/* Group 96.175 downloaded from the LMFDB on 03 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, -2, -2, -2, -2, -3, 312, 649, 31, 681, 69, 88]); a,b,c := Explode([GPC.1, GPC.2, GPC.4]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2", "c4"]); GPerm := PermutationGroup< 15 | (1,2,4,6)(3,7,8,5)(10,12), (1,3,4,8)(2,5,6,7), (1,3,4,8)(2,5,6,7)(9,10,11,12), (13,15,14), (1,4)(2,6)(3,8)(5,7), (1,4)(2,6)(3,8)(5,7)(9,11)(10,12) >; GLZ := MatrixGroup< 6, Integers() | [[-1, 1, 1, 1, 0, 0, -1, 1, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0], [1, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1]] >; F:=GF(4); al:=F.1; GLFq := MatrixGroup< 4, F | [[1, 0, 0, 0], [0, 1, 0, 0], [al^1, 0, 1, al^1], [0, 0, 0, 1]],[[1, 0, 0, al^2], [al^1, al^1, 0, al^1], [al^2, al^1, al^1, 0], [al^2, 0, 0, 1]],[[al^1, 0, 0, 0], [0, al^1, 0, 0], [0, 0, al^1, 0], [0, 0, 0, al^1]],[[0, 0, 0, 1], [al^2, 1, 0, al^2], [al^2, 0, 1, 0], [1, 0, 0, 0]],[[1, 0, 0, 0], [0, 1, 0, 0], [al^2, 0, 1, al^2], [0, 0, 0, 1]],[[al^2, 0, 0, 1], [al^1, al^1, 0, al^1], [al^2, 0, al^1, 1], [1, 0, 0, al^2]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_96_175 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^6>,< 2, 1, b^2*c^6>,< 2, 1, b^2>,< 3, 1, c^4>,< 3, 1, c^8>,< 4, 2, c^3>,< 4, 2, b^2*c^3>,< 4, 2, a*b^2*c^6>,< 4, 2, a*b^2>,< 4, 2, a*b^2*c^9>,< 4, 2, a*b^2*c^3>,< 4, 4, b^3>,< 4, 4, b^3*c^9>,< 4, 4, a*b^3>,< 4, 4, a*b^3*c^9>,< 6, 1, c^2>,< 6, 1, c^10>,< 6, 1, b^2*c^2>,< 6, 1, b^2*c^10>,< 6, 1, b^2*c^8>,< 6, 1, b^2*c^4>,< 12, 2, c>,< 12, 2, c^5>,< 12, 2, b^2*c>,< 12, 2, b^2*c^5>,< 12, 2, a*c^4>,< 12, 2, a*c^8>,< 12, 2, a*c^2>,< 12, 2, a*b^2*c^4>,< 12, 2, a*c>,< 12, 2, a*c^5>,< 12, 2, a*c^7>,< 12, 2, a*c^11>,< 12, 4, b*c^4>,< 12, 4, b*c^2>,< 12, 4, b*c>,< 12, 4, b*c^5>,< 12, 4, a*b*c^4>,< 12, 4, a*b*c^2>,< 12, 4, a*b*c>,< 12, 4, a*b*c^5>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,-1,-1,-1,-1,1,1,-1,1,1,-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,-1,-1,-1,-1,1,1,-1,1,1,-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,-1,-1,-1,-1,1,1,1,-1,-1,1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,-1,-1,-1,-1,1,1,1,-1,-1,1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,-1,-1,1,1,-1,-1,-1,1,-1,1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,-1,-1,1,1,-1,-1,-1,1,-1,1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,-1,-1,1,1,-1,-1,1,-1,1,-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,-1,-1,1,1,-1,-1,1,-1,1,-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,1,1,-1,-1,-1,-1,1,1,-1,-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,1,1,1,1,1,1,-1,-1,-1,-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,1,1,1,1,1,1,-1,-1,-1,-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, 2, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 2, 2, -2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, -2, -2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, 2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 2, 2, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, -2, 2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, -2, 2, 0, 0, 0, 2, 0, 0, 0, -2, 0, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,2*K.1^-1,2*K.1,0,0,0,0,-2,2,0,0,0,0,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1,-2*K.1^-1,0,0,0,0,2*K.1^-1,2*K.1,-2*K.1^-1,0,0,0,-2*K.1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,2*K.1,2*K.1^-1,0,0,0,0,-2,2,0,0,0,0,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1,0,0,0,0,2*K.1,2*K.1^-1,-2*K.1,0,0,0,-2*K.1^-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,2*K.1^-1,2*K.1,0,0,0,0,2,-2,0,0,0,0,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1,-2*K.1^-1,0,0,0,0,-2*K.1^-1,-2*K.1,2*K.1^-1,0,0,0,2*K.1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,2*K.1,2*K.1^-1,0,0,0,0,2,-2,0,0,0,0,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1,0,0,0,0,-2*K.1,-2*K.1^-1,2*K.1,0,0,0,2*K.1^-1,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,2*K.1^-1,2*K.1,0,0,-2,2,0,0,0,0,0,0,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1,0,0,0,0,0,-2*K.1,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,2*K.1,2*K.1^-1,0,0,-2,2,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1,2*K.1^-1,0,0,0,0,0,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,2*K.1^-1,2*K.1,0,0,2,-2,0,0,0,0,0,0,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1,0,0,0,0,0,2*K.1,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,2*K.1,2*K.1^-1,0,0,2,-2,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1,-2*K.1^-1,0,0,0,0,0,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,2*K.1^-1,2*K.1,-2,2,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1,-2*K.1,2*K.1^-1,0,0,0,-2*K.1^-1,0,0,0,2*K.1,0,2*K.1^-1,0,-2*K.1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,2*K.1,2*K.1^-1,-2,2,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1,0,0,0,-2*K.1,0,0,0,2*K.1^-1,0,2*K.1,0,-2*K.1^-1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,2*K.1^-1,2*K.1,2,-2,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1,-2*K.1,2*K.1^-1,0,0,0,2*K.1^-1,0,0,0,-2*K.1,0,-2*K.1^-1,0,2*K.1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,2*K.1,2*K.1^-1,2,-2,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1,0,0,0,2*K.1,0,0,0,-2*K.1^-1,0,-2*K.1,0,2*K.1^-1,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_96_175:= KnownIrreducibles(CR);