/* Group 96.225 downloaded from the LMFDB on 03 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, -2, -2, -3, -2, -2, 295, 938, 50, 1090, 88]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.3, GPC.5]); AssignNames(~GPC, ["a", "b", "c", "c2", "d", "d2"]); GPerm := PermutationGroup< 19 | (1,7)(2,8)(3,6)(4,5)(9,16)(10,15)(11,13)(12,14), (1,10,2,9)(3,12,4,11)(5,14,6,13)(7,16,8,15), (1,6,2,5)(3,8,4,7)(9,13,10,14)(11,15,12,16), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (17,19,18), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16) >; F:=GF(4); al:=F.1; GLFq := MatrixGroup< 4, F | [[al^1, 0, 0, 1], [al^1, al^2, 0, al^1], [0, al^2, al^2, 1], [1, 0, 0, al^1]],[[al^2, 0, 0, 0], [al^2, al^2, 0, al^2], [0, 0, al^2, 0], [0, 0, 0, al^2]],[[al^1, 0, 0, 0], [0, al^1, 0, 0], [0, 0, al^1, 0], [0, 0, 0, al^1]],[[0, 0, 0, al^2], [al^2, al^2, 0, al^2], [1, 0, al^2, al^1], [al^2, 0, 0, 0]],[[al^1, 0, 0, 1], [1, al^2, 0, 1], [1, 0, al^2, al^2], [1, 0, 0, al^1]],[[1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 1, 1], [0, 0, 0, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_96_225 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, d^2>,< 2, 2, c^3>,< 2, 2, a>,< 2, 2, a*c^3*d>,< 2, 2, a*b*c^3>,< 2, 2, a*b*c^3*d>,< 3, 1, c^2>,< 3, 1, c^4>,< 4, 2, d^3>,< 4, 2, c^3*d^3>,< 4, 2, b*d^2>,< 4, 2, b*c^3*d^2>,< 4, 2, a*c^3*d^2>,< 4, 2, b*d^3>,< 4, 2, b*c^3*d^3>,< 4, 2, a*d^3>,< 4, 2, a*b*d^2>,< 4, 2, a*b*d^3>,< 6, 1, c^4*d^2>,< 6, 1, c^2*d^2>,< 6, 2, c>,< 6, 2, c^5>,< 6, 2, a*c^2>,< 6, 2, a*c^4>,< 6, 2, a*c*d>,< 6, 2, a*c^5*d>,< 6, 2, a*b*c>,< 6, 2, a*b*c^5>,< 6, 2, a*b*c*d>,< 6, 2, a*b*c^5*d>,< 12, 2, c^2*d>,< 12, 2, c^4*d>,< 12, 2, c*d>,< 12, 2, c^5*d>,< 12, 2, b*c^2>,< 12, 2, b*c^4>,< 12, 2, b*c>,< 12, 2, b*c^5>,< 12, 2, a*c>,< 12, 2, a*c^5>,< 12, 2, b*c^2*d>,< 12, 2, b*c^4*d>,< 12, 2, b*c*d>,< 12, 2, b*c^5*d>,< 12, 2, a*c^2*d>,< 12, 2, a*c^4*d>,< 12, 2, a*b*c^2>,< 12, 2, a*b*c^4>,< 12, 2, a*b*c^2*d>,< 12, 2, a*b*c^4*d>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,K.1^-1,K.1,-1,1,-1,1,1,1,1,-1,-1,1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,K.1,K.1^-1,-1,1,-1,1,1,1,1,-1,-1,1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1,K.1^-1,K.1,-1,1,1,1,-1,-1,1,1,1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1,K.1,K.1^-1,-1,1,1,1,-1,-1,1,1,1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1,K.1^-1,K.1,1,-1,1,1,-1,1,-1,1,-1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1,K.1,K.1^-1,1,-1,1,1,-1,1,-1,1,-1,1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,K.1^-1,K.1,1,-1,-1,1,1,-1,-1,-1,1,-1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,K.1,K.1^-1,1,-1,-1,1,1,-1,-1,-1,1,-1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,-1,-1,K.1^-1,K.1,1,1,-1,-1,1,1,-1,1,1,-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1,K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,-1,-1,K.1,K.1^-1,1,1,-1,-1,1,1,-1,1,1,-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,1,K.1^-1,K.1,1,1,1,-1,-1,-1,-1,-1,-1,1,K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1,-1*K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,1,K.1,K.1^-1,1,1,1,-1,-1,-1,-1,-1,-1,1,K.1^-1,K.1,-1*K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,1,-1,1,K.1^-1,K.1,-1,-1,1,-1,-1,1,1,-1,1,-1,K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,1,-1,1,K.1,K.1^-1,-1,-1,1,-1,-1,1,1,-1,1,-1,K.1^-1,K.1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,1,1,-1,K.1^-1,K.1,-1,-1,-1,-1,1,-1,1,1,-1,1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,1,1,-1,K.1,K.1^-1,-1,-1,-1,-1,1,-1,1,1,-1,1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,K.1^-1,K.1,1,-1,1,-1,1,-1,1,-1,1,1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,-1,-1,-1,K.1,K.1^-1,1,-1,1,-1,1,-1,1,-1,1,1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,-1,1,1,K.1^-1,K.1,1,-1,-1,-1,-1,1,1,1,-1,-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,-1,1,1,K.1,K.1^-1,1,-1,-1,-1,-1,1,1,1,-1,-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,1,-1,1,K.1^-1,K.1,-1,1,-1,-1,-1,-1,-1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,1,-1,1,K.1,K.1^-1,-1,1,-1,-1,-1,-1,-1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,1,1,-1,K.1^-1,K.1,-1,1,1,-1,1,1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,1,1,-1,K.1,K.1^-1,-1,1,1,-1,1,1,-1,-1,-1,-1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,K.1^-1,K.1,-1,-1,1,1,1,-1,-1,1,-1,-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,K.1,K.1^-1,-1,-1,1,1,1,-1,-1,1,-1,-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,1,-1,K.1^-1,K.1,-1,-1,-1,1,-1,1,-1,-1,1,1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,1,-1,K.1,K.1^-1,-1,-1,-1,1,-1,1,-1,-1,1,1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,K.1^-1,K.1,1,1,-1,1,-1,-1,1,-1,-1,-1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,K.1,K.1^-1,1,1,-1,1,-1,-1,1,-1,-1,-1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, -4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4*K.1^-1,4*K.1,0,0,0,0,0,0,0,0,0,0,-4*K.1,-4*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |4,-4,0,0,0,0,0,4*K.1,4*K.1^-1,0,0,0,0,0,0,0,0,0,0,-4*K.1^-1,-4*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_96_225:= KnownIrreducibles(CR);