/* Group 912.129 downloaded from the LMFDB on 30 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, -2, -2, -3, -2, -19, 169, 31, 50, 9730, 1276, 1012, 88, 6923, 3041, 2399]); a,b,c := Explode([GPC.1, GPC.2, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "b4", "c", "c2"]); GPerm := PermutationGroup< 25 | (2,3)(4,6)(5,9)(7,8)(10,14)(11,16)(12,18)(13,19)(15,17)(20,21)(22,23)(24,25), (20,22)(21,23)(24,25), (21,23)(24,25), (2,4,7)(3,6,8)(5,10,11)(9,14,16)(12,15,19)(13,18,17), (20,22)(21,23), (1,2,5,11,17,14,18,4,8,13,19,7,6,12,10,15,16,9,3) >; GLZN := MatrixGroup< 2, Integers(57) | [[49, 0, 0, 7], [1, 3, 0, 1], [39, 13, 38, 18], [37, 0, 0, 37], [20, 0, 0, 1], [20, 0, 0, 20]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_912_129 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^19>,< 2, 1, b^6*c^19>,< 2, 1, b^6>,< 2, 2, a>,< 2, 2, a*c^19>,< 2, 38, a*b^9*c^30>,< 2, 38, a*b^3*c^3>,< 3, 19, b^8*c^12>,< 3, 19, b^4*c^20>,< 4, 38, b^3*c^28>,< 4, 38, b^9*c^5>,< 6, 19, b^4*c>,< 6, 19, b^8*c>,< 6, 19, b^2*c>,< 6, 19, b^10*c>,< 6, 19, b^2*c^30>,< 6, 19, b^10*c^12>,< 6, 38, a*b*c^28>,< 6, 38, a*b^5*c^6>,< 6, 38, a*b^8*c^18>,< 6, 38, a*b^4*c^30>,< 6, 38, a*b^8*c^15>,< 6, 38, a*b^4*c^25>,< 6, 38, a*b^7*c^37>,< 6, 38, a*b^11*c^31>,< 12, 38, b*c^16>,< 12, 38, b^11*c^36>,< 12, 38, b^11*c>,< 12, 38, b*c^11>,< 19, 6, c^2>,< 19, 6, c^4>,< 19, 6, c^8>,< 38, 6, c>,< 38, 6, c^3>,< 38, 6, c^9>,< 38, 6, b^6*c^2>,< 38, 6, b^6*c^4>,< 38, 6, b^6*c^8>,< 38, 6, b^6*c>,< 38, 6, b^6*c^3>,< 38, 6, b^6*c^9>,< 38, 6, a*c^2>,< 38, 6, a*c^16>,< 38, 6, a*c^4>,< 38, 6, a*c^10>,< 38, 6, a*c^8>,< 38, 6, a*c^20>,< 38, 6, a*c>,< 38, 6, a*c^27>,< 38, 6, a*c^3>,< 38, 6, a*c^5>,< 38, 6, a*c^9>,< 38, 6, a*c^13>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1,1,K.1^-1,K.1,1,-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1,1,K.1,K.1^-1,1,-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,1,1,-1,K.1^-1,K.1,-1,1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,1,1,-1,K.1,K.1^-1,-1,1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1,1,K.1^-1,K.1,-1,1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,1,1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1,1,K.1,K.1^-1,-1,1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,1,1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,K.1^-1,K.1,1,-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,1,1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,-1,1,-1,K.1,K.1^-1,1,-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,1,1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,K.1^-1,K.1,1,1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,-1,1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,K.1,K.1^-1,1,1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,-1,1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^-1,K.1,-1,-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,1,1,1,-1,1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1,K.1^-1,-1,-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,1,1,-1,1,1,1,-1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,K.1^-1,K.1,-1,-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,K.1,K.1^-1,-1,-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, 0, 0, 2, 2, 0, 0, -2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 0, -2, -2, -2, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, 0, 0, 2, 2, 0, 0, 2, -2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, 0, -2, -2, 2, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1^-1,2*K.1,0,0,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,0,-2,-2,-2,0,-2,0,0,-2,0,0,0,0,0,0,0,-2,0,2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2*K.1,2*K.1^-1,0,0,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,0,-2,-2,-2,0,-2,0,0,-2,0,0,0,0,0,0,0,-2,0,2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2*K.1^-1,2*K.1,0,0,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,-2,0,-2,-2,2,0,2,0,0,-2,0,0,0,0,0,0,0,2,0,-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,0,0,2*K.1,2*K.1^-1,0,0,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,-2,-2,0,-2,-2,2,0,2,0,0,-2,0,0,0,0,0,0,0,2,0,-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,6,6,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,6,6,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,6,6,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,-6,-6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,-6,-6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,-6,-6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,-6,-6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,-6,-6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,-6,-6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,6,6,-6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,6,6,-6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,6,6,6,-6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,-6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(19: Sparse := true); S := [ K |6,-6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,-1*K.1^2-K.1^3-K.1^5-K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9-K.1^-9-K.1^-6-K.1^-4,K.1+K.1^7+K.1^8+K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1^4+K.1^6+K.1^9+K.1^-9+K.1^-6+K.1^-4,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1^4-K.1^6-K.1^9+K.1^-9+K.1^-6+K.1^-4,K.1^4+K.1^6+K.1^9-K.1^-9-K.1^-6-K.1^-4,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1-K.1^7+K.1^8-K.1^-8+K.1^-7+K.1^-1,-1*K.1^2-K.1^3+K.1^5-K.1^-5+K.1^-3+K.1^-2,K.1+K.1^7-K.1^8+K.1^-8-K.1^-7-K.1^-1,K.1^2+K.1^3+K.1^5+K.1^-5+K.1^-3+K.1^-2,K.1^2+K.1^3-K.1^5+K.1^-5-K.1^-3-K.1^-2,-1*K.1-K.1^7-K.1^8-K.1^-8-K.1^-7-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_912_129:= KnownIrreducibles(CR);