# Group 96.175 downloaded from the LMFDB on 30 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(2280008618793373377,96); a := GPC.1; b := GPC.2; c := GPC.4; GPerm := Group( (1,2,4,6)(3,7,8,5)(10,12), (1,3,4,8)(2,5,6,7), (1,3,4,8)(2,5,6,7)(9,10,11,12), (13,15,14), (1,4)(2,6)(3,8)(5,7), (1,4)(2,6)(3,8)(5,7)(9,11)(10,12) ); GLZ := Group([[[-1, 1, 1, 1, 0, 0], [-1, 1, 0, 1, 0, 0], [-1, 1, 0, 0, 0, 0], [0, -1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, -1]], [[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, -1], [0, 0, 0, 0, 1, 0]], [[1, -1, 0, -1, 0, 0], [0, -1, 0, -1, 0, 0], [1, -1, -1, -1, 0, 0], [0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]]); GLFq := Group([[[Z(4)^0, 0*Z(4), 0*Z(4), 0*Z(4)], [0*Z(4), Z(4)^0, 0*Z(4), 0*Z(4)], [Z(4)^1, 0*Z(4), Z(4)^0, Z(4)^1], [0*Z(4), 0*Z(4), 0*Z(4), Z(4)^0]],[[Z(4)^0, 0*Z(4), 0*Z(4), Z(4)^2], [Z(4)^1, Z(4)^1, 0*Z(4), Z(4)^1], [Z(4)^2, Z(4)^1, Z(4)^1, 0*Z(4)], [Z(4)^2, 0*Z(4), 0*Z(4), Z(4)^0]],[[Z(4)^1, 0*Z(4), 0*Z(4), 0*Z(4)], [0*Z(4), Z(4)^1, 0*Z(4), 0*Z(4)], [0*Z(4), 0*Z(4), Z(4)^1, 0*Z(4)], [0*Z(4), 0*Z(4), 0*Z(4), Z(4)^1]],[[0*Z(4), 0*Z(4), 0*Z(4), Z(4)^0], [Z(4)^2, Z(4)^0, 0*Z(4), Z(4)^2], [Z(4)^2, 0*Z(4), Z(4)^0, 0*Z(4)], [Z(4)^0, 0*Z(4), 0*Z(4), 0*Z(4)]],[[Z(4)^0, 0*Z(4), 0*Z(4), 0*Z(4)], [0*Z(4), Z(4)^0, 0*Z(4), 0*Z(4)], [Z(4)^2, 0*Z(4), Z(4)^0, Z(4)^2], [0*Z(4), 0*Z(4), 0*Z(4), Z(4)^0]],[[Z(4)^2, 0*Z(4), 0*Z(4), Z(4)^0], [Z(4)^1, Z(4)^1, 0*Z(4), Z(4)^1], [Z(4)^2, 0*Z(4), Z(4)^1, Z(4)^0], [Z(4)^0, 0*Z(4), 0*Z(4), Z(4)^2]]]); # Booleans booleans_96_175 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_96_175:=rec(); chartbl_96_175.IsFinite:= true; chartbl_96_175.UnderlyingCharacteristic:= 0; chartbl_96_175.UnderlyingGroup:= GPC; chartbl_96_175.Size:= 96; chartbl_96_175.InfoText:= "Character table for group 96.175 downloaded from the LMFDB."; chartbl_96_175.Identifier:= " C12:Q8 "; chartbl_96_175.NrConjugacyClasses:= 42; chartbl_96_175.ConjugacyClasses:= [ of ..., f5*f6, f3*f5*f6, f3, f6, f6^2, f4*f5, f3*f4*f5, f1*f3*f5*f6, f1*f3, f1*f3*f4*f6^2, f1*f3*f4*f5, f2*f3, f2*f3*f4*f6^2, f1*f2*f3, f1*f2*f3*f4*f6^2, f5, f5*f6^2, f3*f5, f3*f5*f6^2, f3*f6^2, f3*f6, f4, f4*f6, f3*f4, f3*f4*f6, f1*f6, f1*f6^2, f1*f5, f1*f3*f6, f1*f4, f1*f4*f6, f1*f4*f5*f6, f1*f4*f5*f6^2, f2*f6, f2*f5, f2*f4, f2*f4*f6, f1*f2*f6, f1*f2*f5, f1*f2*f4, f1*f2*f4*f6]; chartbl_96_175.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]; chartbl_96_175.ComputedPowerMaps:= [ , [1, 1, 1, 1, 6, 5, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 6, 5, 6, 5, 6, 17, 18, 17, 18, 19, 20, 20, 19, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22], [1, 2, 3, 4, 1, 1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 2, 2, 3, 3, 4, 4, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16]]; chartbl_96_175.SizesCentralizers:= [96, 96, 96, 96, 96, 96, 48, 48, 48, 48, 48, 48, 24, 24, 24, 24, 96, 96, 96, 96, 96, 96, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 24, 24, 24, 24, 24, 24, 24, 24]; chartbl_96_175.ClassNames:= ["1A", "2A", "2B", "2C", "3A1", "3A-1", "4A", "4B", "4C", "4D", "4E", "4F", "4G", "4H", "4I", "4J", "6A1", "6A-1", "6B1", "6B-1", "6C1", "6C-1", "12A1", "12A-1", "12B1", "12B-1", "12C1", "12C-1", "12D1", "12D-1", "12E1", "12E-1", "12F1", "12F-1", "12G1", "12G-1", "12H1", "12H-1", "12I1", "12I-1", "12J1", "12J-1"]; chartbl_96_175.OrderClassRepresentatives:= [1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12]; chartbl_96_175.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1], [1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1], [1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1], [1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1], [1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1], [1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, E(3)^-1, E(3), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3)^-1, E(3)^-1, E(3), E(3)^-1, E(3), E(3), E(3)^-1, E(3), E(3), E(3)^-1, E(3), E(3)^-1, E(3), E(3)^-1, E(3), E(3)^-1, E(3)], [1, 1, 1, 1, E(3), E(3)^-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, E(3), E(3), E(3)^-1, E(3), E(3)^-1, E(3)^-1, E(3), E(3)^-1, E(3)^-1, E(3), E(3)^-1, E(3), E(3)^-1, E(3), E(3)^-1, E(3), E(3)^-1], [1, 1, 1, 1, E(3)^-1, E(3), -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3)^-1, E(3)^-1, E(3), E(3)^-1, -1*E(3), -1*E(3), -1*E(3)^-1, E(3), -1*E(3), E(3)^-1, E(3), -1*E(3)^-1, E(3), -1*E(3)^-1, -1*E(3), E(3)^-1, -1*E(3)], [1, 1, 1, 1, E(3), E(3)^-1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3), E(3), E(3)^-1, E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3), E(3)^-1, -1*E(3)^-1, E(3), E(3)^-1, -1*E(3), E(3)^-1, -1*E(3), -1*E(3)^-1, E(3), -1*E(3)^-1], [1, 1, 1, 1, E(3)^-1, E(3), -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3)^-1, E(3)^-1, E(3), E(3)^-1, -1*E(3), -1*E(3), -1*E(3)^-1, E(3), -1*E(3), -1*E(3)^-1, -1*E(3), E(3)^-1, -1*E(3), E(3)^-1, E(3), -1*E(3)^-1, E(3)], [1, 1, 1, 1, E(3), E(3)^-1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3), E(3), E(3)^-1, E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3), E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3)^-1, E(3), -1*E(3)^-1, E(3), E(3)^-1, -1*E(3), E(3)^-1], [1, 1, 1, 1, E(3)^-1, E(3), -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3), E(3), -1*E(3)^-1, -1*E(3), -1*E(3), -1*E(3)^-1, E(3), -1*E(3)^-1, -1*E(3), E(3)^-1, E(3), E(3)^-1, -1*E(3)], [1, 1, 1, 1, E(3), E(3)^-1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3), -1*E(3)^-1, E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3), E(3)^-1, -1*E(3), -1*E(3)^-1, E(3), E(3)^-1, E(3), -1*E(3)^-1], [1, 1, 1, 1, E(3)^-1, E(3), -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), -1*E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3), E(3), -1*E(3)^-1, -1*E(3), -1*E(3), E(3)^-1, -1*E(3), E(3)^-1, E(3), -1*E(3)^-1, -1*E(3), -1*E(3)^-1, E(3)], [1, 1, 1, 1, E(3), E(3)^-1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, -1*E(3), -1*E(3), -1*E(3)^-1, -1*E(3), -1*E(3)^-1, E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3)^-1, E(3), -1*E(3)^-1, E(3), E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3), E(3)^-1], [1, 1, 1, 1, E(3)^-1, E(3), 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3), E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3)^-1, E(3), -1*E(3), E(3)^-1, -1*E(3), E(3), E(3)^-1, -1*E(3), -1*E(3)^-1, E(3), E(3)^-1, E(3), -1*E(3)^-1, -1*E(3)], [1, 1, 1, 1, E(3), E(3)^-1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), -1*E(3), -1*E(3), -1*E(3)^-1, E(3), -1*E(3), -1*E(3)^-1, -1*E(3), E(3)^-1, -1*E(3)^-1, E(3), -1*E(3)^-1, E(3)^-1, E(3), -1*E(3)^-1, -1*E(3), E(3)^-1, E(3), E(3)^-1, -1*E(3), -1*E(3)^-1], [1, 1, 1, 1, E(3)^-1, E(3), 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, -1*E(3)^-1, -1*E(3)^-1, -1*E(3), E(3)^-1, -1*E(3)^-1, -1*E(3), -1*E(3)^-1, E(3), -1*E(3), E(3)^-1, -1*E(3), E(3), -1*E(3)^-1, E(3), E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3), E(3)^-1, E(3)], [1, 1, 1, 1, E(3), E(3)^-1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), -1*E(3), -1*E(3), -1*E(3)^-1, E(3), -1*E(3), -1*E(3)^-1, -1*E(3), E(3)^-1, -1*E(3)^-1, E(3), -1*E(3)^-1, E(3)^-1, -1*E(3), E(3)^-1, E(3), -1*E(3)^-1, -1*E(3), -1*E(3)^-1, E(3), E(3)^-1], [1, 1, 1, 1, E(3)^-1, E(3), 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3)^-1, E(3)^-1, E(3), E(3)^-1, E(3), E(3), E(3)^-1, E(3), E(3), -1*E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3)], [1, 1, 1, 1, E(3), E(3)^-1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, E(3), E(3), E(3)^-1, E(3)^-1, E(3)^-1, E(3), E(3), E(3), E(3)^-1, E(3), E(3), E(3)^-1, E(3), E(3)^-1, E(3)^-1, E(3), E(3)^-1, E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3), -1*E(3)^-1, -1*E(3), -1*E(3)^-1], [2, 2, -2, -2, 2, 2, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 2, 2, -2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, -2, -2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 2, 2, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 2, 2, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, -2, 2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, -2, 2, 0, 0, 0, 2, 0, 0, 0, -2, 0, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, 2*E(3)^-1, 2*E(3), 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 2*E(3)^-1, -2*E(3)^-1, -2*E(3), -2*E(3), 2*E(3), -2*E(3)^-1, 0, 0, 0, 0, 2*E(3)^-1, 2*E(3), -2*E(3)^-1, 0, 0, 0, -2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, 2*E(3), 2*E(3)^-1, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 2*E(3), -2*E(3), -2*E(3)^-1, -2*E(3)^-1, 2*E(3)^-1, -2*E(3), 0, 0, 0, 0, 2*E(3), 2*E(3)^-1, -2*E(3), 0, 0, 0, -2*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, 2*E(3)^-1, 2*E(3), 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 2*E(3)^-1, -2*E(3)^-1, -2*E(3), -2*E(3), 2*E(3), -2*E(3)^-1, 0, 0, 0, 0, -2*E(3)^-1, -2*E(3), 2*E(3)^-1, 0, 0, 0, 2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, 2*E(3), 2*E(3)^-1, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 2*E(3), -2*E(3), -2*E(3)^-1, -2*E(3)^-1, 2*E(3)^-1, -2*E(3), 0, 0, 0, 0, -2*E(3), -2*E(3)^-1, 2*E(3), 0, 0, 0, 2*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 2*E(3)^-1, 2*E(3), 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, -2*E(3)^-1, 2*E(3)^-1, -2*E(3), 2*E(3), -2*E(3), -2*E(3)^-1, 2*E(3)^-1, -2*E(3)^-1, 2*E(3), 0, 0, 0, 0, 0, -2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 2*E(3), 2*E(3)^-1, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, -2*E(3), 2*E(3), -2*E(3)^-1, 2*E(3)^-1, -2*E(3)^-1, -2*E(3), 2*E(3), -2*E(3), 2*E(3)^-1, 0, 0, 0, 0, 0, -2*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 2*E(3)^-1, 2*E(3), 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, -2*E(3)^-1, 2*E(3)^-1, -2*E(3), 2*E(3), -2*E(3), -2*E(3)^-1, -2*E(3)^-1, 2*E(3)^-1, -2*E(3), 0, 0, 0, 0, 0, 2*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, -2, 2, 2*E(3), 2*E(3)^-1, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, -2*E(3), 2*E(3), -2*E(3)^-1, 2*E(3)^-1, -2*E(3)^-1, -2*E(3), -2*E(3), 2*E(3), -2*E(3)^-1, 0, 0, 0, 0, 0, 2*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 2*E(3)^-1, 2*E(3), -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(3)^-1, -2*E(3)^-1, 2*E(3), -2*E(3), -2*E(3), 2*E(3)^-1, 0, 0, 0, -2*E(3)^-1, 0, 0, 0, 2*E(3), 0, 2*E(3)^-1, 0, -2*E(3), 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 2*E(3), 2*E(3)^-1, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(3), -2*E(3), 2*E(3)^-1, -2*E(3)^-1, -2*E(3)^-1, 2*E(3), 0, 0, 0, -2*E(3), 0, 0, 0, 2*E(3)^-1, 0, 2*E(3), 0, -2*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 2*E(3)^-1, 2*E(3), 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(3)^-1, -2*E(3)^-1, 2*E(3), -2*E(3), -2*E(3), 2*E(3)^-1, 0, 0, 0, 2*E(3)^-1, 0, 0, 0, -2*E(3), 0, -2*E(3)^-1, 0, 2*E(3), 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 2, -2, 2*E(3), 2*E(3)^-1, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(3), -2*E(3), 2*E(3)^-1, -2*E(3)^-1, -2*E(3)^-1, 2*E(3), 0, 0, 0, 2*E(3), 0, 0, 0, -2*E(3)^-1, 0, -2*E(3), 0, 2*E(3)^-1, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_96_175);