2*K.1^9,2*K.1,2*K.1^7,2*K.1,0,2*K.1,-2*K.1^3,0,0,2*K.1^9,0,0,0,0,0,-2*K.1^7,0,2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,2*K.1^5,0,0,-2*K.1^5,0,0,0,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^4,-2*K.1^6,2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^2,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,0,0,2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1,2*K.1,2*K.1^3,2*K.1^7,-2*K.1^7,-2*K.1,2*K.1^7,-2*K.1^3,-2*K.1^7,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,0,0,0,0,-2*K.1,2*K.1^7,0,0,0,0,0,0,-2*K.1^3,2*K.1,0,2*K.1^3,0,-2*K.1^9,0,0,0,-2*K.1^7,0,0,0,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^6,2*K.1^4,2*K.1^6,2*K.1^4,-2*K.1^4,-2*K.1^2,-2*K.1^8,2*K.1^2,-2*K.1^6,2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^2,-2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^4,-2*K.1^6,2*K.1^2,-2*K.1^2,-2*K.1^8,2*K.1^2,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,2*K.1^7,-2*K.1^3,0,2*K.1,0,0,0,0,-2*K.1^9,0,0,0,0,0,-2*K.1^9,0,2*K.1^3,2*K.1^7,2*K.1^9,0,-2*K.1^7,0,0,2*K.1^9,-2*K.1^7,0,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,2*K.1^3,0,0,-2*K.1^7,2*K.1^3,2*K.1^9,0,2*K.1,2*K.1,0,2*K.1^7,0,0,0,0,0,0,0,-2*K.1^9,-2*K.1,-2*K.1^7,-2*K.1,0,-2*K.1,2*K.1^3,0,0,-2*K.1^9,0,0,0,0,0,2*K.1^7,0,-2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,-2*K.1^5,0,0,2*K.1^5,0,0,0,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^2,2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^6,2*K.1^4,-2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^8,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,0,0,-2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1,-2*K.1,2*K.1,2*K.1^9,-2*K.1^9,-2*K.1^7,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^7,2*K.1^3,-2*K.1^7,-2*K.1,2*K.1^7,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,2*K.1^7,-2*K.1^9,0,-2*K.1^7,0,2*K.1,0,0,0,2*K.1^3,0,0,0,-2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^4,-2*K.1^6,-2*K.1^4,-2*K.1^6,2*K.1^6,2*K.1^8,2*K.1^2,-2*K.1^8,2*K.1^4,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^6,2*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^2,-2*K.1^8,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^3,2*K.1^7,0,-2*K.1^9,0,0,0,0,2*K.1,0,0,0,0,0,2*K.1,0,-2*K.1^7,-2*K.1^3,-2*K.1,0,2*K.1^3,0,0,-2*K.1,2*K.1^3,0,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,-2*K.1^7,0,0,2*K.1^3,-2*K.1^7,-2*K.1,0,-2*K.1^9,-2*K.1^9,0,-2*K.1^3,0,0,0,0,0,0,0,2*K.1,2*K.1^9,2*K.1^3,2*K.1^9,0,2*K.1^9,-2*K.1^7,0,0,2*K.1,0,0,0,0,0,-2*K.1^3,0,2*K.1^9,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2,0,-2*K.1^5,0,0,0,0,2,0,2*K.1^5,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^2,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,2,2*K.1^5,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2,-2*K.1^5,0,-2*K.1^5,0,0,0,-2,0,0,0,0,0,0,0,2*K.1^5,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1^9,-2*K.1,2*K.1^9,2*K.1^7,2*K.1^9,2*K.1^3,0,0,0,0,0,2*K.1^7,-2*K.1^8,2*K.1^8,-2*K.1,2*K.1^2,0,-2*K.1^7,-2*K.1^4,-2*K.1^9,0,0,2*K.1,2*K.1^6,2*K.1^9,0,0,0,0,-2*K.1^3,2*K.1^4,0,0,0,0,0,0,-2*K.1^2,0,0,-2*K.1^6,0,0,0,2*K.1^3,0,0,2*K.1^8,0,0,-2*K.1^8,0,-2*K.1^8,2*K.1^2,2*K.1^2,0,2*K.1^4,2*K.1^6,0,0,-2*K.1^4,0,2*K.1^6,0,-2*K.1^2,0,0,0,0,0,-2*K.1^4,0,0,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^7,0,2*K.1^9,0,2*K.1^3,2*K.1^9,0,0,-2*K.1,2*K.1^7,0,2*K.1^3,0,0,-2*K.1^9,0,0,0,-2*K.1,2*K.1^7,0,0,2*K.1^3,0,0,0,-2*K.1^3,0,0,-2*K.1^9,2*K.1^7,-2*K.1^7,0,-2*K.1,-2*K.1^4,0,0,-2*K.1^7,-2*K.1^8,-2*K.1,-2*K.1^9,0,2*K.1^6,0,0,-2*K.1^2,0,0,2*K.1^9,0,0,2*K.1,0,0,0,0,2*K.1,-2*K.1^3,0,0,2*K.1^9,2*K.1^4,0,-2*K.1^7,0,0,0,-2*K.1^3,0,2*K.1,-2*K.1^4,2*K.1^3,-2*K.1^9,0,0,-2*K.1^6,0,2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^8,0,0,2*K.1^4,2*K.1^7,0,0,-2*K.1^6,0,2*K.1,0,0,-2*K.1^2,-2*K.1^3,2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2,0,2*K.1^5,0,0,0,0,2,0,-2*K.1^5,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^8,-2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,2,-2*K.1^5,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2,2*K.1^5,0,2*K.1^5,0,0,0,-2,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^7,2*K.1^7,2*K.1,2*K.1^9,-2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1,2*K.1^9,-2*K.1,-2*K.1^3,-2*K.1,-2*K.1^7,0,0,0,0,0,-2*K.1^3,2*K.1^2,-2*K.1^2,2*K.1^9,-2*K.1^8,0,2*K.1^3,2*K.1^6,2*K.1,0,0,-2*K.1^9,-2*K.1^4,-2*K.1,0,0,0,0,2*K.1^7,-2*K.1^6,0,0,0,0,0,0,2*K.1^8,0,0,2*K.1^4,0,0,0,-2*K.1^7,0,0,-2*K.1^2,0,0,2*K.1^2,0,2*K.1^2,-2*K.1^8,-2*K.1^8,0,-2*K.1^6,-2*K.1^4,0,0,2*K.1^6,0,-2*K.1^4,0,2*K.1^8,0,0,0,0,0,2*K.1^6,0,0,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^3,0,-2*K.1,0,-2*K.1^7,-2*K.1,0,0,2*K.1^9,-2*K.1^3,0,-2*K.1^7,0,0,2*K.1,0,0,0,2*K.1^9,-2*K.1^3,0,0,-2*K.1^7,0,0,0,2*K.1^7,0,0,2*K.1,-2*K.1^3,2*K.1^3,0,2*K.1^9,2*K.1^6,0,0,2*K.1^3,2*K.1^2,2*K.1^9,2*K.1,0,-2*K.1^4,0,0,2*K.1^8,0,0,-2*K.1,0,0,-2*K.1^9,0,0,0,0,-2*K.1^9,2*K.1^7,0,0,-2*K.1,-2*K.1^6,0,2*K.1^3,0,0,0,2*K.1^7,0,-2*K.1^9,2*K.1^6,-2*K.1^7,2*K.1,0,0,2*K.1^4,0,-2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^2,0,0,-2*K.1^6,-2*K.1^3,0,0,2*K.1^4,0,-2*K.1^9,0,0,2*K.1^8,2*K.1^7,-2*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2,0,-2*K.1^5,0,0,0,0,2,0,2*K.1^5,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^8,-2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,2,2*K.1^5,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2,-2*K.1^5,0,-2*K.1^5,0,0,0,-2,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^7,-2*K.1^7,-2*K.1,-2*K.1^9,2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1,-2*K.1^9,2*K.1,2*K.1^3,2*K.1,2*K.1^7,0,0,0,0,0,2*K.1^3,2*K.1^2,-2*K.1^2,-2*K.1^9,-2*K.1^8,0,-2*K.1^3,2*K.1^6,-2*K.1,0,0,2*K.1^9,-2*K.1^4,2*K.1,0,0,0,0,-2*K.1^7,-2*K.1^6,0,0,0,0,0,0,2*K.1^8,0,0,2*K.1^4,0,0,0,2*K.1^7,0,0,-2*K.1^2,0,0,2*K.1^2,0,2*K.1^2,-2*K.1^8,-2*K.1^8,0,-2*K.1^6,-2*K.1^4,0,0,2*K.1^6,0,-2*K.1^4,0,2*K.1^8,0,0,0,0,0,2*K.1^6,0,0,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^3,0,2*K.1,0,2*K.1^7,2*K.1,0,0,-2*K.1^9,2*K.1^3,0,2*K.1^7,0,0,-2*K.1,0,0,0,-2*K.1^9,2*K.1^3,0,0,2*K.1^7,0,0,0,-2*K.1^7,0,0,-2*K.1,2*K.1^3,-2*K.1^3,0,-2*K.1^9,2*K.1^6,0,0,-2*K.1^3,2*K.1^2,-2*K.1^9,-2*K.1,0,-2*K.1^4,0,0,2*K.1^8,0,0,2*K.1,0,0,2*K.1^9,0,0,0,0,2*K.1^9,-2*K.1^7,0,0,2*K.1,-2*K.1^6,0,-2*K.1^3,0,0,0,-2*K.1^7,0,2*K.1^9,2*K.1^6,2*K.1^7,-2*K.1,0,0,2*K.1^4,0,-2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^2,0,0,-2*K.1^6,2*K.1^3,0,0,2*K.1^4,0,2*K.1^9,0,0,2*K.1^8,-2*K.1^7,-2*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2,0,2*K.1^5,0,0,0,0,2,0,-2*K.1^5,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^2,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,2,-2*K.1^5,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2,2*K.1^5,0,2*K.1^5,0,0,0,-2,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1^9,2*K.1,-2*K.1^9,-2*K.1^7,-2*K.1^9,-2*K.1^3,0,0,0,0,0,-2*K.1^7,-2*K.1^8,2*K.1^8,2*K.1,2*K.1^2,0,2*K.1^7,-2*K.1^4,2*K.1^9,0,0,-2*K.1,2*K.1^6,-2*K.1^9,0,0,0,0,2*K.1^3,2*K.1^4,0,0,0,0,0,0,-2*K.1^2,0,0,-2*K.1^6,0,0,0,-2*K.1^3,0,0,2*K.1^8,0,0,-2*K.1^8,0,-2*K.1^8,2*K.1^2,2*K.1^2,0,2*K.1^4,2*K.1^6,0,0,-2*K.1^4,0,2*K.1^6,0,-2*K.1^2,0,0,0,0,0,-2*K.1^4,0,0,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^7,0,-2*K.1^9,0,-2*K.1^3,-2*K.1^9,0,0,2*K.1,-2*K.1^7,0,-2*K.1^3,0,0,2*K.1^9,0,0,0,2*K.1,-2*K.1^7,0,0,-2*K.1^3,0,0,0,2*K.1^3,0,0,2*K.1^9,-2*K.1^7,2*K.1^7,0,2*K.1,-2*K.1^4,0,0,2*K.1^7,-2*K.1^8,2*K.1,2*K.1^9,0,2*K.1^6,0,0,-2*K.1^2,0,0,-2*K.1^9,0,0,-2*K.1,0,0,0,0,-2*K.1,2*K.1^3,0,0,-2*K.1^9,2*K.1^4,0,2*K.1^7,0,0,0,2*K.1^3,0,-2*K.1,-2*K.1^4,-2*K.1^3,2*K.1^9,0,0,-2*K.1^6,0,2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^8,0,0,2*K.1^4,-2*K.1^7,0,0,-2*K.1^6,0,-2*K.1,0,0,-2*K.1^2,2*K.1^3,2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2,0,-2*K.1^5,0,0,0,0,2,0,2*K.1^5,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,2,2*K.1^5,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2,-2*K.1^5,0,-2*K.1^5,0,0,0,-2,0,0,0,0,0,0,0,2*K.1^5,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1,2*K.1,-2*K.1,-2*K.1^9,2*K.1^9,2*K.1^7,2*K.1^3,-2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^7,2*K.1^3,-2*K.1^7,-2*K.1,-2*K.1^7,-2*K.1^9,0,0,0,0,0,-2*K.1,-2*K.1^4,2*K.1^4,2*K.1^3,2*K.1^6,0,2*K.1,2*K.1^2,2*K.1^7,0,0,-2*K.1^3,-2*K.1^8,-2*K.1^7,0,0,0,0,2*K.1^9,-2*K.1^2,0,0,0,0,0,0,-2*K.1^6,0,0,2*K.1^8,0,0,0,-2*K.1^9,0,0,2*K.1^4,0,0,-2*K.1^4,0,-2*K.1^4,2*K.1^6,2*K.1^6,0,-2*K.1^2,-2*K.1^8,0,0,2*K.1^2,0,-2*K.1^8,0,-2*K.1^6,0,0,0,0,0,2*K.1^2,0,0,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1,0,-2*K.1^7,0,-2*K.1^9,-2*K.1^7,0,0,2*K.1^3,-2*K.1,0,-2*K.1^9,0,0,2*K.1^7,0,0,0,2*K.1^3,-2*K.1,0,0,-2*K.1^9,0,0,0,2*K.1^9,0,0,2*K.1^7,-2*K.1,2*K.1,0,2*K.1^3,2*K.1^2,0,0,2*K.1,-2*K.1^4,2*K.1^3,2*K.1^7,0,-2*K.1^8,0,0,-2*K.1^6,0,0,-2*K.1^7,0,0,-2*K.1^3,0,0,0,0,-2*K.1^3,2*K.1^9,0,0,-2*K.1^7,-2*K.1^2,0,2*K.1,0,0,0,2*K.1^9,0,-2*K.1^3,2*K.1^2,-2*K.1^9,2*K.1^7,0,0,2*K.1^8,0,2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^4,0,0,-2*K.1^2,-2*K.1,0,0,2*K.1^8,0,-2*K.1^3,0,0,-2*K.1^6,2*K.1^9,2*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2,0,2*K.1^5,0,0,0,0,2,0,-2*K.1^5,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,2,-2*K.1^5,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2,2*K.1^5,0,2*K.1^5,0,0,0,-2,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^7,2*K.1^7,-2*K.1,2*K.1^7,-2*K.1^3,-2*K.1^7,2*K.1^3,2*K.1^9,2*K.1^3,2*K.1,0,0,0,0,0,2*K.1^9,2*K.1^6,-2*K.1^6,-2*K.1^7,-2*K.1^4,0,-2*K.1^9,-2*K.1^8,-2*K.1^3,0,0,2*K.1^7,2*K.1^2,2*K.1^3,0,0,0,0,-2*K.1,2*K.1^8,0,0,0,0,0,0,2*K.1^4,0,0,-2*K.1^2,0,0,0,2*K.1,0,0,-2*K.1^6,0,0,2*K.1^6,0,2*K.1^6,-2*K.1^4,-2*K.1^4,0,2*K.1^8,2*K.1^2,0,0,-2*K.1^8,0,2*K.1^2,0,2*K.1^4,0,0,0,0,0,-2*K.1^8,0,0,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^9,0,2*K.1^3,0,2*K.1,2*K.1^3,0,0,-2*K.1^7,2*K.1^9,0,2*K.1,0,0,-2*K.1^3,0,0,0,-2*K.1^7,2*K.1^9,0,0,2*K.1,0,0,0,-2*K.1,0,0,-2*K.1^3,2*K.1^9,-2*K.1^9,0,-2*K.1^7,-2*K.1^8,0,0,-2*K.1^9,2*K.1^6,-2*K.1^7,-2*K.1^3,0,2*K.1^2,0,0,2*K.1^4,0,0,2*K.1^3,0,0,2*K.1^7,0,0,0,0,2*K.1^7,-2*K.1,0,0,2*K.1^3,2*K.1^8,0,-2*K.1^9,0,0,0,-2*K.1,0,2*K.1^7,-2*K.1^8,2*K.1,-2*K.1^3,0,0,-2*K.1^2,0,-2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^6,0,0,2*K.1^8,2*K.1^9,0,0,-2*K.1^2,0,2*K.1^7,0,0,2*K.1^4,-2*K.1,-2*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2,0,-2*K.1^5,0,0,0,0,2,0,2*K.1^5,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,2,2*K.1^5,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2,-2*K.1^5,0,-2*K.1^5,0,0,0,-2,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1,2*K.1,2*K.1^3,2*K.1^7,-2*K.1^7,2*K.1,-2*K.1^7,2*K.1^3,2*K.1^7,-2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1,0,0,0,0,0,-2*K.1^9,2*K.1^6,-2*K.1^6,2*K.1^7,-2*K.1^4,0,2*K.1^9,-2*K.1^8,2*K.1^3,0,0,-2*K.1^7,2*K.1^2,-2*K.1^3,0,0,0,0,2*K.1,2*K.1^8,0,0,0,0,0,0,2*K.1^4,0,0,-2*K.1^2,0,0,0,-2*K.1,0,0,-2*K.1^6,0,0,2*K.1^6,0,2*K.1^6,-2*K.1^4,-2*K.1^4,0,2*K.1^8,2*K.1^2,0,0,-2*K.1^8,0,2*K.1^2,0,2*K.1^4,0,0,0,0,0,-2*K.1^8,0,0,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^9,0,-2*K.1^3,0,-2*K.1,-2*K.1^3,0,0,2*K.1^7,-2*K.1^9,0,-2*K.1,0,0,2*K.1^3,0,0,0,2*K.1^7,-2*K.1^9,0,0,-2*K.1,0,0,0,2*K.1,0,0,2*K.1^3,-2*K.1^9,2*K.1^9,0,2*K.1^7,-2*K.1^8,0,0,2*K.1^9,2*K.1^6,2*K.1^7,2*K.1^3,0,2*K.1^2,0,0,2*K.1^4,0,0,-2*K.1^3,0,0,-2*K.1^7,0,0,0,0,-2*K.1^7,2*K.1,0,0,-2*K.1^3,2*K.1^8,0,2*K.1^9,0,0,0,2*K.1,0,-2*K.1^7,-2*K.1^8,-2*K.1,2*K.1^3,0,0,-2*K.1^2,0,-2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^6,0,0,2*K.1^8,-2*K.1^9,0,0,-2*K.1^2,0,-2*K.1^7,0,0,2*K.1^4,2*K.1,-2*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2,0,2*K.1^5,0,0,0,0,2,0,-2*K.1^5,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,2,-2*K.1^5,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2,2*K.1^5,0,2*K.1^5,0,0,0,-2,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1,-2*K.1,2*K.1,2*K.1^9,-2*K.1^9,-2*K.1^7,-2*K.1^3,2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^7,-2*K.1^3,2*K.1^7,2*K.1,2*K.1^7,2*K.1^9,0,0,0,0,0,2*K.1,-2*K.1^4,2*K.1^4,-2*K.1^3,2*K.1^6,0,-2*K.1,2*K.1^2,-2*K.1^7,0,0,2*K.1^3,-2*K.1^8,2*K.1^7,0,0,0,0,-2*K.1^9,-2*K.1^2,0,0,0,0,0,0,-2*K.1^6,0,0,2*K.1^8,0,0,0,2*K.1^9,0,0,2*K.1^4,0,0,-2*K.1^4,0,-2*K.1^4,2*K.1^6,2*K.1^6,0,-2*K.1^2,-2*K.1^8,0,0,2*K.1^2,0,-2*K.1^8,0,-2*K.1^6,0,0,0,0,0,2*K.1^2,0,0,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1,0,2*K.1^7,0,2*K.1^9,2*K.1^7,0,0,-2*K.1^3,2*K.1,0,2*K.1^9,0,0,-2*K.1^7,0,0,0,-2*K.1^3,2*K.1,0,0,2*K.1^9,0,0,0,-2*K.1^9,0,0,-2*K.1^7,2*K.1,-2*K.1,0,-2*K.1^3,2*K.1^2,0,0,-2*K.1,-2*K.1^4,-2*K.1^3,-2*K.1^7,0,-2*K.1^8,0,0,-2*K.1^6,0,0,2*K.1^7,0,0,2*K.1^3,0,0,0,0,2*K.1^3,-2*K.1^9,0,0,2*K.1^7,-2*K.1^2,0,-2*K.1,0,0,0,-2*K.1^9,0,2*K.1^3,2*K.1^2,2*K.1^9,-2*K.1^7,0,0,2*K.1^8,0,2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^4,0,0,-2*K.1^2,2*K.1,0,0,2*K.1^8,0,2*K.1^3,0,0,-2*K.1^6,-2*K.1^9,2*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2,0,2*K.1^5,0,0,0,0,-2,0,-2*K.1^5,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^2,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,-2,-2*K.1^5,0,-2,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,2,2*K.1^5,0,-2*K.1^5,0,0,0,2,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1^9,-2*K.1,2*K.1^9,2*K.1^7,2*K.1^9,2*K.1^3,0,0,0,0,0,-2*K.1^7,2*K.1^8,-2*K.1^8,2*K.1,-2*K.1^2,0,2*K.1^7,2*K.1^4,2*K.1^9,0,0,-2*K.1,-2*K.1^6,-2*K.1^9,0,0,0,0,2*K.1^3,-2*K.1^4,0,0,0,0,0,0,2*K.1^2,0,0,2*K.1^6,0,0,0,-2*K.1^3,0,0,2*K.1^8,0,0,-2*K.1^8,0,-2*K.1^8,2*K.1^2,2*K.1^2,0,2*K.1^4,2*K.1^6,0,0,-2*K.1^4,0,2*K.1^6,0,-2*K.1^2,0,0,0,0,0,-2*K.1^4,0,0,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,-2*K.1^7,0,2*K.1^9,0,2*K.1^3,-2*K.1^9,0,0,2*K.1,2*K.1^7,0,-2*K.1^3,0,0,2*K.1^9,0,0,0,-2*K.1,2*K.1^7,0,0,-2*K.1^3,0,0,0,2*K.1^3,0,0,2*K.1^9,-2*K.1^7,2*K.1^7,0,2*K.1,2*K.1^4,0,0,2*K.1^7,2*K.1^8,-2*K.1,-2*K.1^9,0,-2*K.1^6,0,0,2*K.1^2,0,0,-2*K.1^9,0,0,-2*K.1,0,0,0,0,2*K.1,-2*K.1^3,0,0,2*K.1^9,-2*K.1^4,0,-2*K.1^7,0,0,0,2*K.1^3,0,2*K.1,2*K.1^4,2*K.1^3,-2*K.1^9,0,0,2*K.1^6,0,-2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^8,0,0,-2*K.1^4,-2*K.1^7,0,0,2*K.1^6,0,-2*K.1,0,0,2*K.1^2,-2*K.1^3,-2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2,0,-2*K.1^5,0,0,0,0,-2,0,2*K.1^5,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^8,-2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,-2,2*K.1^5,0,-2,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2,-2*K.1^5,0,2*K.1^5,0,0,0,2,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^7,2*K.1^7,2*K.1,2*K.1^9,-2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1,2*K.1^9,-2*K.1,-2*K.1^3,-2*K.1,-2*K.1^7,0,0,0,0,0,2*K.1^3,-2*K.1^2,2*K.1^2,-2*K.1^9,2*K.1^8,0,-2*K.1^3,-2*K.1^6,-2*K.1,0,0,2*K.1^9,2*K.1^4,2*K.1,0,0,0,0,-2*K.1^7,2*K.1^6,0,0,0,0,0,0,-2*K.1^8,0,0,-2*K.1^4,0,0,0,2*K.1^7,0,0,-2*K.1^2,0,0,2*K.1^2,0,2*K.1^2,-2*K.1^8,-2*K.1^8,0,-2*K.1^6,-2*K.1^4,0,0,2*K.1^6,0,-2*K.1^4,0,2*K.1^8,0,0,0,0,0,2*K.1^6,0,0,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^3,0,-2*K.1,0,-2*K.1^7,2*K.1,0,0,-2*K.1^9,-2*K.1^3,0,2*K.1^7,0,0,-2*K.1,0,0,0,2*K.1^9,-2*K.1^3,0,0,2*K.1^7,0,0,0,-2*K.1^7,0,0,-2*K.1,2*K.1^3,-2*K.1^3,0,-2*K.1^9,-2*K.1^6,0,0,-2*K.1^3,-2*K.1^2,2*K.1^9,2*K.1,0,2*K.1^4,0,0,-2*K.1^8,0,0,2*K.1,0,0,2*K.1^9,0,0,0,0,-2*K.1^9,2*K.1^7,0,0,-2*K.1,2*K.1^6,0,2*K.1^3,0,0,0,-2*K.1^7,0,-2*K.1^9,-2*K.1^6,-2*K.1^7,2*K.1,0,0,-2*K.1^4,0,2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^2,0,0,2*K.1^6,2*K.1^3,0,0,-2*K.1^4,0,2*K.1^9,0,0,-2*K.1^8,2*K.1^7,2*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2,0,2*K.1^5,0,0,0,0,-2,0,-2*K.1^5,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^8,-2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,-2,-2*K.1^5,0,-2,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,2,2*K.1^5,0,-2*K.1^5,0,0,0,2,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^7,-2*K.1^7,-2*K.1,-2*K.1^9,2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1,-2*K.1^9,2*K.1,2*K.1^3,2*K.1,2*K.1^7,0,0,0,0,0,-2*K.1^3,-2*K.1^2,2*K.1^2,2*K.1^9,2*K.1^8,0,2*K.1^3,-2*K.1^6,2*K.1,0,0,-2*K.1^9,2*K.1^4,-2*K.1,0,0,0,0,2*K.1^7,2*K.1^6,0,0,0,0,0,0,-2*K.1^8,0,0,-2*K.1^4,0,0,0,-2*K.1^7,0,0,-2*K.1^2,0,0,2*K.1^2,0,2*K.1^2,-2*K.1^8,-2*K.1^8,0,-2*K.1^6,-2*K.1^4,0,0,2*K.1^6,0,-2*K.1^4,0,2*K.1^8,0,0,0,0,0,2*K.1^6,0,0,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^3,0,2*K.1,0,2*K.1^7,-2*K.1,0,0,2*K.1^9,2*K.1^3,0,-2*K.1^7,0,0,2*K.1,0,0,0,-2*K.1^9,2*K.1^3,0,0,-2*K.1^7,0,0,0,2*K.1^7,0,0,2*K.1,-2*K.1^3,2*K.1^3,0,2*K.1^9,-2*K.1^6,0,0,2*K.1^3,-2*K.1^2,-2*K.1^9,-2*K.1,0,2*K.1^4,0,0,-2*K.1^8,0,0,-2*K.1,0,0,-2*K.1^9,0,0,0,0,2*K.1^9,-2*K.1^7,0,0,2*K.1,2*K.1^6,0,-2*K.1^3,0,0,0,2*K.1^7,0,2*K.1^9,-2*K.1^6,2*K.1^7,-2*K.1,0,0,-2*K.1^4,0,2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^2,0,0,2*K.1^6,-2*K.1^3,0,0,-2*K.1^4,0,-2*K.1^9,0,0,-2*K.1^8,-2*K.1^7,2*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2,0,-2*K.1^5,0,0,0,0,-2,0,2*K.1^5,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^2,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,-2,2*K.1^5,0,-2,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2,-2*K.1^5,0,2*K.1^5,0,0,0,2,0,0,0,0,0,0,0,2*K.1^5,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1^9,2*K.1,-2*K.1^9,-2*K.1^7,-2*K.1^9,-2*K.1^3,0,0,0,0,0,2*K.1^7,2*K.1^8,-2*K.1^8,-2*K.1,-2*K.1^2,0,-2*K.1^7,2*K.1^4,-2*K.1^9,0,0,2*K.1,-2*K.1^6,2*K.1^9,0,0,0,0,-2*K.1^3,-2*K.1^4,0,0,0,0,0,0,2*K.1^2,0,0,2*K.1^6,0,0,0,2*K.1^3,0,0,2*K.1^8,0,0,-2*K.1^8,0,-2*K.1^8,2*K.1^2,2*K.1^2,0,2*K.1^4,2*K.1^6,0,0,-2*K.1^4,0,2*K.1^6,0,-2*K.1^2,0,0,0,0,0,-2*K.1^4,0,0,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^7,0,-2*K.1^9,0,-2*K.1^3,2*K.1^9,0,0,-2*K.1,-2*K.1^7,0,2*K.1^3,0,0,-2*K.1^9,0,0,0,2*K.1,-2*K.1^7,0,0,2*K.1^3,0,0,0,-2*K.1^3,0,0,-2*K.1^9,2*K.1^7,-2*K.1^7,0,-2*K.1,2*K.1^4,0,0,-2*K.1^7,2*K.1^8,2*K.1,2*K.1^9,0,-2*K.1^6,0,0,2*K.1^2,0,0,2*K.1^9,0,0,2*K.1,0,0,0,0,-2*K.1,2*K.1^3,0,0,-2*K.1^9,-2*K.1^4,0,2*K.1^7,0,0,0,-2*K.1^3,0,-2*K.1,2*K.1^4,-2*K.1^3,2*K.1^9,0,0,2*K.1^6,0,-2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^8,0,0,-2*K.1^4,2*K.1^7,0,0,2*K.1^6,0,2*K.1,0,0,2*K.1^2,2*K.1^3,-2*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2,0,2*K.1^5,0,0,0,0,-2,0,-2*K.1^5,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,-2,-2*K.1^5,0,-2,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,2,2*K.1^5,0,-2*K.1^5,0,0,0,2,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1,2*K.1,-2*K.1,-2*K.1^9,2*K.1^9,2*K.1^7,2*K.1^3,-2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^7,2*K.1^3,-2*K.1^7,-2*K.1,-2*K.1^7,-2*K.1^9,0,0,0,0,0,2*K.1,2*K.1^4,-2*K.1^4,-2*K.1^3,-2*K.1^6,0,-2*K.1,-2*K.1^2,-2*K.1^7,0,0,2*K.1^3,2*K.1^8,2*K.1^7,0,0,0,0,-2*K.1^9,2*K.1^2,0,0,0,0,0,0,2*K.1^6,0,0,-2*K.1^8,0,0,0,2*K.1^9,0,0,2*K.1^4,0,0,-2*K.1^4,0,-2*K.1^4,2*K.1^6,2*K.1^6,0,-2*K.1^2,-2*K.1^8,0,0,2*K.1^2,0,-2*K.1^8,0,-2*K.1^6,0,0,0,0,0,2*K.1^2,0,0,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1,0,-2*K.1^7,0,-2*K.1^9,2*K.1^7,0,0,-2*K.1^3,-2*K.1,0,2*K.1^9,0,0,-2*K.1^7,0,0,0,2*K.1^3,-2*K.1,0,0,2*K.1^9,0,0,0,-2*K.1^9,0,0,-2*K.1^7,2*K.1,-2*K.1,0,-2*K.1^3,-2*K.1^2,0,0,-2*K.1,2*K.1^4,2*K.1^3,2*K.1^7,0,2*K.1^8,0,0,2*K.1^6,0,0,2*K.1^7,0,0,2*K.1^3,0,0,0,0,-2*K.1^3,2*K.1^9,0,0,-2*K.1^7,2*K.1^2,0,2*K.1,0,0,0,-2*K.1^9,0,-2*K.1^3,-2*K.1^2,-2*K.1^9,2*K.1^7,0,0,-2*K.1^8,0,-2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^4,0,0,2*K.1^2,2*K.1,0,0,-2*K.1^8,0,2*K.1^3,0,0,2*K.1^6,2*K.1^9,-2*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2,0,-2*K.1^5,0,0,0,0,-2,0,2*K.1^5,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,-2,2*K.1^5,0,-2,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2,-2*K.1^5,0,2*K.1^5,0,0,0,2,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^7,2*K.1^7,-2*K.1,2*K.1^7,-2*K.1^3,-2*K.1^7,2*K.1^3,2*K.1^9,2*K.1^3,2*K.1,0,0,0,0,0,-2*K.1^9,-2*K.1^6,2*K.1^6,2*K.1^7,2*K.1^4,0,2*K.1^9,2*K.1^8,2*K.1^3,0,0,-2*K.1^7,-2*K.1^2,-2*K.1^3,0,0,0,0,2*K.1,-2*K.1^8,0,0,0,0,0,0,-2*K.1^4,0,0,2*K.1^2,0,0,0,-2*K.1,0,0,-2*K.1^6,0,0,2*K.1^6,0,2*K.1^6,-2*K.1^4,-2*K.1^4,0,2*K.1^8,2*K.1^2,0,0,-2*K.1^8,0,2*K.1^2,0,2*K.1^4,0,0,0,0,0,-2*K.1^8,0,0,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^9,0,2*K.1^3,0,2*K.1,-2*K.1^3,0,0,2*K.1^7,2*K.1^9,0,-2*K.1,0,0,2*K.1^3,0,0,0,-2*K.1^7,2*K.1^9,0,0,-2*K.1,0,0,0,2*K.1,0,0,2*K.1^3,-2*K.1^9,2*K.1^9,0,2*K.1^7,2*K.1^8,0,0,2*K.1^9,-2*K.1^6,-2*K.1^7,-2*K.1^3,0,-2*K.1^2,0,0,-2*K.1^4,0,0,-2*K.1^3,0,0,-2*K.1^7,0,0,0,0,2*K.1^7,-2*K.1,0,0,2*K.1^3,-2*K.1^8,0,-2*K.1^9,0,0,0,2*K.1,0,2*K.1^7,2*K.1^8,2*K.1,-2*K.1^3,0,0,2*K.1^2,0,2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^6,0,0,-2*K.1^8,-2*K.1^9,0,0,2*K.1^2,0,-2*K.1^7,0,0,-2*K.1^4,-2*K.1,2*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2,0,2*K.1^5,0,0,0,0,-2,0,-2*K.1^5,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,-2,-2*K.1^5,0,-2,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,2,2*K.1^5,0,-2*K.1^5,0,0,0,2,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1,2*K.1,2*K.1^3,2*K.1^7,-2*K.1^7,2*K.1,-2*K.1^7,2*K.1^3,2*K.1^7,-2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1,0,0,0,0,0,2*K.1^9,-2*K.1^6,2*K.1^6,-2*K.1^7,2*K.1^4,0,-2*K.1^9,2*K.1^8,-2*K.1^3,0,0,2*K.1^7,-2*K.1^2,2*K.1^3,0,0,0,0,-2*K.1,-2*K.1^8,0,0,0,0,0,0,-2*K.1^4,0,0,2*K.1^2,0,0,0,2*K.1,0,0,-2*K.1^6,0,0,2*K.1^6,0,2*K.1^6,-2*K.1^4,-2*K.1^4,0,2*K.1^8,2*K.1^2,0,0,-2*K.1^8,0,2*K.1^2,0,2*K.1^4,0,0,0,0,0,-2*K.1^8,0,0,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^9,0,-2*K.1^3,0,-2*K.1,2*K.1^3,0,0,-2*K.1^7,-2*K.1^9,0,2*K.1,0,0,-2*K.1^3,0,0,0,2*K.1^7,-2*K.1^9,0,0,2*K.1,0,0,0,-2*K.1,0,0,-2*K.1^3,2*K.1^9,-2*K.1^9,0,-2*K.1^7,2*K.1^8,0,0,-2*K.1^9,-2*K.1^6,2*K.1^7,2*K.1^3,0,-2*K.1^2,0,0,-2*K.1^4,0,0,2*K.1^3,0,0,2*K.1^7,0,0,0,0,-2*K.1^7,2*K.1,0,0,-2*K.1^3,-2*K.1^8,0,2*K.1^9,0,0,0,-2*K.1,0,-2*K.1^7,2*K.1^8,-2*K.1,2*K.1^3,0,0,2*K.1^2,0,2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^6,0,0,-2*K.1^8,2*K.1^9,0,0,2*K.1^2,0,2*K.1^7,0,0,-2*K.1^4,2*K.1,2*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2,0,-2*K.1^5,0,0,0,0,-2,0,2*K.1^5,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,0,0,2,0,0,-2,-2,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,-2,2*K.1^5,0,-2,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2,-2*K.1^5,0,2*K.1^5,0,0,0,2,0,0,0,0,0,0,0,2*K.1^5,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1,-2*K.1,2*K.1,2*K.1^9,-2*K.1^9,-2*K.1^7,-2*K.1^3,2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^7,-2*K.1^3,2*K.1^7,2*K.1,2*K.1^7,2*K.1^9,0,0,0,0,0,-2*K.1,2*K.1^4,-2*K.1^4,2*K.1^3,-2*K.1^6,0,2*K.1,-2*K.1^2,2*K.1^7,0,0,-2*K.1^3,2*K.1^8,-2*K.1^7,0,0,0,0,2*K.1^9,2*K.1^2,0,0,0,0,0,0,2*K.1^6,0,0,-2*K.1^8,0,0,0,-2*K.1^9,0,0,2*K.1^4,0,0,-2*K.1^4,0,-2*K.1^4,2*K.1^6,2*K.1^6,0,-2*K.1^2,-2*K.1^8,0,0,2*K.1^2,0,-2*K.1^8,0,-2*K.1^6,0,0,0,0,0,2*K.1^2,0,0,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1,0,2*K.1^7,0,2*K.1^9,-2*K.1^7,0,0,2*K.1^3,2*K.1,0,-2*K.1^9,0,0,2*K.1^7,0,0,0,-2*K.1^3,2*K.1,0,0,-2*K.1^9,0,0,0,2*K.1^9,0,0,2*K.1^7,-2*K.1,2*K.1,0,2*K.1^3,-2*K.1^2,0,0,2*K.1,2*K.1^4,-2*K.1^3,-2*K.1^7,0,2*K.1^8,0,0,2*K.1^6,0,0,-2*K.1^7,0,0,-2*K.1^3,0,0,0,0,2*K.1^3,-2*K.1^9,0,0,2*K.1^7,2*K.1^2,0,-2*K.1,0,0,0,2*K.1^9,0,2*K.1^3,-2*K.1^2,2*K.1^9,-2*K.1^7,0,0,-2*K.1^8,0,-2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^4,0,0,2*K.1^2,-2*K.1,0,0,-2*K.1^8,0,-2*K.1^3,0,0,2*K.1^6,-2*K.1^9,-2*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,-2,2,2,0,-2*K.1^5,0,0,2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^2,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,0,-2,-2,0,2,0,0,-2*K.1^5,2,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,0,2*K.1^5,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^6,2*K.1^4,-2*K.1^2,-2*K.1^4,2*K.1^8,-2*K.1^3,-2*K.1^7,2*K.1^3,-2*K.1^9,-2*K.1^7,0,0,0,0,0,2*K.1^7,0,0,0,0,2*K.1^3,0,0,0,0,0,-2*K.1,2*K.1^7,0,0,-2*K.1^3,2*K.1^9,0,0,-2*K.1^9,0,0,0,2*K.1,0,2*K.1,0,-2*K.1,0,2*K.1^9,0,-2*K.1^8,0,0,-2*K.1^8,0,2*K.1^8,2*K.1^2,-2*K.1^2,0,-2*K.1^4,-2*K.1^6,0,0,-2*K.1^4,0,2*K.1^6,0,2*K.1^2,0,0,0,0,0,2*K.1^4,0,0,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,0,-2*K.1^4,2*K.1^7,2*K.1^8,0,2*K.1^7,-2*K.1^7,0,2*K.1^2,-2*K.1^7,0,-2*K.1^7,2*K.1^3,0,0,-2*K.1^3,0,2*K.1^6,-2*K.1^2,-2*K.1^3,0,0,-2*K.1^3,0,0,0,0,0,0,0,0,2*K.1^9,0,0,-2*K.1^7,0,0,0,-2*K.1^6,-2*K.1^4,0,0,0,0,0,0,2*K.1^9,0,2*K.1,2*K.1^9,0,-2*K.1,2*K.1,0,0,2*K.1^6,2*K.1^8,-2*K.1,0,2*K.1^4,0,2*K.1^7,-2*K.1^2,-2*K.1^9,-2*K.1^9,2*K.1^7,0,2*K.1^3,-2*K.1^6,0,-2*K.1^8,2*K.1^4,2*K.1^3,-2*K.1^9,0,2*K.1^3,0,0,0,0,-2*K.1,2*K.1^9,0,0,-2*K.1^3,-2*K.1^9,0,2*K.1,0,2*K.1,-2*K.1,0,-2*K.1^8,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,-2,2,2,0,2*K.1^5,0,0,-2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^8,2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,2*K.1^5,0,-2,-2,0,2,0,0,2*K.1^5,2,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,0,-2*K.1^5,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^4,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^4,-2*K.1^6,2*K.1^8,2*K.1^6,-2*K.1^2,2*K.1^7,2*K.1^3,-2*K.1^7,2*K.1,2*K.1^3,0,0,0,0,0,-2*K.1^3,0,0,0,0,-2*K.1^7,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,2*K.1^7,-2*K.1,0,0,2*K.1,0,0,0,-2*K.1^9,0,-2*K.1^9,0,2*K.1^9,0,-2*K.1,0,2*K.1^2,0,0,2*K.1^2,0,-2*K.1^2,-2*K.1^8,2*K.1^8,0,2*K.1^6,2*K.1^4,0,0,2*K.1^6,0,-2*K.1^4,0,-2*K.1^8,0,0,0,0,0,-2*K.1^6,0,0,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,0,2*K.1^6,-2*K.1^3,-2*K.1^2,0,-2*K.1^3,2*K.1^3,0,-2*K.1^8,2*K.1^3,0,2*K.1^3,-2*K.1^7,0,0,2*K.1^7,0,-2*K.1^4,2*K.1^8,2*K.1^7,0,0,2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1,0,0,2*K.1^3,0,0,0,2*K.1^4,2*K.1^6,0,0,0,0,0,0,-2*K.1,0,-2*K.1^9,-2*K.1,0,2*K.1^9,-2*K.1^9,0,0,-2*K.1^4,-2*K.1^2,2*K.1^9,0,-2*K.1^6,0,-2*K.1^3,2*K.1^8,2*K.1,2*K.1,-2*K.1^3,0,-2*K.1^7,2*K.1^4,0,2*K.1^2,-2*K.1^6,-2*K.1^7,2*K.1,0,-2*K.1^7,0,0,0,0,2*K.1^9,-2*K.1,0,0,2*K.1^7,2*K.1,0,-2*K.1^9,0,-2*K.1^9,2*K.1^9,0,2*K.1^2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,-2,2,2,0,-2*K.1^5,0,0,2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^8,2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,0,-2,-2,0,2,0,0,-2*K.1^5,2,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,0,2*K.1^5,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^4,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^4,-2*K.1^6,2*K.1^8,2*K.1^6,-2*K.1^2,-2*K.1^7,-2*K.1^3,2*K.1^7,-2*K.1,-2*K.1^3,0,0,0,0,0,2*K.1^3,0,0,0,0,2*K.1^7,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,-2*K.1^7,2*K.1,0,0,-2*K.1,0,0,0,2*K.1^9,0,2*K.1^9,0,-2*K.1^9,0,2*K.1,0,2*K.1^2,0,0,2*K.1^2,0,-2*K.1^2,-2*K.1^8,2*K.1^8,0,2*K.1^6,2*K.1^4,0,0,2*K.1^6,0,-2*K.1^4,0,-2*K.1^8,0,0,0,0,0,-2*K.1^6,0,0,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,0,2*K.1^6,2*K.1^3,-2*K.1^2,0,2*K.1^3,-2*K.1^3,0,-2*K.1^8,-2*K.1^3,0,-2*K.1^3,2*K.1^7,0,0,-2*K.1^7,0,-2*K.1^4,2*K.1^8,-2*K.1^7,0,0,-2*K.1^7,0,0,0,0,0,0,0,0,2*K.1,0,0,-2*K.1^3,0,0,0,2*K.1^4,2*K.1^6,0,0,0,0,0,0,2*K.1,0,2*K.1^9,2*K.1,0,-2*K.1^9,2*K.1^9,0,0,-2*K.1^4,-2*K.1^2,-2*K.1^9,0,-2*K.1^6,0,2*K.1^3,2*K.1^8,-2*K.1,-2*K.1,2*K.1^3,0,2*K.1^7,2*K.1^4,0,2*K.1^2,-2*K.1^6,2*K.1^7,-2*K.1,0,2*K.1^7,0,0,0,0,-2*K.1^9,2*K.1,0,0,-2*K.1^7,-2*K.1,0,2*K.1^9,0,2*K.1^9,-2*K.1^9,0,2*K.1^2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,-2,2,2,0,2*K.1^5,0,0,-2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^2,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,2*K.1^5,0,-2,-2,0,2,0,0,2*K.1^5,2,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,0,-2*K.1^5,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^6,2*K.1^4,-2*K.1^2,-2*K.1^4,2*K.1^8,2*K.1^3,2*K.1^7,-2*K.1^3,2*K.1^9,2*K.1^7,0,0,0,0,0,-2*K.1^7,0,0,0,0,-2*K.1^3,0,0,0,0,0,2*K.1,-2*K.1^7,0,0,2*K.1^3,-2*K.1^9,0,0,2*K.1^9,0,0,0,-2*K.1,0,-2*K.1,0,2*K.1,0,-2*K.1^9,0,-2*K.1^8,0,0,-2*K.1^8,0,2*K.1^8,2*K.1^2,-2*K.1^2,0,-2*K.1^4,-2*K.1^6,0,0,-2*K.1^4,0,2*K.1^6,0,2*K.1^2,0,0,0,0,0,2*K.1^4,0,0,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,0,-2*K.1^4,-2*K.1^7,2*K.1^8,0,-2*K.1^7,2*K.1^7,0,2*K.1^2,2*K.1^7,0,2*K.1^7,-2*K.1^3,0,0,2*K.1^3,0,2*K.1^6,-2*K.1^2,2*K.1^3,0,0,2*K.1^3,0,0,0,0,0,0,0,0,-2*K.1^9,0,0,2*K.1^7,0,0,0,-2*K.1^6,-2*K.1^4,0,0,0,0,0,0,-2*K.1^9,0,-2*K.1,-2*K.1^9,0,2*K.1,-2*K.1,0,0,2*K.1^6,2*K.1^8,2*K.1,0,2*K.1^4,0,-2*K.1^7,-2*K.1^2,2*K.1^9,2*K.1^9,-2*K.1^7,0,-2*K.1^3,-2*K.1^6,0,-2*K.1^8,2*K.1^4,-2*K.1^3,2*K.1^9,0,-2*K.1^3,0,0,0,0,2*K.1,-2*K.1^9,0,0,2*K.1^3,2*K.1^9,0,-2*K.1,0,-2*K.1,2*K.1,0,-2*K.1^8,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,-2,2,2,0,-2*K.1^5,0,0,2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,0,-2,-2,0,2,0,0,-2*K.1^5,2,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,0,2*K.1^5,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^8,-2*K.1^2,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^2,2*K.1^4,2*K.1^9,2*K.1,-2*K.1^9,2*K.1^7,2*K.1,0,0,0,0,0,-2*K.1,0,0,0,0,-2*K.1^9,0,0,0,0,0,2*K.1^3,-2*K.1,0,0,2*K.1^9,-2*K.1^7,0,0,2*K.1^7,0,0,0,-2*K.1^3,0,-2*K.1^3,0,2*K.1^3,0,-2*K.1^7,0,-2*K.1^4,0,0,-2*K.1^4,0,2*K.1^4,2*K.1^6,-2*K.1^6,0,2*K.1^2,2*K.1^8,0,0,2*K.1^2,0,-2*K.1^8,0,2*K.1^6,0,0,0,0,0,-2*K.1^2,0,0,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,0,2*K.1^2,-2*K.1,2*K.1^4,0,-2*K.1,2*K.1,0,2*K.1^6,2*K.1,0,2*K.1,-2*K.1^9,0,0,2*K.1^9,0,-2*K.1^8,-2*K.1^6,2*K.1^9,0,0,2*K.1^9,0,0,0,0,0,0,0,0,-2*K.1^7,0,0,2*K.1,0,0,0,2*K.1^8,2*K.1^2,0,0,0,0,0,0,-2*K.1^7,0,-2*K.1^3,-2*K.1^7,0,2*K.1^3,-2*K.1^3,0,0,-2*K.1^8,2*K.1^4,2*K.1^3,0,-2*K.1^2,0,-2*K.1,-2*K.1^6,2*K.1^7,2*K.1^7,-2*K.1,0,-2*K.1^9,2*K.1^8,0,-2*K.1^4,-2*K.1^2,-2*K.1^9,2*K.1^7,0,-2*K.1^9,0,0,0,0,2*K.1^3,-2*K.1^7,0,0,2*K.1^9,2*K.1^7,0,-2*K.1^3,0,-2*K.1^3,2*K.1^3,0,-2*K.1^4,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,-2,2,2,0,2*K.1^5,0,0,-2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^6,-2*K.1^2,-2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,2*K.1^5,0,-2,-2,0,2,0,0,2*K.1^5,2,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,0,-2*K.1^5,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^2,-2*K.1^6,-2*K.1^2,2*K.1^8,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^8,-2*K.1^6,-2*K.1,-2*K.1^9,2*K.1,-2*K.1^3,-2*K.1^9,0,0,0,0,0,2*K.1^9,0,0,0,0,2*K.1,0,0,0,0,0,-2*K.1^7,2*K.1^9,0,0,-2*K.1,2*K.1^3,0,0,-2*K.1^3,0,0,0,2*K.1^7,0,2*K.1^7,0,-2*K.1^7,0,2*K.1^3,0,2*K.1^6,0,0,2*K.1^6,0,-2*K.1^6,-2*K.1^4,2*K.1^4,0,-2*K.1^8,-2*K.1^2,0,0,-2*K.1^8,0,2*K.1^2,0,-2*K.1^4,0,0,0,0,0,2*K.1^8,0,0,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,0,-2*K.1^8,2*K.1^9,-2*K.1^6,0,2*K.1^9,-2*K.1^9,0,-2*K.1^4,-2*K.1^9,0,-2*K.1^9,2*K.1,0,0,-2*K.1,0,2*K.1^2,2*K.1^4,-2*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,2*K.1^3,0,0,-2*K.1^9,0,0,0,-2*K.1^2,-2*K.1^8,0,0,0,0,0,0,2*K.1^3,0,2*K.1^7,2*K.1^3,0,-2*K.1^7,2*K.1^7,0,0,2*K.1^2,-2*K.1^6,-2*K.1^7,0,2*K.1^8,0,2*K.1^9,2*K.1^4,-2*K.1^3,-2*K.1^3,2*K.1^9,0,2*K.1,-2*K.1^2,0,2*K.1^6,2*K.1^8,2*K.1,-2*K.1^3,0,2*K.1,0,0,0,0,-2*K.1^7,2*K.1^3,0,0,-2*K.1,-2*K.1^3,0,2*K.1^7,0,2*K.1^7,-2*K.1^7,0,2*K.1^6,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,-2,2,2,0,-2*K.1^5,0,0,2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^6,-2*K.1^2,-2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,0,-2,-2,0,2,0,0,-2*K.1^5,2,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,0,2*K.1^5,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^4,-2*K.1^4,2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^2,-2*K.1^6,-2*K.1^2,2*K.1^8,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^8,-2*K.1^6,2*K.1,2*K.1^9,-2*K.1,2*K.1^3,2*K.1^9,0,0,0,0,0,-2*K.1^9,0,0,0,0,-2*K.1,0,0,0,0,0,2*K.1^7,-2*K.1^9,0,0,2*K.1,-2*K.1^3,0,0,2*K.1^3,0,0,0,-2*K.1^7,0,-2*K.1^7,0,2*K.1^7,0,-2*K.1^3,0,2*K.1^6,0,0,2*K.1^6,0,-2*K.1^6,-2*K.1^4,2*K.1^4,0,-2*K.1^8,-2*K.1^2,0,0,-2*K.1^8,0,2*K.1^2,0,-2*K.1^4,0,0,0,0,0,2*K.1^8,0,0,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,0,-2*K.1^8,-2*K.1^9,-2*K.1^6,0,-2*K.1^9,2*K.1^9,0,-2*K.1^4,2*K.1^9,0,2*K.1^9,-2*K.1,0,0,2*K.1,0,2*K.1^2,2*K.1^4,2*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,2*K.1^9,0,0,0,-2*K.1^2,-2*K.1^8,0,0,0,0,0,0,-2*K.1^3,0,-2*K.1^7,-2*K.1^3,0,2*K.1^7,-2*K.1^7,0,0,2*K.1^2,-2*K.1^6,2*K.1^7,0,2*K.1^8,0,-2*K.1^9,2*K.1^4,2*K.1^3,2*K.1^3,-2*K.1^9,0,-2*K.1,-2*K.1^2,0,2*K.1^6,2*K.1^8,-2*K.1,2*K.1^3,0,-2*K.1,0,0,0,0,2*K.1^7,-2*K.1^3,0,0,2*K.1,2*K.1^3,0,-2*K.1^7,0,-2*K.1^7,2*K.1^7,0,2*K.1^6,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2,-2,2,2,0,2*K.1^5,0,0,-2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,2*K.1^5,0,-2,-2,0,2,0,0,2*K.1^5,2,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,0,-2*K.1^5,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^8,-2*K.1^2,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^2,2*K.1^4,-2*K.1^9,-2*K.1,2*K.1^9,-2*K.1^7,-2*K.1,0,0,0,0,0,2*K.1,0,0,0,0,2*K.1^9,0,0,0,0,0,-2*K.1^3,2*K.1,0,0,-2*K.1^9,2*K.1^7,0,0,-2*K.1^7,0,0,0,2*K.1^3,0,2*K.1^3,0,-2*K.1^3,0,2*K.1^7,0,-2*K.1^4,0,0,-2*K.1^4,0,2*K.1^4,2*K.1^6,-2*K.1^6,0,2*K.1^2,2*K.1^8,0,0,2*K.1^2,0,-2*K.1^8,0,2*K.1^6,0,0,0,0,0,-2*K.1^2,0,0,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,0,2*K.1^2,2*K.1,2*K.1^4,0,2*K.1,-2*K.1,0,2*K.1^6,-2*K.1,0,-2*K.1,2*K.1^9,0,0,-2*K.1^9,0,-2*K.1^8,-2*K.1^6,-2*K.1^9,0,0,-2*K.1^9,0,0,0,0,0,0,0,0,2*K.1^7,0,0,-2*K.1,0,0,0,2*K.1^8,2*K.1^2,0,0,0,0,0,0,2*K.1^7,0,2*K.1^3,2*K.1^7,0,-2*K.1^3,2*K.1^3,0,0,-2*K.1^8,2*K.1^4,-2*K.1^3,0,-2*K.1^2,0,2*K.1,-2*K.1^6,-2*K.1^7,-2*K.1^7,2*K.1,0,2*K.1^9,2*K.1^8,0,-2*K.1^4,-2*K.1^2,2*K.1^9,-2*K.1^7,0,2*K.1^9,0,0,0,0,-2*K.1^3,2*K.1^7,0,0,-2*K.1^9,-2*K.1^7,0,2*K.1^3,0,2*K.1^3,-2*K.1^3,0,-2*K.1^4,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2,-2,-2,0,-2*K.1^5,0,0,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^2,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,0,2,2,0,-2,0,0,-2*K.1^5,-2,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^6,-2*K.1^6,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^3,-2*K.1^7,-2*K.1^3,2*K.1^9,2*K.1^7,0,0,0,0,0,-2*K.1^7,0,0,0,0,2*K.1^3,0,0,0,0,0,-2*K.1,2*K.1^7,0,0,-2*K.1^3,2*K.1^9,0,0,-2*K.1^9,0,0,0,-2*K.1,0,2*K.1,0,2*K.1,0,-2*K.1^9,0,-2*K.1^8,0,0,-2*K.1^8,0,2*K.1^8,2*K.1^2,-2*K.1^2,0,-2*K.1^4,-2*K.1^6,0,0,-2*K.1^4,0,2*K.1^6,0,2*K.1^2,0,0,0,0,0,2*K.1^4,0,0,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,0,2*K.1^4,-2*K.1^7,-2*K.1^8,0,2*K.1^7,-2*K.1^7,0,-2*K.1^2,-2*K.1^7,0,2*K.1^7,2*K.1^3,0,0,2*K.1^3,0,-2*K.1^6,2*K.1^2,-2*K.1^3,0,0,2*K.1^3,0,0,0,0,0,0,0,0,2*K.1^9,0,0,2*K.1^7,0,0,0,2*K.1^6,2*K.1^4,0,0,0,0,0,0,-2*K.1^9,0,-2*K.1,-2*K.1^9,0,2*K.1,-2*K.1,0,0,-2*K.1^6,-2*K.1^8,-2*K.1,0,-2*K.1^4,0,-2*K.1^7,2*K.1^2,-2*K.1^9,-2*K.1^9,2*K.1^7,0,2*K.1^3,2*K.1^6,0,2*K.1^8,-2*K.1^4,-2*K.1^3,2*K.1^9,0,-2*K.1^3,0,0,0,0,-2*K.1,2*K.1^9,0,0,-2*K.1^3,2*K.1^9,0,2*K.1,0,2*K.1,2*K.1,0,2*K.1^8,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2,-2,-2,0,2*K.1^5,0,0,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^8,2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,2*K.1^5,0,2,2,0,-2,0,0,2*K.1^5,-2,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^2,-2*K.1^2,-2*K.1^6,2*K.1^4,2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^7,2*K.1^3,2*K.1^7,-2*K.1,-2*K.1^3,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^7,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,2*K.1^7,-2*K.1,0,0,2*K.1,0,0,0,2*K.1^9,0,-2*K.1^9,0,-2*K.1^9,0,2*K.1,0,2*K.1^2,0,0,2*K.1^2,0,-2*K.1^2,-2*K.1^8,2*K.1^8,0,2*K.1^6,2*K.1^4,0,0,2*K.1^6,0,-2*K.1^4,0,-2*K.1^8,0,0,0,0,0,-2*K.1^6,0,0,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,0,-2*K.1^6,2*K.1^3,2*K.1^2,0,-2*K.1^3,2*K.1^3,0,2*K.1^8,2*K.1^3,0,-2*K.1^3,-2*K.1^7,0,0,-2*K.1^7,0,2*K.1^4,-2*K.1^8,2*K.1^7,0,0,-2*K.1^7,0,0,0,0,0,0,0,0,-2*K.1,0,0,-2*K.1^3,0,0,0,-2*K.1^4,-2*K.1^6,0,0,0,0,0,0,2*K.1,0,2*K.1^9,2*K.1,0,-2*K.1^9,2*K.1^9,0,0,2*K.1^4,2*K.1^2,2*K.1^9,0,2*K.1^6,0,2*K.1^3,-2*K.1^8,2*K.1,2*K.1,-2*K.1^3,0,-2*K.1^7,-2*K.1^4,0,-2*K.1^2,2*K.1^6,2*K.1^7,-2*K.1,0,2*K.1^7,0,0,0,0,2*K.1^9,-2*K.1,0,0,2*K.1^7,-2*K.1,0,-2*K.1^9,0,-2*K.1^9,-2*K.1^9,0,-2*K.1^2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2,-2,-2,0,-2*K.1^5,0,0,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^8,2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,0,2,2,0,-2,0,0,-2*K.1^5,-2,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^2,-2*K.1^2,-2*K.1^6,2*K.1^4,2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^6,2*K.1^2,2*K.1^7,-2*K.1^3,-2*K.1^7,2*K.1,2*K.1^3,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^7,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,-2*K.1^7,2*K.1,0,0,-2*K.1,0,0,0,-2*K.1^9,0,2*K.1^9,0,2*K.1^9,0,-2*K.1,0,2*K.1^2,0,0,2*K.1^2,0,-2*K.1^2,-2*K.1^8,2*K.1^8,0,2*K.1^6,2*K.1^4,0,0,2*K.1^6,0,-2*K.1^4,0,-2*K.1^8,0,0,0,0,0,-2*K.1^6,0,0,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,0,-2*K.1^6,-2*K.1^3,2*K.1^2,0,2*K.1^3,-2*K.1^3,0,2*K.1^8,-2*K.1^3,0,2*K.1^3,2*K.1^7,0,0,2*K.1^7,0,2*K.1^4,-2*K.1^8,-2*K.1^7,0,0,2*K.1^7,0,0,0,0,0,0,0,0,2*K.1,0,0,2*K.1^3,0,0,0,-2*K.1^4,-2*K.1^6,0,0,0,0,0,0,-2*K.1,0,-2*K.1^9,-2*K.1,0,2*K.1^9,-2*K.1^9,0,0,2*K.1^4,2*K.1^2,-2*K.1^9,0,2*K.1^6,0,-2*K.1^3,-2*K.1^8,-2*K.1,-2*K.1,2*K.1^3,0,2*K.1^7,-2*K.1^4,0,-2*K.1^2,2*K.1^6,-2*K.1^7,2*K.1,0,-2*K.1^7,0,0,0,0,-2*K.1^9,2*K.1,0,0,-2*K.1^7,2*K.1,0,2*K.1^9,0,2*K.1^9,2*K.1^9,0,-2*K.1^2,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2,-2,-2,0,2*K.1^5,0,0,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^2,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,2*K.1^5,0,2,2,0,-2,0,0,2*K.1^5,-2,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^8,2*K.1^4,-2*K.1^6,-2*K.1^6,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^4,-2*K.1^8,-2*K.1^3,2*K.1^7,2*K.1^3,-2*K.1^9,-2*K.1^7,0,0,0,0,0,2*K.1^7,0,0,0,0,-2*K.1^3,0,0,0,0,0,2*K.1,-2*K.1^7,0,0,2*K.1^3,-2*K.1^9,0,0,2*K.1^9,0,0,0,2*K.1,0,-2*K.1,0,-2*K.1,0,2*K.1^9,0,-2*K.1^8,0,0,-2*K.1^8,0,2*K.1^8,2*K.1^2,-2*K.1^2,0,-2*K.1^4,-2*K.1^6,0,0,-2*K.1^4,0,2*K.1^6,0,2*K.1^2,0,0,0,0,0,2*K.1^4,0,0,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,0,2*K.1^4,2*K.1^7,-2*K.1^8,0,-2*K.1^7,2*K.1^7,0,-2*K.1^2,2*K.1^7,0,-2*K.1^7,-2*K.1^3,0,0,-2*K.1^3,0,-2*K.1^6,2*K.1^2,2*K.1^3,0,0,-2*K.1^3,0,0,0,0,0,0,0,0,-2*K.1^9,0,0,-2*K.1^7,0,0,0,2*K.1^6,2*K.1^4,0,0,0,0,0,0,2*K.1^9,0,2*K.1,2*K.1^9,0,-2*K.1,2*K.1,0,0,-2*K.1^6,-2*K.1^8,2*K.1,0,-2*K.1^4,0,2*K.1^7,2*K.1^2,2*K.1^9,2*K.1^9,-2*K.1^7,0,-2*K.1^3,2*K.1^6,0,2*K.1^8,-2*K.1^4,2*K.1^3,-2*K.1^9,0,2*K.1^3,0,0,0,0,2*K.1,-2*K.1^9,0,0,2*K.1^3,-2*K.1^9,0,-2*K.1,0,-2*K.1,-2*K.1,0,2*K.1^8,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2,-2,-2,0,-2*K.1^5,0,0,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,0,2,2,0,-2,0,0,-2*K.1^5,-2,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^4,2*K.1^4,-2*K.1^2,2*K.1^8,2*K.1^8,-2*K.1^4,-2*K.1^8,2*K.1^2,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^2,-2*K.1^4,-2*K.1^9,2*K.1,2*K.1^9,-2*K.1^7,-2*K.1,0,0,0,0,0,2*K.1,0,0,0,0,-2*K.1^9,0,0,0,0,0,2*K.1^3,-2*K.1,0,0,2*K.1^9,-2*K.1^7,0,0,2*K.1^7,0,0,0,2*K.1^3,0,-2*K.1^3,0,-2*K.1^3,0,2*K.1^7,0,-2*K.1^4,0,0,-2*K.1^4,0,2*K.1^4,2*K.1^6,-2*K.1^6,0,2*K.1^2,2*K.1^8,0,0,2*K.1^2,0,-2*K.1^8,0,2*K.1^6,0,0,0,0,0,-2*K.1^2,0,0,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,0,-2*K.1^2,2*K.1,-2*K.1^4,0,-2*K.1,2*K.1,0,-2*K.1^6,2*K.1,0,-2*K.1,-2*K.1^9,0,0,-2*K.1^9,0,2*K.1^8,2*K.1^6,2*K.1^9,0,0,-2*K.1^9,0,0,0,0,0,0,0,0,-2*K.1^7,0,0,-2*K.1,0,0,0,-2*K.1^8,-2*K.1^2,0,0,0,0,0,0,2*K.1^7,0,2*K.1^3,2*K.1^7,0,-2*K.1^3,2*K.1^3,0,0,2*K.1^8,-2*K.1^4,2*K.1^3,0,2*K.1^2,0,2*K.1,2*K.1^6,2*K.1^7,2*K.1^7,-2*K.1,0,-2*K.1^9,-2*K.1^8,0,2*K.1^4,2*K.1^2,2*K.1^9,-2*K.1^7,0,2*K.1^9,0,0,0,0,2*K.1^3,-2*K.1^7,0,0,2*K.1^9,-2*K.1^7,0,-2*K.1^3,0,-2*K.1^3,-2*K.1^3,0,2*K.1^4,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2,-2,-2,0,2*K.1^5,0,0,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^6,-2*K.1^2,-2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,2*K.1^5,0,2,2,0,-2,0,0,2*K.1^5,-2,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^6,-2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^2,2*K.1^6,2*K.1^2,-2*K.1^8,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^8,2*K.1^6,2*K.1,-2*K.1^9,-2*K.1,2*K.1^3,2*K.1^9,0,0,0,0,0,-2*K.1^9,0,0,0,0,2*K.1,0,0,0,0,0,-2*K.1^7,2*K.1^9,0,0,-2*K.1,2*K.1^3,0,0,-2*K.1^3,0,0,0,-2*K.1^7,0,2*K.1^7,0,2*K.1^7,0,-2*K.1^3,0,2*K.1^6,0,0,2*K.1^6,0,-2*K.1^6,-2*K.1^4,2*K.1^4,0,-2*K.1^8,-2*K.1^2,0,0,-2*K.1^8,0,2*K.1^2,0,-2*K.1^4,0,0,0,0,0,2*K.1^8,0,0,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,0,2*K.1^8,-2*K.1^9,2*K.1^6,0,2*K.1^9,-2*K.1^9,0,2*K.1^4,-2*K.1^9,0,2*K.1^9,2*K.1,0,0,2*K.1,0,-2*K.1^2,-2*K.1^4,-2*K.1,0,0,2*K.1,0,0,0,0,0,0,0,0,2*K.1^3,0,0,2*K.1^9,0,0,0,2*K.1^2,2*K.1^8,0,0,0,0,0,0,-2*K.1^3,0,-2*K.1^7,-2*K.1^3,0,2*K.1^7,-2*K.1^7,0,0,-2*K.1^2,2*K.1^6,-2*K.1^7,0,-2*K.1^8,0,-2*K.1^9,-2*K.1^4,-2*K.1^3,-2*K.1^3,2*K.1^9,0,2*K.1,2*K.1^2,0,-2*K.1^6,-2*K.1^8,-2*K.1,2*K.1^3,0,-2*K.1,0,0,0,0,-2*K.1^7,2*K.1^3,0,0,-2*K.1,2*K.1^3,0,2*K.1^7,0,2*K.1^7,2*K.1^7,0,-2*K.1^6,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2,-2,-2,0,-2*K.1^5,0,0,2*K.1^5,-2*K.1^5,0,0,2*K.1^5,0,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,2*K.1^8,-2*K.1^4,2*K.1^4,-2*K.1^6,-2*K.1^2,-2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,-2*K.1^5,0,2,2,0,-2,0,0,-2*K.1^5,-2,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^5,-2*K.1^5,0,2*K.1^5,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^6,-2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^2,2*K.1^6,2*K.1^2,-2*K.1^8,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^8,2*K.1^6,-2*K.1,2*K.1^9,2*K.1,-2*K.1^3,-2*K.1^9,0,0,0,0,0,2*K.1^9,0,0,0,0,-2*K.1,0,0,0,0,0,2*K.1^7,-2*K.1^9,0,0,2*K.1,-2*K.1^3,0,0,2*K.1^3,0,0,0,2*K.1^7,0,-2*K.1^7,0,-2*K.1^7,0,2*K.1^3,0,2*K.1^6,0,0,2*K.1^6,0,-2*K.1^6,-2*K.1^4,2*K.1^4,0,-2*K.1^8,-2*K.1^2,0,0,-2*K.1^8,0,2*K.1^2,0,-2*K.1^4,0,0,0,0,0,2*K.1^8,0,0,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,0,2*K.1^8,2*K.1^9,2*K.1^6,0,-2*K.1^9,2*K.1^9,0,2*K.1^4,2*K.1^9,0,-2*K.1^9,-2*K.1,0,0,-2*K.1,0,-2*K.1^2,-2*K.1^4,2*K.1,0,0,-2*K.1,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,-2*K.1^9,0,0,0,2*K.1^2,2*K.1^8,0,0,0,0,0,0,2*K.1^3,0,2*K.1^7,2*K.1^3,0,-2*K.1^7,2*K.1^7,0,0,-2*K.1^2,2*K.1^6,2*K.1^7,0,-2*K.1^8,0,2*K.1^9,-2*K.1^4,2*K.1^3,2*K.1^3,-2*K.1^9,0,-2*K.1,2*K.1^2,0,-2*K.1^6,-2*K.1^8,2*K.1,-2*K.1^3,0,2*K.1,0,0,0,0,2*K.1^7,-2*K.1^3,0,0,2*K.1,-2*K.1^3,0,-2*K.1^7,0,-2*K.1^7,-2*K.1^7,0,-2*K.1^6,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2,2,-2,-2,0,2*K.1^5,0,0,-2*K.1^5,2*K.1^5,0,0,-2*K.1^5,0,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,0,0,-2,0,0,-2,2,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,2*K.1^5,0,2,2,0,-2,0,0,2*K.1^5,-2,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^5,2*K.1^5,0,-2*K.1^5,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^4,2*K.1^4,-2*K.1^2,2*K.1^8,2*K.1^8,-2*K.1^4,-2*K.1^8,2*K.1^2,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1^9,-2*K.1,-2*K.1^9,2*K.1^7,2*K.1,0,0,0,0,0,-2*K.1,0,0,0,0,2*K.1^9,0,0,0,0,0,-2*K.1^3,2*K.1,0,0,-2*K.1^9,2*K.1^7,0,0,-2*K.1^7,0,0,0,-2*K.1^3,0,2*K.1^3,0,2*K.1^3,0,-2*K.1^7,0,-2*K.1^4,0,0,-2*K.1^4,0,2*K.1^4,2*K.1^6,-2*K.1^6,0,2*K.1^2,2*K.1^8,0,0,2*K.1^2,0,-2*K.1^8,0,2*K.1^6,0,0,0,0,0,-2*K.1^2,0,0,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,0,-2*K.1^2,-2*K.1,-2*K.1^4,0,2*K.1,-2*K.1,0,-2*K.1^6,-2*K.1,0,2*K.1,2*K.1^9,0,0,2*K.1^9,0,2*K.1^8,2*K.1^6,-2*K.1^9,0,0,2*K.1^9,0,0,0,0,0,0,0,0,2*K.1^7,0,0,2*K.1,0,0,0,-2*K.1^8,-2*K.1^2,0,0,0,0,0,0,-2*K.1^7,0,-2*K.1^3,-2*K.1^7,0,2*K.1^3,-2*K.1^3,0,0,2*K.1^8,-2*K.1^4,-2*K.1^3,0,2*K.1^2,0,-2*K.1,2*K.1^6,-2*K.1^7,-2*K.1^7,2*K.1,0,2*K.1^9,-2*K.1^8,0,2*K.1^4,2*K.1^2,-2*K.1^9,2*K.1^7,0,-2*K.1^9,0,0,0,0,-2*K.1^3,2*K.1^7,0,0,-2*K.1^9,2*K.1^7,0,2*K.1^3,0,2*K.1^3,2*K.1^3,0,2*K.1^4,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^18,-2*K.1^6,2*K.1^18,-1*K.1^5-K.1^-5,1-2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^15,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^21,-2*K.1^21,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^27,2*K.1^3,-2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^21,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,-2*K.1^27,2*K.1^9,0,2*K.1^27,0,-2*K.1^21,0,0,0,-2*K.1^3,0,0,0,-1*K.1^24,K.1^24,-1*K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,K.1^24,K.1^6,-1*K.1^6,-1*K.1^18,K.1^12,-1*K.1^18,K.1^24,K.1^12,-1*K.1^12,K.1^12,K.1^18,K.1^6,-1*K.1^6,-1*K.1^12,-1*K.1^6,K.1^24,K.1^18,-1*K.1^18,K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,-1*K.1^3,-1*K.1^27,K.1+K.1^11,K.1^9,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,-1*K.1-K.1^11,K.1^4+K.1^14,-2*K.1^2+K.1^12,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1^3,K.1^21,K.1^4+K.1^14,K.1^3,K.1^4+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,K.1^3,-1*K.1^4-K.1^14,K.1^27,K.1^27,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,K.1^27,-1*K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1^9,K.1+K.1^11,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3-2*K.1^13,K.1^3-2*K.1^13,K.1^21,K.1^9,-1*K.1^3,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^9,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^21,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,-1*K.1^4-K.1^14,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,-1*K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,K.1^9,K.1+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^24,-2*K.1^12,-1*K.1^5-K.1^-5,-1+2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^15,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,1-2*K.1^10,1-2*K.1^10,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^3,-2*K.1^27,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,0,0,0,0,2*K.1^21,-2*K.1^27,0,0,0,0,0,0,2*K.1^3,-2*K.1^21,0,-2*K.1^3,0,2*K.1^9,0,0,0,2*K.1^27,0,0,0,K.1^6,-1*K.1^6,K.1^6,-1*K.1^24,K.1^6,K.1^24,-1*K.1^6,-1*K.1^24,K.1^24,K.1^12,-1*K.1^18,K.1^12,-1*K.1^6,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^12,-1*K.1^24,K.1^24,K.1^18,K.1^24,-1*K.1^6,-1*K.1^12,K.1^12,-1*K.1^18,-1*K.1^12,K.1^18,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^11,-1*K.1^9,K.1^27,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^9,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^9,-1*K.1-K.1^11,K.1^3,-1*K.1^27,-1*K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^11,K.1^9,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3,-1*K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,K.1^4+K.1^14,-1*K.1-K.1^11,K.1^27,-1*K.1^3,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,K.1^3-2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,2*K.1^2-K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,-1*K.1^21,K.1^27,K.1^21,2*K.1^2-K.1^12,-1*K.1^21,-1*K.1^3,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1^21,K.1^3,K.1+K.1^11,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^18,-2*K.1^6,2*K.1^18,K.1^5+K.1^-5,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^15,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,1-2*K.1^10,1-2*K.1^10,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^21,-2*K.1^21,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^27,2*K.1^3,-2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^21,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,-2*K.1^27,2*K.1^9,0,2*K.1^27,0,-2*K.1^21,0,0,0,-2*K.1^3,0,0,0,-1*K.1^24,K.1^24,-1*K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,K.1^24,K.1^6,-1*K.1^6,-1*K.1^18,K.1^12,-1*K.1^18,K.1^24,K.1^12,-1*K.1^12,K.1^12,K.1^18,K.1^6,-1*K.1^6,-1*K.1^12,-1*K.1^6,K.1^24,K.1^18,-1*K.1^18,K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1*K.1^3,-1*K.1^27,-1*K.1-K.1^11,K.1^9,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,K.1+K.1^11,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,K.1^3,K.1^21,-1*K.1^4-K.1^14,K.1^3,-1*K.1^4-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,K.1^3,K.1^4+K.1^14,K.1^27,K.1^27,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,K.1^27,-1*K.1^21,K.1^3-2*K.1^13,-1*K.1^9,-1*K.1^9,-1*K.1-K.1^11,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1^2-K.1^12,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,K.1^21,K.1^9,-1*K.1^3,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^9,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^21,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,K.1^4+K.1^14,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,-1*K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3-2*K.1^13,K.1+K.1^11,K.1^9,-1*K.1-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^24,-2*K.1^12,K.1^5+K.1^-5,1-2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^15,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1+2*K.1^10,-1+2*K.1^10,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^3,-2*K.1^27,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,0,0,0,0,2*K.1^21,-2*K.1^27,0,0,0,0,0,0,2*K.1^3,-2*K.1^21,0,-2*K.1^3,0,2*K.1^9,0,0,0,2*K.1^27,0,0,0,K.1^6,-1*K.1^6,K.1^6,-1*K.1^24,K.1^6,K.1^24,-1*K.1^6,-1*K.1^24,K.1^24,K.1^12,-1*K.1^18,K.1^12,-1*K.1^6,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^12,-1*K.1^24,K.1^24,K.1^18,K.1^24,-1*K.1^6,-1*K.1^12,K.1^12,-1*K.1^18,-1*K.1^12,K.1^18,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^11,-1*K.1^9,K.1^27,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^9,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^9,K.1+K.1^11,K.1^3,-1*K.1^27,-1*K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^11,K.1^9,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3,-1*K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^4+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,-1*K.1^4-K.1^14,K.1+K.1^11,K.1^27,-1*K.1^3,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,-1*K.1^3+2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-2*K.1^2+K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,-1*K.1^21,K.1^27,K.1^21,-2*K.1^2+K.1^12,-1*K.1^21,-1*K.1^3,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^27,K.1^3-2*K.1^13,K.1^21,K.1^3,-1*K.1-K.1^11,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1^2-K.1^12,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^24,-2*K.1^12,-1*K.1^5-K.1^-5,1-2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^15,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1+2*K.1^10,-1+2*K.1^10,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^3,2*K.1^27,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,0,0,0,0,-2*K.1^21,2*K.1^27,0,0,0,0,0,0,-2*K.1^3,2*K.1^21,0,2*K.1^3,0,-2*K.1^9,0,0,0,-2*K.1^27,0,0,0,K.1^6,-1*K.1^6,K.1^6,-1*K.1^24,K.1^6,K.1^24,-1*K.1^6,-1*K.1^24,K.1^24,K.1^12,-1*K.1^18,K.1^12,-1*K.1^6,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^12,-1*K.1^24,K.1^24,K.1^18,K.1^24,-1*K.1^6,-1*K.1^12,K.1^12,-1*K.1^18,-1*K.1^12,K.1^18,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^11,K.1^9,-1*K.1^27,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-1*K.1^9,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^9,-1*K.1-K.1^11,-1*K.1^3,K.1^27,K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^11,-1*K.1^9,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3,K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^4+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,-1*K.1^4-K.1^14,-1*K.1-K.1^11,-1*K.1^27,K.1^3,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,K.1^3-2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-2*K.1^2+K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,K.1^21,-1*K.1^27,-1*K.1^21,-2*K.1^2+K.1^12,K.1^21,K.1^3,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^21,-1*K.1^3,K.1+K.1^11,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1^2-K.1^12,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^18,-2*K.1^6,2*K.1^18,-1*K.1^5-K.1^-5,-1+2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^15,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,1-2*K.1^10,1-2*K.1^10,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^21,2*K.1^21,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^27,-2*K.1^3,2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^21,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,2*K.1^27,-2*K.1^9,0,-2*K.1^27,0,2*K.1^21,0,0,0,2*K.1^3,0,0,0,-1*K.1^24,K.1^24,-1*K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,K.1^24,K.1^6,-1*K.1^6,-1*K.1^18,K.1^12,-1*K.1^18,K.1^24,K.1^12,-1*K.1^12,K.1^12,K.1^18,K.1^6,-1*K.1^6,-1*K.1^12,-1*K.1^6,K.1^24,K.1^18,-1*K.1^18,K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,K.1^3,K.1^27,K.1+K.1^11,-1*K.1^9,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,-1*K.1-K.1^11,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,-1*K.1^3,-1*K.1^21,-1*K.1^4-K.1^14,-1*K.1^3,-1*K.1^4-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,-1*K.1^3,K.1^4+K.1^14,-1*K.1^27,-1*K.1^27,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,-1*K.1^27,K.1^21,-1*K.1^3+2*K.1^13,K.1^9,K.1^9,K.1+K.1^11,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3-2*K.1^13,K.1^3-2*K.1^13,-1*K.1^21,-1*K.1^9,K.1^3,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^9,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^21,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,K.1^4+K.1^14,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,-1*K.1^9,K.1+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^24,-2*K.1^12,K.1^5+K.1^-5,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^15,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,1-2*K.1^10,1-2*K.1^10,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^3,2*K.1^27,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,0,0,0,0,-2*K.1^21,2*K.1^27,0,0,0,0,0,0,-2*K.1^3,2*K.1^21,0,2*K.1^3,0,-2*K.1^9,0,0,0,-2*K.1^27,0,0,0,K.1^6,-1*K.1^6,K.1^6,-1*K.1^24,K.1^6,K.1^24,-1*K.1^6,-1*K.1^24,K.1^24,K.1^12,-1*K.1^18,K.1^12,-1*K.1^6,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^12,-1*K.1^24,K.1^24,K.1^18,K.1^24,-1*K.1^6,-1*K.1^12,K.1^12,-1*K.1^18,-1*K.1^12,K.1^18,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^11,K.1^9,-1*K.1^27,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^4+K.1^14,2*K.1^2-K.1^12,-1*K.1^9,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^9,K.1+K.1^11,-1*K.1^3,K.1^27,K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^11,-1*K.1^9,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3,K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,K.1^4+K.1^14,K.1+K.1^11,-1*K.1^27,K.1^3,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-1*K.1^3+2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,2*K.1^2-K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,K.1^21,-1*K.1^27,-1*K.1^21,2*K.1^2-K.1^12,K.1^21,K.1^3,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^27,K.1^3-2*K.1^13,-1*K.1^21,-1*K.1^3,-1*K.1-K.1^11,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3-2*K.1^13,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^18,-2*K.1^6,2*K.1^18,K.1^5+K.1^-5,1-2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^15,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^21,2*K.1^21,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^27,-2*K.1^3,2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^21,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,2*K.1^27,-2*K.1^9,0,-2*K.1^27,0,2*K.1^21,0,0,0,2*K.1^3,0,0,0,-1*K.1^24,K.1^24,-1*K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,K.1^24,K.1^6,-1*K.1^6,-1*K.1^18,K.1^12,-1*K.1^18,K.1^24,K.1^12,-1*K.1^12,K.1^12,K.1^18,K.1^6,-1*K.1^6,-1*K.1^12,-1*K.1^6,K.1^24,K.1^18,-1*K.1^18,K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,K.1^3,K.1^27,-1*K.1-K.1^11,-1*K.1^9,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,K.1+K.1^11,K.1^4+K.1^14,-2*K.1^2+K.1^12,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1^3,-1*K.1^21,K.1^4+K.1^14,-1*K.1^3,K.1^4+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1*K.1^3,-1*K.1^4-K.1^14,-1*K.1^27,-1*K.1^27,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,-1*K.1^27,K.1^21,K.1^3-2*K.1^13,K.1^9,K.1^9,-1*K.1-K.1^11,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1^21,-1*K.1^9,K.1^3,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^9,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^21,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,-1*K.1^4-K.1^14,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3-2*K.1^13,K.1+K.1^11,-1*K.1^9,-1*K.1-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^6,2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^24,-1*K.1^5-K.1^-5,1-2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^15,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^21,-2*K.1^9,2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^27,-2*K.1^9,0,0,0,0,0,0,2*K.1^21,-2*K.1^27,0,-2*K.1^21,0,2*K.1^3,0,0,0,2*K.1^9,0,0,0,-1*K.1^12,K.1^12,-1*K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,K.1^12,K.1^18,-1*K.1^18,K.1^24,-1*K.1^6,K.1^24,K.1^12,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^24,K.1^18,-1*K.1^18,K.1^6,-1*K.1^18,K.1^12,-1*K.1^24,K.1^24,-1*K.1^6,-1*K.1^24,K.1^6,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,K.1^9,K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-1*K.1^9,-1*K.1^3,2*K.1^2-K.1^12,-1*K.1^9,2*K.1^2-K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^9,-2*K.1^2+K.1^12,-1*K.1^21,-1*K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,-1*K.1^21,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,K.1^27,-1*K.1^3+2*K.1^13,K.1^9,-1*K.1-K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^4-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,-1*K.1^27,K.1^9,K.1^27,-1*K.1^4-K.1^14,-1*K.1^27,-1*K.1^21,-1*K.1-K.1^11,K.1^3-2*K.1^13,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-1*K.1^9,K.1+K.1^11,K.1^27,K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^4+K.1^14,K.1^4+K.1^14,-1*K.1^4-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,-1*K.1^27,-1*K.1^3+2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^6,2*K.1^12,2*K.1^6,-1*K.1^5-K.1^-5,-1+2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^15,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,1-2*K.1^10,1-2*K.1^10,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^27,-2*K.1^27,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^9,2*K.1^21,-2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^27,0,0,0,0,-2*K.1^3,2*K.1^21,0,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,2*K.1^9,0,-2*K.1^27,0,0,0,-2*K.1^21,0,0,0,K.1^18,-1*K.1^18,K.1^18,-1*K.1^12,K.1^18,K.1^12,-1*K.1^18,-1*K.1^12,K.1^12,-1*K.1^6,K.1^24,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^24,K.1^24,K.1^6,-1*K.1^12,K.1^12,-1*K.1^24,K.1^12,-1*K.1^18,K.1^6,-1*K.1^6,K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^13,K.1^27,-1*K.1^21,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^27,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,K.1^27,K.1^3-2*K.1^13,-1*K.1^9,K.1^21,K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^9,K.1^9,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,2*K.1^2-K.1^12,K.1^3-2*K.1^13,-1*K.1^21,K.1^9,-1*K.1^27,K.1+K.1^11,-1*K.1^3,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^4+K.1^14,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^11,-1*K.1-K.1^11,K.1^27,K.1^3,-1*K.1^21,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,K.1^4+K.1^14,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,-1*K.1^9,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^6,2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^24,K.1^5+K.1^-5,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^15,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,1-2*K.1^10,1-2*K.1^10,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^21,-2*K.1^9,2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^27,-2*K.1^9,0,0,0,0,0,0,2*K.1^21,-2*K.1^27,0,-2*K.1^21,0,2*K.1^3,0,0,0,2*K.1^9,0,0,0,-1*K.1^12,K.1^12,-1*K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,K.1^12,K.1^18,-1*K.1^18,K.1^24,-1*K.1^6,K.1^24,K.1^12,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^24,K.1^18,-1*K.1^18,K.1^6,-1*K.1^18,K.1^12,-1*K.1^24,K.1^24,-1*K.1^6,-1*K.1^24,K.1^6,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^9,K.1^21,K.1^3-2*K.1^13,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-1*K.1^9,-1*K.1^3,-2*K.1^2+K.1^12,-1*K.1^9,-2*K.1^2+K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,-1*K.1^9,2*K.1^2-K.1^12,-1*K.1^21,-1*K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,K.1+K.1^11,K.1^3-2*K.1^13,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,-1*K.1^21,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1^27,K.1^3-2*K.1^13,K.1^9,K.1+K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^4+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,-1*K.1^27,K.1^9,K.1^27,K.1^4+K.1^14,-1*K.1^27,-1*K.1^21,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-1*K.1^9,-1*K.1-K.1^11,K.1^27,K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,K.1^4+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1^3-2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^6,2*K.1^12,2*K.1^6,K.1^5+K.1^-5,1-2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^15,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1+2*K.1^10,-1+2*K.1^10,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^27,-2*K.1^27,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^9,2*K.1^21,-2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^27,0,0,0,0,-2*K.1^3,2*K.1^21,0,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,2*K.1^9,0,-2*K.1^27,0,0,0,-2*K.1^21,0,0,0,K.1^18,-1*K.1^18,K.1^18,-1*K.1^12,K.1^18,K.1^12,-1*K.1^18,-1*K.1^12,K.1^12,-1*K.1^6,K.1^24,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^24,K.1^24,K.1^6,-1*K.1^12,K.1^12,-1*K.1^24,K.1^12,-1*K.1^18,K.1^6,-1*K.1^6,K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-2*K.1^13,K.1^27,-1*K.1^21,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1^4+K.1^14,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^27,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^9,K.1^21,K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3-2*K.1^13,-1*K.1^27,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^9,K.1^9,K.1^4+K.1^14,2*K.1^2-K.1^12,2*K.1^2-K.1^12,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,-1*K.1^21,K.1^9,-1*K.1^27,-1*K.1-K.1^11,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^4-K.1^14,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^11,K.1+K.1^11,K.1^27,K.1^3,-1*K.1^21,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,-1*K.1^4-K.1^14,K.1^4+K.1^14,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,-1*K.1^9,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^6,2*K.1^12,2*K.1^6,-1*K.1^5-K.1^-5,1-2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^15,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1+2*K.1^10,-1+2*K.1^10,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^27,2*K.1^27,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^9,-2*K.1^21,2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^27,0,0,0,0,2*K.1^3,-2*K.1^21,0,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,-2*K.1^9,0,2*K.1^27,0,0,0,2*K.1^21,0,0,0,K.1^18,-1*K.1^18,K.1^18,-1*K.1^12,K.1^18,K.1^12,-1*K.1^18,-1*K.1^12,K.1^12,-1*K.1^6,K.1^24,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^24,K.1^24,K.1^6,-1*K.1^12,K.1^12,-1*K.1^24,K.1^12,-1*K.1^18,K.1^6,-1*K.1^6,K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1^21,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,K.1^4+K.1^14,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^27,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,-1*K.1^27,K.1^3-2*K.1^13,K.1^9,-1*K.1^21,-1*K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3+2*K.1^13,K.1^27,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^9,-1*K.1^9,K.1^4+K.1^14,2*K.1^2-K.1^12,2*K.1^2-K.1^12,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,K.1^21,-1*K.1^9,K.1^27,K.1+K.1^11,K.1^3,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^4-K.1^14,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^11,-1*K.1-K.1^11,-1*K.1^27,-1*K.1^3,K.1^21,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,-1*K.1^4-K.1^14,K.1^4+K.1^14,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,K.1^9,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^6,2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^24,-1*K.1^5-K.1^-5,-1+2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^15,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,1-2*K.1^10,1-2*K.1^10,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^21,2*K.1^9,-2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^27,2*K.1^9,0,0,0,0,0,0,-2*K.1^21,2*K.1^27,0,2*K.1^21,0,-2*K.1^3,0,0,0,-2*K.1^9,0,0,0,-1*K.1^12,K.1^12,-1*K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,K.1^12,K.1^18,-1*K.1^18,K.1^24,-1*K.1^6,K.1^24,K.1^12,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^24,K.1^18,-1*K.1^18,K.1^6,-1*K.1^18,K.1^12,-1*K.1^24,K.1^24,-1*K.1^6,-1*K.1^24,K.1^6,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^9,-1*K.1^21,-1*K.1^3+2*K.1^13,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,-1*K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,K.1^3-2*K.1^13,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,K.1^9,K.1^3,-2*K.1^2+K.1^12,K.1^9,-2*K.1^2+K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,K.1^9,2*K.1^2-K.1^12,K.1^21,K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,K.1^21,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1-K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,K.1^4+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,K.1^27,-1*K.1^9,-1*K.1^27,K.1^4+K.1^14,K.1^27,K.1^21,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,K.1^9,K.1+K.1^11,-1*K.1^27,-1*K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,K.1^4+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,K.1^27,-1*K.1^3+2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^6,2*K.1^12,2*K.1^6,K.1^5+K.1^-5,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^15,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,1-2*K.1^10,1-2*K.1^10,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^27,2*K.1^27,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^9,-2*K.1^21,2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^27,0,0,0,0,2*K.1^3,-2*K.1^21,0,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,-2*K.1^9,0,2*K.1^27,0,0,0,2*K.1^21,0,0,0,K.1^18,-1*K.1^18,K.1^18,-1*K.1^12,K.1^18,K.1^12,-1*K.1^18,-1*K.1^12,K.1^12,-1*K.1^6,K.1^24,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^24,K.1^24,K.1^6,-1*K.1^12,K.1^12,-1*K.1^24,K.1^12,-1*K.1^18,K.1^6,-1*K.1^6,K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-2*K.1^13,-1*K.1^27,K.1^21,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^27,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1^9,-1*K.1^21,-1*K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3-2*K.1^13,K.1^27,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^9,-1*K.1^9,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,K.1^21,-1*K.1^9,K.1^27,-1*K.1-K.1^11,K.1^3,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^4+K.1^14,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^11,K.1+K.1^11,-1*K.1^27,-1*K.1^3,K.1^21,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,K.1^4+K.1^14,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,K.1^9,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^6,2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^24,K.1^5+K.1^-5,1-2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^15,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^21,2*K.1^9,-2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^27,2*K.1^9,0,0,0,0,0,0,-2*K.1^21,2*K.1^27,0,2*K.1^21,0,-2*K.1^3,0,0,0,-2*K.1^9,0,0,0,-1*K.1^12,K.1^12,-1*K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,K.1^12,K.1^18,-1*K.1^18,K.1^24,-1*K.1^6,K.1^24,K.1^12,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^24,K.1^18,-1*K.1^18,K.1^6,-1*K.1^18,K.1^12,-1*K.1^24,K.1^24,-1*K.1^6,-1*K.1^24,K.1^6,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,-1*K.1^9,-1*K.1^21,K.1^3-2*K.1^13,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,-1*K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,K.1^9,K.1^3,2*K.1^2-K.1^12,K.1^9,2*K.1^2-K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^9,-2*K.1^2+K.1^12,K.1^21,K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,K.1^21,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-1*K.1^27,K.1^3-2*K.1^13,-1*K.1^9,K.1+K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-1*K.1^4-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,K.1^27,-1*K.1^9,-1*K.1^27,-1*K.1^4-K.1^14,K.1^27,K.1^21,K.1+K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,K.1^9,-1*K.1-K.1^11,-1*K.1^27,-1*K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^4+K.1^14,K.1^4+K.1^14,-1*K.1^4-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,K.1^27,K.1^3-2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^6,2*K.1^24,2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^18,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,1-2*K.1^10,-1+2*K.1^10,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^21,-2*K.1^21,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^27,2*K.1^3,-2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^21,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,2*K.1^27,-2*K.1^9,0,-2*K.1^27,0,2*K.1^21,0,0,0,2*K.1^3,0,0,0,K.1^24,K.1^24,K.1^24,-1*K.1^6,-1*K.1^24,K.1^6,K.1^24,K.1^6,-1*K.1^6,K.1^18,K.1^12,-1*K.1^18,-1*K.1^24,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^18,-1*K.1^6,-1*K.1^6,K.1^12,K.1^6,-1*K.1^24,-1*K.1^18,K.1^18,K.1^12,-1*K.1^18,K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,K.1^3,-1*K.1^27,-1*K.1-K.1^11,K.1^9,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,K.1+K.1^11,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,K.1^3,K.1^21,-1*K.1^4-K.1^14,-1*K.1^3,K.1^4+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1*K.1^3,-1*K.1^4-K.1^14,-1*K.1^27,-1*K.1^27,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,K.1^27,K.1^21,-1*K.1^3+2*K.1^13,K.1^9,K.1^9,K.1+K.1^11,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1^21,-1*K.1^9,-1*K.1^3,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^9,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^21,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1^4+K.1^14,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,-1*K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3-2*K.1^13,-1*K.1-K.1^11,K.1^9,K.1+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^24,-2*K.1^6,-2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^12,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,-1+2*K.1^10,K.1^15,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1+2*K.1^10,1-2*K.1^10,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^3,-2*K.1^27,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,0,0,0,0,-2*K.1^21,2*K.1^27,0,0,0,0,0,0,-2*K.1^3,2*K.1^21,0,2*K.1^3,0,-2*K.1^9,0,0,0,-2*K.1^27,0,0,0,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,-1*K.1^24,K.1^24,-1*K.1^12,-1*K.1^18,K.1^12,K.1^6,K.1^18,K.1^18,K.1^18,-1*K.1^12,K.1^24,K.1^24,-1*K.1^18,-1*K.1^24,K.1^6,K.1^12,-1*K.1^12,-1*K.1^18,K.1^12,-1*K.1^18,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^11,-1*K.1^9,-1*K.1^27,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,K.1^9,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^9,K.1+K.1^11,-1*K.1^3,-1*K.1^27,-1*K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^11,-1*K.1^9,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3,K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,K.1^4+K.1^14,-1*K.1-K.1^11,K.1^27,-1*K.1^3,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1^3+2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,2*K.1^2-K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,K.1^21,K.1^27,K.1^21,-2*K.1^2+K.1^12,K.1^21,-1*K.1^3,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1^21,K.1^3,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^6,2*K.1^24,2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^18,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1+2*K.1^10,1-2*K.1^10,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^21,-2*K.1^21,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^27,2*K.1^3,-2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^21,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,2*K.1^27,-2*K.1^9,0,-2*K.1^27,0,2*K.1^21,0,0,0,2*K.1^3,0,0,0,K.1^24,K.1^24,K.1^24,-1*K.1^6,-1*K.1^24,K.1^6,K.1^24,K.1^6,-1*K.1^6,K.1^18,K.1^12,-1*K.1^18,-1*K.1^24,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^18,-1*K.1^6,-1*K.1^6,K.1^12,K.1^6,-1*K.1^24,-1*K.1^18,K.1^18,K.1^12,-1*K.1^18,K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,K.1^3,-1*K.1^27,K.1+K.1^11,K.1^9,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1-K.1^11,K.1^4+K.1^14,2*K.1^2-K.1^12,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1^3,K.1^21,K.1^4+K.1^14,-1*K.1^3,-1*K.1^4-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,-1*K.1^3,K.1^4+K.1^14,-1*K.1^27,-1*K.1^27,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,K.1^27,K.1^21,K.1^3-2*K.1^13,K.1^9,K.1^9,-1*K.1-K.1^11,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3-2*K.1^13,K.1^3-2*K.1^13,-1*K.1^21,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^9,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^21,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,-1*K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3+2*K.1^13,K.1+K.1^11,K.1^9,-1*K.1-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^24,-2*K.1^6,-2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^12,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,1-2*K.1^10,K.1^15,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,1-2*K.1^10,-1+2*K.1^10,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^3,-2*K.1^27,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,0,0,0,0,-2*K.1^21,2*K.1^27,0,0,0,0,0,0,-2*K.1^3,2*K.1^21,0,2*K.1^3,0,-2*K.1^9,0,0,0,-2*K.1^27,0,0,0,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,-1*K.1^24,K.1^24,-1*K.1^12,-1*K.1^18,K.1^12,K.1^6,K.1^18,K.1^18,K.1^18,-1*K.1^12,K.1^24,K.1^24,-1*K.1^18,-1*K.1^24,K.1^6,K.1^12,-1*K.1^12,-1*K.1^18,K.1^12,-1*K.1^18,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^11,-1*K.1^9,-1*K.1^27,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,K.1^4+K.1^14,-2*K.1^2+K.1^12,K.1^9,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^9,-1*K.1-K.1^11,-1*K.1^3,-1*K.1^27,-1*K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^11,-1*K.1^9,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3,K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^4+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,-1*K.1^4-K.1^14,K.1+K.1^11,K.1^27,-1*K.1^3,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1^3-2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-2*K.1^2+K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,K.1^21,K.1^27,K.1^21,2*K.1^2-K.1^12,K.1^21,-1*K.1^3,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^27,K.1^3-2*K.1^13,K.1^21,K.1^3,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,2*K.1^2-K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^24,-2*K.1^6,-2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^12,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,1-2*K.1^10,-1+2*K.1^10,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^3,2*K.1^27,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,0,0,0,0,2*K.1^21,-2*K.1^27,0,0,0,0,0,0,2*K.1^3,-2*K.1^21,0,-2*K.1^3,0,2*K.1^9,0,0,0,2*K.1^27,0,0,0,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,-1*K.1^24,K.1^24,-1*K.1^12,-1*K.1^18,K.1^12,K.1^6,K.1^18,K.1^18,K.1^18,-1*K.1^12,K.1^24,K.1^24,-1*K.1^18,-1*K.1^24,K.1^6,K.1^12,-1*K.1^12,-1*K.1^18,K.1^12,-1*K.1^18,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^11,K.1^9,K.1^27,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,K.1^4+K.1^14,-2*K.1^2+K.1^12,-1*K.1^9,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^9,K.1+K.1^11,K.1^3,K.1^27,K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^11,K.1^9,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3,-1*K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^4+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,-1*K.1^4-K.1^14,-1*K.1-K.1^11,-1*K.1^27,K.1^3,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1^3+2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-2*K.1^2+K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,-1*K.1^21,-1*K.1^27,-1*K.1^21,2*K.1^2-K.1^12,-1*K.1^21,K.1^3,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^21,-1*K.1^3,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,2*K.1^2-K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^6,2*K.1^24,2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^18,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,-1+2*K.1^10,K.1^15,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1+2*K.1^10,1-2*K.1^10,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^21,2*K.1^21,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^27,-2*K.1^3,2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^21,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,-2*K.1^27,2*K.1^9,0,2*K.1^27,0,-2*K.1^21,0,0,0,-2*K.1^3,0,0,0,K.1^24,K.1^24,K.1^24,-1*K.1^6,-1*K.1^24,K.1^6,K.1^24,K.1^6,-1*K.1^6,K.1^18,K.1^12,-1*K.1^18,-1*K.1^24,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^18,-1*K.1^6,-1*K.1^6,K.1^12,K.1^6,-1*K.1^24,-1*K.1^18,K.1^18,K.1^12,-1*K.1^18,K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,-1*K.1^3,K.1^27,-1*K.1-K.1^11,-1*K.1^9,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1+K.1^11,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1^3,-1*K.1^21,K.1^4+K.1^14,K.1^3,-1*K.1^4-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,K.1^3,K.1^4+K.1^14,K.1^27,K.1^27,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,-1*K.1^27,-1*K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1^9,K.1+K.1^11,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1^2-K.1^12,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,K.1^21,K.1^9,K.1^3,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^9,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^21,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3-2*K.1^13,-1*K.1-K.1^11,-1*K.1^9,K.1+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^24,-2*K.1^6,-2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^12,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1+2*K.1^10,1-2*K.1^10,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^3,2*K.1^27,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,0,0,0,0,2*K.1^21,-2*K.1^27,0,0,0,0,0,0,2*K.1^3,-2*K.1^21,0,-2*K.1^3,0,2*K.1^9,0,0,0,2*K.1^27,0,0,0,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^24,K.1^6,-1*K.1^24,-1*K.1^6,-1*K.1^24,K.1^24,-1*K.1^12,-1*K.1^18,K.1^12,K.1^6,K.1^18,K.1^18,K.1^18,-1*K.1^12,K.1^24,K.1^24,-1*K.1^18,-1*K.1^24,K.1^6,K.1^12,-1*K.1^12,-1*K.1^18,K.1^12,-1*K.1^18,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^11,K.1^9,K.1^27,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,-1*K.1^9,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^9,-1*K.1-K.1^11,K.1^3,K.1^27,K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^11,K.1^9,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3,-1*K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,K.1^4+K.1^14,K.1+K.1^11,-1*K.1^27,K.1^3,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1^3-2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,2*K.1^2-K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,-1*K.1^21,-1*K.1^27,-1*K.1^21,-2*K.1^2+K.1^12,-1*K.1^21,K.1^3,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^27,K.1^3-2*K.1^13,-1*K.1^21,-1*K.1^3,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3-2*K.1^13,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^6,2*K.1^24,2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^18,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,1-2*K.1^10,K.1^15,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,1-2*K.1^10,-1+2*K.1^10,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^21,2*K.1^21,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^27,-2*K.1^3,2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^21,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,-2*K.1^27,2*K.1^9,0,2*K.1^27,0,-2*K.1^21,0,0,0,-2*K.1^3,0,0,0,K.1^24,K.1^24,K.1^24,-1*K.1^6,-1*K.1^24,K.1^6,K.1^24,K.1^6,-1*K.1^6,K.1^18,K.1^12,-1*K.1^18,-1*K.1^24,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^18,-1*K.1^6,-1*K.1^6,K.1^12,K.1^6,-1*K.1^24,-1*K.1^18,K.1^18,K.1^12,-1*K.1^18,K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-1*K.1^3,K.1^27,K.1+K.1^11,-1*K.1^9,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1-K.1^11,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-1*K.1^3,-1*K.1^21,-1*K.1^4-K.1^14,K.1^3,K.1^4+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,K.1^3,-1*K.1^4-K.1^14,K.1^27,K.1^27,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,-1*K.1^27,-1*K.1^21,K.1^3-2*K.1^13,-1*K.1^9,-1*K.1^9,-1*K.1-K.1^11,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3-2*K.1^13,K.1^3-2*K.1^13,K.1^21,K.1^9,K.1^3,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^9,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^21,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1^4+K.1^14,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3+2*K.1^13,K.1+K.1^11,-1*K.1^9,-1*K.1-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^24,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,1-2*K.1^10,-1+2*K.1^10,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^21,-2*K.1^9,2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^27,2*K.1^9,0,0,0,0,0,0,-2*K.1^21,2*K.1^27,0,2*K.1^21,0,-2*K.1^3,0,0,0,-2*K.1^9,0,0,0,K.1^12,K.1^12,K.1^12,-1*K.1^18,-1*K.1^12,K.1^18,K.1^12,K.1^18,-1*K.1^18,-1*K.1^24,-1*K.1^6,K.1^24,-1*K.1^12,K.1^6,K.1^6,K.1^6,-1*K.1^24,-1*K.1^18,-1*K.1^18,-1*K.1^6,K.1^18,-1*K.1^12,K.1^24,-1*K.1^24,-1*K.1^6,K.1^24,-1*K.1^6,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1^9,K.1^21,K.1^3-2*K.1^13,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-1*K.1^9,-1*K.1^3,-2*K.1^2+K.1^12,K.1^9,2*K.1^2-K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^9,-2*K.1^2+K.1^12,K.1^21,K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,-1*K.1^21,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^9,K.1+K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-1*K.1^4-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,K.1^27,K.1^9,K.1^27,K.1^4+K.1^14,K.1^27,-1*K.1^21,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,2*K.1^2-K.1^12,-1*K.1^9,K.1+K.1^11,K.1^27,K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^4-K.1^14,K.1^4+K.1^14,K.1^4+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3-2*K.1^13,-1*K.1^27,-1*K.1^3+2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^6,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,-1+2*K.1^10,K.1^15,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1+2*K.1^10,1-2*K.1^10,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^27,-2*K.1^27,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^9,2*K.1^21,-2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^27,0,0,0,0,2*K.1^3,-2*K.1^21,0,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,-2*K.1^9,0,2*K.1^27,0,0,0,2*K.1^21,0,0,0,-1*K.1^18,-1*K.1^18,-1*K.1^18,K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,-1*K.1^12,K.1^12,K.1^6,K.1^24,-1*K.1^6,K.1^18,-1*K.1^24,-1*K.1^24,-1*K.1^24,K.1^6,K.1^12,K.1^12,K.1^24,-1*K.1^12,K.1^18,-1*K.1^6,K.1^6,K.1^24,-1*K.1^6,K.1^24,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^13,K.1^27,K.1^21,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^27,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1^9,K.1^21,K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3-2*K.1^13,K.1^27,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^9,-1*K.1^9,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,2*K.1^2-K.1^12,K.1^3-2*K.1^13,-1*K.1^21,K.1^9,K.1^27,K.1+K.1^11,K.1^3,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^4+K.1^14,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^11,K.1+K.1^11,-1*K.1^27,-1*K.1^3,-1*K.1^21,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,-1*K.1^4-K.1^14,K.1^4+K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,-1*K.1^9,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^24,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1+2*K.1^10,1-2*K.1^10,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^21,-2*K.1^9,2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^27,2*K.1^9,0,0,0,0,0,0,-2*K.1^21,2*K.1^27,0,2*K.1^21,0,-2*K.1^3,0,0,0,-2*K.1^9,0,0,0,K.1^12,K.1^12,K.1^12,-1*K.1^18,-1*K.1^12,K.1^18,K.1^12,K.1^18,-1*K.1^18,-1*K.1^24,-1*K.1^6,K.1^24,-1*K.1^12,K.1^6,K.1^6,K.1^6,-1*K.1^24,-1*K.1^18,-1*K.1^18,-1*K.1^6,K.1^18,-1*K.1^12,K.1^24,-1*K.1^24,-1*K.1^6,K.1^24,-1*K.1^6,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,-1*K.1^9,K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^3-2*K.1^13,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-1*K.1^9,-1*K.1^3,2*K.1^2-K.1^12,K.1^9,-2*K.1^2+K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,K.1^9,2*K.1^2-K.1^12,K.1^21,K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,K.1+K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,-1*K.1^21,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-1*K.1^27,K.1^3-2*K.1^13,-1*K.1^9,-1*K.1-K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,K.1^4+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,K.1^27,K.1^9,K.1^27,-1*K.1^4-K.1^14,K.1^27,-1*K.1^21,K.1+K.1^11,K.1^3-2*K.1^13,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,-1*K.1^9,-1*K.1-K.1^11,K.1^27,K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^4+K.1^14,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1^3-2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^6,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,1-2*K.1^10,K.1^15,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,1-2*K.1^10,-1+2*K.1^10,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^27,-2*K.1^27,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^9,2*K.1^21,-2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^27,0,0,0,0,2*K.1^3,-2*K.1^21,0,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,-2*K.1^9,0,2*K.1^27,0,0,0,2*K.1^21,0,0,0,-1*K.1^18,-1*K.1^18,-1*K.1^18,K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,-1*K.1^12,K.1^12,K.1^6,K.1^24,-1*K.1^6,K.1^18,-1*K.1^24,-1*K.1^24,-1*K.1^24,K.1^6,K.1^12,K.1^12,K.1^24,-1*K.1^12,K.1^18,-1*K.1^6,K.1^6,K.1^24,-1*K.1^6,K.1^24,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-2*K.1^13,K.1^27,K.1^21,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,K.1^4+K.1^14,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^27,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,-1*K.1^27,K.1^3-2*K.1^13,K.1^9,K.1^21,K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3+2*K.1^13,K.1^27,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^9,-1*K.1^9,K.1^4+K.1^14,2*K.1^2-K.1^12,2*K.1^2-K.1^12,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,-1*K.1^21,K.1^9,K.1^27,-1*K.1-K.1^11,K.1^3,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^4-K.1^14,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^11,-1*K.1-K.1^11,-1*K.1^27,-1*K.1^3,-1*K.1^21,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,K.1^4+K.1^14,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,-1*K.1^9,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,K.1^3-2*K.1^13,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^6,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,1-2*K.1^10,-1+2*K.1^10,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^27,2*K.1^27,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^9,-2*K.1^21,2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^27,0,0,0,0,-2*K.1^3,2*K.1^21,0,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,2*K.1^9,0,-2*K.1^27,0,0,0,-2*K.1^21,0,0,0,-1*K.1^18,-1*K.1^18,-1*K.1^18,K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,-1*K.1^12,K.1^12,K.1^6,K.1^24,-1*K.1^6,K.1^18,-1*K.1^24,-1*K.1^24,-1*K.1^24,K.1^6,K.1^12,K.1^12,K.1^24,-1*K.1^12,K.1^18,-1*K.1^6,K.1^6,K.1^24,-1*K.1^6,K.1^24,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^13,-1*K.1^27,-1*K.1^21,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^4+K.1^14,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^27,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1^21,-1*K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3-2*K.1^13,-1*K.1^27,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^9,K.1^9,K.1^4+K.1^14,2*K.1^2-K.1^12,2*K.1^2-K.1^12,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,K.1^21,-1*K.1^9,-1*K.1^27,K.1+K.1^11,-1*K.1^3,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^4-K.1^14,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^11,K.1+K.1^11,K.1^27,K.1^3,K.1^21,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,K.1^4+K.1^14,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,K.1^9,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^24,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,-1+2*K.1^10,K.1^15,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1+2*K.1^10,1-2*K.1^10,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^21,2*K.1^9,-2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^27,-2*K.1^9,0,0,0,0,0,0,2*K.1^21,-2*K.1^27,0,-2*K.1^21,0,2*K.1^3,0,0,0,2*K.1^9,0,0,0,K.1^12,K.1^12,K.1^12,-1*K.1^18,-1*K.1^12,K.1^18,K.1^12,K.1^18,-1*K.1^18,-1*K.1^24,-1*K.1^6,K.1^24,-1*K.1^12,K.1^6,K.1^6,K.1^6,-1*K.1^24,-1*K.1^18,-1*K.1^18,-1*K.1^6,K.1^18,-1*K.1^12,K.1^24,-1*K.1^24,-1*K.1^6,K.1^24,-1*K.1^6,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,K.1^9,-1*K.1^21,K.1^3-2*K.1^13,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-1*K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,K.1^9,K.1^3,2*K.1^2-K.1^12,-1*K.1^9,-2*K.1^2+K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,-1*K.1^9,2*K.1^2-K.1^12,-1*K.1^21,-1*K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,-1*K.1-K.1^11,K.1^3-2*K.1^13,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,K.1^21,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,K.1^27,-1*K.1^3+2*K.1^13,K.1^9,K.1+K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^4+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,-1*K.1^27,-1*K.1^9,-1*K.1^27,-1*K.1^4-K.1^14,-1*K.1^27,K.1^21,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,K.1^9,K.1+K.1^11,-1*K.1^27,-1*K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1^2+K.1^12,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^4+K.1^14,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3-2*K.1^13,K.1^27,-1*K.1^3+2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,-2*K.1^15,2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,2*K.1^15,0,0,-2*K.1^15,0,0,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^6,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1+2*K.1^10,1-2*K.1^10,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^27,2*K.1^27,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^9,-2*K.1^21,2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^27,0,0,0,0,-2*K.1^3,2*K.1^21,0,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,2*K.1^9,0,-2*K.1^27,0,0,0,-2*K.1^21,0,0,0,-1*K.1^18,-1*K.1^18,-1*K.1^18,K.1^12,K.1^18,-1*K.1^12,-1*K.1^18,-1*K.1^12,K.1^12,K.1^6,K.1^24,-1*K.1^6,K.1^18,-1*K.1^24,-1*K.1^24,-1*K.1^24,K.1^6,K.1^12,K.1^12,K.1^24,-1*K.1^12,K.1^18,-1*K.1^6,K.1^6,K.1^24,-1*K.1^6,K.1^24,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-2*K.1^13,-1*K.1^27,-1*K.1^21,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^27,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^27,K.1^3-2*K.1^13,-1*K.1^9,-1*K.1^21,-1*K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^9,K.1^9,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,K.1^4+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,K.1^21,-1*K.1^9,-1*K.1^27,-1*K.1-K.1^11,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^4+K.1^14,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^11,-1*K.1-K.1^11,K.1^27,K.1^3,K.1^21,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,-1*K.1^4-K.1^14,K.1^4+K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,K.1^9,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,K.1^3-2*K.1^13,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^4-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,2,-2,-1,2*K.1^15,-2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,-2*K.1^15,0,0,2*K.1^15,0,0,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^24,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,1-2*K.1^10,K.1^15,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,1-2*K.1^10,-1+2*K.1^10,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^21,2*K.1^9,-2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^27,-2*K.1^9,0,0,0,0,0,0,2*K.1^21,-2*K.1^27,0,-2*K.1^21,0,2*K.1^3,0,0,0,2*K.1^9,0,0,0,K.1^12,K.1^12,K.1^12,-1*K.1^18,-1*K.1^12,K.1^18,K.1^12,K.1^18,-1*K.1^18,-1*K.1^24,-1*K.1^6,K.1^24,-1*K.1^12,K.1^6,K.1^6,K.1^6,-1*K.1^24,-1*K.1^18,-1*K.1^18,-1*K.1^6,K.1^18,-1*K.1^12,K.1^24,-1*K.1^24,-1*K.1^6,K.1^24,-1*K.1^6,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1^9,-1*K.1^21,-1*K.1^3+2*K.1^13,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,-1*K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,K.1^9,K.1^3,-2*K.1^2+K.1^12,-1*K.1^9,2*K.1^2-K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^9,-2*K.1^2+K.1^12,-1*K.1^21,-1*K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^4+K.1^14,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,K.1^21,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1^27,K.1^3-2*K.1^13,K.1^9,-1*K.1-K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^4-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,-1*K.1^27,-1*K.1^9,-1*K.1^27,K.1^4+K.1^14,-1*K.1^27,K.1^21,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,2*K.1^2-K.1^12,K.1^9,-1*K.1-K.1^11,-1*K.1^27,-1*K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^4-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1^2-K.1^12,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^4-K.1^14,K.1^4+K.1^14,K.1^4+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3+2*K.1^13,K.1^27,K.1^3-2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,-2,0,-2*K.1^15,0,0,0,0,2,0,2*K.1^15,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,-1,-1*K.1^15,K.1^5+K.1^-5,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^15,1,K.1^15,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^21,-2*K.1^21,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,-2*K.1^3,2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^27,-2*K.1^3,2*K.1^27,2*K.1^21,2*K.1^27,2*K.1^9,0,0,0,0,0,2*K.1^21,-2*K.1^24,2*K.1^24,-2*K.1^3,2*K.1^6,0,-2*K.1^21,-2*K.1^12,-2*K.1^27,0,0,2*K.1^3,2*K.1^18,2*K.1^27,0,0,0,0,-2*K.1^9,2*K.1^12,0,0,0,0,0,0,-2*K.1^6,0,0,-2*K.1^18,0,0,0,2*K.1^9,0,-1*K.1^4-K.1^14,-1*K.1^24,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-1*K.1^6,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-1*K.1^18,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^6,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,K.1^21,K.1^3-2*K.1^13,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^9,-1*K.1^27,-1*K.1-K.1^11,-1*K.1-K.1^11,K.1^3,-1*K.1^21,K.1+K.1^11,-1*K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,-1*K.1-K.1^11,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,-1*K.1^9,K.1^4+K.1^14,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,-1*K.1^21,K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,K.1^24,K.1^3,K.1^27,K.1+K.1^11,-1*K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^6,-1*K.1^3+2*K.1^13,-2*K.1^2+K.1^12,-1*K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,K.1^9,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,K.1^12,-1*K.1^9,K.1^27,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^18,K.1^4+K.1^14,-1*K.1^24,-1*K.1^6,-1*K.1^18,-1*K.1^24,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^12,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,K.1^18,-1*K.1^3+2*K.1^13,-1*K.1^3,K.1^3-2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^6,K.1^9,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,-2,0,2*K.1^15,0,0,0,0,2,0,-2*K.1^15,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^18,2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,-1,K.1^15,K.1^5+K.1^-5,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^15,1,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,2*K.1^27,-2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^3,2*K.1^27,-2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1^21,0,0,0,0,0,-2*K.1^9,2*K.1^6,-2*K.1^6,2*K.1^27,-2*K.1^24,0,2*K.1^9,2*K.1^18,2*K.1^3,0,0,-2*K.1^27,-2*K.1^12,-2*K.1^3,0,0,0,0,2*K.1^21,-2*K.1^18,0,0,0,0,0,0,2*K.1^24,0,0,2*K.1^12,0,0,0,-2*K.1^21,0,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,K.1^4+K.1^14,-1*K.1^6,K.1^24,K.1^24,2*K.1^2-K.1^12,K.1^18,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,K.1^4+K.1^14,-1*K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1^4+K.1^14,K.1^21,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,K.1^4+K.1^14,-1*K.1-K.1^11,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,-1*K.1^27,K.1^9,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^3+2*K.1^13,-1*K.1^27,-1*K.1^18,-1*K.1^4-K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1^6,-1*K.1^27,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^12,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^27,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,K.1^27,-1*K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^3,K.1^18,-1*K.1^4-K.1^14,-1*K.1^9,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,K.1+K.1^11,K.1^27,-1*K.1^18,K.1^21,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^6,K.1^24,K.1^12,K.1^6,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,K.1^18,K.1^9,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1^2-K.1^12,-1*K.1^24,-1*K.1^21,K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,-2,0,-2*K.1^15,0,0,0,0,2,0,2*K.1^15,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,-1,-1*K.1^15,-1*K.1^5-K.1^-5,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^15,1,K.1^15,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^21,-2*K.1^21,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,-2*K.1^3,2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^27,-2*K.1^3,2*K.1^27,2*K.1^21,2*K.1^27,2*K.1^9,0,0,0,0,0,2*K.1^21,-2*K.1^24,2*K.1^24,-2*K.1^3,2*K.1^6,0,-2*K.1^21,-2*K.1^12,-2*K.1^27,0,0,2*K.1^3,2*K.1^18,2*K.1^27,0,0,0,0,-2*K.1^9,2*K.1^12,0,0,0,0,0,0,-2*K.1^6,0,0,-2*K.1^18,0,0,0,2*K.1^9,0,K.1^4+K.1^14,-1*K.1^24,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-1*K.1^6,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1*K.1^18,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^6,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^9,-1*K.1^27,K.1+K.1^11,K.1+K.1^11,K.1^3,-1*K.1^21,-1*K.1-K.1^11,-1*K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,K.1+K.1^11,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1^4-K.1^14,K.1+K.1^11,K.1^3-2*K.1^13,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,-1*K.1^21,K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,K.1^24,K.1^3,K.1^27,-1*K.1-K.1^11,-1*K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^6,K.1^3-2*K.1^13,2*K.1^2-K.1^12,-1*K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,K.1^9,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,K.1^12,-1*K.1^9,K.1^27,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^18,-1*K.1^4-K.1^14,-1*K.1^24,-1*K.1^6,-1*K.1^18,-1*K.1^24,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^12,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,K.1^18,K.1^3-2*K.1^13,-1*K.1^3,-1*K.1^3+2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^6,K.1^9,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,-2,0,2*K.1^15,0,0,0,0,2,0,-2*K.1^15,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^18,2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,-1,K.1^15,-1*K.1^5-K.1^-5,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^15,1,-1*K.1^15,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,2*K.1^27,-2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^3,2*K.1^27,-2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1^21,0,0,0,0,0,-2*K.1^9,2*K.1^6,-2*K.1^6,2*K.1^27,-2*K.1^24,0,2*K.1^9,2*K.1^18,2*K.1^3,0,0,-2*K.1^27,-2*K.1^12,-2*K.1^3,0,0,0,0,2*K.1^21,-2*K.1^18,0,0,0,0,0,0,2*K.1^24,0,0,2*K.1^12,0,0,0,-2*K.1^21,0,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,-1*K.1^6,K.1^24,K.1^24,-2*K.1^2+K.1^12,K.1^18,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1^4-K.1^14,-1*K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-1*K.1^18,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^4-K.1^14,K.1^21,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1*K.1^4-K.1^14,K.1+K.1^11,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1^9,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3-2*K.1^13,-1*K.1^27,-1*K.1^18,K.1^4+K.1^14,K.1^3-2*K.1^13,-1*K.1^9,-1*K.1^6,-1*K.1^27,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^12,-1*K.1-K.1^11,K.1+K.1^11,-1*K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^27,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^27,-1*K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^3,K.1^18,K.1^4+K.1^14,-1*K.1^9,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-1*K.1-K.1^11,K.1^27,-1*K.1^18,K.1^21,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^6,K.1^24,K.1^12,K.1^6,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,K.1^18,K.1^9,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1^2+K.1^12,-1*K.1^24,-1*K.1^21,K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,-2,0,-2*K.1^15,0,0,0,0,2,0,2*K.1^15,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^18,2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,-1,-1*K.1^15,K.1^5+K.1^-5,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^15,1,K.1^15,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,-2*K.1^27,2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^3,-2*K.1^27,2*K.1^3,2*K.1^9,2*K.1^3,2*K.1^21,0,0,0,0,0,2*K.1^9,2*K.1^6,-2*K.1^6,-2*K.1^27,-2*K.1^24,0,-2*K.1^9,2*K.1^18,-2*K.1^3,0,0,2*K.1^27,-2*K.1^12,2*K.1^3,0,0,0,0,-2*K.1^21,-2*K.1^18,0,0,0,0,0,0,2*K.1^24,0,0,2*K.1^12,0,0,0,2*K.1^21,0,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,-1*K.1^6,K.1^24,K.1^24,-2*K.1^2+K.1^12,K.1^18,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1^4-K.1^14,-1*K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-1*K.1^18,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,-1*K.1^4-K.1^14,-1*K.1^21,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,-1*K.1^4-K.1^14,-1*K.1-K.1^11,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,K.1^27,-1*K.1^9,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3+2*K.1^13,K.1^27,-1*K.1^18,K.1^4+K.1^14,-1*K.1^3+2*K.1^13,K.1^9,-1*K.1^6,K.1^27,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^12,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^27,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^27,K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^3,K.1^18,K.1^4+K.1^14,K.1^9,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,K.1+K.1^11,-1*K.1^27,-1*K.1^18,-1*K.1^21,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^6,K.1^24,K.1^12,K.1^6,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,K.1^18,-1*K.1^9,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1^2+K.1^12,-1*K.1^24,K.1^21,K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,-2,0,2*K.1^15,0,0,0,0,2,0,-2*K.1^15,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,-1,K.1^15,K.1^5+K.1^-5,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^15,1,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^21,2*K.1^21,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,2*K.1^3,-2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^27,2*K.1^3,-2*K.1^27,-2*K.1^21,-2*K.1^27,-2*K.1^9,0,0,0,0,0,-2*K.1^21,-2*K.1^24,2*K.1^24,2*K.1^3,2*K.1^6,0,2*K.1^21,-2*K.1^12,2*K.1^27,0,0,-2*K.1^3,2*K.1^18,-2*K.1^27,0,0,0,0,2*K.1^9,2*K.1^12,0,0,0,0,0,0,-2*K.1^6,0,0,-2*K.1^18,0,0,0,-2*K.1^9,0,K.1^4+K.1^14,-1*K.1^24,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-1*K.1^6,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1*K.1^18,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^6,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,-1*K.1^21,K.1^3-2*K.1^13,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^9,K.1^27,-1*K.1-K.1^11,-1*K.1-K.1^11,-1*K.1^3,K.1^21,K.1+K.1^11,K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-1*K.1-K.1^11,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,K.1^9,-1*K.1^4-K.1^14,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,K.1^21,-1*K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,K.1^24,-1*K.1^3,-1*K.1^27,K.1+K.1^11,-1*K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^6,-1*K.1^3+2*K.1^13,2*K.1^2-K.1^12,K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,-1*K.1^9,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,K.1^12,K.1^9,-1*K.1^27,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^18,-1*K.1^4-K.1^14,-1*K.1^24,-1*K.1^6,-1*K.1^18,-1*K.1^24,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^12,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,K.1^18,-1*K.1^3+2*K.1^13,K.1^3,K.1^3-2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^6,-1*K.1^9,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,-2,0,-2*K.1^15,0,0,0,0,2,0,2*K.1^15,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^18,2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,-1,-1*K.1^15,-1*K.1^5-K.1^-5,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^15,1,K.1^15,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,-2*K.1^27,2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^3,-2*K.1^27,2*K.1^3,2*K.1^9,2*K.1^3,2*K.1^21,0,0,0,0,0,2*K.1^9,2*K.1^6,-2*K.1^6,-2*K.1^27,-2*K.1^24,0,-2*K.1^9,2*K.1^18,-2*K.1^3,0,0,2*K.1^27,-2*K.1^12,2*K.1^3,0,0,0,0,-2*K.1^21,-2*K.1^18,0,0,0,0,0,0,2*K.1^24,0,0,2*K.1^12,0,0,0,2*K.1^21,0,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,K.1^4+K.1^14,-1*K.1^6,K.1^24,K.1^24,2*K.1^2-K.1^12,K.1^18,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,K.1^4+K.1^14,-1*K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,K.1^4+K.1^14,-1*K.1^21,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,K.1^4+K.1^14,K.1+K.1^11,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,K.1^27,-1*K.1^9,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,K.1^3,-1*K.1^9,K.1^9,K.1^3-2*K.1^13,K.1^27,-1*K.1^18,-1*K.1^4-K.1^14,K.1^3-2*K.1^13,K.1^9,-1*K.1^6,K.1^27,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^12,-1*K.1-K.1^11,K.1+K.1^11,-1*K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^27,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-1*K.1^27,K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^3,K.1^18,-1*K.1^4-K.1^14,K.1^9,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1*K.1-K.1^11,-1*K.1^27,-1*K.1^18,-1*K.1^21,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^6,K.1^24,K.1^12,K.1^6,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,K.1^18,-1*K.1^9,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1^2-K.1^12,-1*K.1^24,K.1^21,K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,-2,0,2*K.1^15,0,0,0,0,2,0,-2*K.1^15,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,-1,K.1^15,-1*K.1^5-K.1^-5,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^15,1,-1*K.1^15,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^21,2*K.1^21,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,2*K.1^3,-2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^27,2*K.1^3,-2*K.1^27,-2*K.1^21,-2*K.1^27,-2*K.1^9,0,0,0,0,0,-2*K.1^21,-2*K.1^24,2*K.1^24,2*K.1^3,2*K.1^6,0,2*K.1^21,-2*K.1^12,2*K.1^27,0,0,-2*K.1^3,2*K.1^18,-2*K.1^27,0,0,0,0,2*K.1^9,2*K.1^12,0,0,0,0,0,0,-2*K.1^6,0,0,-2*K.1^18,0,0,0,-2*K.1^9,0,-1*K.1^4-K.1^14,-1*K.1^24,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-1*K.1^6,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-1*K.1^18,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^6,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,-1*K.1^21,-1*K.1^3+2*K.1^13,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^9,K.1^27,K.1+K.1^11,K.1+K.1^11,-1*K.1^3,K.1^21,-1*K.1-K.1^11,K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,K.1+K.1^11,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,K.1^9,K.1^4+K.1^14,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,K.1^21,-1*K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,K.1^24,-1*K.1^3,-1*K.1^27,-1*K.1-K.1^11,-1*K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^6,K.1^3-2*K.1^13,-2*K.1^2+K.1^12,K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,-1*K.1^9,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,K.1^12,K.1^9,-1*K.1^27,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^18,K.1^4+K.1^14,-1*K.1^24,-1*K.1^6,-1*K.1^18,-1*K.1^24,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^12,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,K.1^18,K.1^3-2*K.1^13,K.1^3,-1*K.1^3+2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^6,-1*K.1^9,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,-2,0,-2*K.1^15,0,0,0,0,2,0,2*K.1^15,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,-1,-1*K.1^15,K.1^5+K.1^-5,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^15,1,K.1^15,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,2*K.1^9,-2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^21,2*K.1^9,-2*K.1^21,-2*K.1^3,-2*K.1^21,-2*K.1^27,0,0,0,0,0,-2*K.1^3,-2*K.1^12,2*K.1^12,2*K.1^9,2*K.1^18,0,2*K.1^3,2*K.1^6,2*K.1^21,0,0,-2*K.1^9,-2*K.1^24,-2*K.1^21,0,0,0,0,2*K.1^27,-2*K.1^6,0,0,0,0,0,0,-2*K.1^18,0,0,2*K.1^24,0,0,0,-2*K.1^27,0,-2*K.1^2+K.1^12,-1*K.1^12,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1^18,-1*K.1^18,-1*K.1^4-K.1^14,K.1^6,K.1^24,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^4-K.1^14,K.1^4+K.1^14,-1*K.1^6,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^27,K.1^21,K.1^3-2*K.1^13,K.1^3-2*K.1^13,-1*K.1^9,K.1^3,-1*K.1^3+2*K.1^13,K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,K.1^3-2*K.1^13,-2*K.1^2+K.1^12,-1*K.1-K.1^11,-1*K.1^9,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,2*K.1^2-K.1^12,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1-K.1^11,K.1+K.1^11,-1*K.1^21,K.1^3,-1*K.1^3,K.1+K.1^11,-1*K.1^9,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^11,-1*K.1^3,K.1^12,-1*K.1^9,-1*K.1^21,-1*K.1^3+2*K.1^13,K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^21,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^9,K.1^4+K.1^14,-1*K.1^4-K.1^14,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,-1*K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,-1*K.1^6,K.1^27,-1*K.1^21,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,2*K.1^2-K.1^12,-1*K.1^12,-1*K.1^18,K.1^24,-1*K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^6,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^4-K.1^14,K.1^18,-1*K.1^27,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,-2,0,2*K.1^15,0,0,0,0,2,0,-2*K.1^15,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,-1,K.1^15,K.1^5+K.1^-5,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^15,1,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^27,-2*K.1^27,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^21,2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^9,-2*K.1^21,2*K.1^9,2*K.1^27,2*K.1^9,2*K.1^3,0,0,0,0,0,2*K.1^27,2*K.1^18,-2*K.1^18,-2*K.1^21,-2*K.1^12,0,-2*K.1^27,-2*K.1^24,-2*K.1^9,0,0,2*K.1^21,2*K.1^6,2*K.1^9,0,0,0,0,-2*K.1^3,2*K.1^24,0,0,0,0,0,0,2*K.1^12,0,0,-2*K.1^6,0,0,0,2*K.1^3,0,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,2*K.1^2-K.1^12,-1*K.1^18,K.1^12,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,-1*K.1^6,2*K.1^2-K.1^12,-1*K.1^12,K.1^4+K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^27,-1*K.1-K.1^11,-1*K.1^9,2*K.1^2-K.1^12,-1*K.1^3,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,2*K.1^2-K.1^12,K.1^3-2*K.1^13,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1*K.1^27,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,-1*K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,-1*K.1^27,K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,K.1^24,-2*K.1^2+K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1^18,K.1^21,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^6,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-1*K.1^12,K.1+K.1^11,K.1^4+K.1^14,-1*K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^21,K.1^3,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1^9,-1*K.1^24,-2*K.1^2+K.1^12,K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^3+2*K.1^13,-1*K.1^21,K.1^24,-1*K.1^3,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^18,K.1^12,-1*K.1^6,K.1^18,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^24,-1*K.1^27,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,K.1^6,K.1+K.1^11,-1*K.1^21,-1*K.1-K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^12,K.1^3,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,-2,0,-2*K.1^15,0,0,0,0,2,0,2*K.1^15,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,-1,-1*K.1^15,-1*K.1^5-K.1^-5,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^15,1,K.1^15,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,2*K.1^9,-2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^21,2*K.1^9,-2*K.1^21,-2*K.1^3,-2*K.1^21,-2*K.1^27,0,0,0,0,0,-2*K.1^3,-2*K.1^12,2*K.1^12,2*K.1^9,2*K.1^18,0,2*K.1^3,2*K.1^6,2*K.1^21,0,0,-2*K.1^9,-2*K.1^24,-2*K.1^21,0,0,0,0,2*K.1^27,-2*K.1^6,0,0,0,0,0,0,-2*K.1^18,0,0,2*K.1^24,0,0,0,-2*K.1^27,0,2*K.1^2-K.1^12,-1*K.1^12,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1^18,-1*K.1^18,K.1^4+K.1^14,K.1^6,K.1^24,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^4+K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^27,K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1^9,K.1^3,K.1^3-2*K.1^13,K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-1*K.1^3+2*K.1^13,2*K.1^2-K.1^12,K.1+K.1^11,-1*K.1^9,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^21,K.1^3,-1*K.1^3,-1*K.1-K.1^11,-1*K.1^9,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^11,-1*K.1^3,K.1^12,-1*K.1^9,-1*K.1^21,K.1^3-2*K.1^13,K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^21,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^9,-1*K.1^4-K.1^14,K.1^4+K.1^14,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,-1*K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3,-1*K.1-K.1^11,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,-1*K.1^6,K.1^27,-1*K.1^21,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-2*K.1^2+K.1^12,-1*K.1^12,-1*K.1^18,K.1^24,-1*K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,K.1^6,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^4+K.1^14,K.1^18,-1*K.1^27,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,-2,0,2*K.1^15,0,0,0,0,2,0,-2*K.1^15,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,-1,K.1^15,-1*K.1^5-K.1^-5,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^15,1,-1*K.1^15,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^27,-2*K.1^27,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^21,2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^9,-2*K.1^21,2*K.1^9,2*K.1^27,2*K.1^9,2*K.1^3,0,0,0,0,0,2*K.1^27,2*K.1^18,-2*K.1^18,-2*K.1^21,-2*K.1^12,0,-2*K.1^27,-2*K.1^24,-2*K.1^9,0,0,2*K.1^21,2*K.1^6,2*K.1^9,0,0,0,0,-2*K.1^3,2*K.1^24,0,0,0,0,0,0,2*K.1^12,0,0,-2*K.1^6,0,0,0,2*K.1^3,0,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,-1*K.1^18,K.1^12,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,-1*K.1^12,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^27,K.1+K.1^11,-1*K.1^9,-2*K.1^2+K.1^12,-1*K.1^3,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,-1*K.1^27,K.1^3-2*K.1^13,K.1+K.1^11,-1*K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,-1*K.1^27,K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,K.1^24,2*K.1^2-K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,-1*K.1^18,K.1^21,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^6,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1^12,-1*K.1-K.1^11,-1*K.1^4-K.1^14,-1*K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-1*K.1^21,K.1^3,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1^24,2*K.1^2-K.1^12,K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1^3-2*K.1^13,-1*K.1^21,K.1^24,-1*K.1^3,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^18,K.1^12,-1*K.1^6,K.1^18,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^24,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,K.1^6,-1*K.1-K.1^11,-1*K.1^21,K.1+K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^12,K.1^3,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,-2,0,-2*K.1^15,0,0,0,0,2,0,2*K.1^15,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,-1,-1*K.1^15,K.1^5+K.1^-5,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^15,1,K.1^15,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^27,2*K.1^27,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^21,-2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^9,2*K.1^21,-2*K.1^9,-2*K.1^27,-2*K.1^9,-2*K.1^3,0,0,0,0,0,-2*K.1^27,2*K.1^18,-2*K.1^18,2*K.1^21,-2*K.1^12,0,2*K.1^27,-2*K.1^24,2*K.1^9,0,0,-2*K.1^21,2*K.1^6,-2*K.1^9,0,0,0,0,2*K.1^3,2*K.1^24,0,0,0,0,0,0,2*K.1^12,0,0,-2*K.1^6,0,0,0,-2*K.1^3,0,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,-1*K.1^18,K.1^12,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,-1*K.1^12,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,-1*K.1^27,-1*K.1-K.1^11,K.1^9,-2*K.1^2+K.1^12,K.1^3,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,K.1^27,-1*K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,K.1^24,2*K.1^2-K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1^18,-1*K.1^21,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^6,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-1*K.1^12,K.1+K.1^11,-1*K.1^4-K.1^14,K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,K.1^21,-1*K.1^3,K.1+K.1^11,K.1^3-2*K.1^13,K.1^9,-1*K.1^24,2*K.1^2-K.1^12,-1*K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1^3+2*K.1^13,K.1^21,K.1^24,K.1^3,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^18,K.1^12,-1*K.1^6,K.1^18,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^24,K.1^27,K.1^3-2*K.1^13,K.1^4+K.1^14,K.1^6,K.1+K.1^11,K.1^21,-1*K.1-K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^12,-1*K.1^3,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,-2,0,2*K.1^15,0,0,0,0,2,0,-2*K.1^15,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,-1,K.1^15,K.1^5+K.1^-5,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^15,1,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,-2*K.1^9,2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^21,-2*K.1^9,2*K.1^21,2*K.1^3,2*K.1^21,2*K.1^27,0,0,0,0,0,2*K.1^3,-2*K.1^12,2*K.1^12,-2*K.1^9,2*K.1^18,0,-2*K.1^3,2*K.1^6,-2*K.1^21,0,0,2*K.1^9,-2*K.1^24,2*K.1^21,0,0,0,0,-2*K.1^27,-2*K.1^6,0,0,0,0,0,0,-2*K.1^18,0,0,2*K.1^24,0,0,0,2*K.1^27,0,2*K.1^2-K.1^12,-1*K.1^12,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1^18,-1*K.1^18,K.1^4+K.1^14,K.1^6,K.1^24,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^4+K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^27,-1*K.1^21,K.1^3-2*K.1^13,K.1^3-2*K.1^13,K.1^9,-1*K.1^3,-1*K.1^3+2*K.1^13,-1*K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,K.1^3-2*K.1^13,2*K.1^2-K.1^12,-1*K.1-K.1^11,K.1^9,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1-K.1^11,K.1+K.1^11,K.1^21,-1*K.1^3,K.1^3,K.1+K.1^11,K.1^9,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^11,K.1^3,K.1^12,K.1^9,K.1^21,-1*K.1^3+2*K.1^13,K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^21,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^9,-1*K.1^4-K.1^14,K.1^4+K.1^14,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,-1*K.1^6,-1*K.1^27,K.1^21,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-2*K.1^2+K.1^12,-1*K.1^12,-1*K.1^18,K.1^24,-1*K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^6,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^4+K.1^14,K.1^18,K.1^27,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,-2,0,-2*K.1^15,0,0,0,0,2,0,2*K.1^15,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,-1,-1*K.1^15,-1*K.1^5-K.1^-5,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^15,1,K.1^15,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^27,2*K.1^27,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^21,-2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^9,2*K.1^21,-2*K.1^9,-2*K.1^27,-2*K.1^9,-2*K.1^3,0,0,0,0,0,-2*K.1^27,2*K.1^18,-2*K.1^18,2*K.1^21,-2*K.1^12,0,2*K.1^27,-2*K.1^24,2*K.1^9,0,0,-2*K.1^21,2*K.1^6,-2*K.1^9,0,0,0,0,2*K.1^3,2*K.1^24,0,0,0,0,0,0,2*K.1^12,0,0,-2*K.1^6,0,0,0,-2*K.1^3,0,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,2*K.1^2-K.1^12,-1*K.1^18,K.1^12,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,-1*K.1^6,2*K.1^2-K.1^12,-1*K.1^12,K.1^4+K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,-1*K.1^27,K.1+K.1^11,K.1^9,2*K.1^2-K.1^12,K.1^3,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,K.1^27,K.1^3-2*K.1^13,K.1+K.1^11,K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,K.1^27,-1*K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,K.1^24,-2*K.1^2+K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-1*K.1^18,-1*K.1^21,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^6,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1^12,-1*K.1-K.1^11,K.1^4+K.1^14,K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,K.1^21,-1*K.1^3,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1^9,-1*K.1^24,-2*K.1^2+K.1^12,-1*K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^3-2*K.1^13,K.1^21,K.1^24,K.1^3,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^18,K.1^12,-1*K.1^6,K.1^18,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^24,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,K.1^6,-1*K.1-K.1^11,K.1^21,K.1+K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^12,-1*K.1^3,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,-2,0,2*K.1^15,0,0,0,0,2,0,-2*K.1^15,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,-1,K.1^15,-1*K.1^5-K.1^-5,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^15,1,-1*K.1^15,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,-2*K.1^9,2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^21,-2*K.1^9,2*K.1^21,2*K.1^3,2*K.1^21,2*K.1^27,0,0,0,0,0,2*K.1^3,-2*K.1^12,2*K.1^12,-2*K.1^9,2*K.1^18,0,-2*K.1^3,2*K.1^6,-2*K.1^21,0,0,2*K.1^9,-2*K.1^24,2*K.1^21,0,0,0,0,-2*K.1^27,-2*K.1^6,0,0,0,0,0,0,-2*K.1^18,0,0,2*K.1^24,0,0,0,2*K.1^27,0,-2*K.1^2+K.1^12,-1*K.1^12,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1^18,-1*K.1^18,-1*K.1^4-K.1^14,K.1^6,K.1^24,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^4-K.1^14,K.1^4+K.1^14,-1*K.1^6,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^27,-1*K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,K.1^9,-1*K.1^3,K.1^3-2*K.1^13,-1*K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-1*K.1^3+2*K.1^13,-2*K.1^2+K.1^12,K.1+K.1^11,K.1^9,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1+K.1^11,-1*K.1-K.1^11,K.1^21,-1*K.1^3,K.1^3,-1*K.1-K.1^11,K.1^9,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^11,K.1^3,K.1^12,K.1^9,K.1^21,K.1^3-2*K.1^13,K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^21,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^9,K.1^4+K.1^14,-1*K.1^4-K.1^14,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3,-1*K.1-K.1^11,K.1+K.1^11,K.1^3-2*K.1^13,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,-1*K.1^6,-1*K.1^27,K.1^21,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,2*K.1^2-K.1^12,-1*K.1^12,-1*K.1^18,K.1^24,-1*K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,K.1^6,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^4-K.1^14,K.1^18,K.1^27,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,2,0,2*K.1^15,0,0,0,0,-2,0,-2*K.1^15,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,1,K.1^15,-1*K.1^5-K.1^-5,1,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1,-1*K.1^15,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^21,-2*K.1^21,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,-2*K.1^3,2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^27,-2*K.1^3,2*K.1^27,2*K.1^21,2*K.1^27,2*K.1^9,0,0,0,0,0,-2*K.1^21,2*K.1^24,-2*K.1^24,2*K.1^3,-2*K.1^6,0,2*K.1^21,2*K.1^12,2*K.1^27,0,0,-2*K.1^3,-2*K.1^18,-2*K.1^27,0,0,0,0,2*K.1^9,-2*K.1^12,0,0,0,0,0,0,2*K.1^6,0,0,2*K.1^18,0,0,0,-2*K.1^9,0,-1*K.1^4-K.1^14,-1*K.1^24,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-1*K.1^6,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-1*K.1^18,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^6,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24,K.1^21,K.1^3-2*K.1^13,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^9,K.1^27,K.1+K.1^11,K.1+K.1^11,-1*K.1^3,-1*K.1^21,-1*K.1-K.1^11,K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1-K.1^11,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3-2*K.1^13,K.1^9,-1*K.1^4-K.1^14,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,K.1^21,-1*K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-1*K.1^24,K.1^3,K.1^27,K.1+K.1^11,K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^6,-1*K.1^3+2*K.1^13,2*K.1^2-K.1^12,K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,K.1^9,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,-1*K.1^12,-1*K.1^9,K.1^27,K.1^4+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,-1*K.1^4-K.1^14,K.1^24,K.1^6,K.1^18,K.1^24,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^12,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,-1*K.1^18,K.1^3-2*K.1^13,K.1^3,-1*K.1^3+2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^6,K.1^9,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,2,0,-2*K.1^15,0,0,0,0,-2,0,2*K.1^15,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^18,2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,1,-1*K.1^15,-1*K.1^5-K.1^-5,1,-1*K.1^15,K.1^15,K.1^15,K.1^15,-1,K.1^15,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,2*K.1^27,-2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^3,2*K.1^27,-2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1^21,0,0,0,0,0,2*K.1^9,-2*K.1^6,2*K.1^6,-2*K.1^27,2*K.1^24,0,-2*K.1^9,-2*K.1^18,-2*K.1^3,0,0,2*K.1^27,2*K.1^12,2*K.1^3,0,0,0,0,-2*K.1^21,2*K.1^18,0,0,0,0,0,0,-2*K.1^24,0,0,-2*K.1^12,0,0,0,2*K.1^21,0,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,K.1^4+K.1^14,-1*K.1^6,K.1^24,K.1^24,2*K.1^2-K.1^12,K.1^18,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,K.1^4+K.1^14,-1*K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,-1*K.1^4-K.1^14,K.1^21,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-1*K.1^4-K.1^14,K.1+K.1^11,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,-1*K.1^27,K.1^9,-1*K.1-K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,K.1^3,-1*K.1^9,K.1^9,K.1^3-2*K.1^13,K.1^27,K.1^18,K.1^4+K.1^14,-1*K.1^3+2*K.1^13,K.1^9,K.1^6,-1*K.1^27,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^12,K.1+K.1^11,-1*K.1-K.1^11,K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^27,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,K.1^27,-1*K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^3,-1*K.1^18,K.1^4+K.1^14,-1*K.1^9,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1*K.1-K.1^11,K.1^27,K.1^18,K.1^21,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,-1*K.1^24,-1*K.1^12,-1*K.1^6,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^18,-1*K.1^9,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1^2+K.1^12,K.1^24,-1*K.1^21,-1*K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,2,0,2*K.1^15,0,0,0,0,-2,0,-2*K.1^15,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,1,K.1^15,K.1^5+K.1^-5,1,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1,-1*K.1^15,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^21,-2*K.1^21,2*K.1^21,2*K.1^9,-2*K.1^9,-2*K.1^27,-2*K.1^3,2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^27,-2*K.1^3,2*K.1^27,2*K.1^21,2*K.1^27,2*K.1^9,0,0,0,0,0,-2*K.1^21,2*K.1^24,-2*K.1^24,2*K.1^3,-2*K.1^6,0,2*K.1^21,2*K.1^12,2*K.1^27,0,0,-2*K.1^3,-2*K.1^18,-2*K.1^27,0,0,0,0,2*K.1^9,-2*K.1^12,0,0,0,0,0,0,2*K.1^6,0,0,2*K.1^18,0,0,0,-2*K.1^9,0,K.1^4+K.1^14,-1*K.1^24,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-1*K.1^6,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1*K.1^18,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^6,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24,K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^9,K.1^27,-1*K.1-K.1^11,-1*K.1-K.1^11,-1*K.1^3,-1*K.1^21,K.1+K.1^11,K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1+K.1^11,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3+2*K.1^13,K.1^9,K.1^4+K.1^14,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,K.1^21,-1*K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-1*K.1^24,K.1^3,K.1^27,-1*K.1-K.1^11,K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^6,K.1^3-2*K.1^13,-2*K.1^2+K.1^12,K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,K.1^9,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,-1*K.1^12,-1*K.1^9,K.1^27,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,K.1^4+K.1^14,K.1^24,K.1^6,K.1^18,K.1^24,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^12,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,-1*K.1^18,-1*K.1^3+2*K.1^13,K.1^3,K.1^3-2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^6,K.1^9,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,2,0,-2*K.1^15,0,0,0,0,-2,0,2*K.1^15,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^18,2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,1,-1*K.1^15,K.1^5+K.1^-5,1,-1*K.1^15,K.1^15,K.1^15,K.1^15,-1,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^21,2*K.1^21,2*K.1^3,2*K.1^27,-2*K.1^27,2*K.1^21,-2*K.1^27,2*K.1^3,2*K.1^27,-2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1^21,0,0,0,0,0,2*K.1^9,-2*K.1^6,2*K.1^6,-2*K.1^27,2*K.1^24,0,-2*K.1^9,-2*K.1^18,-2*K.1^3,0,0,2*K.1^27,2*K.1^12,2*K.1^3,0,0,0,0,-2*K.1^21,2*K.1^18,0,0,0,0,0,0,-2*K.1^24,0,0,-2*K.1^12,0,0,0,2*K.1^21,0,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,-1*K.1^6,K.1^24,K.1^24,-2*K.1^2+K.1^12,K.1^18,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1^4-K.1^14,-1*K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-1*K.1^18,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,K.1^4+K.1^14,K.1^21,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,K.1^4+K.1^14,-1*K.1-K.1^11,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1^9,K.1+K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3+2*K.1^13,K.1^27,K.1^18,-1*K.1^4-K.1^14,K.1^3-2*K.1^13,K.1^9,K.1^6,-1*K.1^27,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^12,-1*K.1-K.1^11,K.1+K.1^11,K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^27,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^27,-1*K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^3,-1*K.1^18,-1*K.1^4-K.1^14,-1*K.1^9,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,K.1+K.1^11,K.1^27,K.1^18,K.1^21,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-1*K.1^24,-1*K.1^12,-1*K.1^6,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-1*K.1^18,-1*K.1^9,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1^2-K.1^12,K.1^24,-1*K.1^21,-1*K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,2,0,2*K.1^15,0,0,0,0,-2,0,-2*K.1^15,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^18,2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,1,K.1^15,-1*K.1^5-K.1^-5,1,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1,-1*K.1^15,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,-2*K.1^27,2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^3,-2*K.1^27,2*K.1^3,2*K.1^9,2*K.1^3,2*K.1^21,0,0,0,0,0,-2*K.1^9,-2*K.1^6,2*K.1^6,2*K.1^27,2*K.1^24,0,2*K.1^9,-2*K.1^18,2*K.1^3,0,0,-2*K.1^27,2*K.1^12,-2*K.1^3,0,0,0,0,2*K.1^21,2*K.1^18,0,0,0,0,0,0,-2*K.1^24,0,0,-2*K.1^12,0,0,0,-2*K.1^21,0,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,-1*K.1^6,K.1^24,K.1^24,-2*K.1^2+K.1^12,K.1^18,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1^4-K.1^14,-1*K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-1*K.1^18,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^4+K.1^14,-1*K.1^21,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,K.1^4+K.1^14,K.1+K.1^11,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,K.1^27,-1*K.1^9,-1*K.1-K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3-2*K.1^13,-1*K.1^27,K.1^18,-1*K.1^4-K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^9,K.1^6,K.1^27,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^12,K.1+K.1^11,-1*K.1-K.1^11,K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^27,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^27,K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^3,-1*K.1^18,-1*K.1^4-K.1^14,K.1^9,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-1*K.1-K.1^11,-1*K.1^27,K.1^18,-1*K.1^21,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-1*K.1^24,-1*K.1^12,-1*K.1^6,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^18,K.1^9,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1^2-K.1^12,K.1^24,K.1^21,-1*K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,2,0,-2*K.1^15,0,0,0,0,-2,0,2*K.1^15,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,1,-1*K.1^15,-1*K.1^5-K.1^-5,1,-1*K.1^15,K.1^15,K.1^15,K.1^15,-1,K.1^15,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^21,2*K.1^21,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,2*K.1^3,-2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^27,2*K.1^3,-2*K.1^27,-2*K.1^21,-2*K.1^27,-2*K.1^9,0,0,0,0,0,2*K.1^21,2*K.1^24,-2*K.1^24,-2*K.1^3,-2*K.1^6,0,-2*K.1^21,2*K.1^12,-2*K.1^27,0,0,2*K.1^3,-2*K.1^18,2*K.1^27,0,0,0,0,-2*K.1^9,-2*K.1^12,0,0,0,0,0,0,2*K.1^6,0,0,2*K.1^18,0,0,0,2*K.1^9,0,K.1^4+K.1^14,-1*K.1^24,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-1*K.1^6,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1*K.1^18,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^6,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24,-1*K.1^21,K.1^3-2*K.1^13,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^9,-1*K.1^27,K.1+K.1^11,K.1+K.1^11,K.1^3,K.1^21,-1*K.1-K.1^11,-1*K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1-K.1^11,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3-2*K.1^13,-1*K.1^9,K.1^4+K.1^14,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,-1*K.1^21,K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-1*K.1^24,-1*K.1^3,-1*K.1^27,K.1+K.1^11,K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^6,-1*K.1^3+2*K.1^13,-2*K.1^2+K.1^12,-1*K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,-1*K.1^9,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,-1*K.1^12,K.1^9,-1*K.1^27,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,K.1^4+K.1^14,K.1^24,K.1^6,K.1^18,K.1^24,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^12,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,-1*K.1^18,K.1^3-2*K.1^13,-1*K.1^3,-1*K.1^3+2*K.1^13,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^6,-1*K.1^9,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,2,0,2*K.1^15,0,0,0,0,-2,0,-2*K.1^15,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^18,2*K.1^24,-2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,1,K.1^15,K.1^5+K.1^-5,1,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1,-1*K.1^15,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^21,-2*K.1^21,-2*K.1^3,-2*K.1^27,2*K.1^27,-2*K.1^21,2*K.1^27,-2*K.1^3,-2*K.1^27,2*K.1^3,2*K.1^9,2*K.1^3,2*K.1^21,0,0,0,0,0,-2*K.1^9,-2*K.1^6,2*K.1^6,2*K.1^27,2*K.1^24,0,2*K.1^9,-2*K.1^18,2*K.1^3,0,0,-2*K.1^27,2*K.1^12,-2*K.1^3,0,0,0,0,2*K.1^21,2*K.1^18,0,0,0,0,0,0,-2*K.1^24,0,0,-2*K.1^12,0,0,0,-2*K.1^21,0,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,K.1^4+K.1^14,-1*K.1^6,K.1^24,K.1^24,2*K.1^2-K.1^12,K.1^18,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,K.1^4+K.1^14,-1*K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1^4-K.1^14,-1*K.1^21,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,-1*K.1^4-K.1^14,-1*K.1-K.1^11,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,K.1^27,-1*K.1^9,K.1+K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1^18,K.1^4+K.1^14,K.1^3-2*K.1^13,-1*K.1^9,K.1^6,K.1^27,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^12,-1*K.1-K.1^11,K.1+K.1^11,K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^27,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-1*K.1^27,K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^3,-1*K.1^18,K.1^4+K.1^14,K.1^9,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,K.1+K.1^11,-1*K.1^27,K.1^18,-1*K.1^21,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,-1*K.1^24,-1*K.1^12,-1*K.1^6,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-1*K.1^18,K.1^9,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1^2+K.1^12,K.1^24,K.1^21,-1*K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,2,0,-2*K.1^15,0,0,0,0,-2,0,2*K.1^15,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^6,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,1,-1*K.1^15,K.1^5+K.1^-5,1,-1*K.1^15,K.1^15,K.1^15,K.1^15,-1,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^21,2*K.1^21,-2*K.1^21,-2*K.1^9,2*K.1^9,2*K.1^27,2*K.1^3,-2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^27,2*K.1^3,-2*K.1^27,-2*K.1^21,-2*K.1^27,-2*K.1^9,0,0,0,0,0,2*K.1^21,2*K.1^24,-2*K.1^24,-2*K.1^3,-2*K.1^6,0,-2*K.1^21,2*K.1^12,-2*K.1^27,0,0,2*K.1^3,-2*K.1^18,2*K.1^27,0,0,0,0,-2*K.1^9,-2*K.1^12,0,0,0,0,0,0,2*K.1^6,0,0,2*K.1^18,0,0,0,2*K.1^9,0,-1*K.1^4-K.1^14,-1*K.1^24,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-1*K.1^6,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-1*K.1^18,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^6,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^24,-1*K.1^21,-1*K.1^3+2*K.1^13,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^9,-1*K.1^27,-1*K.1-K.1^11,-1*K.1-K.1^11,K.1^3,K.1^21,K.1+K.1^11,-1*K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1+K.1^11,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1^4-K.1^14,K.1+K.1^11,K.1^3-2*K.1^13,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,-1*K.1^21,K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-1*K.1^24,-1*K.1^3,-1*K.1^27,-1*K.1-K.1^11,K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^6,K.1^3-2*K.1^13,2*K.1^2-K.1^12,-1*K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,-1*K.1^9,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,-1*K.1^12,K.1^9,-1*K.1^27,K.1^4+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,-1*K.1^4-K.1^14,K.1^24,K.1^6,K.1^18,K.1^24,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^12,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,-1*K.1^18,-1*K.1^3+2*K.1^13,-1*K.1^3,K.1^3-2*K.1^13,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^6,-1*K.1^9,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,2,0,2*K.1^15,0,0,0,0,-2,0,-2*K.1^15,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,1,K.1^15,-1*K.1^5-K.1^-5,1,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1,-1*K.1^15,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,2*K.1^9,-2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^21,2*K.1^9,-2*K.1^21,-2*K.1^3,-2*K.1^21,-2*K.1^27,0,0,0,0,0,2*K.1^3,2*K.1^12,-2*K.1^12,-2*K.1^9,-2*K.1^18,0,-2*K.1^3,-2*K.1^6,-2*K.1^21,0,0,2*K.1^9,2*K.1^24,2*K.1^21,0,0,0,0,-2*K.1^27,2*K.1^6,0,0,0,0,0,0,2*K.1^18,0,0,-2*K.1^24,0,0,0,2*K.1^27,0,-2*K.1^2+K.1^12,-1*K.1^12,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1^18,-1*K.1^18,-1*K.1^4-K.1^14,K.1^6,K.1^24,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^4-K.1^14,K.1^4+K.1^14,-1*K.1^6,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^27,-1*K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,K.1^9,K.1^3,K.1^3-2*K.1^13,-1*K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,K.1^3-2*K.1^13,2*K.1^2-K.1^12,-1*K.1-K.1^11,-1*K.1^9,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1-K.1^11,K.1+K.1^11,K.1^21,-1*K.1^3,K.1^3,-1*K.1-K.1^11,K.1^9,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^11,K.1^3,-1*K.1^12,-1*K.1^9,-1*K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^21,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^9,-1*K.1^4-K.1^14,K.1^4+K.1^14,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,-1*K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3,-1*K.1-K.1^11,K.1+K.1^11,K.1^3-2*K.1^13,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,K.1^6,K.1^27,-1*K.1^21,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-2*K.1^2+K.1^12,K.1^12,K.1^18,-1*K.1^24,K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^6,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^4+K.1^14,-1*K.1^18,-1*K.1^27,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,2,0,-2*K.1^15,0,0,0,0,-2,0,2*K.1^15,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,1,-1*K.1^15,-1*K.1^5-K.1^-5,1,-1*K.1^15,K.1^15,K.1^15,K.1^15,-1,K.1^15,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^27,-2*K.1^27,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^21,2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^9,-2*K.1^21,2*K.1^9,2*K.1^27,2*K.1^9,2*K.1^3,0,0,0,0,0,-2*K.1^27,-2*K.1^18,2*K.1^18,2*K.1^21,2*K.1^12,0,2*K.1^27,2*K.1^24,2*K.1^9,0,0,-2*K.1^21,-2*K.1^6,-2*K.1^9,0,0,0,0,2*K.1^3,-2*K.1^24,0,0,0,0,0,0,-2*K.1^12,0,0,2*K.1^6,0,0,0,-2*K.1^3,0,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,2*K.1^2-K.1^12,-1*K.1^18,K.1^12,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,-1*K.1^6,2*K.1^2-K.1^12,-1*K.1^12,K.1^4+K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,K.1^27,-1*K.1-K.1^11,-1*K.1^9,-2*K.1^2+K.1^12,-1*K.1^3,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1*K.1^27,K.1^3-2*K.1^13,-1*K.1-K.1^11,K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,K.1^27,-1*K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-1*K.1^24,2*K.1^2-K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,K.1^18,K.1^21,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^6,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,K.1^12,K.1+K.1^11,-1*K.1^4-K.1^14,K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^21,K.1^3,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1^9,K.1^24,2*K.1^2-K.1^12,K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^3-2*K.1^13,-1*K.1^21,-1*K.1^24,-1*K.1^3,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1*K.1^12,K.1^6,-1*K.1^18,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^24,K.1^27,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,-1*K.1^6,-1*K.1-K.1^11,K.1^21,K.1+K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^12,K.1^3,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,2,0,2*K.1^15,0,0,0,0,-2,0,-2*K.1^15,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,1,K.1^15,K.1^5+K.1^-5,1,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1,-1*K.1^15,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1^27,2*K.1^27,2*K.1^21,2*K.1^9,-2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^21,2*K.1^9,-2*K.1^21,-2*K.1^3,-2*K.1^21,-2*K.1^27,0,0,0,0,0,2*K.1^3,2*K.1^12,-2*K.1^12,-2*K.1^9,-2*K.1^18,0,-2*K.1^3,-2*K.1^6,-2*K.1^21,0,0,2*K.1^9,2*K.1^24,2*K.1^21,0,0,0,0,-2*K.1^27,2*K.1^6,0,0,0,0,0,0,2*K.1^18,0,0,-2*K.1^24,0,0,0,2*K.1^27,0,2*K.1^2-K.1^12,-1*K.1^12,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1^18,-1*K.1^18,K.1^4+K.1^14,K.1^6,K.1^24,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^4+K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^27,-1*K.1^21,K.1^3-2*K.1^13,K.1^3-2*K.1^13,K.1^9,K.1^3,-1*K.1^3+2*K.1^13,-1*K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-1*K.1^3+2*K.1^13,-2*K.1^2+K.1^12,K.1+K.1^11,-1*K.1^9,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1+K.1^11,-1*K.1-K.1^11,K.1^21,-1*K.1^3,K.1^3,K.1+K.1^11,K.1^9,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^11,K.1^3,-1*K.1^12,-1*K.1^9,-1*K.1^21,K.1^3-2*K.1^13,-1*K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^21,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^9,K.1^4+K.1^14,-1*K.1^4-K.1^14,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,-1*K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,K.1^6,K.1^27,-1*K.1^21,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,2*K.1^2-K.1^12,K.1^12,K.1^18,-1*K.1^24,K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-1*K.1^6,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^4-K.1^14,-1*K.1^18,-1*K.1^27,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,2,0,-2*K.1^15,0,0,0,0,-2,0,2*K.1^15,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,1,-1*K.1^15,K.1^5+K.1^-5,1,-1*K.1^15,K.1^15,K.1^15,K.1^15,-1,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^27,-2*K.1^27,2*K.1^27,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^21,2*K.1^21,-2*K.1^3,2*K.1^21,-2*K.1^9,-2*K.1^21,2*K.1^9,2*K.1^27,2*K.1^9,2*K.1^3,0,0,0,0,0,-2*K.1^27,-2*K.1^18,2*K.1^18,2*K.1^21,2*K.1^12,0,2*K.1^27,2*K.1^24,2*K.1^9,0,0,-2*K.1^21,-2*K.1^6,-2*K.1^9,0,0,0,0,2*K.1^3,-2*K.1^24,0,0,0,0,0,0,-2*K.1^12,0,0,2*K.1^6,0,0,0,-2*K.1^3,0,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,-1*K.1^18,K.1^12,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,-1*K.1^12,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,K.1^27,K.1+K.1^11,-1*K.1^9,2*K.1^2-K.1^12,-1*K.1^3,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,2*K.1^2-K.1^12,K.1^3-2*K.1^13,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1+K.1^11,K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,K.1^27,-1*K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,-1*K.1^24,-2*K.1^2+K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1^18,K.1^21,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^6,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,K.1^12,-1*K.1-K.1^11,K.1^4+K.1^14,K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-1*K.1^21,K.1^3,K.1+K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^9,K.1^24,-2*K.1^2+K.1^12,K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1^3+2*K.1^13,-1*K.1^21,-1*K.1^24,-1*K.1^3,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,-1*K.1^12,K.1^6,-1*K.1^18,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^24,K.1^27,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,-1*K.1^6,K.1+K.1^11,K.1^21,-1*K.1-K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^12,K.1^3,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,2,0,2*K.1^15,0,0,0,0,-2,0,-2*K.1^15,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,1,K.1^15,-1*K.1^5-K.1^-5,1,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1,-1*K.1^15,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^27,2*K.1^27,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^21,-2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^9,2*K.1^21,-2*K.1^9,-2*K.1^27,-2*K.1^9,-2*K.1^3,0,0,0,0,0,2*K.1^27,-2*K.1^18,2*K.1^18,-2*K.1^21,2*K.1^12,0,-2*K.1^27,2*K.1^24,-2*K.1^9,0,0,2*K.1^21,-2*K.1^6,2*K.1^9,0,0,0,0,-2*K.1^3,-2*K.1^24,0,0,0,0,0,0,-2*K.1^12,0,0,2*K.1^6,0,0,0,2*K.1^3,0,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,-1*K.1^18,K.1^12,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,-1*K.1^12,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,-1*K.1^27,-1*K.1-K.1^11,K.1^9,2*K.1^2-K.1^12,K.1^3,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,K.1^27,K.1^3-2*K.1^13,-1*K.1-K.1^11,-1*K.1^3,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,-1*K.1^27,K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1*K.1^24,-2*K.1^2+K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,K.1^18,-1*K.1^21,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^6,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,K.1^12,K.1+K.1^11,K.1^4+K.1^14,-1*K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^21,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,K.1^21,-1*K.1^3,-1*K.1-K.1^11,K.1^3-2*K.1^13,K.1^9,K.1^24,-2*K.1^2+K.1^12,-1*K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1^3-2*K.1^13,K.1^21,-1*K.1^24,K.1^3,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,-1*K.1^12,K.1^6,-1*K.1^18,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^24,-1*K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1-K.1^11,-1*K.1^21,K.1+K.1^11,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^12,-1*K.1^3,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,2,0,-2*K.1^15,0,0,0,0,-2,0,2*K.1^15,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,1,-1*K.1^15,-1*K.1^5-K.1^-5,1,-1*K.1^15,K.1^15,K.1^15,K.1^15,-1,K.1^15,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,-2*K.1^9,2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^21,-2*K.1^9,2*K.1^21,2*K.1^3,2*K.1^21,2*K.1^27,0,0,0,0,0,-2*K.1^3,2*K.1^12,-2*K.1^12,2*K.1^9,-2*K.1^18,0,2*K.1^3,-2*K.1^6,2*K.1^21,0,0,-2*K.1^9,2*K.1^24,-2*K.1^21,0,0,0,0,2*K.1^27,2*K.1^6,0,0,0,0,0,0,2*K.1^18,0,0,-2*K.1^24,0,0,0,-2*K.1^27,0,2*K.1^2-K.1^12,-1*K.1^12,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1^18,-1*K.1^18,K.1^4+K.1^14,K.1^6,K.1^24,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^4+K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^27,K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1^3,K.1^3-2*K.1^13,K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,K.1^3-2*K.1^13,-2*K.1^2+K.1^12,-1*K.1-K.1^11,K.1^9,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,2*K.1^2-K.1^12,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1-K.1^11,K.1+K.1^11,-1*K.1^21,K.1^3,-1*K.1^3,-1*K.1-K.1^11,-1*K.1^9,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^11,-1*K.1^3,-1*K.1^12,K.1^9,K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^21,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^9,K.1^4+K.1^14,-1*K.1^4-K.1^14,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3,-1*K.1-K.1^11,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,K.1^6,-1*K.1^27,K.1^21,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,2*K.1^2-K.1^12,K.1^12,K.1^18,-1*K.1^24,K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^6,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^4-K.1^14,-1*K.1^18,K.1^27,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,2,0,2*K.1^15,0,0,0,0,-2,0,-2*K.1^15,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1+2*K.1^10,-1+2*K.1^10,-1,1-2*K.1^10,1-2*K.1^10,1,1,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,1,K.1^15,K.1^5+K.1^-5,1,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1,-1*K.1^15,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^27,2*K.1^27,-2*K.1^27,-2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^21,-2*K.1^21,2*K.1^3,-2*K.1^21,2*K.1^9,2*K.1^21,-2*K.1^9,-2*K.1^27,-2*K.1^9,-2*K.1^3,0,0,0,0,0,2*K.1^27,-2*K.1^18,2*K.1^18,-2*K.1^21,2*K.1^12,0,-2*K.1^27,2*K.1^24,-2*K.1^9,0,0,2*K.1^21,-2*K.1^6,2*K.1^9,0,0,0,0,-2*K.1^3,-2*K.1^24,0,0,0,0,0,0,-2*K.1^12,0,0,2*K.1^6,0,0,0,2*K.1^3,0,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,2*K.1^2-K.1^12,-1*K.1^18,K.1^12,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,-1*K.1^6,2*K.1^2-K.1^12,-1*K.1^12,K.1^4+K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,-1*K.1^27,K.1+K.1^11,K.1^9,-2*K.1^2+K.1^12,K.1^3,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,K.1^27,-1*K.1^3+2*K.1^13,K.1+K.1^11,-1*K.1^3,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,-1*K.1^27,K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,-1*K.1^24,2*K.1^2-K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1^18,-1*K.1^21,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^6,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,K.1^12,-1*K.1-K.1^11,-1*K.1^4-K.1^14,-1*K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^21,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,K.1^21,-1*K.1^3,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1^9,K.1^24,2*K.1^2-K.1^12,-1*K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^3+2*K.1^13,K.1^21,-1*K.1^24,K.1^3,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1*K.1^12,K.1^6,-1*K.1^18,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^24,-1*K.1^27,K.1^3-2*K.1^13,K.1^4+K.1^14,-1*K.1^6,K.1+K.1^11,-1*K.1^21,-1*K.1-K.1^11,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^12,-1*K.1^3,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,2,0,-2*K.1^15,0,0,0,0,-2,0,2*K.1^15,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1-2*K.1^10,1-2*K.1^10,-1,-1+2*K.1^10,-1+2*K.1^10,1,1,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,1,-1*K.1^15,K.1^5+K.1^-5,1,-1*K.1^15,K.1^15,K.1^15,K.1^15,-1,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1^27,-2*K.1^27,-2*K.1^21,-2*K.1^9,2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^21,-2*K.1^9,2*K.1^21,2*K.1^3,2*K.1^21,2*K.1^27,0,0,0,0,0,-2*K.1^3,2*K.1^12,-2*K.1^12,2*K.1^9,-2*K.1^18,0,2*K.1^3,-2*K.1^6,2*K.1^21,0,0,-2*K.1^9,2*K.1^24,-2*K.1^21,0,0,0,0,2*K.1^27,2*K.1^6,0,0,0,0,0,0,2*K.1^18,0,0,-2*K.1^24,0,0,0,-2*K.1^27,0,-2*K.1^2+K.1^12,-1*K.1^12,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1^18,-1*K.1^18,-1*K.1^4-K.1^14,K.1^6,K.1^24,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^4-K.1^14,K.1^4+K.1^14,-1*K.1^6,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^12,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^27,K.1^21,K.1^3-2*K.1^13,K.1^3-2*K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^3+2*K.1^13,K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-1*K.1^3+2*K.1^13,2*K.1^2-K.1^12,K.1+K.1^11,K.1^9,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^21,K.1^3,-1*K.1^3,K.1+K.1^11,-1*K.1^9,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^11,-1*K.1^3,-1*K.1^12,K.1^9,K.1^21,K.1^3-2*K.1^13,-1*K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^21,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^9,-1*K.1^4-K.1^14,K.1^4+K.1^14,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,K.1^6,-1*K.1^27,K.1^21,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-2*K.1^2+K.1^12,K.1^12,K.1^18,-1*K.1^24,K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-1*K.1^6,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^4+K.1^14,-1*K.1^18,K.1^27,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,-2*K.1^15,0,0,2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1,1,-1*K.1^5-K.1^-5,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,K.1^15,-1*K.1^15,-1+2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,2*K.1^18,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^9,-2*K.1^21,2*K.1^9,-2*K.1^27,-2*K.1^21,0,0,0,0,0,2*K.1^21,0,0,0,0,2*K.1^9,0,0,0,0,0,-2*K.1^3,2*K.1^21,0,0,-2*K.1^9,2*K.1^27,0,0,-2*K.1^27,0,0,0,2*K.1^3,0,2*K.1^3,0,-2*K.1^3,0,2*K.1^27,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-1*K.1^6,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,K.1^18,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1^21,-1*K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^6,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^9,-2*K.1^2+K.1^12,-1*K.1^18,K.1^6,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^11,-1*K.1^27,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,2*K.1^2-K.1^12,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^18,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,K.1^4+K.1^14,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,-1*K.1^27,K.1^3-2*K.1^13,K.1^3,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^18,-1*K.1^24,K.1^3,-1*K.1^4-K.1^14,-1*K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,K.1^6,K.1^27,K.1^27,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,K.1^18,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^24,-1*K.1^12,-1*K.1^9,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^9,K.1^27,K.1^3-2*K.1^13,-1*K.1^3,-1*K.1^3+2*K.1^13,-1*K.1^3,K.1^3,K.1+K.1^11,K.1^24,K.1+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,2*K.1^15,0,0,-2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^24,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,1,1,-1*K.1^5-K.1^-5,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,K.1^15,1-2*K.1^10,K.1^15,K.1^5+K.1^-5,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,-2*K.1^12,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^21,2*K.1^9,-2*K.1^21,2*K.1^3,2*K.1^9,0,0,0,0,0,-2*K.1^9,0,0,0,0,-2*K.1^21,0,0,0,0,0,2*K.1^27,-2*K.1^9,0,0,2*K.1^21,-2*K.1^3,0,0,2*K.1^3,0,0,0,-2*K.1^27,0,-2*K.1^27,0,2*K.1^27,0,-2*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,K.1^6,K.1^24,-1*K.1^24,-2*K.1^2+K.1^12,-1*K.1^18,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,K.1^4+K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^2-K.1^12,2*K.1^2-K.1^12,K.1^18,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^11,K.1^24,2*K.1^2-K.1^12,-1*K.1^18,K.1^9,K.1^6,-1*K.1^3+2*K.1^13,K.1^9,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^24,-1*K.1^9,K.1+K.1^11,-1*K.1^9,K.1^21,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1^24,-1*K.1^21,-2*K.1^2+K.1^12,-1*K.1-K.1^11,-1*K.1^21,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-1*K.1^12,-1*K.1^18,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,K.1^3,K.1^3-2*K.1^13,K.1^27,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,K.1^27,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^12,K.1^6,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^18,-1*K.1^3+2*K.1^13,K.1^9,-1*K.1^24,-1*K.1^3,-1*K.1^3,K.1^9,K.1+K.1^11,K.1^21,-1*K.1^12,-1*K.1^3+2*K.1^13,-1*K.1^6,K.1^18,K.1^21,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^27,K.1^3,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,-1*K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^6,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,-2*K.1^15,0,0,2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,1,1,K.1^5+K.1^-5,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,K.1^15,-1*K.1^15,1-2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,2*K.1^18,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^9,-2*K.1^21,2*K.1^9,-2*K.1^27,-2*K.1^21,0,0,0,0,0,2*K.1^21,0,0,0,0,2*K.1^9,0,0,0,0,0,-2*K.1^3,2*K.1^21,0,0,-2*K.1^9,2*K.1^27,0,0,-2*K.1^27,0,0,0,2*K.1^3,0,2*K.1^3,0,-2*K.1^3,0,2*K.1^27,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-1*K.1^6,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,K.1^18,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1^21,-1*K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,K.1^21,K.1^3-2*K.1^13,-1*K.1^6,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^9,2*K.1^2-K.1^12,-1*K.1^18,K.1^6,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-2*K.1^2+K.1^12,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^18,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,K.1^4+K.1^14,-1*K.1^4-K.1^14,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1^3,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^18,-1*K.1^24,K.1^3,K.1^4+K.1^14,-1*K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,K.1^6,K.1^27,K.1^27,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,K.1^18,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^24,-1*K.1^12,-1*K.1^9,K.1^27,K.1^3-2*K.1^13,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^9,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^3,K.1^3-2*K.1^13,-1*K.1^3,K.1^3,-1*K.1-K.1^11,K.1^24,-1*K.1-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,2*K.1^15,0,0,-2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^24,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1,1,K.1^5+K.1^-5,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,K.1^15,-1+2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,-2*K.1^12,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^21,2*K.1^9,-2*K.1^21,2*K.1^3,2*K.1^9,0,0,0,0,0,-2*K.1^9,0,0,0,0,-2*K.1^21,0,0,0,0,0,2*K.1^27,-2*K.1^9,0,0,2*K.1^21,-2*K.1^3,0,0,2*K.1^3,0,0,0,-2*K.1^27,0,-2*K.1^27,0,2*K.1^27,0,-2*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,K.1^4+K.1^14,K.1^6,K.1^24,-1*K.1^24,2*K.1^2-K.1^12,-1*K.1^18,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1^4-K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,K.1^18,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^11,K.1^24,-2*K.1^2+K.1^12,-1*K.1^18,K.1^9,K.1^6,K.1^3-2*K.1^13,K.1^9,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^24,-1*K.1^9,-1*K.1-K.1^11,-1*K.1^9,K.1^21,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1^24,-1*K.1^21,2*K.1^2-K.1^12,K.1+K.1^11,-1*K.1^21,K.1^4+K.1^14,-2*K.1^2+K.1^12,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^12,-1*K.1^18,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,K.1^3,-1*K.1^3+2*K.1^13,K.1^27,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,K.1^27,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^12,K.1^6,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^18,K.1^3-2*K.1^13,K.1^9,-1*K.1^24,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1-K.1^11,K.1^21,-1*K.1^12,K.1^3-2*K.1^13,-1*K.1^6,K.1^18,K.1^21,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^27,K.1^3,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,-1*K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^6,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,-2*K.1^15,0,0,2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^24,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1,1,-1*K.1^5-K.1^-5,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,K.1^15,-1*K.1^15,-1+2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,-2*K.1^12,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^21,-2*K.1^9,2*K.1^21,-2*K.1^3,-2*K.1^9,0,0,0,0,0,2*K.1^9,0,0,0,0,2*K.1^21,0,0,0,0,0,-2*K.1^27,2*K.1^9,0,0,-2*K.1^21,2*K.1^3,0,0,-2*K.1^3,0,0,0,2*K.1^27,0,2*K.1^27,0,-2*K.1^27,0,2*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,K.1^4+K.1^14,K.1^6,K.1^24,-1*K.1^24,2*K.1^2-K.1^12,-1*K.1^18,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1^4-K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,K.1^18,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^11,K.1^24,-2*K.1^2+K.1^12,-1*K.1^18,-1*K.1^9,K.1^6,-1*K.1^3+2*K.1^13,-1*K.1^9,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^24,K.1^9,K.1+K.1^11,K.1^9,-1*K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1^24,K.1^21,2*K.1^2-K.1^12,-1*K.1-K.1^11,K.1^21,K.1^4+K.1^14,-2*K.1^2+K.1^12,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-1*K.1^12,-1*K.1^18,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,-1*K.1^3,K.1^3-2*K.1^13,-1*K.1^27,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,-1*K.1^27,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^12,K.1^6,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^18,-1*K.1^3+2*K.1^13,-1*K.1^9,-1*K.1^24,K.1^3,K.1^3,-1*K.1^9,K.1+K.1^11,-1*K.1^21,-1*K.1^12,-1*K.1^3+2*K.1^13,-1*K.1^6,K.1^18,-1*K.1^21,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^27,-1*K.1^3,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^6,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,2*K.1^15,0,0,-2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,1,1,-1*K.1^5-K.1^-5,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,K.1^15,1-2*K.1^10,K.1^15,K.1^5+K.1^-5,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,2*K.1^18,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^9,2*K.1^21,-2*K.1^9,2*K.1^27,2*K.1^21,0,0,0,0,0,-2*K.1^21,0,0,0,0,-2*K.1^9,0,0,0,0,0,2*K.1^3,-2*K.1^21,0,0,2*K.1^9,-2*K.1^27,0,0,2*K.1^27,0,0,0,-2*K.1^3,0,-2*K.1^3,0,2*K.1^3,0,-2*K.1^27,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-1*K.1^6,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,K.1^18,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,K.1^21,-1*K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-1*K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^6,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^9,2*K.1^2-K.1^12,-1*K.1^18,K.1^6,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^11,K.1^27,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-2*K.1^2+K.1^12,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^18,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,-1*K.1^4-K.1^14,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1^27,K.1^3-2*K.1^13,-1*K.1^3,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^18,-1*K.1^24,-1*K.1^3,K.1^4+K.1^14,-1*K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,K.1^6,-1*K.1^27,-1*K.1^27,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,K.1^18,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^24,-1*K.1^12,K.1^9,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^9,-1*K.1^27,K.1^3-2*K.1^13,K.1^3,-1*K.1^3+2*K.1^13,K.1^3,-1*K.1^3,K.1+K.1^11,K.1^24,K.1+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,-2*K.1^15,0,0,2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^24,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,1,1,K.1^5+K.1^-5,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,K.1^15,-1*K.1^15,1-2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,2*K.1^24,-2*K.1^24,-2*K.1^24,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,-2*K.1^12,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^21,-2*K.1^9,2*K.1^21,-2*K.1^3,-2*K.1^9,0,0,0,0,0,2*K.1^9,0,0,0,0,2*K.1^21,0,0,0,0,0,-2*K.1^27,2*K.1^9,0,0,-2*K.1^21,2*K.1^3,0,0,-2*K.1^3,0,0,0,2*K.1^27,0,2*K.1^27,0,-2*K.1^27,0,2*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,K.1^6,K.1^24,-1*K.1^24,-2*K.1^2+K.1^12,-1*K.1^18,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,K.1^4+K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^2-K.1^12,2*K.1^2-K.1^12,K.1^18,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^11,K.1^24,2*K.1^2-K.1^12,-1*K.1^18,-1*K.1^9,K.1^6,K.1^3-2*K.1^13,-1*K.1^9,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^24,K.1^9,-1*K.1-K.1^11,K.1^9,-1*K.1^21,K.1^3-2*K.1^13,K.1^4+K.1^14,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,-1*K.1^24,K.1^21,-2*K.1^2+K.1^12,K.1+K.1^11,K.1^21,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^12,-1*K.1^18,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,-1*K.1^3,-1*K.1^3+2*K.1^13,-1*K.1^27,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,-1*K.1^27,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^12,K.1^6,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^18,K.1^3-2*K.1^13,-1*K.1^9,-1*K.1^24,K.1^3,K.1^3,-1*K.1^9,-1*K.1-K.1^11,-1*K.1^21,-1*K.1^12,K.1^3-2*K.1^13,-1*K.1^6,K.1^18,-1*K.1^21,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^27,-1*K.1^3,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^6,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,2*K.1^15,0,0,-2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1,1,K.1^5+K.1^-5,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,K.1^15,-1+2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,2*K.1^18,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^18,2*K.1^12,-2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^9,2*K.1^21,-2*K.1^9,2*K.1^27,2*K.1^21,0,0,0,0,0,-2*K.1^21,0,0,0,0,-2*K.1^9,0,0,0,0,0,2*K.1^3,-2*K.1^21,0,0,2*K.1^9,-2*K.1^27,0,0,2*K.1^27,0,0,0,-2*K.1^3,0,-2*K.1^3,0,2*K.1^3,0,-2*K.1^27,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-1*K.1^6,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,K.1^18,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,K.1^21,-1*K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-1*K.1^21,K.1^3-2*K.1^13,-1*K.1^6,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^9,-2*K.1^2+K.1^12,-1*K.1^18,K.1^6,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^11,K.1^27,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,2*K.1^2-K.1^12,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^18,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,K.1^4+K.1^14,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^3,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^18,-1*K.1^24,-1*K.1^3,-1*K.1^4-K.1^14,-1*K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,K.1^6,-1*K.1^27,-1*K.1^27,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,K.1^18,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^24,-1*K.1^12,K.1^9,-1*K.1^27,K.1^3-2*K.1^13,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^9,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1^3,K.1^3-2*K.1^13,K.1^3,-1*K.1^3,-1*K.1-K.1^11,K.1^24,-1*K.1-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,-2*K.1^15,0,0,2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1,1,-1*K.1^5-K.1^-5,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,K.1^15,-1*K.1^15,-1+2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,-2*K.1^24,2*K.1^12,2*K.1^24,-2*K.1^6,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^6,2*K.1^12,2*K.1^27,2*K.1^3,-2*K.1^27,2*K.1^21,2*K.1^3,0,0,0,0,0,-2*K.1^3,0,0,0,0,-2*K.1^27,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,2*K.1^27,-2*K.1^21,0,0,2*K.1^21,0,0,0,-2*K.1^9,0,-2*K.1^9,0,2*K.1^9,0,-2*K.1^21,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1*K.1^18,K.1^18,K.1^4+K.1^14,-1*K.1^6,-1*K.1^24,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,K.1^6,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^18,-1*K.1^4-K.1^14,-1*K.1^6,K.1^3,-1*K.1^12,K.1+K.1^11,K.1^3,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^18,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,K.1^27,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,K.1^18,-1*K.1^27,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^24,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,K.1^3-2*K.1^13,K.1^4+K.1^14,K.1^21,-1*K.1-K.1^11,K.1^9,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^24,-1*K.1^12,-1*K.1^9,-2*K.1^2+K.1^12,K.1^6,K.1+K.1^11,K.1^3,K.1^18,-1*K.1^21,-1*K.1^21,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,-1*K.1^24,K.1+K.1^11,K.1^12,K.1^6,K.1^27,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,K.1^21,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^27,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,-1*K.1^9,-1*K.1^3+2*K.1^13,K.1^12,-1*K.1^3+2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,2*K.1^15,0,0,-2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,1,1,-1*K.1^5-K.1^-5,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,K.1^15,1-2*K.1^10,K.1^15,K.1^5+K.1^-5,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,2*K.1^6,-2*K.1^18,-2*K.1^6,2*K.1^24,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^24,-2*K.1^18,-2*K.1^3,-2*K.1^27,2*K.1^3,-2*K.1^9,-2*K.1^27,0,0,0,0,0,2*K.1^27,0,0,0,0,2*K.1^3,0,0,0,0,0,-2*K.1^21,2*K.1^27,0,0,-2*K.1^3,2*K.1^9,0,0,-2*K.1^9,0,0,0,2*K.1^21,0,2*K.1^21,0,-2*K.1^21,0,2*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,K.1^18,K.1^12,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-1*K.1^6,2*K.1^2-K.1^12,K.1^12,K.1^4+K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^13,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-1*K.1^27,K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,K.1^27,K.1+K.1^11,K.1^12,K.1^27,-1*K.1^3+2*K.1^13,K.1^27,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,K.1^3,K.1^4+K.1^14,-1*K.1^6,-1*K.1^12,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,K.1^3,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,K.1^4+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,K.1^6,K.1^24,2*K.1^2-K.1^12,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-1*K.1^9,-1*K.1-K.1^11,K.1^21,-1*K.1^21,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^6,K.1^18,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^24,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1^12,K.1^9,K.1^9,-1*K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^3,K.1^6,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^18,-1*K.1^24,-1*K.1^3,K.1^9,K.1+K.1^11,-1*K.1^3,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1^21,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,K.1^9,-1*K.1-K.1^11,-1*K.1^21,K.1+K.1^11,-1*K.1^21,K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^18,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,-2*K.1^15,0,0,2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,1,1,K.1^5+K.1^-5,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,K.1^15,-1*K.1^15,1-2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,-2*K.1^24,2*K.1^12,2*K.1^24,-2*K.1^6,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^6,2*K.1^12,2*K.1^27,2*K.1^3,-2*K.1^27,2*K.1^21,2*K.1^3,0,0,0,0,0,-2*K.1^3,0,0,0,0,-2*K.1^27,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,2*K.1^27,-2*K.1^21,0,0,2*K.1^21,0,0,0,-2*K.1^9,0,-2*K.1^9,0,2*K.1^9,0,-2*K.1^21,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-1*K.1^18,K.1^18,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^24,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^4+K.1^14,K.1^4+K.1^14,K.1^6,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^18,K.1^4+K.1^14,-1*K.1^6,K.1^3,-1*K.1^12,-1*K.1-K.1^11,K.1^3,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^18,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^27,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,K.1^18,-1*K.1^27,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^24,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,K.1^21,K.1+K.1^11,K.1^9,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^24,-1*K.1^12,-1*K.1^9,2*K.1^2-K.1^12,K.1^6,-1*K.1-K.1^11,K.1^3,K.1^18,-1*K.1^21,-1*K.1^21,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,-1*K.1^24,-1*K.1-K.1^11,K.1^12,K.1^6,K.1^27,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,K.1^21,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1^27,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,-1*K.1^9,K.1^3-2*K.1^13,K.1^12,K.1^3-2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,2*K.1^15,0,0,-2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1,1,K.1^5+K.1^-5,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,K.1^15,-1+2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,2*K.1^6,-2*K.1^18,-2*K.1^6,2*K.1^24,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^24,-2*K.1^18,-2*K.1^3,-2*K.1^27,2*K.1^3,-2*K.1^9,-2*K.1^27,0,0,0,0,0,2*K.1^27,0,0,0,0,2*K.1^3,0,0,0,0,0,-2*K.1^21,2*K.1^27,0,0,-2*K.1^3,2*K.1^9,0,0,-2*K.1^9,0,0,0,2*K.1^21,0,2*K.1^21,0,-2*K.1^21,0,2*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,2*K.1^2-K.1^12,K.1^18,K.1^12,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,K.1^12,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-2*K.1^13,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-1*K.1^27,K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1^27,-1*K.1-K.1^11,K.1^12,K.1^27,K.1^3-2*K.1^13,K.1^27,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,K.1^3,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^12,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,K.1^3,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,-1*K.1^4-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,K.1^6,K.1^24,-2*K.1^2+K.1^12,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,-1*K.1^9,K.1+K.1^11,K.1^21,-1*K.1^21,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^6,K.1^18,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^24,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-1*K.1^12,K.1^9,K.1^9,-1*K.1^27,K.1^3-2*K.1^13,-1*K.1^3,K.1^6,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^18,-1*K.1^24,-1*K.1^3,K.1^9,-1*K.1-K.1^11,-1*K.1^3,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^3-2*K.1^13,K.1^21,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1^9,K.1+K.1^11,-1*K.1^21,-1*K.1-K.1^11,-1*K.1^21,K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^18,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,-2*K.1^15,0,0,2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1*K.1^5-K.1^-5,1,1,-1*K.1^5-K.1^-5,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,K.1^15,-1*K.1^15,-1+2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,2*K.1^6,-2*K.1^18,-2*K.1^6,2*K.1^24,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^3,2*K.1^27,-2*K.1^3,2*K.1^9,2*K.1^27,0,0,0,0,0,-2*K.1^27,0,0,0,0,-2*K.1^3,0,0,0,0,0,2*K.1^21,-2*K.1^27,0,0,2*K.1^3,-2*K.1^9,0,0,2*K.1^9,0,0,0,-2*K.1^21,0,-2*K.1^21,0,2*K.1^21,0,-2*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,2*K.1^2-K.1^12,K.1^18,K.1^12,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,K.1^12,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^13,K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,K.1^27,K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1^27,K.1+K.1^11,K.1^12,-1*K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,-1*K.1^3,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^12,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,-1*K.1^3,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,K.1^4+K.1^14,-1*K.1^4-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,K.1^6,K.1^24,-2*K.1^2+K.1^12,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,K.1^9,-1*K.1-K.1^11,-1*K.1^21,K.1^21,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^6,K.1^18,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^24,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1^12,-1*K.1^9,-1*K.1^9,K.1^27,-1*K.1^3+2*K.1^13,K.1^3,K.1^6,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^18,-1*K.1^24,K.1^3,-1*K.1^9,K.1+K.1^11,K.1^3,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^21,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1^9,-1*K.1-K.1^11,K.1^21,K.1+K.1^11,K.1^21,-1*K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^18,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,2*K.1^15,0,0,-2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,1,1,-1*K.1^5-K.1^-5,-1,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,K.1^15,1-2*K.1^10,K.1^15,K.1^5+K.1^-5,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,-2*K.1^24,2*K.1^12,2*K.1^24,-2*K.1^6,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^27,-2*K.1^3,2*K.1^27,-2*K.1^21,-2*K.1^3,0,0,0,0,0,2*K.1^3,0,0,0,0,2*K.1^27,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,-2*K.1^27,2*K.1^21,0,0,-2*K.1^21,0,0,0,2*K.1^9,0,2*K.1^9,0,-2*K.1^9,0,2*K.1^21,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-1*K.1^18,K.1^18,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^24,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^4+K.1^14,K.1^4+K.1^14,K.1^6,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^18,K.1^4+K.1^14,-1*K.1^6,-1*K.1^3,-1*K.1^12,K.1+K.1^11,-1*K.1^3,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^18,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^27,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,K.1^18,K.1^27,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^24,-1*K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,-1*K.1^21,-1*K.1-K.1^11,-1*K.1^9,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,K.1^24,-1*K.1^12,K.1^9,2*K.1^2-K.1^12,K.1^6,K.1+K.1^11,-1*K.1^3,K.1^18,K.1^21,K.1^21,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,-1*K.1^24,K.1+K.1^11,K.1^12,K.1^6,-1*K.1^27,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,-1*K.1^21,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1^27,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,K.1^9,-1*K.1^3+2*K.1^13,K.1^12,-1*K.1^3+2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,-2*K.1^15,0,0,2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,K.1^5+K.1^-5,1,1,K.1^5+K.1^-5,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,-1,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,K.1^15,-1*K.1^15,1-2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,2*K.1^12,-2*K.1^12,-2*K.1^12,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,2*K.1^6,-2*K.1^18,-2*K.1^6,2*K.1^24,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^3,2*K.1^27,-2*K.1^3,2*K.1^9,2*K.1^27,0,0,0,0,0,-2*K.1^27,0,0,0,0,-2*K.1^3,0,0,0,0,0,2*K.1^21,-2*K.1^27,0,0,2*K.1^3,-2*K.1^9,0,0,2*K.1^9,0,0,0,-2*K.1^21,0,-2*K.1^21,0,2*K.1^21,0,-2*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,K.1^18,K.1^12,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-1*K.1^6,2*K.1^2-K.1^12,K.1^12,K.1^4+K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-2*K.1^13,K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,K.1^27,K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,-1*K.1^27,-1*K.1-K.1^11,K.1^12,-1*K.1^27,K.1^3-2*K.1^13,-1*K.1^27,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,-1*K.1^3,K.1^4+K.1^14,-1*K.1^6,-1*K.1^12,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^3,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,K.1^4+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,K.1^6,K.1^24,2*K.1^2-K.1^12,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,K.1^9,K.1+K.1^11,-1*K.1^21,K.1^21,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^6,K.1^18,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^24,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,-1*K.1^12,-1*K.1^9,-1*K.1^9,K.1^27,K.1^3-2*K.1^13,K.1^3,K.1^6,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^18,-1*K.1^24,K.1^3,-1*K.1^9,-1*K.1-K.1^11,K.1^3,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1^21,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,-1*K.1^9,K.1+K.1^11,K.1^21,-1*K.1-K.1^11,K.1^21,-1*K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^18,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,-2,-2,2,2,0,2*K.1^15,0,0,-2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,K.1^5+K.1^-5,1,1,K.1^5+K.1^-5,-1,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,-1,K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,K.1^15,-1+2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,-2*K.1^18,2*K.1^18,2*K.1^18,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,-2*K.1^24,2*K.1^12,2*K.1^24,-2*K.1^6,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^27,-2*K.1^3,2*K.1^27,-2*K.1^21,-2*K.1^3,0,0,0,0,0,2*K.1^3,0,0,0,0,2*K.1^27,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,-2*K.1^27,2*K.1^21,0,0,-2*K.1^21,0,0,0,2*K.1^9,0,2*K.1^9,0,-2*K.1^9,0,2*K.1^21,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1*K.1^18,K.1^18,K.1^4+K.1^14,-1*K.1^6,-1*K.1^24,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,K.1^6,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^18,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^3,-1*K.1^12,-1*K.1-K.1^11,-1*K.1^3,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^18,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,-1*K.1^27,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,K.1^18,K.1^27,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^24,-1*K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,-1*K.1^21,K.1+K.1^11,-1*K.1^9,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^24,-1*K.1^12,K.1^9,-2*K.1^2+K.1^12,K.1^6,-1*K.1-K.1^11,-1*K.1^3,K.1^18,K.1^21,K.1^21,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,-1*K.1^24,-1*K.1-K.1^11,K.1^12,K.1^6,-1*K.1^27,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,-1*K.1^21,K.1+K.1^11,K.1^3-2*K.1^13,K.1^27,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,K.1^9,K.1^3-2*K.1^13,K.1^12,K.1^3-2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,-2*K.1^15,0,0,2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,K.1^5+K.1^-5,-1,-1,-1*K.1^5-K.1^-5,1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,1,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^18,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^9,-2*K.1^21,-2*K.1^9,2*K.1^27,2*K.1^21,0,0,0,0,0,-2*K.1^21,0,0,0,0,2*K.1^9,0,0,0,0,0,-2*K.1^3,2*K.1^21,0,0,-2*K.1^9,2*K.1^27,0,0,-2*K.1^27,0,0,0,-2*K.1^3,0,2*K.1^3,0,2*K.1^3,0,-2*K.1^27,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-1*K.1^6,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,K.1^18,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,K.1^21,K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,K.1^21,-1*K.1^3+2*K.1^13,K.1^6,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^9,2*K.1^2-K.1^12,K.1^18,-1*K.1^6,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^11,-1*K.1^27,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-2*K.1^2+K.1^12,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^18,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,K.1^4+K.1^14,-1*K.1^4-K.1^14,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1^27,K.1^3-2*K.1^13,-1*K.1^3,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,K.1^18,K.1^24,K.1^3,K.1^4+K.1^14,K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-1*K.1^6,K.1^27,K.1^27,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,-1*K.1^18,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^24,K.1^12,K.1^9,-1*K.1^27,K.1^3-2*K.1^13,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^9,-1*K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^3,-1*K.1^3+2*K.1^13,-1*K.1^3,-1*K.1^3,-1*K.1-K.1^11,-1*K.1^24,-1*K.1-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,2*K.1^15,0,0,-2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^24,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^5+K.1^-5,-1,-1,-1*K.1^5-K.1^-5,1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,1,K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^24,2*K.1^24,2*K.1^24,-2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^12,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^21,2*K.1^9,2*K.1^21,-2*K.1^3,-2*K.1^9,0,0,0,0,0,2*K.1^9,0,0,0,0,-2*K.1^21,0,0,0,0,0,2*K.1^27,-2*K.1^9,0,0,2*K.1^21,-2*K.1^3,0,0,2*K.1^3,0,0,0,2*K.1^27,0,-2*K.1^27,0,-2*K.1^27,0,2*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,K.1^6,K.1^24,-1*K.1^24,-2*K.1^2+K.1^12,-1*K.1^18,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,K.1^4+K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^2-K.1^12,2*K.1^2-K.1^12,K.1^18,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^11,-1*K.1^24,-2*K.1^2+K.1^12,K.1^18,-1*K.1^9,-1*K.1^6,-1*K.1^3+2*K.1^13,K.1^9,-1*K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^24,-1*K.1^9,K.1+K.1^11,K.1^9,K.1^21,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,K.1^24,-1*K.1^21,2*K.1^2-K.1^12,-1*K.1-K.1^11,K.1^21,K.1^4+K.1^14,-2*K.1^2+K.1^12,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,K.1^12,K.1^18,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,-1*K.1^3,K.1^3-2*K.1^13,-1*K.1^27,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,-1*K.1^27,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^12,-1*K.1^6,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^18,K.1^3-2*K.1^13,-1*K.1^9,K.1^24,-1*K.1^3,-1*K.1^3,K.1^9,K.1+K.1^11,K.1^21,K.1^12,K.1^3-2*K.1^13,K.1^6,-1*K.1^18,-1*K.1^21,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^27,K.1^3,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^6,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,-2*K.1^15,0,0,2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^5-K.1^-5,-1,-1,K.1^5+K.1^-5,1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,1,-1*K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^18,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^9,-2*K.1^21,-2*K.1^9,2*K.1^27,2*K.1^21,0,0,0,0,0,-2*K.1^21,0,0,0,0,2*K.1^9,0,0,0,0,0,-2*K.1^3,2*K.1^21,0,0,-2*K.1^9,2*K.1^27,0,0,-2*K.1^27,0,0,0,-2*K.1^3,0,2*K.1^3,0,2*K.1^3,0,-2*K.1^27,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-1*K.1^6,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,K.1^18,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,K.1^21,K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,K.1^21,K.1^3-2*K.1^13,K.1^6,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^9,-2*K.1^2+K.1^12,K.1^18,-1*K.1^6,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^27,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,2*K.1^2-K.1^12,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^18,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,K.1^4+K.1^14,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^3,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1^18,K.1^24,K.1^3,-1*K.1^4-K.1^14,K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-1*K.1^6,K.1^27,K.1^27,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,-1*K.1^18,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^24,K.1^12,K.1^9,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^9,-1*K.1^27,K.1^3-2*K.1^13,-1*K.1^3,K.1^3-2*K.1^13,-1*K.1^3,-1*K.1^3,K.1+K.1^11,-1*K.1^24,K.1+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,2*K.1^15,0,0,-2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^24,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1,-1,K.1^5+K.1^-5,1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,1,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^24,2*K.1^24,2*K.1^24,-2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^12,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^21,2*K.1^9,2*K.1^21,-2*K.1^3,-2*K.1^9,0,0,0,0,0,2*K.1^9,0,0,0,0,-2*K.1^21,0,0,0,0,0,2*K.1^27,-2*K.1^9,0,0,2*K.1^21,-2*K.1^3,0,0,2*K.1^3,0,0,0,2*K.1^27,0,-2*K.1^27,0,-2*K.1^27,0,2*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,K.1^4+K.1^14,K.1^6,K.1^24,-1*K.1^24,2*K.1^2-K.1^12,-1*K.1^18,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1^4-K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,K.1^18,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^11,-1*K.1^24,2*K.1^2-K.1^12,K.1^18,-1*K.1^9,-1*K.1^6,K.1^3-2*K.1^13,K.1^9,-1*K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^24,-1*K.1^9,-1*K.1-K.1^11,K.1^9,K.1^21,K.1^3-2*K.1^13,K.1^4+K.1^14,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,K.1^24,-1*K.1^21,-2*K.1^2+K.1^12,K.1+K.1^11,K.1^21,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1^12,K.1^18,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,-1*K.1^3,-1*K.1^3+2*K.1^13,-1*K.1^27,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,-1*K.1^27,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^12,-1*K.1^6,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^18,-1*K.1^3+2*K.1^13,-1*K.1^9,K.1^24,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1-K.1^11,K.1^21,K.1^12,-1*K.1^3+2*K.1^13,K.1^6,-1*K.1^18,-1*K.1^21,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^27,K.1^3,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^6,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,-2*K.1^15,0,0,2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^24,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,K.1^5+K.1^-5,-1,-1,-1*K.1^5-K.1^-5,1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,1,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^24,2*K.1^24,2*K.1^24,-2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^12,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^18,2*K.1^6,2*K.1^21,-2*K.1^9,-2*K.1^21,2*K.1^3,2*K.1^9,0,0,0,0,0,-2*K.1^9,0,0,0,0,2*K.1^21,0,0,0,0,0,-2*K.1^27,2*K.1^9,0,0,-2*K.1^21,2*K.1^3,0,0,-2*K.1^3,0,0,0,-2*K.1^27,0,2*K.1^27,0,2*K.1^27,0,-2*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,K.1^4+K.1^14,K.1^6,K.1^24,-1*K.1^24,2*K.1^2-K.1^12,-1*K.1^18,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1*K.1^4-K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1^2+K.1^12,-2*K.1^2+K.1^12,K.1^18,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^11,-1*K.1^24,2*K.1^2-K.1^12,K.1^18,K.1^9,-1*K.1^6,-1*K.1^3+2*K.1^13,-1*K.1^9,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^24,K.1^9,K.1+K.1^11,-1*K.1^9,-1*K.1^21,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,K.1^24,K.1^21,-2*K.1^2+K.1^12,-1*K.1-K.1^11,-1*K.1^21,-1*K.1^4-K.1^14,2*K.1^2-K.1^12,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,K.1^12,K.1^18,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,K.1^3,K.1^3-2*K.1^13,K.1^27,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,K.1^27,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^12,-1*K.1^6,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^18,K.1^3-2*K.1^13,K.1^9,K.1^24,K.1^3,K.1^3,-1*K.1^9,K.1+K.1^11,-1*K.1^21,K.1^12,K.1^3-2*K.1^13,K.1^6,-1*K.1^18,K.1^21,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^27,-1*K.1^3,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,-1*K.1^27,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^6,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,2*K.1^15,0,0,-2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^5+K.1^-5,-1,-1,-1*K.1^5-K.1^-5,1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,1,K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^18,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^12,-2*K.1^24,-2*K.1^9,2*K.1^21,2*K.1^9,-2*K.1^27,-2*K.1^21,0,0,0,0,0,2*K.1^21,0,0,0,0,-2*K.1^9,0,0,0,0,0,2*K.1^3,-2*K.1^21,0,0,2*K.1^9,-2*K.1^27,0,0,2*K.1^27,0,0,0,2*K.1^3,0,-2*K.1^3,0,-2*K.1^3,0,2*K.1^27,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-1*K.1^6,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,K.1^18,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-1*K.1^21,K.1^24,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-1*K.1^21,-1*K.1^3+2*K.1^13,K.1^6,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,K.1^9,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^9,-2*K.1^2+K.1^12,K.1^18,-1*K.1^6,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^11,K.1^27,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,2*K.1^2-K.1^12,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^18,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,K.1^4+K.1^14,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,-1*K.1^27,K.1^3-2*K.1^13,K.1^3,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,K.1^18,K.1^24,-1*K.1^3,-1*K.1^4-K.1^14,K.1^12,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^21,-1*K.1^6,-1*K.1^27,-1*K.1^27,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,-1*K.1^18,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^24,K.1^12,-1*K.1^9,K.1^27,K.1^3-2*K.1^13,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^9,K.1^27,-1*K.1^3+2*K.1^13,K.1^3,-1*K.1^3+2*K.1^13,K.1^3,K.1^3,-1*K.1-K.1^11,-1*K.1^24,-1*K.1-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,-2*K.1^15,0,0,2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,2*K.1^24,-2*K.1^18,2*K.1^12,-2*K.1^6,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^24,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^5-K.1^-5,-1,-1,K.1^5+K.1^-5,1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,1,-1*K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^24,2*K.1^24,2*K.1^24,-2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^12,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^18,2*K.1^6,2*K.1^21,-2*K.1^9,-2*K.1^21,2*K.1^3,2*K.1^9,0,0,0,0,0,-2*K.1^9,0,0,0,0,2*K.1^21,0,0,0,0,0,-2*K.1^27,2*K.1^9,0,0,-2*K.1^21,2*K.1^3,0,0,-2*K.1^3,0,0,0,-2*K.1^27,0,2*K.1^27,0,2*K.1^27,0,-2*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^4-K.1^14,K.1^6,K.1^24,-1*K.1^24,-2*K.1^2+K.1^12,-1*K.1^18,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,K.1^4+K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^2-K.1^12,2*K.1^2-K.1^12,K.1^18,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^11,-1*K.1^24,-2*K.1^2+K.1^12,K.1^18,K.1^9,-1*K.1^6,K.1^3-2*K.1^13,-1*K.1^9,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^24,K.1^9,-1*K.1-K.1^11,-1*K.1^9,-1*K.1^21,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,K.1^24,K.1^21,2*K.1^2-K.1^12,K.1+K.1^11,-1*K.1^21,K.1^4+K.1^14,-2*K.1^2+K.1^12,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1^12,K.1^18,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,K.1^3,-1*K.1^3+2*K.1^13,K.1^27,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,K.1^27,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^12,-1*K.1^6,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^18,-1*K.1^3+2*K.1^13,K.1^9,K.1^24,K.1^3,K.1^3,-1*K.1^9,-1*K.1-K.1^11,-1*K.1^21,K.1^12,-1*K.1^3+2*K.1^13,K.1^6,-1*K.1^18,K.1^21,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^21,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^27,-1*K.1^3,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,-1*K.1^27,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^6,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,2*K.1^15,0,0,-2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^24,-2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1,-1,K.1^5+K.1^-5,1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,1,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^18,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^12,-2*K.1^24,-2*K.1^9,2*K.1^21,2*K.1^9,-2*K.1^27,-2*K.1^21,0,0,0,0,0,2*K.1^21,0,0,0,0,-2*K.1^9,0,0,0,0,0,2*K.1^3,-2*K.1^21,0,0,2*K.1^9,-2*K.1^27,0,0,2*K.1^27,0,0,0,2*K.1^3,0,-2*K.1^3,0,-2*K.1^3,0,2*K.1^27,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-1*K.1^6,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,K.1^18,K.1^4+K.1^14,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1*K.1^21,K.1^24,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-1*K.1^21,K.1^3-2*K.1^13,K.1^6,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,K.1^9,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^9,2*K.1^2-K.1^12,K.1^18,-1*K.1^6,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^11,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^21,-2*K.1^2+K.1^12,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^18,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,-1*K.1^4-K.1^14,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1^3,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,K.1^18,K.1^24,-1*K.1^3,K.1^4+K.1^14,K.1^12,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^21,-1*K.1^6,-1*K.1^27,-1*K.1^27,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,-1*K.1^18,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^24,K.1^12,-1*K.1^9,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^9,K.1^27,K.1^3-2*K.1^13,K.1^3,K.1^3-2*K.1^13,K.1^3,K.1^3,K.1+K.1^11,-1*K.1^24,K.1+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,-2*K.1^15,0,0,2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,K.1^5+K.1^-5,-1,-1,-1*K.1^5-K.1^-5,1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,1,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^18,-2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^24,2*K.1^6,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^27,2*K.1^3,2*K.1^27,-2*K.1^21,-2*K.1^3,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^27,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,2*K.1^27,-2*K.1^21,0,0,2*K.1^21,0,0,0,2*K.1^9,0,-2*K.1^9,0,-2*K.1^9,0,2*K.1^21,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1*K.1^18,K.1^18,K.1^4+K.1^14,-1*K.1^6,-1*K.1^24,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,K.1^6,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^18,K.1^4+K.1^14,K.1^6,-1*K.1^3,K.1^12,K.1+K.1^11,K.1^3,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^18,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,K.1^27,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-1*K.1^18,-1*K.1^27,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^24,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,-1*K.1^21,-1*K.1-K.1^11,-1*K.1^9,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,-1*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^24,K.1^12,-1*K.1^9,2*K.1^2-K.1^12,-1*K.1^6,-1*K.1-K.1^11,-1*K.1^3,-1*K.1^18,-1*K.1^21,-1*K.1^21,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,K.1^24,-1*K.1-K.1^11,-1*K.1^12,-1*K.1^6,-1*K.1^27,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,K.1^21,K.1+K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^27,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,K.1^9,K.1^3-2*K.1^13,-1*K.1^12,K.1^3-2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,2*K.1^15,0,0,-2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^5+K.1^-5,-1,-1,-1*K.1^5-K.1^-5,1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,1,K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^6,2*K.1^18,2*K.1^6,-2*K.1^24,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^3,-2*K.1^27,-2*K.1^3,2*K.1^9,2*K.1^27,0,0,0,0,0,-2*K.1^27,0,0,0,0,2*K.1^3,0,0,0,0,0,-2*K.1^21,2*K.1^27,0,0,-2*K.1^3,2*K.1^9,0,0,-2*K.1^9,0,0,0,-2*K.1^21,0,2*K.1^21,0,2*K.1^21,0,-2*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,K.1^18,K.1^12,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-1*K.1^6,2*K.1^2-K.1^12,K.1^12,K.1^4+K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-2*K.1^13,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,K.1^27,-1*K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,K.1^27,K.1+K.1^11,-1*K.1^12,K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^27,-1*K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,-1*K.1^3,-1*K.1^4-K.1^14,K.1^6,K.1^12,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,-1*K.1^3,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,K.1^4+K.1^14,-1*K.1^4-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^6,-1*K.1^24,-2*K.1^2+K.1^12,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^21,K.1^9,-1*K.1-K.1^11,-1*K.1^21,K.1^21,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^6,-1*K.1^18,K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^24,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1^12,K.1^9,K.1^9,-1*K.1^27,-1*K.1^3+2*K.1^13,-1*K.1^3,-1*K.1^6,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^18,K.1^24,K.1^3,-1*K.1^9,-1*K.1-K.1^11,K.1^3,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^3-2*K.1^13,K.1^21,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3,-1*K.1^9,K.1+K.1^11,-1*K.1^21,K.1+K.1^11,-1*K.1^21,-1*K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^18,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,-2*K.1^15,0,0,2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^5-K.1^-5,-1,-1,K.1^5+K.1^-5,1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,1,-1*K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^18,-2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^24,2*K.1^6,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^27,2*K.1^3,2*K.1^27,-2*K.1^21,-2*K.1^3,0,0,0,0,0,2*K.1^3,0,0,0,0,-2*K.1^27,0,0,0,0,0,2*K.1^9,-2*K.1^3,0,0,2*K.1^27,-2*K.1^21,0,0,2*K.1^21,0,0,0,2*K.1^9,0,-2*K.1^9,0,-2*K.1^9,0,2*K.1^21,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-1*K.1^18,K.1^18,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^24,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^4+K.1^14,K.1^4+K.1^14,K.1^6,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^18,-1*K.1^4-K.1^14,K.1^6,-1*K.1^3,K.1^12,-1*K.1-K.1^11,K.1^3,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^18,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,K.1^27,-1*K.1-K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-1*K.1^18,-1*K.1^27,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^24,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,K.1^3-2*K.1^13,K.1^4+K.1^14,-1*K.1^21,K.1+K.1^11,-1*K.1^9,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^9,-1*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^24,K.1^12,-1*K.1^9,-2*K.1^2+K.1^12,-1*K.1^6,K.1+K.1^11,-1*K.1^3,-1*K.1^18,-1*K.1^21,-1*K.1^21,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^27,K.1^24,K.1+K.1^11,-1*K.1^12,-1*K.1^6,-1*K.1^27,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^9,K.1^21,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1^27,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^9,K.1^9,-1*K.1^3+2*K.1^13,-1*K.1^12,-1*K.1^3+2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,2*K.1^15,0,0,-2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1,-1,K.1^5+K.1^-5,1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,1,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^6,2*K.1^18,2*K.1^6,-2*K.1^24,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^3,-2*K.1^27,-2*K.1^3,2*K.1^9,2*K.1^27,0,0,0,0,0,-2*K.1^27,0,0,0,0,2*K.1^3,0,0,0,0,0,-2*K.1^21,2*K.1^27,0,0,-2*K.1^3,2*K.1^9,0,0,-2*K.1^9,0,0,0,-2*K.1^21,0,2*K.1^21,0,2*K.1^21,0,-2*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,2*K.1^2-K.1^12,K.1^18,K.1^12,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,K.1^12,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^13,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,K.1^27,-1*K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1^27,-1*K.1-K.1^11,-1*K.1^12,K.1^27,K.1^3-2*K.1^13,-1*K.1^27,-1*K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1^2-K.1^12,-1*K.1^3,K.1^4+K.1^14,K.1^6,K.1^12,K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^3,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1^4-K.1^14,K.1^4+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^9,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,-1*K.1^6,-1*K.1^24,2*K.1^2-K.1^12,K.1+K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^21,K.1^9,K.1+K.1^11,-1*K.1^21,K.1^21,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^6,-1*K.1^18,K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^24,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,K.1^12,K.1^9,K.1^9,-1*K.1^27,K.1^3-2*K.1^13,-1*K.1^3,-1*K.1^6,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^18,K.1^24,K.1^3,-1*K.1^9,K.1+K.1^11,K.1^3,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1^21,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3,-1*K.1^9,-1*K.1-K.1^11,-1*K.1^21,-1*K.1-K.1^11,-1*K.1^21,-1*K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^18,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,-2*K.1^15,0,0,2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^15,K.1^5+K.1^-5,-1,-1,-1*K.1^5-K.1^-5,1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^15,1,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5+K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,-1*K.1^15,K.1^15,1-2*K.1^10,-1*K.1^15,K.1^5+K.1^-5,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^6,2*K.1^18,2*K.1^6,-2*K.1^24,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^3,2*K.1^27,2*K.1^3,-2*K.1^9,-2*K.1^27,0,0,0,0,0,2*K.1^27,0,0,0,0,-2*K.1^3,0,0,0,0,0,2*K.1^21,-2*K.1^27,0,0,2*K.1^3,-2*K.1^9,0,0,2*K.1^9,0,0,0,2*K.1^21,0,-2*K.1^21,0,-2*K.1^21,0,2*K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^18,2*K.1^2-K.1^12,K.1^18,K.1^12,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^4+K.1^14,K.1^24,-1*K.1^4-K.1^14,-1*K.1^6,-2*K.1^2+K.1^12,K.1^12,-1*K.1^4-K.1^14,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^4+K.1^14,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-2*K.1^13,-1*K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-1*K.1^27,-1*K.1^18,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1^27,K.1+K.1^11,-1*K.1^12,-1*K.1^27,-1*K.1^3+2*K.1^13,K.1^27,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,K.1^3,K.1^4+K.1^14,K.1^6,K.1^12,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^3-2*K.1^13,K.1^3,-2*K.1^2+K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,K.1^4+K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^6,-1*K.1^24,2*K.1^2-K.1^12,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^21,-1*K.1^9,-1*K.1-K.1^11,K.1^21,-1*K.1^21,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^6,-1*K.1^18,-1*K.1^21,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^24,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^27,K.1^12,-1*K.1^9,-1*K.1^9,K.1^27,-1*K.1^3+2*K.1^13,K.1^3,-1*K.1^6,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^18,K.1^24,-1*K.1^3,K.1^9,-1*K.1-K.1^11,-1*K.1^3,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1^21,K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,K.1^9,K.1+K.1^11,K.1^21,K.1+K.1^11,K.1^21,K.1^21,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^18,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,2*K.1^15,0,0,-2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,K.1^5+K.1^-5,-1,-1,-1*K.1^5-K.1^-5,1,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^15,1,K.1^15,K.1^15,-1*K.1^15,K.1^5+K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,K.1^15,-1*K.1^15,-1+2*K.1^10,K.1^15,K.1^5+K.1^-5,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^18,-2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^24,2*K.1^6,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^27,-2*K.1^3,-2*K.1^27,2*K.1^21,2*K.1^3,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^27,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,-2*K.1^27,2*K.1^21,0,0,-2*K.1^21,0,0,0,-2*K.1^9,0,2*K.1^9,0,2*K.1^9,0,-2*K.1^21,2*K.1^2-K.1^12,K.1^12,-2*K.1^2+K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^12,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^12,-1*K.1^18,K.1^18,-1*K.1^4-K.1^14,-1*K.1^6,-1*K.1^24,-2*K.1^2+K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^6,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,K.1^4+K.1^14,K.1^4+K.1^14,K.1^6,-1*K.1^4-K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^18,-1*K.1^4-K.1^14,K.1^6,K.1^3,K.1^12,K.1+K.1^11,-1*K.1^3,K.1^3,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^18,K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3,-1*K.1^27,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^27,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-1*K.1^18,K.1^27,K.1^4+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^4-K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^24,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,2*K.1^2-K.1^12,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,K.1^21,-1*K.1-K.1^11,K.1^9,K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,2*K.1^2-K.1^12,-1*K.1^24,K.1^12,K.1^9,-2*K.1^2+K.1^12,-1*K.1^6,-1*K.1-K.1^11,K.1^3,-1*K.1^18,K.1^21,K.1^21,-1*K.1^3,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,K.1^24,-1*K.1-K.1^11,-1*K.1^12,-1*K.1^6,K.1^27,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,-1*K.1^21,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1^27,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,-1*K.1^9,K.1^3-2*K.1^13,-1*K.1^12,K.1^3-2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,-2*K.1^15,0,0,2*K.1^15,-2*K.1^15,0,0,2*K.1^15,0,2*K.1^12,2*K.1^24,-2*K.1^6,-2*K.1^18,-1+2*K.1^10,1-2*K.1^10,1,-1+2*K.1^10,1-2*K.1^10,1,-1,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^18,-2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^15,-1*K.1^5-K.1^-5,-1,-1,K.1^5+K.1^-5,1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^15,1,-1*K.1^15,-1*K.1^15,K.1^15,-1*K.1^5-K.1^-5,-1+2*K.1^10,1-2*K.1^10,1-2*K.1^10,-1*K.1^15,K.1^15,-1+2*K.1^10,-1*K.1^15,-1*K.1^5-K.1^-5,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^12,2*K.1^12,2*K.1^12,-2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^6,2*K.1^18,2*K.1^6,-2*K.1^24,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^3,2*K.1^27,2*K.1^3,-2*K.1^9,-2*K.1^27,0,0,0,0,0,2*K.1^27,0,0,0,0,-2*K.1^3,0,0,0,0,0,2*K.1^21,-2*K.1^27,0,0,2*K.1^3,-2*K.1^9,0,0,2*K.1^9,0,0,0,2*K.1^21,0,-2*K.1^21,0,-2*K.1^21,0,2*K.1^9,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^18,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^18,-2*K.1^2+K.1^12,K.1^18,K.1^12,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,K.1^6,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^4-K.1^14,K.1^24,K.1^4+K.1^14,-1*K.1^6,2*K.1^2-K.1^12,K.1^12,K.1^4+K.1^14,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^4-K.1^14,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^13,-1*K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^24,-1*K.1^27,-1*K.1^18,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,-1*K.1^27,-1*K.1-K.1^11,-1*K.1^12,-1*K.1^27,K.1^3-2*K.1^13,K.1^27,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1^2+K.1^12,K.1^3,-1*K.1^4-K.1^14,K.1^6,K.1^12,-1*K.1^3,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^3+2*K.1^13,K.1^3,2*K.1^2-K.1^12,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,K.1^4+K.1^14,-1*K.1^4-K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^9,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^27,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,-1*K.1^6,-1*K.1^24,-2*K.1^2+K.1^12,K.1+K.1^11,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^9,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^21,-1*K.1^9,K.1+K.1^11,K.1^21,-1*K.1^21,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^6,-1*K.1^18,-1*K.1^21,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^24,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^27,K.1^12,-1*K.1^9,-1*K.1^9,K.1^27,K.1^3-2*K.1^13,K.1^3,-1*K.1^6,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^18,K.1^24,-1*K.1^3,K.1^9,K.1+K.1^11,-1*K.1^3,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^21,K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,K.1^9,-1*K.1-K.1^11,K.1^21,-1*K.1-K.1^11,K.1^21,K.1^21,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^18,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,0,0,-1,2,2,-2,-2,0,2*K.1^15,0,0,-2*K.1^15,2*K.1^15,0,0,-2*K.1^15,0,-2*K.1^18,-2*K.1^6,2*K.1^24,2*K.1^12,1-2*K.1^10,-1+2*K.1^10,1,1-2*K.1^10,-1+2*K.1^10,1,-1,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^12,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^15,-1*K.1^5-K.1^-5,-1,-1,K.1^5+K.1^-5,1,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^15,1,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5-K.1^-5,1-2*K.1^10,-1+2*K.1^10,-1+2*K.1^10,K.1^15,-1*K.1^15,1-2*K.1^10,K.1^15,-1*K.1^5-K.1^-5,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^18,-2*K.1^18,-2*K.1^18,2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^24,-2*K.1^12,-2*K.1^24,2*K.1^6,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^27,-2*K.1^3,-2*K.1^27,2*K.1^21,2*K.1^3,0,0,0,0,0,-2*K.1^3,0,0,0,0,2*K.1^27,0,0,0,0,0,-2*K.1^9,2*K.1^3,0,0,-2*K.1^27,2*K.1^21,0,0,-2*K.1^21,0,0,0,-2*K.1^9,0,2*K.1^9,0,2*K.1^9,0,-2*K.1^21,-2*K.1^2+K.1^12,K.1^12,2*K.1^2-K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,K.1^12,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^12,-1*K.1^18,K.1^18,K.1^4+K.1^14,-1*K.1^6,-1*K.1^24,2*K.1^2-K.1^12,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^6,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,K.1^24,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-1*K.1^18,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^4-K.1^14,-1*K.1^4-K.1^14,K.1^6,K.1^4+K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^18,K.1^4+K.1^14,K.1^6,K.1^3,K.1^12,-1*K.1-K.1^11,-1*K.1^3,K.1^3,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^18,K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3,-1*K.1^27,-1*K.1-K.1^11,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-1*K.1^27,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-1*K.1^24,-1*K.1^18,K.1^27,-1*K.1^4-K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^27,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,K.1^4+K.1^14,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,-1*K.1^3,2+2*K.1^2-K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^24,K.1^6,1-K.1^4-K.1^6-2*K.1^8+K.1^12+K.1^14,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1^2-K.1^12,-2*K.1^2+K.1^12,K.1^3-2*K.1^13,-1*K.1^4-K.1^14,K.1^21,K.1+K.1^11,K.1^9,K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^9,K.1^9,-1+K.1^4+K.1^6+2*K.1^8-K.1^12-K.1^14,-2*K.1^2+K.1^12,-1*K.1^24,K.1^12,K.1^9,2*K.1^2-K.1^12,-1*K.1^6,K.1+K.1^11,K.1^3,-1*K.1^18,K.1^21,K.1^21,-1*K.1^3,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^27,K.1^24,K.1+K.1^11,-1*K.1^12,-1*K.1^6,K.1^27,-1*K.1^21,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^27,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^9,-1*K.1^21,-1*K.1-K.1^11,K.1^3-2*K.1^13,K.1^27,-1*K.1^21,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^9,-1*K.1^9,-1*K.1^3+2*K.1^13,-1*K.1^12,-1*K.1^3+2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_960_4620:= KnownIrreducibles(CR);