Properties

Label 87091200.a
Order \( 2^{11} \cdot 3^{5} \cdot 5^{2} \cdot 7 \)
Exponent \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{11} \cdot 3^{5} \cdot 5^{2} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $14$
Trans deg. $40$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 14 | (1,2,3,4,5,7,9,6)(8,10)(13,14), (5,6,8)(7,9)(11,12,13) >;
 
Copy content gap:G := Group( (1,2,3,4,5,7,9,6)(8,10)(13,14), (5,6,8)(7,9)(11,12,13) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,4,5,7,9,6)(8,10)(13,14)', '(5,6,8)(7,9)(11,12,13)'])
 

Group information

Description:$S_4\times S_{10}$
Order: \(87091200\)\(\medspace = 2^{11} \cdot 3^{5} \cdot 5^{2} \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$S_4\times S_{10}$, of order \(87091200\)\(\medspace = 2^{11} \cdot 3^{5} \cdot 5^{2} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_3$, $A_{10}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, nonsolvable, and rational.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 12 14 15 18 20 21 24 28 30 36 42 60 84
Elements 1 94959 279368 3403536 78624 10878840 86400 7257600 3628800 5848416 15044160 3369600 1717632 3628800 6459264 2246400 3628800 2073600 7378560 2419200 3628800 2903040 1036800 87091200
Conjugacy classes   1 17 7 30 2 47 1 8 2 13 38 5 4 2 9 3 2 2 9 1 3 3 1 210
Divisions 1 17 7 30 2 47 1 8 2 13 38 5 4 2 9 3 2 2 9 1 3 3 1 210
Autjugacy classes 1 17 7 30 2 47 1 8 2 13 38 5 4 2 9 3 2 2 9 1 3 3 1 210

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 9 18 27 35 36 42 70 72 75 84 90 105 108 126 150 160 168 180 210 225 252 270 288 300 315 320 350 378 420 448 450 480 504 525 567 576 600 630 675 700 756 768 864 896 900 945 1050 1134 1344 1350 1536 1575 1701 2304
Irr. complex chars.   4 2 4 4 2 4 4 4 4 2 2 4 6 4 4 4 8 2 4 2 2 4 8 10 4 4 4 4 2 4 4 2 2 6 4 2 4 4 2 2 6 4 2 4 2 4 1 6 4 6 2 2 4 1 4 4 2 210
Irr. rational chars. 4 2 4 4 2 4 4 4 4 2 2 4 6 4 4 4 8 2 4 2 2 4 8 10 4 4 4 4 2 4 4 2 2 6 4 2 4 4 2 2 6 4 2 4 2 4 1 6 4 6 2 2 4 1 4 4 2 210

Minimal presentations

Permutation degree:$14$
Transitive degree:$40$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 27 27 27
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $14$ $\langle(1,2,3,4,5,7,9,6)(8,10)(13,14), (5,6,8)(7,9)(11,12,13)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 14 | (1,2,3,4,5,7,9,6)(8,10)(13,14), (5,6,8)(7,9)(11,12,13) >;
 
Copy content gap:G := Group( (1,2,3,4,5,7,9,6)(8,10)(13,14), (5,6,8)(7,9)(11,12,13) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,4,5,7,9,6)(8,10)(13,14)', '(5,6,8)(7,9)(11,12,13)'])
 
Transitive group: 40T192725 more information
Direct product: $S_4$ $\, \times\, $ $S_{10}$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $S_{10}$ . $S_4$ $S_4$ . $S_{10}$ $(S_4\times A_{10})$ . $C_2$ $(A_4\times S_{10})$ . $C_2$ all 11
Aut. group: $\Aut(C_2^2\times S_{10})$ $\Aut(A_4\times A_{10})$ $\Aut(S_4\times A_{10})$ $\Aut(A_4\times S_{10})$ all 5

Elements of the group are displayed as permutations of degree 14.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 13 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $A_4\times A_{10}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

Every character has rational values, so the complex character table is the same as the rational character table below.

Rational character table

See the $210 \times 210$ rational character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.