# Group 832.270 downloaded from the LMFDB on 04 October 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(8419261946033141057691889292585096914242797579,832); a := GPC.1; b := GPC.2; c := GPC.6; GPerm := Group( (1,2,4,9,6,10,17,25,7,11,18,26,5,19,16,29)(3,12,13,27,14,8,21,22,15,23,28,31,20,24,30,32)(34,35,36,38)(37,40,41,45)(39,43,44,42), (1,3)(2,8)(4,13)(5,20)(6,14)(7,15)(9,22)(10,23)(11,24)(12,19)(16,30)(17,21)(18,28)(25,31)(26,32)(27,29), (1,4,6,17,7,18,5,16)(2,9,10,25,11,26,19,29)(3,13,14,21,15,28,20,30)(8,22,23,31,24,32,12,27)(34,36)(35,38)(37,41)(39,44)(40,45)(42,43), (1,5,7,6)(2,10,11,19)(3,14,15,20)(4,16,18,17)(8,12,24,23)(9,25,26,29)(13,21,28,30)(22,27,32,31), (1,6,7,5)(2,10,11,19)(3,14,15,20)(4,17,18,16)(8,23,24,12)(9,25,26,29)(13,21,28,30)(22,31,32,27), (1,7)(2,11)(3,15)(4,18)(5,6)(8,24)(9,26)(10,19)(12,23)(13,28)(14,20)(16,17)(21,30)(22,32)(25,29)(27,31), (33,34,37,40,44,38,42,43,35,39,45,41,36) ); # Booleans booleans_832_270 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_832_270:=rec(); chartbl_832_270.IsFinite:= true; chartbl_832_270.UnderlyingCharacteristic:= 0; chartbl_832_270.UnderlyingGroup:= GPC; chartbl_832_270.Size:= 832; chartbl_832_270.InfoText:= "Character table for group 832.270 downloaded from the LMFDB."; chartbl_832_270.Identifier:= " C52.(C2*C8) "; chartbl_832_270.NrConjugacyClasses:= 58; chartbl_832_270.ConjugacyClasses:= [ of ..., f5, f6*f7^6, f1, f4, f4*f5, f4*f6*f7^6, f1*f6*f7^6, f3*f5*f6*f7^3, f3*f4*f6*f7^3, f3*f4*f5*f6*f7^3, f3*f6*f7^3, f3, f3*f4*f5, f1*f3*f5, f1*f3*f4*f5, f7, f7^2, f7^4, f2, f2*f3*f5*f6, f2*f3, f2*f6, f2*f4, f2*f3*f5, f2*f3*f6, f2*f5, f1*f2*f3*f4*f5*f7^6, f1*f2*f4*f6*f7^10, f1*f2*f5*f6*f7^10, f1*f2*f3*f5*f7^6, f5*f7^2, f5*f7^6, f5*f7, f6, f6*f7, f6*f7^3, f1*f7, f1*f7^3, f1*f7^5, f1*f7^6, f1*f7^4, f1*f7^2, f4*f7, f4*f5*f7, f4*f5*f7^2, f4*f7^2, f4*f5*f7^4, f4*f7^4, f4*f6, f4*f6*f7, f4*f6*f7^3, f1*f6, f1*f6*f7, f1*f6*f7^2, f1*f4*f7^2, f1*f4*f7^3, f1*f6*f7^5]; chartbl_832_270.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]; chartbl_832_270.ComputedPowerMaps:= [ , [1, 1, 1, 1, 2, 2, 2, 2, 5, 6, 6, 5, 5, 6, 6, 5, 18, 19, 17, 13, 14, 14, 13, 13, 14, 14, 13, 9, 10, 11, 12, 19, 17, 18, 17, 18, 19, 18, 19, 18, 17, 17, 19, 32, 32, 33, 33, 34, 34, 34, 32, 33, 34, 32, 34, 33, 33, 32], [1, 2, 3, 4, 6, 5, 7, 8, 11, 12, 9, 10, 14, 13, 16, 15, 18, 19, 17, 22, 23, 27, 26, 21, 20, 24, 25, 30, 31, 28, 29, 33, 34, 32, 36, 37, 35, 39, 42, 43, 40, 38, 41, 46, 47, 49, 48, 44, 45, 51, 52, 50, 54, 57, 58, 55, 53, 56]]; chartbl_832_270.SizesCentralizers:= [832, 832, 416, 208, 832, 832, 416, 208, 64, 64, 64, 64, 32, 32, 16, 16, 208, 208, 208, 32, 32, 32, 32, 32, 32, 32, 32, 16, 16, 16, 16, 208, 208, 208, 104, 104, 104, 104, 104, 104, 104, 104, 104, 208, 208, 208, 208, 208, 208, 104, 104, 104, 104, 104, 104, 104, 104, 104]; chartbl_832_270.ClassNames:= ["1A", "2A", "2B", "2C", "4A1", "4A-1", "4B", "4C", "8A1", "8A-1", "8A3", "8A-3", "8B1", "8B-1", "8C1", "8C-1", "13A1", "13A2", "13A4", "16A1", "16A-1", "16A3", "16A-3", "16A5", "16A-5", "16A7", "16A-7", "16B1", "16B-1", "16B3", "16B-3", "26A1", "26A3", "26A7", "26B1", "26B3", "26B7", "26C1", "26C3", "26C5", "26C7", "26C9", "26C11", "52A1", "52A-1", "52A3", "52A-3", "52A7", "52A-7", "52B1", "52B3", "52B7", "52C1", "52C3", "52C5", "52C7", "52C9", "52C11"]; chartbl_832_270.OrderClassRepresentatives:= [1, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 13, 13, 13, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52]; chartbl_832_270.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1], [1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1*E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), E(4), E(4), -1*E(4), 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1], [1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), -1*E(4), -1*E(4), E(4), 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1], [1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1*E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), E(4), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, E(4), E(4), -1*E(4), E(4), -1*E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), -1*E(4), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, -1, -1, 1, 1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, 1, 1, 1, -1*E(8), -1*E(8), -1*E(8)^3, E(8), -1*E(8)^3, E(8), E(8)^3, E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8)^3, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, -1, -1, 1, 1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, 1, 1, 1, E(8)^3, E(8)^3, E(8), -1*E(8)^3, E(8), -1*E(8)^3, -1*E(8), -1*E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8), 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, -1, -1, 1, 1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, 1, 1, 1, E(8), E(8), E(8)^3, -1*E(8), E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8)^3, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, -1, -1, -1, 1, 1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, 1, 1, 1, -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, -1*E(8), E(8)^3, E(8), E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8), 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, -1, 1, -1, -1, 1, -1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, 1, 1, 1, -1*E(8), -1*E(8), -1*E(8)^3, E(8), -1*E(8)^3, E(8), E(8)^3, E(8)^3, E(8)^3, -1*E(8), E(8), -1*E(8)^3, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1], [1, 1, -1, 1, -1, -1, 1, -1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, 1, 1, 1, E(8)^3, E(8)^3, E(8), -1*E(8)^3, E(8), -1*E(8)^3, -1*E(8), -1*E(8), -1*E(8), E(8)^3, -1*E(8)^3, E(8), 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1], [1, 1, -1, 1, -1, -1, 1, -1, -1*E(8)^2, E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, 1, 1, 1, E(8), E(8), E(8)^3, -1*E(8), E(8)^3, -1*E(8), -1*E(8)^3, -1*E(8)^3, -1*E(8)^3, E(8), -1*E(8), E(8)^3, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1], [1, 1, -1, 1, -1, -1, 1, -1, E(8)^2, -1*E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, -1*E(8)^2, E(8)^2, 1, 1, 1, -1*E(8)^3, -1*E(8)^3, -1*E(8), E(8)^3, -1*E(8), E(8)^3, E(8), E(8), E(8), -1*E(8)^3, E(8)^3, -1*E(8), 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1], [2, 2, -2, 0, 2, 2, -2, 0, -2, -2, -2, -2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, -2, 0, 0, 0, 0, -2, 0, -2, 2, 2, 2, 2, 2, 2, 0, -2, -2, 0, 0, 0, 0, 0, -2], [2, 2, -2, 0, 2, 2, -2, 0, 2, 2, 2, 2, -2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, -2, 0, 0, 0, 0, -2, 0, -2, 2, 2, 2, 2, 2, 2, 0, -2, -2, 0, 0, 0, 0, 0, -2], [2, 2, 2, 0, -2, -2, -2, 0, -2*E(4), 2*E(4), 2*E(4), -2*E(4), -2*E(4), 2*E(4), 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 2, 0, 0, 0, 0, 2, 0, 2, -2, -2, -2, -2, -2, -2, 0, -2, -2, 0, 0, 0, 0, 0, -2], [2, 2, 2, 0, -2, -2, -2, 0, 2*E(4), -2*E(4), -2*E(4), 2*E(4), 2*E(4), -2*E(4), 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 2, 0, 0, 0, 0, 2, 0, 2, -2, -2, -2, -2, -2, -2, 0, -2, -2, 0, 0, 0, 0, 0, -2], [2, -2, 0, 0, -2*E(16)^4, 2*E(16)^4, 0, 0, 2*E(16)^6, -2*E(16)^2, 2*E(16)^2, -2*E(16)^6, 0, 0, 0, 0, 2, 2, 2, E(16)^3+E(16)^7, -1*E(16)^3-E(16)^7, -1*E(16)+E(16)^5, E(16)^3-E(16)^7, E(16)-E(16)^5, -1*E(16)^3+E(16)^7, -1*E(16)-E(16)^5, E(16)+E(16)^5, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 0, 0, 2*E(16)^4, -2*E(16)^4, 0, 0, -2*E(16)^2, 2*E(16)^6, -2*E(16)^6, 2*E(16)^2, 0, 0, 0, 0, 2, 2, 2, -1*E(16)-E(16)^5, E(16)+E(16)^5, -1*E(16)^3+E(16)^7, E(16)-E(16)^5, E(16)^3-E(16)^7, -1*E(16)+E(16)^5, E(16)^3+E(16)^7, -1*E(16)^3-E(16)^7, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 0, 0, -2*E(16)^4, 2*E(16)^4, 0, 0, 2*E(16)^6, -2*E(16)^2, 2*E(16)^2, -2*E(16)^6, 0, 0, 0, 0, 2, 2, 2, -1*E(16)^3-E(16)^7, E(16)^3+E(16)^7, E(16)-E(16)^5, -1*E(16)^3+E(16)^7, -1*E(16)+E(16)^5, E(16)^3-E(16)^7, E(16)+E(16)^5, -1*E(16)-E(16)^5, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 0, 0, 2*E(16)^4, -2*E(16)^4, 0, 0, -2*E(16)^2, 2*E(16)^6, -2*E(16)^6, 2*E(16)^2, 0, 0, 0, 0, 2, 2, 2, E(16)+E(16)^5, -1*E(16)-E(16)^5, E(16)^3-E(16)^7, -1*E(16)+E(16)^5, -1*E(16)^3+E(16)^7, E(16)-E(16)^5, -1*E(16)^3-E(16)^7, E(16)^3+E(16)^7, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 0, 0, -2*E(16)^4, 2*E(16)^4, 0, 0, -2*E(16)^6, 2*E(16)^2, -2*E(16)^2, 2*E(16)^6, 0, 0, 0, 0, 2, 2, 2, -1*E(16)^3+E(16)^7, E(16)^3-E(16)^7, E(16)+E(16)^5, E(16)^3+E(16)^7, -1*E(16)-E(16)^5, -1*E(16)^3-E(16)^7, -1*E(16)+E(16)^5, E(16)-E(16)^5, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 0, 0, 2*E(16)^4, -2*E(16)^4, 0, 0, 2*E(16)^2, -2*E(16)^6, 2*E(16)^6, -2*E(16)^2, 0, 0, 0, 0, 2, 2, 2, -1*E(16)+E(16)^5, E(16)-E(16)^5, -1*E(16)^3-E(16)^7, -1*E(16)-E(16)^5, E(16)^3+E(16)^7, E(16)+E(16)^5, -1*E(16)^3+E(16)^7, E(16)^3-E(16)^7, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 0, 0, -2*E(16)^4, 2*E(16)^4, 0, 0, -2*E(16)^6, 2*E(16)^2, -2*E(16)^2, 2*E(16)^6, 0, 0, 0, 0, 2, 2, 2, E(16)^3-E(16)^7, -1*E(16)^3+E(16)^7, -1*E(16)-E(16)^5, -1*E(16)^3-E(16)^7, E(16)+E(16)^5, E(16)^3+E(16)^7, E(16)-E(16)^5, -1*E(16)+E(16)^5, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, -2, 0, 0, 2*E(16)^4, -2*E(16)^4, 0, 0, 2*E(16)^2, -2*E(16)^6, 2*E(16)^6, -2*E(16)^2, 0, 0, 0, 0, 2, 2, 2, E(16)-E(16)^5, -1*E(16)+E(16)^5, E(16)^3+E(16)^7, E(16)+E(16)^5, -1*E(16)^3-E(16)^7, -1*E(16)-E(16)^5, E(16)^3-E(16)^7, -1*E(16)^3+E(16)^7, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(16)^4, -2*E(16)^4, 2*E(16)^4, 2*E(16)^4, 2*E(16)^4, -2*E(16)^4, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2], [4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4], [4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1], [4, 4, 4, -4, 4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2], [4, 4, 4, -4, 4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4], [4, 4, 4, -4, 4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1], [4, 4, -4, -4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2], [4, 4, -4, -4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4], [4, 4, -4, -4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1], [4, 4, -4, 4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2], [4, 4, -4, 4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4], [4, 4, -4, 4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1], [4, 4, -4, 0, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2], [4, 4, -4, 0, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)-E(13)^5-E(13)^-5+E(13)^-1, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2], [4, 4, -4, 0, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4], [4, 4, -4, 0, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4], [4, 4, -4, 0, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1], [4, 4, -4, 0, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, E(13)-E(13)^5-E(13)^-5+E(13)^-1, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1], [4, 4, 4, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)-E(13)^5-E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)-E(13)^5-E(13)^-5+E(13)^-1, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2], [4, 4, 4, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)-E(13)^5-E(13)^-5+E(13)^-1, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2], [4, 4, 4, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4], [4, 4, 4, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4], [4, 4, 4, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, E(13)-E(13)^5-E(13)^-5+E(13)^-1, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1], [4, 4, 4, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E(13)+E(13)^5+E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, E(13)^4+E(13)^6+E(13)^-6+E(13)^-4, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, E(13)-E(13)^5-E(13)^-5+E(13)^-1, E(13)^2+E(13)^3+E(13)^-3+E(13)^-2, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, E(13)+E(13)^5+E(13)^-5+E(13)^-1, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)^4-E(13)^6-E(13)^-6+E(13)^-4, -1*E(13)^2-E(13)^3-E(13)^-3-E(13)^-2, -1*E(13)^4-E(13)^6-E(13)^-6-E(13)^-4, E(13)-E(13)^5-E(13)^-5+E(13)^-1, -1*E(13)^2+E(13)^3+E(13)^-3-E(13)^-2, -1*E(13)+E(13)^5+E(13)^-5-E(13)^-1, -1*E(13)^4+E(13)^6+E(13)^-6-E(13)^-4, E(13)^2-E(13)^3-E(13)^-3+E(13)^-2, -1*E(13)-E(13)^5-E(13)^-5-E(13)^-1], [8, -8, 0, 0, -8*E(52)^13, 8*E(52)^13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2-2*E(52)^4+2*E(52)^6-2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18-2*E(52)^20+2*E(52)^22, 2*E(52)^4-2*E(52)^6+2*E(52)^20-2*E(52)^22, 2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18, 2+2*E(52)^4-2*E(52)^6+2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18+2*E(52)^20-2*E(52)^22, -2*E(52)^4+2*E(52)^6-2*E(52)^20+2*E(52)^22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(52)^3+2*E(52)^7-2*E(52)^9+2*E(52)^11-2*E(52)^13+2*E(52)^15-2*E(52)^17+2*E(52)^19+2*E(52)^23, -2*E(52)^3-2*E(52)^11-2*E(52)^15-2*E(52)^23, -2*E(52)^3-2*E(52)^7+2*E(52)^9-2*E(52)^11+2*E(52)^13-2*E(52)^15+2*E(52)^17-2*E(52)^19-2*E(52)^23, 2*E(52)^7-2*E(52)^9-2*E(52)^17+2*E(52)^19, 2*E(52)^3+2*E(52)^11+2*E(52)^15+2*E(52)^23, -2*E(52)^7+2*E(52)^9+2*E(52)^17-2*E(52)^19, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, 8*E(52)^13, -8*E(52)^13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2-2*E(52)^4+2*E(52)^6-2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18-2*E(52)^20+2*E(52)^22, 2*E(52)^4-2*E(52)^6+2*E(52)^20-2*E(52)^22, 2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18, 2+2*E(52)^4-2*E(52)^6+2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18+2*E(52)^20-2*E(52)^22, -2*E(52)^4+2*E(52)^6-2*E(52)^20+2*E(52)^22, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(52)^3-2*E(52)^7+2*E(52)^9-2*E(52)^11+2*E(52)^13-2*E(52)^15+2*E(52)^17-2*E(52)^19-2*E(52)^23, 2*E(52)^3+2*E(52)^11+2*E(52)^15+2*E(52)^23, 2*E(52)^3+2*E(52)^7-2*E(52)^9+2*E(52)^11-2*E(52)^13+2*E(52)^15-2*E(52)^17+2*E(52)^19+2*E(52)^23, -2*E(52)^7+2*E(52)^9+2*E(52)^17-2*E(52)^19, -2*E(52)^3-2*E(52)^11-2*E(52)^15-2*E(52)^23, 2*E(52)^7-2*E(52)^9-2*E(52)^17+2*E(52)^19, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, -8*E(52)^13, 8*E(52)^13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(52)^4-2*E(52)^6+2*E(52)^20-2*E(52)^22, 2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18, -2-2*E(52)^4+2*E(52)^6-2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18-2*E(52)^20+2*E(52)^22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(52)^4-2*E(52)^6+2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18+2*E(52)^20-2*E(52)^22, -2*E(52)^4+2*E(52)^6-2*E(52)^20+2*E(52)^22, -2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(52)^3-2*E(52)^11-2*E(52)^15-2*E(52)^23, -2*E(52)^7+2*E(52)^9+2*E(52)^17-2*E(52)^19, 2*E(52)^3+2*E(52)^11+2*E(52)^15+2*E(52)^23, -2*E(52)^3-2*E(52)^7+2*E(52)^9-2*E(52)^11+2*E(52)^13-2*E(52)^15+2*E(52)^17-2*E(52)^19-2*E(52)^23, 2*E(52)^7-2*E(52)^9-2*E(52)^17+2*E(52)^19, 2*E(52)^3+2*E(52)^7-2*E(52)^9+2*E(52)^11-2*E(52)^13+2*E(52)^15-2*E(52)^17+2*E(52)^19+2*E(52)^23, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, 8*E(52)^13, -8*E(52)^13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(52)^4-2*E(52)^6+2*E(52)^20-2*E(52)^22, 2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18, -2-2*E(52)^4+2*E(52)^6-2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18-2*E(52)^20+2*E(52)^22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2+2*E(52)^4-2*E(52)^6+2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18+2*E(52)^20-2*E(52)^22, -2*E(52)^4+2*E(52)^6-2*E(52)^20+2*E(52)^22, -2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(52)^3+2*E(52)^11+2*E(52)^15+2*E(52)^23, 2*E(52)^7-2*E(52)^9-2*E(52)^17+2*E(52)^19, -2*E(52)^3-2*E(52)^11-2*E(52)^15-2*E(52)^23, 2*E(52)^3+2*E(52)^7-2*E(52)^9+2*E(52)^11-2*E(52)^13+2*E(52)^15-2*E(52)^17+2*E(52)^19+2*E(52)^23, -2*E(52)^7+2*E(52)^9+2*E(52)^17-2*E(52)^19, -2*E(52)^3-2*E(52)^7+2*E(52)^9-2*E(52)^11+2*E(52)^13-2*E(52)^15+2*E(52)^17-2*E(52)^19-2*E(52)^23, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, -8*E(52)^13, 8*E(52)^13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18, -2-2*E(52)^4+2*E(52)^6-2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18-2*E(52)^20+2*E(52)^22, 2*E(52)^4-2*E(52)^6+2*E(52)^20-2*E(52)^22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(52)^4+2*E(52)^6-2*E(52)^20+2*E(52)^22, -2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18, 2+2*E(52)^4-2*E(52)^6+2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18+2*E(52)^20-2*E(52)^22, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(52)^7+2*E(52)^9+2*E(52)^17-2*E(52)^19, 2*E(52)^3+2*E(52)^7-2*E(52)^9+2*E(52)^11-2*E(52)^13+2*E(52)^15-2*E(52)^17+2*E(52)^19+2*E(52)^23, 2*E(52)^7-2*E(52)^9-2*E(52)^17+2*E(52)^19, 2*E(52)^3+2*E(52)^11+2*E(52)^15+2*E(52)^23, -2*E(52)^3-2*E(52)^7+2*E(52)^9-2*E(52)^11+2*E(52)^13-2*E(52)^15+2*E(52)^17-2*E(52)^19-2*E(52)^23, -2*E(52)^3-2*E(52)^11-2*E(52)^15-2*E(52)^23, 0, 0, 0, 0, 0, 0, 0, 0, 0], [8, -8, 0, 0, 8*E(52)^13, -8*E(52)^13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18, -2-2*E(52)^4+2*E(52)^6-2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18-2*E(52)^20+2*E(52)^22, 2*E(52)^4-2*E(52)^6+2*E(52)^20-2*E(52)^22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*E(52)^4+2*E(52)^6-2*E(52)^20+2*E(52)^22, -2*E(52)^8-2*E(52)^12+2*E(52)^14+2*E(52)^18, 2+2*E(52)^4-2*E(52)^6+2*E(52)^8+2*E(52)^12-2*E(52)^14-2*E(52)^18+2*E(52)^20-2*E(52)^22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*E(52)^7-2*E(52)^9-2*E(52)^17+2*E(52)^19, -2*E(52)^3-2*E(52)^7+2*E(52)^9-2*E(52)^11+2*E(52)^13-2*E(52)^15+2*E(52)^17-2*E(52)^19-2*E(52)^23, -2*E(52)^7+2*E(52)^9+2*E(52)^17-2*E(52)^19, -2*E(52)^3-2*E(52)^11-2*E(52)^15-2*E(52)^23, 2*E(52)^3+2*E(52)^7-2*E(52)^9+2*E(52)^11-2*E(52)^13+2*E(52)^15-2*E(52)^17+2*E(52)^19+2*E(52)^23, 2*E(52)^3+2*E(52)^11+2*E(52)^15+2*E(52)^23, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_832_270);