/* Group 960.377 downloaded from the LMFDB on 15 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -2, -2, -2, -3, -5, 11553, 41, 66, 7044, 9932, 116, 16901, 141, 39430, 222]); a,b,c := Explode([GPC.1, GPC.2, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "b4", "c", "c2", "c4", "c12"]); GPerm := PermutationGroup< 24 | (2,5)(4,7)(6,8)(10,11), (1,2,3,6)(4,8,7,5)(12,13,14,16,15,17,18,19), (20,21,22,23,24), (1,3)(2,6)(4,7)(5,8)(12,14,15,18)(13,16,17,19), (1,4,3,7)(2,5,6,8), (12,15)(13,17)(14,18)(16,19), (1,3)(2,6)(4,7)(5,8), (9,10,11) >; GLZN := MatrixGroup< 2, Integers(55) | [[32, 0, 0, 32], [23, 0, 0, 23], [16, 0, 0, 16], [12, 11, 33, 12], [0, 8, 4, 0], [34, 0, 0, 34], [21, 35, 10, 1], [11, 36, 37, 14]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_960_377 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b^4>,< 2, 1, b^4*c^30>,< 2, 1, c^30>,< 2, 12, a>,< 2, 12, a*b^4>,< 3, 2, c^40>,< 4, 1, b^6*c^30>,< 4, 1, b^2*c^30>,< 4, 1, b^6>,< 4, 1, b^2>,< 4, 2, c^15>,< 4, 2, b^4*c^15>,< 4, 2, b^2*c^15>,< 4, 2, b^6*c^45>,< 4, 12, a*b^2>,< 4, 12, a*b^6>,< 5, 1, c^24>,< 5, 1, c^36>,< 5, 1, c^48>,< 5, 1, c^12>,< 6, 2, b^4*c^20>,< 6, 2, c^10>,< 6, 2, b^4*c^10>,< 8, 4, b^7>,< 8, 4, b>,< 8, 4, b^5>,< 8, 4, b^3>,< 8, 6, a*b^5*c^30>,< 8, 6, a*b^3*c^15>,< 8, 6, a*b^7*c^45>,< 8, 6, a*b>,< 8, 6, a*b^5*c^20>,< 8, 6, a*b^3*c^5>,< 8, 6, a*b^7*c^35>,< 8, 6, a*b*c^50>,< 10, 1, b^4*c^24>,< 10, 1, b^4*c^36>,< 10, 1, b^4*c^12>,< 10, 1, b^4*c^48>,< 10, 1, b^4*c^18>,< 10, 1, b^4*c^42>,< 10, 1, b^4*c^54>,< 10, 1, b^4*c^6>,< 10, 1, c^6>,< 10, 1, c^54>,< 10, 1, c^18>,< 10, 1, c^42>,< 10, 12, a*c^12>,< 10, 12, a*c^8>,< 10, 12, a*c>,< 10, 12, a*c^4>,< 10, 12, a*b^4*c^12>,< 10, 12, a*b^4*c^8>,< 10, 12, a*b^4*c>,< 10, 12, a*b^4*c^4>,< 12, 2, b^2*c^10>,< 12, 2, b^6*c^50>,< 12, 2, b^2*c^40>,< 12, 2, b^6*c^20>,< 12, 4, c^5>,< 12, 4, b^4*c^5>,< 12, 4, b^2*c^5>,< 12, 4, b^6*c^55>,< 15, 2, c^8>,< 15, 2, c^52>,< 15, 2, c^16>,< 15, 2, c^44>,< 20, 1, b^6*c^6>,< 20, 1, b^2*c^54>,< 20, 1, b^2*c^18>,< 20, 1, b^6*c^42>,< 20, 1, b^2*c^42>,< 20, 1, b^6*c^18>,< 20, 1, b^6*c^54>,< 20, 1, b^2*c^6>,< 20, 1, b^6*c^24>,< 20, 1, b^2*c^36>,< 20, 1, b^2*c^12>,< 20, 1, b^6*c^48>,< 20, 1, b^2*c^48>,< 20, 1, b^6*c^12>,< 20, 1, b^6*c^36>,< 20, 1, b^2*c^24>,< 20, 2, c^3>,< 20, 2, c^57>,< 20, 2, c^9>,< 20, 2, c^51>,< 20, 2, b^4*c^3>,< 20, 2, b^4*c^57>,< 20, 2, b^4*c^9>,< 20, 2, b^4*c^51>,< 20, 2, b^2*c^39>,< 20, 2, b^6*c^21>,< 20, 2, b^6*c^57>,< 20, 2, b^2*c^3>,< 20, 2, b^6*c^33>,< 20, 2, b^2*c^27>,< 20, 2, b^2*c^51>,< 20, 2, b^6*c^9>,< 20, 12, a*b^2*c^12>,< 20, 12, a*b^6*c^8>,< 20, 12, a*b^6*c>,< 20, 12, a*b^2*c^4>,< 20, 12, a*b^6*c^4>,< 20, 12, a*b^2*c>,< 20, 12, a*b^2*c^8>,< 20, 12, a*b^6*c^12>,< 24, 4, b^5*c^20>,< 24, 4, b^3*c^40>,< 24, 4, b*c^40>,< 24, 4, b^7*c^20>,< 24, 4, b^3*c^20>,< 24, 4, b^5*c^40>,< 24, 4, b^7*c^40>,< 24, 4, b*c^20>,< 30, 2, b^4*c^4>,< 30, 2, b^4*c^56>,< 30, 2, b^4*c^28>,< 30, 2, b^4*c^32>,< 30, 2, c^2>,< 30, 2, c^58>,< 30, 2, c^14>,< 30, 2, c^46>,< 30, 2, b^4*c^2>,< 30, 2, b^4*c^58>,< 30, 2, b^4*c^14>,< 30, 2, b^4*c^46>,< 40, 4, b^3*c^12>,< 40, 4, b^5*c^48>,< 40, 4, b*c^36>,< 40, 4, b^7*c^24>,< 40, 4, b^5*c^24>,< 40, 4, b^3*c^36>,< 40, 4, b^3*c^48>,< 40, 4, b^5*c^12>,< 40, 4, b*c^12>,< 40, 4, b^7*c^48>,< 40, 4, b^7*c^36>,< 40, 4, b*c^24>,< 40, 4, b^3*c^24>,< 40, 4, b^5*c^36>,< 40, 4, b*c^48>,< 40, 4, b^7*c^12>,< 40, 6, a*b*c^12>,< 40, 6, a*b^7*c^8>,< 40, 6, a*b^3*c^6>,< 40, 6, a*b^5*c^14>,< 40, 6, a*b^7*c^4>,< 40, 6, a*b*c>,< 40, 6, a*b*c^8>,< 40, 6, a*b^7*c^12>,< 40, 6, a*b^3*c^2>,< 40, 6, a*b^5*c^3>,< 40, 6, a*b^5*c^6>,< 40, 6, a*b^3*c^14>,< 40, 6, a*b*c^4>,< 40, 6, a*b^7*c>,< 40, 6, a*b^3*c^3>,< 40, 6, a*b^5*c^2>,< 40, 6, a*b*c^2>,< 40, 6, a*b^7*c^3>,< 40, 6, a*b^3*c>,< 40, 6, a*b^5*c^4>,< 40, 6, a*b^7*c^14>,< 40, 6, a*b*c^6>,< 40, 6, a*b*c^3>,< 40, 6, a*b^7*c^2>,< 40, 6, a*b^3*c^12>,< 40, 6, a*b^5*c^8>,< 40, 6, a*b^5*c>,< 40, 6, a*b^3*c^4>,< 40, 6, a*b*c^14>,< 40, 6, a*b^7*c^6>,< 40, 6, a*b^3*c^8>,< 40, 6, a*b^5*c^12>,< 60, 2, b^2*c^2>,< 60, 2, b^6*c^38>,< 60, 2, b^6*c^14>,< 60, 2, b^2*c^26>,< 60, 2, b^6*c^2>,< 60, 2, b^2*c^38>,< 60, 2, b^2*c^14>,< 60, 2, b^6*c^26>,< 60, 2, b^2*c^8>,< 60, 2, b^6*c^52>,< 60, 2, b^6*c^56>,< 60, 2, b^2*c^4>,< 60, 2, b^6*c^28>,< 60, 2, b^2*c^32>,< 60, 2, b^2*c^16>,< 60, 2, b^6*c^44>,< 60, 4, c>,< 60, 4, c^49>,< 60, 4, c^37>,< 60, 4, c^13>,< 60, 4, b^4*c>,< 60, 4, b^4*c^49>,< 60, 4, b^4*c^37>,< 60, 4, b^4*c^13>,< 60, 4, b^2*c>,< 60, 4, b^6*c^49>,< 60, 4, b^6*c^37>,< 60, 4, b^2*c^13>,< 60, 4, b^6*c>,< 60, 4, b^2*c^49>,< 60, 4, b^2*c^37>,< 60, 4, b^6*c^13>,< 120, 4, b*c^4>,< 120, 4, b^7*c>,< 120, 4, b^7*c^28>,< 120, 4, b*c^2>,< 120, 4, b^3*c^14>,< 120, 4, b^5*c^16>,< 120, 4, b^5*c^52>,< 120, 4, b^3*c^8>,< 120, 4, b*c^8>,< 120, 4, b^7*c^52>,< 120, 4, b^3*c^16>,< 120, 4, b^5*c^14>,< 120, 4, b^7*c^2>,< 120, 4, b*c^28>,< 120, 4, b^5*c>,< 120, 4, b^3*c^4>,< 120, 4, b^7*c^4>,< 120, 4, b*c>,< 120, 4, b^5*c^28>,< 120, 4, b^3*c^2>,< 120, 4, b*c^14>,< 120, 4, b^7*c^16>,< 120, 4, b^3*c^52>,< 120, 4, b^5*c^8>,< 120, 4, b^7*c^8>,< 120, 4, b*c^52>,< 120, 4, b*c^16>,< 120, 4, b^7*c^14>,< 120, 4, b^5*c^2>,< 120, 4, b^3*c^28>,< 120, 4, b^3*c>,< 120, 4, b^5*c^4>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,1,1,1,1,1,1,1,1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,1,1,1,1,1,1,1,1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,K.1^2,-1,-1*K.1^2,K.1^2,1,1,1,1,-1,1,-1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,-1*K.1^2,-1,K.1^2,1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,-1,-1,1,-1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,K.1^2,1,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,1,-1,K.1^2,1,-1,K.1^2,-1*K.1^2,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1*K.1^2,-1,K.1^2,-1*K.1^2,1,1,1,1,-1,1,-1,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,K.1^2,-1,-1*K.1^2,1,1,1,1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1,-1,1,-1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1*K.1^2,1,-1,1,-1*K.1^2,K.1^2,K.1^2,K.1^2,1,-1,-1*K.1^2,1,-1,-1*K.1^2,K.1^2,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^3,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,K.1^2,-1,-1*K.1^2,K.1^2,1,1,1,1,-1,1,-1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,-1*K.1^2,-1,K.1^2,1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,-1,-1,1,-1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,K.1^3,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,K.1^2,1,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,1,-1,K.1^2,1,-1,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1*K.1^2,-1,K.1^2,-1*K.1^2,1,1,1,1,-1,1,-1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,K.1^2,-1,-1*K.1^2,1,1,1,1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1,-1,1,-1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,K.1,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1*K.1^2,1,-1,1,-1*K.1^2,K.1^2,K.1^2,K.1^2,1,-1,-1*K.1^2,1,-1,-1*K.1^2,K.1^2,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,K.1^2,-1,K.1^2,-1*K.1^2,1,1,1,1,-1,1,-1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,-1*K.1^2,-1,K.1^2,1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,-1,-1,1,-1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,K.1^2,1,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,1,-1,K.1^2,1,-1,K.1^2,-1*K.1^2,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1*K.1^2,-1,-1*K.1^2,K.1^2,1,1,1,1,-1,1,-1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,K.1^2,-1,-1*K.1^2,1,1,1,1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1,-1,1,-1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1*K.1^2,1,-1,1,-1*K.1^2,K.1^2,K.1^2,K.1^2,1,-1,-1*K.1^2,1,-1,-1*K.1^2,K.1^2,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^3,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,K.1^2,-1,K.1^2,-1*K.1^2,1,1,1,1,-1,1,-1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,-1*K.1^2,-1,K.1^2,1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,-1,-1,1,-1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,K.1^3,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,K.1^2,1,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,1,-1,K.1^2,1,-1,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1*K.1^2,-1,-1*K.1^2,K.1^2,1,1,1,1,-1,1,-1,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1^3,-1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,K.1^2,-1,-1*K.1^2,1,1,1,1,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,-1,-1,1,-1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,K.1,K.1,K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,-1*K.1^2,1,-1,1,-1*K.1^2,K.1^2,K.1^2,K.1^2,1,-1,-1*K.1^2,1,-1,-1*K.1^2,K.1^2,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^2,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,1,1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,1,1,1,1,1,1,1,1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,1,1,1,1,1,1,1,1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,1,1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,-1,-1,-1,-1,1,-1,1,-1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^8,-1*K.1^2,K.1^8,-1*K.1^9,K.1^9,-1*K.1^7,K.1,-1*K.1,-1*K.1^3,K.1^9,K.1^7,K.1^7,-1*K.1^7,K.1,K.1^3,-1*K.1^9,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^9,-1*K.1^9,-1*K.1,K.1^7,-1*K.1^9,K.1^9,K.1,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1,K.1^3,K.1^3,K.1^7,-1*K.1,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^9,K.1^3,K.1^7,K.1^7,K.1^3,-1*K.1^9,-1*K.1,-1*K.1,-1*K.1^3,K.1^9,K.1,K.1^2,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^4,K.1^8,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^7,K.1^3,K.1,-1*K.1^3,-1*K.1^9,K.1^7,K.1,K.1^9,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^7,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^7,K.1,K.1^7,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^9,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^7,K.1^7,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,1,1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,K.1^8,K.1^4,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1,-1,-1,-1,1,-1,1,-1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,K.1^4,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^8,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^2,K.1,-1*K.1,K.1^3,-1*K.1^9,K.1^9,K.1^7,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^7,K.1,K.1^9,-1*K.1^7,K.1^7,-1*K.1^9,-1*K.1,K.1,K.1^9,-1*K.1^3,K.1,-1*K.1,-1*K.1^9,K.1^3,K.1^7,K.1^7,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1^9,-1*K.1,K.1^7,K.1^3,K.1^3,K.1,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1,K.1^9,K.1^9,K.1^7,-1*K.1,-1*K.1^9,-1*K.1^8,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^8,-1*K.1^8,K.1^2,K.1^3,-1*K.1^7,-1*K.1^9,K.1^7,K.1,-1*K.1^3,-1*K.1^9,-1*K.1,K.1^9,K.1^9,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^7,K.1^9,K.1,K.1^7,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^9,K.1^7,K.1^9,-1*K.1^7,K.1^3,-1*K.1^3,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,1,1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,-1,-1,-1,-1,1,-1,1,-1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^8,-1*K.1^2,K.1^8,K.1^9,-1*K.1^9,K.1^7,-1*K.1,K.1,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^3,K.1^9,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^9,K.1^9,K.1,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1,K.1^7,K.1^3,K.1^3,K.1^7,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1,-1*K.1^9,K.1^3,K.1^7,K.1^7,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1^9,K.1,K.1,K.1^3,-1*K.1^9,-1*K.1,K.1^2,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^4,K.1^8,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^8,K.1^7,-1*K.1^3,-1*K.1,K.1^3,K.1^9,-1*K.1^7,-1*K.1,-1*K.1^9,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^3,K.1,K.1^9,K.1^3,-1*K.1^9,K.1^7,-1*K.1,-1*K.1^7,K.1^9,K.1^7,-1*K.1^9,K.1^9,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,1,1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,K.1^8,K.1^4,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1,-1,-1,-1,1,-1,1,-1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,K.1^4,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^8,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1,K.1,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^7,K.1,K.1^3,K.1^3,-1*K.1^3,K.1^9,K.1^7,-1*K.1,-1*K.1^9,K.1^7,-1*K.1^7,K.1^9,K.1,-1*K.1,-1*K.1^9,K.1^3,-1*K.1,K.1,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1^9,K.1^7,K.1^7,K.1^3,-1*K.1^9,K.1,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^7,K.1^3,K.1^3,K.1^7,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1,K.1^9,-1*K.1^8,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^8,-1*K.1^8,K.1^2,-1*K.1^3,K.1^7,K.1^9,-1*K.1^7,-1*K.1,K.1^3,K.1^9,K.1,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1^7,K.1^3,K.1^7,-1*K.1^9,-1*K.1,-1*K.1^7,K.1,-1*K.1^3,K.1^9,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^3,K.1^3,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,1,1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^4,-1*K.1^6,K.1^8,-1*K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^6,-1,-1,-1,-1,1,-1,1,-1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^2,K.1^8,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^4,K.1^7,-1*K.1^7,K.1,-1*K.1^3,K.1^3,K.1^9,-1*K.1^7,-1*K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^9,K.1^7,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^7,K.1^7,K.1^3,-1*K.1,K.1^7,-1*K.1^7,-1*K.1^3,K.1,K.1^9,K.1^9,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1,K.1^3,-1*K.1^7,K.1^9,K.1,K.1,K.1^7,-1*K.1^9,-1*K.1,-1*K.1,-1*K.1^9,K.1^7,K.1^3,K.1^3,K.1^9,-1*K.1^7,-1*K.1^3,K.1^6,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^2,K.1^4,-1*K.1^8,K.1^8,-1*K.1^6,K.1^6,-1*K.1^4,K.1,-1*K.1^9,-1*K.1^3,K.1^9,K.1^7,-1*K.1,-1*K.1^3,-1*K.1^7,K.1^3,K.1^3,K.1^9,-1*K.1^9,-1*K.1,-1*K.1^9,K.1^3,K.1^7,K.1^9,-1*K.1^7,K.1,-1*K.1^3,-1*K.1,K.1^7,K.1,-1*K.1^7,K.1^7,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1,-1*K.1,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,1,1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^4,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,-1,-1,-1,-1,1,-1,1,-1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^8,K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^4,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^3,K.1^3,-1*K.1^9,K.1^7,-1*K.1^7,-1*K.1,K.1^3,K.1^9,K.1^9,-1*K.1^9,K.1^7,K.1,-1*K.1^3,-1*K.1^7,K.1,-1*K.1,K.1^7,K.1^3,-1*K.1^3,-1*K.1^7,K.1^9,-1*K.1^3,K.1^3,K.1^7,-1*K.1^9,-1*K.1,-1*K.1,-1*K.1^9,K.1^7,K.1,K.1,K.1^9,-1*K.1^7,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1,K.1^9,K.1^9,K.1,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1,K.1^3,K.1^7,-1*K.1^4,K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^6,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^8,-1*K.1^6,K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,K.1^6,-1*K.1^9,K.1,K.1^7,-1*K.1,-1*K.1^3,K.1^9,K.1^7,K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^9,K.1,-1*K.1^7,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^9,K.1^7,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^7,K.1,-1*K.1^9,K.1^9,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,1,1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^4,-1*K.1^6,K.1^8,-1*K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^6,-1,-1,-1,-1,1,-1,1,-1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^2,K.1^8,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^4,-1*K.1^7,K.1^7,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^9,K.1^7,K.1,K.1,-1*K.1,K.1^3,K.1^9,-1*K.1^7,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,K.1^7,-1*K.1^7,-1*K.1^3,K.1,-1*K.1^7,K.1^7,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1,K.1^3,K.1^9,K.1^9,K.1,-1*K.1^3,K.1^7,-1*K.1^9,-1*K.1,-1*K.1,-1*K.1^7,K.1^9,K.1,K.1,K.1^9,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^9,K.1^7,K.1^3,K.1^6,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^2,K.1^4,-1*K.1^8,K.1^8,-1*K.1^6,K.1^6,-1*K.1^4,-1*K.1,K.1^9,K.1^3,-1*K.1^9,-1*K.1^7,K.1,K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^9,K.1^9,K.1,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1,K.1^3,K.1,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1,K.1,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,1,1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^4,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,-1,-1,-1,-1,1,-1,1,-1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^8,K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^4,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^6,K.1^3,-1*K.1^3,K.1^9,-1*K.1^7,K.1^7,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^7,-1*K.1,K.1^3,K.1^7,-1*K.1,K.1,-1*K.1^7,-1*K.1^3,K.1^3,K.1^7,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^7,K.1^9,K.1,K.1,K.1^9,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^9,K.1^7,-1*K.1^3,K.1,K.1^9,K.1^9,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1,K.1^3,K.1^7,K.1^7,K.1,-1*K.1^3,-1*K.1^7,-1*K.1^4,K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^6,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^8,-1*K.1^6,K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,K.1^6,K.1^9,-1*K.1,-1*K.1^7,K.1,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^3,K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^9,-1*K.1,K.1^7,K.1^3,K.1,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^7,K.1,K.1^7,-1*K.1,K.1^9,-1*K.1^9,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,1,1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,-1,-1,-1,-1,1,-1,1,-1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,K.1^6,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^8,-1*K.1^2,K.1^8,-1*K.1^9,K.1^9,-1*K.1^7,K.1,-1*K.1,-1*K.1^3,K.1^9,K.1^7,K.1^7,-1*K.1^7,K.1,K.1^3,-1*K.1^9,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^9,K.1^9,K.1,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1,K.1^7,K.1^3,K.1^3,K.1^7,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1,-1*K.1^9,K.1^3,K.1^7,K.1^7,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1^9,K.1,K.1,K.1^3,-1*K.1^9,-1*K.1,K.1^2,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^4,K.1^8,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^7,K.1^3,K.1,-1*K.1^3,-1*K.1^9,K.1^7,K.1,K.1^9,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^7,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^7,K.1,K.1^7,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^9,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^7,K.1^7,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,1,1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,-1,-1,-1,-1,1,-1,1,-1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^4,K.1^2,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^8,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^2,K.1,-1*K.1,K.1^3,-1*K.1^9,K.1^9,K.1^7,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^7,K.1,K.1^9,-1*K.1^7,K.1^7,K.1^9,K.1,-1*K.1,-1*K.1^9,K.1^3,-1*K.1,K.1,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1^9,K.1^7,K.1^7,K.1^3,-1*K.1^9,K.1,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^7,K.1^3,K.1^3,K.1^7,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1,K.1^9,-1*K.1^8,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^8,-1*K.1^8,K.1^2,K.1^3,-1*K.1^7,-1*K.1^9,K.1^7,K.1,-1*K.1^3,-1*K.1^9,-1*K.1,K.1^9,K.1^9,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^7,K.1^9,K.1,K.1^7,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^9,K.1^7,K.1^9,-1*K.1^7,K.1^3,-1*K.1^3,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,1,1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,-1,-1,-1,-1,1,-1,1,-1,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,K.1^6,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^8,-1*K.1^2,K.1^8,K.1^9,-1*K.1^9,K.1^7,-1*K.1,K.1,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^3,K.1^9,K.1,-1*K.1^3,K.1^3,K.1,K.1^9,-1*K.1^9,-1*K.1,K.1^7,-1*K.1^9,K.1^9,K.1,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1,K.1^3,K.1^3,K.1^7,-1*K.1,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^9,K.1^3,K.1^7,K.1^7,K.1^3,-1*K.1^9,-1*K.1,-1*K.1,-1*K.1^3,K.1^9,K.1,K.1^2,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^4,K.1^8,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^8,K.1^7,-1*K.1^3,-1*K.1,K.1^3,K.1^9,-1*K.1^7,-1*K.1,-1*K.1^9,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^3,K.1,K.1^9,K.1^3,-1*K.1^9,K.1^7,-1*K.1,-1*K.1^7,K.1^9,K.1^7,-1*K.1^9,K.1^9,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,1,1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,-1,-1,-1,-1,1,-1,1,-1,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^2,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^4,K.1^2,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^8,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1,K.1,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^7,K.1,K.1^3,K.1^3,-1*K.1^3,K.1^9,K.1^7,-1*K.1,-1*K.1^9,K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1,K.1,K.1^9,-1*K.1^3,K.1,-1*K.1,-1*K.1^9,K.1^3,K.1^7,K.1^7,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1^9,-1*K.1,K.1^7,K.1^3,K.1^3,K.1,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1,K.1^9,K.1^9,K.1^7,-1*K.1,-1*K.1^9,-1*K.1^8,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^4,K.1^4,K.1^8,-1*K.1^8,K.1^2,-1*K.1^3,K.1^7,K.1^9,-1*K.1^7,-1*K.1,K.1^3,K.1^9,K.1,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1^7,K.1^3,K.1^7,-1*K.1^9,-1*K.1,-1*K.1^7,K.1,-1*K.1^3,K.1^9,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^3,K.1^3,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,1,1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^4,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,-1,-1,-1,-1,1,-1,1,-1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^2,K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^4,K.1^7,-1*K.1^7,K.1,-1*K.1^3,K.1^3,K.1^9,-1*K.1^7,-1*K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^9,K.1^7,K.1^3,-1*K.1^9,K.1^9,K.1^3,K.1^7,-1*K.1^7,-1*K.1^3,K.1,-1*K.1^7,K.1^7,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1,K.1^3,K.1^9,K.1^9,K.1,-1*K.1^3,K.1^7,-1*K.1^9,-1*K.1,-1*K.1,-1*K.1^7,K.1^9,K.1,K.1,K.1^9,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^9,K.1^7,K.1^3,K.1^6,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^2,K.1^4,-1*K.1^8,K.1^8,-1*K.1^6,K.1^6,-1*K.1^4,K.1,-1*K.1^9,-1*K.1^3,K.1^9,K.1^7,-1*K.1,-1*K.1^3,-1*K.1^7,K.1^3,K.1^3,K.1^9,-1*K.1^9,-1*K.1,-1*K.1^9,K.1^3,K.1^7,K.1^9,-1*K.1^7,K.1,-1*K.1^3,-1*K.1,K.1^7,K.1,-1*K.1^7,K.1^7,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1,-1*K.1,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,1,1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^4,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,-1,-1,-1,-1,1,-1,1,-1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^8,K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^2,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^2,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^4,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^3,K.1^3,-1*K.1^9,K.1^7,-1*K.1^7,-1*K.1,K.1^3,K.1^9,K.1^9,-1*K.1^9,K.1^7,K.1,-1*K.1^3,-1*K.1^7,K.1,-1*K.1,-1*K.1^7,-1*K.1^3,K.1^3,K.1^7,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^7,K.1^9,K.1,K.1,K.1^9,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^9,K.1^7,-1*K.1^3,K.1,K.1^9,K.1^9,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1,K.1^3,K.1^7,K.1^7,K.1,-1*K.1^3,-1*K.1^7,-1*K.1^4,K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^6,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^8,-1*K.1^6,K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,K.1^6,-1*K.1^9,K.1,K.1^7,-1*K.1,-1*K.1^3,K.1^9,K.1^7,K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^9,K.1,-1*K.1^7,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^9,K.1^7,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^7,K.1,-1*K.1^9,K.1^9,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,1,1,1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^4,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,-1,-1,-1,-1,1,-1,1,-1,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^2,K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^6,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^4,-1*K.1^7,K.1^7,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^9,K.1^7,K.1,K.1,-1*K.1,K.1^3,K.1^9,-1*K.1^7,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^7,K.1^7,K.1^3,-1*K.1,K.1^7,-1*K.1^7,-1*K.1^3,K.1,K.1^9,K.1^9,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1,K.1^3,-1*K.1^7,K.1^9,K.1,K.1,K.1^7,-1*K.1^9,-1*K.1,-1*K.1,-1*K.1^9,K.1^7,K.1^3,K.1^3,K.1^9,-1*K.1^7,-1*K.1^3,K.1^6,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^2,K.1^4,-1*K.1^8,K.1^8,-1*K.1^6,K.1^6,-1*K.1^4,-1*K.1,K.1^9,K.1^3,-1*K.1^9,-1*K.1^7,K.1,K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^9,K.1^9,K.1,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1,K.1^3,K.1,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1,K.1,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,1,1,1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^4,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,-1,-1,-1,-1,1,-1,1,-1,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,-1*K.1^4,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^8,K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^2,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,K.1^2,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^4,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^6,K.1^3,-1*K.1^3,K.1^9,-1*K.1^7,K.1^7,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^7,-1*K.1,K.1^3,K.1^7,-1*K.1,K.1,K.1^7,K.1^3,-1*K.1^3,-1*K.1^7,K.1^9,-1*K.1^3,K.1^3,K.1^7,-1*K.1^9,-1*K.1,-1*K.1,-1*K.1^9,K.1^7,K.1,K.1,K.1^9,-1*K.1^7,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1,K.1^9,K.1^9,K.1,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1,K.1^3,K.1^7,-1*K.1^4,K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^6,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^8,-1*K.1^6,K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,K.1^6,K.1^9,-1*K.1,-1*K.1^7,K.1,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^3,K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^9,-1*K.1,K.1^7,K.1^3,K.1,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^7,K.1,K.1^7,-1*K.1,K.1^9,-1*K.1^9,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^10,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,-1,1,-1,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,-1*K.1^5,K.1^4,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^16,K.1^8,K.1^4,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,K.1^4,K.1^12,-1*K.1^8,K.1^16,-1*K.1^4,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,K.1^14,K.1^6,K.1^18,-1*K.1^14,-1*K.1^6,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^2,K.1^18,-1*K.1^2,K.1^2,K.1^14,-1*K.1^18,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^18,K.1^2,K.1^14,K.1^18,-1*K.1^12,K.1^6,-1*K.1^14,-1*K.1^6,K.1^18,K.1^14,K.1^2,-1*K.1^18,-1*K.1^2,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^4,K.1^12,-1*K.1^8,K.1^4,K.1^16,-1*K.1^12,K.1^12,K.1^8,-1*K.1^8,-1*K.1^16,K.1^4,-1*K.1^16,K.1^3,K.1^13,K.1^9,-1*K.1^17,-1*K.1^7,-1*K.1,-1*K.1^13,K.1^19,-1*K.1^19,-1*K.1^9,K.1^17,-1*K.1^11,-1*K.1^3,K.1^7,K.1^11,K.1,-1*K.1^7,-1*K.1^3,K.1^13,K.1^17,K.1^9,K.1^13,-1*K.1^3,-1*K.1^7,K.1^19,-1*K.1^11,K.1^11,-1*K.1^19,K.1^7,-1*K.1,K.1,-1*K.1^9,-1*K.1^17,K.1^3,-1*K.1^11,K.1^19,-1*K.1^19,-1*K.1^13,-1*K.1,K.1^9,-1*K.1^9,K.1,-1*K.1^13,-1*K.1^17,K.1^17,K.1^11,K.1^3,K.1^7,-1*K.1^14,K.1^6,-1*K.1^6,K.1^14,K.1^2,-1*K.1^6,-1*K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^6,K.1^2,K.1^18,-1*K.1^18,K.1^14,K.1^18,-1*K.1^8,K.1^18,K.1^16,K.1^12,-1*K.1^4,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^8,-1*K.1^16,K.1^2,-1*K.1^12,K.1^4,-1*K.1^14,K.1^6,-1*K.1^9,-1*K.1^11,K.1^17,K.1,K.1^3,-1*K.1^19,-1*K.1^17,-1*K.1^13,-1*K.1^7,K.1^7,K.1,K.1^11,K.1^19,K.1^11,K.1^7,K.1^3,-1*K.1,K.1^13,K.1^9,-1*K.1^17,-1*K.1^19,-1*K.1^3,K.1^9,-1*K.1^13,-1*K.1^3,K.1^17,-1*K.1,-1*K.1^7,-1*K.1^11,-1*K.1^9,K.1^19,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^10,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1,1,-1,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^15,-1*K.1^16,K.1^12,K.1^12,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,K.1^4,K.1^16,-1*K.1^8,K.1^8,-1*K.1^12,K.1^4,-1*K.1^16,-1*K.1^8,K.1^12,-1*K.1^4,K.1^16,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,K.1^14,-1*K.1^18,K.1^2,K.1^6,K.1^18,-1*K.1^2,K.1^18,-1*K.1^18,-1*K.1^6,K.1^2,K.1^14,-1*K.1^14,K.1^6,K.1^18,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,K.1^16,-1*K.1^14,K.1^14,K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^14,K.1^6,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^2,K.1^18,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^16,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^16,K.1^4,-1*K.1^17,-1*K.1^7,-1*K.1^11,K.1^3,K.1^13,K.1^19,K.1^7,-1*K.1,K.1,K.1^11,-1*K.1^3,K.1^9,K.1^17,-1*K.1^13,-1*K.1^9,-1*K.1^19,K.1^13,K.1^17,-1*K.1^7,-1*K.1^3,-1*K.1^11,-1*K.1^7,K.1^17,K.1^13,-1*K.1,K.1^9,-1*K.1^9,K.1,-1*K.1^13,K.1^19,-1*K.1^19,K.1^11,K.1^3,-1*K.1^17,K.1^9,-1*K.1,K.1,K.1^7,K.1^19,-1*K.1^11,K.1^11,-1*K.1^19,K.1^7,K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^17,-1*K.1^13,K.1^6,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^18,K.1^14,K.1^2,K.1^18,K.1^6,K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^8,K.1^16,K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^12,K.1^4,-1*K.1^18,K.1^8,-1*K.1^16,K.1^6,-1*K.1^14,K.1^11,K.1^9,-1*K.1^3,-1*K.1^19,-1*K.1^17,K.1,K.1^3,K.1^7,K.1^13,-1*K.1^13,-1*K.1^19,-1*K.1^9,-1*K.1,-1*K.1^9,-1*K.1^13,-1*K.1^17,K.1^19,-1*K.1^7,-1*K.1^11,K.1^3,K.1,K.1^17,-1*K.1^11,K.1^7,K.1^17,-1*K.1^3,K.1^19,K.1^13,K.1^9,K.1^11,-1*K.1,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^10,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,-1,1,-1,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,K.1^5,K.1^4,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^16,K.1^8,K.1^4,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,K.1^4,K.1^12,-1*K.1^8,K.1^16,-1*K.1^4,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,K.1^14,K.1^6,K.1^18,-1*K.1^14,-1*K.1^6,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^2,K.1^18,-1*K.1^2,K.1^2,K.1^14,-1*K.1^18,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^18,K.1^2,K.1^14,K.1^18,-1*K.1^12,K.1^6,-1*K.1^14,-1*K.1^6,K.1^18,K.1^14,K.1^2,-1*K.1^18,-1*K.1^2,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^4,K.1^12,-1*K.1^8,K.1^4,K.1^16,-1*K.1^12,K.1^12,K.1^8,-1*K.1^8,-1*K.1^16,K.1^4,-1*K.1^16,-1*K.1^3,-1*K.1^13,-1*K.1^9,K.1^17,K.1^7,K.1,K.1^13,-1*K.1^19,K.1^19,K.1^9,-1*K.1^17,K.1^11,K.1^3,-1*K.1^7,-1*K.1^11,-1*K.1,K.1^7,K.1^3,-1*K.1^13,-1*K.1^17,-1*K.1^9,-1*K.1^13,K.1^3,K.1^7,-1*K.1^19,K.1^11,-1*K.1^11,K.1^19,-1*K.1^7,K.1,-1*K.1,K.1^9,K.1^17,-1*K.1^3,K.1^11,-1*K.1^19,K.1^19,K.1^13,K.1,-1*K.1^9,K.1^9,-1*K.1,K.1^13,K.1^17,-1*K.1^17,-1*K.1^11,-1*K.1^3,-1*K.1^7,-1*K.1^14,K.1^6,-1*K.1^6,K.1^14,K.1^2,-1*K.1^6,-1*K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^6,K.1^2,K.1^18,-1*K.1^18,K.1^14,K.1^18,-1*K.1^8,K.1^18,K.1^16,K.1^12,-1*K.1^4,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^8,-1*K.1^16,K.1^2,-1*K.1^12,K.1^4,-1*K.1^14,K.1^6,K.1^9,K.1^11,-1*K.1^17,-1*K.1,-1*K.1^3,K.1^19,K.1^17,K.1^13,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^11,-1*K.1^19,-1*K.1^11,-1*K.1^7,-1*K.1^3,K.1,-1*K.1^13,-1*K.1^9,K.1^17,K.1^19,K.1^3,-1*K.1^9,K.1^13,K.1^3,-1*K.1^17,K.1,K.1^7,K.1^11,K.1^9,-1*K.1^19,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^10,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1,1,-1,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^16,K.1^12,K.1^12,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,K.1^4,K.1^16,-1*K.1^8,K.1^8,-1*K.1^12,K.1^4,-1*K.1^16,-1*K.1^8,K.1^12,-1*K.1^4,K.1^16,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,K.1^14,-1*K.1^18,K.1^2,K.1^6,K.1^18,-1*K.1^2,K.1^18,-1*K.1^18,-1*K.1^6,K.1^2,K.1^14,-1*K.1^14,K.1^6,K.1^18,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,K.1^16,-1*K.1^14,K.1^14,K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^14,K.1^6,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^2,K.1^18,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^16,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^16,K.1^4,K.1^17,K.1^7,K.1^11,-1*K.1^3,-1*K.1^13,-1*K.1^19,-1*K.1^7,K.1,-1*K.1,-1*K.1^11,K.1^3,-1*K.1^9,-1*K.1^17,K.1^13,K.1^9,K.1^19,-1*K.1^13,-1*K.1^17,K.1^7,K.1^3,K.1^11,K.1^7,-1*K.1^17,-1*K.1^13,K.1,-1*K.1^9,K.1^9,-1*K.1,K.1^13,-1*K.1^19,K.1^19,-1*K.1^11,-1*K.1^3,K.1^17,-1*K.1^9,K.1,-1*K.1,-1*K.1^7,-1*K.1^19,K.1^11,-1*K.1^11,K.1^19,-1*K.1^7,-1*K.1^3,K.1^3,K.1^9,K.1^17,K.1^13,K.1^6,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^18,K.1^14,K.1^2,K.1^18,K.1^6,K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^8,K.1^16,K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^12,K.1^4,-1*K.1^18,K.1^8,-1*K.1^16,K.1^6,-1*K.1^14,-1*K.1^11,-1*K.1^9,K.1^3,K.1^19,K.1^17,-1*K.1,-1*K.1^3,-1*K.1^7,-1*K.1^13,K.1^13,K.1^19,K.1^9,K.1,K.1^9,K.1^13,K.1^17,-1*K.1^19,K.1^7,K.1^11,-1*K.1^3,-1*K.1,-1*K.1^17,K.1^11,-1*K.1^7,-1*K.1^17,K.1^3,-1*K.1^19,-1*K.1^13,-1*K.1^9,-1*K.1^11,K.1,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^10,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1,1,-1,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^16,K.1^12,K.1^12,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,K.1^4,K.1^16,-1*K.1^8,K.1^8,-1*K.1^12,K.1^4,-1*K.1^16,-1*K.1^8,K.1^12,-1*K.1^4,K.1^16,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^6,K.1^14,K.1^2,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^2,-1*K.1^18,K.1^18,K.1^6,-1*K.1^2,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,K.1^16,K.1^14,-1*K.1^14,-1*K.1^2,K.1^18,K.1^6,K.1^2,K.1^8,K.1^14,-1*K.1^6,-1*K.1^14,K.1^2,K.1^6,K.1^18,-1*K.1^2,-1*K.1^18,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^16,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^16,K.1^4,-1*K.1^7,-1*K.1^17,K.1,K.1^13,K.1^3,-1*K.1^9,K.1^17,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^13,-1*K.1^19,K.1^7,-1*K.1^3,K.1^19,K.1^9,K.1^3,K.1^7,-1*K.1^17,-1*K.1^13,K.1,-1*K.1^17,K.1^7,K.1^3,K.1^11,-1*K.1^19,K.1^19,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^9,-1*K.1,K.1^13,-1*K.1^7,-1*K.1^19,K.1^11,-1*K.1^11,K.1^17,-1*K.1^9,K.1,-1*K.1,K.1^9,K.1^17,K.1^13,-1*K.1^13,K.1^19,-1*K.1^7,-1*K.1^3,-1*K.1^6,K.1^14,-1*K.1^14,K.1^6,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^14,K.1^18,K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^12,K.1^2,-1*K.1^4,-1*K.1^8,K.1^16,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^12,K.1^4,K.1^18,K.1^8,-1*K.1^16,-1*K.1^6,K.1^14,-1*K.1,-1*K.1^19,-1*K.1^13,K.1^9,-1*K.1^7,-1*K.1^11,K.1^13,K.1^17,K.1^3,-1*K.1^3,K.1^9,K.1^19,K.1^11,K.1^19,-1*K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^17,K.1,K.1^13,-1*K.1^11,K.1^7,K.1,K.1^17,K.1^7,-1*K.1^13,-1*K.1^9,K.1^3,-1*K.1^19,-1*K.1,K.1^11,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^10,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,-1,1,-1,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^15,K.1^4,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^16,K.1^8,K.1^4,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,K.1^4,K.1^12,-1*K.1^8,K.1^16,-1*K.1^4,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^14,-1*K.1^6,-1*K.1^18,K.1^14,K.1^6,-1*K.1^2,K.1^18,K.1^14,K.1^2,-1*K.1^18,K.1^2,-1*K.1^2,-1*K.1^14,K.1^18,K.1^6,-1*K.1^6,K.1^14,K.1^2,K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^12,-1*K.1^6,K.1^14,K.1^6,-1*K.1^18,-1*K.1^14,-1*K.1^2,K.1^18,K.1^2,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^4,K.1^12,-1*K.1^8,K.1^4,K.1^16,-1*K.1^12,K.1^12,K.1^8,-1*K.1^8,-1*K.1^16,K.1^4,-1*K.1^16,K.1^13,K.1^3,-1*K.1^19,-1*K.1^7,-1*K.1^17,K.1^11,-1*K.1^3,-1*K.1^9,K.1^9,K.1^19,K.1^7,K.1,-1*K.1^13,K.1^17,-1*K.1,-1*K.1^11,-1*K.1^17,-1*K.1^13,K.1^3,K.1^7,-1*K.1^19,K.1^3,-1*K.1^13,-1*K.1^17,-1*K.1^9,K.1,-1*K.1,K.1^9,K.1^17,K.1^11,-1*K.1^11,K.1^19,-1*K.1^7,K.1^13,K.1,-1*K.1^9,K.1^9,-1*K.1^3,K.1^11,-1*K.1^19,K.1^19,-1*K.1^11,-1*K.1^3,-1*K.1^7,K.1^7,-1*K.1,K.1^13,K.1^17,K.1^14,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,K.1^18,K.1^2,K.1^14,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^8,-1*K.1^18,K.1^16,K.1^12,-1*K.1^4,K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^8,-1*K.1^16,-1*K.1^2,-1*K.1^12,K.1^4,K.1^14,-1*K.1^6,K.1^19,K.1,K.1^7,-1*K.1^11,K.1^13,K.1^9,-1*K.1^7,-1*K.1^3,-1*K.1^17,K.1^17,-1*K.1^11,-1*K.1,-1*K.1^9,-1*K.1,K.1^17,K.1^13,K.1^11,K.1^3,-1*K.1^19,-1*K.1^7,K.1^9,-1*K.1^13,-1*K.1^19,-1*K.1^3,-1*K.1^13,K.1^7,K.1^11,-1*K.1^17,K.1,K.1^19,-1*K.1^9,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^10,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1,1,-1,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,K.1^5,-1*K.1^16,K.1^12,K.1^12,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,K.1^4,K.1^16,-1*K.1^8,K.1^8,-1*K.1^12,K.1^4,-1*K.1^16,-1*K.1^8,K.1^12,-1*K.1^4,K.1^16,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^6,K.1^14,K.1^2,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^2,-1*K.1^18,K.1^18,K.1^6,-1*K.1^2,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,K.1^16,K.1^14,-1*K.1^14,-1*K.1^2,K.1^18,K.1^6,K.1^2,K.1^8,K.1^14,-1*K.1^6,-1*K.1^14,K.1^2,K.1^6,K.1^18,-1*K.1^2,-1*K.1^18,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^16,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^16,K.1^4,K.1^7,K.1^17,-1*K.1,-1*K.1^13,-1*K.1^3,K.1^9,-1*K.1^17,-1*K.1^11,K.1^11,K.1,K.1^13,K.1^19,-1*K.1^7,K.1^3,-1*K.1^19,-1*K.1^9,-1*K.1^3,-1*K.1^7,K.1^17,K.1^13,-1*K.1,K.1^17,-1*K.1^7,-1*K.1^3,-1*K.1^11,K.1^19,-1*K.1^19,K.1^11,K.1^3,K.1^9,-1*K.1^9,K.1,-1*K.1^13,K.1^7,K.1^19,-1*K.1^11,K.1^11,-1*K.1^17,K.1^9,-1*K.1,K.1,-1*K.1^9,-1*K.1^17,-1*K.1^13,K.1^13,-1*K.1^19,K.1^7,K.1^3,-1*K.1^6,K.1^14,-1*K.1^14,K.1^6,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^14,K.1^18,K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^12,K.1^2,-1*K.1^4,-1*K.1^8,K.1^16,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^12,K.1^4,K.1^18,K.1^8,-1*K.1^16,-1*K.1^6,K.1^14,K.1,K.1^19,K.1^13,-1*K.1^9,K.1^7,K.1^11,-1*K.1^13,-1*K.1^17,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^19,-1*K.1^11,-1*K.1^19,K.1^3,K.1^7,K.1^9,K.1^17,-1*K.1,-1*K.1^13,K.1^11,-1*K.1^7,-1*K.1,-1*K.1^17,-1*K.1^7,K.1^13,K.1^9,-1*K.1^3,K.1^19,K.1,-1*K.1^11,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^10,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,-1,1,-1,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^15,K.1^4,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^16,K.1^8,K.1^4,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,K.1^4,K.1^12,-1*K.1^8,K.1^16,-1*K.1^4,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^14,-1*K.1^6,-1*K.1^18,K.1^14,K.1^6,-1*K.1^2,K.1^18,K.1^14,K.1^2,-1*K.1^18,K.1^2,-1*K.1^2,-1*K.1^14,K.1^18,K.1^6,-1*K.1^6,K.1^14,K.1^2,K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^12,-1*K.1^6,K.1^14,K.1^6,-1*K.1^18,-1*K.1^14,-1*K.1^2,K.1^18,K.1^2,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^4,K.1^12,-1*K.1^8,K.1^4,K.1^16,-1*K.1^12,K.1^12,K.1^8,-1*K.1^8,-1*K.1^16,K.1^4,-1*K.1^16,-1*K.1^13,-1*K.1^3,K.1^19,K.1^7,K.1^17,-1*K.1^11,K.1^3,K.1^9,-1*K.1^9,-1*K.1^19,-1*K.1^7,-1*K.1,K.1^13,-1*K.1^17,K.1,K.1^11,K.1^17,K.1^13,-1*K.1^3,-1*K.1^7,K.1^19,-1*K.1^3,K.1^13,K.1^17,K.1^9,-1*K.1,K.1,-1*K.1^9,-1*K.1^17,-1*K.1^11,K.1^11,-1*K.1^19,K.1^7,-1*K.1^13,-1*K.1,K.1^9,-1*K.1^9,K.1^3,-1*K.1^11,K.1^19,-1*K.1^19,K.1^11,K.1^3,K.1^7,-1*K.1^7,K.1,-1*K.1^13,-1*K.1^17,K.1^14,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,K.1^18,K.1^2,K.1^14,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^8,-1*K.1^18,K.1^16,K.1^12,-1*K.1^4,K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^8,-1*K.1^16,-1*K.1^2,-1*K.1^12,K.1^4,K.1^14,-1*K.1^6,-1*K.1^19,-1*K.1,-1*K.1^7,K.1^11,-1*K.1^13,-1*K.1^9,K.1^7,K.1^3,K.1^17,-1*K.1^17,K.1^11,K.1,K.1^9,K.1,-1*K.1^17,-1*K.1^13,-1*K.1^11,-1*K.1^3,K.1^19,K.1^7,-1*K.1^9,K.1^13,K.1^19,K.1^3,K.1^13,-1*K.1^7,-1*K.1^11,K.1^17,-1*K.1,-1*K.1^19,K.1^9,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^10,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,-1,1,-1,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,-1*K.1^5,K.1^12,K.1^4,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^4,K.1^8,-1*K.1^12,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^2,-1*K.1^18,-1*K.1^14,K.1^2,K.1^18,-1*K.1^6,K.1^14,K.1^2,K.1^6,-1*K.1^14,K.1^6,-1*K.1^6,-1*K.1^2,K.1^14,K.1^18,-1*K.1^18,K.1^2,K.1^6,K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,-1*K.1^18,K.1^18,K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^14,K.1^16,-1*K.1^18,K.1^2,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^6,K.1^14,K.1^6,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^12,-1*K.1^16,K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^16,-1*K.1^4,K.1^4,-1*K.1^8,K.1^12,-1*K.1^8,K.1^19,-1*K.1^9,K.1^17,-1*K.1,K.1^11,K.1^13,K.1^9,-1*K.1^7,K.1^7,-1*K.1^17,K.1,-1*K.1^3,-1*K.1^19,-1*K.1^11,K.1^3,-1*K.1^13,K.1^11,-1*K.1^19,-1*K.1^9,K.1,K.1^17,-1*K.1^9,-1*K.1^19,K.1^11,-1*K.1^7,-1*K.1^3,K.1^3,K.1^7,-1*K.1^11,K.1^13,-1*K.1^13,-1*K.1^17,-1*K.1,K.1^19,-1*K.1^3,-1*K.1^7,K.1^7,K.1^9,K.1^13,K.1^17,-1*K.1^17,-1*K.1^13,K.1^9,-1*K.1,K.1,K.1^3,K.1^19,-1*K.1^11,K.1^2,-1*K.1^18,K.1^18,-1*K.1^2,-1*K.1^6,K.1^18,K.1^14,K.1^6,K.1^2,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^14,K.1^4,-1*K.1^14,K.1^8,-1*K.1^16,-1*K.1^12,K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^16,K.1^12,K.1^2,-1*K.1^18,-1*K.1^17,-1*K.1^3,K.1,-1*K.1^13,K.1^19,K.1^7,-1*K.1,K.1^9,K.1^11,-1*K.1^11,-1*K.1^13,K.1^3,-1*K.1^7,K.1^3,-1*K.1^11,K.1^19,K.1^13,-1*K.1^9,K.1^17,-1*K.1,K.1^7,-1*K.1^19,K.1^17,K.1^9,-1*K.1^19,K.1,K.1^13,K.1^11,-1*K.1^3,-1*K.1^17,-1*K.1^7,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^10,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1,1,-1,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^15,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^4,K.1^12,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^4,-1*K.1^4,K.1^16,K.1^12,-1*K.1^8,K.1^4,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^18,K.1^2,K.1^6,-1*K.1^18,-1*K.1^2,K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^14,K.1^6,-1*K.1^14,K.1^14,K.1^18,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,K.1^8,K.1^2,-1*K.1^2,-1*K.1^6,K.1^14,K.1^18,K.1^6,-1*K.1^4,K.1^2,-1*K.1^18,-1*K.1^2,K.1^6,K.1^18,K.1^14,-1*K.1^6,-1*K.1^14,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^8,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^4,K.1^16,-1*K.1^16,K.1^12,-1*K.1^8,K.1^12,-1*K.1,K.1^11,-1*K.1^3,K.1^19,-1*K.1^9,-1*K.1^7,-1*K.1^11,K.1^13,-1*K.1^13,K.1^3,-1*K.1^19,K.1^17,K.1,K.1^9,-1*K.1^17,K.1^7,-1*K.1^9,K.1,K.1^11,-1*K.1^19,-1*K.1^3,K.1^11,K.1,-1*K.1^9,K.1^13,K.1^17,-1*K.1^17,-1*K.1^13,K.1^9,-1*K.1^7,K.1^7,K.1^3,K.1^19,-1*K.1,K.1^17,K.1^13,-1*K.1^13,-1*K.1^11,-1*K.1^7,-1*K.1^3,K.1^3,K.1^7,-1*K.1^11,K.1^19,-1*K.1^19,-1*K.1^17,-1*K.1,K.1^9,-1*K.1^18,K.1^2,-1*K.1^2,K.1^18,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^14,K.1^2,K.1^14,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^16,K.1^6,-1*K.1^12,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^16,K.1^12,K.1^14,-1*K.1^4,-1*K.1^8,-1*K.1^18,K.1^2,K.1^3,K.1^17,-1*K.1^19,K.1^7,-1*K.1,-1*K.1^13,K.1^19,-1*K.1^11,-1*K.1^9,K.1^9,K.1^7,-1*K.1^17,K.1^13,-1*K.1^17,K.1^9,-1*K.1,-1*K.1^7,K.1^11,-1*K.1^3,K.1^19,-1*K.1^13,K.1,-1*K.1^3,-1*K.1^11,K.1,-1*K.1^19,-1*K.1^7,-1*K.1^9,K.1^17,K.1^3,K.1^13,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^10,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,-1,1,-1,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,K.1^5,K.1^12,K.1^4,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^4,K.1^8,-1*K.1^12,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^2,-1*K.1^18,-1*K.1^14,K.1^2,K.1^18,-1*K.1^6,K.1^14,K.1^2,K.1^6,-1*K.1^14,K.1^6,-1*K.1^6,-1*K.1^2,K.1^14,K.1^18,-1*K.1^18,K.1^2,K.1^6,K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,-1*K.1^18,K.1^18,K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^14,K.1^16,-1*K.1^18,K.1^2,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^6,K.1^14,K.1^6,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^12,-1*K.1^16,K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^16,-1*K.1^4,K.1^4,-1*K.1^8,K.1^12,-1*K.1^8,-1*K.1^19,K.1^9,-1*K.1^17,K.1,-1*K.1^11,-1*K.1^13,-1*K.1^9,K.1^7,-1*K.1^7,K.1^17,-1*K.1,K.1^3,K.1^19,K.1^11,-1*K.1^3,K.1^13,-1*K.1^11,K.1^19,K.1^9,-1*K.1,-1*K.1^17,K.1^9,K.1^19,-1*K.1^11,K.1^7,K.1^3,-1*K.1^3,-1*K.1^7,K.1^11,-1*K.1^13,K.1^13,K.1^17,K.1,-1*K.1^19,K.1^3,K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^13,-1*K.1^17,K.1^17,K.1^13,-1*K.1^9,K.1,-1*K.1,-1*K.1^3,-1*K.1^19,K.1^11,K.1^2,-1*K.1^18,K.1^18,-1*K.1^2,-1*K.1^6,K.1^18,K.1^14,K.1^6,K.1^2,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^14,K.1^4,-1*K.1^14,K.1^8,-1*K.1^16,-1*K.1^12,K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^16,K.1^12,K.1^2,-1*K.1^18,K.1^17,K.1^3,-1*K.1,K.1^13,-1*K.1^19,-1*K.1^7,K.1,-1*K.1^9,-1*K.1^11,K.1^11,K.1^13,-1*K.1^3,K.1^7,-1*K.1^3,K.1^11,-1*K.1^19,-1*K.1^13,K.1^9,-1*K.1^17,K.1,-1*K.1^7,K.1^19,-1*K.1^17,-1*K.1^9,K.1^19,-1*K.1,-1*K.1^13,-1*K.1^11,K.1^3,K.1^17,K.1^7,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^10,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1,1,-1,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^4,K.1^12,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^4,-1*K.1^4,K.1^16,K.1^12,-1*K.1^8,K.1^4,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^18,K.1^2,K.1^6,-1*K.1^18,-1*K.1^2,K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^14,K.1^6,-1*K.1^14,K.1^14,K.1^18,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,K.1^8,K.1^2,-1*K.1^2,-1*K.1^6,K.1^14,K.1^18,K.1^6,-1*K.1^4,K.1^2,-1*K.1^18,-1*K.1^2,K.1^6,K.1^18,K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^8,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^4,K.1^16,-1*K.1^16,K.1^12,-1*K.1^8,K.1^12,K.1,-1*K.1^11,K.1^3,-1*K.1^19,K.1^9,K.1^7,K.1^11,-1*K.1^13,K.1^13,-1*K.1^3,K.1^19,-1*K.1^17,-1*K.1,-1*K.1^9,K.1^17,-1*K.1^7,K.1^9,-1*K.1,-1*K.1^11,K.1^19,K.1^3,-1*K.1^11,-1*K.1,K.1^9,-1*K.1^13,-1*K.1^17,K.1^17,K.1^13,-1*K.1^9,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^19,K.1,-1*K.1^17,-1*K.1^13,K.1^13,K.1^11,K.1^7,K.1^3,-1*K.1^3,-1*K.1^7,K.1^11,-1*K.1^19,K.1^19,K.1^17,K.1,-1*K.1^9,-1*K.1^18,K.1^2,-1*K.1^2,K.1^18,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^14,K.1^2,K.1^14,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^16,K.1^6,-1*K.1^12,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^16,K.1^12,K.1^14,-1*K.1^4,-1*K.1^8,-1*K.1^18,K.1^2,-1*K.1^3,-1*K.1^17,K.1^19,-1*K.1^7,K.1,K.1^13,-1*K.1^19,K.1^11,K.1^9,-1*K.1^9,-1*K.1^7,K.1^17,-1*K.1^13,K.1^17,-1*K.1^9,K.1,K.1^7,-1*K.1^11,K.1^3,-1*K.1^19,K.1^13,-1*K.1,K.1^3,K.1^11,-1*K.1,K.1^19,K.1^7,K.1^9,-1*K.1^17,-1*K.1^3,-1*K.1^13,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^10,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1,1,-1,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^4,K.1^12,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^4,-1*K.1^4,K.1^16,K.1^12,-1*K.1^8,K.1^4,-1*K.1^16,-1*K.1^12,K.1^8,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,-1*K.1^18,-1*K.1^2,-1*K.1^6,K.1^18,K.1^2,-1*K.1^14,K.1^6,K.1^18,K.1^14,-1*K.1^6,K.1^14,-1*K.1^14,-1*K.1^18,K.1^6,K.1^2,-1*K.1^2,K.1^18,K.1^14,-1*K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^2,K.1^2,K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^18,K.1^2,-1*K.1^6,-1*K.1^18,-1*K.1^14,K.1^6,K.1^14,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^8,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^4,K.1^16,-1*K.1^16,K.1^12,-1*K.1^8,K.1^12,K.1^11,-1*K.1,-1*K.1^13,-1*K.1^9,K.1^19,-1*K.1^17,K.1,K.1^3,-1*K.1^3,K.1^13,K.1^9,K.1^7,-1*K.1^11,-1*K.1^19,-1*K.1^7,K.1^17,K.1^19,-1*K.1^11,-1*K.1,K.1^9,-1*K.1^13,-1*K.1,-1*K.1^11,K.1^19,K.1^3,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^19,-1*K.1^17,K.1^17,K.1^13,-1*K.1^9,K.1^11,K.1^7,K.1^3,-1*K.1^3,K.1,-1*K.1^17,-1*K.1^13,K.1^13,K.1^17,K.1,-1*K.1^9,K.1^9,-1*K.1^7,K.1^11,-1*K.1^19,K.1^18,-1*K.1^2,K.1^2,-1*K.1^18,-1*K.1^14,K.1^2,K.1^6,K.1^14,K.1^18,K.1^14,-1*K.1^2,-1*K.1^14,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^16,-1*K.1^6,-1*K.1^12,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^16,K.1^12,-1*K.1^14,-1*K.1^4,-1*K.1^8,K.1^18,-1*K.1^2,K.1^13,K.1^7,K.1^9,K.1^17,K.1^11,-1*K.1^3,-1*K.1^9,K.1,K.1^19,-1*K.1^19,K.1^17,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^19,K.1^11,-1*K.1^17,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^13,K.1,-1*K.1^11,K.1^9,-1*K.1^17,K.1^19,K.1^7,K.1^13,K.1^3,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^10,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,-1,1,-1,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^15,K.1^12,K.1^4,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^4,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,K.1^2,K.1^18,K.1^14,-1*K.1^2,-1*K.1^18,K.1^6,-1*K.1^14,-1*K.1^2,-1*K.1^6,K.1^14,-1*K.1^6,K.1^6,K.1^2,-1*K.1^14,-1*K.1^18,K.1^18,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^18,-1*K.1^18,-1*K.1^14,K.1^6,K.1^2,K.1^14,K.1^16,K.1^18,-1*K.1^2,-1*K.1^18,K.1^14,K.1^2,K.1^6,-1*K.1^14,-1*K.1^6,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^12,-1*K.1^16,K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^16,-1*K.1^4,K.1^4,-1*K.1^8,K.1^12,-1*K.1^8,-1*K.1^9,K.1^19,K.1^7,K.1^11,-1*K.1,K.1^3,-1*K.1^19,-1*K.1^17,K.1^17,-1*K.1^7,-1*K.1^11,-1*K.1^13,K.1^9,K.1,K.1^13,-1*K.1^3,-1*K.1,K.1^9,K.1^19,-1*K.1^11,K.1^7,K.1^19,K.1^9,-1*K.1,-1*K.1^17,-1*K.1^13,K.1^13,K.1^17,K.1,K.1^3,-1*K.1^3,-1*K.1^7,K.1^11,-1*K.1^9,-1*K.1^13,-1*K.1^17,K.1^17,-1*K.1^19,K.1^3,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^19,K.1^11,-1*K.1^11,K.1^13,-1*K.1^9,K.1,-1*K.1^2,K.1^18,-1*K.1^18,K.1^2,K.1^6,-1*K.1^18,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^18,K.1^6,K.1^14,-1*K.1^14,K.1^2,K.1^14,K.1^4,K.1^14,K.1^8,-1*K.1^16,-1*K.1^12,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^16,K.1^12,-1*K.1^2,K.1^18,-1*K.1^7,-1*K.1^13,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^17,K.1^11,-1*K.1^19,-1*K.1,K.1,-1*K.1^3,K.1^13,-1*K.1^17,K.1^13,K.1,-1*K.1^9,K.1^3,K.1^19,K.1^7,K.1^11,K.1^17,K.1^9,K.1^7,-1*K.1^19,K.1^9,-1*K.1^11,K.1^3,-1*K.1,-1*K.1^13,-1*K.1^7,-1*K.1^17,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^10,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1,1,-1,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,K.1^5,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^4,K.1^12,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^4,-1*K.1^4,K.1^16,K.1^12,-1*K.1^8,K.1^4,-1*K.1^16,-1*K.1^12,K.1^8,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,-1*K.1^18,-1*K.1^2,-1*K.1^6,K.1^18,K.1^2,-1*K.1^14,K.1^6,K.1^18,K.1^14,-1*K.1^6,K.1^14,-1*K.1^14,-1*K.1^18,K.1^6,K.1^2,-1*K.1^2,K.1^18,K.1^14,-1*K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^2,K.1^2,K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^4,-1*K.1^2,K.1^18,K.1^2,-1*K.1^6,-1*K.1^18,-1*K.1^14,K.1^6,K.1^14,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^8,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^4,K.1^16,-1*K.1^16,K.1^12,-1*K.1^8,K.1^12,-1*K.1^11,K.1,K.1^13,K.1^9,-1*K.1^19,K.1^17,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^13,-1*K.1^9,-1*K.1^7,K.1^11,K.1^19,K.1^7,-1*K.1^17,-1*K.1^19,K.1^11,K.1,-1*K.1^9,K.1^13,K.1,K.1^11,-1*K.1^19,-1*K.1^3,-1*K.1^7,K.1^7,K.1^3,K.1^19,K.1^17,-1*K.1^17,-1*K.1^13,K.1^9,-1*K.1^11,-1*K.1^7,-1*K.1^3,K.1^3,-1*K.1,K.1^17,K.1^13,-1*K.1^13,-1*K.1^17,-1*K.1,K.1^9,-1*K.1^9,K.1^7,-1*K.1^11,K.1^19,K.1^18,-1*K.1^2,K.1^2,-1*K.1^18,-1*K.1^14,K.1^2,K.1^6,K.1^14,K.1^18,K.1^14,-1*K.1^2,-1*K.1^14,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^16,-1*K.1^6,-1*K.1^12,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^16,K.1^12,-1*K.1^14,-1*K.1^4,-1*K.1^8,K.1^18,-1*K.1^2,-1*K.1^13,-1*K.1^7,-1*K.1^9,-1*K.1^17,-1*K.1^11,K.1^3,K.1^9,-1*K.1,-1*K.1^19,K.1^19,-1*K.1^17,K.1^7,-1*K.1^3,K.1^7,K.1^19,-1*K.1^11,K.1^17,K.1,K.1^13,K.1^9,K.1^3,K.1^11,K.1^13,-1*K.1,K.1^11,-1*K.1^9,K.1^17,-1*K.1^19,-1*K.1^7,-1*K.1^13,-1*K.1^3,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^10,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,-1,1,-1,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^15,K.1^12,K.1^4,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^4,K.1^8,-1*K.1^12,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,K.1^2,K.1^18,K.1^14,-1*K.1^2,-1*K.1^18,K.1^6,-1*K.1^14,-1*K.1^2,-1*K.1^6,K.1^14,-1*K.1^6,K.1^6,K.1^2,-1*K.1^14,-1*K.1^18,K.1^18,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^18,-1*K.1^18,-1*K.1^14,K.1^6,K.1^2,K.1^14,K.1^16,K.1^18,-1*K.1^2,-1*K.1^18,K.1^14,K.1^2,K.1^6,-1*K.1^14,-1*K.1^6,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^12,-1*K.1^16,K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^16,-1*K.1^4,K.1^4,-1*K.1^8,K.1^12,-1*K.1^8,K.1^9,-1*K.1^19,-1*K.1^7,-1*K.1^11,K.1,-1*K.1^3,K.1^19,K.1^17,-1*K.1^17,K.1^7,K.1^11,K.1^13,-1*K.1^9,-1*K.1,-1*K.1^13,K.1^3,K.1,-1*K.1^9,-1*K.1^19,K.1^11,-1*K.1^7,-1*K.1^19,-1*K.1^9,K.1,K.1^17,K.1^13,-1*K.1^13,-1*K.1^17,-1*K.1,-1*K.1^3,K.1^3,K.1^7,-1*K.1^11,K.1^9,K.1^13,K.1^17,-1*K.1^17,K.1^19,-1*K.1^3,-1*K.1^7,K.1^7,K.1^3,K.1^19,-1*K.1^11,K.1^11,-1*K.1^13,K.1^9,-1*K.1,-1*K.1^2,K.1^18,-1*K.1^18,K.1^2,K.1^6,-1*K.1^18,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^18,K.1^6,K.1^14,-1*K.1^14,K.1^2,K.1^14,K.1^4,K.1^14,K.1^8,-1*K.1^16,-1*K.1^12,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^16,K.1^12,-1*K.1^2,K.1^18,K.1^7,K.1^13,K.1^11,K.1^3,K.1^9,-1*K.1^17,-1*K.1^11,K.1^19,K.1,-1*K.1,K.1^3,-1*K.1^13,K.1^17,-1*K.1^13,-1*K.1,K.1^9,-1*K.1^3,-1*K.1^19,-1*K.1^7,-1*K.1^11,-1*K.1^17,-1*K.1^9,-1*K.1^7,K.1^19,-1*K.1^9,K.1^11,-1*K.1^3,K.1,K.1^13,K.1^7,K.1^17,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,K.1^10,-1*K.1^10,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,-1,1,-1,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,K.1^5,K.1^4,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^16,K.1^8,K.1^4,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^12,K.1^12,-1*K.1^8,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1*K.1^16,K.1^4,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,K.1^14,K.1^6,K.1^18,-1*K.1^14,-1*K.1^6,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^2,K.1^18,-1*K.1^2,K.1^2,K.1^14,-1*K.1^18,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^18,K.1^2,K.1^14,K.1^18,-1*K.1^12,-1*K.1^6,K.1^14,K.1^6,-1*K.1^18,-1*K.1^14,-1*K.1^2,K.1^18,K.1^2,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^4,K.1^12,-1*K.1^8,K.1^4,K.1^16,-1*K.1^12,K.1^12,K.1^8,-1*K.1^8,-1*K.1^16,K.1^4,-1*K.1^16,K.1^3,K.1^13,K.1^9,-1*K.1^17,-1*K.1^7,-1*K.1,-1*K.1^13,K.1^19,-1*K.1^19,-1*K.1^9,K.1^17,-1*K.1^11,-1*K.1^3,K.1^7,K.1^11,K.1,K.1^7,K.1^3,-1*K.1^13,-1*K.1^17,-1*K.1^9,-1*K.1^13,K.1^3,K.1^7,-1*K.1^19,K.1^11,-1*K.1^11,K.1^19,-1*K.1^7,K.1,-1*K.1,K.1^9,K.1^17,-1*K.1^3,K.1^11,-1*K.1^19,K.1^19,K.1^13,K.1,-1*K.1^9,K.1^9,-1*K.1,K.1^13,K.1^17,-1*K.1^17,-1*K.1^11,-1*K.1^3,-1*K.1^7,-1*K.1^14,K.1^6,-1*K.1^6,K.1^14,K.1^2,-1*K.1^6,-1*K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^6,K.1^2,K.1^18,-1*K.1^18,K.1^14,K.1^18,-1*K.1^8,K.1^18,K.1^16,K.1^12,-1*K.1^4,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^8,-1*K.1^16,K.1^2,-1*K.1^12,K.1^4,-1*K.1^14,K.1^6,-1*K.1^9,-1*K.1^11,K.1^17,K.1,K.1^3,-1*K.1^19,-1*K.1^17,-1*K.1^13,-1*K.1^7,K.1^7,K.1,K.1^11,K.1^19,K.1^11,K.1^7,K.1^3,-1*K.1,K.1^13,K.1^9,-1*K.1^17,-1*K.1^19,-1*K.1^3,K.1^9,-1*K.1^13,-1*K.1^3,K.1^17,-1*K.1,-1*K.1^7,-1*K.1^11,-1*K.1^9,K.1^19,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,-1*K.1^10,K.1^10,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1,1,-1,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^16,K.1^12,K.1^12,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,K.1^4,K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,K.1^4,-1*K.1^16,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,K.1^14,-1*K.1^18,K.1^2,K.1^6,K.1^18,-1*K.1^2,K.1^18,-1*K.1^18,-1*K.1^6,K.1^2,K.1^14,-1*K.1^14,K.1^6,K.1^18,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,K.1^16,-1*K.1^14,K.1^14,K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^2,K.1^8,K.1^14,-1*K.1^6,-1*K.1^14,K.1^2,K.1^6,K.1^18,-1*K.1^2,-1*K.1^18,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^16,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^16,K.1^4,-1*K.1^17,-1*K.1^7,-1*K.1^11,K.1^3,K.1^13,K.1^19,K.1^7,-1*K.1,K.1,K.1^11,-1*K.1^3,K.1^9,K.1^17,-1*K.1^13,-1*K.1^9,-1*K.1^19,-1*K.1^13,-1*K.1^17,K.1^7,K.1^3,K.1^11,K.1^7,-1*K.1^17,-1*K.1^13,K.1,-1*K.1^9,K.1^9,-1*K.1,K.1^13,-1*K.1^19,K.1^19,-1*K.1^11,-1*K.1^3,K.1^17,-1*K.1^9,K.1,-1*K.1,-1*K.1^7,-1*K.1^19,K.1^11,-1*K.1^11,K.1^19,-1*K.1^7,-1*K.1^3,K.1^3,K.1^9,K.1^17,K.1^13,K.1^6,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^18,K.1^14,K.1^2,K.1^18,K.1^6,K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^8,K.1^16,K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^12,K.1^4,-1*K.1^18,K.1^8,-1*K.1^16,K.1^6,-1*K.1^14,K.1^11,K.1^9,-1*K.1^3,-1*K.1^19,-1*K.1^17,K.1,K.1^3,K.1^7,K.1^13,-1*K.1^13,-1*K.1^19,-1*K.1^9,-1*K.1,-1*K.1^9,-1*K.1^13,-1*K.1^17,K.1^19,-1*K.1^7,-1*K.1^11,K.1^3,K.1,K.1^17,-1*K.1^11,K.1^7,K.1^17,-1*K.1^3,K.1^19,K.1^13,K.1^9,K.1^11,-1*K.1,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,K.1^10,-1*K.1^10,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,-1,1,-1,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,-1*K.1^5,K.1^4,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^16,K.1^8,K.1^4,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^12,K.1^12,-1*K.1^8,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1*K.1^16,K.1^4,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,K.1^14,K.1^6,K.1^18,-1*K.1^14,-1*K.1^6,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^2,K.1^18,-1*K.1^2,K.1^2,K.1^14,-1*K.1^18,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,-1*K.1^18,K.1^2,K.1^14,K.1^18,-1*K.1^12,-1*K.1^6,K.1^14,K.1^6,-1*K.1^18,-1*K.1^14,-1*K.1^2,K.1^18,K.1^2,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^4,K.1^12,-1*K.1^8,K.1^4,K.1^16,-1*K.1^12,K.1^12,K.1^8,-1*K.1^8,-1*K.1^16,K.1^4,-1*K.1^16,-1*K.1^3,-1*K.1^13,-1*K.1^9,K.1^17,K.1^7,K.1,K.1^13,-1*K.1^19,K.1^19,K.1^9,-1*K.1^17,K.1^11,K.1^3,-1*K.1^7,-1*K.1^11,-1*K.1,-1*K.1^7,-1*K.1^3,K.1^13,K.1^17,K.1^9,K.1^13,-1*K.1^3,-1*K.1^7,K.1^19,-1*K.1^11,K.1^11,-1*K.1^19,K.1^7,-1*K.1,K.1,-1*K.1^9,-1*K.1^17,K.1^3,-1*K.1^11,K.1^19,-1*K.1^19,-1*K.1^13,-1*K.1,K.1^9,-1*K.1^9,K.1,-1*K.1^13,-1*K.1^17,K.1^17,K.1^11,K.1^3,K.1^7,-1*K.1^14,K.1^6,-1*K.1^6,K.1^14,K.1^2,-1*K.1^6,-1*K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^6,K.1^2,K.1^18,-1*K.1^18,K.1^14,K.1^18,-1*K.1^8,K.1^18,K.1^16,K.1^12,-1*K.1^4,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^8,-1*K.1^16,K.1^2,-1*K.1^12,K.1^4,-1*K.1^14,K.1^6,K.1^9,K.1^11,-1*K.1^17,-1*K.1,-1*K.1^3,K.1^19,K.1^17,K.1^13,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^11,-1*K.1^19,-1*K.1^11,-1*K.1^7,-1*K.1^3,K.1,-1*K.1^13,-1*K.1^9,K.1^17,K.1^19,K.1^3,-1*K.1^9,K.1^13,K.1^3,-1*K.1^17,K.1,K.1^7,K.1^11,K.1^9,-1*K.1^19,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,-1*K.1^10,K.1^10,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1,1,-1,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^15,-1*K.1^16,K.1^12,K.1^12,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,K.1^4,K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,K.1^4,-1*K.1^16,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,K.1^14,-1*K.1^18,K.1^2,K.1^6,K.1^18,-1*K.1^2,K.1^18,-1*K.1^18,-1*K.1^6,K.1^2,K.1^14,-1*K.1^14,K.1^6,K.1^18,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,K.1^16,-1*K.1^14,K.1^14,K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^2,K.1^8,K.1^14,-1*K.1^6,-1*K.1^14,K.1^2,K.1^6,K.1^18,-1*K.1^2,-1*K.1^18,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^16,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^16,K.1^4,K.1^17,K.1^7,K.1^11,-1*K.1^3,-1*K.1^13,-1*K.1^19,-1*K.1^7,K.1,-1*K.1,-1*K.1^11,K.1^3,-1*K.1^9,-1*K.1^17,K.1^13,K.1^9,K.1^19,K.1^13,K.1^17,-1*K.1^7,-1*K.1^3,-1*K.1^11,-1*K.1^7,K.1^17,K.1^13,-1*K.1,K.1^9,-1*K.1^9,K.1,-1*K.1^13,K.1^19,-1*K.1^19,K.1^11,K.1^3,-1*K.1^17,K.1^9,-1*K.1,K.1,K.1^7,K.1^19,-1*K.1^11,K.1^11,-1*K.1^19,K.1^7,K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^17,-1*K.1^13,K.1^6,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^18,K.1^14,K.1^2,K.1^18,K.1^6,K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^8,K.1^16,K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^12,K.1^4,-1*K.1^18,K.1^8,-1*K.1^16,K.1^6,-1*K.1^14,-1*K.1^11,-1*K.1^9,K.1^3,K.1^19,K.1^17,-1*K.1,-1*K.1^3,-1*K.1^7,-1*K.1^13,K.1^13,K.1^19,K.1^9,K.1,K.1^9,K.1^13,K.1^17,-1*K.1^19,K.1^7,K.1^11,-1*K.1^3,-1*K.1,-1*K.1^17,K.1^11,-1*K.1^7,-1*K.1^17,K.1^3,-1*K.1^19,-1*K.1^13,-1*K.1^9,-1*K.1^11,K.1,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,K.1^10,-1*K.1^10,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1,1,-1,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,K.1^5,-1*K.1^16,K.1^12,K.1^12,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,K.1^4,K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,K.1^4,-1*K.1^16,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^6,K.1^14,K.1^2,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^2,-1*K.1^18,K.1^18,K.1^6,-1*K.1^2,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,K.1^16,K.1^14,-1*K.1^14,-1*K.1^2,K.1^18,K.1^6,K.1^2,K.1^8,-1*K.1^14,K.1^6,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^2,K.1^18,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^16,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^16,K.1^4,-1*K.1^7,-1*K.1^17,K.1,K.1^13,K.1^3,-1*K.1^9,K.1^17,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^13,-1*K.1^19,K.1^7,-1*K.1^3,K.1^19,K.1^9,-1*K.1^3,-1*K.1^7,K.1^17,K.1^13,-1*K.1,K.1^17,-1*K.1^7,-1*K.1^3,-1*K.1^11,K.1^19,-1*K.1^19,K.1^11,K.1^3,K.1^9,-1*K.1^9,K.1,-1*K.1^13,K.1^7,K.1^19,-1*K.1^11,K.1^11,-1*K.1^17,K.1^9,-1*K.1,K.1,-1*K.1^9,-1*K.1^17,-1*K.1^13,K.1^13,-1*K.1^19,K.1^7,K.1^3,-1*K.1^6,K.1^14,-1*K.1^14,K.1^6,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^14,K.1^18,K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^12,K.1^2,-1*K.1^4,-1*K.1^8,K.1^16,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^12,K.1^4,K.1^18,K.1^8,-1*K.1^16,-1*K.1^6,K.1^14,-1*K.1,-1*K.1^19,-1*K.1^13,K.1^9,-1*K.1^7,-1*K.1^11,K.1^13,K.1^17,K.1^3,-1*K.1^3,K.1^9,K.1^19,K.1^11,K.1^19,-1*K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^17,K.1,K.1^13,-1*K.1^11,K.1^7,K.1,K.1^17,K.1^7,-1*K.1^13,-1*K.1^9,K.1^3,-1*K.1^19,-1*K.1,K.1^11,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,-1*K.1^10,K.1^10,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,-1,1,-1,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^15,K.1^4,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^16,K.1^8,K.1^4,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^12,K.1^12,-1*K.1^8,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1*K.1^16,K.1^4,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^14,-1*K.1^6,-1*K.1^18,K.1^14,K.1^6,-1*K.1^2,K.1^18,K.1^14,K.1^2,-1*K.1^18,K.1^2,-1*K.1^2,-1*K.1^14,K.1^18,K.1^6,-1*K.1^6,K.1^14,K.1^2,K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^12,K.1^6,-1*K.1^14,-1*K.1^6,K.1^18,K.1^14,K.1^2,-1*K.1^18,-1*K.1^2,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^4,K.1^12,-1*K.1^8,K.1^4,K.1^16,-1*K.1^12,K.1^12,K.1^8,-1*K.1^8,-1*K.1^16,K.1^4,-1*K.1^16,K.1^13,K.1^3,-1*K.1^19,-1*K.1^7,-1*K.1^17,K.1^11,-1*K.1^3,-1*K.1^9,K.1^9,K.1^19,K.1^7,K.1,-1*K.1^13,K.1^17,-1*K.1,-1*K.1^11,K.1^17,K.1^13,-1*K.1^3,-1*K.1^7,K.1^19,-1*K.1^3,K.1^13,K.1^17,K.1^9,-1*K.1,K.1,-1*K.1^9,-1*K.1^17,-1*K.1^11,K.1^11,-1*K.1^19,K.1^7,-1*K.1^13,-1*K.1,K.1^9,-1*K.1^9,K.1^3,-1*K.1^11,K.1^19,-1*K.1^19,K.1^11,K.1^3,K.1^7,-1*K.1^7,K.1,-1*K.1^13,-1*K.1^17,K.1^14,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,K.1^18,K.1^2,K.1^14,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^8,-1*K.1^18,K.1^16,K.1^12,-1*K.1^4,K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^8,-1*K.1^16,-1*K.1^2,-1*K.1^12,K.1^4,K.1^14,-1*K.1^6,K.1^19,K.1,K.1^7,-1*K.1^11,K.1^13,K.1^9,-1*K.1^7,-1*K.1^3,-1*K.1^17,K.1^17,-1*K.1^11,-1*K.1,-1*K.1^9,-1*K.1,K.1^17,K.1^13,K.1^11,K.1^3,-1*K.1^19,-1*K.1^7,K.1^9,-1*K.1^13,-1*K.1^19,-1*K.1^3,-1*K.1^13,K.1^7,K.1^11,-1*K.1^17,K.1,K.1^19,-1*K.1^9,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,K.1^10,-1*K.1^10,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1,1,-1,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^16,K.1^12,K.1^12,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,K.1^4,K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,K.1^4,-1*K.1^16,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^6,K.1^14,K.1^2,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^2,-1*K.1^18,K.1^18,K.1^6,-1*K.1^2,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,K.1^16,K.1^14,-1*K.1^14,-1*K.1^2,K.1^18,K.1^6,K.1^2,K.1^8,-1*K.1^14,K.1^6,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^2,K.1^18,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^16,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^4,K.1^8,-1*K.1^8,-1*K.1^12,K.1^12,K.1^4,-1*K.1^16,K.1^4,K.1^7,K.1^17,-1*K.1,-1*K.1^13,-1*K.1^3,K.1^9,-1*K.1^17,-1*K.1^11,K.1^11,K.1,K.1^13,K.1^19,-1*K.1^7,K.1^3,-1*K.1^19,-1*K.1^9,K.1^3,K.1^7,-1*K.1^17,-1*K.1^13,K.1,-1*K.1^17,K.1^7,K.1^3,K.1^11,-1*K.1^19,K.1^19,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^9,-1*K.1,K.1^13,-1*K.1^7,-1*K.1^19,K.1^11,-1*K.1^11,K.1^17,-1*K.1^9,K.1,-1*K.1,K.1^9,K.1^17,K.1^13,-1*K.1^13,K.1^19,-1*K.1^7,-1*K.1^3,-1*K.1^6,K.1^14,-1*K.1^14,K.1^6,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^14,K.1^18,K.1^2,-1*K.1^2,K.1^6,K.1^2,K.1^12,K.1^2,-1*K.1^4,-1*K.1^8,K.1^16,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^12,K.1^4,K.1^18,K.1^8,-1*K.1^16,-1*K.1^6,K.1^14,K.1,K.1^19,K.1^13,-1*K.1^9,K.1^7,K.1^11,-1*K.1^13,-1*K.1^17,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^19,-1*K.1^11,-1*K.1^19,K.1^3,K.1^7,K.1^9,K.1^17,-1*K.1,-1*K.1^13,K.1^11,-1*K.1^7,-1*K.1,-1*K.1^17,-1*K.1^7,K.1^13,K.1^9,-1*K.1^3,K.1^19,K.1,-1*K.1^11,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,-1*K.1^10,K.1^10,-1*K.1^4,K.1^16,K.1^8,-1*K.1^12,-1,1,-1,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^15,K.1^4,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^16,K.1^8,K.1^4,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^4,K.1^12,K.1^12,-1*K.1^8,K.1^16,-1*K.1^4,-1*K.1^12,K.1^8,-1*K.1^16,K.1^4,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^14,-1*K.1^6,-1*K.1^18,K.1^14,K.1^6,-1*K.1^2,K.1^18,K.1^14,K.1^2,-1*K.1^18,K.1^2,-1*K.1^2,-1*K.1^14,K.1^18,K.1^6,-1*K.1^6,K.1^14,K.1^2,K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^12,K.1^6,-1*K.1^14,-1*K.1^6,K.1^18,K.1^14,K.1^2,-1*K.1^18,-1*K.1^2,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^4,K.1^12,-1*K.1^8,K.1^4,K.1^16,-1*K.1^12,K.1^12,K.1^8,-1*K.1^8,-1*K.1^16,K.1^4,-1*K.1^16,-1*K.1^13,-1*K.1^3,K.1^19,K.1^7,K.1^17,-1*K.1^11,K.1^3,K.1^9,-1*K.1^9,-1*K.1^19,-1*K.1^7,-1*K.1,K.1^13,-1*K.1^17,K.1,K.1^11,-1*K.1^17,-1*K.1^13,K.1^3,K.1^7,-1*K.1^19,K.1^3,-1*K.1^13,-1*K.1^17,-1*K.1^9,K.1,-1*K.1,K.1^9,K.1^17,K.1^11,-1*K.1^11,K.1^19,-1*K.1^7,K.1^13,K.1,-1*K.1^9,K.1^9,-1*K.1^3,K.1^11,-1*K.1^19,K.1^19,-1*K.1^11,-1*K.1^3,-1*K.1^7,K.1^7,-1*K.1,K.1^13,K.1^17,K.1^14,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,K.1^18,K.1^2,K.1^14,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^8,-1*K.1^18,K.1^16,K.1^12,-1*K.1^4,K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^8,-1*K.1^16,-1*K.1^2,-1*K.1^12,K.1^4,K.1^14,-1*K.1^6,-1*K.1^19,-1*K.1,-1*K.1^7,K.1^11,-1*K.1^13,-1*K.1^9,K.1^7,K.1^3,K.1^17,-1*K.1^17,K.1^11,K.1,K.1^9,K.1,-1*K.1^17,-1*K.1^13,-1*K.1^11,-1*K.1^3,K.1^19,K.1^7,-1*K.1^9,K.1^13,K.1^19,K.1^3,K.1^13,-1*K.1^7,-1*K.1^11,K.1^17,-1*K.1,-1*K.1^19,K.1^9,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,K.1^10,-1*K.1^10,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,-1,1,-1,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,K.1^5,K.1^12,K.1^4,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1*K.1^8,K.1^12,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^2,-1*K.1^18,-1*K.1^14,K.1^2,K.1^18,-1*K.1^6,K.1^14,K.1^2,K.1^6,-1*K.1^14,K.1^6,-1*K.1^6,-1*K.1^2,K.1^14,K.1^18,-1*K.1^18,K.1^2,K.1^6,K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,-1*K.1^18,K.1^18,K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^14,K.1^16,K.1^18,-1*K.1^2,-1*K.1^18,K.1^14,K.1^2,K.1^6,-1*K.1^14,-1*K.1^6,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^12,-1*K.1^16,K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^16,-1*K.1^4,K.1^4,-1*K.1^8,K.1^12,-1*K.1^8,K.1^19,-1*K.1^9,K.1^17,-1*K.1,K.1^11,K.1^13,K.1^9,-1*K.1^7,K.1^7,-1*K.1^17,K.1,-1*K.1^3,-1*K.1^19,-1*K.1^11,K.1^3,-1*K.1^13,-1*K.1^11,K.1^19,K.1^9,-1*K.1,-1*K.1^17,K.1^9,K.1^19,-1*K.1^11,K.1^7,K.1^3,-1*K.1^3,-1*K.1^7,K.1^11,-1*K.1^13,K.1^13,K.1^17,K.1,-1*K.1^19,K.1^3,K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^13,-1*K.1^17,K.1^17,K.1^13,-1*K.1^9,K.1,-1*K.1,-1*K.1^3,-1*K.1^19,K.1^11,K.1^2,-1*K.1^18,K.1^18,-1*K.1^2,-1*K.1^6,K.1^18,K.1^14,K.1^6,K.1^2,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^14,K.1^4,-1*K.1^14,K.1^8,-1*K.1^16,-1*K.1^12,K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^16,K.1^12,K.1^2,-1*K.1^18,-1*K.1^17,-1*K.1^3,K.1,-1*K.1^13,K.1^19,K.1^7,-1*K.1,K.1^9,K.1^11,-1*K.1^11,-1*K.1^13,K.1^3,-1*K.1^7,K.1^3,-1*K.1^11,K.1^19,K.1^13,-1*K.1^9,K.1^17,-1*K.1,K.1^7,-1*K.1^19,K.1^17,K.1^9,-1*K.1^19,K.1,K.1^13,K.1^11,-1*K.1^3,-1*K.1^17,-1*K.1^7,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,-1*K.1^10,K.1^10,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1,1,-1,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^4,K.1^12,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^4,K.1^4,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,K.1^12,-1*K.1^8,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^18,K.1^2,K.1^6,-1*K.1^18,-1*K.1^2,K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^14,K.1^6,-1*K.1^14,K.1^14,K.1^18,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,K.1^8,K.1^2,-1*K.1^2,-1*K.1^6,K.1^14,K.1^18,K.1^6,-1*K.1^4,-1*K.1^2,K.1^18,K.1^2,-1*K.1^6,-1*K.1^18,-1*K.1^14,K.1^6,K.1^14,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^8,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^4,K.1^16,-1*K.1^16,K.1^12,-1*K.1^8,K.1^12,-1*K.1,K.1^11,-1*K.1^3,K.1^19,-1*K.1^9,-1*K.1^7,-1*K.1^11,K.1^13,-1*K.1^13,K.1^3,-1*K.1^19,K.1^17,K.1,K.1^9,-1*K.1^17,K.1^7,K.1^9,-1*K.1,-1*K.1^11,K.1^19,K.1^3,-1*K.1^11,-1*K.1,K.1^9,-1*K.1^13,-1*K.1^17,K.1^17,K.1^13,-1*K.1^9,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^19,K.1,-1*K.1^17,-1*K.1^13,K.1^13,K.1^11,K.1^7,K.1^3,-1*K.1^3,-1*K.1^7,K.1^11,-1*K.1^19,K.1^19,K.1^17,K.1,-1*K.1^9,-1*K.1^18,K.1^2,-1*K.1^2,K.1^18,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^14,K.1^2,K.1^14,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^16,K.1^6,-1*K.1^12,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^16,K.1^12,K.1^14,-1*K.1^4,-1*K.1^8,-1*K.1^18,K.1^2,K.1^3,K.1^17,-1*K.1^19,K.1^7,-1*K.1,-1*K.1^13,K.1^19,-1*K.1^11,-1*K.1^9,K.1^9,K.1^7,-1*K.1^17,K.1^13,-1*K.1^17,K.1^9,-1*K.1,-1*K.1^7,K.1^11,-1*K.1^3,K.1^19,-1*K.1^13,K.1,-1*K.1^3,-1*K.1^11,K.1,-1*K.1^19,-1*K.1^7,-1*K.1^9,K.1^17,K.1^3,K.1^13,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,K.1^10,-1*K.1^10,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,-1,1,-1,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,-1*K.1^5,K.1^12,K.1^4,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1*K.1^8,K.1^12,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^2,-1*K.1^18,-1*K.1^14,K.1^2,K.1^18,-1*K.1^6,K.1^14,K.1^2,K.1^6,-1*K.1^14,K.1^6,-1*K.1^6,-1*K.1^2,K.1^14,K.1^18,-1*K.1^18,K.1^2,K.1^6,K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,-1*K.1^18,K.1^18,K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^14,K.1^16,K.1^18,-1*K.1^2,-1*K.1^18,K.1^14,K.1^2,K.1^6,-1*K.1^14,-1*K.1^6,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^12,-1*K.1^16,K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^16,-1*K.1^4,K.1^4,-1*K.1^8,K.1^12,-1*K.1^8,-1*K.1^19,K.1^9,-1*K.1^17,K.1,-1*K.1^11,-1*K.1^13,-1*K.1^9,K.1^7,-1*K.1^7,K.1^17,-1*K.1,K.1^3,K.1^19,K.1^11,-1*K.1^3,K.1^13,K.1^11,-1*K.1^19,-1*K.1^9,K.1,K.1^17,-1*K.1^9,-1*K.1^19,K.1^11,-1*K.1^7,-1*K.1^3,K.1^3,K.1^7,-1*K.1^11,K.1^13,-1*K.1^13,-1*K.1^17,-1*K.1,K.1^19,-1*K.1^3,-1*K.1^7,K.1^7,K.1^9,K.1^13,K.1^17,-1*K.1^17,-1*K.1^13,K.1^9,-1*K.1,K.1,K.1^3,K.1^19,-1*K.1^11,K.1^2,-1*K.1^18,K.1^18,-1*K.1^2,-1*K.1^6,K.1^18,K.1^14,K.1^6,K.1^2,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^14,K.1^4,-1*K.1^14,K.1^8,-1*K.1^16,-1*K.1^12,K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^16,K.1^12,K.1^2,-1*K.1^18,K.1^17,K.1^3,-1*K.1,K.1^13,-1*K.1^19,-1*K.1^7,K.1,-1*K.1^9,-1*K.1^11,K.1^11,K.1^13,-1*K.1^3,K.1^7,-1*K.1^3,K.1^11,-1*K.1^19,-1*K.1^13,K.1^9,-1*K.1^17,K.1,-1*K.1^7,K.1^19,-1*K.1^17,-1*K.1^9,K.1^19,-1*K.1,-1*K.1^13,-1*K.1^11,K.1^3,K.1^17,K.1^7,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,-1*K.1^10,K.1^10,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1,1,-1,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^15,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^4,K.1^12,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^4,K.1^4,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,K.1^12,-1*K.1^8,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^18,K.1^2,K.1^6,-1*K.1^18,-1*K.1^2,K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^14,K.1^6,-1*K.1^14,K.1^14,K.1^18,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,K.1^8,K.1^2,-1*K.1^2,-1*K.1^6,K.1^14,K.1^18,K.1^6,-1*K.1^4,-1*K.1^2,K.1^18,K.1^2,-1*K.1^6,-1*K.1^18,-1*K.1^14,K.1^6,K.1^14,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^8,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^4,K.1^16,-1*K.1^16,K.1^12,-1*K.1^8,K.1^12,K.1,-1*K.1^11,K.1^3,-1*K.1^19,K.1^9,K.1^7,K.1^11,-1*K.1^13,K.1^13,-1*K.1^3,K.1^19,-1*K.1^17,-1*K.1,-1*K.1^9,K.1^17,-1*K.1^7,-1*K.1^9,K.1,K.1^11,-1*K.1^19,-1*K.1^3,K.1^11,K.1,-1*K.1^9,K.1^13,K.1^17,-1*K.1^17,-1*K.1^13,K.1^9,-1*K.1^7,K.1^7,K.1^3,K.1^19,-1*K.1,K.1^17,K.1^13,-1*K.1^13,-1*K.1^11,-1*K.1^7,-1*K.1^3,K.1^3,K.1^7,-1*K.1^11,K.1^19,-1*K.1^19,-1*K.1^17,-1*K.1,K.1^9,-1*K.1^18,K.1^2,-1*K.1^2,K.1^18,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^14,K.1^2,K.1^14,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^16,K.1^6,-1*K.1^12,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^16,K.1^12,K.1^14,-1*K.1^4,-1*K.1^8,-1*K.1^18,K.1^2,-1*K.1^3,-1*K.1^17,K.1^19,-1*K.1^7,K.1,K.1^13,-1*K.1^19,K.1^11,K.1^9,-1*K.1^9,-1*K.1^7,K.1^17,-1*K.1^13,K.1^17,-1*K.1^9,K.1,K.1^7,-1*K.1^11,K.1^3,-1*K.1^19,K.1^13,-1*K.1,K.1^3,K.1^11,-1*K.1,K.1^19,K.1^7,K.1^9,-1*K.1^17,-1*K.1^3,-1*K.1^13,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,K.1^10,-1*K.1^10,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1,1,-1,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,K.1^5,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^4,K.1^12,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^4,K.1^4,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,K.1^12,-1*K.1^8,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,-1*K.1^18,-1*K.1^2,-1*K.1^6,K.1^18,K.1^2,-1*K.1^14,K.1^6,K.1^18,K.1^14,-1*K.1^6,K.1^14,-1*K.1^14,-1*K.1^18,K.1^6,K.1^2,-1*K.1^2,K.1^18,K.1^14,-1*K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^2,K.1^2,K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^18,-1*K.1^2,K.1^6,K.1^18,K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^8,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^4,K.1^16,-1*K.1^16,K.1^12,-1*K.1^8,K.1^12,K.1^11,-1*K.1,-1*K.1^13,-1*K.1^9,K.1^19,-1*K.1^17,K.1,K.1^3,-1*K.1^3,K.1^13,K.1^9,K.1^7,-1*K.1^11,-1*K.1^19,-1*K.1^7,K.1^17,-1*K.1^19,K.1^11,K.1,-1*K.1^9,K.1^13,K.1,K.1^11,-1*K.1^19,-1*K.1^3,-1*K.1^7,K.1^7,K.1^3,K.1^19,K.1^17,-1*K.1^17,-1*K.1^13,K.1^9,-1*K.1^11,-1*K.1^7,-1*K.1^3,K.1^3,-1*K.1,K.1^17,K.1^13,-1*K.1^13,-1*K.1^17,-1*K.1,K.1^9,-1*K.1^9,K.1^7,-1*K.1^11,K.1^19,K.1^18,-1*K.1^2,K.1^2,-1*K.1^18,-1*K.1^14,K.1^2,K.1^6,K.1^14,K.1^18,K.1^14,-1*K.1^2,-1*K.1^14,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^16,-1*K.1^6,-1*K.1^12,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^16,K.1^12,-1*K.1^14,-1*K.1^4,-1*K.1^8,K.1^18,-1*K.1^2,K.1^13,K.1^7,K.1^9,K.1^17,K.1^11,-1*K.1^3,-1*K.1^9,K.1,K.1^19,-1*K.1^19,K.1^17,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^19,K.1^11,-1*K.1^17,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^13,K.1,-1*K.1^11,K.1^9,-1*K.1^17,K.1^19,K.1^7,K.1^13,K.1^3,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,-1*K.1^10,K.1^10,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,-1,1,-1,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^15,K.1^12,K.1^4,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,K.1^2,K.1^18,K.1^14,-1*K.1^2,-1*K.1^18,K.1^6,-1*K.1^14,-1*K.1^2,-1*K.1^6,K.1^14,-1*K.1^6,K.1^6,K.1^2,-1*K.1^14,-1*K.1^18,K.1^18,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^18,-1*K.1^18,-1*K.1^14,K.1^6,K.1^2,K.1^14,K.1^16,-1*K.1^18,K.1^2,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^6,K.1^14,K.1^6,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^12,-1*K.1^16,K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^16,-1*K.1^4,K.1^4,-1*K.1^8,K.1^12,-1*K.1^8,-1*K.1^9,K.1^19,K.1^7,K.1^11,-1*K.1,K.1^3,-1*K.1^19,-1*K.1^17,K.1^17,-1*K.1^7,-1*K.1^11,-1*K.1^13,K.1^9,K.1,K.1^13,-1*K.1^3,K.1,-1*K.1^9,-1*K.1^19,K.1^11,-1*K.1^7,-1*K.1^19,-1*K.1^9,K.1,K.1^17,K.1^13,-1*K.1^13,-1*K.1^17,-1*K.1,-1*K.1^3,K.1^3,K.1^7,-1*K.1^11,K.1^9,K.1^13,K.1^17,-1*K.1^17,K.1^19,-1*K.1^3,-1*K.1^7,K.1^7,K.1^3,K.1^19,-1*K.1^11,K.1^11,-1*K.1^13,K.1^9,-1*K.1,-1*K.1^2,K.1^18,-1*K.1^18,K.1^2,K.1^6,-1*K.1^18,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^18,K.1^6,K.1^14,-1*K.1^14,K.1^2,K.1^14,K.1^4,K.1^14,K.1^8,-1*K.1^16,-1*K.1^12,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^16,K.1^12,-1*K.1^2,K.1^18,-1*K.1^7,-1*K.1^13,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^17,K.1^11,-1*K.1^19,-1*K.1,K.1,-1*K.1^3,K.1^13,-1*K.1^17,K.1^13,K.1,-1*K.1^9,K.1^3,K.1^19,K.1^7,K.1^11,K.1^17,K.1^9,K.1^7,-1*K.1^19,K.1^9,-1*K.1^11,K.1^3,-1*K.1,-1*K.1^13,-1*K.1^7,-1*K.1^17,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,K.1^10,-1*K.1^10,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1,1,-1,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^4,K.1^12,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^4,K.1^4,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,K.1^12,-1*K.1^8,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,K.1^10,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,-1*K.1^18,-1*K.1^2,-1*K.1^6,K.1^18,K.1^2,-1*K.1^14,K.1^6,K.1^18,K.1^14,-1*K.1^6,K.1^14,-1*K.1^14,-1*K.1^18,K.1^6,K.1^2,-1*K.1^2,K.1^18,K.1^14,-1*K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^2,K.1^2,K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^4,K.1^2,-1*K.1^18,-1*K.1^2,K.1^6,K.1^18,K.1^14,-1*K.1^6,-1*K.1^14,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^8,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^4,K.1^4,K.1^16,-1*K.1^16,K.1^12,-1*K.1^8,K.1^12,-1*K.1^11,K.1,K.1^13,K.1^9,-1*K.1^19,K.1^17,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^13,-1*K.1^9,-1*K.1^7,K.1^11,K.1^19,K.1^7,-1*K.1^17,K.1^19,-1*K.1^11,-1*K.1,K.1^9,-1*K.1^13,-1*K.1,-1*K.1^11,K.1^19,K.1^3,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^19,-1*K.1^17,K.1^17,K.1^13,-1*K.1^9,K.1^11,K.1^7,K.1^3,-1*K.1^3,K.1,-1*K.1^17,-1*K.1^13,K.1^13,K.1^17,K.1,-1*K.1^9,K.1^9,-1*K.1^7,K.1^11,-1*K.1^19,K.1^18,-1*K.1^2,K.1^2,-1*K.1^18,-1*K.1^14,K.1^2,K.1^6,K.1^14,K.1^18,K.1^14,-1*K.1^2,-1*K.1^14,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^16,-1*K.1^6,-1*K.1^12,K.1^4,K.1^8,K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^16,K.1^12,-1*K.1^14,-1*K.1^4,-1*K.1^8,K.1^18,-1*K.1^2,-1*K.1^13,-1*K.1^7,-1*K.1^9,-1*K.1^17,-1*K.1^11,K.1^3,K.1^9,-1*K.1,-1*K.1^19,K.1^19,-1*K.1^17,K.1^7,-1*K.1^3,K.1^7,K.1^19,-1*K.1^11,K.1^17,K.1,K.1^13,K.1^9,K.1^3,K.1^11,K.1^13,-1*K.1,K.1^11,-1*K.1^9,K.1^17,-1*K.1^19,-1*K.1^7,-1*K.1^13,-1*K.1^3,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,-1*K.1^10,-1,-1*K.1^10,K.1^10,-1*K.1^12,K.1^8,-1*K.1^4,K.1^16,-1,1,-1,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^15,K.1^12,K.1^4,K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,K.1^8,-1*K.1^12,K.1^16,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,K.1^10,-1,-1*K.1^10,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,K.1^2,K.1^18,K.1^14,-1*K.1^2,-1*K.1^18,K.1^6,-1*K.1^14,-1*K.1^2,-1*K.1^6,K.1^14,-1*K.1^6,K.1^6,K.1^2,-1*K.1^14,-1*K.1^18,K.1^18,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^18,-1*K.1^18,-1*K.1^14,K.1^6,K.1^2,K.1^14,K.1^16,-1*K.1^18,K.1^2,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^6,K.1^14,K.1^6,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^12,-1*K.1^16,K.1^4,K.1^12,K.1^8,K.1^16,-1*K.1^16,-1*K.1^4,K.1^4,-1*K.1^8,K.1^12,-1*K.1^8,K.1^9,-1*K.1^19,-1*K.1^7,-1*K.1^11,K.1,-1*K.1^3,K.1^19,K.1^17,-1*K.1^17,K.1^7,K.1^11,K.1^13,-1*K.1^9,-1*K.1,-1*K.1^13,K.1^3,-1*K.1,K.1^9,K.1^19,-1*K.1^11,K.1^7,K.1^19,K.1^9,-1*K.1,-1*K.1^17,-1*K.1^13,K.1^13,K.1^17,K.1,K.1^3,-1*K.1^3,-1*K.1^7,K.1^11,-1*K.1^9,-1*K.1^13,-1*K.1^17,K.1^17,-1*K.1^19,K.1^3,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^19,K.1^11,-1*K.1^11,K.1^13,-1*K.1^9,K.1,-1*K.1^2,K.1^18,-1*K.1^18,K.1^2,K.1^6,-1*K.1^18,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^18,K.1^6,K.1^14,-1*K.1^14,K.1^2,K.1^14,K.1^4,K.1^14,K.1^8,-1*K.1^16,-1*K.1^12,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^16,K.1^12,-1*K.1^2,K.1^18,K.1^7,K.1^13,K.1^11,K.1^3,K.1^9,-1*K.1^17,-1*K.1^11,K.1^19,K.1,-1*K.1,K.1^3,-1*K.1^13,K.1^17,-1*K.1^13,-1*K.1,K.1^9,-1*K.1^3,-1*K.1^19,-1*K.1^7,-1*K.1^11,-1*K.1^17,-1*K.1^9,-1*K.1^7,K.1^19,-1*K.1^9,K.1^11,-1*K.1^3,K.1,K.1^13,K.1^7,K.1^17,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, -1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, -1, -1, -1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, -2, -2, -2, -2, 2, -2, 2, -2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, 2, -2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, -2, -2, 2, 2, 2, 2, -2, -2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, 0, -1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, -1, -1, -1, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,-2,2,2,0,0,0,0,0,0,2,2,2,2,2,-2,-2,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,2,2,-2,-2,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,2,2,2,2,-2,2,-2,-2,-2,2,2,2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-2,-2,2,-2,2,-2,2,2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,-2,2,2,0,0,0,0,0,0,2,2,2,2,2,-2,-2,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,2,2,-2,-2,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,2,2,2,2,-2,2,-2,-2,-2,2,2,2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-2,-2,2,-2,2,-2,2,2,2,-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2,-2*K.1,2,0,0,2,2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,-2,2*K.1,2,-2*K.1,2,2,2,2,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2,2,2,-2,2,2,-2,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2,-2*K.1,-2,2,-2,-2*K.1,2*K.1,2*K.1,2*K.1,-2,2,-2*K.1,-2,2,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2,2*K.1,2,0,0,2,2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,-2,-2*K.1,2,2*K.1,2,2,2,2,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2,2,2,-2,2,2,-2,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,-2,-2,2,2,-2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2,2*K.1,-2,2,-2,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2,2,2*K.1,-2,2,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,2,-2,-2,0,0,0,0,0,0,2,2,2,2,2,-2,-2,0,0,0,0,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,2,2,-2,-2,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,2,2,2,2,2,-2,2,2,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,2,2,-2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,2,-2,-2,0,0,0,0,0,0,2,2,2,2,2,-2,-2,0,0,0,0,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,2,2,-2,-2,-2,-2,-2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,2,2,2,2,2,-2,2,2,2,-2,-2,-2,2,-2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,2,-2,2,-2,-2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,2,2,-2,2,-2,2,-2,-2,-2,2,-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,2,2,2,2,-2,-2,2,0,0,0,0,-1-K.1,1-K.1,-1-K.1,-1+K.1,1+K.1,1+K.1,-1+K.1,1-K.1,-2,-2,2,2,2,-2,2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,2,2,2,2,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1,1+K.1,1-K.1,1-K.1,1-K.1,-1+K.1,-1-K.1,-1-K.1,-1-K.1,1+K.1,1+K.1,-1-K.1,-1-K.1,-1+K.1,-1+K.1,1-K.1,1-K.1,-1-K.1,-1-K.1,1+K.1,1+K.1,1-K.1,1-K.1,-1+K.1,-1+K.1,1-K.1,-1+K.1,-1+K.1,-1+K.1,-1-K.1,1+K.1,1+K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,2,2,2,2,-2,-2,2,0,0,0,0,-1+K.1,1+K.1,-1+K.1,-1-K.1,1-K.1,1-K.1,-1-K.1,1+K.1,-2,-2,2,2,2,-2,2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,2,2,2,2,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1,1-K.1,1+K.1,1+K.1,1+K.1,-1-K.1,-1+K.1,-1+K.1,-1+K.1,1-K.1,1-K.1,-1+K.1,-1+K.1,-1-K.1,-1-K.1,1+K.1,1+K.1,-1+K.1,-1+K.1,1-K.1,1-K.1,1+K.1,1+K.1,-1-K.1,-1-K.1,1+K.1,-1-K.1,-1-K.1,-1-K.1,-1+K.1,1-K.1,1-K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,2,2,2,2,-2,-2,2,0,0,0,0,1+K.1,-1+K.1,1+K.1,1-K.1,-1-K.1,-1-K.1,1-K.1,-1+K.1,-2,-2,2,2,2,-2,2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,2,2,2,2,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1,-1-K.1,-1+K.1,-1+K.1,-1+K.1,1-K.1,1+K.1,1+K.1,1+K.1,-1-K.1,-1-K.1,1+K.1,1+K.1,1-K.1,1-K.1,-1+K.1,-1+K.1,1+K.1,1+K.1,-1-K.1,-1-K.1,-1+K.1,-1+K.1,1-K.1,1-K.1,-1+K.1,1-K.1,1-K.1,1-K.1,1+K.1,-1-K.1,-1-K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,2,2,2,2,-2,-2,2,0,0,0,0,1-K.1,-1-K.1,1-K.1,1+K.1,-1+K.1,-1+K.1,1+K.1,-1-K.1,-2,-2,2,2,2,-2,2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,2,2,2,2,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1,-1+K.1,-1-K.1,-1-K.1,-1-K.1,1+K.1,1-K.1,1-K.1,1-K.1,-1+K.1,-1+K.1,1-K.1,1-K.1,1+K.1,1+K.1,-1-K.1,-1-K.1,1-K.1,1-K.1,-1+K.1,-1+K.1,-1-K.1,-1-K.1,1+K.1,1+K.1,-1-K.1,1+K.1,1+K.1,1+K.1,1-K.1,-1+K.1,-1+K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,-2,2,-2,2,0,0,2,2,2,2,-1,-1,-1,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,-2,2,-2,2,0,0,2,2,2,2,-1,-1,-1,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,2,0,0,0,0,0,0,0,0,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,2,-2,2,-2,0,0,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-2,0,0,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,2,-2,2,-2,0,0,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,-2,-2,-2,-2,0,0,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,-2,-2,-2,-2,0,0,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1-2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1,-1-2*K.1,-1-2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,1+2*K.1,-1-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,2,2,2,2,0,0,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,-1,-1,-1,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,2,2,2,2,0,0,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,-1,-1,-1,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,2,2,2,2,0,0,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,-1,-1,-1,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,2,2,2,2,0,0,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,-1,-1,-1,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,2,-2,-2,-2,-2,2,-2,2,-2,0,0,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^2,2*K.1^-2,2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1,2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,2,-2,-2,-2,-2,2,-2,2,-2,0,0,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,2*K.1^2,2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1,-2*K.1,-2*K.1^2,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,2,-2,-2,-2,-2,2,-2,2,-2,0,0,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1,2*K.1^-1,2*K.1^2,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,2,-2,-2,-2,-2,2,-2,2,-2,0,0,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,2,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,2,2,2,2,-2,-2,-2,-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,2,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,2,2,2,2,-2,-2,-2,-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,2,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,2,2,2,2,-2,-2,-2,-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,2,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,2,2,2,2,-2,-2,-2,-2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2,-2*K.1^6,2,0,0,2,2,2,2,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,1,-1*K.1^6,-1,K.1^6,-1,-1,-1,-1,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2,2,2,-2,2,2,-2,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,K.1+K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1,1,1,1,-1,-1,1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1,K.1^6,1,-1,1,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,1,-1,K.1^6,1,-1,K.1^6,-1*K.1^6,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2,2*K.1^6,2,0,0,2,2,2,2,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,1,K.1^6,-1,-1*K.1^6,-1,-1,-1,-1,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,-2,2,2,-2,2,2,-2,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2,0,0,0,0,0,0,0,0,-1*K.1-K.1^5,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1^3-2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1,1,1,1,-1,-1,1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1,-1*K.1^6,1,-1,1,-1*K.1^6,K.1^6,K.1^6,K.1^6,1,-1,-1*K.1^6,1,-1,-1*K.1^6,K.1^6,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,-1*K.1-K.1^5,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2,-2*K.1^6,2,0,0,2,2,2,2,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,1,-1*K.1^6,-1,K.1^6,-1,-1,-1,-1,-2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2,2,2,-2,2,2,-2,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2,0,0,0,0,0,0,0,0,K.1^3-2*K.1^7,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,-1,1,1,1,-1,-1,1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1,K.1^6,1,-1,1,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,1,-1,K.1^6,1,-1,K.1^6,-1*K.1^6,K.1^3-2*K.1^7,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1+K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1+K.1^5,K.1+K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1+K.1^5,K.1^3-2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2,2*K.1^6,2,0,0,2,2,2,2,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,1,K.1^6,-1,-1*K.1^6,-1,-1,-1,-1,2*K.1^6,2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,2*K.1^6,-2*K.1^6,-2,2,2,-2,2,2,-2,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^6,2*K.1^6,-2,0,0,0,0,0,0,0,0,K.1+K.1^5,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,-1,1,1,1,-1,-1,1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1,-1*K.1^6,1,-1,1,-1*K.1^6,K.1^6,K.1^6,K.1^6,1,-1,-1*K.1^6,1,-1,-1*K.1^6,K.1^6,K.1+K.1^5,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1^3-2*K.1^7,K.1+K.1^5,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,-1*K.1^3+2*K.1^7,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,K.1+K.1^5,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1^3-2*K.1^7,-1*K.1-K.1^5,-1*K.1-K.1^5,-1*K.1^3+2*K.1^7,K.1+K.1^5,-1*K.1-K.1^5,K.1^3-2*K.1^7,-1*K.1^3+2*K.1^7,-1*K.1-K.1^5,K.1^3-2*K.1^7,K.1+K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2,2*K.1^2,-2,0,0,2,2,2,2,1,-1,1,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,K.1^2,1,-1*K.1^2,-1,-1,-1,-1,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2,-2,-2,2,-2,-2,2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2,0,0,0,0,0,0,0,0,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,-1,1,1,1,-1,-1,1,-1,1,1,1,1,-2*K.1^3,2*K.1,-2*K.1,2*K.1,-2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,-1*K.1^2,-1,1,-1,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1,1,-1*K.1^2,-1,1,-1*K.1^2,K.1^2,-1*K.1,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2,-2*K.1^2,-2,0,0,2,2,2,2,1,-1,1,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,-1*K.1^2,1,K.1^2,-1,-1,-1,-1,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2,-2,-2,2,-2,-2,2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2,0,0,0,0,0,0,0,0,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1,1,1,1,-1,-1,1,-1,1,1,1,1,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,K.1^2,-1,1,-1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1,1,K.1^2,-1,1,K.1^2,-1*K.1^2,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2,2*K.1^2,-2,0,0,2,2,2,2,1,-1,1,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1,K.1^2,1,-1*K.1^2,-1,-1,-1,-1,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2,-2,-2,2,-2,-2,2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2,0,0,0,0,0,0,0,0,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1,1,1,1,-1,-1,1,-1,1,1,1,1,2*K.1^3,-2*K.1,2*K.1,-2*K.1,2*K.1^3,-2*K.1,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,-1*K.1^2,-1,1,-1,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1,1,-1*K.1^2,-1,1,-1*K.1^2,K.1^2,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2,-2*K.1^2,-2,0,0,2,2,2,2,1,-1,1,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1,-1*K.1^2,1,K.1^2,-1,-1,-1,-1,2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,2,-2,-2,2,-2,-2,2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2,0,0,0,0,0,0,0,0,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1,1,1,1,-1,-1,1,-1,1,1,1,1,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1,2*K.1^3,-2*K.1^3,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,K.1^2,-1,1,-1,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1,1,K.1^2,-1,1,K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^3,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,2,2,2,2,0,0,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,-1,-1,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,2,2,2,2,0,0,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,-1,-1,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,2,2,2,2,0,0,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,-1,-1,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,2,2,2,2,0,0,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,-1,-1,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2,-2*K.1^5,2,0,0,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^6,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^4,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2,2*K.1^5,2,-2*K.1^5,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^7,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1^3,2*K.1,-2*K.1^9,-2*K.1^7,-2*K.1,2*K.1^9,-2*K.1,2*K.1,2*K.1^7,-2*K.1^9,-2*K.1^3,2*K.1^3,2*K.1^7,2*K.1,-2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^4,-2*K.1^2,2*K.1^4,2*K.1^2,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1,-2*K.1^7,-2*K.1^9,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^6,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,2*K.1^3,-2*K.1^3,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^9,-2*K.1,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1,2*K.1^9,-2*K.1^9,2*K.1^7,2*K.1^9,2*K.1^4,-2*K.1^9,-2*K.1^8,-2*K.1^6,2*K.1^2,2*K.1^3,2*K.1^9,-2*K.1^7,2*K.1,-2*K.1^4,2*K.1^8,-2*K.1,2*K.1^6,-2*K.1^2,2*K.1^7,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2,2*K.1^5,2,0,0,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^4,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^6,2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2,-2*K.1^5,2,2*K.1^5,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^3,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^7,-2*K.1^9,2*K.1,2*K.1^3,2*K.1^9,-2*K.1,2*K.1^9,-2*K.1^9,-2*K.1^3,2*K.1,2*K.1^7,-2*K.1^7,-2*K.1^3,-2*K.1^9,2*K.1^2,-2*K.1^2,2*K.1^4,2*K.1^6,2*K.1^8,-2*K.1^6,-2*K.1^8,2*K.1^7,-2*K.1^7,-2*K.1,2*K.1^9,2*K.1^3,2*K.1,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^4,-2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,-2*K.1^7,2*K.1^7,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1,2*K.1^9,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1^9,-2*K.1,2*K.1,-2*K.1^3,-2*K.1,-2*K.1^6,2*K.1,2*K.1^2,2*K.1^4,-2*K.1^8,-2*K.1^7,-2*K.1,2*K.1^3,-2*K.1^9,2*K.1^6,-2*K.1^2,2*K.1^9,-2*K.1^4,2*K.1^8,-2*K.1^3,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2,-2*K.1^5,2,0,0,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^4,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^6,2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2,2*K.1^5,2,-2*K.1^5,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^3,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^7,2*K.1^9,-2*K.1,-2*K.1^3,-2*K.1^9,2*K.1,-2*K.1^9,2*K.1^9,2*K.1^3,-2*K.1,-2*K.1^7,2*K.1^7,2*K.1^3,2*K.1^9,2*K.1^2,-2*K.1^2,2*K.1^4,2*K.1^6,2*K.1^8,-2*K.1^6,-2*K.1^8,-2*K.1^7,2*K.1^7,2*K.1,-2*K.1^9,-2*K.1^3,-2*K.1,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^4,-2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,2*K.1^7,-2*K.1^7,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1,-2*K.1^9,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1^9,2*K.1,-2*K.1,2*K.1^3,2*K.1,-2*K.1^6,-2*K.1,2*K.1^2,2*K.1^4,-2*K.1^8,2*K.1^7,2*K.1,-2*K.1^3,2*K.1^9,2*K.1^6,-2*K.1^2,-2*K.1^9,-2*K.1^4,2*K.1^8,2*K.1^3,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2,2*K.1^5,2,0,0,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^6,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^4,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2,-2*K.1^5,2,2*K.1^5,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^7,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1^3,-2*K.1,2*K.1^9,2*K.1^7,2*K.1,-2*K.1^9,2*K.1,-2*K.1,-2*K.1^7,2*K.1^9,2*K.1^3,-2*K.1^3,-2*K.1^7,-2*K.1,-2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^4,-2*K.1^2,2*K.1^4,2*K.1^2,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1,2*K.1^7,2*K.1^9,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^6,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7,-2*K.1^3,2*K.1^3,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^9,2*K.1,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1,-2*K.1^9,2*K.1^9,-2*K.1^7,-2*K.1^9,2*K.1^4,2*K.1^9,-2*K.1^8,-2*K.1^6,2*K.1^2,-2*K.1^3,-2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^4,2*K.1^8,2*K.1,2*K.1^6,-2*K.1^2,-2*K.1^7,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2,-2*K.1^5,2,0,0,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^8,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^8,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2,2*K.1^5,2,-2*K.1^5,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^9,-2*K.1^3,2*K.1^7,2*K.1,2*K.1^3,-2*K.1^7,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1^7,2*K.1^9,-2*K.1^9,-2*K.1,-2*K.1^3,-2*K.1^4,2*K.1^4,2*K.1^8,2*K.1^2,-2*K.1^6,-2*K.1^2,2*K.1^6,2*K.1^9,-2*K.1^9,-2*K.1^7,2*K.1^3,2*K.1,2*K.1^7,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^8,-2*K.1^2,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1^9,2*K.1^9,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1^7,2*K.1^3,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1^7,2*K.1^7,-2*K.1,-2*K.1^7,-2*K.1^2,2*K.1^7,-2*K.1^4,2*K.1^8,2*K.1^6,-2*K.1^9,-2*K.1^7,2*K.1,-2*K.1^3,2*K.1^2,2*K.1^4,2*K.1^3,-2*K.1^8,-2*K.1^6,-2*K.1,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2,2*K.1^5,2,0,0,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^2,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2,-2*K.1^5,2,2*K.1^5,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^9,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1,2*K.1^7,-2*K.1^3,-2*K.1^9,-2*K.1^7,2*K.1^3,-2*K.1^7,2*K.1^7,2*K.1^9,-2*K.1^3,-2*K.1,2*K.1,2*K.1^9,2*K.1^7,2*K.1^6,-2*K.1^6,-2*K.1^2,-2*K.1^8,2*K.1^4,2*K.1^8,-2*K.1^4,-2*K.1,2*K.1,2*K.1^3,-2*K.1^7,-2*K.1^9,-2*K.1^3,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^2,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,2*K.1,-2*K.1,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^3,-2*K.1^7,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^7,2*K.1^3,-2*K.1^3,2*K.1^9,2*K.1^3,2*K.1^8,-2*K.1^3,2*K.1^6,-2*K.1^2,-2*K.1^4,2*K.1,2*K.1^3,-2*K.1^9,2*K.1^7,-2*K.1^8,-2*K.1^6,-2*K.1^7,2*K.1^2,2*K.1^4,2*K.1^9,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2,-2*K.1^5,2,0,0,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^2,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2,2*K.1^5,2,-2*K.1^5,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^9,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1,-2*K.1^7,2*K.1^3,2*K.1^9,2*K.1^7,-2*K.1^3,2*K.1^7,-2*K.1^7,-2*K.1^9,2*K.1^3,2*K.1,-2*K.1,-2*K.1^9,-2*K.1^7,2*K.1^6,-2*K.1^6,-2*K.1^2,-2*K.1^8,2*K.1^4,2*K.1^8,-2*K.1^4,2*K.1,-2*K.1,-2*K.1^3,2*K.1^7,2*K.1^9,2*K.1^3,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^2,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,-2*K.1,2*K.1,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^3,2*K.1^7,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^7,-2*K.1^3,2*K.1^3,-2*K.1^9,-2*K.1^3,2*K.1^8,2*K.1^3,2*K.1^6,-2*K.1^2,-2*K.1^4,-2*K.1,-2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1^8,-2*K.1^6,2*K.1^7,2*K.1^2,2*K.1^4,-2*K.1^9,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2,2*K.1^5,2,0,0,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^8,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^8,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2,-2*K.1^5,2,2*K.1^5,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^9,2*K.1^3,-2*K.1^7,-2*K.1,-2*K.1^3,2*K.1^7,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1^7,-2*K.1^9,2*K.1^9,2*K.1,2*K.1^3,-2*K.1^4,2*K.1^4,2*K.1^8,2*K.1^2,-2*K.1^6,-2*K.1^2,2*K.1^6,-2*K.1^9,2*K.1^9,2*K.1^7,-2*K.1^3,-2*K.1,-2*K.1^7,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^8,-2*K.1^2,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1^9,-2*K.1^9,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1^7,-2*K.1^3,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1^3,2*K.1^7,-2*K.1^7,2*K.1,2*K.1^7,-2*K.1^2,-2*K.1^7,-2*K.1^4,2*K.1^8,2*K.1^6,2*K.1^9,2*K.1^7,-2*K.1,2*K.1^3,2*K.1^2,2*K.1^4,-2*K.1^3,-2*K.1^8,-2*K.1^6,2*K.1,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,-2,2,2,0,0,0,0,0,0,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^12,2,-2,-2,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^12,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,2*K.1^16,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^8,2*K.1^4,-2*K.1^16,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^8,-2*K.1^12,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^16,-2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^8,2*K.1^16,2*K.1^4,-2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1^3-K.1^13,K.1^3+K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3-K.1^13,K.1^3+K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1-K.1^11,-1*K.1+K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1-K.1^11,-1*K.1+K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1^3-K.1^13,-1*K.1+K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3-K.1^13,-1*K.1+K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1-K.1^11,K.1^3+K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1-K.1^11,K.1^3+K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,2*K.1^4,-2*K.1^16,2*K.1^16,2*K.1^4,-2*K.1^12,-2*K.1^16,2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^16,2*K.1^12,2*K.1^8,-2*K.1^8,-2*K.1^4,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,-2,2,2,0,0,0,0,0,0,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,2,-2,-2,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,2*K.1^16,-2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^8,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,-2*K.1^4,2*K.1^8,2*K.1^16,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^4,2*K.1^8,-2*K.1^12,2*K.1^16,-2*K.1^8,-2*K.1^12,2*K.1^8,-2*K.1^8,2*K.1^16,2*K.1^12,-2*K.1^4,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^4,-2*K.1^16,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1^3-K.1^13,K.1-K.1^11,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1^3-K.1^13,K.1-K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^11,K.1^3+K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^11,K.1^3+K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^11,K.1-K.1^11,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^11,K.1-K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1^3-K.1^13,K.1^3+K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1^3-K.1^13,-2*K.1^16,2*K.1^4,-2*K.1^4,-2*K.1^16,2*K.1^8,2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^12,2*K.1^12,2*K.1^16,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,-2,2,2,0,0,0,0,0,0,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^12,2,-2,-2,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^12,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,2*K.1^16,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^8,2*K.1^4,-2*K.1^16,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^8,-2*K.1^12,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^16,-2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^8,2*K.1^16,2*K.1^4,-2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1^3+K.1^13,-1*K.1^3-K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1^3+K.1^13,-1*K.1^3-K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^11,K.1-K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1+K.1^11,K.1-K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1^3+K.1^13,K.1-K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1^3+K.1^13,K.1-K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^11,-1*K.1^3-K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1+K.1^11,-1*K.1^3-K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,2*K.1^4,-2*K.1^16,2*K.1^16,2*K.1^4,-2*K.1^12,-2*K.1^16,2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^16,2*K.1^12,2*K.1^8,-2*K.1^8,-2*K.1^4,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,-2,2,2,0,0,0,0,0,0,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,2,-2,-2,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,2*K.1^16,-2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^8,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,-2*K.1^4,2*K.1^8,2*K.1^16,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^4,2*K.1^8,-2*K.1^12,2*K.1^16,-2*K.1^8,-2*K.1^12,2*K.1^8,-2*K.1^8,2*K.1^16,2*K.1^12,-2*K.1^4,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^4,-2*K.1^16,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1^3+K.1^13,-1*K.1+K.1^11,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1^3+K.1^13,-1*K.1+K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1-K.1^11,-1*K.1^3-K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1-K.1^11,-1*K.1^3-K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1-K.1^11,-1*K.1+K.1^11,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1-K.1^11,-1*K.1+K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1^3+K.1^13,-1*K.1^3-K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1^3+K.1^13,-2*K.1^16,2*K.1^4,-2*K.1^4,-2*K.1^16,2*K.1^8,2*K.1^4,-2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^12,2*K.1^12,2*K.1^16,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,-2,2,2,0,0,0,0,0,0,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^16,2,-2,-2,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-2*K.1^12,-2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,2*K.1^8,2*K.1^16,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^16,-2*K.1^4,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^16,-2*K.1^16,-2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^4,-2*K.1^4,2*K.1^8,2*K.1^12,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1-K.1^11,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1-K.1^11,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1^3-K.1^13,K.1^3+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1+K.1^11,-1*K.1^3-K.1^13,K.1^3+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1+K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1^3+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1^3+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1^3-K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1-K.1^11,-1*K.1+K.1^11,-1*K.1^3-K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1-K.1^11,2*K.1^12,-2*K.1^8,2*K.1^8,2*K.1^12,2*K.1^16,-2*K.1^8,-2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^16,2*K.1^8,-2*K.1^16,-2*K.1^4,2*K.1^4,-2*K.1^12,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,-2,2,2,0,0,0,0,0,0,2*K.1^8,-2*K.1^12,2*K.1^16,-2*K.1^4,2,-2,-2,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,2*K.1^8,2*K.1^16,-2*K.1^16,2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^12,-2*K.1^4,2*K.1^16,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^16,-2*K.1^12,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^16,2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1-K.1^11,-1*K.1+K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3-K.1^13,K.1-K.1^11,-1*K.1+K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1^3+K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1^3+K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1-K.1^11,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1^3+K.1^13,-1*K.1^3-K.1^13,K.1-K.1^11,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1^3+K.1^13,-1*K.1^3-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1+K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1+K.1^11,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^12,2*K.1^4,2*K.1^16,-2*K.1^16,2*K.1^8,-2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,-2,2,2,0,0,0,0,0,0,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^16,2,-2,-2,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-2*K.1^12,-2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,2*K.1^8,2*K.1^16,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^8,2*K.1^16,-2*K.1^4,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^16,-2*K.1^16,-2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^4,-2*K.1^4,2*K.1^8,2*K.1^12,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^11,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^11,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1^3+K.1^13,-1*K.1^3-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1-K.1^11,K.1^3+K.1^13,-1*K.1^3-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1-K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1^3+K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^11,K.1-K.1^11,K.1^3+K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^11,2*K.1^12,-2*K.1^8,2*K.1^8,2*K.1^12,2*K.1^16,-2*K.1^8,-2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^16,2*K.1^8,-2*K.1^16,-2*K.1^4,2*K.1^4,-2*K.1^12,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,-2,-2,2,2,0,0,0,0,0,0,2*K.1^8,-2*K.1^12,2*K.1^16,-2*K.1^4,2,-2,-2,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,2*K.1^8,2*K.1^16,-2*K.1^16,2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^12,-2*K.1^4,2*K.1^16,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^16,-2*K.1^12,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^16,2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^11,K.1-K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1^3+K.1^13,-1*K.1+K.1^11,K.1-K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1^3+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1^3-K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1-K.1^5-K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1^3-K.1^13,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^11,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1^3-K.1^13,K.1^3+K.1^13,-1*K.1+K.1^11,-1*K.1+K.1^5+K.1^7-K.1^9+K.1^13,-1*K.1^3-K.1^13,K.1^3+K.1^13,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1-K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-K.1^7+K.1^9+K.1^11-K.1^15,K.1-K.1^5-K.1^7+K.1^9-K.1^13,K.1-K.1^11,-1*K.1^3+K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^12,2*K.1^4,2*K.1^16,-2*K.1^16,2*K.1^8,-2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,2,-2,-2,0,0,0,0,0,0,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^12,2,-2,-2,0,0,0,0,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^12,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,2*K.1^16,-2*K.1^12,-2*K.1^4,2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^8,-2*K.1^4,2*K.1^16,2*K.1^12,-2*K.1^8,2*K.1^4,-2*K.1^12,-2*K.1^8,2*K.1^12,-2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^16,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^8,2*K.1^16,2*K.1^4,-2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^13,K.1^3-K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^13,-1*K.1^3+K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1-K.1^11,K.1+K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^13,-1*K.1-K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^13,K.1+K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^3-K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1+K.1^11,-1*K.1^3+K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-2*K.1^4,2*K.1^16,-2*K.1^16,-2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^8,2*K.1^4,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,2,-2,-2,0,0,0,0,0,0,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,2,-2,-2,0,0,0,0,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,2*K.1^16,-2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^8,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,-2*K.1^4,2*K.1^8,2*K.1^16,-2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^8,2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^12,-2*K.1^8,2*K.1^8,-2*K.1^16,-2*K.1^12,2*K.1^4,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^4,-2*K.1^16,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^13,K.1+K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^13,-1*K.1-K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^3-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^3+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^13,-1*K.1^3+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^13,2*K.1^16,-2*K.1^4,2*K.1^4,2*K.1^16,-2*K.1^8,-2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^4,2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^16,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,2,-2,-2,0,0,0,0,0,0,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^12,2,-2,-2,0,0,0,0,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^12,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,2*K.1^16,-2*K.1^12,-2*K.1^4,2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^8,-2*K.1^4,2*K.1^16,2*K.1^12,-2*K.1^8,2*K.1^4,-2*K.1^12,-2*K.1^8,2*K.1^12,-2*K.1^12,2*K.1^4,2*K.1^8,-2*K.1^16,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^8,2*K.1^16,2*K.1^4,-2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^13,-1*K.1^3+K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^13,K.1^3-K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1+K.1^11,-1*K.1-K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^13,K.1+K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^13,-1*K.1-K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^3+K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1-K.1^11,K.1^3-K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-2*K.1^4,2*K.1^16,-2*K.1^16,-2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^8,2*K.1^4,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,2,-2,-2,0,0,0,0,0,0,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,2,-2,-2,0,0,0,0,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,2*K.1^16,-2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^8,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,-2*K.1^4,2*K.1^8,2*K.1^16,-2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^12,2*K.1^16,-2*K.1^4,-2*K.1^8,2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^12,-2*K.1^8,2*K.1^8,-2*K.1^16,-2*K.1^12,2*K.1^4,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^4,-2*K.1^16,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^13,-1*K.1-K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^13,K.1+K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^3+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^3-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^13,K.1^3-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^13,2*K.1^16,-2*K.1^4,2*K.1^4,2*K.1^16,-2*K.1^8,-2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^4,2*K.1^8,2*K.1^12,-2*K.1^12,-2*K.1^16,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,2,-2,-2,0,0,0,0,0,0,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^16,2,-2,-2,0,0,0,0,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-2*K.1^12,-2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,2*K.1^8,2*K.1^16,-2*K.1^12,-2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^16,2*K.1^4,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^16,2*K.1^16,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^4,-2*K.1^4,2*K.1^8,2*K.1^12,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^13,-1*K.1^3+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1-K.1^11,-1*K.1^3+K.1^13,K.1^3-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1+K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1+K.1^11,K.1^3-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1+K.1^11,-2*K.1^12,2*K.1^8,-2*K.1^8,-2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^16,-2*K.1^8,2*K.1^16,2*K.1^4,-2*K.1^4,2*K.1^12,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,2,-2,-2,0,0,0,0,0,0,2*K.1^8,-2*K.1^12,2*K.1^16,-2*K.1^4,2,-2,-2,0,0,0,0,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,2*K.1^8,2*K.1^16,-2*K.1^16,2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^16,2*K.1^8,-2*K.1^12,2*K.1^4,-2*K.1^16,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^16,2*K.1^12,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^16,2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1-K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^13,K.1+K.1^11,K.1+K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^13,-1*K.1^3+K.1^13,K.1+K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^13,K.1^3-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1-K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1+K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,2*K.1^8,-2*K.1^12,2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^12,-2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^12,-2*K.1^4,-2*K.1^16,2*K.1^16,-2*K.1^8,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,2,-2,-2,0,0,0,0,0,0,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^16,2,-2,-2,0,0,0,0,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,-2*K.1^12,-2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^16,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,2*K.1^8,2*K.1^16,-2*K.1^12,-2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^4,-2*K.1^12,2*K.1^8,-2*K.1^16,2*K.1^4,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^16,2*K.1^16,2*K.1^12,-2*K.1^4,-2*K.1^8,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^16,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^4,-2*K.1^4,2*K.1^8,2*K.1^12,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^13,K.1^3-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1+K.1^11,K.1^3-K.1^13,-1*K.1^3+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1-K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1^3-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1^3+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^3+K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-2*K.1^12,2*K.1^8,-2*K.1^8,-2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^4,-2*K.1^16,2*K.1^12,2*K.1^16,-2*K.1^8,2*K.1^16,2*K.1^4,-2*K.1^4,2*K.1^12,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,2,-2,-2,0,0,0,0,0,0,2*K.1^8,-2*K.1^12,2*K.1^16,-2*K.1^4,2,-2,-2,0,0,0,0,-1*K.1^5-K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,-1*K.1^5-K.1^15,K.1^5+K.1^15,2*K.1^8,2*K.1^16,-2*K.1^16,2*K.1^4,2*K.1^12,-2*K.1^16,-2*K.1^8,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,-2*K.1^12,-2*K.1^4,2*K.1^8,2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^16,2*K.1^8,-2*K.1^12,2*K.1^4,-2*K.1^16,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^16,2*K.1^12,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^16,2*K.1^8,2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^16,2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1+K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^13,-1*K.1-K.1^11,-1*K.1-K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1^3-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^13,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^13,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1-K.1^5+K.1^7+K.1^9-K.1^13,-1*K.1^3+K.1^13,K.1^3-K.1^13,-1*K.1-K.1^11,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,K.1^3-K.1^13,-1*K.1^3+K.1^13,K.1-K.1^5+K.1^7+K.1^9-K.1^13,K.1+K.1^11,K.1^3-K.1^7-K.1^9+K.1^11-K.1^15,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,-1*K.1+K.1^5-K.1^7-K.1^9+K.1^13,-1*K.1-K.1^11,-1*K.1^3+K.1^7+K.1^9-K.1^11+K.1^15,2*K.1^8,-2*K.1^12,2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^12,-2*K.1^16,2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^12,-2*K.1^4,-2*K.1^16,2*K.1^16,-2*K.1^8,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^6,-2,-2,2,0,0,0,0,-1-K.1^5,1-K.1^5,-1-K.1^5,-1+K.1^5,1+K.1^5,1+K.1^5,-1+K.1^5,1-K.1^5,2*K.1^2,-2*K.1^4,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^7,-2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1^3,-2*K.1,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^9,2*K.1,2*K.1,-2*K.1^7,-2*K.1^9,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^6,-2*K.1^4,-2*K.1^4,-2*K.1^8,-2*K.1^2,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1-K.1^6,-1*K.1^2+K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^6,K.1^2+K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1^2+K.1^7,-1*K.1+K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,-1*K.1^2+K.1^7,-1*K.1-K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1^2-K.1^7,-1*K.1^2-K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,K.1^2-K.1^7,K.1^2-K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1+K.1^6,K.1+K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^6,-2*K.1^7,2*K.1^3,2*K.1^3,2*K.1^7,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1,2*K.1^7,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^9,-2*K.1^9,-2*K.1^7,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^4,-2,-2,2,0,0,0,0,-1+K.1^5,1+K.1^5,-1+K.1^5,-1-K.1^5,1-K.1^5,1-K.1^5,-1-K.1^5,1+K.1^5,-2*K.1^8,2*K.1^6,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^3,2*K.1^7,-2*K.1,2*K.1^3,2*K.1^7,2*K.1^9,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1,-2*K.1^9,-2*K.1^9,2*K.1^3,2*K.1,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^6,2*K.1^6,2*K.1^2,2*K.1^8,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1-K.1^6,K.1-K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1*K.1+K.1^6,K.1+K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,-1*K.1^2+K.1^7,-1*K.1^2+K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1^2+K.1^7,K.1^2+K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^6,K.1^2-K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,K.1-K.1^6,-1*K.1^2-K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1^2-K.1^7,-1*K.1+K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1^2-K.1^7,-1*K.1-K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,2*K.1^3,-2*K.1^7,-2*K.1^7,-2*K.1^3,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^9,-2*K.1^3,2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1,2*K.1,2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^4,-2,-2,2,0,0,0,0,-1-K.1^5,1-K.1^5,-1-K.1^5,-1+K.1^5,1+K.1^5,1+K.1^5,-1+K.1^5,1-K.1^5,-2*K.1^8,2*K.1^6,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^3,-2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^7,-2*K.1^9,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1,2*K.1^9,2*K.1^9,-2*K.1^3,-2*K.1,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^6,2*K.1^6,2*K.1^2,2*K.1^8,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^6,-1*K.1-K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,K.1+K.1^6,-1*K.1+K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1^2-K.1^7,-1*K.1^2-K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1^2-K.1^7,K.1^2-K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1+K.1^6,K.1^2+K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1*K.1-K.1^6,-1*K.1^2+K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,-1*K.1^2+K.1^7,K.1+K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1^2+K.1^7,K.1-K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-2*K.1^3,2*K.1^7,2*K.1^7,2*K.1^3,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^9,2*K.1^3,-2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1,-2*K.1,-2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^6,-2,-2,2,0,0,0,0,-1+K.1^5,1+K.1^5,-1+K.1^5,-1-K.1^5,1-K.1^5,1-K.1^5,-1-K.1^5,1+K.1^5,2*K.1^2,-2*K.1^4,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^7,2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1^3,2*K.1,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^9,-2*K.1,-2*K.1,2*K.1^7,2*K.1^9,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^6,-2*K.1^4,-2*K.1^4,-2*K.1^8,-2*K.1^2,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^6,-1*K.1^2-K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1+K.1^6,K.1^2-K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,K.1^2-K.1^7,K.1+K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1^2-K.1^7,K.1-K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,-1*K.1^2+K.1^7,-1*K.1^2+K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1^2+K.1^7,K.1^2+K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^6,-1*K.1+K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1-K.1^6,2*K.1^7,-2*K.1^3,-2*K.1^3,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1,2*K.1^9,2*K.1^9,2*K.1^7,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^8,-2,-2,2,0,0,0,0,-1-K.1^5,1-K.1^5,-1-K.1^5,-1+K.1^5,1+K.1^5,1+K.1^5,-1+K.1^5,1-K.1^5,2*K.1^6,2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^8,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1,2*K.1^9,-2*K.1^7,2*K.1,2*K.1^9,2*K.1^3,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^7,-2*K.1^3,-2*K.1^3,2*K.1,2*K.1^7,-2*K.1^9,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^6,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1*K.1^2-K.1^7,-1*K.1^2+K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1-K.1^6,K.1^2-K.1^7,K.1^2+K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1+K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1-K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,K.1^2+K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^6,K.1-K.1^6,-1*K.1^2+K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1+K.1^6,K.1+K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1^2-K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1^2-K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,2*K.1,-2*K.1^9,-2*K.1^9,-2*K.1,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1^3,-2*K.1,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^7,2*K.1^7,2*K.1,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^2,-2,-2,2,0,0,0,0,-1+K.1^5,1+K.1^5,-1+K.1^5,-1-K.1^5,1-K.1^5,1-K.1^5,-1-K.1^5,1+K.1^5,-2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^8,2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^2,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^9,-2*K.1,2*K.1^3,-2*K.1^9,-2*K.1,-2*K.1^7,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1^3,2*K.1^7,2*K.1^7,-2*K.1^9,-2*K.1^3,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^2,-2*K.1^8,-2*K.1^8,2*K.1^6,2*K.1^4,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1*K.1^2-K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1^2-K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1-K.1^6,-1*K.1-K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1^2-K.1^7,-1*K.1+K.1^6,-1*K.1+K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1^2-K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1+K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1-K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,K.1^2+K.1^7,K.1^2+K.1^7,K.1+K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1^2+K.1^7,-2*K.1^9,2*K.1,2*K.1,2*K.1^9,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^7,2*K.1^9,-2*K.1^7,-2*K.1,2*K.1^7,-2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^2,-2,-2,2,0,0,0,0,-1-K.1^5,1-K.1^5,-1-K.1^5,-1+K.1^5,1+K.1^5,1+K.1^5,-1+K.1^5,1-K.1^5,-2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^8,2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^2,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^9,2*K.1,-2*K.1^3,2*K.1^9,2*K.1,2*K.1^7,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1^3,-2*K.1^7,-2*K.1^7,2*K.1^9,2*K.1^3,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^2,-2*K.1^8,-2*K.1^8,2*K.1^6,2*K.1^4,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1^2+K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,K.1^2+K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^6,K.1-K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1^2+K.1^7,K.1+K.1^6,K.1+K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1^2+K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1+K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1-K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1-K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1^2-K.1^7,K.1^2-K.1^7,-1*K.1+K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1*K.1^2-K.1^7,2*K.1^9,-2*K.1,-2*K.1,-2*K.1^9,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^7,-2*K.1^9,2*K.1^7,2*K.1,-2*K.1^7,2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^8,-2,-2,2,0,0,0,0,-1+K.1^5,1+K.1^5,-1+K.1^5,-1-K.1^5,1-K.1^5,1-K.1^5,-1-K.1^5,1+K.1^5,2*K.1^6,2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^8,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1,-2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^9,-2*K.1^3,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^7,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^7,2*K.1^9,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^6,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1^2+K.1^7,-1*K.1^2-K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1-K.1^6,K.1^2+K.1^7,K.1^2-K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1+K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1+K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1^2-K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1-K.1^6,-1*K.1-K.1^6,-1*K.1^2-K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^6,-1*K.1+K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,K.1^2+K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1^2+K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-2*K.1,2*K.1^9,2*K.1^9,2*K.1,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^7,-2*K.1^7,-2*K.1,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^6,-2,-2,2,0,0,0,0,1+K.1^5,-1+K.1^5,1+K.1^5,1-K.1^5,-1-K.1^5,-1-K.1^5,1-K.1^5,-1+K.1^5,2*K.1^2,-2*K.1^4,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^7,-2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1^3,-2*K.1,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^9,2*K.1,2*K.1,-2*K.1^7,-2*K.1^9,2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^6,-2*K.1^4,-2*K.1^4,-2*K.1^8,-2*K.1^2,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1+K.1^6,K.1^2-K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^6,-1*K.1^2-K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1^2-K.1^7,K.1-K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,K.1^2-K.1^7,K.1+K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1^2+K.1^7,K.1^2+K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,-1*K.1^2+K.1^7,-1*K.1^2+K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1-K.1^6,-1*K.1-K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^6,-2*K.1^7,2*K.1^3,2*K.1^3,2*K.1^7,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1,2*K.1^7,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^9,-2*K.1^9,-2*K.1^7,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^4,-2,-2,2,0,0,0,0,1-K.1^5,-1-K.1^5,1-K.1^5,1+K.1^5,-1+K.1^5,-1+K.1^5,1+K.1^5,-1-K.1^5,-2*K.1^8,2*K.1^6,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^3,2*K.1^7,-2*K.1,2*K.1^3,2*K.1^7,2*K.1^9,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1,-2*K.1^9,-2*K.1^9,2*K.1^3,2*K.1,-2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^6,2*K.1^6,2*K.1^2,2*K.1^8,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1+K.1^6,-1*K.1+K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,K.1-K.1^6,-1*K.1-K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,K.1^2-K.1^7,K.1^2-K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1^2-K.1^7,-1*K.1^2-K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^6,-1*K.1^2+K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,-1*K.1+K.1^6,K.1^2+K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1^2+K.1^7,K.1-K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1^2+K.1^7,K.1+K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,2*K.1^3,-2*K.1^7,-2*K.1^7,-2*K.1^3,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^9,-2*K.1^3,2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1,2*K.1,2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^4,-2,-2,2,0,0,0,0,1+K.1^5,-1+K.1^5,1+K.1^5,1-K.1^5,-1-K.1^5,-1-K.1^5,1-K.1^5,-1+K.1^5,-2*K.1^8,2*K.1^6,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^3,-2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^7,-2*K.1^9,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1,2*K.1^9,2*K.1^9,-2*K.1^3,-2*K.1,2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^4,-2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^6,2*K.1^6,2*K.1^2,2*K.1^8,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^6,K.1+K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,-1*K.1-K.1^6,K.1-K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1^2+K.1^7,K.1^2+K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1^2+K.1^7,-1*K.1^2+K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1-K.1^6,-1*K.1^2-K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,K.1+K.1^6,K.1^2-K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,K.1^2-K.1^7,-1*K.1-K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1^2-K.1^7,-1*K.1+K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-2*K.1^3,2*K.1^7,2*K.1^7,2*K.1^3,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^9,2*K.1^3,-2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1,-2*K.1,-2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^6,-2,-2,2,0,0,0,0,1-K.1^5,-1-K.1^5,1-K.1^5,1+K.1^5,-1+K.1^5,-1+K.1^5,1+K.1^5,-1-K.1^5,2*K.1^2,-2*K.1^4,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^8,2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^7,2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1^3,2*K.1,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^9,-2*K.1,-2*K.1,2*K.1^7,2*K.1^9,-2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^6,-2*K.1^4,-2*K.1^4,-2*K.1^8,-2*K.1^2,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^6,K.1^2+K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1-K.1^6,-1*K.1^2+K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,-1*K.1^2+K.1^7,-1*K.1-K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1^2+K.1^7,-1*K.1+K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,K.1^2-K.1^7,K.1^2-K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1^2-K.1^7,-1*K.1^2-K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^6,K.1-K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1+K.1^6,2*K.1^7,-2*K.1^3,-2*K.1^3,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1,2*K.1^9,2*K.1^9,2*K.1^7,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^8,-2,-2,2,0,0,0,0,1+K.1^5,-1+K.1^5,1+K.1^5,1-K.1^5,-1-K.1^5,-1-K.1^5,1-K.1^5,-1+K.1^5,2*K.1^6,2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^8,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1,2*K.1^9,-2*K.1^7,2*K.1,2*K.1^9,2*K.1^3,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^7,-2*K.1^3,-2*K.1^3,2*K.1,2*K.1^7,-2*K.1^9,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^6,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1^2+K.1^3+K.1^4-K.1^6,K.1^2+K.1^7,K.1^2-K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1+K.1^6,-1*K.1^2+K.1^7,-1*K.1^2-K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1-K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1+K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,-1*K.1^2-K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^6,-1*K.1+K.1^6,K.1^2-K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1-K.1^6,-1*K.1-K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1^2+K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,K.1^2+K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,2*K.1,-2*K.1^9,-2*K.1^9,-2*K.1,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1^3,-2*K.1,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^7,2*K.1^7,2*K.1,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^2,-2,-2,2,0,0,0,0,1-K.1^5,-1-K.1^5,1-K.1^5,1+K.1^5,-1+K.1^5,-1+K.1^5,1+K.1^5,-1-K.1^5,-2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^8,2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^2,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^9,-2*K.1,2*K.1^3,-2*K.1^9,-2*K.1,-2*K.1^7,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1^3,2*K.1^7,2*K.1^7,-2*K.1^9,-2*K.1^3,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^2,-2*K.1^8,-2*K.1^8,2*K.1^6,2*K.1^4,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2-K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,K.1^2+K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1^2+K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1+K.1^6,K.1+K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,-1*K.1^2+K.1^7,K.1-K.1^6,K.1-K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1^2+K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1-K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1+K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1*K.1^2-K.1^7,-1*K.1^2-K.1^7,-1*K.1-K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1^2-K.1^7,-2*K.1^9,2*K.1,2*K.1,2*K.1^9,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^7,2*K.1^9,-2*K.1^7,-2*K.1,2*K.1^7,-2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^2,-2,-2,2,0,0,0,0,1+K.1^5,-1+K.1^5,1+K.1^5,1-K.1^5,-1-K.1^5,-1-K.1^5,1-K.1^5,-1+K.1^5,-2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^8,2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^2,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^9,2*K.1,-2*K.1^3,2*K.1^9,2*K.1,2*K.1^7,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1^3,-2*K.1^7,-2*K.1^7,2*K.1^9,2*K.1^3,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^2,-2*K.1^8,-2*K.1^8,2*K.1^6,2*K.1^4,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1^2-K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1*K.1^2-K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^6,-1*K.1+K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1^2-K.1^7,-1*K.1-K.1^6,-1*K.1-K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,K.1^2-K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1-K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1+K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1+K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1^2+K.1^7,-1*K.1^2+K.1^7,K.1-K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,K.1^2+K.1^7,2*K.1^9,-2*K.1,-2*K.1,-2*K.1^9,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^7,-2*K.1^9,2*K.1^7,2*K.1,-2*K.1^7,2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,0,0,2,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^8,-2,-2,2,0,0,0,0,1-K.1^5,-1-K.1^5,1-K.1^5,1+K.1^5,-1+K.1^5,-1+K.1^5,1+K.1^5,-1-K.1^5,2*K.1^6,2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^8,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1,-2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^9,-2*K.1^3,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^7,2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^7,2*K.1^9,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^6,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1^2-K.1^3+K.1^4-K.1^6,K.1^2-K.1^7,K.1^2+K.1^7,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1+K.1^6,-1*K.1^2-K.1^7,-1*K.1^2+K.1^7,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1-K.1^6,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1+K.1^3-K.1^4-K.1^5+K.1^7,-1*K.1-K.1^6,-1+K.1^2+K.1^3-K.1^4+K.1^6,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^6,1-K.1^2+K.1^3+K.1^4-K.1^6,-1*K.1^2+K.1^7,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1+K.1^6,K.1+K.1^6,K.1^2+K.1^7,K.1-K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^6,K.1-K.1^6,K.1-K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1^2-K.1^7,-1+K.1^2-K.1^3-K.1^4+K.1^6,-1+K.1^2-K.1^3-K.1^4+K.1^6,K.1-K.1^3+K.1^4+K.1^5-K.1^7,K.1^2-K.1^7,1-K.1^2-K.1^3+K.1^4-K.1^6,-2*K.1,2*K.1^9,2*K.1^9,2*K.1,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^7,-2*K.1^7,-2*K.1,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,-2,2,-2,2,0,0,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^6,-1,-1,-1,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^4,2*K.1^4,-2*K.1^6,2*K.1^8,2*K.1^4,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^6,0,0,0,0,0,0,0,0,1,1,1,1,-1,1,-1,1,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^8,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^4,-2*K.1^2,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^6,0,0,0,0,0,0,0,0,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,-2*K.1^9,2*K.1^9,-2*K.1^7,2*K.1,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1,2*K.1^3,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,K.1^8,K.1^7,-1*K.1^3,-1*K.1,K.1^3,K.1^9,-1*K.1^7,-1*K.1,-1*K.1^9,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^3,K.1,K.1^9,K.1^3,-1*K.1^9,K.1^7,-1*K.1,-1*K.1^7,K.1^9,K.1^7,-1*K.1^9,K.1^9,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,-2,2,-2,2,0,0,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^4,-1,-1,-1,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^8,-2*K.1^6,-2*K.1^6,2*K.1^4,-2*K.1^2,-2*K.1^6,2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^2,2*K.1^8,2*K.1^4,0,0,0,0,0,0,0,0,1,1,1,1,-1,1,-1,1,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^2,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^8,2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^6,2*K.1^4,0,0,0,0,0,0,0,0,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^2,2*K.1,-2*K.1,2*K.1^3,-2*K.1^9,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^9,-2*K.1^7,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^4,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,K.1^8,-1*K.1^2,-1*K.1^3,K.1^7,K.1^9,-1*K.1^7,-1*K.1,K.1^3,K.1^9,K.1,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1^7,K.1^3,K.1^7,-1*K.1^9,-1*K.1,-1*K.1^7,K.1,-1*K.1^3,K.1^9,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^3,K.1^3,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,-2,2,-2,2,0,0,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^6,-1,-1,-1,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^2,2*K.1^4,2*K.1^4,-2*K.1^6,2*K.1^8,2*K.1^4,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^2,-2*K.1^6,0,0,0,0,0,0,0,0,1,1,1,1,-1,1,-1,1,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^8,2*K.1^8,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^4,-2*K.1^2,-2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^6,0,0,0,0,0,0,0,0,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^8,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,2*K.1^9,-2*K.1^9,2*K.1^7,-2*K.1,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1,-2*K.1^3,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,K.1^8,-1*K.1^7,K.1^3,K.1,-1*K.1^3,-1*K.1^9,K.1^7,K.1,K.1^9,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^7,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^7,K.1,K.1^7,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^9,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^7,K.1^7,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,-2,2,-2,2,0,0,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^4,-1,-1,-1,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^8,-2*K.1^6,-2*K.1^6,2*K.1^4,-2*K.1^2,-2*K.1^6,2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^2,2*K.1^8,2*K.1^4,0,0,0,0,0,0,0,0,1,1,1,1,-1,1,-1,1,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^2,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^8,2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^6,2*K.1^4,0,0,0,0,0,0,0,0,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^2,-2*K.1,2*K.1,-2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^9,2*K.1^7,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^4,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^4,K.1^6,K.1^2,K.1^4,-1*K.1^4,-1*K.1^8,K.1^8,-1*K.1^2,K.1^3,-1*K.1^7,-1*K.1^9,K.1^7,K.1,-1*K.1^3,-1*K.1^9,-1*K.1,K.1^9,K.1^9,K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^7,K.1^9,K.1,K.1^7,-1*K.1,K.1^3,-1*K.1^9,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^9,K.1^7,K.1^9,-1*K.1^7,K.1^3,-1*K.1^3,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,-2,2,-2,2,0,0,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^8,-1,-1,-1,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^2,-2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^6,2*K.1^8,0,0,0,0,0,0,0,0,1,1,1,1,-1,1,-1,1,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^8,-2*K.1^8,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^8,0,0,0,0,0,0,0,0,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^6,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,2*K.1^7,-2*K.1^7,2*K.1,-2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1,-2*K.1,2*K.1,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1^3,-2*K.1^9,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,K.1^6,-1*K.1^6,K.1^4,-1*K.1,K.1^9,K.1^3,-1*K.1^9,-1*K.1^7,K.1,K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^9,K.1^9,K.1,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1,K.1^3,K.1,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1,K.1,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,-2,2,-2,2,0,0,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^2,-1,-1,-1,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^8,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^8,2*K.1^4,-2*K.1^6,-2*K.1^2,-2*K.1^6,2*K.1^4,-2*K.1^2,0,0,0,0,0,0,0,0,1,1,1,1,-1,1,-1,1,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^8,2*K.1^6,2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^8,-2*K.1^2,0,0,0,0,0,0,0,0,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-2*K.1^3,2*K.1^3,-2*K.1^9,2*K.1^7,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^9,2*K.1^9,-2*K.1^9,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^7,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^8,K.1^8,K.1^4,K.1^8,-1*K.1^8,K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^6,K.1^9,-1*K.1,-1*K.1^7,K.1,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^3,K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^9,-1*K.1,K.1^7,K.1^3,K.1,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^7,K.1,K.1^7,-1*K.1,K.1^9,-1*K.1^9,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,-2,2,-2,2,0,0,-2*K.1^6,2*K.1^4,-2*K.1^2,2*K.1^8,-1,-1,-1,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^2,-2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^2,-2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^6,2*K.1^8,0,0,0,0,0,0,0,0,1,1,1,1,-1,1,-1,1,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^8,-2*K.1^8,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^2,-2*K.1^6,-2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^8,0,0,0,0,0,0,0,0,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^6,-1*K.1^8,K.1^2,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,-2*K.1^7,2*K.1^7,-2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1,2*K.1,-2*K.1,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1^3,2*K.1^9,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,K.1^2,-1*K.1^4,K.1^8,-1*K.1^8,K.1^6,-1*K.1^6,K.1^4,K.1,-1*K.1^9,-1*K.1^3,K.1^9,K.1^7,-1*K.1,-1*K.1^3,-1*K.1^7,K.1^3,K.1^3,K.1^9,-1*K.1^9,-1*K.1,-1*K.1^9,K.1^3,K.1^7,K.1^9,-1*K.1^7,K.1,-1*K.1^3,-1*K.1,K.1^7,K.1,-1*K.1^7,K.1^7,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1,-1*K.1,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,-2,2,-2,2,0,0,2*K.1^4,-2*K.1^6,2*K.1^8,-2*K.1^2,-1,-1,-1,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^8,2*K.1^8,-2*K.1^2,-2*K.1^6,2*K.1^8,2*K.1^4,-2*K.1^6,-2*K.1^2,-2*K.1^6,2*K.1^4,-2*K.1^2,0,0,0,0,0,0,0,0,1,1,1,1,-1,1,-1,1,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^2,2*K.1^2,-2*K.1^4,-2*K.1^8,2*K.1^6,2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^6,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^8,-2*K.1^2,0,0,0,0,0,0,0,0,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,K.1^6,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,2*K.1^3,-2*K.1^3,2*K.1^9,-2*K.1^7,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^9,-2*K.1^9,2*K.1^9,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^7,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^8,K.1^8,K.1^4,K.1^8,-1*K.1^8,K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^6,-1*K.1^9,K.1,K.1^7,-1*K.1,-1*K.1^3,K.1^9,K.1^7,K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^9,K.1,-1*K.1^7,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^9,K.1^7,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^7,K.1,-1*K.1^9,K.1^9,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,2,-2,2,-2,0,0,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^18,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^12,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^18,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^6,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^18,-2*K.1^12,2*K.1^18,2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^24,-2*K.1^6,-2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^12,2*K.1^6,2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^6,2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^6,K.1^18,-1*K.1^12,K.1^6,-1*K.1^24,K.1^18,K.1^18,-1*K.1^12,-1*K.1^12,-1*K.1^24,K.1^6,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^24,K.1^24,-1*K.1^6,-1*K.1^18,K.1^24,K.1^12,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^18,K.1^12,K.1^12,-1*K.1^6,K.1^12,K.1^12,-1*K.1^12,K.1^24,-1*K.1^18,-1*K.1^6,-1*K.1^24,-1*K.1^12,K.1^6,K.1^18,K.1^12,K.1^24,K.1^18,-1*K.1^18,-1*K.1^6,K.1^6,-1*K.1^24,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,2,-2,2,-2,0,0,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^12,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^18,-2*K.1^18,2*K.1^12,-2*K.1^6,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^12,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^12,2*K.1^18,-2*K.1^12,-2*K.1^12,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^6,2*K.1^24,2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^18,-2*K.1^24,-2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^24,-2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^24,-1*K.1^12,K.1^18,-1*K.1^24,K.1^6,-1*K.1^12,-1*K.1^12,K.1^18,K.1^18,K.1^6,-1*K.1^24,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,-1*K.1^6,-1*K.1^6,K.1^24,K.1^12,-1*K.1^6,-1*K.1^18,K.1^12,K.1^24,K.1^12,-1*K.1^6,K.1^12,-1*K.1^18,-1*K.1^18,K.1^24,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^6,K.1^12,K.1^24,K.1^6,K.1^18,-1*K.1^24,-1*K.1^12,-1*K.1^18,-1*K.1^6,-1*K.1^12,K.1^12,K.1^24,-1*K.1^24,K.1^6,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3-2*K.1^13,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3-2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,2,-2,2,-2,0,0,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^18,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^12,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^18,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,-1*K.1^24,K.1^18,K.1^6,-1*K.1^12,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^6,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^18,-2*K.1^12,2*K.1^18,2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^24,-2*K.1^6,-2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^12,2*K.1^6,2*K.1^24,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^6,2*K.1^12,2*K.1^18,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^6,K.1^18,-1*K.1^12,K.1^6,-1*K.1^24,K.1^18,K.1^18,-1*K.1^12,-1*K.1^12,-1*K.1^24,K.1^6,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^24,K.1^24,-1*K.1^6,-1*K.1^18,K.1^24,K.1^12,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^18,K.1^12,K.1^12,-1*K.1^6,K.1^12,K.1^12,-1*K.1^12,K.1^24,-1*K.1^18,-1*K.1^6,-1*K.1^24,-1*K.1^12,K.1^6,K.1^18,K.1^12,K.1^24,K.1^18,-1*K.1^18,-1*K.1^6,K.1^6,-1*K.1^24,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1+K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,2,-2,2,-2,0,0,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^12,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24,-2*K.1^18,-2*K.1^18,2*K.1^12,-2*K.1^6,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^12,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,K.1^6,-1*K.1^12,-1*K.1^24,K.1^18,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^12,2*K.1^18,-2*K.1^12,-2*K.1^12,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^6,2*K.1^24,2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^18,-2*K.1^24,-2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^24,-2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^24,-1*K.1^12,K.1^18,-1*K.1^24,K.1^6,-1*K.1^12,-1*K.1^12,K.1^18,K.1^18,K.1^6,-1*K.1^24,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,-1*K.1^6,-1*K.1^6,K.1^24,K.1^12,-1*K.1^6,-1*K.1^18,K.1^12,K.1^24,K.1^12,-1*K.1^6,K.1^12,-1*K.1^18,-1*K.1^18,K.1^24,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^6,K.1^12,K.1^24,K.1^6,K.1^18,-1*K.1^24,-1*K.1^12,-1*K.1^18,-1*K.1^6,-1*K.1^12,K.1^12,K.1^24,-1*K.1^24,K.1^6,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,K.1+K.1^11,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3+2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,2,-2,2,-2,0,0,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^24,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^6,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^12,-2*K.1^18,2*K.1^24,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^24,2*K.1^6,-2*K.1^24,-2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^12,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^18,-1*K.1^24,K.1^6,K.1^18,-1*K.1^12,-1*K.1^24,-1*K.1^24,K.1^6,K.1^6,-1*K.1^12,K.1^18,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^12,K.1^12,-1*K.1^18,K.1^24,K.1^12,-1*K.1^6,K.1^24,-1*K.1^18,K.1^24,K.1^12,K.1^24,-1*K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^6,K.1^6,K.1^12,K.1^24,-1*K.1^18,-1*K.1^12,K.1^6,K.1^18,-1*K.1^24,-1*K.1^6,K.1^12,-1*K.1^24,K.1^24,-1*K.1^18,K.1^18,-1*K.1^12,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1-K.1^11,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-1*K.1-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,2,-2,2,-2,0,0,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^6,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^24,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^18,2*K.1^12,-2*K.1^6,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^6,-2*K.1^24,2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^18,2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^18,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^24,-2*K.1^12,-2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^12,2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^12,K.1^6,-1*K.1^24,-1*K.1^12,K.1^18,K.1^6,K.1^6,-1*K.1^24,-1*K.1^24,K.1^18,-1*K.1^12,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^18,-1*K.1^18,K.1^12,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^6,K.1^12,-1*K.1^6,-1*K.1^18,-1*K.1^6,K.1^24,K.1^24,K.1^12,K.1^24,K.1^24,-1*K.1^24,-1*K.1^18,-1*K.1^6,K.1^12,K.1^18,-1*K.1^24,-1*K.1^12,K.1^6,K.1^24,-1*K.1^18,K.1^6,-1*K.1^6,K.1^12,-1*K.1^12,K.1^18,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,2,-2,2,-2,0,0,-2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^24,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^6,-2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^24,2*K.1^12,-2*K.1^18,2*K.1^24,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,-1*K.1^12,-1*K.1^24,K.1^18,K.1^6,2*K.1^18,-2*K.1^12,2*K.1^6,2*K.1^18,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^24,2*K.1^6,-2*K.1^24,-2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^12,-2*K.1^12,-2*K.1^24,2*K.1^6,2*K.1^18,2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^18,-1*K.1^24,K.1^6,K.1^18,-1*K.1^12,-1*K.1^24,-1*K.1^24,K.1^6,K.1^6,-1*K.1^12,K.1^18,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^12,K.1^12,-1*K.1^18,K.1^24,K.1^12,-1*K.1^6,K.1^24,-1*K.1^18,K.1^24,K.1^12,K.1^24,-1*K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^6,K.1^6,K.1^12,K.1^24,-1*K.1^18,-1*K.1^12,K.1^6,K.1^18,-1*K.1^24,-1*K.1^6,K.1^12,-1*K.1^24,K.1^24,-1*K.1^18,K.1^18,-1*K.1^12,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1+K.1^11,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,K.1+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,0,0,-1,-2,-2,-2,-2,2,-2,2,-2,0,0,2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^6,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^24,2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^6,-2*K.1^18,2*K.1^12,-2*K.1^6,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,K.1^18,K.1^6,-1*K.1^12,-1*K.1^24,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^12,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^6,-2*K.1^24,2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^18,2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^18,2*K.1^18,2*K.1^6,-2*K.1^24,-2*K.1^12,-2*K.1^24,-2*K.1^12,-2*K.1^18,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^12,2*K.1^24,2*K.1^6,0,0,0,0,0,0,0,0,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^12,K.1^6,-1*K.1^24,-1*K.1^12,K.1^18,K.1^6,K.1^6,-1*K.1^24,-1*K.1^24,K.1^18,-1*K.1^12,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^18,-1*K.1^18,K.1^12,-1*K.1^6,-1*K.1^18,K.1^24,-1*K.1^6,K.1^12,-1*K.1^6,-1*K.1^18,-1*K.1^6,K.1^24,K.1^24,K.1^12,K.1^24,K.1^24,-1*K.1^24,-1*K.1^18,-1*K.1^6,K.1^12,K.1^18,-1*K.1^24,-1*K.1^12,K.1^6,K.1^24,-1*K.1^18,K.1^6,-1*K.1^6,K.1^12,-1*K.1^12,K.1^18,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,K.1+K.1^11,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1+K.1^11,K.1^3-2*K.1^13,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,K.1+K.1^11,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-3,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-6,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^-3,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1*K.1^6,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^-3,2*K.1^-3,2*K.1^-6,2*K.1^3,2*K.1^6,2*K.1^6,-2*K.1^-6,-2*K.1^-3,-2*K.1^6,-2*K.1^6,-2*K.1^-3,-2*K.1^3,-2*K.1^-6,-2*K.1^3,-2*K.1^-6,-2*K.1^6,-2*K.1^6,-2*K.1^3,-2*K.1^-3,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,0,0,0,0,0,0,0,0,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,1+2*K.1^5,-1*K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^6,-1*K.1^-6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^-6,-1*K.1^3,K.1^3,K.1^3,K.1^6,K.1^-3,K.1^-6,K.1^6,K.1^3,K.1^-6,K.1^-3,K.1^3,K.1^6,K.1^-3,K.1^-3,K.1^-6,K.1^-6,K.1^6,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-2*K.1-K.1^6,K.1^2-K.1^7,-2*K.1-K.1^6,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,K.1^2-K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,K.1^2-K.1^7,-1*K.1^2+K.1^7,2*K.1+K.1^6,-2*K.1-K.1^6,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,2*K.1+K.1^6,K.1^2-K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-2*K.1-K.1^6,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-1*K.1^2+K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1*K.1^2+K.1^7,2*K.1+K.1^6,-1*K.1^2+K.1^7,2*K.1+K.1^6,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^3,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^3,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1*K.1^-6,-1*K.1^3,-1*K.1^6,-1*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^3,2*K.1^3,2*K.1^6,2*K.1^-3,2*K.1^-6,2*K.1^-6,-2*K.1^6,-2*K.1^3,-2*K.1^-6,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,-2*K.1^6,-2*K.1^-3,-2*K.1^6,-2*K.1^-6,-2*K.1^-6,-2*K.1^-3,-2*K.1^3,-2*K.1^6,-2*K.1^-3,-2*K.1^3,0,0,0,0,0,0,0,0,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,-1-2*K.1^5,-1*K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^-6,-1*K.1^6,-1*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,K.1^-3,K.1^-3,K.1^-6,K.1^3,K.1^6,K.1^-6,K.1^-3,K.1^6,K.1^3,K.1^-3,K.1^-6,K.1^3,K.1^3,K.1^6,K.1^6,K.1^-6,2*K.1+K.1^6,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,K.1^2-K.1^7,2*K.1+K.1^6,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,K.1^2-K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,2*K.1+K.1^6,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1*K.1^2+K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,K.1^2-K.1^7,-2*K.1-K.1^6,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-2*K.1-K.1^6,-1*K.1^2+K.1^7,2*K.1+K.1^6,-1*K.1^2+K.1^7,K.1^2-K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-2*K.1-K.1^6,-2*K.1-K.1^6,-1*K.1^2+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-3,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-6,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^-3,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1*K.1^6,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^-3,2*K.1^-3,2*K.1^-6,2*K.1^3,2*K.1^6,2*K.1^6,-2*K.1^-6,-2*K.1^-3,-2*K.1^6,-2*K.1^6,-2*K.1^-3,-2*K.1^3,-2*K.1^-6,-2*K.1^3,-2*K.1^-6,-2*K.1^6,-2*K.1^6,-2*K.1^3,-2*K.1^-3,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,0,0,0,0,0,0,0,0,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,-1-2*K.1^5,-1*K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^6,-1*K.1^-6,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^-6,-1*K.1^3,K.1^3,K.1^3,K.1^6,K.1^-3,K.1^-6,K.1^6,K.1^3,K.1^-6,K.1^-3,K.1^3,K.1^6,K.1^-3,K.1^-3,K.1^-6,K.1^-6,K.1^6,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,2*K.1+K.1^6,-1*K.1^2+K.1^7,2*K.1+K.1^6,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-1*K.1^2+K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-1*K.1^2+K.1^7,K.1^2-K.1^7,-2*K.1-K.1^6,2*K.1+K.1^6,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-2*K.1-K.1^6,-1*K.1^2+K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,2*K.1+K.1^6,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,K.1^2-K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,K.1^2-K.1^7,-2*K.1-K.1^6,K.1^2-K.1^7,-2*K.1-K.1^6,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^3,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^3,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1*K.1^-6,-1*K.1^3,-1*K.1^6,-1*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^3,2*K.1^3,2*K.1^6,2*K.1^-3,2*K.1^-6,2*K.1^-6,-2*K.1^6,-2*K.1^3,-2*K.1^-6,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,-2*K.1^6,-2*K.1^-3,-2*K.1^6,-2*K.1^-6,-2*K.1^-6,-2*K.1^-3,-2*K.1^3,-2*K.1^6,-2*K.1^-3,-2*K.1^3,0,0,0,0,0,0,0,0,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,1+2*K.1^5,-1*K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^-6,-1*K.1^6,-1*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,K.1^-3,K.1^-3,K.1^-6,K.1^3,K.1^6,K.1^-6,K.1^-3,K.1^6,K.1^3,K.1^-3,K.1^-6,K.1^3,K.1^3,K.1^6,K.1^6,K.1^-6,-2*K.1-K.1^6,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-1*K.1^2+K.1^7,-2*K.1-K.1^6,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-1*K.1^2+K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-2*K.1-K.1^6,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,K.1^2-K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-1*K.1^2+K.1^7,2*K.1+K.1^6,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,2*K.1+K.1^6,K.1^2-K.1^7,-2*K.1-K.1^6,K.1^2-K.1^7,-1*K.1^2+K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,2*K.1+K.1^6,2*K.1+K.1^6,K.1^2-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^6,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^-6,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^6,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1*K.1^3,-1*K.1^6,-1*K.1^-3,-1*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^6,2*K.1^6,2*K.1^-3,2*K.1^-6,2*K.1^3,2*K.1^3,-2*K.1^-3,-2*K.1^6,-2*K.1^3,-2*K.1^3,-2*K.1^6,-2*K.1^-6,-2*K.1^-3,-2*K.1^-6,-2*K.1^-3,-2*K.1^3,-2*K.1^3,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^-6,-2*K.1^6,0,0,0,0,0,0,0,0,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,1+2*K.1^5,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^-3,-1*K.1^-6,K.1^-6,K.1^-6,K.1^3,K.1^6,K.1^-3,K.1^3,K.1^-6,K.1^-3,K.1^6,K.1^-6,K.1^3,K.1^6,K.1^6,K.1^-3,K.1^-3,K.1^3,K.1^2-K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-2*K.1-K.1^6,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,K.1^2-K.1^7,-2*K.1-K.1^6,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-2*K.1-K.1^6,2*K.1+K.1^6,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,K.1^2-K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-2*K.1-K.1^6,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-1*K.1^2+K.1^7,2*K.1+K.1^6,-1*K.1^2+K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,K.1^2-K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,2*K.1+K.1^6,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,2*K.1+K.1^6,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1*K.1^2+K.1^7,-1*K.1^2+K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^-6,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1^6,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^-6,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,-1*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^-6,2*K.1^-6,2*K.1^3,2*K.1^6,2*K.1^-3,2*K.1^-3,-2*K.1^3,-2*K.1^-6,-2*K.1^-3,-2*K.1^-3,-2*K.1^-6,-2*K.1^6,-2*K.1^3,-2*K.1^6,-2*K.1^3,-2*K.1^-3,-2*K.1^-3,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^6,-2*K.1^-6,0,0,0,0,0,0,0,0,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,-1-2*K.1^5,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^3,-1*K.1^6,K.1^6,K.1^6,K.1^-3,K.1^-6,K.1^3,K.1^-3,K.1^6,K.1^3,K.1^-6,K.1^6,K.1^-3,K.1^-6,K.1^-6,K.1^3,K.1^3,K.1^-3,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1*K.1^2+K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-1*K.1^2+K.1^7,-2*K.1-K.1^6,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-2*K.1-K.1^6,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,K.1^2-K.1^7,-1*K.1^2+K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,K.1^2-K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,2*K.1+K.1^6,-1*K.1^2+K.1^7,-2*K.1-K.1^6,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,2*K.1+K.1^6,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,2*K.1+K.1^6,-2*K.1-K.1^6,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,K.1^2-K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,K.1^2-K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,2*K.1+K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^6,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^-6,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^6,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1*K.1^3,-1*K.1^6,-1*K.1^-3,-1*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^-6,2*K.1^6,2*K.1^6,2*K.1^-3,2*K.1^-6,2*K.1^3,2*K.1^3,-2*K.1^-3,-2*K.1^6,-2*K.1^3,-2*K.1^3,-2*K.1^6,-2*K.1^-6,-2*K.1^-3,-2*K.1^-6,-2*K.1^-3,-2*K.1^3,-2*K.1^3,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^-6,-2*K.1^6,0,0,0,0,0,0,0,0,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,-1-2*K.1^5,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^-3,-1*K.1^-6,K.1^-6,K.1^-6,K.1^3,K.1^6,K.1^-3,K.1^3,K.1^-6,K.1^-3,K.1^6,K.1^-6,K.1^3,K.1^6,K.1^6,K.1^-3,K.1^-3,K.1^3,-1*K.1^2+K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,2*K.1+K.1^6,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-1*K.1^2+K.1^7,2*K.1+K.1^6,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,2*K.1+K.1^6,-2*K.1-K.1^6,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1*K.1^2+K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,2*K.1+K.1^6,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,K.1^2-K.1^7,-2*K.1-K.1^6,K.1^2-K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-1*K.1^2+K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-2*K.1-K.1^6,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-2*K.1-K.1^6,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,K.1^2-K.1^7,K.1^2-K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,0,0,-1,2,2,2,2,-2,-2,-2,-2,0,0,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^-6,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1^6,2*K.1^6,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-6,2*K.1^-3,2*K.1^3,2*K.1^-6,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1*K.1^-3,-1*K.1^-6,-1*K.1^3,-1*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^-3,2*K.1^-6,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^6,2*K.1^-6,2*K.1^-6,2*K.1^3,2*K.1^6,2*K.1^-3,2*K.1^-3,-2*K.1^3,-2*K.1^-6,-2*K.1^-3,-2*K.1^-3,-2*K.1^-6,-2*K.1^6,-2*K.1^3,-2*K.1^6,-2*K.1^3,-2*K.1^-3,-2*K.1^-3,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^6,-2*K.1^-6,0,0,0,0,0,0,0,0,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,-1-2*K.1^5,1+2*K.1^5,-1-2*K.1^5,1+2*K.1^5,1+2*K.1^5,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^3,-1*K.1^6,K.1^6,K.1^6,K.1^-3,K.1^-6,K.1^3,K.1^-3,K.1^6,K.1^3,K.1^-6,K.1^6,K.1^-3,K.1^-6,K.1^-6,K.1^3,K.1^3,K.1^-3,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,K.1^2-K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,K.1^2-K.1^7,2*K.1+K.1^6,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,2*K.1+K.1^6,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-1*K.1^2+K.1^7,K.1^2-K.1^7,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-1*K.1^2+K.1^7,1-K.1^2+K.1^3-2*K.1^4+K.1^6-K.1^7,-2*K.1-K.1^6,K.1^2-K.1^7,2*K.1+K.1^6,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-2*K.1-K.1^6,-2+2*K.1-K.1^3+2*K.1^4-2*K.1^5+2*K.1^7,-2*K.1-K.1^6,2*K.1+K.1^6,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-1*K.1^2+K.1^7,-1+K.1^2-K.1^3+2*K.1^4-K.1^6+K.1^7,-1*K.1^2+K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,2-2*K.1+K.1^3-2*K.1^4+2*K.1^5-2*K.1^7,-2*K.1-K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^30,2*K.1^30,-2*K.1^30,2*K.1^30,2*K.1^30,-2,-2*K.1^30,2,0,0,-2*K.1^12,2*K.1^48,2*K.1^24,-2*K.1^36,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^24,-2*K.1^24,2*K.1^36,-2*K.1^48,2*K.1^24,2*K.1^12,2*K.1^48,-2*K.1^36,-2*K.1^48,-2*K.1^12,2*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^30,K.1^30,K.1^30,-1*K.1^30,1,-1*K.1^30,-1,K.1^30,-1*K.1^48,K.1^36,K.1^12,-1*K.1^24,2*K.1^42,2*K.1^18,2*K.1^54,-2*K.1^42,-2*K.1^18,2*K.1^6,-2*K.1^54,-2*K.1^42,-2*K.1^6,2*K.1^54,-2*K.1^6,2*K.1^6,2*K.1^42,-2*K.1^54,-2*K.1^18,2*K.1^18,2*K.1^42,2*K.1^6,-2*K.1^48,2*K.1^48,-2*K.1^36,-2*K.1^24,-2*K.1^12,2*K.1^24,2*K.1^12,-2*K.1^18,2*K.1^18,2*K.1^54,-2*K.1^6,-2*K.1^42,-2*K.1^54,2*K.1^36,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-1*K.1^5-K.1^25,K.1^5+K.1^25,K.1^5+K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,-1*K.1^5-K.1^25,K.1^12,-1*K.1^36,K.1^24,-1*K.1^12,-1*K.1^48,K.1^36,-1*K.1^36,-1*K.1^24,K.1^24,K.1^48,-1*K.1^12,K.1^48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^42,-1*K.1^18,K.1^18,-1*K.1^42,-1*K.1^6,K.1^18,K.1^54,K.1^6,K.1^42,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^54,K.1^54,-1*K.1^42,-1*K.1^54,-1*K.1^24,K.1^54,K.1^48,K.1^36,-1*K.1^12,-1*K.1^18,-1*K.1^54,K.1^42,-1*K.1^6,K.1^24,-1*K.1^48,K.1^6,-1*K.1^36,K.1^12,-1*K.1^42,K.1^18,2*K.1^7-K.1^27,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^11-K.1^31,-1*K.1^3+2*K.1^23,K.1^9-2*K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,K.1^11+K.1^31,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,2*K.1-K.1^21,2*K.1-K.1^21,K.1^3-2*K.1^23,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-2*K.1+K.1^21,-1*K.1^9+2*K.1^29,K.1^3-2*K.1^23,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,2*K.1^7-K.1^27,-1*K.1^11-K.1^31,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,K.1^9-2*K.1^29,-2*K.1^7+K.1^27,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-1*K.1^9+2*K.1^29,K.1^11+K.1^31,-1*K.1^3+2*K.1^23,-2*K.1+K.1^21,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-2*K.1^7+K.1^27,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^30,-2*K.1^30,2*K.1^30,-2*K.1^30,-2*K.1^30,-2,2*K.1^30,2,0,0,2*K.1^48,-2*K.1^12,-2*K.1^36,2*K.1^24,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^48,2*K.1^36,2*K.1^36,-2*K.1^24,2*K.1^12,-2*K.1^36,-2*K.1^48,-2*K.1^12,2*K.1^24,2*K.1^12,2*K.1^48,-2*K.1^24,0,0,0,0,0,0,0,0,K.1^30,-1*K.1^30,-1*K.1^30,K.1^30,1,K.1^30,-1,-1*K.1^30,K.1^12,-1*K.1^24,-1*K.1^48,K.1^36,-2*K.1^18,-2*K.1^42,-2*K.1^6,2*K.1^18,2*K.1^42,-2*K.1^54,2*K.1^6,2*K.1^18,2*K.1^54,-2*K.1^6,2*K.1^54,-2*K.1^54,-2*K.1^18,2*K.1^6,2*K.1^42,-2*K.1^42,-2*K.1^18,-2*K.1^54,2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^36,2*K.1^48,-2*K.1^36,-2*K.1^48,2*K.1^42,-2*K.1^42,-2*K.1^6,2*K.1^54,2*K.1^18,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,K.1^5+K.1^25,K.1^5+K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-1*K.1^48,K.1^24,-1*K.1^36,K.1^48,K.1^12,-1*K.1^24,K.1^24,K.1^36,-1*K.1^36,-1*K.1^12,K.1^48,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^42,-1*K.1^42,K.1^18,K.1^54,-1*K.1^42,-1*K.1^6,-1*K.1^54,-1*K.1^18,-1*K.1^54,K.1^42,K.1^54,K.1^6,-1*K.1^6,K.1^18,K.1^6,K.1^36,-1*K.1^6,-1*K.1^12,-1*K.1^24,K.1^48,K.1^42,K.1^6,-1*K.1^18,K.1^54,-1*K.1^36,K.1^12,-1*K.1^54,K.1^24,-1*K.1^48,K.1^18,-1*K.1^42,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,2*K.1^7-K.1^27,-1*K.1^9+2*K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,K.1^11+K.1^31,K.1^3-2*K.1^23,K.1^9-2*K.1^29,-2*K.1+K.1^21,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-2*K.1^7+K.1^27,-1*K.1^3+2*K.1^23,2*K.1^7-K.1^27,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-1*K.1^11-K.1^31,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,2*K.1-K.1^21,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^9+2*K.1^29,-1*K.1^3+2*K.1^23,K.1^11+K.1^31,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,2*K.1-K.1^21,-1*K.1^11-K.1^31,K.1^9-2*K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-2*K.1^7+K.1^27,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^3-2*K.1^23,-2*K.1+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^30,2*K.1^30,-2*K.1^30,2*K.1^30,2*K.1^30,-2,-2*K.1^30,2,0,0,-2*K.1^12,2*K.1^48,2*K.1^24,-2*K.1^36,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^24,-2*K.1^24,2*K.1^36,-2*K.1^48,2*K.1^24,2*K.1^12,2*K.1^48,-2*K.1^36,-2*K.1^48,-2*K.1^12,2*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^30,K.1^30,K.1^30,-1*K.1^30,1,-1*K.1^30,-1,K.1^30,-1*K.1^48,K.1^36,K.1^12,-1*K.1^24,2*K.1^42,2*K.1^18,2*K.1^54,-2*K.1^42,-2*K.1^18,2*K.1^6,-2*K.1^54,-2*K.1^42,-2*K.1^6,2*K.1^54,-2*K.1^6,2*K.1^6,2*K.1^42,-2*K.1^54,-2*K.1^18,2*K.1^18,2*K.1^42,2*K.1^6,-2*K.1^48,2*K.1^48,-2*K.1^36,-2*K.1^24,-2*K.1^12,2*K.1^24,2*K.1^12,-2*K.1^18,2*K.1^18,2*K.1^54,-2*K.1^6,-2*K.1^42,-2*K.1^54,2*K.1^36,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,K.1^5+K.1^25,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,K.1^5+K.1^25,K.1^12,-1*K.1^36,K.1^24,-1*K.1^12,-1*K.1^48,K.1^36,-1*K.1^36,-1*K.1^24,K.1^24,K.1^48,-1*K.1^12,K.1^48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^42,-1*K.1^18,K.1^18,-1*K.1^42,-1*K.1^6,K.1^18,K.1^54,K.1^6,K.1^42,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^54,K.1^54,-1*K.1^42,-1*K.1^54,-1*K.1^24,K.1^54,K.1^48,K.1^36,-1*K.1^12,-1*K.1^18,-1*K.1^54,K.1^42,-1*K.1^6,K.1^24,-1*K.1^48,K.1^6,-1*K.1^36,K.1^12,-1*K.1^42,K.1^18,-2*K.1^7+K.1^27,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^11+K.1^31,K.1^3-2*K.1^23,-1*K.1^9+2*K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-1*K.1^11-K.1^31,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-2*K.1+K.1^21,-2*K.1+K.1^21,-1*K.1^3+2*K.1^23,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,2*K.1-K.1^21,K.1^9-2*K.1^29,-1*K.1^3+2*K.1^23,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-2*K.1^7+K.1^27,K.1^11+K.1^31,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-1*K.1^9+2*K.1^29,2*K.1^7-K.1^27,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,K.1^9-2*K.1^29,-1*K.1^11-K.1^31,K.1^3-2*K.1^23,2*K.1-K.1^21,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,2*K.1^7-K.1^27,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^30,-2*K.1^30,2*K.1^30,-2*K.1^30,-2*K.1^30,-2,2*K.1^30,2,0,0,2*K.1^48,-2*K.1^12,-2*K.1^36,2*K.1^24,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^48,2*K.1^36,2*K.1^36,-2*K.1^24,2*K.1^12,-2*K.1^36,-2*K.1^48,-2*K.1^12,2*K.1^24,2*K.1^12,2*K.1^48,-2*K.1^24,0,0,0,0,0,0,0,0,K.1^30,-1*K.1^30,-1*K.1^30,K.1^30,1,K.1^30,-1,-1*K.1^30,K.1^12,-1*K.1^24,-1*K.1^48,K.1^36,-2*K.1^18,-2*K.1^42,-2*K.1^6,2*K.1^18,2*K.1^42,-2*K.1^54,2*K.1^6,2*K.1^18,2*K.1^54,-2*K.1^6,2*K.1^54,-2*K.1^54,-2*K.1^18,2*K.1^6,2*K.1^42,-2*K.1^42,-2*K.1^18,-2*K.1^54,2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^36,2*K.1^48,-2*K.1^36,-2*K.1^48,2*K.1^42,-2*K.1^42,-2*K.1^6,2*K.1^54,2*K.1^18,2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,K.1^5+K.1^25,K.1^5+K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,-1*K.1^48,K.1^24,-1*K.1^36,K.1^48,K.1^12,-1*K.1^24,K.1^24,K.1^36,-1*K.1^36,-1*K.1^12,K.1^48,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^42,-1*K.1^42,K.1^18,K.1^54,-1*K.1^42,-1*K.1^6,-1*K.1^54,-1*K.1^18,-1*K.1^54,K.1^42,K.1^54,K.1^6,-1*K.1^6,K.1^18,K.1^6,K.1^36,-1*K.1^6,-1*K.1^12,-1*K.1^24,K.1^48,K.1^42,K.1^6,-1*K.1^18,K.1^54,-1*K.1^36,K.1^12,-1*K.1^54,K.1^24,-1*K.1^48,K.1^18,-1*K.1^42,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-2*K.1^7+K.1^27,K.1^9-2*K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-1*K.1^11-K.1^31,-1*K.1^3+2*K.1^23,-1*K.1^9+2*K.1^29,2*K.1-K.1^21,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,2*K.1^7-K.1^27,K.1^3-2*K.1^23,-2*K.1^7+K.1^27,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,K.1^11+K.1^31,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-2*K.1+K.1^21,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^9-2*K.1^29,K.1^3-2*K.1^23,-1*K.1^11-K.1^31,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-2*K.1+K.1^21,K.1^11+K.1^31,-1*K.1^9+2*K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,2*K.1^7-K.1^27,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^3+2*K.1^23,2*K.1-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^30,2*K.1^30,-2*K.1^30,2*K.1^30,2*K.1^30,-2,-2*K.1^30,2,0,0,2*K.1^48,-2*K.1^12,-2*K.1^36,2*K.1^24,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^48,2*K.1^36,2*K.1^36,-2*K.1^24,2*K.1^12,-2*K.1^36,-2*K.1^48,-2*K.1^12,2*K.1^24,2*K.1^12,2*K.1^48,-2*K.1^24,0,0,0,0,0,0,0,0,-1*K.1^30,K.1^30,K.1^30,-1*K.1^30,1,-1*K.1^30,-1,K.1^30,K.1^12,-1*K.1^24,-1*K.1^48,K.1^36,2*K.1^18,2*K.1^42,2*K.1^6,-2*K.1^18,-2*K.1^42,2*K.1^54,-2*K.1^6,-2*K.1^18,-2*K.1^54,2*K.1^6,-2*K.1^54,2*K.1^54,2*K.1^18,-2*K.1^6,-2*K.1^42,2*K.1^42,2*K.1^18,2*K.1^54,2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^36,2*K.1^48,-2*K.1^36,-2*K.1^48,-2*K.1^42,2*K.1^42,2*K.1^6,-2*K.1^54,-2*K.1^18,-2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-1*K.1^5-K.1^25,K.1^5+K.1^25,K.1^5+K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,-1*K.1^5-K.1^25,-1*K.1^48,K.1^24,-1*K.1^36,K.1^48,K.1^12,-1*K.1^24,K.1^24,K.1^36,-1*K.1^36,-1*K.1^12,K.1^48,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,-1*K.1^42,K.1^42,-1*K.1^18,-1*K.1^54,K.1^42,K.1^6,K.1^54,K.1^18,K.1^54,-1*K.1^42,-1*K.1^54,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^36,K.1^6,-1*K.1^12,-1*K.1^24,K.1^48,-1*K.1^42,-1*K.1^6,K.1^18,-1*K.1^54,-1*K.1^36,K.1^12,K.1^54,K.1^24,-1*K.1^48,-1*K.1^18,K.1^42,K.1^3-2*K.1^23,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-2*K.1^7+K.1^27,-2*K.1+K.1^21,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,K.1^11+K.1^31,-1*K.1^9+2*K.1^29,-1*K.1^9+2*K.1^29,2*K.1^7-K.1^27,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,K.1^9-2*K.1^29,2*K.1-K.1^21,2*K.1^7-K.1^27,-1*K.1^11-K.1^31,K.1^3-2*K.1^23,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-2*K.1+K.1^21,-1*K.1^3+2*K.1^23,-1*K.1^11-K.1^31,2*K.1-K.1^21,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-2*K.1^7+K.1^27,K.1^9-2*K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-1*K.1^3+2*K.1^23,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,K.1^11+K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^30,-2*K.1^30,2*K.1^30,-2*K.1^30,-2*K.1^30,-2,2*K.1^30,2,0,0,-2*K.1^12,2*K.1^48,2*K.1^24,-2*K.1^36,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^24,-2*K.1^24,2*K.1^36,-2*K.1^48,2*K.1^24,2*K.1^12,2*K.1^48,-2*K.1^36,-2*K.1^48,-2*K.1^12,2*K.1^36,0,0,0,0,0,0,0,0,K.1^30,-1*K.1^30,-1*K.1^30,K.1^30,1,K.1^30,-1,-1*K.1^30,-1*K.1^48,K.1^36,K.1^12,-1*K.1^24,-2*K.1^42,-2*K.1^18,-2*K.1^54,2*K.1^42,2*K.1^18,-2*K.1^6,2*K.1^54,2*K.1^42,2*K.1^6,-2*K.1^54,2*K.1^6,-2*K.1^6,-2*K.1^42,2*K.1^54,2*K.1^18,-2*K.1^18,-2*K.1^42,-2*K.1^6,-2*K.1^48,2*K.1^48,-2*K.1^36,-2*K.1^24,-2*K.1^12,2*K.1^24,2*K.1^12,2*K.1^18,-2*K.1^18,-2*K.1^54,2*K.1^6,2*K.1^42,2*K.1^54,2*K.1^36,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,K.1^5+K.1^25,K.1^5+K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,K.1^12,-1*K.1^36,K.1^24,-1*K.1^12,-1*K.1^48,K.1^36,-1*K.1^36,-1*K.1^24,K.1^24,K.1^48,-1*K.1^12,K.1^48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^42,K.1^18,-1*K.1^18,K.1^42,K.1^6,-1*K.1^18,-1*K.1^54,-1*K.1^6,-1*K.1^42,-1*K.1^6,K.1^18,K.1^6,K.1^54,-1*K.1^54,K.1^42,K.1^54,-1*K.1^24,-1*K.1^54,K.1^48,K.1^36,-1*K.1^12,K.1^18,K.1^54,-1*K.1^42,K.1^6,K.1^24,-1*K.1^48,-1*K.1^6,-1*K.1^36,K.1^12,K.1^42,-1*K.1^18,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,K.1^3-2*K.1^23,2*K.1-K.1^21,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,2*K.1^7-K.1^27,-2*K.1+K.1^21,K.1^9-2*K.1^29,-1*K.1^11-K.1^31,-1*K.1^11-K.1^31,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^3+2*K.1^23,-2*K.1^7+K.1^27,K.1^3-2*K.1^23,K.1^11+K.1^31,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^9+2*K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,2*K.1-K.1^21,-2*K.1^7+K.1^27,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-1*K.1^9+2*K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-2*K.1+K.1^21,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^11+K.1^31,-1*K.1^3+2*K.1^23,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,2*K.1^7-K.1^27,K.1^9-2*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^30,2*K.1^30,-2*K.1^30,2*K.1^30,2*K.1^30,-2,-2*K.1^30,2,0,0,2*K.1^48,-2*K.1^12,-2*K.1^36,2*K.1^24,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^48,2*K.1^36,2*K.1^36,-2*K.1^24,2*K.1^12,-2*K.1^36,-2*K.1^48,-2*K.1^12,2*K.1^24,2*K.1^12,2*K.1^48,-2*K.1^24,0,0,0,0,0,0,0,0,-1*K.1^30,K.1^30,K.1^30,-1*K.1^30,1,-1*K.1^30,-1,K.1^30,K.1^12,-1*K.1^24,-1*K.1^48,K.1^36,2*K.1^18,2*K.1^42,2*K.1^6,-2*K.1^18,-2*K.1^42,2*K.1^54,-2*K.1^6,-2*K.1^18,-2*K.1^54,2*K.1^6,-2*K.1^54,2*K.1^54,2*K.1^18,-2*K.1^6,-2*K.1^42,2*K.1^42,2*K.1^18,2*K.1^54,2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^36,2*K.1^48,-2*K.1^36,-2*K.1^48,-2*K.1^42,2*K.1^42,2*K.1^6,-2*K.1^54,-2*K.1^18,-2*K.1^6,-2*K.1^24,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,K.1^5+K.1^25,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,K.1^5+K.1^25,-1*K.1^48,K.1^24,-1*K.1^36,K.1^48,K.1^12,-1*K.1^24,K.1^24,K.1^36,-1*K.1^36,-1*K.1^12,K.1^48,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,-1*K.1^42,K.1^42,-1*K.1^18,-1*K.1^54,K.1^42,K.1^6,K.1^54,K.1^18,K.1^54,-1*K.1^42,-1*K.1^54,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^36,K.1^6,-1*K.1^12,-1*K.1^24,K.1^48,-1*K.1^42,-1*K.1^6,K.1^18,-1*K.1^54,-1*K.1^36,K.1^12,K.1^54,K.1^24,-1*K.1^48,-1*K.1^18,K.1^42,-1*K.1^3+2*K.1^23,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,2*K.1^7-K.1^27,2*K.1-K.1^21,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-1*K.1^11-K.1^31,K.1^9-2*K.1^29,K.1^9-2*K.1^29,-2*K.1^7+K.1^27,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-1*K.1^9+2*K.1^29,-2*K.1+K.1^21,-2*K.1^7+K.1^27,K.1^11+K.1^31,-1*K.1^3+2*K.1^23,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,2*K.1-K.1^21,K.1^3-2*K.1^23,K.1^11+K.1^31,-2*K.1+K.1^21,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,2*K.1^7-K.1^27,-1*K.1^9+2*K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,K.1^3-2*K.1^23,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-1*K.1^11-K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^30,-2*K.1^30,2*K.1^30,-2*K.1^30,-2*K.1^30,-2,2*K.1^30,2,0,0,-2*K.1^12,2*K.1^48,2*K.1^24,-2*K.1^36,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^24,-2*K.1^24,2*K.1^36,-2*K.1^48,2*K.1^24,2*K.1^12,2*K.1^48,-2*K.1^36,-2*K.1^48,-2*K.1^12,2*K.1^36,0,0,0,0,0,0,0,0,K.1^30,-1*K.1^30,-1*K.1^30,K.1^30,1,K.1^30,-1,-1*K.1^30,-1*K.1^48,K.1^36,K.1^12,-1*K.1^24,-2*K.1^42,-2*K.1^18,-2*K.1^54,2*K.1^42,2*K.1^18,-2*K.1^6,2*K.1^54,2*K.1^42,2*K.1^6,-2*K.1^54,2*K.1^6,-2*K.1^6,-2*K.1^42,2*K.1^54,2*K.1^18,-2*K.1^18,-2*K.1^42,-2*K.1^6,-2*K.1^48,2*K.1^48,-2*K.1^36,-2*K.1^24,-2*K.1^12,2*K.1^24,2*K.1^12,2*K.1^18,-2*K.1^18,-2*K.1^54,2*K.1^6,2*K.1^42,2*K.1^54,2*K.1^36,0,0,0,0,0,0,0,0,K.1^5+K.1^25,K.1^5+K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,K.1^12,-1*K.1^36,K.1^24,-1*K.1^12,-1*K.1^48,K.1^36,-1*K.1^36,-1*K.1^24,K.1^24,K.1^48,-1*K.1^12,K.1^48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^42,K.1^18,-1*K.1^18,K.1^42,K.1^6,-1*K.1^18,-1*K.1^54,-1*K.1^6,-1*K.1^42,-1*K.1^6,K.1^18,K.1^6,K.1^54,-1*K.1^54,K.1^42,K.1^54,-1*K.1^24,-1*K.1^54,K.1^48,K.1^36,-1*K.1^12,K.1^18,K.1^54,-1*K.1^42,K.1^6,K.1^24,-1*K.1^48,-1*K.1^6,-1*K.1^36,K.1^12,K.1^42,-1*K.1^18,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-1*K.1^3+2*K.1^23,-2*K.1+K.1^21,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-2*K.1^7+K.1^27,2*K.1-K.1^21,-1*K.1^9+2*K.1^29,K.1^11+K.1^31,K.1^11+K.1^31,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^3-2*K.1^23,2*K.1^7-K.1^27,-1*K.1^3+2*K.1^23,-1*K.1^11-K.1^31,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^9-2*K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-2*K.1+K.1^21,2*K.1^7-K.1^27,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,K.1^9-2*K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,2*K.1-K.1^21,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^11-K.1^31,K.1^3-2*K.1^23,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-2*K.1^7+K.1^27,-1*K.1^9+2*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^30,2*K.1^30,-2*K.1^30,2*K.1^30,2*K.1^30,-2,-2*K.1^30,2,0,0,-2*K.1^36,2*K.1^24,-2*K.1^12,2*K.1^48,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^36,2*K.1^12,2*K.1^12,-2*K.1^48,-2*K.1^24,-2*K.1^12,2*K.1^36,2*K.1^24,2*K.1^48,-2*K.1^24,-2*K.1^36,-2*K.1^48,0,0,0,0,0,0,0,0,-1*K.1^30,K.1^30,K.1^30,-1*K.1^30,1,-1*K.1^30,-1,K.1^30,-1*K.1^24,-1*K.1^48,K.1^36,K.1^12,-2*K.1^6,-2*K.1^54,-2*K.1^42,2*K.1^6,2*K.1^54,-2*K.1^18,2*K.1^42,2*K.1^6,2*K.1^18,-2*K.1^42,2*K.1^18,-2*K.1^18,-2*K.1^6,2*K.1^42,2*K.1^54,-2*K.1^54,-2*K.1^6,-2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^48,2*K.1^12,-2*K.1^36,-2*K.1^12,2*K.1^36,2*K.1^54,-2*K.1^54,-2*K.1^42,2*K.1^18,2*K.1^6,2*K.1^42,-2*K.1^48,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-1*K.1^5-K.1^25,K.1^5+K.1^25,K.1^5+K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,-1*K.1^5-K.1^25,K.1^36,K.1^48,-1*K.1^12,-1*K.1^36,-1*K.1^24,-1*K.1^48,K.1^48,K.1^12,-1*K.1^12,K.1^24,-1*K.1^36,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^54,-1*K.1^54,K.1^6,K.1^18,-1*K.1^54,-1*K.1^42,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^54,K.1^18,K.1^42,-1*K.1^42,K.1^6,K.1^42,K.1^12,-1*K.1^42,K.1^24,-1*K.1^48,-1*K.1^36,K.1^54,K.1^42,-1*K.1^6,K.1^18,-1*K.1^12,-1*K.1^24,-1*K.1^18,K.1^48,K.1^36,K.1^6,-1*K.1^54,K.1^11+K.1^31,K.1^9-2*K.1^29,-1*K.1^3+2*K.1^23,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-2*K.1+K.1^21,K.1^3-2*K.1^23,2*K.1^7-K.1^27,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-1*K.1^9+2*K.1^29,2*K.1-K.1^21,K.1^9-2*K.1^29,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-2*K.1^7+K.1^27,K.1^11+K.1^31,-1*K.1^3+2*K.1^23,2*K.1-K.1^21,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-1*K.1^11-K.1^31,-2*K.1^7+K.1^27,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,K.1^3-2*K.1^23,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^9+2*K.1^29,-1*K.1^11-K.1^31,-2*K.1+K.1^21,2*K.1^7-K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^30,-2*K.1^30,2*K.1^30,-2*K.1^30,-2*K.1^30,-2,2*K.1^30,2,0,0,2*K.1^24,-2*K.1^36,2*K.1^48,-2*K.1^12,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^48,-2*K.1^48,2*K.1^12,2*K.1^36,2*K.1^48,-2*K.1^24,-2*K.1^36,-2*K.1^12,2*K.1^36,2*K.1^24,2*K.1^12,0,0,0,0,0,0,0,0,K.1^30,-1*K.1^30,-1*K.1^30,K.1^30,1,K.1^30,-1,-1*K.1^30,K.1^36,K.1^12,-1*K.1^24,-1*K.1^48,2*K.1^54,2*K.1^6,2*K.1^18,-2*K.1^54,-2*K.1^6,2*K.1^42,-2*K.1^18,-2*K.1^54,-2*K.1^42,2*K.1^18,-2*K.1^42,2*K.1^42,2*K.1^54,-2*K.1^18,-2*K.1^6,2*K.1^6,2*K.1^54,2*K.1^42,2*K.1^36,-2*K.1^36,-2*K.1^12,-2*K.1^48,2*K.1^24,2*K.1^48,-2*K.1^24,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^42,-2*K.1^54,-2*K.1^18,2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,K.1^5+K.1^25,K.1^5+K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-1*K.1^24,-1*K.1^12,K.1^48,K.1^24,K.1^36,K.1^12,-1*K.1^12,-1*K.1^48,K.1^48,-1*K.1^36,K.1^24,-1*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^54,-1*K.1^6,K.1^6,-1*K.1^54,-1*K.1^42,K.1^6,K.1^18,K.1^42,K.1^54,K.1^42,-1*K.1^6,-1*K.1^42,-1*K.1^18,K.1^18,-1*K.1^54,-1*K.1^18,-1*K.1^48,K.1^18,-1*K.1^36,K.1^12,K.1^24,-1*K.1^6,-1*K.1^18,K.1^54,-1*K.1^42,K.1^48,K.1^36,K.1^42,-1*K.1^12,-1*K.1^24,-1*K.1^54,K.1^6,K.1^9-2*K.1^29,K.1^11+K.1^31,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,2*K.1-K.1^21,K.1^3-2*K.1^23,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-2*K.1^7+K.1^27,-2*K.1^7+K.1^27,-2*K.1+K.1^21,-1*K.1^11-K.1^31,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,K.1^11+K.1^31,2*K.1^7-K.1^27,-1*K.1^3+2*K.1^23,-2*K.1+K.1^21,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^9-2*K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,K.1^3-2*K.1^23,-1*K.1^9+2*K.1^29,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-1*K.1^3+2*K.1^23,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,2*K.1-K.1^21,2*K.1^7-K.1^27,-1*K.1^11-K.1^31,-1*K.1^9+2*K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^30,2*K.1^30,-2*K.1^30,2*K.1^30,2*K.1^30,-2,-2*K.1^30,2,0,0,-2*K.1^36,2*K.1^24,-2*K.1^12,2*K.1^48,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^36,2*K.1^12,2*K.1^12,-2*K.1^48,-2*K.1^24,-2*K.1^12,2*K.1^36,2*K.1^24,2*K.1^48,-2*K.1^24,-2*K.1^36,-2*K.1^48,0,0,0,0,0,0,0,0,-1*K.1^30,K.1^30,K.1^30,-1*K.1^30,1,-1*K.1^30,-1,K.1^30,-1*K.1^24,-1*K.1^48,K.1^36,K.1^12,-2*K.1^6,-2*K.1^54,-2*K.1^42,2*K.1^6,2*K.1^54,-2*K.1^18,2*K.1^42,2*K.1^6,2*K.1^18,-2*K.1^42,2*K.1^18,-2*K.1^18,-2*K.1^6,2*K.1^42,2*K.1^54,-2*K.1^54,-2*K.1^6,-2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^48,2*K.1^12,-2*K.1^36,-2*K.1^12,2*K.1^36,2*K.1^54,-2*K.1^54,-2*K.1^42,2*K.1^18,2*K.1^6,2*K.1^42,-2*K.1^48,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,K.1^5+K.1^25,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,K.1^5+K.1^25,K.1^36,K.1^48,-1*K.1^12,-1*K.1^36,-1*K.1^24,-1*K.1^48,K.1^48,K.1^12,-1*K.1^12,K.1^24,-1*K.1^36,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^54,-1*K.1^54,K.1^6,K.1^18,-1*K.1^54,-1*K.1^42,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^54,K.1^18,K.1^42,-1*K.1^42,K.1^6,K.1^42,K.1^12,-1*K.1^42,K.1^24,-1*K.1^48,-1*K.1^36,K.1^54,K.1^42,-1*K.1^6,K.1^18,-1*K.1^12,-1*K.1^24,-1*K.1^18,K.1^48,K.1^36,K.1^6,-1*K.1^54,-1*K.1^11-K.1^31,-1*K.1^9+2*K.1^29,K.1^3-2*K.1^23,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,2*K.1-K.1^21,-1*K.1^3+2*K.1^23,-2*K.1^7+K.1^27,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,K.1^9-2*K.1^29,-2*K.1+K.1^21,-1*K.1^9+2*K.1^29,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,2*K.1^7-K.1^27,-1*K.1^11-K.1^31,K.1^3-2*K.1^23,-2*K.1+K.1^21,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,K.1^11+K.1^31,2*K.1^7-K.1^27,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-1*K.1^3+2*K.1^23,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^9-2*K.1^29,K.1^11+K.1^31,2*K.1-K.1^21,-2*K.1^7+K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^30,-2*K.1^30,2*K.1^30,-2*K.1^30,-2*K.1^30,-2,2*K.1^30,2,0,0,2*K.1^24,-2*K.1^36,2*K.1^48,-2*K.1^12,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^48,-2*K.1^48,2*K.1^12,2*K.1^36,2*K.1^48,-2*K.1^24,-2*K.1^36,-2*K.1^12,2*K.1^36,2*K.1^24,2*K.1^12,0,0,0,0,0,0,0,0,K.1^30,-1*K.1^30,-1*K.1^30,K.1^30,1,K.1^30,-1,-1*K.1^30,K.1^36,K.1^12,-1*K.1^24,-1*K.1^48,2*K.1^54,2*K.1^6,2*K.1^18,-2*K.1^54,-2*K.1^6,2*K.1^42,-2*K.1^18,-2*K.1^54,-2*K.1^42,2*K.1^18,-2*K.1^42,2*K.1^42,2*K.1^54,-2*K.1^18,-2*K.1^6,2*K.1^6,2*K.1^54,2*K.1^42,2*K.1^36,-2*K.1^36,-2*K.1^12,-2*K.1^48,2*K.1^24,2*K.1^48,-2*K.1^24,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^42,-2*K.1^54,-2*K.1^18,2*K.1^12,0,0,0,0,0,0,0,0,K.1^5+K.1^25,K.1^5+K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,-1*K.1^24,-1*K.1^12,K.1^48,K.1^24,K.1^36,K.1^12,-1*K.1^12,-1*K.1^48,K.1^48,-1*K.1^36,K.1^24,-1*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^54,-1*K.1^6,K.1^6,-1*K.1^54,-1*K.1^42,K.1^6,K.1^18,K.1^42,K.1^54,K.1^42,-1*K.1^6,-1*K.1^42,-1*K.1^18,K.1^18,-1*K.1^54,-1*K.1^18,-1*K.1^48,K.1^18,-1*K.1^36,K.1^12,K.1^24,-1*K.1^6,-1*K.1^18,K.1^54,-1*K.1^42,K.1^48,K.1^36,K.1^42,-1*K.1^12,-1*K.1^24,-1*K.1^54,K.1^6,-1*K.1^9+2*K.1^29,-1*K.1^11-K.1^31,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-2*K.1+K.1^21,-1*K.1^3+2*K.1^23,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,2*K.1^7-K.1^27,2*K.1^7-K.1^27,2*K.1-K.1^21,K.1^11+K.1^31,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-1*K.1^11-K.1^31,-2*K.1^7+K.1^27,K.1^3-2*K.1^23,2*K.1-K.1^21,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^9+2*K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-1*K.1^3+2*K.1^23,K.1^9-2*K.1^29,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,K.1^3-2*K.1^23,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-2*K.1+K.1^21,-2*K.1^7+K.1^27,K.1^11+K.1^31,K.1^9-2*K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^30,2*K.1^30,-2*K.1^30,2*K.1^30,2*K.1^30,-2,-2*K.1^30,2,0,0,2*K.1^24,-2*K.1^36,2*K.1^48,-2*K.1^12,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^48,-2*K.1^48,2*K.1^12,2*K.1^36,2*K.1^48,-2*K.1^24,-2*K.1^36,-2*K.1^12,2*K.1^36,2*K.1^24,2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^30,K.1^30,K.1^30,-1*K.1^30,1,-1*K.1^30,-1,K.1^30,K.1^36,K.1^12,-1*K.1^24,-1*K.1^48,-2*K.1^54,-2*K.1^6,-2*K.1^18,2*K.1^54,2*K.1^6,-2*K.1^42,2*K.1^18,2*K.1^54,2*K.1^42,-2*K.1^18,2*K.1^42,-2*K.1^42,-2*K.1^54,2*K.1^18,2*K.1^6,-2*K.1^6,-2*K.1^54,-2*K.1^42,2*K.1^36,-2*K.1^36,-2*K.1^12,-2*K.1^48,2*K.1^24,2*K.1^48,-2*K.1^24,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^42,2*K.1^54,2*K.1^18,2*K.1^12,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-1*K.1^5-K.1^25,K.1^5+K.1^25,K.1^5+K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,-1*K.1^5-K.1^25,-1*K.1^24,-1*K.1^12,K.1^48,K.1^24,K.1^36,K.1^12,-1*K.1^12,-1*K.1^48,K.1^48,-1*K.1^36,K.1^24,-1*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^54,K.1^6,-1*K.1^6,K.1^54,K.1^42,-1*K.1^6,-1*K.1^18,-1*K.1^42,-1*K.1^54,-1*K.1^42,K.1^6,K.1^42,K.1^18,-1*K.1^18,K.1^54,K.1^18,-1*K.1^48,-1*K.1^18,-1*K.1^36,K.1^12,K.1^24,K.1^6,K.1^18,-1*K.1^54,K.1^42,K.1^48,K.1^36,-1*K.1^42,-1*K.1^12,-1*K.1^24,K.1^54,-1*K.1^6,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-2*K.1+K.1^21,-2*K.1^7+K.1^27,-1*K.1^11-K.1^31,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,K.1^9-2*K.1^29,2*K.1^7-K.1^27,K.1^3-2*K.1^23,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,K.1^11+K.1^31,2*K.1-K.1^21,-1*K.1^9+2*K.1^29,-2*K.1+K.1^21,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^11+K.1^31,-1*K.1^3+2*K.1^23,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-2*K.1^7+K.1^27,-1*K.1^9+2*K.1^29,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-1*K.1^3+2*K.1^23,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,2*K.1^7-K.1^27,-1*K.1^11-K.1^31,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,2*K.1-K.1^21,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,K.1^9-2*K.1^29,K.1^3-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^30,-2*K.1^30,2*K.1^30,-2*K.1^30,-2*K.1^30,-2,2*K.1^30,2,0,0,-2*K.1^36,2*K.1^24,-2*K.1^12,2*K.1^48,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^36,2*K.1^12,2*K.1^12,-2*K.1^48,-2*K.1^24,-2*K.1^12,2*K.1^36,2*K.1^24,2*K.1^48,-2*K.1^24,-2*K.1^36,-2*K.1^48,0,0,0,0,0,0,0,0,K.1^30,-1*K.1^30,-1*K.1^30,K.1^30,1,K.1^30,-1,-1*K.1^30,-1*K.1^24,-1*K.1^48,K.1^36,K.1^12,2*K.1^6,2*K.1^54,2*K.1^42,-2*K.1^6,-2*K.1^54,2*K.1^18,-2*K.1^42,-2*K.1^6,-2*K.1^18,2*K.1^42,-2*K.1^18,2*K.1^18,2*K.1^6,-2*K.1^42,-2*K.1^54,2*K.1^54,2*K.1^6,2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^48,2*K.1^12,-2*K.1^36,-2*K.1^12,2*K.1^36,-2*K.1^54,2*K.1^54,2*K.1^42,-2*K.1^18,-2*K.1^6,-2*K.1^42,-2*K.1^48,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,K.1^5+K.1^25,K.1^5+K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,K.1^36,K.1^48,-1*K.1^12,-1*K.1^36,-1*K.1^24,-1*K.1^48,K.1^48,K.1^12,-1*K.1^12,K.1^24,-1*K.1^36,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^54,K.1^54,-1*K.1^6,-1*K.1^18,K.1^54,K.1^42,K.1^18,K.1^6,K.1^18,-1*K.1^54,-1*K.1^18,-1*K.1^42,K.1^42,-1*K.1^6,-1*K.1^42,K.1^12,K.1^42,K.1^24,-1*K.1^48,-1*K.1^36,-1*K.1^54,-1*K.1^42,K.1^6,-1*K.1^18,-1*K.1^12,-1*K.1^24,K.1^18,K.1^48,K.1^36,-1*K.1^6,K.1^54,-2*K.1+K.1^21,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-1*K.1^9+2*K.1^29,2*K.1^7-K.1^27,K.1^11+K.1^31,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-1*K.1^3+2*K.1^23,-1*K.1^3+2*K.1^23,K.1^9-2*K.1^29,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-1*K.1^11-K.1^31,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,K.1^3-2*K.1^23,-2*K.1^7+K.1^27,K.1^9-2*K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-2*K.1+K.1^21,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-1*K.1^11-K.1^31,2*K.1^7-K.1^27,2*K.1-K.1^21,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-2*K.1^7+K.1^27,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^9+2*K.1^29,K.1^3-2*K.1^23,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,2*K.1-K.1^21,K.1^11+K.1^31,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^30,2*K.1^30,-2*K.1^30,2*K.1^30,2*K.1^30,-2,-2*K.1^30,2,0,0,2*K.1^24,-2*K.1^36,2*K.1^48,-2*K.1^12,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,-2*K.1^48,-2*K.1^48,2*K.1^12,2*K.1^36,2*K.1^48,-2*K.1^24,-2*K.1^36,-2*K.1^12,2*K.1^36,2*K.1^24,2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^30,K.1^30,K.1^30,-1*K.1^30,1,-1*K.1^30,-1,K.1^30,K.1^36,K.1^12,-1*K.1^24,-1*K.1^48,-2*K.1^54,-2*K.1^6,-2*K.1^18,2*K.1^54,2*K.1^6,-2*K.1^42,2*K.1^18,2*K.1^54,2*K.1^42,-2*K.1^18,2*K.1^42,-2*K.1^42,-2*K.1^54,2*K.1^18,2*K.1^6,-2*K.1^6,-2*K.1^54,-2*K.1^42,2*K.1^36,-2*K.1^36,-2*K.1^12,-2*K.1^48,2*K.1^24,2*K.1^48,-2*K.1^24,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^42,2*K.1^54,2*K.1^18,2*K.1^12,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,K.1^5+K.1^25,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,K.1^5+K.1^25,-1*K.1^24,-1*K.1^12,K.1^48,K.1^24,K.1^36,K.1^12,-1*K.1^12,-1*K.1^48,K.1^48,-1*K.1^36,K.1^24,-1*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^54,K.1^6,-1*K.1^6,K.1^54,K.1^42,-1*K.1^6,-1*K.1^18,-1*K.1^42,-1*K.1^54,-1*K.1^42,K.1^6,K.1^42,K.1^18,-1*K.1^18,K.1^54,K.1^18,-1*K.1^48,-1*K.1^18,-1*K.1^36,K.1^12,K.1^24,K.1^6,K.1^18,-1*K.1^54,K.1^42,K.1^48,K.1^36,-1*K.1^42,-1*K.1^12,-1*K.1^24,K.1^54,-1*K.1^6,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,2*K.1-K.1^21,2*K.1^7-K.1^27,K.1^11+K.1^31,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-1*K.1^9+2*K.1^29,-2*K.1^7+K.1^27,-1*K.1^3+2*K.1^23,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,-1*K.1^11-K.1^31,-2*K.1+K.1^21,K.1^9-2*K.1^29,2*K.1-K.1^21,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-1*K.1^11-K.1^31,K.1^3-2*K.1^23,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,2*K.1^7-K.1^27,K.1^9-2*K.1^29,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,K.1^3-2*K.1^23,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,-2*K.1^7+K.1^27,K.1^11+K.1^31,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,-2*K.1+K.1^21,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-1*K.1^9+2*K.1^29,-1*K.1^3+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(120: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^30,-2*K.1^30,2*K.1^30,-2*K.1^30,-2*K.1^30,-2,2*K.1^30,2,0,0,-2*K.1^36,2*K.1^24,-2*K.1^12,2*K.1^48,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^36,2*K.1^12,2*K.1^12,-2*K.1^48,-2*K.1^24,-2*K.1^12,2*K.1^36,2*K.1^24,2*K.1^48,-2*K.1^24,-2*K.1^36,-2*K.1^48,0,0,0,0,0,0,0,0,K.1^30,-1*K.1^30,-1*K.1^30,K.1^30,1,K.1^30,-1,-1*K.1^30,-1*K.1^24,-1*K.1^48,K.1^36,K.1^12,2*K.1^6,2*K.1^54,2*K.1^42,-2*K.1^6,-2*K.1^54,2*K.1^18,-2*K.1^42,-2*K.1^6,-2*K.1^18,2*K.1^42,-2*K.1^18,2*K.1^18,2*K.1^6,-2*K.1^42,-2*K.1^54,2*K.1^54,2*K.1^6,2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^48,2*K.1^12,-2*K.1^36,-2*K.1^12,2*K.1^36,-2*K.1^54,2*K.1^54,2*K.1^42,-2*K.1^18,-2*K.1^6,-2*K.1^42,-2*K.1^48,0,0,0,0,0,0,0,0,K.1^5+K.1^25,K.1^5+K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-2*K.1^3-2*K.1^7+K.1^15+2*K.1^19+2*K.1^23-2*K.1^31,-1*K.1^5-K.1^25,-1*K.1^5-K.1^25,2*K.1^3+2*K.1^7-K.1^15-2*K.1^19-2*K.1^23+2*K.1^31,K.1^36,K.1^48,-1*K.1^12,-1*K.1^36,-1*K.1^24,-1*K.1^48,K.1^48,K.1^12,-1*K.1^12,K.1^24,-1*K.1^36,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^54,K.1^54,-1*K.1^6,-1*K.1^18,K.1^54,K.1^42,K.1^18,K.1^6,K.1^18,-1*K.1^54,-1*K.1^18,-1*K.1^42,K.1^42,-1*K.1^6,-1*K.1^42,K.1^12,K.1^42,K.1^24,-1*K.1^48,-1*K.1^36,-1*K.1^54,-1*K.1^42,K.1^6,-1*K.1^18,-1*K.1^12,-1*K.1^24,K.1^18,K.1^48,K.1^36,-1*K.1^6,K.1^54,2*K.1-K.1^21,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,K.1^9-2*K.1^29,-2*K.1^7+K.1^27,-1*K.1^11-K.1^31,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29,K.1^3-2*K.1^23,K.1^3-2*K.1^23,-1*K.1^9+2*K.1^29,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,K.1^11+K.1^31,-1*K.1^3+K.1^11+K.1^15+2*K.1^19-K.1^27-K.1^31,-1*K.1^3+2*K.1^23,2*K.1^7-K.1^27,-1*K.1^9+2*K.1^29,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,2*K.1-K.1^21,K.1+K.1^5+K.1^13-K.1^17-K.1^21+K.1^29,K.1^11+K.1^31,-2*K.1^7+K.1^27,-2*K.1+K.1^21,K.1-K.1^9-K.1^13+K.1^17+K.1^25+K.1^29,2*K.1^7-K.1^27,-1*K.1-K.1^5-K.1^13+K.1^17+K.1^21-K.1^29,K.1^9-2*K.1^29,-1*K.1^3+2*K.1^23,K.1^3-K.1^11-K.1^15-2*K.1^19+K.1^27+K.1^31,-2*K.1+K.1^21,-1*K.1^11-K.1^31,-1*K.1+K.1^9+K.1^13-K.1^17-K.1^25-K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2,2*K.1^10,-2,0,0,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^12,1,-1,1,2*K.1^15,-2*K.1^5,2*K.1^5,-2*K.1^15,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1,K.1^10,1,-1*K.1^10,-1*K.1^16,K.1^12,K.1^4,-1*K.1^8,2*K.1^14,2*K.1^6,2*K.1^18,-2*K.1^14,-2*K.1^6,2*K.1^2,-2*K.1^18,-2*K.1^14,-2*K.1^2,2*K.1^18,-2*K.1^2,2*K.1^2,2*K.1^14,-2*K.1^18,-2*K.1^6,2*K.1^6,-2*K.1^14,-2*K.1^2,2*K.1^16,-2*K.1^16,2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^2,2*K.1^14,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^4,-1*K.1^12,K.1^8,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^12,-1*K.1^8,K.1^8,K.1^16,-1*K.1^4,K.1^16,2*K.1^3,2*K.1^13,2*K.1^9,-2*K.1^17,-2*K.1^7,-2*K.1,-2*K.1^13,2*K.1^19,-2*K.1^19,-2*K.1^9,2*K.1^17,-2*K.1^11,-2*K.1^3,2*K.1^7,2*K.1^11,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^14,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,K.1^18,K.1^2,K.1^14,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^18,K.1^8,-1*K.1^18,-1*K.1^16,-1*K.1^12,K.1^4,K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^8,K.1^16,-1*K.1^2,K.1^12,-1*K.1^4,K.1^14,-1*K.1^6,K.1^9,K.1^11,-1*K.1^17,-1*K.1,-1*K.1^3,K.1^19,K.1^17,K.1^13,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^11,-1*K.1^19,-1*K.1^11,-1*K.1^7,-1*K.1^3,K.1,-1*K.1^13,-1*K.1^9,K.1^17,K.1^19,K.1^3,-1*K.1^9,K.1^13,K.1^3,-1*K.1^17,K.1,K.1^7,K.1^11,K.1^9,-1*K.1^19,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,2,-2*K.1^10,-2,0,0,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,1,-1,1,-2*K.1^5,2*K.1^15,-2*K.1^15,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^4,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^8,0,0,0,0,0,0,0,0,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1,-1*K.1^10,1,K.1^10,K.1^4,-1*K.1^8,-1*K.1^16,K.1^12,-2*K.1^6,-2*K.1^14,-2*K.1^2,2*K.1^6,2*K.1^14,-2*K.1^18,2*K.1^2,2*K.1^6,2*K.1^18,-2*K.1^2,2*K.1^18,-2*K.1^18,-2*K.1^6,2*K.1^2,2*K.1^14,-2*K.1^14,2*K.1^6,2*K.1^18,-2*K.1^4,2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^16,2*K.1^12,2*K.1^16,-2*K.1^14,2*K.1^14,2*K.1^2,-2*K.1^18,-2*K.1^6,-2*K.1^2,2*K.1^8,0,0,0,0,0,0,0,0,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^16,K.1^8,-1*K.1^12,K.1^16,K.1^4,-1*K.1^8,K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^4,-2*K.1^17,-2*K.1^7,-2*K.1^11,2*K.1^3,2*K.1^13,2*K.1^19,2*K.1^7,-2*K.1,2*K.1,2*K.1^11,-2*K.1^3,2*K.1^9,2*K.1^17,-2*K.1^13,-2*K.1^9,-2*K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^14,-1*K.1^14,K.1^6,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^14,K.1^18,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^12,K.1^2,K.1^4,K.1^8,-1*K.1^16,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^12,-1*K.1^4,K.1^18,-1*K.1^8,K.1^16,-1*K.1^6,K.1^14,-1*K.1^11,-1*K.1^9,K.1^3,K.1^19,K.1^17,-1*K.1,-1*K.1^3,-1*K.1^7,-1*K.1^13,K.1^13,K.1^19,K.1^9,K.1,K.1^9,K.1^13,K.1^17,-1*K.1^19,K.1^7,K.1^11,-1*K.1^3,-1*K.1,-1*K.1^17,K.1^11,-1*K.1^7,-1*K.1^17,K.1^3,-1*K.1^19,-1*K.1^13,-1*K.1^9,-1*K.1^11,K.1,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2,2*K.1^10,-2,0,0,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^12,1,-1,1,-2*K.1^15,2*K.1^5,-2*K.1^5,2*K.1^15,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1,K.1^10,1,-1*K.1^10,-1*K.1^16,K.1^12,K.1^4,-1*K.1^8,2*K.1^14,2*K.1^6,2*K.1^18,-2*K.1^14,-2*K.1^6,2*K.1^2,-2*K.1^18,-2*K.1^14,-2*K.1^2,2*K.1^18,-2*K.1^2,2*K.1^2,2*K.1^14,-2*K.1^18,-2*K.1^6,2*K.1^6,-2*K.1^14,-2*K.1^2,2*K.1^16,-2*K.1^16,2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^6,-2*K.1^6,-2*K.1^18,2*K.1^2,2*K.1^14,2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^4,-1*K.1^12,K.1^8,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^12,-1*K.1^8,K.1^8,K.1^16,-1*K.1^4,K.1^16,-2*K.1^3,-2*K.1^13,-2*K.1^9,2*K.1^17,2*K.1^7,2*K.1,2*K.1^13,-2*K.1^19,2*K.1^19,2*K.1^9,-2*K.1^17,2*K.1^11,2*K.1^3,-2*K.1^7,-2*K.1^11,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^14,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^2,K.1^6,K.1^18,K.1^2,K.1^14,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^18,K.1^8,-1*K.1^18,-1*K.1^16,-1*K.1^12,K.1^4,K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^8,K.1^16,-1*K.1^2,K.1^12,-1*K.1^4,K.1^14,-1*K.1^6,-1*K.1^9,-1*K.1^11,K.1^17,K.1,K.1^3,-1*K.1^19,-1*K.1^17,-1*K.1^13,-1*K.1^7,K.1^7,K.1,K.1^11,K.1^19,K.1^11,K.1^7,K.1^3,-1*K.1,K.1^13,K.1^9,-1*K.1^17,-1*K.1^19,-1*K.1^3,K.1^9,-1*K.1^13,-1*K.1^3,K.1^17,-1*K.1,-1*K.1^7,-1*K.1^11,-1*K.1^9,K.1^19,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,2,-2*K.1^10,-2,0,0,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,1,-1,1,2*K.1^5,-2*K.1^15,2*K.1^15,-2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^4,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^8,0,0,0,0,0,0,0,0,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1,-1*K.1^10,1,K.1^10,K.1^4,-1*K.1^8,-1*K.1^16,K.1^12,-2*K.1^6,-2*K.1^14,-2*K.1^2,2*K.1^6,2*K.1^14,-2*K.1^18,2*K.1^2,2*K.1^6,2*K.1^18,-2*K.1^2,2*K.1^18,-2*K.1^18,-2*K.1^6,2*K.1^2,2*K.1^14,-2*K.1^14,2*K.1^6,2*K.1^18,-2*K.1^4,2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^16,2*K.1^12,2*K.1^16,-2*K.1^14,2*K.1^14,2*K.1^2,-2*K.1^18,-2*K.1^6,-2*K.1^2,2*K.1^8,0,0,0,0,0,0,0,0,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^16,K.1^8,-1*K.1^12,K.1^16,K.1^4,-1*K.1^8,K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^4,2*K.1^17,2*K.1^7,2*K.1^11,-2*K.1^3,-2*K.1^13,-2*K.1^19,-2*K.1^7,2*K.1,-2*K.1,-2*K.1^11,2*K.1^3,-2*K.1^9,-2*K.1^17,2*K.1^13,2*K.1^9,2*K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^14,-1*K.1^14,K.1^6,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^14,K.1^18,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^12,K.1^2,K.1^4,K.1^8,-1*K.1^16,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^12,-1*K.1^4,K.1^18,-1*K.1^8,K.1^16,-1*K.1^6,K.1^14,K.1^11,K.1^9,-1*K.1^3,-1*K.1^19,-1*K.1^17,K.1,K.1^3,K.1^7,K.1^13,-1*K.1^13,-1*K.1^19,-1*K.1^9,-1*K.1,-1*K.1^9,-1*K.1^13,-1*K.1^17,K.1^19,-1*K.1^7,-1*K.1^11,K.1^3,K.1,K.1^17,-1*K.1^11,K.1^7,K.1^17,-1*K.1^3,K.1^19,K.1^13,K.1^9,K.1^11,-1*K.1,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2,2*K.1^10,-2,0,0,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,1,-1,1,2*K.1^15,-2*K.1^5,2*K.1^5,-2*K.1^15,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^4,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^8,0,0,0,0,0,0,0,0,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1,K.1^10,1,-1*K.1^10,K.1^4,-1*K.1^8,-1*K.1^16,K.1^12,2*K.1^6,2*K.1^14,2*K.1^2,-2*K.1^6,-2*K.1^14,2*K.1^18,-2*K.1^2,-2*K.1^6,-2*K.1^18,2*K.1^2,-2*K.1^18,2*K.1^18,2*K.1^6,-2*K.1^2,-2*K.1^14,2*K.1^14,-2*K.1^6,-2*K.1^18,-2*K.1^4,2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^16,2*K.1^12,2*K.1^16,2*K.1^14,-2*K.1^14,-2*K.1^2,2*K.1^18,2*K.1^6,2*K.1^2,2*K.1^8,0,0,0,0,0,0,0,0,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^16,K.1^8,-1*K.1^12,K.1^16,K.1^4,-1*K.1^8,K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^4,-2*K.1^7,-2*K.1^17,2*K.1,2*K.1^13,2*K.1^3,-2*K.1^9,2*K.1^17,2*K.1^11,-2*K.1^11,-2*K.1,-2*K.1^13,-2*K.1^19,2*K.1^7,-2*K.1^3,2*K.1^19,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^18,K.1^14,K.1^2,K.1^18,K.1^6,K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^12,-1*K.1^2,K.1^4,K.1^8,-1*K.1^16,K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^12,-1*K.1^4,-1*K.1^18,-1*K.1^8,K.1^16,K.1^6,-1*K.1^14,K.1,K.1^19,K.1^13,-1*K.1^9,K.1^7,K.1^11,-1*K.1^13,-1*K.1^17,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^19,-1*K.1^11,-1*K.1^19,K.1^3,K.1^7,K.1^9,K.1^17,-1*K.1,-1*K.1^13,K.1^11,-1*K.1^7,-1*K.1,-1*K.1^17,-1*K.1^7,K.1^13,K.1^9,-1*K.1^3,K.1^19,K.1,-1*K.1^11,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,2,-2*K.1^10,-2,0,0,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^12,1,-1,1,-2*K.1^5,2*K.1^15,-2*K.1^15,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^12,0,0,0,0,0,0,0,0,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1,-1*K.1^10,1,K.1^10,-1*K.1^16,K.1^12,K.1^4,-1*K.1^8,-2*K.1^14,-2*K.1^6,-2*K.1^18,2*K.1^14,2*K.1^6,-2*K.1^2,2*K.1^18,2*K.1^14,2*K.1^2,-2*K.1^18,2*K.1^2,-2*K.1^2,-2*K.1^14,2*K.1^18,2*K.1^6,-2*K.1^6,2*K.1^14,2*K.1^2,2*K.1^16,-2*K.1^16,2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^8,-2*K.1^4,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^2,-2*K.1^14,-2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^4,-1*K.1^12,K.1^8,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^12,-1*K.1^8,K.1^8,K.1^16,-1*K.1^4,K.1^16,2*K.1^13,2*K.1^3,-2*K.1^19,-2*K.1^7,-2*K.1^17,2*K.1^11,-2*K.1^3,-2*K.1^9,2*K.1^9,2*K.1^19,2*K.1^7,2*K.1,-2*K.1^13,2*K.1^17,-2*K.1,-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^14,K.1^6,-1*K.1^6,K.1^14,K.1^2,-1*K.1^6,-1*K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^6,K.1^2,K.1^18,-1*K.1^18,K.1^14,K.1^18,K.1^8,K.1^18,-1*K.1^16,-1*K.1^12,K.1^4,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^8,K.1^16,K.1^2,K.1^12,-1*K.1^4,-1*K.1^14,K.1^6,-1*K.1^19,-1*K.1,-1*K.1^7,K.1^11,-1*K.1^13,-1*K.1^9,K.1^7,K.1^3,K.1^17,-1*K.1^17,K.1^11,K.1,K.1^9,K.1,-1*K.1^17,-1*K.1^13,-1*K.1^11,-1*K.1^3,K.1^19,K.1^7,-1*K.1^9,K.1^13,K.1^19,K.1^3,K.1^13,-1*K.1^7,-1*K.1^11,K.1^17,-1*K.1,-1*K.1^19,K.1^9,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2,2*K.1^10,-2,0,0,2*K.1^16,-2*K.1^4,-2*K.1^12,2*K.1^8,1,-1,1,-2*K.1^15,2*K.1^5,-2*K.1^5,2*K.1^15,0,0,0,0,0,0,0,0,-2*K.1^16,2*K.1^12,2*K.1^12,-2*K.1^8,2*K.1^4,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^8,0,0,0,0,0,0,0,0,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1,K.1^10,1,-1*K.1^10,K.1^4,-1*K.1^8,-1*K.1^16,K.1^12,2*K.1^6,2*K.1^14,2*K.1^2,-2*K.1^6,-2*K.1^14,2*K.1^18,-2*K.1^2,-2*K.1^6,-2*K.1^18,2*K.1^2,-2*K.1^18,2*K.1^18,2*K.1^6,-2*K.1^2,-2*K.1^14,2*K.1^14,-2*K.1^6,-2*K.1^18,-2*K.1^4,2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^16,2*K.1^12,2*K.1^16,2*K.1^14,-2*K.1^14,-2*K.1^2,2*K.1^18,2*K.1^6,2*K.1^2,2*K.1^8,0,0,0,0,0,0,0,0,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^16,K.1^8,-1*K.1^12,K.1^16,K.1^4,-1*K.1^8,K.1^8,K.1^12,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^4,2*K.1^7,2*K.1^17,-2*K.1,-2*K.1^13,-2*K.1^3,2*K.1^9,-2*K.1^17,-2*K.1^11,2*K.1^11,2*K.1,2*K.1^13,2*K.1^19,-2*K.1^7,2*K.1^3,-2*K.1^19,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^14,K.1^14,-1*K.1^6,-1*K.1^18,K.1^14,K.1^2,K.1^18,K.1^6,K.1^18,-1*K.1^14,-1*K.1^18,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^12,-1*K.1^2,K.1^4,K.1^8,-1*K.1^16,K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^12,-1*K.1^4,-1*K.1^18,-1*K.1^8,K.1^16,K.1^6,-1*K.1^14,-1*K.1,-1*K.1^19,-1*K.1^13,K.1^9,-1*K.1^7,-1*K.1^11,K.1^13,K.1^17,K.1^3,-1*K.1^3,K.1^9,K.1^19,K.1^11,K.1^19,-1*K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^17,K.1,K.1^13,-1*K.1^11,K.1^7,K.1,K.1^17,K.1^7,-1*K.1^13,-1*K.1^9,K.1^3,-1*K.1^19,-1*K.1,K.1^11,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,2,-2*K.1^10,-2,0,0,-2*K.1^4,2*K.1^16,2*K.1^8,-2*K.1^12,1,-1,1,2*K.1^5,-2*K.1^15,2*K.1^15,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^8,-2*K.1^8,2*K.1^12,-2*K.1^16,2*K.1^8,2*K.1^4,2*K.1^16,-2*K.1^12,-2*K.1^16,-2*K.1^4,2*K.1^12,0,0,0,0,0,0,0,0,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1,-1*K.1^10,1,K.1^10,-1*K.1^16,K.1^12,K.1^4,-1*K.1^8,-2*K.1^14,-2*K.1^6,-2*K.1^18,2*K.1^14,2*K.1^6,-2*K.1^2,2*K.1^18,2*K.1^14,2*K.1^2,-2*K.1^18,2*K.1^2,-2*K.1^2,-2*K.1^14,2*K.1^18,2*K.1^6,-2*K.1^6,2*K.1^14,2*K.1^2,2*K.1^16,-2*K.1^16,2*K.1^12,2*K.1^8,2*K.1^4,-2*K.1^8,-2*K.1^4,-2*K.1^6,2*K.1^6,2*K.1^18,-2*K.1^2,-2*K.1^14,-2*K.1^18,-2*K.1^12,0,0,0,0,0,0,0,0,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^4,-1*K.1^12,K.1^8,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^12,-1*K.1^8,K.1^8,K.1^16,-1*K.1^4,K.1^16,-2*K.1^13,-2*K.1^3,2*K.1^19,2*K.1^7,2*K.1^17,-2*K.1^11,2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1^19,-2*K.1^7,-2*K.1,2*K.1^13,-2*K.1^17,2*K.1,2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^14,K.1^6,-1*K.1^6,K.1^14,K.1^2,-1*K.1^6,-1*K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^6,K.1^2,K.1^18,-1*K.1^18,K.1^14,K.1^18,K.1^8,K.1^18,-1*K.1^16,-1*K.1^12,K.1^4,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^8,K.1^16,K.1^2,K.1^12,-1*K.1^4,-1*K.1^14,K.1^6,K.1^19,K.1,K.1^7,-1*K.1^11,K.1^13,K.1^9,-1*K.1^7,-1*K.1^3,-1*K.1^17,K.1^17,-1*K.1^11,-1*K.1,-1*K.1^9,-1*K.1,K.1^17,K.1^13,K.1^11,K.1^3,-1*K.1^19,-1*K.1^7,K.1^9,-1*K.1^13,-1*K.1^19,-1*K.1^3,-1*K.1^13,K.1^7,K.1^11,-1*K.1^17,K.1,K.1^19,-1*K.1^9,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2,2*K.1^10,-2,0,0,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^16,1,-1,1,2*K.1^15,-2*K.1^5,2*K.1^5,-2*K.1^15,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^16,0,0,0,0,0,0,0,0,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1,K.1^10,1,-1*K.1^10,-1*K.1^8,-1*K.1^16,K.1^12,K.1^4,-2*K.1^2,-2*K.1^18,-2*K.1^14,2*K.1^2,2*K.1^18,-2*K.1^6,2*K.1^14,2*K.1^2,2*K.1^6,-2*K.1^14,2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^14,2*K.1^18,-2*K.1^18,2*K.1^2,2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^16,-2*K.1^4,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^18,2*K.1^18,2*K.1^14,-2*K.1^6,-2*K.1^2,-2*K.1^14,2*K.1^16,0,0,0,0,0,0,0,0,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^12,K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^16,K.1^4,-1*K.1^4,K.1^8,-1*K.1^12,K.1^8,2*K.1^19,-2*K.1^9,2*K.1^17,-2*K.1,2*K.1^11,2*K.1^13,2*K.1^9,-2*K.1^7,2*K.1^7,-2*K.1^17,2*K.1,-2*K.1^3,-2*K.1^19,-2*K.1^11,2*K.1^3,-2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^18,-1*K.1^18,K.1^2,K.1^6,-1*K.1^18,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^18,K.1^6,K.1^14,-1*K.1^14,K.1^2,K.1^14,-1*K.1^4,K.1^14,-1*K.1^8,K.1^16,K.1^12,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^2,K.1^18,K.1^17,K.1^3,-1*K.1,K.1^13,-1*K.1^19,-1*K.1^7,K.1,-1*K.1^9,-1*K.1^11,K.1^11,K.1^13,-1*K.1^3,K.1^7,-1*K.1^3,K.1^11,-1*K.1^19,-1*K.1^13,K.1^9,-1*K.1^17,K.1,-1*K.1^7,K.1^19,-1*K.1^17,-1*K.1^9,K.1^19,-1*K.1,-1*K.1^13,-1*K.1^11,K.1^3,K.1^17,K.1^7,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,2,-2*K.1^10,-2,0,0,2*K.1^8,-2*K.1^12,2*K.1^16,-2*K.1^4,1,-1,1,-2*K.1^5,2*K.1^15,-2*K.1^15,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^4,0,0,0,0,0,0,0,0,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1,-1*K.1^10,1,K.1^10,K.1^12,K.1^4,-1*K.1^8,-1*K.1^16,2*K.1^18,2*K.1^2,2*K.1^6,-2*K.1^18,-2*K.1^2,2*K.1^14,-2*K.1^6,-2*K.1^18,-2*K.1^14,2*K.1^6,-2*K.1^14,2*K.1^14,2*K.1^18,-2*K.1^6,-2*K.1^2,2*K.1^2,-2*K.1^18,-2*K.1^14,-2*K.1^12,2*K.1^12,2*K.1^4,2*K.1^16,-2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^2,-2*K.1^2,-2*K.1^6,2*K.1^14,2*K.1^18,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^8,-1*K.1^4,K.1^16,K.1^8,K.1^12,K.1^4,-1*K.1^4,-1*K.1^16,K.1^16,-1*K.1^12,K.1^8,-1*K.1^12,-2*K.1,2*K.1^11,-2*K.1^3,2*K.1^19,-2*K.1^9,-2*K.1^7,-2*K.1^11,2*K.1^13,-2*K.1^13,2*K.1^3,-2*K.1^19,2*K.1^17,2*K.1,2*K.1^9,-2*K.1^17,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,-1*K.1^2,K.1^2,-1*K.1^18,-1*K.1^14,K.1^2,K.1^6,K.1^14,K.1^18,K.1^14,-1*K.1^2,-1*K.1^14,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^16,-1*K.1^6,K.1^12,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^16,-1*K.1^12,-1*K.1^14,K.1^4,K.1^8,K.1^18,-1*K.1^2,-1*K.1^3,-1*K.1^17,K.1^19,-1*K.1^7,K.1,K.1^13,-1*K.1^19,K.1^11,K.1^9,-1*K.1^9,-1*K.1^7,K.1^17,-1*K.1^13,K.1^17,-1*K.1^9,K.1,K.1^7,-1*K.1^11,K.1^3,-1*K.1^19,K.1^13,-1*K.1,K.1^3,K.1^11,-1*K.1,K.1^19,K.1^7,K.1^9,-1*K.1^17,-1*K.1^3,-1*K.1^13,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2,2*K.1^10,-2,0,0,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^16,1,-1,1,-2*K.1^15,2*K.1^5,-2*K.1^5,2*K.1^15,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^16,0,0,0,0,0,0,0,0,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1,K.1^10,1,-1*K.1^10,-1*K.1^8,-1*K.1^16,K.1^12,K.1^4,-2*K.1^2,-2*K.1^18,-2*K.1^14,2*K.1^2,2*K.1^18,-2*K.1^6,2*K.1^14,2*K.1^2,2*K.1^6,-2*K.1^14,2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^14,2*K.1^18,-2*K.1^18,2*K.1^2,2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^16,-2*K.1^4,2*K.1^12,2*K.1^4,-2*K.1^12,-2*K.1^18,2*K.1^18,2*K.1^14,-2*K.1^6,-2*K.1^2,-2*K.1^14,2*K.1^16,0,0,0,0,0,0,0,0,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,K.1^12,K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^16,K.1^4,-1*K.1^4,K.1^8,-1*K.1^12,K.1^8,-2*K.1^19,2*K.1^9,-2*K.1^17,2*K.1,-2*K.1^11,-2*K.1^13,-2*K.1^9,2*K.1^7,-2*K.1^7,2*K.1^17,-2*K.1,2*K.1^3,2*K.1^19,2*K.1^11,-2*K.1^3,2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^18,-1*K.1^18,K.1^2,K.1^6,-1*K.1^18,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^18,K.1^6,K.1^14,-1*K.1^14,K.1^2,K.1^14,-1*K.1^4,K.1^14,-1*K.1^8,K.1^16,K.1^12,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^2,K.1^18,-1*K.1^17,-1*K.1^3,K.1,-1*K.1^13,K.1^19,K.1^7,-1*K.1,K.1^9,K.1^11,-1*K.1^11,-1*K.1^13,K.1^3,-1*K.1^7,K.1^3,-1*K.1^11,K.1^19,K.1^13,-1*K.1^9,K.1^17,-1*K.1,K.1^7,-1*K.1^19,K.1^17,K.1^9,-1*K.1^19,K.1,K.1^13,K.1^11,-1*K.1^3,-1*K.1^17,-1*K.1^7,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,2,-2*K.1^10,-2,0,0,2*K.1^8,-2*K.1^12,2*K.1^16,-2*K.1^4,1,-1,1,2*K.1^5,-2*K.1^15,2*K.1^15,-2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^4,0,0,0,0,0,0,0,0,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1,-1*K.1^10,1,K.1^10,K.1^12,K.1^4,-1*K.1^8,-1*K.1^16,2*K.1^18,2*K.1^2,2*K.1^6,-2*K.1^18,-2*K.1^2,2*K.1^14,-2*K.1^6,-2*K.1^18,-2*K.1^14,2*K.1^6,-2*K.1^14,2*K.1^14,2*K.1^18,-2*K.1^6,-2*K.1^2,2*K.1^2,-2*K.1^18,-2*K.1^14,-2*K.1^12,2*K.1^12,2*K.1^4,2*K.1^16,-2*K.1^8,-2*K.1^16,2*K.1^8,2*K.1^2,-2*K.1^2,-2*K.1^6,2*K.1^14,2*K.1^18,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^8,-1*K.1^4,K.1^16,K.1^8,K.1^12,K.1^4,-1*K.1^4,-1*K.1^16,K.1^16,-1*K.1^12,K.1^8,-1*K.1^12,2*K.1,-2*K.1^11,2*K.1^3,-2*K.1^19,2*K.1^9,2*K.1^7,2*K.1^11,-2*K.1^13,2*K.1^13,-2*K.1^3,2*K.1^19,-2*K.1^17,-2*K.1,-2*K.1^9,2*K.1^17,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^18,-1*K.1^2,K.1^2,-1*K.1^18,-1*K.1^14,K.1^2,K.1^6,K.1^14,K.1^18,K.1^14,-1*K.1^2,-1*K.1^14,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^16,-1*K.1^6,K.1^12,-1*K.1^4,-1*K.1^8,K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^16,-1*K.1^12,-1*K.1^14,K.1^4,K.1^8,K.1^18,-1*K.1^2,K.1^3,K.1^17,-1*K.1^19,K.1^7,-1*K.1,-1*K.1^13,K.1^19,-1*K.1^11,-1*K.1^9,K.1^9,K.1^7,-1*K.1^17,K.1^13,-1*K.1^17,K.1^9,-1*K.1,-1*K.1^7,K.1^11,-1*K.1^3,K.1^19,-1*K.1^13,K.1,-1*K.1^3,-1*K.1^11,K.1,-1*K.1^19,-1*K.1^7,-1*K.1^9,K.1^17,K.1^3,K.1^13,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2,2*K.1^10,-2,0,0,2*K.1^8,-2*K.1^12,2*K.1^16,-2*K.1^4,1,-1,1,2*K.1^15,-2*K.1^5,2*K.1^5,-2*K.1^15,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^4,0,0,0,0,0,0,0,0,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1,K.1^10,1,-1*K.1^10,K.1^12,K.1^4,-1*K.1^8,-1*K.1^16,-2*K.1^18,-2*K.1^2,-2*K.1^6,2*K.1^18,2*K.1^2,-2*K.1^14,2*K.1^6,2*K.1^18,2*K.1^14,-2*K.1^6,2*K.1^14,-2*K.1^14,-2*K.1^18,2*K.1^6,2*K.1^2,-2*K.1^2,2*K.1^18,2*K.1^14,-2*K.1^12,2*K.1^12,2*K.1^4,2*K.1^16,-2*K.1^8,-2*K.1^16,2*K.1^8,-2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^14,-2*K.1^18,-2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^8,-1*K.1^4,K.1^16,K.1^8,K.1^12,K.1^4,-1*K.1^4,-1*K.1^16,K.1^16,-1*K.1^12,K.1^8,-1*K.1^12,2*K.1^11,-2*K.1,-2*K.1^13,-2*K.1^9,2*K.1^19,-2*K.1^17,2*K.1,2*K.1^3,-2*K.1^3,2*K.1^13,2*K.1^9,2*K.1^7,-2*K.1^11,-2*K.1^19,-2*K.1^7,2*K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^2,-1*K.1^2,K.1^18,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^14,K.1^2,K.1^14,K.1^6,-1*K.1^6,K.1^18,K.1^6,K.1^16,K.1^6,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^16,-1*K.1^12,K.1^14,K.1^4,K.1^8,-1*K.1^18,K.1^2,-1*K.1^13,-1*K.1^7,-1*K.1^9,-1*K.1^17,-1*K.1^11,K.1^3,K.1^9,-1*K.1,-1*K.1^19,K.1^19,-1*K.1^17,K.1^7,-1*K.1^3,K.1^7,K.1^19,-1*K.1^11,K.1^17,K.1,K.1^13,K.1^9,K.1^3,K.1^11,K.1^13,-1*K.1,K.1^11,-1*K.1^9,K.1^17,-1*K.1^19,-1*K.1^7,-1*K.1^13,-1*K.1^3,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,2,-2*K.1^10,-2,0,0,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^16,1,-1,1,-2*K.1^5,2*K.1^15,-2*K.1^15,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^16,0,0,0,0,0,0,0,0,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1,-1*K.1^10,1,K.1^10,-1*K.1^8,-1*K.1^16,K.1^12,K.1^4,2*K.1^2,2*K.1^18,2*K.1^14,-2*K.1^2,-2*K.1^18,2*K.1^6,-2*K.1^14,-2*K.1^2,-2*K.1^6,2*K.1^14,-2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^14,-2*K.1^18,2*K.1^18,-2*K.1^2,-2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^16,-2*K.1^4,2*K.1^12,2*K.1^4,-2*K.1^12,2*K.1^18,-2*K.1^18,-2*K.1^14,2*K.1^6,2*K.1^2,2*K.1^14,2*K.1^16,0,0,0,0,0,0,0,0,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,K.1^12,K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^16,K.1^4,-1*K.1^4,K.1^8,-1*K.1^12,K.1^8,-2*K.1^9,2*K.1^19,2*K.1^7,2*K.1^11,-2*K.1,2*K.1^3,-2*K.1^19,-2*K.1^17,2*K.1^17,-2*K.1^7,-2*K.1^11,-2*K.1^13,2*K.1^9,2*K.1,2*K.1^13,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^18,K.1^18,-1*K.1^2,-1*K.1^6,K.1^18,K.1^14,K.1^6,K.1^2,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^14,-1*K.1^4,-1*K.1^14,-1*K.1^8,K.1^16,K.1^12,K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^16,-1*K.1^12,K.1^2,-1*K.1^18,K.1^7,K.1^13,K.1^11,K.1^3,K.1^9,-1*K.1^17,-1*K.1^11,K.1^19,K.1,-1*K.1,K.1^3,-1*K.1^13,K.1^17,-1*K.1^13,-1*K.1,K.1^9,-1*K.1^3,-1*K.1^19,-1*K.1^7,-1*K.1^11,-1*K.1^17,-1*K.1^9,-1*K.1^7,K.1^19,-1*K.1^9,K.1^11,-1*K.1^3,K.1,K.1^13,K.1^7,K.1^17,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2,2*K.1^10,-2,0,0,2*K.1^8,-2*K.1^12,2*K.1^16,-2*K.1^4,1,-1,1,-2*K.1^15,2*K.1^5,-2*K.1^5,2*K.1^15,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^16,-2*K.1^16,2*K.1^4,2*K.1^12,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^4,0,0,0,0,0,0,0,0,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1,K.1^10,1,-1*K.1^10,K.1^12,K.1^4,-1*K.1^8,-1*K.1^16,-2*K.1^18,-2*K.1^2,-2*K.1^6,2*K.1^18,2*K.1^2,-2*K.1^14,2*K.1^6,2*K.1^18,2*K.1^14,-2*K.1^6,2*K.1^14,-2*K.1^14,-2*K.1^18,2*K.1^6,2*K.1^2,-2*K.1^2,2*K.1^18,2*K.1^14,-2*K.1^12,2*K.1^12,2*K.1^4,2*K.1^16,-2*K.1^8,-2*K.1^16,2*K.1^8,-2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^14,-2*K.1^18,-2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^8,-1*K.1^4,K.1^16,K.1^8,K.1^12,K.1^4,-1*K.1^4,-1*K.1^16,K.1^16,-1*K.1^12,K.1^8,-1*K.1^12,-2*K.1^11,2*K.1,2*K.1^13,2*K.1^9,-2*K.1^19,2*K.1^17,-2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^13,-2*K.1^9,-2*K.1^7,2*K.1^11,2*K.1^19,2*K.1^7,-2*K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^2,-1*K.1^2,K.1^18,K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^14,-1*K.1^18,-1*K.1^14,K.1^2,K.1^14,K.1^6,-1*K.1^6,K.1^18,K.1^6,K.1^16,K.1^6,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^16,-1*K.1^12,K.1^14,K.1^4,K.1^8,-1*K.1^18,K.1^2,K.1^13,K.1^7,K.1^9,K.1^17,K.1^11,-1*K.1^3,-1*K.1^9,K.1,K.1^19,-1*K.1^19,K.1^17,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^19,K.1^11,-1*K.1^17,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^13,K.1,-1*K.1^11,K.1^9,-1*K.1^17,K.1^19,K.1^7,K.1^13,K.1^3,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |2,-2,2,-2,0,0,-1,2*K.1^10,-2*K.1^10,2*K.1^10,-2*K.1^10,2*K.1^10,2,-2*K.1^10,-2,0,0,-2*K.1^12,2*K.1^8,-2*K.1^4,2*K.1^16,1,-1,1,2*K.1^5,-2*K.1^15,2*K.1^15,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^4,2*K.1^4,-2*K.1^16,-2*K.1^8,-2*K.1^4,2*K.1^12,2*K.1^8,2*K.1^16,-2*K.1^8,-2*K.1^12,-2*K.1^16,0,0,0,0,0,0,0,0,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1,-1*K.1^10,1,K.1^10,-1*K.1^8,-1*K.1^16,K.1^12,K.1^4,2*K.1^2,2*K.1^18,2*K.1^14,-2*K.1^2,-2*K.1^18,2*K.1^6,-2*K.1^14,-2*K.1^2,-2*K.1^6,2*K.1^14,-2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^14,-2*K.1^18,2*K.1^18,-2*K.1^2,-2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^16,-2*K.1^4,2*K.1^12,2*K.1^4,-2*K.1^12,2*K.1^18,-2*K.1^18,-2*K.1^14,2*K.1^6,2*K.1^2,2*K.1^14,2*K.1^16,0,0,0,0,0,0,0,0,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^12,K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^16,K.1^4,-1*K.1^4,K.1^8,-1*K.1^12,K.1^8,2*K.1^9,-2*K.1^19,-2*K.1^7,-2*K.1^11,2*K.1,-2*K.1^3,2*K.1^19,2*K.1^17,-2*K.1^17,2*K.1^7,2*K.1^11,2*K.1^13,-2*K.1^9,-2*K.1,-2*K.1^13,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^18,K.1^18,-1*K.1^2,-1*K.1^6,K.1^18,K.1^14,K.1^6,K.1^2,K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^14,-1*K.1^4,-1*K.1^14,-1*K.1^8,K.1^16,K.1^12,K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^4,K.1^8,-1*K.1^6,-1*K.1^16,-1*K.1^12,K.1^2,-1*K.1^18,-1*K.1^7,-1*K.1^13,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^17,K.1^11,-1*K.1^19,-1*K.1,K.1,-1*K.1^3,K.1^13,-1*K.1^17,K.1^13,K.1,-1*K.1^9,K.1^3,K.1^19,K.1^7,K.1^11,K.1^17,K.1^9,K.1^7,-1*K.1^19,K.1^9,-1*K.1^11,K.1^3,-1*K.1,-1*K.1^13,-1*K.1^7,-1*K.1^17,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, 0, 0, -2, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, -4, -4, -4, -4, -4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, -2, -2, -2, -2, 4, -4, 4, 4, 4, -4, -4, -4, 4, -4, -4, 4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, 2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, 2, -2, 2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, 0, 0, -2, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, -4, -4, -4, -4, -4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, -2, -2, -2, -2, -4, 4, -4, -4, -4, 4, 4, 4, -4, 4, 4, -4, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, 2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, -2, 2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,4,-4,-4,0,0,-2,-4*K.1,4*K.1,4*K.1,-4*K.1,0,0,0,0,0,0,4,4,4,4,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,4,4,-4,4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,-2,-2,-2,-2,-4*K.1,4*K.1,4*K.1,4*K.1,4*K.1,-4*K.1,4*K.1,-4*K.1,-4*K.1,-4*K.1,4*K.1,4*K.1,4*K.1,-4*K.1,-4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,2,2,-2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,4,-4,-4,0,0,-2,4*K.1,-4*K.1,-4*K.1,4*K.1,0,0,0,0,0,0,4,4,4,4,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,4,4,4,-4,4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,-2,-2,-2,-2,4*K.1,-4*K.1,-4*K.1,-4*K.1,-4*K.1,4*K.1,-4*K.1,4*K.1,4*K.1,4*K.1,-4*K.1,-4*K.1,-4*K.1,4*K.1,4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,2,2,2,-2,2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,4,0,0,-2,-4,-4,4,4,0,0,0,0,0,0,4*K.1^-2,4*K.1^2,4*K.1,4*K.1^-1,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^-2,4*K.1,-4*K.1,-4*K.1^-1,-4*K.1^2,-4*K.1,-4*K.1^-2,-4*K.1^2,-4*K.1^-1,4*K.1^2,-4*K.1^-2,4*K.1^-1,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-4*K.1^-2,4*K.1^2,-4*K.1,-4*K.1^-2,-4*K.1^2,4*K.1^-1,4*K.1,4*K.1^-2,-4*K.1^-1,4*K.1,4*K.1^-1,-4*K.1^-1,4*K.1^-2,-4*K.1,4*K.1^2,-4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^2,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,4,0,0,-2,-4,-4,4,4,0,0,0,0,0,0,4*K.1^2,4*K.1^-2,4*K.1^-1,4*K.1,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^2,4*K.1^-1,-4*K.1^-1,-4*K.1,-4*K.1^-2,-4*K.1^-1,-4*K.1^2,-4*K.1^-2,-4*K.1,4*K.1^-2,-4*K.1^2,4*K.1,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-4*K.1^2,4*K.1^-2,-4*K.1^-1,-4*K.1^2,-4*K.1^-2,4*K.1,4*K.1^-1,4*K.1^2,-4*K.1,4*K.1^-1,4*K.1,-4*K.1,4*K.1^2,-4*K.1^-1,4*K.1^-2,-4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1^2,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1,-2*K.1^-2,2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,4,0,0,-2,-4,-4,4,4,0,0,0,0,0,0,4*K.1^-1,4*K.1,4*K.1^-2,4*K.1^2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^-1,4*K.1^-2,-4*K.1^-2,-4*K.1^2,-4*K.1,-4*K.1^-2,-4*K.1^-1,-4*K.1,-4*K.1^2,4*K.1,-4*K.1^-1,4*K.1^2,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-4*K.1^-1,4*K.1,-4*K.1^-2,-4*K.1^-1,-4*K.1,4*K.1^2,4*K.1^-2,4*K.1^-1,-4*K.1^2,4*K.1^-2,4*K.1^2,-4*K.1^2,4*K.1^-1,-4*K.1^-2,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,-2*K.1^2,2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1^2,-2*K.1,2*K.1^2,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,4,0,0,-2,-4,-4,4,4,0,0,0,0,0,0,4*K.1,4*K.1^-1,4*K.1^2,4*K.1^-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1,4*K.1^2,-4*K.1^2,-4*K.1^-2,-4*K.1^-1,-4*K.1^2,-4*K.1,-4*K.1^-1,-4*K.1^-2,4*K.1^-1,-4*K.1,4*K.1^-2,0,0,0,0,0,0,0,0,2,-2,2,-2,0,0,0,0,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,-4*K.1,4*K.1^-1,-4*K.1^2,-4*K.1,-4*K.1^-1,4*K.1^-2,4*K.1^2,4*K.1,-4*K.1^-2,4*K.1^2,4*K.1^-2,-4*K.1^-2,4*K.1,-4*K.1^2,4*K.1^-1,-4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1^-2,2*K.1^2,-2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1^-2,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,4,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,4*K.1^-2,4*K.1^2,4*K.1,4*K.1^-1,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^-2,4*K.1,-4*K.1,-4*K.1^-1,-4*K.1^2,-4*K.1,-4*K.1^-2,-4*K.1^2,-4*K.1^-1,4*K.1^2,-4*K.1^-2,4*K.1^-1,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,4*K.1^-2,-4*K.1^2,4*K.1,4*K.1^-2,4*K.1^2,-4*K.1^-1,-4*K.1,-4*K.1^-2,4*K.1^-1,-4*K.1,-4*K.1^-1,4*K.1^-1,-4*K.1^-2,4*K.1,-4*K.1^2,4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^2,2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1^2,2*K.1^2,-2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1^-1,2*K.1,-2*K.1,2*K.1^-2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,4,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,4*K.1^2,4*K.1^-2,4*K.1^-1,4*K.1,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^2,4*K.1^-1,-4*K.1^-1,-4*K.1,-4*K.1^-2,-4*K.1^-1,-4*K.1^2,-4*K.1^-2,-4*K.1,4*K.1^-2,-4*K.1^2,4*K.1,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,4*K.1^2,-4*K.1^-2,4*K.1^-1,4*K.1^2,4*K.1^-2,-4*K.1,-4*K.1^-1,-4*K.1^2,4*K.1,-4*K.1^-1,-4*K.1,4*K.1,-4*K.1^2,4*K.1^-1,-4*K.1^-2,4*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1^2,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-2,2*K.1^-2,-2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^2,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,4,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,4*K.1^-1,4*K.1,4*K.1^-2,4*K.1^2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^-1,4*K.1^-2,-4*K.1^-2,-4*K.1^2,-4*K.1,-4*K.1^-2,-4*K.1^-1,-4*K.1,-4*K.1^2,4*K.1,-4*K.1^-1,4*K.1^2,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,4*K.1^-1,-4*K.1,4*K.1^-2,4*K.1^-1,4*K.1,-4*K.1^2,-4*K.1^-2,-4*K.1^-1,4*K.1^2,-4*K.1^-2,-4*K.1^2,4*K.1^2,-4*K.1^-1,4*K.1^-2,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,-2*K.1^2,2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,2*K.1^2,-2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1^2,2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |4,-4,-4,4,0,0,-2,4,4,-4,-4,0,0,0,0,0,0,4*K.1,4*K.1^-1,4*K.1^2,4*K.1^-2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1,4*K.1^2,-4*K.1^2,-4*K.1^-2,-4*K.1^-1,-4*K.1^2,-4*K.1,-4*K.1^-1,-4*K.1^-2,4*K.1^-1,-4*K.1,4*K.1^-2,0,0,0,0,0,0,0,0,-2,2,-2,2,0,0,0,0,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,4*K.1,-4*K.1^-1,4*K.1^2,4*K.1,4*K.1^-1,-4*K.1^-2,-4*K.1^2,-4*K.1,4*K.1^-2,-4*K.1^2,-4*K.1^-2,4*K.1^-2,-4*K.1,4*K.1^2,-4*K.1^-1,4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1^-2,2*K.1^2,-2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1^-2,2*K.1^2,-2*K.1^2,2*K.1,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,4,-4,-4,0,0,-2,-4*K.1^5,4*K.1^5,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,-4*K.1^2,4*K.1^8,4*K.1^4,-4*K.1^6,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^2,-4*K.1^4,4*K.1^4,-4*K.1^6,4*K.1^8,-4*K.1^4,-4*K.1^2,-4*K.1^8,4*K.1^6,-4*K.1^8,4*K.1^2,4*K.1^6,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^8,2*K.1^6,2*K.1^2,-2*K.1^4,4*K.1^7,-4*K.1^3,4*K.1^9,-4*K.1^7,-4*K.1^3,-4*K.1,4*K.1^9,4*K.1^7,-4*K.1,-4*K.1^9,4*K.1,4*K.1,-4*K.1^7,-4*K.1^9,4*K.1^3,4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^6,2*K.1^4,2*K.1^4,2*K.1^8,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7,-2*K.1^3,-2*K.1^3,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1,2*K.1^9,2*K.1^9,2*K.1^7,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,4,-4,-4,0,0,-2,4*K.1^5,-4*K.1^5,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,4*K.1^8,-4*K.1^2,-4*K.1^6,4*K.1^4,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^8,4*K.1^6,-4*K.1^6,4*K.1^4,-4*K.1^2,4*K.1^6,4*K.1^8,4*K.1^2,-4*K.1^4,4*K.1^2,-4*K.1^8,-4*K.1^4,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^2,-2*K.1^4,-2*K.1^8,2*K.1^6,-4*K.1^3,4*K.1^7,-4*K.1,4*K.1^3,4*K.1^7,4*K.1^9,-4*K.1,-4*K.1^3,4*K.1^9,4*K.1,-4*K.1^9,-4*K.1^9,4*K.1^3,4*K.1,-4*K.1^7,-4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^4,2*K.1^6,2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^4,-2*K.1^6,-2*K.1^6,-2*K.1^2,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,2*K.1^7,2*K.1^7,2*K.1^3,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^9,2*K.1^3,-2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1,-2*K.1,-2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,4,-4,-4,0,0,-2,-4*K.1^5,4*K.1^5,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,4*K.1^8,-4*K.1^2,-4*K.1^6,4*K.1^4,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^8,4*K.1^6,-4*K.1^6,4*K.1^4,-4*K.1^2,4*K.1^6,4*K.1^8,4*K.1^2,-4*K.1^4,4*K.1^2,-4*K.1^8,-4*K.1^4,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,2*K.1^2,-2*K.1^4,-2*K.1^8,2*K.1^6,4*K.1^3,-4*K.1^7,4*K.1,-4*K.1^3,-4*K.1^7,-4*K.1^9,4*K.1,4*K.1^3,-4*K.1^9,-4*K.1,4*K.1^9,4*K.1^9,-4*K.1^3,-4*K.1,4*K.1^7,4*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^4,2*K.1^6,2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^4,-2*K.1^6,-2*K.1^6,-2*K.1^2,-2*K.1^8,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,-2*K.1^7,-2*K.1^7,-2*K.1^3,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^9,-2*K.1^3,2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1,2*K.1,2*K.1^3,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,4,-4,-4,0,0,-2,4*K.1^5,-4*K.1^5,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,-4*K.1^2,4*K.1^8,4*K.1^4,-4*K.1^6,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^2,-4*K.1^4,4*K.1^4,-4*K.1^6,4*K.1^8,-4*K.1^4,-4*K.1^2,-4*K.1^8,4*K.1^6,-4*K.1^8,4*K.1^2,4*K.1^6,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,-2*K.1^8,2*K.1^6,2*K.1^2,-2*K.1^4,-4*K.1^7,4*K.1^3,-4*K.1^9,4*K.1^7,4*K.1^3,4*K.1,-4*K.1^9,-4*K.1^7,4*K.1,4*K.1^9,-4*K.1,-4*K.1,4*K.1^7,4*K.1^9,-4*K.1^3,-4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^6,-2*K.1^4,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^6,2*K.1^4,2*K.1^4,2*K.1^8,2*K.1^2,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,2*K.1^3,2*K.1^3,2*K.1^7,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1,2*K.1^7,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^9,-2*K.1^9,-2*K.1^7,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,4,-4,-4,0,0,-2,-4*K.1^5,4*K.1^5,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,-4*K.1^6,4*K.1^4,-4*K.1^2,4*K.1^8,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^6,4*K.1^2,-4*K.1^2,4*K.1^8,4*K.1^4,4*K.1^2,-4*K.1^6,-4*K.1^4,-4*K.1^8,-4*K.1^4,4*K.1^6,-4*K.1^8,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,-2*K.1^4,-2*K.1^8,2*K.1^6,2*K.1^2,-4*K.1,4*K.1^9,-4*K.1^7,4*K.1,4*K.1^9,4*K.1^3,-4*K.1^7,-4*K.1,4*K.1^3,4*K.1^7,-4*K.1^3,-4*K.1^3,4*K.1,4*K.1^7,-4*K.1^9,-4*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^8,2*K.1^2,-2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^8,-2*K.1^2,-2*K.1^2,2*K.1^4,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1^9,2*K.1^9,2*K.1,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^7,-2*K.1^7,-2*K.1,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,4,-4,-4,0,0,-2,4*K.1^5,-4*K.1^5,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,4*K.1^4,-4*K.1^6,4*K.1^8,-4*K.1^2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^4,-4*K.1^8,4*K.1^8,-4*K.1^2,-4*K.1^6,-4*K.1^8,4*K.1^4,4*K.1^6,4*K.1^2,4*K.1^6,-4*K.1^4,4*K.1^2,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^8,4*K.1^9,-4*K.1,4*K.1^3,-4*K.1^9,-4*K.1,-4*K.1^7,4*K.1^3,4*K.1^9,-4*K.1^7,-4*K.1^3,4*K.1^7,4*K.1^7,-4*K.1^9,-4*K.1^3,4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^2,-2*K.1^8,2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^2,2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,-2*K.1,-2*K.1,-2*K.1^9,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^7,-2*K.1^9,2*K.1^7,2*K.1,-2*K.1^7,2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,4,-4,-4,0,0,-2,-4*K.1^5,4*K.1^5,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,4*K.1^4,-4*K.1^6,4*K.1^8,-4*K.1^2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^4,-4*K.1^8,4*K.1^8,-4*K.1^2,-4*K.1^6,-4*K.1^8,4*K.1^4,4*K.1^6,4*K.1^2,4*K.1^6,-4*K.1^4,4*K.1^2,0,0,0,0,0,0,0,0,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,2*K.1^6,2*K.1^2,-2*K.1^4,-2*K.1^8,-4*K.1^9,4*K.1,-4*K.1^3,4*K.1^9,4*K.1,4*K.1^7,-4*K.1^3,-4*K.1^9,4*K.1^7,4*K.1^3,-4*K.1^7,-4*K.1^7,4*K.1^9,4*K.1^3,-4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^2,-2*K.1^8,2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^2,2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^4,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,2*K.1,2*K.1,2*K.1^9,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^7,2*K.1^9,-2*K.1^7,-2*K.1,2*K.1^7,-2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,4,-4,-4,0,0,-2,4*K.1^5,-4*K.1^5,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,-4*K.1^6,4*K.1^4,-4*K.1^2,4*K.1^8,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^6,4*K.1^2,-4*K.1^2,4*K.1^8,4*K.1^4,4*K.1^2,-4*K.1^6,-4*K.1^4,-4*K.1^8,-4*K.1^4,4*K.1^6,-4*K.1^8,0,0,0,0,0,0,0,0,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,-2*K.1^4,-2*K.1^8,2*K.1^6,2*K.1^2,4*K.1,-4*K.1^9,4*K.1^7,-4*K.1,-4*K.1^9,-4*K.1^3,4*K.1^7,4*K.1,-4*K.1^3,-4*K.1^7,4*K.1^3,4*K.1^3,-4*K.1,-4*K.1^7,4*K.1^9,4*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^8,2*K.1^2,-2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^8,-2*K.1^2,-2*K.1^2,2*K.1^4,2*K.1^6,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1^9,-2*K.1^9,-2*K.1,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1^3,-2*K.1,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^7,2*K.1^7,2*K.1,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_960_377:= KnownIrreducibles(CR);