/* Group 960.331 downloaded from the LMFDB on 04 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, 2, 2, 2, 3, 2, 2, 2, 5, 16, 3849, 66, 28324, 5060, 116, 43781, 141, 48390, 166, 49159]); a,b,c := Explode([GPC.1, GPC.3, GPC.5]); AssignNames(~GPC, ["a", "a2", "b", "b2", "c", "c2", "c4", "c8"]); GPerm := PermutationGroup< 24 | (1,2,4,9,7,3,12,13)(5,14,16,15,8,10,6,11)(18,19)(20,21), (1,3,5,14,7,2,8,10)(4,13,16,15,12,9,6,11), (22,23,24), (1,4,7,12)(2,9,3,13)(5,16,8,6)(10,11,14,15), (1,5,7,8)(2,10,3,14)(4,16,12,6)(9,11,13,15), (1,6)(2,11)(3,15)(4,5)(7,16)(8,12)(9,14)(10,13), (1,7)(2,3)(4,12)(5,8)(6,16)(9,13)(10,14)(11,15), (17,18,20,21,19) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_960_331 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^20>,< 2, 2, a^2*b^3*c^30>,< 2, 2, a^2*c^10>,< 2, 2, b^3>,< 3, 1, b^2>,< 3, 1, b^4>,< 4, 1, a^2*c^20>,< 4, 1, a^2>,< 4, 2, b^3*c^30>,< 4, 2, a^2*b^3*c^20>,< 4, 2, c^30>,< 4, 20, a^3*b^3*c^11>,< 4, 20, a*c>,< 4, 20, a^3*b^3*c^13>,< 4, 20, a*c^3>,< 5, 2, c^32>,< 5, 2, c^24>,< 6, 1, b^2*c^20>,< 6, 1, b^4*c^20>,< 6, 2, a^2*b*c^30>,< 6, 2, a^2*b^5*c^30>,< 6, 2, a^2*b^4*c^10>,< 6, 2, a^2*b^2*c^10>,< 6, 2, b^5>,< 6, 2, b>,< 8, 4, c^15>,< 8, 4, c^25>,< 8, 4, a^2*c^35>,< 8, 4, a^2*c^25>,< 8, 20, a^3>,< 8, 20, a*c^20>,< 8, 20, a^3*c^2>,< 8, 20, a*c^22>,< 10, 2, c^28>,< 10, 2, c^4>,< 10, 2, a^2*c^26>,< 10, 2, a^2*c^34>,< 10, 2, a^2*c^18>,< 10, 2, a^2*c^2>,< 10, 4, b^3*c^24>,< 10, 4, b^3*c^32>,< 10, 4, a^2*b^3*c^26>,< 10, 4, a^2*b^3*c^18>,< 12, 1, a^2*b^4>,< 12, 1, a^2*b^2*c^20>,< 12, 1, a^2*b^2>,< 12, 1, a^2*b^4*c^20>,< 12, 2, b^5*c^10>,< 12, 2, b*c^30>,< 12, 2, a^2*b^5>,< 12, 2, a^2*b*c^20>,< 12, 2, b^2*c^10>,< 12, 2, b^4*c^30>,< 12, 20, a*b^2*c>,< 12, 20, a^3*b*c^3>,< 12, 20, a*b*c>,< 12, 20, a^3*b^2*c^3>,< 12, 20, a*b^2*c^3>,< 12, 20, a^3*b*c>,< 12, 20, a*b*c^3>,< 12, 20, a^3*b^2*c>,< 15, 2, b^4*c^24>,< 15, 2, b^2*c^16>,< 15, 2, b^2*c^8>,< 15, 2, b^4*c^32>,< 20, 2, a^2*c^4>,< 20, 2, a^2*c^16>,< 20, 2, a^2*c^32>,< 20, 2, a^2*c^28>,< 20, 2, c^6>,< 20, 2, c^18>,< 20, 2, c^2>,< 20, 2, c^14>,< 20, 4, b^3*c^6>,< 20, 4, b^3*c^18>,< 20, 4, a^2*b^3*c^4>,< 20, 4, a^2*b^3*c^32>,< 24, 4, b^4*c^5>,< 24, 4, b^2*c^35>,< 24, 4, b^2*c^25>,< 24, 4, b^4*c^15>,< 24, 4, a^2*b^4*c^5>,< 24, 4, a^2*b^2*c^15>,< 24, 4, a^2*b^2*c^25>,< 24, 4, a^2*b^4*c^35>,< 24, 20, a*b^2>,< 24, 20, a^3*b>,< 24, 20, a*b>,< 24, 20, a^3*b^2>,< 24, 20, a*b^2*c^2>,< 24, 20, a^3*b*c^2>,< 24, 20, a*b*c^2>,< 24, 20, a^3*b^2*c^2>,< 30, 2, b^4*c^36>,< 30, 2, b^2*c^4>,< 30, 2, b^4*c^12>,< 30, 2, b^2*c^28>,< 30, 2, a^2*b^2*c^2>,< 30, 2, a^2*b^4*c^18>,< 30, 2, a^2*b^2*c^6>,< 30, 2, a^2*b^4*c^26>,< 30, 2, a^2*b^4*c^2>,< 30, 2, a^2*b^2*c^18>,< 30, 2, a^2*b^2*c^26>,< 30, 2, a^2*b^4*c^6>,< 30, 4, b*c^8>,< 30, 4, b^5*c^8>,< 30, 4, b*c^4>,< 30, 4, b^5*c^4>,< 30, 4, a^2*b*c^2>,< 30, 4, a^2*b^5*c^2>,< 30, 4, a^2*b*c^6>,< 30, 4, a^2*b^5*c^6>,< 40, 4, c^3>,< 40, 4, c^37>,< 40, 4, c^9>,< 40, 4, c^31>,< 40, 4, c^21>,< 40, 4, c^19>,< 40, 4, c^27>,< 40, 4, c^13>,< 40, 4, a^2*c^23>,< 40, 4, a^2*c^37>,< 40, 4, a^2*c^9>,< 40, 4, a^2*c^11>,< 40, 4, a^2*c^21>,< 40, 4, a^2*c^39>,< 40, 4, a^2*c^7>,< 40, 4, a^2*c^13>,< 60, 2, a^2*b^2*c^8>,< 60, 2, a^2*b^4*c^12>,< 60, 2, a^2*b^2*c^4>,< 60, 2, a^2*b^4*c^16>,< 60, 2, a^2*b^2*c^16>,< 60, 2, a^2*b^4*c^4>,< 60, 2, a^2*b^2*c^12>,< 60, 2, a^2*b^4*c^8>,< 60, 2, b^4*c^2>,< 60, 2, b^2*c^38>,< 60, 2, b^4*c^14>,< 60, 2, b^2*c^26>,< 60, 2, b^2*c^22>,< 60, 2, b^4*c^18>,< 60, 2, b^2*c^34>,< 60, 2, b^4*c^6>,< 60, 4, b*c^2>,< 60, 4, b^5*c^2>,< 60, 4, b*c^6>,< 60, 4, b^5*c^6>,< 60, 4, a^2*b*c^8>,< 60, 4, a^2*b^5*c^8>,< 60, 4, a^2*b*c^4>,< 60, 4, a^2*b^5*c^4>,< 120, 4, b^2*c>,< 120, 4, b*c^11>,< 120, 4, b^2*c^7>,< 120, 4, b*c^17>,< 120, 4, b^4*c^11>,< 120, 4, b^2*c^9>,< 120, 4, b^2*c^33>,< 120, 4, b*c^3>,< 120, 4, b^4*c^17>,< 120, 4, b^2*c^3>,< 120, 4, b^2*c^19>,< 120, 4, b^4*c>,< 120, 4, b^4*c^3>,< 120, 4, b^2*c^17>,< 120, 4, b*c>,< 120, 4, b^2*c^11>,< 120, 4, a^2*b^2*c>,< 120, 4, a^2*b*c^11>,< 120, 4, a^2*b^2*c^7>,< 120, 4, a^2*b*c^17>,< 120, 4, a^2*b^4*c^11>,< 120, 4, a^2*b^2*c^9>,< 120, 4, a^2*b^2*c^33>,< 120, 4, a^2*b*c^3>,< 120, 4, a^2*b^4*c^17>,< 120, 4, a^2*b^2*c^3>,< 120, 4, a^2*b^2*c^19>,< 120, 4, a^2*b^4*c>,< 120, 4, a^2*b^4*c^3>,< 120, 4, a^2*b^2*c^17>,< 120, 4, a^2*b*c>,< 120, 4, a^2*b^2*c^11>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,K.1,-1*K.1,K.1,-1*K.1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,-1,1,-1,1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,-1,-1,1,-1,1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1*K.1,K.1,-1*K.1,K.1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,-1,1,-1,1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,-1*K.1,K.1,-1*K.1,K.1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,-1,-1,1,-1,1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,K.1,-1*K.1,K.1,-1*K.1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1*K.1,-1*K.1,K.1,K.1,1,1,1,1,-1,-1,-1,1,1,-1,-1*K.1,-1*K.1,K.1,K.1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1,-1,-1,1,-1,1,1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,1,1,-1,1,-1,K.1,K.1,-1*K.1,-1*K.1,1,1,1,1,-1,-1,-1,1,1,-1,K.1,K.1,-1*K.1,-1*K.1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,1,-1,1,1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1*K.1,-1*K.1,K.1,K.1,1,1,1,1,-1,-1,-1,1,1,-1,K.1,K.1,-1*K.1,-1*K.1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,1,-1,1,1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,1,1,-1,1,-1,K.1,K.1,-1*K.1,-1*K.1,1,1,1,1,-1,-1,-1,1,1,-1,-1*K.1,-1*K.1,K.1,K.1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1,-1,-1,1,-1,1,1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,-1,-1,-1,-1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,-1,-1,-1,-1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,-1,-1,-1,-1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,-1,-1,-1,-1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^2,K.1^4,-1,-1,1,-1,1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,1,1,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,-1,1,1,-1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,K.1^5,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^5,K.1,-1*K.1,K.1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1,-1*K.1^5,K.1,-1*K.1^5,K.1^5,-1*K.1,K.1^5,-1*K.1,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,K.1^2,K.1^4,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^2,K.1^2,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^4,-1*K.1^2,-1,-1,1,-1,1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,1,1,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1,1,1,-1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,1,1,-1,-1,-1,-1,1,1,-1,-1,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-1*K.1,K.1,K.1^5,-1*K.1,K.1,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^5,K.1,-1*K.1^5,K.1,-1*K.1,K.1^5,-1*K.1,K.1^5,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^4,K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,K.1^4,K.1^2,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^2,K.1^4,-1,-1,1,-1,1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,1,1,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,-1,1,1,-1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^5,K.1^5,K.1,-1*K.1^5,K.1^5,-1*K.1,K.1,-1*K.1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,-1*K.1,K.1^5,-1*K.1,K.1^5,-1*K.1^5,K.1,-1*K.1^5,K.1,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,K.1^2,K.1^4,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^2,K.1^2,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^4,-1*K.1^2,-1,-1,1,-1,1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,1,1,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1,1,1,-1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,1,1,-1,-1,-1,-1,1,1,-1,-1,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1,-1*K.1,-1*K.1^5,K.1,-1*K.1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,K.1^5,-1*K.1,K.1^5,-1*K.1,K.1,-1*K.1^5,K.1,-1*K.1^5,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^4,K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,K.1^4,K.1^2,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^2,K.1^4,-1,-1,1,-1,1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,1,1,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,1,-1,-1,1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,K.1^5,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^5,K.1,-1*K.1,K.1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1,K.1^5,-1*K.1,K.1^5,-1*K.1^5,K.1,-1*K.1^5,K.1,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,K.1^2,K.1^4,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^4,-1*K.1^2,-1,-1,1,-1,1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,1,1,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,1,-1,-1,1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,1,1,-1,-1,-1,-1,1,1,-1,-1,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-1*K.1,K.1,K.1^5,-1*K.1,K.1,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^5,-1*K.1,K.1^5,-1*K.1,K.1,-1*K.1^5,K.1,-1*K.1^5,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^2,K.1^4,K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^4,K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^2,K.1^4,-1,-1,1,-1,1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,1,1,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,1,-1,-1,1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^5,K.1^5,K.1,-1*K.1^5,K.1^5,-1*K.1,K.1,-1*K.1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1,-1*K.1^5,K.1,-1*K.1^5,K.1^5,-1*K.1,K.1^5,-1*K.1,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,K.1^2,K.1^4,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^4,-1*K.1^2,-1,-1,1,-1,1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,1,1,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,1,-1,-1,1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,1,1,-1,-1,-1,-1,1,1,-1,-1,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1,-1*K.1,-1*K.1^5,K.1,-1*K.1,K.1^5,-1*K.1^5,K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^5,K.1,-1*K.1^5,K.1,-1*K.1,K.1^5,-1*K.1,K.1^5,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,1,-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^2,K.1^4,K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^4,K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^2,K.1^4,1,1,-1,1,-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,1,1,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^2,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1^5,-1*K.1,K.1,K.1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^5,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1^5,-1*K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1,-1*K.1,K.1^5,K.1^5,K.1,K.1^5,K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^4,-1*K.1^2,1,1,-1,1,-1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,1,1,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,K.1,K.1,K.1^5,-1*K.1,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^5,K.1^5,K.1^5,K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1,K.1,-1*K.1,-1*K.1^5,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1^5,K.1^5,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1,K.1,K.1^5,-1*K.1,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^2,K.1^4,1,1,-1,1,-1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,1,1,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1^5,K.1,-1*K.1,-1*K.1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^5,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1,K.1,K.1,K.1,K.1,K.1^5,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1,K.1,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^4,-1*K.1^2,1,1,-1,1,-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,1,1,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1,-1*K.1,-1*K.1^5,K.1,K.1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1,-1*K.1,K.1,K.1^5,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^5,-1*K.1^5,K.1,K.1,K.1^5,K.1,K.1,-1*K.1,-1*K.1^5,K.1,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^2,K.1^4,1,1,-1,1,-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,1,1,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^2,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1^5,-1*K.1,K.1,K.1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1,K.1,K.1,K.1,K.1,K.1^5,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1,K.1,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^4,-1*K.1^2,1,1,-1,1,-1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,1,1,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,K.1,K.1,K.1^5,-1*K.1,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1,-1*K.1,K.1,K.1^5,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^5,-1*K.1^5,K.1,K.1,K.1^5,K.1,K.1,-1*K.1,-1*K.1^5,K.1,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^2,K.1^4,1,1,-1,1,-1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,1,1,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1^5,K.1,-1*K.1,-1*K.1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^5,-1*K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^4,-1*K.1^4,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^5,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1^5,-1*K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1,-1*K.1,K.1^5,K.1^5,K.1,K.1^5,K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^4,-1*K.1^2,1,1,-1,1,-1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,1,1,K.1^4,-1*K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1,-1*K.1,-1*K.1^5,K.1,K.1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1,-1,1,1,1,-1,-1,1,-1,1,-1,1,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^4,K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,K.1^4,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^2,K.1^2,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,K.1^4,K.1^2,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^5,K.1^5,K.1^5,K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1,K.1,-1*K.1,-1*K.1^5,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1^5,K.1^5,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1,K.1,K.1^5,-1*K.1,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,1,1,1,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1*K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,1,1,1,1,1,1,1,1,1,1,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1^5,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1,K.1,K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1^5,K.1^5,K.1,K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,1,1,1,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,1,1,1,1,1,1,1,1,1,1,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1,K.1,K.1,-1*K.1^5,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^5,-1*K.1^5,-1*K.1,K.1,K.1^5,-1*K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,1,1,1,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1*K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,1,1,1,1,1,1,1,1,1,1,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1,K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1,K.1,-1*K.1,K.1,K.1,K.1^5,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1^5,K.1^5,K.1^5,-1*K.1,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1,-1*K.1,-1*K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,1,1,1,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,1,1,1,1,1,1,1,1,1,1,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1,K.1^5,-1*K.1,-1*K.1^5,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1,-1*K.1,-1*K.1,K.1^5,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1^5,K.1^5,K.1,-1*K.1,-1*K.1^5,K.1,K.1,K.1,K.1^5,K.1,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,1,1,1,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,-1*K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,1,1,1,1,1,1,1,1,1,1,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1^5,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1,K.1,K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1^5,K.1^5,K.1,K.1^5,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,1,1,1,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,1,1,1,1,1,1,1,1,1,1,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1,K.1^5,-1*K.1,-1*K.1^5,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1,K.1,K.1,-1*K.1^5,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^5,-1*K.1^5,-1*K.1,K.1,K.1^5,-1*K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,1,1,1,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,-1*K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,1,1,1,1,1,1,1,1,1,1,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1,K.1,-1*K.1,K.1,K.1,K.1^5,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1^5,K.1^5,K.1^5,-1*K.1,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1,-1*K.1,-1*K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,1,1,1,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,1,1,1,1,1,1,1,1,1,1,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1,-1*K.1,-1*K.1,K.1^5,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1^5,K.1^5,K.1,-1*K.1,-1*K.1^5,K.1,K.1,K.1,K.1^5,K.1,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, -2, 2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 2, 2, 2, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 2, 2, 2, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, -2, 2, 2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, -2, -2, -2, 2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, 2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, 2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, -2, 2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -2, -2, 2, 2, 2, -2, -2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, 2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 2, 2, 2, 2, -2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^-1,2*K.1,2,2,-2,-2,2,0,0,0,0,2,2,2*K.1^-1,2*K.1,-2*K.1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,2,2,2,2,2,2,-2,-2,-2,-2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1,2*K.1^-1,2,2,-2,-2,2,0,0,0,0,2,2,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,2,2,2,2,2,2,-2,-2,-2,-2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^-1,2*K.1,-2,-2,-2,2,2,0,0,0,0,2,2,2*K.1^-1,2*K.1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,-2,-2,-2,2,2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2,2,-2,-2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1,2*K.1^-1,-2,-2,-2,2,2,0,0,0,0,2,2,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,-2,-2,-2,2,2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2,2,-2,-2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^-1,2*K.1,2,2,2,-2,-2,0,0,0,0,2,2,2*K.1^-1,2*K.1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,-2,-2,-2,2,2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,-2,-2,2,2,2,-2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1,2*K.1^-1,2,2,2,-2,-2,0,0,0,0,2,2,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,2,2,-2,-2,-2,-2,-2,-2,2,2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,-2,-2,2,2,2,-2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,-2,-2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2,-2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,-2,-2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,-2,-2,-2,2,2,-2,2,-2,-2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2,-2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,2,2,-2,-2,2,-2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,-2,-2,-2,2,2,-2,2,-2,-2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-2,-2,-2,2,2,-2,-2,2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^-1,2*K.1,-2,-2,2,2,-2,0,0,0,0,2,2,2*K.1^-1,2*K.1,-2*K.1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,2,2,2,2,2,2,-2,-2,-2,-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1,2*K.1^-1,-2,-2,2,2,-2,0,0,0,0,2,2,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,2,2,2,2,2,2,-2,-2,-2,-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^-5,2*K.1^5,2,2,2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^-5,2,2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,K.1+K.1^4,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^5,2*K.1^-5,2,2,2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^5,2,2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,K.1+K.1^4,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^-5,2*K.1^5,2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^-5,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^5,2*K.1^-5,2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^5,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,2,2,2,2,2,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,-2,-2,-2,2,2,-2,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,2,2,2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,2,2,2,2,2,-2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,-2,-2,-2,2,2,-2,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,2,2,2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,2,2,2,2,2,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,2,2,-2,-2,-2,2,2,-2,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,2,2,2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,-2,2,2,2,2,2,-2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,2,2,-2,-2,-2,2,2,-2,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,2,2,2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,2,2,2,-2,-2,-2,-2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,2,2,2,2,2,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,2,2,2,-2,-2,-2,-2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,2,2,2,2,2,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,2,2,2,-2,-2,-2,-2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,2,2,2,2,2,2,2,2,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,2,2,2,2,-2,-2,-2,-2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,2,2,2,2,2,2,2,2,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,K.1^3+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3+K.1^5-K.1^7,K.1^3+K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^7,K.1^3-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,2,-2,2,2,2,2,-2,-2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2,2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,2,-2,2,2,2,2,-2,-2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,2,2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,2,-2,2,2,2,2,-2,-2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,2,-2,2,2,2,2,-2,-2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,-2,-2,2,2,-2,-2,-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-2,-2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,-2,-2,2,2,-2,-2,-2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-2,-2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,-2,-2,2,2,-2,-2,-2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,-2,-2,2,2,-2,-2,-2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,-2,-2,-2,2,2,2,-2,2,0,0,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,K.1^2-K.1^-2,-1*K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,1+2*K.1+K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,-1*K.1^2+K.1^-2,-1-2*K.1-K.1^2-K.1^-2,-1*K.1^2+K.1^-2,-1*K.1^2+K.1^-2,1+2*K.1+K.1^2+K.1^-2,K.1^2-K.1^-2,-1-2*K.1-K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,-2,2,2,2,2,2,-2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,2,2,2,-2,-2,-2,2,-2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,-2,2,2,2,2,2,-2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,2,2,2,-2,-2,-2,2,-2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,-2,2,2,2,2,2,-2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,2,2,2,2,2,-2,-2,-2,2,-2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,2,-2,-2,2,2,2,2,2,-2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,2,2,2,-2,2,-2,-2,-2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,2,2,2,2,2,-2,-2,-2,2,-2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^-5,2*K.1^5,2,2,2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^-5,-2,-2,-2,-2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,0,0,0,0,0,0,0,0,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1*K.1-K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^5,2*K.1^-5,2,2,2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^5,-2,-2,-2,-2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^-5,2*K.1^5,2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^-5,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^5,2*K.1^-5,2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^5,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-2,-2,-2,-2,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-2,-2,-2,-2,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-2,-2,-2,-2,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,2,-2,2,-2,2,2,-2,-2,2,2,-2,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,2,2,-2,2,-2,-2,-2,2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-2,-2,-2,-2,2,-2,2,2,2,-2,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^4-K.1^-4,K.1^2+K.1^-2,-1*K.1^4-K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1^2-K.1^-2,K.1^4+K.1^-4,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^-5,2*K.1^5,-2,-2,2,-2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^-5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^-5,-2,2,2,-2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-2*K.1^-5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-2*K.1^5,-2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,K.1+K.1^4,K.1+K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^5,2*K.1^-5,-2,-2,2,-2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^5,2*K.1^-5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^5,-2,2,2,-2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-2*K.1^-5,-2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^-5,2*K.1^5,-2,-2,2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^-5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^-5,-2,2,2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-2*K.1^-5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-2*K.1^5,-2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1*K.1-K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^5,2*K.1^-5,-2,-2,2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^5,2*K.1^-5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^5,-2,2,2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-2*K.1^-5,-2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^-5,2*K.1^5,-2,-2,2,-2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^-5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^-5,2,-2,-2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-2*K.1^-5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,0,0,0,0,0,0,0,0,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1*K.1-K.1^4,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^5,2*K.1^-5,-2,-2,2,-2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^5,2*K.1^-5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^5,2,-2,-2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^-5,2*K.1^5,-2,-2,2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^-5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^-5,2,-2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-2*K.1^-5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^5,2*K.1^-5,-2,-2,2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^5,2*K.1^-5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^5,2,-2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1*K.1-K.1^4,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,2,-2*K.1^10,2*K.1^20,2,2,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^10,2*K.1^20,-2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^15,-2*K.1^15,2*K.1^15,2*K.1^15,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,2*K.1^5,2*K.1^25,-2*K.1^5,-2*K.1^25,-2*K.1^5,-2*K.1^25,2*K.1^5,2*K.1^25,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,-1*K.1^7+K.1^13,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^20,-2*K.1^10,2,2,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^15,2*K.1^15,-2*K.1^15,-2*K.1^15,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,-2*K.1^25,-2*K.1^5,2*K.1^25,2*K.1^5,2*K.1^25,2*K.1^5,-2*K.1^25,-2*K.1^5,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,K.1^7-K.1^13,-1*K.1^7+K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,2,-2*K.1^10,2*K.1^20,2,2,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^10,2*K.1^20,-2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^15,2*K.1^15,-2*K.1^15,-2*K.1^15,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,-2*K.1^5,-2*K.1^25,2*K.1^5,2*K.1^25,2*K.1^5,2*K.1^25,-2*K.1^5,-2*K.1^25,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,K.1^7-K.1^13,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7+K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^20,-2*K.1^10,2,2,-2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^20,-2*K.1^15,-2*K.1^15,2*K.1^15,2*K.1^15,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,2*K.1^25,2*K.1^5,-2*K.1^25,-2*K.1^5,-2*K.1^25,-2*K.1^5,2*K.1^25,2*K.1^5,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,K.1^5+K.1^7-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,-1*K.1^7+K.1^13,K.1^7-K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,2,-2*K.1^10,2*K.1^20,2,2,-2,2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^10,2*K.1^20,-2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^15,-2*K.1^15,2*K.1^15,2*K.1^15,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,2*K.1^5,2*K.1^25,-2*K.1^5,-2*K.1^25,-2*K.1^5,-2*K.1^25,2*K.1^5,2*K.1^25,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^7-K.1^13,K.1^7-K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,K.1^7-K.1^13,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^7+K.1^13,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^20,-2*K.1^10,2,2,-2,2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^15,2*K.1^15,-2*K.1^15,-2*K.1^15,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^25,-2*K.1^5,2*K.1^25,2*K.1^5,2*K.1^25,2*K.1^5,-2*K.1^25,-2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,K.1^7-K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7+K.1^13,-1*K.1^7+K.1^13,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^7-K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,2,-2*K.1^10,2*K.1^20,2,2,-2,2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^10,2*K.1^20,-2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^15,2*K.1^15,-2*K.1^15,-2*K.1^15,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^5,-2*K.1^25,2*K.1^5,2*K.1^25,2*K.1^5,2*K.1^25,-2*K.1^5,-2*K.1^25,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^7+K.1^13,-1*K.1^7+K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,-1*K.1^7+K.1^13,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^7-K.1^13,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,-2,2,2*K.1^20,-2*K.1^10,2,2,-2,2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^20,-2*K.1^15,-2*K.1^15,2*K.1^15,2*K.1^15,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,2*K.1^25,2*K.1^5,-2*K.1^25,-2*K.1^5,-2*K.1^25,-2*K.1^5,2*K.1^25,2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1*K.1^7+K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^7-K.1^13,K.1^7-K.1^13,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7+K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^-5,2*K.1^5,2,2,-2,-2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^4,-1*K.1+K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1*K.1+K.1^4,-1*K.1+K.1^4,K.1-K.1^4,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^4,K.1-K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^5,2*K.1^-5,2,2,-2,-2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1+K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,K.1-K.1^4,K.1-K.1^4,-1*K.1+K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,K.1-K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,K.1-K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^-5,2*K.1^5,2,2,-2,-2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^4,K.1-K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,K.1-K.1^4,K.1-K.1^4,-1*K.1+K.1^4,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^4,-1*K.1+K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^5,2*K.1^-5,2,2,-2,-2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1-K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,-1*K.1+K.1^4,-1*K.1+K.1^4,K.1-K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1*K.1+K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1*K.1+K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^-5,2*K.1^5,2,2,-2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^4,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,K.1-K.1^4,-1*K.1+K.1^4,-1*K.1+K.1^4,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,K.1-K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,K.1-K.1^4,-1*K.1+K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^5,2*K.1^-5,2,2,-2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,K.1-K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1*K.1+K.1^4,-1*K.1+K.1^4,-1*K.1+K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,K.1-K.1^4,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,K.1-K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1*K.1+K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^-5,2*K.1^5,2,2,-2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,2*K.1^-5,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,2*K.1^-5,2*K.1^5,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^4,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1*K.1+K.1^4,K.1-K.1^4,K.1-K.1^4,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1*K.1+K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1*K.1+K.1^4,K.1-K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^5,2*K.1^-5,2,2,-2,-2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,2*K.1^5,2*K.1^-5,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1*K.1+K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,K.1-K.1^4,K.1-K.1^4,K.1-K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1*K.1+K.1^4,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1*K.1+K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,K.1-K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^-5,2*K.1^5,-2,-2,-2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,-2*K.1^-5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^4,-1*K.1+K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,K.1-K.1^4,K.1-K.1^4,K.1-K.1^4,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^4,-1*K.1+K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^5,2*K.1^-5,-2,-2,-2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^5,2*K.1^-5,2*K.1^-5,-2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1-K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1*K.1+K.1^4,K.1-K.1^4,-1*K.1+K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1*K.1+K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,K.1-K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^-5,2*K.1^5,-2,-2,-2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^-5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,-2*K.1^-5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^4,K.1-K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1*K.1+K.1^4,-1*K.1+K.1^4,-1*K.1+K.1^4,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^4,K.1-K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^5,2*K.1^-5,-2,-2,-2,2,2,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,2*K.1^5,2*K.1^-5,2*K.1^-5,-2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^4+K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1+K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,K.1-K.1^4,-1*K.1+K.1^4,K.1-K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,K.1-K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1*K.1+K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^-5,2*K.1^5,-2,-2,-2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^-5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,-2*K.1^-5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^4,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1*K.1+K.1^4,-1*K.1+K.1^4,K.1-K.1^4,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1*K.1+K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,K.1-K.1^4,K.1-K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^5,2*K.1^-5,-2,-2,-2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^5,2*K.1^-5,2*K.1^-5,-2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,K.1-K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1*K.1+K.1^4,K.1-K.1^4,-1*K.1+K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1*K.1+K.1^4,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,K.1-K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,K.1-K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1+K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^-5,2*K.1^5,-2,-2,-2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^-5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,-2*K.1^-5,-2*K.1^5,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,-2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1+K.1^4,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,K.1-K.1^4,K.1-K.1^4,-1*K.1+K.1^4,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,K.1-K.1^4,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1*K.1+K.1^4,-1*K.1+K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,K.1-K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^5,2*K.1^-5,-2,-2,-2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,2*K.1^5,2*K.1^-5,2*K.1^-5,-2*K.1^-5,2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,-2*K.1^5,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,-2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,-2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1+K.1^4,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,K.1+K.1^4,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1^2-K.1^3-K.1^7,-1*K.1^2-K.1^3-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,K.1^2+K.1^3+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,K.1^2+K.1^3+K.1^7,-1*K.1^2-K.1^3-K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,K.1^2+K.1^3+K.1^7,-1+K.1^2-K.1^3-2*K.1^6+K.1^7,1-K.1^2+K.1^3+2*K.1^6-K.1^7,-1*K.1^2-K.1^3-K.1^7,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1*K.1-K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1*K.1-K.1^4,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1+K.1+K.1^4-K.1^5,K.1+K.1^4,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,1-K.1-K.1^4+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^4-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^7,-1+K.1+K.1^4-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,-1*K.1-K.1^4,K.1+K.1^4,1-K.1-K.1^4+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^7,-1+K.1+K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1*K.1+K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,K.1-K.1^4,-1*K.1+K.1^4,K.1-K.1^4,1-K.1-K.1^4+K.1^5-2*K.1^7,K.1-K.1^4,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1*K.1+K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,-1*K.1+K.1^4,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,1-K.1+K.1^2+K.1^3-K.1^4+K.1^5-K.1^7,K.1-K.1^4,-1+K.1-K.1^2-K.1^3+K.1^4-K.1^5+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1-K.1+K.1^2-K.1^3+K.1^4-2*K.1^6+K.1^7,-1+K.1+K.1^4-K.1^5+2*K.1^7,1+K.1-K.1^2+K.1^3-K.1^4+2*K.1^6-K.1^7,1-K.1-K.1^4+K.1^5-2*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,-2,-2,-2*K.1^10,2*K.1^20,2,2,2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^20,-2*K.1^10,-2*K.1^20,2*K.1^10,2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1^7-K.1^13,-1*K.1^7-K.1^13,K.1^7+K.1^13,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^20,-2*K.1^10,2,2,2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^10,-2*K.1^20,-2*K.1^20,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1^7-K.1^13,-1*K.1^7-K.1^13,K.1^7+K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7-K.1^13,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,-2,-2,-2*K.1^10,2*K.1^20,2,2,2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^20,-2*K.1^10,-2*K.1^20,2*K.1^10,2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1^7+K.1^13,K.1^7+K.1^13,-1*K.1^7-K.1^13,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^20,-2*K.1^10,2,2,2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^10,-2*K.1^20,-2*K.1^20,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1^7+K.1^13,K.1^7+K.1^13,-1*K.1^7-K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1^7+K.1^13,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,-2,-2,-2*K.1^10,2*K.1^20,2,2,2,-2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^20,-2*K.1^10,-2*K.1^20,2*K.1^10,2*K.1^10,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1^7+K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1^7-K.1^13,-1*K.1^7-K.1^13,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^20,-2*K.1^10,2,2,2,-2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^10,-2*K.1^20,-2*K.1^20,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1^7+K.1^13,K.1^7+K.1^13,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7-K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,-2,-2,-2*K.1^10,2*K.1^20,2,2,2,-2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^20,-2*K.1^10,-2*K.1^20,2*K.1^10,2*K.1^10,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1^7-K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1^7+K.1^13,K.1^7+K.1^13,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,-2,-2,2*K.1^20,-2*K.1^10,2,2,2,-2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^10,-2*K.1^20,-2*K.1^20,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,K.1^6+K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^2-K.1^8,-1*K.1^2+K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7-K.1^13,-1*K.1^7-K.1^13,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1^7+K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,2,-2*K.1^10,2*K.1^20,-2,-2,-2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^5,2*K.1^25,2*K.1^5,2*K.1^25,-2*K.1^5,-2*K.1^25,-2*K.1^5,-2*K.1^25,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,K.1^7-K.1^13,K.1^7-K.1^13,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7+K.1^13,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^20,-2*K.1^10,-2,-2,-2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^25,-2*K.1^5,-2*K.1^25,-2*K.1^5,2*K.1^25,2*K.1^5,2*K.1^25,2*K.1^5,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7+K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,-1*K.1^7+K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,2,-2*K.1^10,2*K.1^20,-2,-2,-2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^5,-2*K.1^25,-2*K.1^5,-2*K.1^25,2*K.1^5,2*K.1^25,2*K.1^5,2*K.1^25,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,-1*K.1^7+K.1^13,-1*K.1^7+K.1^13,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^7-K.1^13,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^20,-2*K.1^10,-2,-2,-2,-2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^25,2*K.1^5,2*K.1^25,2*K.1^5,-2*K.1^25,-2*K.1^5,-2*K.1^25,-2*K.1^5,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^7-K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,K.1^7-K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,2,-2*K.1^10,2*K.1^20,-2,-2,-2,-2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,2*K.1^5,2*K.1^25,2*K.1^5,2*K.1^25,-2*K.1^5,-2*K.1^25,-2*K.1^5,-2*K.1^25,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,K.1^7-K.1^13,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1^7+K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^20,-2*K.1^10,-2,-2,-2,-2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-2*K.1^25,-2*K.1^5,-2*K.1^25,-2*K.1^5,2*K.1^25,2*K.1^5,2*K.1^25,2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,-1*K.1^7+K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7+K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,2,-2*K.1^10,2*K.1^20,-2,-2,-2,-2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^10,-2*K.1^10,2*K.1^15,-2*K.1^15,2*K.1^15,-2*K.1^15,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-2*K.1^5,-2*K.1^25,-2*K.1^5,-2*K.1^25,2*K.1^5,2*K.1^25,2*K.1^5,2*K.1^25,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,-1*K.1^7+K.1^13,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^7-K.1^13,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1^7-K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,2,2,2,2*K.1^20,-2*K.1^10,-2,-2,-2,-2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^10,2*K.1^20,-2*K.1^10,2*K.1^20,2*K.1^20,-2*K.1^15,2*K.1^15,-2*K.1^15,2*K.1^15,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,2*K.1^25,2*K.1^5,2*K.1^25,2*K.1^5,-2*K.1^25,-2*K.1^5,-2*K.1^25,-2*K.1^5,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11-K.1^15,-1*K.1+K.1^9+K.1^11-K.1^15,K.1-K.1^9-K.1^11+K.1^15,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,K.1-K.1^9-K.1^11,-1*K.1+K.1^9+K.1^11,K.1-K.1^9-K.1^11+K.1^15,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,K.1^7-K.1^13,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1^7-K.1^13,K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,K.1^7-K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^7+K.1^9+K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9-K.1^11+K.1^13+K.1^15,-1*K.1^7+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,2,-2,-2*K.1^10,2*K.1^20,-2,-2,2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,-2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1^7+K.1^13,-1*K.1^7-K.1^13,-1*K.1^7-K.1^13,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^20,-2*K.1^10,-2,-2,2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^20,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1^7+K.1^13,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1^7+K.1^13,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,2,-2,-2*K.1^10,2*K.1^20,-2,-2,2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,-2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1^7-K.1^13,K.1^7+K.1^13,K.1^7+K.1^13,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^20,-2*K.1^10,-2,-2,2,2,-2,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^20,0,0,0,0,0,0,0,0,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1^7-K.1^13,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1^7-K.1^13,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,2,-2,-2*K.1^10,2*K.1^20,-2,-2,2,2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^10,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,-2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1^7+K.1^13,-1*K.1^7-K.1^13,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,-1*K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1^7+K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^20,-2*K.1^10,-2,-2,2,2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^20,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1*K.1^7-K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,K.1^7+K.1^13,-1*K.1^7-K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1^7-K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,2,-2,-2*K.1^10,2*K.1^20,-2,-2,2,2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-2*K.1^10,2*K.1^20,-2*K.1^20,2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^10,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^10,-2*K.1^10,-2*K.1^20,-2*K.1^10,2*K.1^20,2*K.1^20,2*K.1^10,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1^7-K.1^13,K.1^7+K.1^13,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1^7+K.1^13,K.1^7+K.1^13,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1^7-K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,2,-2,2,-2,2*K.1^20,-2*K.1^10,-2,-2,2,2,-2,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,2*K.1^20,-2*K.1^10,2*K.1^10,-2*K.1^10,-2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^20,0,0,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-2*K.1^20,2*K.1^10,2*K.1^10,-2*K.1^20,2*K.1^20,2*K.1^10,2*K.1^20,-2*K.1^10,-2*K.1^10,-2*K.1^20,0,0,0,0,0,0,0,0,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,K.1^6+K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,-1*K.1^12-K.1^-12,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2+K.1^8,-1*K.1^2+K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,K.1^2-K.1^8,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,K.1^3+K.1^-3,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,K.1^2-K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8-K.1^10+K.1^14,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,-1-K.1^2+K.1^8+K.1^10,K.1^2-K.1^8,K.1^2-K.1^8,-1-K.1^2+K.1^8+K.1^10,-1-K.1^2+K.1^4+K.1^6+K.1^8-K.1^14,1+K.1^2-K.1^8-K.1^10,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,-1*K.1^2+K.1^8,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,-1-K.1^2+K.1^4+K.1^6+K.1^8+K.1^10-K.1^14,1+K.1^2-K.1^4-K.1^6-K.1^8+K.1^14,1+K.1^2-K.1^8-K.1^10,-1*K.1^2+K.1^8,K.1^7+K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1^7+K.1^13,-1*K.1^7-K.1^13,K.1^7+K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1^7-K.1^13,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,2*K.1-K.1^5-K.1^7+K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1^7+K.1^13,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11-K.1^13+K.1^15,-2*K.1+K.1^5+K.1^7-K.1^13-K.1^15,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11+K.1^13-K.1^15,K.1-K.1^5-K.1^7-K.1^9+K.1^11+K.1^13+K.1^15,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13,-1*K.1+K.1^5+K.1^7+K.1^9-K.1^11-K.1^13-K.1^15,-1*K.1^7-K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,0,0,0,4,4,-4*K.1,4*K.1,0,0,0,0,0,0,0,4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,0,0,0,0,0,0,0,0,-4*K.1,4*K.1,-4*K.1,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,0,0,-4*K.1,4*K.1,-4*K.1,0,0,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,-4,0,-4,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1,0,4*K.1,-4*K.1,4*K.1,0,-4*K.1,0,4*K.1,0,4*K.1,0,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |4,-4,0,0,0,4,4,4*K.1,-4*K.1,0,0,0,0,0,0,0,4,4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,0,0,0,0,0,0,0,0,4*K.1,-4*K.1,4*K.1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,0,0,4*K.1,-4*K.1,4*K.1,0,0,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,-4,0,-4,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1,0,-4*K.1,4*K.1,-4*K.1,0,4*K.1,0,-4*K.1,0,-4*K.1,0,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^2,4*K.1^4,-4*K.1^3,4*K.1^3,0,0,0,0,0,0,0,4,4,4*K.1^2,-4*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,0,0,0,0,0,0,0,0,4*K.1^5,-4*K.1,4*K.1,-4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^4,-4*K.1^2,-4*K.1^2,4*K.1^4,0,0,-4*K.1^3,4*K.1^3,-4*K.1^3,0,0,4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^2,0,-4*K.1^4,0,-4*K.1^4,0,4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1,0,-4*K.1,4*K.1^5,-4*K.1,0,4*K.1^5,0,-4*K.1^5,0,-4*K.1^5,0,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^4,-4*K.1^2,4*K.1^3,-4*K.1^3,0,0,0,0,0,0,0,4,4,-4*K.1^4,4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,0,0,0,0,0,0,0,0,-4*K.1,4*K.1^5,-4*K.1^5,4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^2,4*K.1^4,4*K.1^4,-4*K.1^2,0,0,4*K.1^3,-4*K.1^3,4*K.1^3,0,0,-4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^4,0,4*K.1^2,0,4*K.1^2,0,-4*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^5,0,4*K.1^5,-4*K.1,4*K.1^5,0,-4*K.1,0,4*K.1,0,4*K.1,0,-4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^2,4*K.1^4,4*K.1^3,-4*K.1^3,0,0,0,0,0,0,0,4,4,4*K.1^2,-4*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,0,0,0,0,0,0,0,0,-4*K.1^5,4*K.1,-4*K.1,4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^4,-4*K.1^2,-4*K.1^2,4*K.1^4,0,0,4*K.1^3,-4*K.1^3,4*K.1^3,0,0,-4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^2,0,-4*K.1^4,0,-4*K.1^4,0,4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1,0,4*K.1,-4*K.1^5,4*K.1,0,-4*K.1^5,0,4*K.1^5,0,4*K.1^5,0,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^4,-4*K.1^2,-4*K.1^3,4*K.1^3,0,0,0,0,0,0,0,4,4,-4*K.1^4,4*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,-4,0,0,0,0,0,0,0,0,4*K.1,-4*K.1^5,4*K.1^5,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^2,4*K.1^4,4*K.1^4,-4*K.1^2,0,0,-4*K.1^3,4*K.1^3,-4*K.1^3,0,0,4*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1^4,0,4*K.1^2,0,4*K.1^2,0,-4*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1^5,0,-4*K.1^5,4*K.1,-4*K.1^5,0,4*K.1,0,-4*K.1,0,-4*K.1,0,4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,-4,0,0,0,4,4,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^6,2*K.1^4+2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,0,0,0,0,-4*K.1^5,4*K.1^5,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^7,-2*K.1^3-2*K.1^7,-2*K.1^3+2*K.1^5-2*K.1^7,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2+4*K.1^2-2*K.1^4+2*K.1^6,2*K.1^2+2*K.1^-2,2-4*K.1^2+2*K.1^4-2*K.1^6,-2*K.1^4-2*K.1^-4,2-4*K.1^2+2*K.1^4-2*K.1^6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^6,-2*K.1^4-2*K.1^6,2*K.1^4+2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,2*K.1^4+2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3+2*K.1^5-2*K.1^7,-2*K.1^3-2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7,2*K.1^3+2*K.1^7,-2*K.1^3-2*K.1^7,-2*K.1-2*K.1^-1,-2*K.1^3+2*K.1^5-2*K.1^7,-2*K.1^3-2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^7,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,-4,0,0,0,4,4,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,0,0,0,0,4*K.1^5,-4*K.1^5,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^7,2*K.1^3+2*K.1^7,2*K.1^3-2*K.1^5+2*K.1^7,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2-4*K.1^2+2*K.1^4-2*K.1^6,2*K.1^2+2*K.1^-2,-2+4*K.1^2-2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^-4,-2+4*K.1^2-2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^6,2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,-2*K.1^4-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,2*K.1^3-2*K.1^5+2*K.1^7,-2*K.1^3-2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7,-2*K.1^3-2*K.1^7,2*K.1^3+2*K.1^7,-2*K.1-2*K.1^-1,2*K.1^3-2*K.1^5+2*K.1^7,-2*K.1^3-2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^7,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,-4,0,0,0,4,4,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,0,0,0,0,-4*K.1^5,4*K.1^5,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^7,-2*K.1^3-2*K.1^7,-2*K.1^3+2*K.1^5-2*K.1^7,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2-4*K.1^2+2*K.1^4-2*K.1^6,2*K.1^2+2*K.1^-2,-2+4*K.1^2-2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^-4,-2+4*K.1^2-2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^6,2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,-2*K.1^4-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,-2*K.1^3+2*K.1^5-2*K.1^7,2*K.1^3+2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7,2*K.1^3+2*K.1^7,-2*K.1^3-2*K.1^7,2*K.1+2*K.1^-1,-2*K.1^3+2*K.1^5-2*K.1^7,2*K.1^3+2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^7,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,-4,0,0,0,4,4,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^6,2*K.1^4+2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,0,0,0,0,4*K.1^5,-4*K.1^5,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^7,2*K.1^3+2*K.1^7,2*K.1^3-2*K.1^5+2*K.1^7,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,-2+4*K.1^2-2*K.1^4+2*K.1^6,2*K.1^2+2*K.1^-2,2-4*K.1^2+2*K.1^4-2*K.1^6,-2*K.1^4-2*K.1^-4,2-4*K.1^2+2*K.1^4-2*K.1^6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^6,-2*K.1^4-2*K.1^6,2*K.1^4+2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,2*K.1^4+2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3-2*K.1^5+2*K.1^7,2*K.1^3+2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7,-2*K.1^3-2*K.1^7,2*K.1^3+2*K.1^7,2*K.1+2*K.1^-1,2*K.1^3-2*K.1^5+2*K.1^7,2*K.1^3+2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^7,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,-4,0,0,0,4,4,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2-4*K.1^2+2*K.1^4-2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^6,2*K.1^4+2*K.1^6,0,0,0,0,-4*K.1^5,4*K.1^5,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7,2*K.1^3-2*K.1^5+2*K.1^7,2*K.1^3+2*K.1^7,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^6,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^6,2*K.1^2+2*K.1^-2,2-4*K.1^2+2*K.1^4-2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^7,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^7,-2*K.1^3+2*K.1^5-2*K.1^7,2*K.1^3-2*K.1^5+2*K.1^7,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^7,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^7,-2*K.1-2*K.1^-1,2*K.1^3-2*K.1^5+2*K.1^7,2*K.1^3+2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,-4,0,0,0,4,4,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2+4*K.1^2-2*K.1^4+2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^6,0,0,0,0,4*K.1^5,-4*K.1^5,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7,-2*K.1^3+2*K.1^5-2*K.1^7,-2*K.1^3-2*K.1^7,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^6,2*K.1^2+2*K.1^-2,-2+4*K.1^2-2*K.1^4+2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,2*K.1^4+2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^7,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^7,2*K.1^3-2*K.1^5+2*K.1^7,-2*K.1^3+2*K.1^5-2*K.1^7,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^7,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^7,-2*K.1-2*K.1^-1,-2*K.1^3+2*K.1^5-2*K.1^7,2*K.1^3+2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,-4,0,0,0,4,4,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2+4*K.1^2-2*K.1^4+2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^6,0,0,0,0,-4*K.1^5,4*K.1^5,-4*K.1^5,4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7,2*K.1^3-2*K.1^5+2*K.1^7,2*K.1^3+2*K.1^7,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^6,2*K.1^2+2*K.1^-2,-2+4*K.1^2-2*K.1^4+2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,2*K.1^4+2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^7,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^7,-2*K.1^3+2*K.1^5-2*K.1^7,2*K.1^3-2*K.1^5+2*K.1^7,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^7,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^7,2*K.1+2*K.1^-1,2*K.1^3-2*K.1^5+2*K.1^7,-2*K.1^3-2*K.1^-3,-2*K.1^3+2*K.1^5-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |4,-4,0,0,0,4,4,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-4,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2-4*K.1^2+2*K.1^4-2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^6,2*K.1^4+2*K.1^6,0,0,0,0,4*K.1^5,-4*K.1^5,4*K.1^5,-4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7,-2*K.1^3+2*K.1^5-2*K.1^7,-2*K.1^3-2*K.1^7,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^6,-2*K.1^4-2*K.1^-4,2*K.1^4+2*K.1^6,2*K.1^2+2*K.1^-2,2*K.1^4+2*K.1^6,2*K.1^2+2*K.1^-2,2-4*K.1^2+2*K.1^4-2*K.1^6,2-4*K.1^2+2*K.1^4-2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,-2*K.1^4-2*K.1^6,-2+4*K.1^2-2*K.1^4+2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^7,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^7,2*K.1^3-2*K.1^5+2*K.1^7,-2*K.1^3+2*K.1^5-2*K.1^7,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^7,-2*K.1-2*K.1^-1,2*K.1^3+2*K.1^7,2*K.1+2*K.1^-1,-2*K.1^3+2*K.1^5-2*K.1^7,-2*K.1^3-2*K.1^-3,2*K.1^3-2*K.1^5+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^10,4*K.1^20,-4*K.1^15,4*K.1^15,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,4*K.1^10,-4*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,0,0,0,0,4*K.1^25,-4*K.1^5,4*K.1^5,-4*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^8-2*K.1^10,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2*K.1^2+2*K.1^8,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1+2*K.1^9+2*K.1^11,2*K.1-2*K.1^9-2*K.1^11,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^2-2*K.1^8,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,2*K.1^2+2*K.1^8,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,-2*K.1^2-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^7+2*K.1^13,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,-2*K.1^7+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,2*K.1^7-2*K.1^13,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1^7-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^20,-4*K.1^10,4*K.1^15,-4*K.1^15,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-4*K.1^20,4*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,0,0,0,0,-4*K.1^5,4*K.1^25,-4*K.1^25,4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1-2*K.1^9-2*K.1^11,-2*K.1+2*K.1^9+2*K.1^11,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^8+2*K.1^10,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2-2*K.1^8,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,-2*K.1^2-2*K.1^8,2*K.1^2+2*K.1^8,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7-2*K.1^13,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,2*K.1^7-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^7+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1^7+2*K.1^13,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^10,4*K.1^20,-4*K.1^15,4*K.1^15,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,4*K.1^10,-4*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,0,0,0,0,4*K.1^25,-4*K.1^5,4*K.1^5,-4*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^8-2*K.1^10,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2*K.1^2+2*K.1^8,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1+2*K.1^9+2*K.1^11,2*K.1-2*K.1^9-2*K.1^11,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2-2*K.1^8,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,-2*K.1^2-2*K.1^8,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,2*K.1^2+2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^7-2*K.1^13,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,-2*K.1^7+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^7-2*K.1^13,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1^7+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^20,-4*K.1^10,4*K.1^15,-4*K.1^15,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-4*K.1^20,4*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,0,0,0,0,-4*K.1^5,4*K.1^25,-4*K.1^25,4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1-2*K.1^9-2*K.1^11,-2*K.1+2*K.1^9+2*K.1^11,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^8+2*K.1^10,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^2-2*K.1^8,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,2*K.1^2+2*K.1^8,-2*K.1^2-2*K.1^8,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^13,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,2*K.1^7-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1^7+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1^7-2*K.1^13,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^10,4*K.1^20,-4*K.1^15,4*K.1^15,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,4*K.1^10,-4*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^4-2*K.1^6-2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,0,0,0,0,4*K.1^25,-4*K.1^5,4*K.1^5,-4*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,-2*K.1+2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1-2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,2*K.1^2-2*K.1^8,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,-2*K.1^2-2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2+2*K.1^8,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1^7-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^7+2*K.1^13,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1^7+2*K.1^13,2*K.1^7-2*K.1^13,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^20,-4*K.1^10,4*K.1^15,-4*K.1^15,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-4*K.1^20,4*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^4+2*K.1^6+2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,0,0,0,0,-4*K.1^5,4*K.1^25,-4*K.1^25,4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^8-2*K.1^10,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,2*K.1-2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1+2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2-2*K.1^8,-2*K.1^2-2*K.1^8,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1^7+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1^7+2*K.1^13,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^7-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^7-2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^10,4*K.1^20,-4*K.1^15,4*K.1^15,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,4*K.1^10,-4*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^4+2*K.1^6+2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,0,0,0,0,4*K.1^25,-4*K.1^5,4*K.1^5,-4*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,-2*K.1+2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1-2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,2*K.1^2-2*K.1^8,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1^2-2*K.1^8,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^7+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^7+2*K.1^13,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1^7-2*K.1^13,2*K.1^7-2*K.1^13,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^20,-4*K.1^10,4*K.1^15,-4*K.1^15,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-4*K.1^20,4*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^4-2*K.1^6-2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,0,0,0,0,-4*K.1^5,4*K.1^25,-4*K.1^25,4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^8-2*K.1^10,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,2*K.1-2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1+2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2-2*K.1^8,2*K.1^2+2*K.1^8,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,-2*K.1^2-2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1^7-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1^7+2*K.1^13,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1^7+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,2*K.1^7-2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^10,4*K.1^20,4*K.1^15,-4*K.1^15,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,4*K.1^10,-4*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,0,0,0,0,-4*K.1^25,4*K.1^5,-4*K.1^5,4*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^8-2*K.1^10,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2*K.1^2+2*K.1^8,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1-2*K.1^9-2*K.1^11,-2*K.1+2*K.1^9+2*K.1^11,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^2-2*K.1^8,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,2*K.1^2+2*K.1^8,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,-2*K.1^2-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^7-2*K.1^13,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,2*K.1^7-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1^7+2*K.1^13,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1^7+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^20,-4*K.1^10,-4*K.1^15,4*K.1^15,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-4*K.1^20,4*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,0,0,0,0,4*K.1^5,-4*K.1^25,4*K.1^25,-4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1+2*K.1^9+2*K.1^11,2*K.1-2*K.1^9-2*K.1^11,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^8+2*K.1^10,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2-2*K.1^8,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,-2*K.1^2-2*K.1^8,2*K.1^2+2*K.1^8,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7+2*K.1^13,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,-2*K.1^7+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^7-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1^7-2*K.1^13,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^10,4*K.1^20,4*K.1^15,-4*K.1^15,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,4*K.1^10,-4*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,0,0,0,0,-4*K.1^25,4*K.1^5,-4*K.1^5,4*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^8-2*K.1^10,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2*K.1^2+2*K.1^8,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1-2*K.1^9-2*K.1^11,-2*K.1+2*K.1^9+2*K.1^11,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2-2*K.1^8,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,-2*K.1^2-2*K.1^8,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,2*K.1^2+2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^7+2*K.1^13,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,2*K.1^7-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^7+2*K.1^13,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1^7-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^20,-4*K.1^10,-4*K.1^15,4*K.1^15,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-4*K.1^20,4*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,-2*K.1^12-2*K.1^-12,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,0,0,0,0,4*K.1^5,-4*K.1^25,4*K.1^25,-4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1+2*K.1^9+2*K.1^11,2*K.1-2*K.1^9-2*K.1^11,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^8+2*K.1^10,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^2-2*K.1^8,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,2*K.1^2+2*K.1^8,-2*K.1^2-2*K.1^8,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7-2*K.1^13,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,-2*K.1^7+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,2*K.1^7-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1^7+2*K.1^13,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^10,4*K.1^20,4*K.1^15,-4*K.1^15,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,4*K.1^10,-4*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^4-2*K.1^6-2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,0,0,0,0,-4*K.1^25,4*K.1^5,-4*K.1^5,4*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,2*K.1-2*K.1^9-2*K.1^11,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,-2*K.1+2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,2*K.1^2-2*K.1^8,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,-2*K.1^2-2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2*K.1^2+2*K.1^8,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1^7+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^7-2*K.1^13,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1^7-2*K.1^13,-2*K.1^7+2*K.1^13,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^20,-4*K.1^10,-4*K.1^15,4*K.1^15,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-4*K.1^20,4*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^4+2*K.1^6+2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,0,0,0,0,4*K.1^5,-4*K.1^25,4*K.1^25,-4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^8-2*K.1^10,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1^9-2*K.1^-9,2*K.1^9+2*K.1^-9,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,-2*K.1+2*K.1^9+2*K.1^11,-2*K.1^3-2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1-2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2-2*K.1^8,-2*K.1^2-2*K.1^8,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1^7-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1^7-2*K.1^13,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^7+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^7+2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^10,4*K.1^20,4*K.1^15,-4*K.1^15,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,4*K.1^10,-4*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,-2*K.1^4+2*K.1^6+2*K.1^14,2*K.1^4-2*K.1^6-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,0,0,0,0,-4*K.1^25,4*K.1^5,-4*K.1^5,4*K.1^25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,2*K.1-2*K.1^9-2*K.1^11,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1+2*K.1^9+2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,2*K.1^2-2*K.1^8,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,-2*K.1^2-2*K.1^8,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^7-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1^7-2*K.1^13,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1^7+2*K.1^13,-2*K.1^7+2*K.1^13,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^20,-4*K.1^10,-4*K.1^15,4*K.1^15,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-4*K.1^20,4*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^4-2*K.1^6-2*K.1^14,-2*K.1^4+2*K.1^6+2*K.1^14,-2+2*K.1^4+2*K.1^6-4*K.1^12-2*K.1^14,2-2*K.1^4-2*K.1^6+4*K.1^12+2*K.1^14,0,0,0,0,4*K.1^5,-4*K.1^25,4*K.1^25,-4*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+2*K.1^14,-2*K.1^2+2*K.1^8,2+2*K.1^2-2*K.1^8-2*K.1^10,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2*K.1^9+2*K.1^-9,-2*K.1^9-2*K.1^-9,2*K.1-2*K.1^9-2*K.1^11+2*K.1^15,-2*K.1+2*K.1^9+2*K.1^11-2*K.1^15,-2*K.1+2*K.1^9+2*K.1^11,2*K.1^3+2*K.1^-3,-2*K.1^3-2*K.1^-3,2*K.1-2*K.1^9-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2-2*K.1^8,2*K.1^2+2*K.1^8,-2-2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-2*K.1^14,-2*K.1^2-2*K.1^8,2+2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,-2+2*K.1^2+2*K.1^4+2*K.1^6+2*K.1^8-4*K.1^12-2*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10,-2-2*K.1^2-2*K.1^4+2*K.1^6+2*K.1^8+2*K.1^10-2*K.1^14,2+2*K.1^2-2*K.1^8-2*K.1^10+4*K.1^14,-2-2*K.1^2+2*K.1^8+2*K.1^10-4*K.1^14,2-2*K.1^2-2*K.1^4-2*K.1^6-2*K.1^8+4*K.1^12+2*K.1^14,2+2*K.1^2+2*K.1^4-2*K.1^6-2*K.1^8-2*K.1^10+2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,2*K.1^7+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9-2*K.1^11-2*K.1^13-2*K.1^15,2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^15,-2*K.1-4*K.1^3+2*K.1^7+2*K.1^9+2*K.1^11+2*K.1^13-2*K.1^15,-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1^7-2*K.1^13,4*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1^7-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+2*K.1^9+2*K.1^11-2*K.1^13-2*K.1^15,2*K.1+4*K.1^3-2*K.1^7-2*K.1^9-2*K.1^11-2*K.1^13+2*K.1^15,2*K.1-2*K.1^7-2*K.1^9-2*K.1^11+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-2*K.1^9+2*K.1^11+2*K.1^13+2*K.1^15,-2*K.1^7+2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_960_331:= KnownIrreducibles(CR);