All subgroups of index up to 5600 (order at least 15552) are shown, as well as all normal subgroups of any index.
| Order 87091200: $S_4\times S_{10}$ |
| Order 43545600: $A_4.S_{10}$, $A_4\times S_{10}$, $S_4\times A_{10}$ |
| Order 29030400: $S_{10}\times D_4$ |
| Order 21772800: $A_4\times A_{10}$, $S_3\times S_{10}$ |
| Order 14515200: $C_2^2\times S_{10}$ x 2, $C_2^2.S_{10}$ x 2, $C_4.S_{10}$, $C_4\times S_{10}$, $A_{10}\times D_4$ |
| Order 10886400: $S_3\times A_{10}$, $C_3.S_{10}$, $C_3\times S_{10}$ |
| Order 8709120: $S_4\times S_9$ |
| Order 7257600: $C_2\times S_{10}$ x 5, $C_2^2\times A_{10}$ x 2, $C_2.S_{10}$, $C_4\times A_{10}$ |
| Order 5443200: $C_3\times A_{10}$ |
| Order 4354560: $A_4.S_9$, $A_4\times S_9$, $S_4\times A_9$ |
| Order 3628800: $S_{10}$ x 3, $C_2\times A_{10}$ x 2 |
| Order 2903040: $S_9\times D_4$ |
| Order 2177280: $A_4\times A_9$, $S_3\times S_9$ |
| Order 1935360: $C_2\times S_4\times S_8$ |
| Order 1814400: $A_{10}$ |
| Order 1451520: $C_2^2\times S_9$ x 2, $C_2^2.S_9$ x 2, $C_4\times S_9$, $C_4.A_9.C_2$, $A_9\times D_4$ |
| Order 1088640: $S_3\times A_9$, $C_3:S_9$, $C_3\times S_9$ |
| Order 967680: $S_4\times S_8$ x 4, $(C_2\times A_4).S_8$, $C_2\times A_4\times S_8$, $(C_2\times S_4).A_8$ |
| Order 725760: $C_2\times S_9$ x 5, $C_2^2\times A_9$ x 2, $S_3\times S_4\times S_7$, $C_4\times A_9$, $A_9:C_4$ |
| Order 691200: $S_4\times S_5\wr C_2$ |
| Order 645120: $C_2\times S_8\times D_4$ |
| Order 544320: $C_3\times A_9$ |
| Order 483840: $A_4:S_8$ x 2, $A_4\times S_8$ x 2, $S_4\times A_8$ x 2, $D_6.S_8$, $C_2\times A_4\times A_8$ |
| Order 414720: $S_6\times S_4^2$ |
| Order 362880: $S_9$ x 3, $C_2\times A_9$ x 2, $C_3:S_4\times S_7$, $S_4\times C_3:S_7$, $S_3\times A_4\times S_7$, $C_3:(S_4\times S_7)$, $C_3\times S_4\times S_7$, $S_3\times S_4\times A_7$, $S_3\times A_4:S_7$ |
| Order 345600: $S_4\times S_5^2$, $A_5^2.\GL(2,\mathbb{Z}/4)$, $(A_4\times A_5^2).D_4$, $A_4\times S_5\wr C_2$, $S_5^2.S_4$, $S_4\times A_5^2:C_4$, $S_4\times \POPlus(4,5)$ |
| Order 322560: $D_4\times S_8$ x 8, $C_2^3.S_8$ x 2, $C_2^3\times S_8$ x 2, $C_2\times A_8\times D_4$, $C_2\times C_4:S_8$, $C_2\times C_4\times S_8$ |
| Order 241920: $S_3\times S_8$ x 4, $D_6\times A_8$, $A_4\times A_8$, $C_6:S_8$, $C_6\times S_8$, $C_4.(D_6\times S_7)$, $C_2\times S_4\times S_7$ |
| Order 230400: $A_5^2.D_4^2$ |
| Order 207360: $A_6.S_4^2$ x 2, $A_4\times S_6\times S_4$ x 2, $A_6.S_4^2$, $A_6.S_4^2$, $S_6\times \PSOPlus(4,3)$ |
| Order 181440: $(C_3\times A_4):S_7$, $C_3\times A_4\times S_7$, $C_3:S_4\times A_7$, $C_3\times S_4\times A_7$, $C_3\times A_4:S_7$, $S_3\times A_4\times A_7$, $A_4\times C_3:S_7$, $S_3^2\times S_7$, $A_9$ |
| Order 172800: $A_4\times S_5^2$, $A_4:S_5^2$, $S_4\times \PSOPlus(4,5)$, $S_4\times A_5\times S_5$, $A_4:S_5^2$, $(A_4\times A_5^2):C_4$, $A_4\times A_5^2:C_4$, $\SOPlus(4,4):S_4$, $A_5^2:(C_2\times S_4)$, $A_4\times \POPlus(4,5)$, $S_4\times \SOPlus(4,4)$, $S_5^2:D_6$ |
| Order 161280: $C_2^2\times S_8$ x 15, $C_2^2.A_8.C_2$ x 8, $A_8\times D_4$ x 4, $C_4:S_8$ x 4, $C_4\times S_8$ x 4, $C_2^3\times A_8$ x 2, $C_2\times C_4\times A_8$, $C_2^2.S_8$ |
| Order 138240: $S_4\times S_6\times D_4$ x 2 |
| Order 120960: $S_4\times S_7$ x 5, $S_3\times C_2^2:S_7$ x 2, $C_3:(D_4\times S_7)$ x 2, $S_7\times C_3:D_4$ x 2, $C_2\times D_6\times S_7$ x 2, $S_3\times A_8$ x 2, $C_3:S_8$ x 2, $C_3\times S_8$ x 2, $C_6\times A_8$, $C_3\times S_7\times D_4$, $S_7\times D_{12}$, $C_2\times A_4:S_7$, $C_2\times S_4\times A_7$, $C_2\times A_4\times S_7$, $D_4\times C_3:S_7$, $S_3\times D_4\times A_7$, $C_4\times S_3\times S_7$, $S_3\times C_4:S_7$, $D_{12}.A_7.C_2$ |
| Order 115200: $C_2^2.A_5^2.D_4$ x 2, $S_5^2:D_4$ x 2, $C_2^2\times S_5\wr C_2$ x 2, $(C_2^2\times A_5^2):D_4$ x 2, $S_5^2\times D_4$, $C_4.A_5^2.D_4$, $C_4\times S_5\wr C_2$, $C_4.A_5^2.D_4$, $C_4.A_5^2.D_4$, $D_4\times \POPlus(4,5)$, $D_4\times A_5^2:C_4$ |
| Order 103680: $A_4\times S_4\times A_6$ x 2, $A_4^2.A_6.C_2$ x 2, $S_3\times S_4\times S_6$ x 2, $A_6\times \PSOPlus(4,3)$, $A_4^2\times S_6$, $A_4^2:S_6$ |
| Order 92160: $C_2\wr S_5.S_4$ |
| Order 90720: $C_3\times S_3\times S_7$ x 2, $A_7:S_3^2$ x 2, $C_3\times A_4\times A_7$, $C_3:S_3\times S_7$, $S_3^2\times A_7$, $A_7:S_3^2$ |
| Order 86400: $A_5^2:S_4$, $A_4\times \PSOPlus(4,5)$, $A_5^2:S_4$, $A_4\times A_5\times S_5$, $S_4\times A_5^2$, $S_3\times S_5^2$, $A_5^2:S_4$, $A_4\times \SOPlus(4,4)$, $(A_5\times \GL(2,4)):D_4$, $A_5^2:D_{12}$, $S_5^2:C_6$, $A_5^2:C_4\times S_3$, $S_5^2:S_3$, $S_3\times \POPlus(4,5)$ |
| Order 80640: $C_2\times S_8$ x 21, $C_2^2\times A_8$ x 7, $C_4\times A_8$ x 2, $A_8:C_4$ x 2, $C_2\times D_4\times S_7$ |
| Order 69120: $C_2^2\times S_4\times S_6$ x 4, $\GL(2,\mathbb{Z}/4):S_6$ x 4, $S_4\times C_2^2:S_6$ x 4, $S_6\times \GL(2,\mathbb{Z}/4)$ x 4, $S_5\times S_4^2$ x 2, $D_4\times S_4\times A_6$ x 2, $D_4\times A_4:S_6$ x 2, $(D_4\times A_4).S_6$ x 2, $A_6:(D_4\times S_4)$ x 2, $S_4\times C_4:S_6$ x 2, $C_4:S_4\times S_6$ x 2, $C_4\times S_4\times S_6$ x 2, $C_2^2:S_4\times S_6$ |
| Order 64512: $(C_2^4\times S_4).\GL(3,2)$ |
| Order 60480: $D_6\times S_7$ x 12, $S_4\times A_7$ x 3, $A_4:S_7$ x 3, $A_4\times S_7$ x 3, $C_3:D_4\times A_7$ x 2, $C_2\times C_6\times S_7$ x 2, $(C_6\times S_7):C_2$ x 2, $D_6:S_7$ x 2, $C_3\times C_2^2:S_7$ x 2, $C_2\times C_6:S_7$ x 2, $C_2\times D_6\times A_7$ x 2, $(C_2\times C_6):S_7$ x 2, $D_6:S_7$ x 2, $C_{12}:S_7$, $C_3\times D_4\times A_7$, $C_{12}\times S_7$, $C_3:(C_4\times S_7)$, $C_{12}:S_7$, $D_{12}\times A_7$, $C_4\times S_3\times A_7$, $C_2\times A_4\times A_7$, $C_3\times A_8$, $C_3:C_4\times S_7$, $C_{12}:S_7$, $D_6.S_7$ |
| Order 57600: $S_5^2:C_2^2$ x 13, $S_5^2:C_4$ x 3, $\POPlus(4,5):C_4$ x 3, $\SOPlus(4,4):D_4$ x 2, $(C_2^2\times A_5^2):C_4$ x 2, $A_5^2:(C_2\times D_4)$ x 2, $(C_2^2\times A_5).S_5.C_2$ x 2, $(C_2^2\times A_5).S_5.C_2$ x 2, $C_2^2\times S_5^2$ x 2, $A_5^2:C_2^4$ x 2, $A_5^2:C_4\times C_2^2$ x 2, $D_4\times \SOPlus(4,4)$, $C_4\times S_5^2$, $A_5:(D_4\times S_5)$, $C_4:S_5\times S_5$, $D_4\times A_5\times S_5$, $F_5\times S_4\times S_5$, $D_4\times \PSOPlus(4,5)$, $\SOPlus(4,4):D_4$, $C_4\times \POPlus(4,5)$, $C_4:\POPlus(4,5)$, $A_5^2:C_4^2$, $(C_4\times A_5^2):C_4$, $(C_2\times A_5^2).D_4$ |
| Order 55296: $S_4^3.C_2^2$ |
| Order 51840: $C_3\times S_4\times S_6$ x 2, $C_3:(S_4\times S_6)$ x 2, $C_3:S_4\times S_6$ x 2, $S_3\times S_4\times A_6$ x 2, $S_3\times A_4:S_6$ x 2, $S_4\times C_3:S_6$ x 2, $S_3\times A_4\times S_6$ x 2, $A_4^2\times A_6$ |
| Order 46080: $S_4\times C_2^4:S_5$ x 4, $S_6\times D_4^2$, $C_2^5.(S_4\times A_5)$, $C_2\wr S_5\times A_4$, $A_4.C_2\wr S_5$ |
| Order 45360: $C_3\times S_3\times A_7$ x 2, $C_3^2:S_7$ x 2, $C_3^2\times S_7$, $C_3:S_3\times A_7$, $C_3^2:S_7$ |
| Order 43200: $C_3:S_5^2$, $A_5^2:D_6$, $A_5^2:D_6$, $(A_5\times \GL(2,4)):C_4$, $A_5^2:D_6$, $A_5^2:D_6$, $A_5^2:C_{12}$, $C_3\times \POPlus(4,5)$, $C_3\times S_5^2$, $A_4\times A_5^2$, $C_3:S_5^2$, $A_5^2:D_6$ |
| Order 41472: $S_4^2.\SOPlus(4,2)$ |
| Order 40320: $D_4\times S_7$ x 8, $S_8$ x 6, $C_2\times A_8$ x 5, $C_2^3:S_7$ x 2, $C_2^3\times S_7$ x 2, $C_2\times D_4\times A_7$, $C_2\times C_4\times S_7$, $C_2\times C_4:S_7$ |
| Order 36288: $S_4\times {}^2G(2,3)$ |
| Order 34560: $C_2\times S_4\times S_6$ x 22, $C_2^2\times A_4\times S_6$ x 4, $C_2^2\times A_4:S_6$ x 4, $A_4\times S_4\times S_5$ x 4, $A_4\times C_2^2:S_6$ x 4, $A_6:\GL(2,\mathbb{Z}/4)$ x 4, $A_6\times \GL(2,\mathbb{Z}/4)$ x 4, $A_5:S_4^2$ x 4, $(C_2\times S_4):S_6$ x 4, $A_6:\GL(2,\mathbb{Z}/4)$ x 4, $A_6:\GL(2,\mathbb{Z}/4)$ x 4, $C_2^2\times S_4\times A_6$ x 4, $D_4\times A_4\times A_6$ x 2, $(C_4\times A_4):S_6$ x 2, $C_4\times A_4\times S_6$ x 2, $A_4\times C_4:S_6$ x 2, $C_4\times S_4\times A_6$ x 2, $C_4\times A_4:S_6$ x 2, $A_5\times S_4^2$ x 2, $A_5:S_4^2$ x 2, $S_5\times \PSOPlus(4,3)$ x 2, $S_3\times D_4\times S_6$ x 2, $C_4:S_4\times A_6$ x 2, $A_4:(C_4\times S_6)$ x 2, $A_6:C_4\times S_4$ x 2, $A_4:C_4\times S_6$ x 2, $S_4\times S_6:C_2$, $C_2^2:S_4\times A_6$, $(C_2^2\times A_6):S_4$, $C_2^2:A_4\times S_6$, $D_6\times S_4\times S_5$ |
| Order 32256: $S_4\times C_2^3:\GL(3,2)$ x 2, $A_4\times C_2^4:\GL(3,2)$ |
| Order 31104: $S_3\wr S_3\times S_4$ |
| Order 30720: $C_2^5.(D_4\times S_5)$ |
| Order 30240: $S_3\times S_7$ x 16, $C_6:S_7$ x 6, $D_6\times A_7$ x 6, $C_6\times S_7$ x 6, $C_2\times C_6\times A_7$ x 2, $A_4\times A_7$ x 2, $C_6.S_7$, $C_{12}\times A_7$, $A_7:C_{12}$, $C_3:C_4\times A_7$ |
| Order 28800: $S_5\wr C_2$ x 13, $A_5^2:C_2^3$ x 8, $C_2\times S_5^2$ x 8, $C_2\times A_5^2:C_4$ x 6, $A_5^2:D_4$ x 2, $A_5^2:D_4$ x 2, $A_5^2:D_4$ x 2, $A_5^2:C_2^3$ x 2, $A_5^2:C_2^3$ x 2, $A_5^2:D_4$ x 2, $A_5^2:D_4$ x 2, $A_5^2:C_2^3$ x 2, $\SOPlus(4,4):C_4$, $A_5^2:(C_2\times C_4)$, $C_2.S_5^2$, $C_4\times A_5\times S_5$, $A_5^2:D_4$, $C_2.S_5^2$, $D_5\times S_4\times S_5$, $A_5^2:D_4$, $D_4\times A_5^2$, $F_5\times S_4\times A_5$, $C_4\times \PSOPlus(4,5)$, $A_5:F_5\times S_4$, $A_4\times F_5\times S_5$, $A_5^2:D_4$, $A_4:F_5\times S_5$, $F_5\times A_4:S_5$, $A_4:(F_5\times S_5)$, $C_4\times \SOPlus(4,4)$, $A_5^2:D_4$, $A_5^2:D_4$ |
| Order 27648: $S_4^3:C_2$ x 8, $C_2\times S_4^3$ x 2, $C_2\times A_4^2:\GL(2,\mathbb{Z}/4)$, $C_2\times A_4^3:D_4$, $C_2\times S_4^2:S_4$, $A_4^3.C_2^4$, $A_4^3.(C_2^2\times C_4)$, $C_2\times A_4^3:D_4$ |
| Order 25920: $C_3:S_4\times A_6$ x 2, $A_4\times C_3:S_6$ x 2, $(C_3\times A_4):S_6$ x 2, $C_3\times S_4\times A_6$ x 2, $C_3\times A_4\times S_6$ x 2, $S_3\times A_4\times A_6$ x 2, $C_3\times A_4:S_6$ x 2, $S_3^2\times S_6$ |
| Order 24192: $S_3\times S_4\times \GL(3,2)$ |
| Order 23040: $A_6:D_4^2$ x 4, $C_2^2\times S_6\times D_4$ x 4, $A_6:D_4^2$ x 4, $A_6:D_4^2$ x 4, $S_6\times C_2^2\wr C_2$ x 4, $C_4:D_4\times S_6$ x 4, $D_4\times S_4\times S_5$ x 4, $A_6:D_4^2$ x 2, $C_4\times D_4\times S_6$ x 2, $(A_4\times C_2^4):S_5$ x 2, $S_4\times C_2^4:A_5$ x 2, $A_4\times C_2^4:S_5$ x 2, $C_2\wr S_5\times S_3$, $D_4^2\times A_6$, $C_4:D_4\times S_6$, $A_6:D_4^2$, $C_2^7:\GL(2,4)$ |
| Order 22680: $C_3^2\times A_7$ |
| Order 21600: $S_5\times \GL(2,4)$, $S_3\times A_5^2$, $\GL(2,4):S_5$, $\GL(2,4):S_5$, $A_5^2:S_3$, $\GL(2,4):S_5$, $A_5^2:C_6$ |
| Order 21504: $(D_4\times C_2^4).\GL(3,2)$ |
| Order 20736: $S_3^2:S_4^2$ x 4, $S_3^2.S_4^2$ x 2, $S_4\times C_6^2:D_{12}$ x 2, $S_3^2:S_4^2$ x 2, $D_6^2:C_6\times S_4$ x 2, $C_6^2:D_{12}:S_4$, $(A_4\times D_6^2):D_6$, $C_3^2:C_4\times S_4^2$ |
| Order 20160: $C_2^2\times S_7$ x 15, $C_2^2:S_7$ x 8, $C_4:S_7$ x 4, $C_4\times S_7$ x 4, $D_4\times A_7$ x 4, $C_2^3\times A_7$ x 2, $C_2\times C_4\times A_7$, $C_2\times A_7:C_4$, $A_8$ |
| Order 19200: $F_5\wr C_2\times S_4$, $D_4\times F_5\times S_5$ |
| Order 18432: $C_2\times A_4^2.D_4^2$, $C_2^5.S_4^2$ |
| Order 18144: $A_4\times {}^2G(2,3)$ |
| Order 17280: $S_4\times S_6$ x 26, $S_3\times S_4\times S_5$ x 11, $C_2\times A_4:S_6$ x 10, $C_2\times S_4\times A_6$ x 10, $C_2\times A_4\times S_6$ x 10, $A_4^2:S_5$ x 4, $C_3:(D_4\times S_6)$ x 4, $C_3:D_4\times S_6$ x 4, $S_3\times C_2^2:S_6$ x 4, $A_4\times S_4\times A_5$ x 4, $C_2\times D_6\times S_6$ x 4, $C_2^2\times A_4\times A_6$ x 4, $C_4\times A_4\times A_6$ x 2, $A_4\times A_6:C_4$ x 2, $A_4:C_4\times A_6$ x 2, $A_4^2:S_5$ x 2, $S_5\times A_4^2$ x 2, $D_{12}:S_6$ x 2, $S_3\times C_4:S_6$ x 2, $A_5\times \PSOPlus(4,3)$ x 2, $C_3\times D_4\times S_6$ x 2, $S_3\times D_4\times A_6$ x 2, $D_4\times C_3:S_6$ x 2, $(A_4\times A_6):C_4$ x 2, $D_{12}\times S_6$ x 2, $C_4\times S_3\times S_6$ x 2, $C_6\times S_4\times S_5$, $\PGL(2,9):S_4$, $S_6:S_4$, $A_4\times S_6:C_2$, $A_6.(C_2\times S_4)$, $A_6.C_2\times S_4$, $S_4\times \PGL(2,9)$, $C_2^2:A_4\times A_6$, $D_6\times A_4:S_5$, $A_4\times D_6\times S_5$, $C_6:(S_4\times S_5)$, $C_6:S_4\times S_5$, $C_6:S_5\times S_4$, $D_6\times S_4\times A_5$ |
| Order 16128: $C_2\times S_4\times \PGL(2,7)$, $S_3\times C_2^4:\GL(3,2)$, $A_4\times C_2^3:\GL(3,2)$ |
| Order 15552: $C_3^3:S_4^2$, $C_3^3:S_4^2$, $C_3^3:S_4^2$, $C_3^3:S_4^2$, $S_3\wr C_3\times S_4$, $(A_4\times S_3^3):S_3$, $A_4\times S_3\wr S_3$ |
| Order 24: $S_4$ |
| Order 12: $A_4$ |
| Order 4: $C_2^2$ |
| Order 1: $C_1$ |