/* Group 96.222 downloaded from the LMFDB on 15 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, -2, -2, -2, -2, -3, 295, 681, 69, 88]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.3, GPC.4]); AssignNames(~GPC, ["a", "b", "c", "d", "d2", "d4"]); GPerm := PermutationGroup< 15 | (1,2,4,6)(3,7,8,5), (1,3,4,8)(2,5,6,7)(9,10)(11,12), (1,4)(2,6)(3,8)(5,7)(9,11)(10,12), (9,10)(11,12), (13,15,14), (1,4)(2,6)(3,8)(5,7) >; GLZ := MatrixGroup< 6, Integers() | [[1, -1, -1, 0, 0, 0, 1, -1, -1, -1, 0, 0, 1, 0, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1], [-1, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1], [0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1]] >; F:=GF(4); al:=F.1; GLFq := MatrixGroup< 4, F | [[1, 0, 0, 0], [0, 1, 0, 0], [al^1, 0, 1, al^1], [0, 0, 0, 1]],[[al^1, 0, 0, 0], [0, al^1, 0, 0], [0, 0, al^1, 0], [0, 0, 0, al^1]],[[1, 0, 0, 0], [0, 1, 0, 0], [al^2, 0, 1, al^2], [0, 0, 0, 1]],[[al^1, 0, 0, 0], [al^1, al^1, 0, al^1], [1, al^1, al^1, al^1], [0, 0, 0, al^1]],[[0, 0, 0, al^1], [0, al^1, 0, 0], [0, 1, al^1, al^1], [al^1, 0, 0, 0]],[[al^1, 0, 0, al^2], [1, 1, 0, 1], [al^2, 0, 1, al^2], [al^2, 0, 0, al^1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_96_222 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c>,< 2, 1, c*d^6>,< 2, 1, a>,< 2, 1, a*d^6>,< 2, 1, a*c>,< 2, 1, a*c*d^6>,< 2, 1, d^6>,< 3, 1, d^8>,< 3, 1, d^4>,< 4, 2, d^3>,< 4, 2, c*d^3>,< 4, 2, b*d^6>,< 4, 2, b*d^3>,< 4, 2, a*d^3>,< 4, 2, b*c*d^6>,< 4, 2, b*c*d^3>,< 4, 2, a*c*d^3>,< 4, 2, a*b*d^6>,< 4, 2, a*b*d^3>,< 4, 2, a*b*c*d^6>,< 4, 2, a*b*c*d^3>,< 6, 1, c*d^4>,< 6, 1, c*d^8>,< 6, 1, c*d^2>,< 6, 1, c*d^10>,< 6, 1, a*d^4>,< 6, 1, a*d^8>,< 6, 1, a*d^2>,< 6, 1, a*d^10>,< 6, 1, a*c*d^4>,< 6, 1, a*c*d^8>,< 6, 1, a*c*d^2>,< 6, 1, a*c*d^10>,< 6, 1, d^2>,< 6, 1, d^10>,< 12, 2, d>,< 12, 2, d^5>,< 12, 2, c*d>,< 12, 2, c*d^5>,< 12, 2, b*d^4>,< 12, 2, b*d^2>,< 12, 2, b*d>,< 12, 2, b*d^5>,< 12, 2, a*d>,< 12, 2, a*d^5>,< 12, 2, b*c*d^4>,< 12, 2, b*c*d^2>,< 12, 2, b*c*d>,< 12, 2, b*c*d^5>,< 12, 2, a*c*d>,< 12, 2, a*c*d^5>,< 12, 2, a*b*d^4>,< 12, 2, a*b*d^2>,< 12, 2, a*b*d>,< 12, 2, a*b*d^5>,< 12, 2, a*b*c*d^4>,< 12, 2, a*b*c*d^2>,< 12, 2, a*b*c*d>,< 12, 2, a*b*c*d^5>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,-1,1,1,-1,1,K.1^-1,K.1,-1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,-1,1,1,-1,1,K.1,K.1^-1,-1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,-1,1,1,-1,1,K.1^-1,K.1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,-1,1,1,-1,1,K.1,K.1^-1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,-1,1,1,-1,1,K.1^-1,K.1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,-1,1,1,-1,1,K.1,K.1^-1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,-1,1,1,-1,1,K.1^-1,K.1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,-1,1,1,-1,1,K.1,K.1^-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^-1,K.1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1,K.1^-1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^-1,K.1,-1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1,K.1^-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^-1,K.1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1,K.1^-1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1^-1,K.1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,K.1,K.1^-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,-1,K.1^-1,K.1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,-1,K.1,K.1^-1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,-1,K.1^-1,K.1,-1,1,-1,-1,1,-1,1,1,1,-1,1,-1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,-1,K.1,K.1^-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,-1,K.1^-1,K.1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,-1,K.1,K.1^-1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,-1,K.1^-1,K.1,1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,-1,K.1,K.1^-1,1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-1,K.1,-1,-1,1,-1,-1,1,-1,-1,1,-1,1,-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1,K.1^-1,-1,-1,1,-1,-1,1,-1,-1,1,-1,1,-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-1,K.1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1,K.1^-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-1,K.1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1,K.1^-1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, -2, 2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, 2, -2, -2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, -2, -2, 2, -2, -2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, 2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,-2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,2,-2,2,-2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,2,-2,-2,-2,2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,2,-2,-2,-2,2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1,2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,2,-2,2,-2,-2,-2,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_96_222:= KnownIrreducibles(CR);