/* Group 960.11067 downloaded from the LMFDB on 14 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, 2, 2, 2, 2, 3, 2, 5, 2, 201, 538, 66, 651, 91, 652, 12685, 6357, 4637, 1621, 141, 3863, 5791, 999]); a,b,c,d,e := Explode([GPC.1, GPC.2, GPC.3, GPC.6, GPC.8]); AssignNames(~GPC, ["a", "b", "c", "c2", "c4", "d", "d2", "e"]); GPerm := PermutationGroup< 19 | (1,2)(3,5)(4,6)(7,8,10,12)(9,13,14,11), (1,2)(3,4)(5,6), (1,2)(3,4)(5,6)(7,9,10,14)(8,11,12,13), (15,16,17,18,19), (7,10)(8,12)(9,14)(11,13), (1,3,6)(2,4,5), (1,2)(5,6), (1,2)(3,4) >; GLZN := MatrixGroup< 2, Integers(44) | [[33, 38, 13, 33], [37, 24, 8, 29], [23, 0, 0, 23], [9, 0, 0, 9], [15, 5, 31, 28], [21, 0, 0, 21], [1, 22, 0, 1], [23, 22, 22, 23]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_960_11067 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GLZN; C := SequenceToConjugacyClasses([car |< 1, 1, Matrix(2, [1, 0, 0, 1])>,< 2, 1, Matrix(2, [21, 0, 0, 21])>,< 2, 1, Matrix(2, [23, 0, 0, 23])>,< 2, 1, Matrix(2, [43, 0, 0, 43])>,< 2, 3, Matrix(2, [23, 22, 0, 23])>,< 2, 3, Matrix(2, [1, 22, 0, 1])>,< 2, 3, Matrix(2, [21, 22, 0, 21])>,< 2, 3, Matrix(2, [43, 0, 22, 43])>,< 3, 8, Matrix(2, [28, 39, 13, 15])>,< 4, 2, Matrix(2, [37, 24, 8, 29])>,< 4, 2, Matrix(2, [15, 24, 8, 7])>,< 4, 6, Matrix(2, [15, 2, 8, 7])>,< 4, 6, Matrix(2, [37, 2, 8, 29])>,< 4, 12, Matrix(2, [11, 16, 35, 33])>,< 4, 12, Matrix(2, [33, 38, 13, 33])>,< 4, 12, Matrix(2, [20, 5, 21, 24])>,< 4, 12, Matrix(2, [20, 27, 43, 2])>,< 4, 12, Matrix(2, [33, 16, 13, 11])>,< 4, 12, Matrix(2, [11, 38, 35, 11])>,< 4, 12, Matrix(2, [20, 27, 43, 24])>,< 4, 12, Matrix(2, [20, 5, 21, 2])>,< 5, 1, Matrix(2, [25, 0, 0, 25])>,< 5, 1, Matrix(2, [37, 0, 0, 37])>,< 5, 1, Matrix(2, [9, 0, 0, 9])>,< 5, 1, Matrix(2, [5, 0, 0, 5])>,< 6, 8, Matrix(2, [37, 27, 9, 28])>,< 6, 8, Matrix(2, [16, 5, 31, 29])>,< 6, 8, Matrix(2, [16, 27, 9, 7])>,< 10, 1, Matrix(2, [41, 0, 0, 41])>,< 10, 1, Matrix(2, [29, 0, 0, 29])>,< 10, 1, Matrix(2, [17, 0, 0, 17])>,< 10, 1, Matrix(2, [13, 0, 0, 13])>,< 10, 1, Matrix(2, [27, 0, 0, 27])>,< 10, 1, Matrix(2, [31, 0, 0, 31])>,< 10, 1, Matrix(2, [15, 0, 0, 15])>,< 10, 1, Matrix(2, [3, 0, 0, 3])>,< 10, 1, Matrix(2, [39, 0, 0, 39])>,< 10, 1, Matrix(2, [35, 0, 0, 35])>,< 10, 1, Matrix(2, [7, 0, 0, 7])>,< 10, 1, Matrix(2, [19, 0, 0, 19])>,< 10, 3, Matrix(2, [27, 22, 0, 27])>,< 10, 3, Matrix(2, [31, 0, 22, 31])>,< 10, 3, Matrix(2, [15, 22, 0, 15])>,< 10, 3, Matrix(2, [3, 0, 22, 3])>,< 10, 3, Matrix(2, [5, 22, 0, 5])>,< 10, 3, Matrix(2, [9, 0, 22, 9])>,< 10, 3, Matrix(2, [37, 22, 0, 37])>,< 10, 3, Matrix(2, [25, 0, 22, 25])>,< 10, 3, Matrix(2, [17, 22, 0, 17])>,< 10, 3, Matrix(2, [13, 0, 22, 13])>,< 10, 3, Matrix(2, [29, 22, 0, 29])>,< 10, 3, Matrix(2, [41, 0, 22, 41])>,< 10, 3, Matrix(2, [19, 0, 22, 19])>,< 10, 3, Matrix(2, [7, 0, 22, 7])>,< 10, 3, Matrix(2, [39, 0, 22, 39])>,< 10, 3, Matrix(2, [35, 0, 22, 35])>,< 12, 8, Matrix(2, [43, 1, 15, 28])>,< 12, 8, Matrix(2, [16, 23, 37, 23])>,< 12, 8, Matrix(2, [21, 23, 37, 28])>,< 12, 8, Matrix(2, [16, 1, 15, 1])>,< 15, 8, Matrix(2, [3, 1, 15, 32])>,< 15, 8, Matrix(2, [8, 19, 21, 31])>,< 15, 8, Matrix(2, [24, 35, 41, 27])>,< 15, 8, Matrix(2, [23, 37, 27, 40])>,< 20, 2, Matrix(2, [9, 32, 40, 13])>,< 20, 2, Matrix(2, [41, 4, 16, 25])>,< 20, 2, Matrix(2, [17, 36, 12, 5])>,< 20, 2, Matrix(2, [1, 28, 24, 21])>,< 20, 2, Matrix(2, [31, 32, 40, 35])>,< 20, 2, Matrix(2, [19, 4, 16, 3])>,< 20, 2, Matrix(2, [39, 36, 12, 27])>,< 20, 2, Matrix(2, [23, 28, 24, 43])>,< 20, 6, Matrix(2, [31, 10, 40, 35])>,< 20, 6, Matrix(2, [3, 40, 6, 19])>,< 20, 6, Matrix(2, [27, 30, 32, 39])>,< 20, 6, Matrix(2, [23, 28, 2, 43])>,< 20, 6, Matrix(2, [9, 10, 40, 13])>,< 20, 6, Matrix(2, [25, 40, 6, 41])>,< 20, 6, Matrix(2, [5, 30, 32, 17])>,< 20, 6, Matrix(2, [1, 28, 2, 21])>,< 20, 12, Matrix(2, [11, 4, 39, 33])>,< 20, 12, Matrix(2, [11, 20, 19, 33])>,< 20, 12, Matrix(2, [11, 36, 43, 33])>,< 20, 12, Matrix(2, [11, 12, 7, 33])>,< 20, 12, Matrix(2, [33, 14, 21, 33])>,< 20, 12, Matrix(2, [33, 34, 29, 33])>,< 20, 12, Matrix(2, [33, 42, 41, 33])>,< 20, 12, Matrix(2, [33, 26, 17, 33])>,< 20, 12, Matrix(2, [16, 37, 41, 28])>,< 20, 12, Matrix(2, [36, 9, 29, 8])>,< 20, 12, Matrix(2, [12, 25, 17, 32])>,< 20, 12, Matrix(2, [4, 1, 13, 40])>,< 20, 12, Matrix(2, [12, 3, 39, 10])>,< 20, 12, Matrix(2, [26, 23, 35, 40])>,< 20, 12, Matrix(2, [36, 31, 7, 30])>,< 20, 12, Matrix(2, [38, 15, 19, 28])>,< 20, 12, Matrix(2, [33, 4, 17, 11])>,< 20, 12, Matrix(2, [33, 20, 41, 11])>,< 20, 12, Matrix(2, [33, 36, 21, 11])>,< 20, 12, Matrix(2, [33, 12, 29, 11])>,< 20, 12, Matrix(2, [11, 14, 43, 11])>,< 20, 12, Matrix(2, [11, 34, 7, 11])>,< 20, 12, Matrix(2, [11, 42, 19, 11])>,< 20, 12, Matrix(2, [11, 26, 39, 11])>,< 20, 12, Matrix(2, [16, 15, 19, 28])>,< 20, 12, Matrix(2, [36, 31, 7, 8])>,< 20, 12, Matrix(2, [12, 3, 39, 32])>,< 20, 12, Matrix(2, [4, 23, 35, 40])>,< 20, 12, Matrix(2, [12, 25, 17, 10])>,< 20, 12, Matrix(2, [26, 1, 13, 40])>,< 20, 12, Matrix(2, [36, 9, 29, 30])>,< 20, 12, Matrix(2, [38, 37, 41, 28])>,< 30, 8, Matrix(2, [40, 29, 39, 1])>,< 30, 8, Matrix(2, [24, 13, 19, 5])>,< 30, 8, Matrix(2, [32, 21, 7, 25])>,< 30, 8, Matrix(2, [8, 19, 21, 9])>,< 30, 8, Matrix(2, [21, 7, 17, 4])>,< 30, 8, Matrix(2, [17, 35, 41, 20])>,< 30, 8, Matrix(2, [41, 43, 29, 12])>,< 30, 8, Matrix(2, [35, 19, 43, 14])>,< 30, 8, Matrix(2, [19, 21, 7, 12])>,< 30, 8, Matrix(2, [36, 3, 1, 35])>,< 30, 8, Matrix(2, [39, 13, 19, 20])>,< 30, 8, Matrix(2, [4, 15, 5, 43])>,< 60, 8, Matrix(2, [4, 3, 1, 3])>,< 60, 8, Matrix(2, [20, 15, 5, 15])>,< 60, 8, Matrix(2, [35, 9, 3, 32])>,< 60, 8, Matrix(2, [17, 5, 9, 30])>,< 60, 8, Matrix(2, [36, 5, 31, 27])>,< 60, 8, Matrix(2, [12, 31, 25, 31])>,< 60, 8, Matrix(2, [7, 37, 27, 24])>,< 60, 8, Matrix(2, [19, 25, 23, 40])>,< 60, 8, Matrix(2, [4, 25, 23, 25])>,< 60, 8, Matrix(2, [20, 37, 27, 37])>,< 60, 8, Matrix(2, [13, 31, 25, 32])>,< 60, 8, Matrix(2, [39, 27, 31, 30])>,< 60, 8, Matrix(2, [36, 27, 9, 5])>,< 60, 8, Matrix(2, [12, 9, 3, 9])>,< 60, 8, Matrix(2, [29, 15, 5, 24])>,< 60, 8, Matrix(2, [41, 3, 1, 40])>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1^2,K.1,1,1,1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,1,1,1,1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1,K.1^-2,K.1^-1,1,1,1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^2,K.1,K.1^-2,1,1,1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^2,K.1^-2,1,1,1,1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-2,K.1^-1,K.1^2,1,1,1,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,1,1,1,1,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,-1,1,1,1,K.1^-2,K.1^-1,K.1^2,K.1,-1,-1,1,K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,K.1^-1,K.1,1,1,-1,-1,K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1,-1*K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1,K.1^2,-1*K.1,K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,K.1,-1*K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,-1,1,1,1,K.1^2,K.1,K.1^-2,K.1^-1,-1,-1,1,K.1^-1,-1*K.1^2,K.1,-1*K.1,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-2,K.1,K.1^-1,1,1,-1,-1,K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-1,K.1,K.1^2,-1*K.1^2,K.1^2,K.1^-1,-1*K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,-1,1,1,1,K.1^-1,K.1^2,K.1,K.1^-2,-1,-1,1,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1,K.1^2,K.1^-2,1,1,-1,-1,K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1,K.1^-2,-1*K.1,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1^-2,K.1,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1^2,K.1^2,K.1,K.1^2,K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,-1,1,1,1,K.1,K.1^-2,K.1^-1,K.1^2,-1,-1,1,K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,1,1,-1,-1,K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,K.1,-1*K.1^-1,K.1^2,-1*K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^2,K.1^-2,K.1,-1*K.1,K.1,K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,1,-1,-1,-1,K.1^-2,K.1^-1,K.1^2,K.1,-1,-1,1,K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,K.1^-1,K.1,1,1,-1,-1,K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,1,-1,-1,-1,K.1^2,K.1,K.1^-2,K.1^-1,-1,-1,1,K.1^-1,-1*K.1^2,K.1,-1*K.1,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-2,K.1,K.1^-1,1,1,-1,-1,K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,-1*K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,1,-1,-1,-1,K.1^-1,K.1^2,K.1,K.1^-2,-1,-1,1,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1,K.1^2,K.1^-2,1,1,-1,-1,K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,1,-1,-1,-1,K.1,K.1^-2,K.1^-1,K.1^2,-1,-1,1,K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,1,1,-1,-1,K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,K.1,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,-1*K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,K.1^-2,K.1^-1,K.1^2,K.1,-1,-1,1,K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,K.1^-1,K.1,-1,-1,1,1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^2,K.1,K.1^-1,-1*K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,-1*K.1^-2,K.1^-2,K.1^-2,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1,-1*K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,K.1^2,K.1,K.1^-2,K.1^-1,-1,-1,1,K.1^-1,-1*K.1^2,K.1,-1*K.1,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-2,K.1,K.1^-1,-1,-1,1,1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1^-1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-2,K.1^-1,K.1,-1*K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^-2,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,K.1^-1,K.1^2,K.1,K.1^-2,-1,-1,1,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1,K.1^2,K.1^-2,-1,-1,1,1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-2,K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1,K.1^-2,K.1^2,-1*K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-1,K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,K.1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,K.1,K.1^-2,K.1^-1,K.1^2,-1,-1,1,K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,-1,-1,1,1,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,-1*K.1,K.1,K.1,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1,K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,K.1^-2,K.1^-1,K.1^2,K.1,-1,-1,1,K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,K.1^-1,K.1,-1,-1,1,1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^2,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1,-1*K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,K.1^2,K.1,K.1^-2,K.1^-1,-1,-1,1,K.1^-1,-1*K.1^2,K.1,-1*K.1,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1^-2,K.1,K.1^-1,-1,-1,1,1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1^-1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^-2,K.1^-1,K.1,K.1^-1,K.1,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1,-1*K.1^2,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,K.1^-1,K.1^2,K.1,K.1^-2,-1,-1,1,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1,K.1^2,K.1^-2,-1,-1,1,1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-2,K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1^2,K.1,K.1^2,K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-1,K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,K.1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,K.1,K.1^-2,K.1^-1,K.1^2,-1,-1,1,K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,-1,-1,1,1,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,K.1,-1*K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1,K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,K.1^-2,K.1^-1,K.1^2,K.1,1,1,1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,-1,-1,-1,-1,K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1,-1*K.1^2,K.1,-1*K.1^-1,K.1^-2,K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,K.1^2,K.1,K.1^-2,K.1^-1,1,1,1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,-1,-1,-1,-1,K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,K.1^-1,K.1^2,K.1,K.1^-2,1,1,1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^2,K.1^-2,-1,-1,-1,-1,K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,-1*K.1,K.1^-2,-1*K.1,K.1^-2,-1*K.1^2,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,K.1,K.1^-2,K.1^-1,K.1^2,1,1,1,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,-1,-1,-1,-1,K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,-1*K.1^-1,K.1^2,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1,K.1,-1*K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,-1,K.1^-2,K.1^-1,K.1^2,K.1,1,1,1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,-1,-1,-1,-1,K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,K.1^2,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^-2,K.1^-2,-1*K.1^2,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,-1,K.1^2,K.1,K.1^-2,K.1^-1,1,1,1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,-1,-1,-1,-1,K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^-2,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^-2,K.1^-1,K.1,K.1^-1,K.1,K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,-1,K.1^-1,K.1^2,K.1,K.1^-2,1,1,1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^2,K.1^-2,-1,-1,-1,-1,K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,K.1,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1,-1,K.1,K.1^-2,K.1^-1,K.1^2,1,1,1,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,-1,-1,-1,-1,K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1,K.1,-1*K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-2,K.1^-1,K.1^2,K.1,1,1,1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,1,1,1,1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1,K.1^-2,K.1^-1,1,1,1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^2,K.1,K.1^-2,1,1,1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1,K.1^2,K.1^-2,1,1,1,1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^-2,K.1^-1,K.1^2,1,1,1,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,1,1,1,1,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, -1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, -2, 2, -2, -1, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, -1, 2, -2, 2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, 2, 2, -1, -1, 1, 1, -1, -1, -1, -1, -2, -2, -2, -2, 2, 2, 2, 2, 2, -2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, -2, 2, -2, -1, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, -1, 2, -2, 2, -2, 2, -2, -2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, 2, 2, 1, 1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, -2, -2, -2, -2, -2, 2, 2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, -1, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, 2, -2, 2, 2, -2, -2, -2, -2, -2, 2, -2, 2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, 2, -2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,1,-1,1,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,2,2,-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,1,-1,1,1,1,1,1,-1,-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,1,-1,1,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,2,2,-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,1,-1,1,1,1,1,1,-1,-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,-1,1,1,-2,2,-2,2,-2,2,2,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,-1,1,-1,-1,1,1,1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,-1,1,1,-2,2,-2,2,-2,2,2,-2,-2,-2,-2,-2,2,-2,2,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,-1,1,-1,-1,1,1,1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,-1,-1,-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1,-1,-1,-1,-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,-1,-1,-1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,-1,-1,-1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1,2*K.1^2,2*K.1^-2,-1,-1,-1,-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,2,2,2,2,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,-1,-1,-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,-1,-1,-1,-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,-2,-1,-2,2,-2,2,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,1,1,-1,2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1,2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1^2,2*K.1^-1,2*K.1,-1,-1,1,1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,K.1,K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^-1,K.1^-1,K.1^-2,K.1,-1*K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,-2,-1,-2,2,-2,2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,1,1,-1,2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,-2*K.1^-2,2*K.1,2*K.1^-1,-1,-1,1,1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1,K.1,K.1^2,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,-2,-1,-2,2,-2,2,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,1,1,-1,2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1,2*K.1^2,2*K.1^-2,-1,-1,1,1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1,2*K.1^2,2*K.1^-2,-2*K.1^2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,K.1,K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1^2,K.1^2,K.1^-1,K.1^-2,-1*K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,K.1,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,-2,-1,-2,2,-2,2,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,1,1,-1,2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^2,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-2,2*K.1^2,-1,-1,1,1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1^-2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-2,K.1^-2,K.1,K.1^2,-1*K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,-2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,1,1,-1,2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1,2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1^2,2*K.1^-1,2*K.1,1,1,-1,-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,K.1,K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,-2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,1,1,-1,2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,-2*K.1^-2,2*K.1,2*K.1^-1,1,1,-1,-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1,K.1,K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,-2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,1,1,-1,2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,-2*K.1,2*K.1^2,2*K.1^-2,1,1,-1,-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^2,-2*K.1^-2,2*K.1^2,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,K.1,K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1^2,K.1^2,K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,-2,-2,2,-2,2,-2,-1,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,1,1,-1,2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^2,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-2,2*K.1^2,1,1,-1,-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,-2*K.1^-2,-2*K.1^2,2*K.1^-2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-2,K.1^-2,K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,-1,-1,-1,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1,1,1,1,1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,-1,-1,-1,2*K.1^-1,2*K.1^2,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-1,1,1,1,1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,-1,-1,-1,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1,2*K.1^2,2*K.1^-2,1,1,1,1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,-1,-2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,-1,-1,-1,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^2,1,1,1,1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,-2,2,-2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^-2,2*K.1^-1,2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1,2*K.1^-2,-2*K.1^2,-2*K.1^-2,2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1,0,0,0,0,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,2*K.1^-1,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,-2,2,-2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^2,2*K.1,2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,2*K.1^2,-2*K.1^-2,-2*K.1^2,2*K.1,2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1^-1,0,0,0,0,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1,2*K.1,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,-2,2,-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-2,2*K.1,-2*K.1,-2*K.1^2,2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1,2*K.1,2*K.1^2,-2*K.1^-2,0,0,0,0,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,-2,2,-2,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^2,2*K.1,-2*K.1^-1,-2*K.1,2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-2,-2*K.1^2,0,0,0,0,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2,-2,-2,-2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^2,2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^-2,2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1,0,0,0,0,2*K.1,2*K.1^2,2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1^2,-2*K.1^2,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,2*K.1^2,2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2,-2,-2,-2*K.1^-1,2*K.1^2,-2*K.1,2*K.1,-2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1^-2,2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^2,2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1^-1,0,0,0,0,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1,-2*K.1,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^-2,2,-2,-2,-2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1,2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1^-1,2*K.1,-2*K.1,2*K.1^2,-2*K.1^-2,0,0,0,0,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^2,2,-2,-2,-2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-1,2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1^-1,2*K.1,-2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-2,-2*K.1^2,0,0,0,0,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^18,2*K.1^24,2*K.1^12,1,-1,1,-2*K.1^12,2*K.1^6,2*K.1^18,2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^24,-2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^12,-2*K.1^6,-2*K.1^24,2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^24,2*K.1^24,-2*K.1^18,-2*K.1^12,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^12,-1*K.1^24,K.1^6,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^24,-1*K.1^24,K.1^12,-1*K.1^12,-1*K.1^18,K.1^12,K.1^24,-1*K.1^6,-1*K.1^18,K.1^18,K.1^6,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,K.1^3-2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24,2*K.1^12,-2*K.1^6,-2*K.1^18,1,-1,1,2*K.1^18,-2*K.1^24,-2*K.1^12,-2*K.1^12,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^6,2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^18,2*K.1^24,2*K.1^6,-2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^6,-2*K.1^6,2*K.1^12,2*K.1^18,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^18,K.1^6,-1*K.1^24,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,K.1^12,-1*K.1^18,-1*K.1^6,K.1^24,K.1^12,-1*K.1^12,-1*K.1^24,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^18,2*K.1^24,2*K.1^12,1,-1,1,-2*K.1^12,2*K.1^6,2*K.1^18,2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^24,-2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^24,-2*K.1^24,2*K.1^18,-2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^12,-2*K.1^6,-2*K.1^24,2*K.1^6,-2*K.1^18,2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^24,2*K.1^24,-2*K.1^18,-2*K.1^12,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^12,-1*K.1^24,K.1^6,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^24,-1*K.1^24,K.1^12,-1*K.1^12,-1*K.1^18,K.1^12,K.1^24,-1*K.1^6,-1*K.1^18,K.1^18,K.1^6,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24,2*K.1^12,-2*K.1^6,-2*K.1^18,1,-1,1,2*K.1^18,-2*K.1^24,-2*K.1^12,-2*K.1^12,-2*K.1^24,2*K.1^18,2*K.1^6,2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^6,2*K.1^6,-2*K.1^12,2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^18,2*K.1^24,2*K.1^6,-2*K.1^24,2*K.1^12,-2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^6,-2*K.1^6,2*K.1^12,2*K.1^18,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^18,K.1^6,-1*K.1^24,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,K.1^12,-1*K.1^18,-1*K.1^6,K.1^24,K.1^12,-1*K.1^12,-1*K.1^24,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1+K.1^11,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^18,2*K.1^24,2*K.1^12,-2*K.1^6,1,-1,1,2*K.1^6,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^6,-2*K.1^18,-2*K.1^12,2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^12,2*K.1^12,2*K.1^24,2*K.1^6,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^6,-1*K.1^12,K.1^18,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^12,-1*K.1^12,-1*K.1^6,K.1^6,K.1^24,-1*K.1^6,K.1^12,-1*K.1^18,K.1^24,-1*K.1^24,K.1^18,-1*K.1-K.1^11,K.1+K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^3-2*K.1^13,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^6,-2*K.1^18,2*K.1^24,1,-1,1,-2*K.1^24,-2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^18,2*K.1^24,2*K.1^12,2*K.1^18,-2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^18,-2*K.1^18,-2*K.1^6,-2*K.1^24,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^24,K.1^18,-1*K.1^12,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^18,K.1^18,K.1^24,-1*K.1^24,-1*K.1^6,K.1^24,-1*K.1^18,K.1^12,-1*K.1^6,K.1^6,-1*K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1+K.1^11,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^18,2*K.1^24,2*K.1^12,-2*K.1^6,1,-1,1,2*K.1^6,2*K.1^18,-2*K.1^24,-2*K.1^24,2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^18,2*K.1^24,-2*K.1^6,2*K.1^12,-2*K.1^12,-2*K.1^24,-2*K.1^18,2*K.1^6,-2*K.1^12,-2*K.1^6,-2*K.1^18,-2*K.1^12,2*K.1^18,2*K.1^24,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^12,2*K.1^12,2*K.1^24,2*K.1^6,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^6,-1*K.1^12,K.1^18,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^12,-1*K.1^12,-1*K.1^6,K.1^6,K.1^24,-1*K.1^6,K.1^12,-1*K.1^18,K.1^24,-1*K.1^24,K.1^18,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,-2,2,-2,-2,2,2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^6,-2*K.1^18,2*K.1^24,1,-1,1,-2*K.1^24,-2*K.1^12,2*K.1^6,2*K.1^6,-2*K.1^12,-2*K.1^24,2*K.1^18,2*K.1^12,-2*K.1^6,2*K.1^24,-2*K.1^18,2*K.1^18,2*K.1^6,2*K.1^12,-2*K.1^24,2*K.1^18,2*K.1^24,2*K.1^12,2*K.1^18,-2*K.1^12,-2*K.1^6,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^18,-2*K.1^18,-2*K.1^6,-2*K.1^24,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^24,K.1^18,-1*K.1^12,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^18,K.1^18,K.1^24,-1*K.1^24,-1*K.1^6,K.1^24,-1*K.1^18,K.1^12,-1*K.1^6,K.1^6,-1*K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^18,2*K.1^24,2*K.1^12,-1,1,1,-2*K.1^12,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^6,2*K.1^12,2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^24,-2*K.1^18,2*K.1^6,2*K.1^12,2*K.1^24,-2*K.1^12,-2*K.1^6,-2*K.1^24,-2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^24,-2*K.1^24,-2*K.1^18,-2*K.1^12,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^12,-1*K.1^24,K.1^6,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^24,K.1^24,-1*K.1^12,K.1^12,K.1^18,K.1^12,-1*K.1^24,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^6,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24,2*K.1^12,-2*K.1^6,-2*K.1^18,-1,1,1,2*K.1^18,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^24,-2*K.1^18,-2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^6,2*K.1^12,-2*K.1^24,-2*K.1^18,-2*K.1^6,2*K.1^18,2*K.1^24,2*K.1^6,2*K.1^24,-2*K.1^12,-2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^6,2*K.1^6,2*K.1^12,2*K.1^18,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^18,K.1^6,-1*K.1^24,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^12,-1*K.1^18,K.1^6,-1*K.1^24,K.1^12,K.1^12,K.1^24,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^11,K.1+K.1^11,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^18,2*K.1^24,2*K.1^12,-1,1,1,-2*K.1^12,-2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^6,2*K.1^12,2*K.1^24,2*K.1^6,2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^24,-2*K.1^18,2*K.1^6,2*K.1^12,2*K.1^24,-2*K.1^12,-2*K.1^6,-2*K.1^24,-2*K.1^6,2*K.1^18,2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^24,-2*K.1^24,-2*K.1^18,-2*K.1^12,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^12,-1*K.1^24,K.1^6,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^24,K.1^24,-1*K.1^12,K.1^12,K.1^18,K.1^12,-1*K.1^24,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1^3+2*K.1^13,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,K.1^3-2*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^24,2*K.1^12,-2*K.1^6,-2*K.1^18,-1,1,1,2*K.1^18,2*K.1^24,-2*K.1^12,2*K.1^12,-2*K.1^24,-2*K.1^18,-2*K.1^6,-2*K.1^24,-2*K.1^12,2*K.1^18,2*K.1^6,2*K.1^6,2*K.1^12,-2*K.1^24,-2*K.1^18,-2*K.1^6,2*K.1^18,2*K.1^24,2*K.1^6,2*K.1^24,-2*K.1^12,-2*K.1^18,-2*K.1^12,-2*K.1^24,-2*K.1^6,2*K.1^6,2*K.1^12,2*K.1^18,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^18,K.1^6,-1*K.1^24,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^24,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^12,-1*K.1^18,K.1^6,-1*K.1^24,K.1^12,K.1^12,K.1^24,K.1^3-2*K.1^13,K.1^3-2*K.1^13,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^11,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^18,2*K.1^24,2*K.1^12,-2*K.1^6,-1,1,1,2*K.1^6,-2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^12,2*K.1^6,-2*K.1^18,-2*K.1^12,-2*K.1^18,-2*K.1^24,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^6,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,K.1^6,-1*K.1^12,K.1^18,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^12,K.1^12,K.1^6,-1*K.1^6,-1*K.1^24,-1*K.1^6,-1*K.1^12,K.1^18,K.1^24,K.1^24,-1*K.1^18,K.1+K.1^11,K.1+K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1-K.1^11,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^6,-2*K.1^18,2*K.1^24,-1,1,1,-2*K.1^24,2*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^18,-2*K.1^24,2*K.1^12,2*K.1^18,2*K.1^12,2*K.1^6,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^18,2*K.1^18,-2*K.1^6,-2*K.1^24,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^24,K.1^18,-1*K.1^12,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^18,-1*K.1^18,-1*K.1^24,K.1^24,K.1^6,K.1^24,K.1^18,-1*K.1^12,-1*K.1^6,-1*K.1^6,K.1^12,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1^3-2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1^3+2*K.1^13,-1*K.1^3+2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1-K.1^11,K.1+K.1^11,K.1^3-2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^18,2*K.1^24,2*K.1^12,-2*K.1^6,-1,1,1,2*K.1^6,-2*K.1^18,-2*K.1^24,2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^18,-2*K.1^6,2*K.1^12,2*K.1^6,-2*K.1^18,-2*K.1^12,-2*K.1^18,-2*K.1^24,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^12,-2*K.1^12,2*K.1^24,2*K.1^6,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^6,-1*K.1^12,K.1^18,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^18,K.1^12,K.1^12,K.1^6,-1*K.1^6,-1*K.1^24,-1*K.1^6,-1*K.1^12,K.1^18,K.1^24,K.1^24,-1*K.1^18,-1*K.1-K.1^11,-1*K.1-K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,-1*K.1^3+2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,K.1+K.1^11,K.1^3-2*K.1^13,K.1+K.1^11,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(60: Sparse := true); S := [ K |2,-2,2,-2,-2,2,2,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^6,-2*K.1^18,2*K.1^24,-1,1,1,-2*K.1^24,2*K.1^12,2*K.1^6,-2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^18,-2*K.1^12,2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^18,-2*K.1^6,-2*K.1^12,2*K.1^24,-2*K.1^18,-2*K.1^24,2*K.1^12,2*K.1^18,2*K.1^12,2*K.1^6,2*K.1^24,2*K.1^6,-2*K.1^12,-2*K.1^18,2*K.1^18,-2*K.1^6,-2*K.1^24,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,K.1^5+K.1^-5,-1*K.1^5-K.1^-5,-1*K.1^24,K.1^18,-1*K.1^12,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^12,-1*K.1^18,-1*K.1^18,-1*K.1^24,K.1^24,K.1^6,K.1^24,K.1^18,-1*K.1^12,-1*K.1^6,-1*K.1^6,K.1^12,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,2*K.1-2*K.1^5-2*K.1^7-K.1^9+2*K.1^13+2*K.1^15,-1*K.1^3+2*K.1^13,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1+K.1^11,K.1+K.1^3-2*K.1^7-K.1^9-K.1^11+K.1^15,K.1^3-2*K.1^13,K.1^3-2*K.1^13,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-2*K.1+2*K.1^5+2*K.1^7+K.1^9-2*K.1^13-2*K.1^15,K.1+K.1^11,-1*K.1-K.1^11,-1*K.1^3+2*K.1^13,-1*K.1-K.1^3+2*K.1^7+K.1^9+K.1^11-K.1^15,-1*K.1-K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, 0, 3, 3, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, 0, 3, 3, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -1, 1, -1, 1, 0, -3, 3, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 3, 3, 3, 3, 0, 0, 0, 3, -3, 3, -3, 3, -3, -3, -3, -3, -3, -3, 3, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 3, 3, 3, 3, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -1, 1, -1, 1, 0, -3, 3, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 3, 3, 3, 3, 0, 0, 0, 3, -3, 3, -3, 3, -3, -3, -3, -3, -3, -3, 3, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 3, 3, 3, 3, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -1, 1, -1, 1, 0, 3, -3, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 3, 3, 3, 3, 0, 0, 0, 3, -3, 3, -3, 3, -3, -3, -3, -3, -3, -3, 3, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -3, -3, -3, -3, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -1, 1, -1, 1, 0, 3, -3, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 3, 3, 3, 3, 0, 0, 0, 3, -3, 3, -3, 3, -3, -3, -3, -3, -3, -3, 3, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -3, -3, -3, -3, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, 0, -3, -3, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, 0, -3, -3, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,3,3,-1,-1,1,-1,-1,-1,1,1,1,-1,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1,0,0,0,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-2,3*K.1^-1,3*K.1,3*K.1^2,3*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-2,3*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,3,3,-1,-1,1,-1,-1,-1,1,1,1,-1,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-1,0,0,0,3*K.1^-1,3*K.1^2,3*K.1,3*K.1,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1^2,3*K.1,3*K.1^-1,3*K.1^-2,3*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1,3*K.1^-1,3*K.1^2,3*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,3,3,-1,-1,1,-1,-1,-1,1,1,1,-1,3*K.1^-1,3*K.1^2,3*K.1,3*K.1^-2,0,0,0,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^-1,3*K.1^2,3*K.1^-2,3*K.1,3*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^2,3*K.1^-2,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,3,3,-1,-1,1,-1,-1,-1,1,1,1,-1,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^2,0,0,0,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-1,3*K.1,3*K.1^-2,3*K.1^2,3*K.1^-1,3*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,3*K.1,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1^-2,3*K.1^2,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,K.1,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1,K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,3,3,-1,-1,-1,1,1,1,-1,-1,-1,1,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1,0,0,0,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-2,3*K.1^-1,3*K.1,3*K.1^2,3*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-2,3*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-1,-1*K.1^-2,K.1^-2,K.1^-2,-1*K.1,K.1^-1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,3,3,-1,-1,-1,1,1,1,-1,-1,-1,1,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-1,0,0,0,3*K.1^-1,3*K.1^2,3*K.1,3*K.1,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1^2,3*K.1,3*K.1^-1,3*K.1^-2,3*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1,3*K.1^-1,3*K.1^2,3*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^-1,K.1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,3,3,-1,-1,-1,1,1,1,-1,-1,-1,1,3*K.1^-1,3*K.1^2,3*K.1,3*K.1^-2,0,0,0,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^-1,3*K.1^2,3*K.1^-2,3*K.1,3*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^2,3*K.1^-2,3*K.1^-1,3*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,3,3,-1,-1,-1,1,1,1,-1,-1,-1,1,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^2,0,0,0,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-1,3*K.1,3*K.1^-2,3*K.1^2,3*K.1^-1,3*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,3*K.1,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1^-2,3*K.1^2,3*K.1,3*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,-1*K.1,K.1,K.1,-1*K.1^2,K.1^-2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,-3,3,1,-1,-1,1,1,-1,-1,1,1,-1,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1,0,0,0,3*K.1,-3*K.1^-2,3*K.1^-1,-3*K.1^-1,3*K.1^-2,-3*K.1,-3*K.1^2,-3*K.1^-2,-3*K.1^-1,-3*K.1,-3*K.1^2,3*K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,-3*K.1^-2,-3*K.1,-3*K.1^2,-3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-2,3*K.1^2,-1*K.1^2,K.1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,K.1^2,-1*K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-2,-1*K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,-3,3,1,-1,-1,1,1,-1,-1,1,1,-1,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-1,0,0,0,3*K.1^-1,-3*K.1^2,3*K.1,-3*K.1,3*K.1^2,-3*K.1^-1,-3*K.1^-2,-3*K.1^2,-3*K.1,-3*K.1^-1,-3*K.1^-2,3*K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,-3*K.1^2,-3*K.1^-1,-3*K.1^-2,-3*K.1,3*K.1,3*K.1^-1,3*K.1^2,3*K.1^-2,-1*K.1^-2,K.1^-1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,-3,3,1,-1,-1,1,1,-1,-1,1,1,-1,3*K.1^-1,3*K.1^2,3*K.1,3*K.1^-2,0,0,0,3*K.1^-2,-3*K.1^-1,3*K.1^2,-3*K.1^2,3*K.1^-1,-3*K.1^-2,-3*K.1,-3*K.1^-1,-3*K.1^2,-3*K.1^-2,-3*K.1,3*K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1^-2,-3*K.1,-3*K.1^2,3*K.1^2,3*K.1^-2,3*K.1^-1,3*K.1,-1*K.1,K.1^-2,K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,K.1,-1*K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,-3,3,1,-1,-1,1,1,-1,-1,1,1,-1,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^2,0,0,0,3*K.1^2,-3*K.1,3*K.1^-2,-3*K.1^-2,3*K.1,-3*K.1^2,-3*K.1^-1,-3*K.1,-3*K.1^-2,-3*K.1^2,-3*K.1^-1,3*K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^2,-3*K.1^-1,-3*K.1^-2,3*K.1^-2,3*K.1^2,3*K.1,3*K.1^-1,-1*K.1^-1,K.1^2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1,-1*K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,-3,3,1,-1,1,-1,-1,1,1,-1,-1,1,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1,0,0,0,3*K.1,-3*K.1^-2,3*K.1^-1,-3*K.1^-1,3*K.1^-2,-3*K.1,-3*K.1^2,-3*K.1^-2,-3*K.1^-1,-3*K.1,-3*K.1^2,3*K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,-3*K.1^-2,-3*K.1,-3*K.1^2,-3*K.1^-1,3*K.1^-1,3*K.1,3*K.1^-2,3*K.1^2,-1*K.1^2,K.1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^2,K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1,-1*K.1^2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1,K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,-3,3,1,-1,1,-1,-1,1,1,-1,-1,1,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-1,0,0,0,3*K.1^-1,-3*K.1^2,3*K.1,-3*K.1,3*K.1^2,-3*K.1^-1,-3*K.1^-2,-3*K.1^2,-3*K.1,-3*K.1^-1,-3*K.1^-2,3*K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,-3*K.1^2,-3*K.1^-1,-3*K.1^-2,-3*K.1,3*K.1,3*K.1^-1,3*K.1^2,3*K.1^-2,-1*K.1^-2,K.1^-1,K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^-1,K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,K.1,K.1^2,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,-3,3,1,-1,1,-1,-1,1,1,-1,-1,1,3*K.1^-1,3*K.1^2,3*K.1,3*K.1^-2,0,0,0,3*K.1^-2,-3*K.1^-1,3*K.1^2,-3*K.1^2,3*K.1^-1,-3*K.1^-2,-3*K.1,-3*K.1^-1,-3*K.1^2,-3*K.1^-2,-3*K.1,3*K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1^-2,-3*K.1,-3*K.1^2,3*K.1^2,3*K.1^-2,3*K.1^-1,3*K.1,-1*K.1,K.1^-2,K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1,K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-2,-1*K.1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-2,K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,-3,3,1,-1,1,-1,-1,1,1,-1,-1,1,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^2,0,0,0,3*K.1^2,-3*K.1,3*K.1^-2,-3*K.1^-2,3*K.1,-3*K.1^2,-3*K.1^-1,-3*K.1,-3*K.1^-2,-3*K.1^2,-3*K.1^-1,3*K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^2,-3*K.1^-1,-3*K.1^-2,3*K.1^-2,3*K.1^2,3*K.1,3*K.1^-1,-1*K.1^-1,K.1^2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1,-1*K.1,K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-2,K.1,-1*K.1,K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,3,-3,-1,1,-1,-1,1,-1,1,1,-1,1,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1,0,0,0,3*K.1,-3*K.1^-2,3*K.1^-1,-3*K.1^-1,3*K.1^-2,-3*K.1,-3*K.1^2,-3*K.1^-2,-3*K.1^-1,-3*K.1,-3*K.1^2,3*K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-2,-3*K.1^2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-1,K.1^-2,-1*K.1^2,K.1,K.1^2,-1*K.1,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,-1*K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,3,-3,-1,1,-1,-1,1,-1,1,1,-1,1,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-1,0,0,0,3*K.1^-1,-3*K.1^2,3*K.1,-3*K.1,3*K.1^2,-3*K.1^-1,-3*K.1^-2,-3*K.1^2,-3*K.1,-3*K.1^-1,-3*K.1^-2,3*K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^2,-3*K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1,K.1^2,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^-1,K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,-1*K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,3,-3,-1,1,-1,-1,1,-1,1,1,-1,1,3*K.1^-1,3*K.1^2,3*K.1,3*K.1^-2,0,0,0,3*K.1^-2,-3*K.1^-1,3*K.1^2,-3*K.1^2,3*K.1^-1,-3*K.1^-2,-3*K.1,-3*K.1^-1,-3*K.1^2,-3*K.1^-2,-3*K.1,3*K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^2,-3*K.1^2,-3*K.1^-2,-3*K.1^-1,-3*K.1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^2,K.1^-1,-1*K.1,K.1^-2,K.1,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,3,-3,-1,1,-1,-1,1,-1,1,1,-1,1,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^2,0,0,0,3*K.1^2,-3*K.1,3*K.1^-2,-3*K.1^-2,3*K.1,-3*K.1^2,-3*K.1^-1,-3*K.1,-3*K.1^-2,-3*K.1^2,-3*K.1^-1,3*K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,3*K.1,3*K.1^2,3*K.1^-1,3*K.1^-2,-3*K.1^-2,-3*K.1^2,-3*K.1,-3*K.1^-1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,K.1,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1^2,K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,K.1^-2,K.1,K.1,-1*K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,3,-3,-1,1,1,1,-1,1,-1,-1,1,-1,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1,0,0,0,3*K.1,-3*K.1^-2,3*K.1^-1,-3*K.1^-1,3*K.1^-2,-3*K.1,-3*K.1^2,-3*K.1^-2,-3*K.1^-1,-3*K.1,-3*K.1^2,3*K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-2,-3*K.1^2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-2,K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,3,-3,-1,1,1,1,-1,1,-1,-1,1,-1,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-1,0,0,0,3*K.1^-1,-3*K.1^2,3*K.1,-3*K.1,3*K.1^2,-3*K.1^-1,-3*K.1^-2,-3*K.1^2,-3*K.1,-3*K.1^-1,-3*K.1^-2,3*K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^2,-3*K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^2,K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,3,-3,-1,1,1,1,-1,1,-1,-1,1,-1,3*K.1^-1,3*K.1^2,3*K.1,3*K.1^-2,0,0,0,3*K.1^-2,-3*K.1^-1,3*K.1^2,-3*K.1^2,3*K.1^-1,-3*K.1^-2,-3*K.1,-3*K.1^-1,-3*K.1^2,-3*K.1^-2,-3*K.1,3*K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^2,-3*K.1^2,-3*K.1^-2,-3*K.1^-1,-3*K.1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-2,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,-3,-3,-1,1,-1,1,0,3,-3,-1,1,1,1,-1,1,-1,-1,1,-1,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^2,0,0,0,3*K.1^2,-3*K.1,3*K.1^-2,-3*K.1^-2,3*K.1,-3*K.1^2,-3*K.1^-1,-3*K.1,-3*K.1^-2,-3*K.1^2,-3*K.1^-1,3*K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,3*K.1,3*K.1^2,3*K.1^-1,3*K.1^-2,-3*K.1^-2,-3*K.1^2,-3*K.1,-3*K.1^-1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,-3,-3,1,1,-1,-1,1,1,1,-1,1,-1,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1,0,0,0,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-2,3*K.1^-1,3*K.1,3*K.1^2,3*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,-3*K.1^-2,-3*K.1,-3*K.1^2,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-2,-3*K.1^2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^2,K.1,K.1^-1,K.1^-2,-1*K.1^-2,K.1^-2,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1,K.1^-1,K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^2,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,-3,-3,1,1,-1,-1,1,1,1,-1,1,-1,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-1,0,0,0,3*K.1^-1,3*K.1^2,3*K.1,3*K.1,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1^2,3*K.1,3*K.1^-1,3*K.1^-2,3*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,-3*K.1^2,-3*K.1^-1,-3*K.1^-2,-3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^2,-3*K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^-1,K.1,K.1^2,-1*K.1^2,K.1^2,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^-1,K.1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^-2,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,-3,-3,1,1,-1,-1,1,1,1,-1,1,-1,3*K.1^-1,3*K.1^2,3*K.1,3*K.1^-2,0,0,0,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^-1,3*K.1^2,3*K.1^-2,3*K.1,3*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1^-2,-3*K.1,-3*K.1^2,-3*K.1^2,-3*K.1^-2,-3*K.1^-1,-3*K.1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1,K.1^-2,K.1^2,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,K.1^2,K.1,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,-3,-3,1,1,-1,-1,1,1,1,-1,1,-1,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^2,0,0,0,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-1,3*K.1,3*K.1^-2,3*K.1^2,3*K.1^-1,3*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^2,-3*K.1^-1,-3*K.1^-2,-3*K.1^-2,-3*K.1^2,-3*K.1,-3*K.1^-1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-1,K.1^2,K.1^-2,K.1,-1*K.1,K.1,K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-1,-1*K.1^2,K.1^-2,K.1,-1*K.1,-1*K.1,K.1^-1,K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,-3,-3,1,1,1,1,-1,-1,-1,1,-1,1,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1,0,0,0,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-2,3*K.1^-1,3*K.1,3*K.1^2,3*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,0,0,0,0,0,0,0,0,-3*K.1^-2,-3*K.1,-3*K.1^2,-3*K.1^-1,-3*K.1^-1,-3*K.1,-3*K.1^-2,-3*K.1^2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,-1*K.1^2,K.1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1,K.1^-1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-2,K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,-3,-3,1,1,1,1,-1,-1,-1,1,-1,1,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-1,0,0,0,3*K.1^-1,3*K.1^2,3*K.1,3*K.1,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1^2,3*K.1,3*K.1^-1,3*K.1^-2,3*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,0,0,0,0,0,0,0,0,-3*K.1^2,-3*K.1^-1,-3*K.1^-2,-3*K.1,-3*K.1,-3*K.1^-1,-3*K.1^2,-3*K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,-1*K.1^-2,K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-1,K.1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^2,K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,-3,-3,1,1,1,1,-1,-1,-1,1,-1,1,3*K.1^-1,3*K.1^2,3*K.1,3*K.1^-2,0,0,0,3*K.1^-2,3*K.1^-1,3*K.1^2,3*K.1^2,3*K.1^-1,3*K.1^-2,3*K.1,3*K.1^-1,3*K.1^2,3*K.1^-2,3*K.1,3*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,0,0,0,0,0,0,0,0,-3*K.1^-1,-3*K.1^-2,-3*K.1,-3*K.1^2,-3*K.1^2,-3*K.1^-2,-3*K.1^-1,-3*K.1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1,K.1^-2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1^2,K.1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-1,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,0,-3,-3,1,1,1,1,-1,-1,-1,1,-1,1,3*K.1,3*K.1^-2,3*K.1^-1,3*K.1^2,0,0,0,3*K.1^2,3*K.1,3*K.1^-2,3*K.1^-2,3*K.1,3*K.1^2,3*K.1^-1,3*K.1,3*K.1^-2,3*K.1^2,3*K.1^-1,3*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,0,0,0,0,0,0,0,0,-3*K.1,-3*K.1^2,-3*K.1^-1,-3*K.1^-2,-3*K.1^-2,-3*K.1^2,-3*K.1,-3*K.1^-1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,-1*K.1^-1,K.1^2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,K.1,-1*K.1,-1*K.1^2,K.1^-2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,K.1,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0, -6, -6, -6, -6, -6, -6, -6, 6, 6, 6, 6, -6, 2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0, -6, 6, -6, 6, -6, 6, 6, -6, -6, -6, -6, -6, -2, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |6,-6,-6,6,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1^-2,6*K.1^-1,6*K.1^2,6*K.1,0,0,0,-6*K.1,-6*K.1^-2,-6*K.1^-1,-6*K.1^-1,-6*K.1^-2,-6*K.1,-6*K.1^2,6*K.1^-2,6*K.1^-1,6*K.1,6*K.1^2,-6*K.1^2,2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^2,-2*K.1,-2*K.1^-2,2*K.1^2,2*K.1^-2,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |6,-6,-6,6,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1^2,6*K.1,6*K.1^-2,6*K.1^-1,0,0,0,-6*K.1^-1,-6*K.1^2,-6*K.1,-6*K.1,-6*K.1^2,-6*K.1^-1,-6*K.1^-2,6*K.1^2,6*K.1,6*K.1^-1,6*K.1^-2,-6*K.1^-2,2*K.1,-2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^-1,-2*K.1^2,2*K.1^-2,2*K.1^2,-2*K.1,-2*K.1^-1,2*K.1,2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |6,-6,-6,6,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1^-1,6*K.1^2,6*K.1,6*K.1^-2,0,0,0,-6*K.1^-2,-6*K.1^-1,-6*K.1^2,-6*K.1^2,-6*K.1^-1,-6*K.1^-2,-6*K.1,6*K.1^-1,6*K.1^2,6*K.1^-2,6*K.1,-6*K.1,2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1^2,-2*K.1^-2,2*K.1^2,2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |6,-6,-6,6,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1,6*K.1^-2,6*K.1^-1,6*K.1^2,0,0,0,-6*K.1^2,-6*K.1,-6*K.1^-2,-6*K.1^-2,-6*K.1,-6*K.1^2,-6*K.1^-1,6*K.1,6*K.1^-2,6*K.1^2,6*K.1^-1,-6*K.1^-1,2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^2,-2*K.1,2*K.1^-1,2*K.1,-2*K.1^-2,-2*K.1^2,2*K.1^-2,2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |6,-6,6,-6,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1^-2,6*K.1^-1,6*K.1^2,6*K.1,0,0,0,-6*K.1,6*K.1^-2,-6*K.1^-1,6*K.1^-1,-6*K.1^-2,6*K.1,6*K.1^2,-6*K.1^-2,-6*K.1^-1,-6*K.1,-6*K.1^2,-6*K.1^2,-2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^2,-2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1^-2,-2*K.1^2,2*K.1^2,-2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |6,-6,6,-6,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1^2,6*K.1,6*K.1^-2,6*K.1^-1,0,0,0,-6*K.1^-1,6*K.1^2,-6*K.1,6*K.1,-6*K.1^2,6*K.1^-1,6*K.1^-2,-6*K.1^2,-6*K.1,-6*K.1^-1,-6*K.1^-2,-6*K.1^-2,-2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1^-2,-2*K.1^2,2*K.1,-2*K.1^-1,2*K.1,2*K.1^2,-2*K.1^-2,2*K.1^-2,-2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |6,-6,6,-6,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1^-1,6*K.1^2,6*K.1,6*K.1^-2,0,0,0,-6*K.1^-2,6*K.1^-1,-6*K.1^2,6*K.1^2,-6*K.1^-1,6*K.1^-2,6*K.1,-6*K.1^-1,-6*K.1^2,-6*K.1^-2,-6*K.1,-6*K.1,-2*K.1^2,2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1^2,-2*K.1^-2,2*K.1^2,2*K.1^-1,-2*K.1,2*K.1,-2*K.1^2,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |6,-6,6,-6,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1,6*K.1^-2,6*K.1^-1,6*K.1^2,0,0,0,-6*K.1^2,6*K.1,-6*K.1^-2,6*K.1^-2,-6*K.1,6*K.1^2,6*K.1^-1,-6*K.1,-6*K.1^-2,-6*K.1^2,-6*K.1^-1,-6*K.1^-1,-2*K.1^-2,2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1,2*K.1^-2,-2*K.1^2,2*K.1^-2,2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_960_11067:= KnownIrreducibles(CR);