/* Group 82944.gr downloaded from the LMFDB on 21 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([14, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 617, 71, 9914, 4707, 2369, 1039, 717, 11764, 2118, 662, 1026, 200, 10099, 243, 9428, 112959, 57197, 28315, 7330184, 1124950, 1796292, 308498, 384112, 12174, 59816, 18502, 372, 4193289, 2016023, 967717, 645171, 329345, 6799, 11154, 149768, 2866, 5443225, 1548327, 887093, 562531, 67617, 94343, 2503, 501, 3878810, 3197416, 663990, 532964, 262162, 544, 225819, 2822441, 18871, 470469, 225875]); a,b,c,d,e,f,g,h := Explode([GPC.1, GPC.2, GPC.4, GPC.5, GPC.8, GPC.9, GPC.11, GPC.12]); AssignNames(~GPC, ["a", "b", "b2", "c", "d", "d2", "d4", "e", "f", "f2", "g", "h", "h2", "h4"]); GPerm := PermutationGroup< 17 | (10,11)(12,15)(13,17)(14,16), (13,17)(14,16), (1,2,4)(3,6,8)(5,7,9), (2,4)(5,9)(6,8)(10,12)(11,15)(13,14)(16,17), (2,5,3)(4,6,7), (10,13)(11,16)(12,14)(15,17), (10,14)(11,16)(12,13)(15,17), (10,12)(11,15)(13,14)(16,17), (10,13)(12,14), (1,3,7)(2,6,9)(4,8,5) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_82944_gr := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, G!(10,12)(11,15)(13,14)(16,17)>,< 2, 6, G!(11,15)(13,14)>,< 2, 6, G!(10,13)(11,16)(12,14)(15,17)>,< 2, 6, G!(10,13)(11,17)(12,14)(15,16)>,< 2, 9, G!(2,4)(3,7)(5,6)(8,9)>,< 2, 9, G!(2,4)(3,7)(5,6)(8,9)(10,12)(11,15)(13,14)(16,17)>,< 2, 12, G!(13,16)(14,17)>,< 2, 12, G!(10,11)(12,15)(13,14)(16,17)>,< 2, 36, G!(1,6)(2,7)(3,9)>,< 2, 36, G!(1,6)(2,7)(3,9)(10,12)(11,15)(13,14)(16,17)>,< 2, 54, G!(1,9)(2,7)(3,6)(4,5)(10,17)(11,14)(12,16)(13,15)>,< 2, 54, G!(1,8)(2,6)(3,4)(5,7)(10,12)(16,17)>,< 2, 54, G!(1,6)(2,3)(4,8)(7,9)(10,13)(11,17)(12,14)(15,16)>,< 2, 108, G!(2,4)(3,7)(5,6)(8,9)(10,12)(11,13)(14,15)(16,17)>,< 2, 108, G!(1,7)(2,5)(4,9)(6,8)(13,17)(14,16)>,< 2, 216, G!(2,4)(5,9)(6,8)(11,15)(16,17)>,< 2, 216, G!(2,4)(5,9)(6,8)(10,17)(11,14)(12,16)(13,15)>,< 2, 216, G!(1,9)(3,5)(4,6)(10,17)(11,13)(12,16)(14,15)>,< 2, 432, G!(2,4)(5,9)(6,8)(10,17)(11,15)(12,16)(13,14)>,< 2, 432, G!(1,9)(2,5)(4,7)(10,15)(11,12)>,< 3, 8, G!(1,3,7)(2,6,9)(4,8,5)>,< 3, 24, G!(2,8,7)(3,4,9)>,< 3, 32, G!(10,13,15)(11,12,14)>,< 3, 48, G!(1,3,6)(2,4,9)(5,7,8)>,< 3, 256, G!(1,4,2)(3,8,6)(5,9,7)(10,13,15)(11,12,14)>,< 3, 768, G!(2,3,5)(4,7,6)(11,13,16)(14,17,15)>,< 3, 1536, G!(1,7,2)(3,8,4)(5,9,6)(10,13,11)(12,14,15)>,< 4, 12, G!(10,15,12,11)(13,17,14,16)>,< 4, 24, G!(11,14,15,13)(16,17)>,< 4, 24, G!(10,16,13,11)(12,17,14,15)>,< 4, 24, G!(10,17,13,11)(12,16,14,15)>,< 4, 54, G!(1,5,9,4)(2,6,7,3)>,< 4, 54, G!(1,4,3,6)(2,9,8,5)(10,12)(11,15)(13,14)(16,17)>,< 4, 108, G!(1,3)(2,8)(4,6)(5,9)(10,14,12,13)(11,17,15,16)>,< 4, 216, G!(1,6)(2,3)(4,8)(7,9)(10,17,14,11)(12,16,13,15)>,< 4, 216, G!(2,4)(3,7)(5,6)(8,9)(10,17,15,14)(11,13,12,16)>,< 4, 216, G!(1,9)(2,7)(3,6)(4,5)(10,13,12,14)(16,17)>,< 4, 324, G!(1,7,8,5)(2,4,6,3)(10,17)(11,13)(12,16)(14,15)>,< 4, 324, G!(1,5,7,2)(4,6,9,8)(10,12)(16,17)>,< 4, 324, G!(2,6,4,5)(3,9,7,8)(10,11)(12,15)(13,16)(14,17)>,< 4, 432, G!(3,7)(5,8)(6,9)(10,16,12,17)(11,13,15,14)>,< 4, 648, G!(2,7,4,3)(5,8,6,9)(10,11,12,15)(13,16,14,17)>,< 4, 648, G!(1,8,2,5)(3,6,9,7)(13,16)(14,17)>,< 4, 648, G!(1,6,9,3)(2,4,7,5)(10,17)(11,15)(12,16)(13,14)>,< 4, 864, G!(1,4)(3,8)(5,7)(10,13,17,11)(12,14,16,15)>,< 4, 864, G!(1,8)(2,5)(6,7)(10,15,13,17)(11,14,16,12)>,< 4, 864, G!(1,2)(5,7)(6,8)(10,12)(11,14,15,13)>,< 4, 1296, G!(1,4,8,3)(2,5,6,7)(10,17,12,16)(11,15)>,< 4, 1296, G!(1,9,2,3)(5,7,8,6)(10,15,17,13)(11,16,14,12)>,< 4, 1296, G!(1,6,7,8)(2,9,5,4)(10,17,14,15)(11,12,16,13)>,< 6, 8, G!(1,4,2)(3,8,6)(5,9,7)(10,12)(11,15)(13,14)(16,17)>,< 6, 24, G!(3,8,6)(5,7,9)(10,12)(11,15)(13,14)(16,17)>,< 6, 32, G!(10,11,13,12,15,14)(16,17)>,< 6, 48, G!(1,4,2)(3,8,6)(5,9,7)(11,15)(13,14)>,< 6, 48, G!(1,4,2)(3,8,6)(5,9,7)(10,13)(11,16)(12,14)(15,17)>,< 6, 48, G!(1,4,2)(3,8,6)(5,9,7)(10,13)(11,17)(12,14)(15,16)>,< 6, 48, G!(1,6,3)(2,9,4)(5,8,7)(10,12)(11,15)(13,14)(16,17)>,< 6, 72, G!(2,3,8,4,7,9)(5,6)>,< 6, 72, G!(2,3,8,4,7,9)(5,6)(10,12)(11,15)(13,14)(16,17)>,< 6, 72, G!(1,2,3,6,7,9)(4,5,8)>,< 6, 72, G!(1,2,3,6,7,9)(4,5,8)(10,12)(11,15)(13,14)(16,17)>,< 6, 96, G!(1,2,4)(3,6,8)(5,7,9)(13,16)(14,17)>,< 6, 96, G!(1,2,4)(3,6,8)(5,7,9)(10,11)(12,15)(13,14)(16,17)>,< 6, 144, G!(1,8,9)(2,5,3)(10,12)(16,17)>,< 6, 144, G!(1,8,9)(4,7,6)(10,14)(11,16)(12,13)(15,17)>,< 6, 144, G!(1,8,9)(4,7,6)(10,14)(11,17)(12,13)(15,16)>,< 6, 256, G!(1,2,4)(3,6,8)(5,7,9)(10,11,13,12,15,14)(16,17)>,< 6, 288, G!(3,6,8)(5,9,7)(13,16)(14,17)>,< 6, 288, G!(3,6,8)(5,9,7)(10,11)(12,15)(13,14)(16,17)>,< 6, 288, G!(2,4)(3,7)(5,6)(8,9)(10,11,13,12,15,14)(16,17)>,< 6, 288, G!(1,5,7)(2,4,8)(3,6,9)(11,15)(13,14)>,< 6, 288, G!(1,2)(3,9)(5,8)(6,7)(10,14,17)(12,13,16)>,< 6, 288, G!(1,4,5)(2,8,6)(3,9,7)(10,13)(11,16)(12,14)(15,17)>,< 6, 288, G!(1,3,9)(2,6,5)(4,8,7)(10,17)(11,13)(12,16)(14,15)>,< 6, 432, G!(1,7,3)(2,5,6,4,9,8)(11,15)(16,17)>,< 6, 432, G!(1,9)(2,4,3,7,5,6)(10,17)(11,14)(12,16)(13,15)>,< 6, 432, G!(1,2,3,9,7,6)(4,5)(13,14)(16,17)>,< 6, 432, G!(1,4,9,6,8,7)(2,3)(10,13)(11,17)(12,14)(15,16)>,< 6, 432, G!(1,3,7)(2,8,9,4,6,5)(10,17)(11,14)(12,16)(13,15)>,< 6, 432, G!(1,4,5,9,6,3)(2,8,7)(10,17)(11,13)(12,16)(14,15)>,< 6, 576, G!(1,2,7)(3,4,8)(5,6,9)(10,13)(12,14)>,< 6, 576, G!(1,9,5)(2,4,3)(6,8,7)(10,17)(11,15)(12,16)(13,14)>,< 6, 768, G!(2,5,3)(4,6,7)(10,12)(11,17,13,15,16,14)>,< 6, 864, G!(1,3,7)(2,8,9,4,6,5)(10,17)(11,15)(12,16)(13,14)>,< 6, 864, G!(1,5,4,9,2,7)(3,6,8)(10,15)(11,12)>,< 6, 864, G!(2,8,6,4,9,5)(3,7)(10,12)(11,13)(14,15)(16,17)>,< 6, 864, G!(1,7)(2,4,6,5,9,8)(13,17)(14,16)>,< 6, 1152, G!(1,4)(3,8)(5,7)(10,11,14)(12,15,13)>,< 6, 1152, G!(1,2)(3,6)(7,9)(10,15,13,12,11,14)(16,17)>,< 6, 1536, G!(1,2,7)(3,4,8)(5,6,9)(10,15,13,12,11,14)(16,17)>,< 6, 2304, G!(2,7,5,4,3,6)(8,9)(10,16,13,12,17,14)(11,15)>,< 6, 2304, G!(1,5,7,8,3,4)(2,6,9)(10,13,11,12,14,15)(16,17)>,< 6, 2304, G!(1,3,6,9,5,4)(2,7,8)(10,15,16)(11,17,12)>,< 6, 2304, G!(1,3,5,9,6,4)(2,7)(10,17,13)(12,16,14)>,< 8, 54, G!(1,6,7,5,4,9,8,3)>,< 8, 54, G!(1,3,8,9,4,5,7,6)>,< 8, 54, G!(2,3,6,9,4,7,5,8)(10,12)(11,15)(13,14)(16,17)>,< 8, 54, G!(2,8,5,7,4,9,6,3)(10,12)(11,15)(13,14)(16,17)>,< 8, 324, G!(1,2,5,6,9,7,4,3)(10,17)(11,13)(12,16)(14,15)>,< 8, 324, G!(1,3,4,7,9,6,5,2)(10,17)(11,13)(12,16)(14,15)>,< 8, 324, G!(1,7,4,3,6,9,8,2)(10,12)(11,15)>,< 8, 324, G!(1,2,8,9,6,3,4,7)(10,12)(11,15)>,< 8, 324, G!(1,8,4,2,7,6,9,5)(10,13)(11,16)(12,14)(15,17)>,< 8, 324, G!(1,5,9,6,7,2,4,8)(10,13)(11,16)(12,14)(15,17)>,< 8, 648, G!(1,5,4,2,3,9,6,8)(10,15,12,11)(13,16,14,17)>,< 8, 648, G!(1,8,6,9,3,2,4,5)(10,11,12,15)(13,17,14,16)>,< 8, 648, G!(1,2,6,4,9,7,3,5)(10,17)(11,15)(12,16)(13,14)>,< 8, 648, G!(1,5,3,7,9,4,6,2)(10,17)(11,15)(12,16)(13,14)>,< 8, 648, G!(1,3,8,7,6,2,4,9)(11,16)(15,17)>,< 8, 648, G!(1,9,4,2,6,7,8,3)(11,16)(15,17)>,< 8, 1296, G!(1,6,7,3,8,2,5,4)(10,13,17,11)(12,14,16,15)>,< 8, 1296, G!(1,4,5,2,8,3,7,6)(10,11,17,13)(12,15,16,14)>,< 8, 1296, G!(1,9,5,8,7,4,2,6)(10,16,12,17)(13,14)>,< 8, 1296, G!(1,6,2,4,7,8,5,9)(10,17,12,16)(13,14)>,< 8, 1296, G!(2,3,6,9,4,7,5,8)(10,14,11,17)(12,13,15,16)>,< 8, 1296, G!(2,8,5,7,4,9,6,3)(10,17,11,14)(12,16,15,13)>,< 12, 96, G!(1,2,4)(3,6,8)(5,7,9)(10,11,12,15)(13,16,14,17)>,< 12, 192, G!(1,2,4)(3,6,8)(5,7,9)(11,13,15,14)(16,17)>,< 12, 192, G!(1,2,4)(3,6,8)(5,7,9)(10,11,13,16)(12,15,14,17)>,< 12, 192, G!(1,2,4)(3,6,8)(5,7,9)(10,11,13,17)(12,15,14,16)>,< 12, 288, G!(3,6,8)(5,9,7)(10,11,12,15)(13,16,14,17)>,< 12, 576, G!(1,3,6)(2,4,9)(5,7,8)(10,17,12,16)(11,14,15,13)>,< 12, 576, G!(1,9,8)(2,3,5)(10,17,12,16)(13,14)>,< 12, 576, G!(1,9,8)(4,6,7)(10,15,14,17)(11,13,16,12)>,< 12, 576, G!(3,8,6)(5,7,9)(10,16,14,15)(11,12,17,13)>,< 12, 864, G!(1,8,4,3,2,6)(5,9)(10,13,12,14)(11,16,15,17)>,< 12, 864, G!(1,4,2)(3,5,6,7,8,9)(10,17,12,16)(11,14,15,13)>,< 12, 1152, G!(1,7,5)(2,8,4)(3,9,6)(11,14,15,13)(16,17)>,< 12, 1152, G!(1,5,4)(2,6,8)(3,7,9)(10,17,13,15)(11,12,16,14)>,< 12, 1152, G!(1,9,3)(2,5,6)(4,7,8)(10,11,17,13)(12,15,16,14)>,< 12, 1728, G!(1,5,3,4,7,8)(2,9,6)(10,11,17,13)(12,15,16,14)>,< 12, 1728, G!(1,7,8,6,9,4)(2,3)(10,11,14,17)(12,15,13,16)>,< 12, 1728, G!(2,6,3,4,5,7)(8,9)(10,14,15,17)(11,16,12,13)>,< 12, 1728, G!(1,6,2,7)(3,5,9,8)(10,16,14,12,17,13)(11,15)>,< 12, 1728, G!(1,8,4,7)(3,9,5,6)(11,16,14)(13,15,17)>,< 12, 1728, G!(1,3,5,9,6,4)(2,7)(10,14,12,13)(16,17)>,< 12, 1728, G!(1,7,5,8,6,2)(3,9,4)(10,17,13,15)(11,12,16,14)>,< 12, 1728, G!(1,8,5,2,6,7)(3,9,4)(10,12)(11,13,15,14)>,< 24, 1728, G!(1,5,8,6,4,3,7,9)(11,14,16)(13,17,15)>,< 24, 1728, G!(1,9,7,3,4,6,8,5)(11,16,14)(13,15,17)>,< 24, 1728, G!(2,9,5,3,4,8,6,7)(10,16,13,12,17,14)(11,15)>,< 24, 1728, G!(2,7,6,8,4,3,5,9)(10,14,17,12,13,16)(11,15)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 2, 2, -1, 2, -1, -1, -1, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, -1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, -1, -1, 0, 2, 2, -1, 2, 0, 2, 2, 2, 2, 2, 2, 0, 0, -1, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, -1, 2, -1, 2, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, -1, 2, 2, 2, 2, -1, -1, -1, 0, 0, 2, 2, -1, -1, -1, 2, 2, -1, -1, -1, 2, -1, -1, -1, 0, -1, 0, -1, 0, -1, -1, -1, -1, 0, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, 0, -1, -1, -1, 2, -1, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, -2, -2, 0, 0, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 2, -1, 2, -1, 2, -1, -1, 2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, 2, 0, -2, -2, 2, 0, 0, 0, -2, -2, -2, 2, -1, 2, 2, 2, 2, -1, -1, -1, 0, 0, -2, -2, -1, -1, -1, 2, 2, 1, -1, -1, 2, -1, 1, -1, 0, -1, 0, -1, 0, 1, 1, -1, 1, 0, 1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 0, 0, -2, -2, 2, 2, 2, 0, 0, -2, -2, -2, 0, 0, 2, 2, -1, 2, -1, -1, -1, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, -1, 2, 2, 2, 2, 2, 2, -2, -2, 0, 0, 2, 2, 2, -1, -1, 0, 2, 2, -1, 2, 0, 2, -2, 2, -2, 2, -2, 0, 0, -1, 0, 0, 0, 0, 1, 1, -1, -1, -1, 1, 1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, -2, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,2,2,-2,-2,-2,-2,0,0,-2,-2,-2,2,2,0,0,0,0,0,2,-1,2,-1,2,-1,-1,2,-2,-2,-2,0,0,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,2,2,2,2,-1,1,1,0,0,-2,-2,-1,-1,-1,2,-2,1,-1,-1,-2,-1,1,1,0,1,0,1,0,1,1,-1,-1,0,-1,0,0,0,-1,1,1,0,0,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,2,-2,-2,-2,-1,1,1,1,-1,1,0,1,1,1,0,-1,-1,0,-1,0,0,0,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,2,2,-2,-2,-2,-2,0,0,-2,-2,-2,2,2,0,0,0,0,0,2,-1,2,-1,2,-1,-1,2,-2,-2,-2,0,0,-2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,2,2,2,2,-1,1,1,0,0,-2,-2,-1,-1,-1,2,-2,1,-1,-1,-2,-1,1,1,0,1,0,1,0,1,1,-1,-1,0,-1,0,0,0,-1,1,1,0,0,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,2,-2,-2,-2,-1,1,1,1,-1,1,0,1,1,1,0,-1,-1,0,-1,0,0,0,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,2,2,-2,-2,2,2,0,0,-2,-2,-2,-2,-2,0,0,0,0,0,2,-1,2,-1,2,-1,-1,2,2,2,2,0,0,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,2,2,2,2,-1,1,1,0,0,2,2,-1,-1,-1,2,-2,-1,-1,-1,-2,-1,-1,1,0,1,0,1,0,-1,-1,-1,1,0,1,0,0,0,-1,1,1,0,0,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,2,2,2,2,-1,-1,-1,-1,-1,1,0,-1,-1,-1,0,1,1,0,1,0,0,0,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,2,2,-2,-2,2,2,0,0,-2,-2,-2,-2,-2,0,0,0,0,0,2,-1,2,-1,2,-1,-1,2,2,2,2,0,0,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,2,2,2,2,-1,1,1,0,0,2,2,-1,-1,-1,2,-2,-1,-1,-1,-2,-1,-1,1,0,1,0,1,0,-1,-1,-1,1,0,1,0,0,0,-1,1,1,0,0,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,2,2,2,2,-1,-1,-1,-1,-1,1,0,-1,-1,-1,0,1,1,0,1,0,0,0,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, 3, 3, 3, 1, 1, 3, 3, 3, -1, -1, 1, 1, -1, -1, 3, 1, 1, 3, 3, 0, 3, 0, 0, 0, -1, -1, 1, -1, 3, 3, -1, -1, 1, -1, -1, -1, 3, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 3, 3, 0, -1, 3, -1, 3, 3, 3, 3, 3, 1, 1, -1, -1, 3, 0, 0, 1, -1, 3, 0, -1, 1, -1, 3, 3, -1, -1, -1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, 3, -1, -1, 3, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 0, 1, -1, 0, -1, -1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, 3, -1, 3, 3, 1, 1, 3, 3, -1, 3, -1, 1, 1, -1, 3, -1, 1, 1, 3, 3, 0, 3, 0, 0, 0, -1, 1, -1, -1, 3, 3, -1, 1, -1, -1, -1, 3, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 3, 3, 0, 3, -1, -1, 3, 3, 3, 3, 3, 1, 1, 3, -1, -1, 0, 0, 1, 3, -1, 0, -1, 1, -1, -1, -1, -1, 3, 3, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, -1, 3, 3, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 0, -1, -1, 0, 1, -1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, -1, -1, 3, 3, 1, 1, 3, 3, -1, -1, 3, 1, 1, 3, -1, -1, 1, 1, 3, 3, 0, 3, 0, 0, 0, -1, -1, -1, 1, 3, 3, -1, -1, -1, 1, 3, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 3, 3, 0, -1, -1, 3, 3, 3, 3, 3, 3, 1, 1, -1, 3, -1, 0, 0, 1, -1, -1, 0, 3, 1, 3, -1, -1, 3, -1, -1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 0, -1, 1, 0, -1, 1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 3, 0, 3, 0, 3, 0, 0, 3, 3, 3, 3, -1, -1, 3, 3, 3, 3, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 3, 0, 3, 3, 3, 3, 0, 0, 0, 1, 1, 3, 3, 0, 0, 0, 3, 3, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, -1, 0, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, 3, 3, 3, -1, -1, 3, 3, 3, -1, -1, -1, -1, -1, -1, 3, -1, -1, 3, 3, 0, 3, 0, 0, 0, -1, 1, -1, 1, 3, 3, -1, 1, -1, 1, -1, -1, 3, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 3, 3, 0, -1, 3, -1, 3, 3, 3, 3, 3, -1, -1, -1, -1, 3, 0, 0, -1, -1, 3, 0, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 0, -1, 1, 0, 1, 1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, 3, -1, 3, 3, -1, -1, 3, 3, -1, 3, -1, -1, -1, -1, 3, -1, -1, -1, 3, 3, 0, 3, 0, 0, 0, -1, -1, 1, 1, 3, 3, -1, -1, 1, 1, -1, 3, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 3, 3, 0, 3, -1, -1, 3, 3, 3, 3, 3, -1, -1, 3, -1, -1, 0, 0, -1, 3, -1, 0, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 0, 1, 1, 0, -1, 1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, -1, -1, 3, 3, -1, -1, 3, 3, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, 3, 3, 0, 3, 0, 0, 0, -1, 1, 1, -1, 3, 3, -1, 1, 1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 3, 3, 0, -1, -1, 3, 3, 3, 3, 3, 3, -1, -1, -1, 3, -1, 0, 0, -1, -1, -1, 0, 3, -1, 3, -1, -1, 3, -1, -1, -1, -1, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 0, 1, -1, 0, 1, -1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, 3, 0, 3, 0, 3, 0, 0, 3, 3, 3, 3, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 0, 3, 3, 3, 3, 0, 0, 0, -1, -1, 3, 3, 0, 0, 0, 3, 3, 0, 0, 0, 3, 0, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, -1, -1, -1, 0, 0, 0, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, 3, 3, 3, -1, -1, -3, -3, 3, -1, -1, -1, -1, 1, 1, -3, 1, 1, 3, 3, 0, 3, 0, 0, 0, -1, 1, -1, 1, 3, 3, -1, 1, -1, 1, -1, -1, 3, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 3, 3, 0, -1, 3, -1, 3, 3, 3, -3, -3, -1, -1, -1, -1, 3, 0, 0, -1, -1, 3, 0, -1, -1, -1, -3, 3, 1, -1, 1, -1, -1, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, -3, 1, 1, -3, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 0, -1, 1, 0, 1, -1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, -1, 3, 3, 3, 1, 1, -3, -3, 3, -1, -1, 1, 1, 1, 1, -3, -1, -1, 3, 3, 0, 3, 0, 0, 0, -1, -1, 1, -1, 3, 3, -1, -1, 1, -1, -1, -1, 3, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 3, 3, 0, -1, 3, -1, 3, 3, 3, -3, -3, 1, 1, -1, -1, 3, 0, 0, 1, -1, 3, 0, -1, 1, -1, -3, 3, 1, -1, 1, 1, 1, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, -3, 1, 1, -3, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 0, 1, -1, 0, -1, 1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, 3, -1, 3, 3, -1, -1, -3, -3, -1, 3, -1, -1, -1, 1, -3, 1, 1, 1, 3, 3, 0, 3, 0, 0, 0, -1, -1, 1, 1, 3, 3, -1, -1, 1, 1, -1, 3, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 3, 3, 0, 3, -1, -1, 3, 3, 3, -3, -3, -1, -1, 3, -1, -1, 0, 0, -1, 3, -1, 0, -1, -1, -1, 1, -1, 1, 3, -3, -1, -1, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 0, 1, 1, 0, -1, -1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -1, 3, -1, 3, 3, 1, 1, -3, -3, -1, 3, -1, 1, 1, 1, -3, 1, -1, -1, 3, 3, 0, 3, 0, 0, 0, -1, 1, -1, -1, 3, 3, -1, 1, -1, -1, -1, 3, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 3, 3, 0, 3, -1, -1, 3, 3, 3, -3, -3, 1, 1, 3, -1, -1, 0, 0, 1, 3, -1, 0, -1, 1, -1, 1, -1, 1, 3, -3, 1, 1, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, 1, -3, -3, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 0, -1, -1, 0, 1, 1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, -1, -1, 3, 3, -1, -1, -3, -3, -1, -1, 3, -1, -1, -3, 1, 1, 1, 1, 3, 3, 0, 3, 0, 0, 0, -1, 1, 1, -1, 3, 3, -1, 1, 1, -1, 3, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 3, 3, 0, -1, -1, 3, 3, 3, 3, -3, -3, -1, -1, -1, 3, -1, 0, 0, -1, -1, -1, 0, 3, -1, 3, 1, -1, -3, -1, 1, -1, -1, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 0, 1, -1, 0, 1, 1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, -1, -1, 3, 3, 1, 1, -3, -3, -1, -1, 3, 1, 1, -3, 1, 1, -1, -1, 3, 3, 0, 3, 0, 0, 0, -1, -1, -1, 1, 3, 3, -1, -1, -1, 1, 3, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 3, 3, 0, -1, -1, 3, 3, 3, 3, -3, -3, 1, 1, -1, 3, -1, 0, 0, 1, -1, -1, 0, 3, 1, 3, 1, -1, -3, -1, 1, 1, 1, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 0, -1, 1, 0, -1, -1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, -3, -3, -1, -1, 3, 3, 3, -3, -3, -1, -1, -1, 1, 1, 3, 0, 3, 0, 3, 0, 0, 3, -3, -3, -3, -1, -1, 3, -3, -3, -3, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 3, 0, 3, 3, 3, 3, 0, 0, 0, -1, -1, -3, -3, 0, 0, 0, 3, 3, 0, 0, 0, 3, 0, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 1, -1, -1, 0, 0, 0, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -3, -3, -3, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1, 0, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, -3, -3, 1, 1, 3, 3, 3, -3, -3, 1, 1, 1, -1, -1, 3, 0, 3, 0, 3, 0, 0, 3, -3, -3, -3, -1, -1, 3, -3, -3, -3, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 3, 0, 3, 3, 3, 3, 0, 0, 0, 1, 1, -3, -3, 0, 0, 0, 3, 3, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, -1, 1, 1, 0, 0, 0, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, -1, 0, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, -2, -2, -2, -2, 1, 1, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, -2, -2, 4, 4, 4, -2, -2, -2, 0, 0, 0, 0, -2, -2, -2, -2, -2, 0, -2, -2, -2, -2, 0, -2, 0, -2, 0, -2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, -2, 0, 0, 0, -2, -2, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, -4, -4, -4, -4, 0, 0, -4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 4, 1, 4, 1, 4, 1, 1, 4, -4, -4, -4, 0, 0, -4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 4, 4, 4, 4, 1, -1, -1, 0, 0, -4, -4, 1, 1, 1, 4, -4, -1, 1, 1, -4, 1, -1, -1, 0, -1, 0, -1, 0, -1, -1, 1, 1, 0, 1, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, -4, 1, -1, -1, -1, 1, -1, 0, -1, -1, -1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, -4, -4, 4, 4, 0, 0, -4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 4, 1, 4, 1, 4, 1, 1, 4, 4, 4, 4, 0, 0, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 4, 4, 4, 4, 1, -1, -1, 0, 0, 4, 4, 1, 1, 1, 4, -4, 1, 1, 1, -4, 1, 1, -1, 0, -1, 0, -1, 0, 1, 1, 1, -1, 0, -1, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 1, 1, 1, 1, 1, -1, 0, 1, 1, 1, 0, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 0, 0, 0, 4, -4, -2, 2, -4, 4, 0, 0, 0, 2, -2, 0, 0, 0, -2, 2, 4, 4, 1, 4, 1, 1, 1, 0, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, -4, -4, -1, 0, 0, 0, -4, 4, -4, -4, 4, -2, 2, 0, 0, 0, -1, -1, 2, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, 0, -2, 2, -1, -2, -2, 2, 2, -1, 1, -1, -1, 1, 1, -1, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 0, 0, 0, 4, -4, -2, 2, 4, -4, 0, 0, 0, 2, -2, 0, 0, 0, 2, -2, 4, 4, 1, 4, 1, 1, 1, 0, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, -4, -4, -1, 0, 0, 0, -4, 4, -4, 4, -4, -2, 2, 0, 0, 0, -1, -1, 2, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, 0, -2, 2, -1, -2, 2, 2, -2, 1, -1, -1, -1, 1, -1, 1, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 0, 0, 0, 4, -4, 2, -2, -4, 4, 0, 0, 0, -2, 2, 0, 0, 0, 2, -2, 4, 4, 1, 4, 1, 1, 1, 0, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, -4, -4, -1, 0, 0, 0, -4, 4, -4, -4, 4, 2, -2, 0, 0, 0, -1, -1, -2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 2, -2, -1, 2, 2, -2, -2, -1, 1, -1, -1, 1, 1, -1, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 0, 0, 0, 4, -4, 2, -2, 4, -4, 0, 0, 0, -2, 2, 0, 0, 0, -2, 2, 4, 4, 1, 4, 1, 1, 1, 0, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, -4, -4, -1, 0, 0, 0, -4, 4, -4, 4, -4, 2, -2, 0, 0, 0, -1, -1, -2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 2, -2, -1, 2, -2, -2, 2, 1, -1, -1, -1, 1, -1, 1, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,4,4,4,4,-4,-4,0,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,4,-2,-2,-2,-2,1,1,4,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-2,-2,4,4,4,-2,2,2,0,0,0,0,-2,-2,-2,-2,2,0,-2,-2,2,-2,0,2,0,2,0,2,0,0,0,1,0,0,0,0,0,0,1,-1,-1,0,0,-2*K.1-2*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,2*K.1+2*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,0,0,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,0,0,0,0,0,0,0,0,4,0,0,0,-2,0,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,4,4,4,4,-4,-4,0,0,0,0,-4,-4,-4,0,0,0,0,0,0,0,4,-2,-2,-2,-2,1,1,4,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-2,-2,4,4,4,-2,2,2,0,0,0,0,-2,-2,-2,-2,2,0,-2,-2,2,-2,0,2,0,2,0,2,0,0,0,1,0,0,0,0,0,0,1,-1,-1,0,0,2*K.1+2*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,-2*K.1-2*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,0,0,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,0,0,0,0,0,0,0,0,4,0,0,0,-2,0,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[6, 6, -2, -2, -2, 6, 6, 0, 0, 6, 6, -2, -2, -2, 0, 0, -2, -2, -2, 0, 0, 6, 6, 0, 6, 0, 0, 0, 2, 0, 0, 0, 6, 6, 2, 0, 0, 0, -2, -2, -2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 6, 6, 0, -2, -2, -2, 6, 6, 6, 6, 6, 0, 0, -2, -2, -2, 0, 0, 0, -2, -2, 0, -2, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, -2, -2, -2, -2, -2, -2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -2, -2, 6, 6, 6, 2, 2, 0, 0, 6, -2, -2, 2, 2, 0, 0, 0, 0, 0, 6, -3, 0, -3, 0, 0, 0, -2, -2, 2, -2, 6, 6, -2, -2, 2, -2, -2, -2, 6, 0, 2, 2, -2, 0, 0, 0, 2, -2, -2, 6, -3, 0, -2, 6, -2, -3, -3, -3, 0, 0, 2, 2, 1, 1, -3, 0, 0, -1, 1, -3, 0, 1, -1, 1, 0, -3, 0, 1, 0, -1, -1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, -2, 1, 1, -1, 1, 1, 1, 0, 1, -1, 1, 0, -1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -2, 6, -2, 6, 6, 2, 2, 0, 0, -2, 6, -2, 2, 2, 0, 0, 0, 0, 0, 6, -3, 0, -3, 0, 0, 0, -2, 2, -2, -2, 6, 6, -2, 2, -2, -2, -2, 6, -2, 0, 2, 2, -2, 0, 0, 0, -2, -2, 2, 6, -3, 0, 6, -2, -2, -3, -3, -3, 0, 0, 2, 2, -3, 1, 1, 0, 0, -1, -3, 1, 0, 1, -1, 1, 0, 1, 0, -3, 0, -1, -1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, -2, 1, -1, 1, 1, 1, 1, 0, -1, 1, 1, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, -2, -2, 6, 6, 2, 2, 0, 0, -2, -2, 6, 2, 2, 0, 0, 0, 0, 0, 6, -3, 0, -3, 0, 0, 0, -2, -2, -2, 2, 6, 6, -2, -2, -2, 2, 6, -2, -2, 0, 2, 2, -2, 0, 0, 0, -2, 2, -2, 6, -3, 0, -2, -2, 6, -3, -3, -3, 0, 0, 2, 2, 1, -3, 1, 0, 0, -1, 1, 1, 0, -3, -1, -3, 0, 1, 0, 1, 0, -1, -1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, 1, 1, 1, -1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, 6, 0, 0, 2, 2, 6, 6, 6, 0, 0, 2, 2, 2, 0, 0, 6, 0, -3, 0, -3, 0, 0, 6, 0, 0, 0, -2, -2, 6, 0, 0, 0, -2, -2, -2, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 6, 0, -3, 6, 6, 6, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, -3, -3, 0, 0, 0, -3, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -2, -2, -2, 6, 6, 0, 0, -6, -6, -2, -2, -2, 0, 0, 2, 2, 2, 0, 0, 6, 6, 0, 6, 0, 0, 0, 2, 0, 0, 0, 6, 6, 2, 0, 0, 0, -2, -2, -2, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 6, 6, 0, -2, -2, -2, 6, 6, 6, -6, -6, 0, 0, -2, -2, -2, 0, 0, 0, -2, -2, 0, -2, 0, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, -6, -6, 2, 2, 2, 2, 2, 2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -2, -2, 6, 6, 6, -2, -2, 0, 0, 6, -2, -2, -2, -2, 0, 0, 0, 0, 0, 6, -3, 0, -3, 0, 0, 0, -2, 2, -2, 2, 6, 6, -2, 2, -2, 2, -2, -2, 6, 0, -2, -2, -2, 0, 0, 0, -2, 2, 2, 6, -3, 0, -2, 6, -2, -3, -3, -3, 0, 0, -2, -2, 1, 1, -3, 0, 0, 1, 1, -3, 0, 1, 1, 1, 0, -3, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 1, -1, 1, -1, 1, 1, 0, -1, 1, -1, 0, 1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -2, 6, -2, 6, 6, -2, -2, 0, 0, -2, 6, -2, -2, -2, 0, 0, 0, 0, 0, 6, -3, 0, -3, 0, 0, 0, -2, -2, 2, 2, 6, 6, -2, -2, 2, 2, -2, 6, -2, 0, -2, -2, -2, 0, 0, 0, 2, 2, -2, 6, -3, 0, 6, -2, -2, -3, -3, -3, 0, 0, -2, -2, -3, 1, 1, 0, 0, 1, -3, 1, 0, 1, 1, 1, 0, 1, 0, -3, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, 1, 1, -1, -1, 1, 1, 0, 1, -1, -1, 0, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, -2, -2, 6, 6, -2, -2, 0, 0, -2, -2, 6, -2, -2, 0, 0, 0, 0, 0, 6, -3, 0, -3, 0, 0, 0, -2, 2, 2, -2, 6, 6, -2, 2, 2, -2, 6, -2, -2, 0, -2, -2, -2, 0, 0, 0, 2, -2, 2, 6, -3, 0, -2, -2, 6, -3, -3, -3, 0, 0, -2, -2, 1, -3, 1, 0, 0, 1, 1, 1, 0, -3, 1, -3, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, 1, -1, -1, 1, 1, 1, 0, -1, -1, 1, 0, -1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, 6, 0, 0, -2, -2, 6, 6, 6, 0, 0, -2, -2, -2, 0, 0, 6, 0, -3, 0, -3, 0, 0, 6, 0, 0, 0, -2, -2, 6, 0, 0, 0, -2, -2, -2, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 6, 0, -3, 6, 6, 6, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, -3, -3, 0, 0, 0, -3, 0, 0, 0, -2, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,-2,-2,6,-6,-6,-2,-2,0,0,-6,2,2,2,2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,2,-2,2,0,0,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,-2,6,-2,-3,3,3,0,0,-2,-2,1,1,-3,0,0,1,1,-3,0,1,1,-1,0,3,0,-1,0,1,1,0,-1,0,-1,0,0,0,0,0,0,0,0,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-3*K.1-3*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,3*K.1+3*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-2,2,-2,2,1,-1,1,-1,1,-1,0,-1,1,-1,0,-1,1,0,1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,-2,-2,6,-6,-6,-2,-2,0,0,-6,2,2,2,2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,2,-2,2,0,0,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,-2,6,-2,-3,3,3,0,0,-2,-2,1,1,-3,0,0,1,1,-3,0,1,1,-1,0,3,0,-1,0,1,1,0,-1,0,-1,0,0,0,0,0,0,0,0,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,3*K.1+3*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-3*K.1-3*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-2,2,-2,2,1,-1,1,-1,1,-1,0,-1,1,-1,0,-1,1,0,1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,-2,-2,6,-6,-6,2,2,0,0,-6,2,2,-2,-2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,-2,2,-2,0,0,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,-2,6,-2,-3,3,3,0,0,2,2,1,1,-3,0,0,-1,1,-3,0,1,-1,-1,0,3,0,-1,0,-1,-1,0,1,0,1,0,0,0,0,0,0,0,0,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-3*K.1-3*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,3*K.1+3*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-2,-2,2,-2,1,1,-1,1,1,-1,0,1,-1,1,0,1,-1,0,-1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,-2,-2,6,-6,-6,2,2,0,0,-6,2,2,-2,-2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,-2,2,-2,0,0,2,2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,-2,6,-2,-3,3,3,0,0,2,2,1,1,-3,0,0,-1,1,-3,0,1,-1,-1,0,3,0,-1,0,-1,-1,0,1,0,1,0,0,0,0,0,0,0,0,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,3*K.1+3*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-3*K.1-3*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-2,-2,2,-2,1,1,-1,1,1,-1,0,1,-1,1,0,1,-1,0,-1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,-2,6,-2,-6,-6,-2,-2,0,0,2,-6,2,2,2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,-2,2,2,0,0,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,6,-2,-2,-3,3,3,0,0,-2,-2,-3,1,1,0,0,1,-3,1,0,1,1,-1,0,-1,0,3,0,1,1,0,-1,0,-1,0,0,0,0,0,0,0,0,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,3*K.1+3*K.1^3,-3*K.1-3*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-2,-2,2,2,1,1,-1,-1,1,-1,0,1,-1,-1,0,1,1,0,-1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,-2,6,-2,-6,-6,-2,-2,0,0,2,-6,2,2,2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,-2,2,2,0,0,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,6,-2,-2,-3,3,3,0,0,-2,-2,-3,1,1,0,0,1,-3,1,0,1,1,-1,0,-1,0,3,0,1,1,0,-1,0,-1,0,0,0,0,0,0,0,0,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-3*K.1-3*K.1^3,3*K.1+3*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-2,-2,2,2,1,1,-1,-1,1,-1,0,1,-1,-1,0,1,1,0,-1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,-2,6,-2,-6,-6,2,2,0,0,2,-6,2,-2,-2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,2,-2,-2,0,0,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,6,-2,-2,-3,3,3,0,0,2,2,-3,1,1,0,0,-1,-3,1,0,1,-1,-1,0,-1,0,3,0,-1,-1,0,1,0,1,0,0,0,0,0,0,0,0,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,3*K.1+3*K.1^3,-3*K.1-3*K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-2,2,-2,-2,1,-1,1,1,1,-1,0,-1,1,1,0,-1,-1,0,1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,-2,6,-2,-6,-6,2,2,0,0,2,-6,2,-2,-2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,2,-2,-2,0,0,2,-2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,6,-2,-2,-3,3,3,0,0,2,2,-3,1,1,0,0,-1,-3,1,0,1,-1,-1,0,-1,0,3,0,-1,-1,0,1,0,1,0,0,0,0,0,0,0,0,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-3*K.1-3*K.1^3,3*K.1+3*K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-2,2,-2,-2,1,-1,1,1,1,-1,0,-1,1,1,0,-1,-1,0,1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,6,-2,-2,-6,-6,-2,-2,0,0,2,2,-6,2,2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,2,2,-2,0,0,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,-2,-2,6,-3,3,3,0,0,-2,-2,1,-3,1,0,0,1,1,1,0,-3,1,3,0,-1,0,-1,0,1,1,0,-1,0,-1,0,0,0,0,0,0,0,0,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,3*K.1+3*K.1^3,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-3*K.1-3*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-2,2,2,-2,1,-1,-1,1,1,-1,0,-1,-1,1,0,1,-1,0,1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,6,-2,-2,-6,-6,-2,-2,0,0,2,2,-6,2,2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,2,2,-2,0,0,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,-2,-2,6,-3,3,3,0,0,-2,-2,1,-3,1,0,0,1,1,1,0,-3,1,3,0,-1,0,-1,0,1,1,0,-1,0,-1,0,0,0,0,0,0,0,0,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,3*K.1+3*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-2,2,2,-2,1,-1,-1,1,1,-1,0,-1,-1,1,0,1,-1,0,1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,6,-2,-2,-6,-6,2,2,0,0,2,2,-6,-2,-2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,-2,-2,2,0,0,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,-2,-2,6,-3,3,3,0,0,2,2,1,-3,1,0,0,-1,1,1,0,-3,-1,3,0,-1,0,-1,0,-1,-1,0,1,0,1,0,0,0,0,0,0,0,0,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,3*K.1+3*K.1^3,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-3*K.1-3*K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-2,-2,-2,2,1,1,1,-1,1,-1,0,1,1,-1,0,-1,1,0,-1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |6,6,6,-2,-2,-6,-6,2,2,0,0,2,2,-6,-2,-2,0,0,0,0,0,6,-3,0,-3,0,0,0,-2,-2,-2,2,0,0,2,2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,6,-3,0,-2,-2,6,-3,3,3,0,0,2,2,1,-3,1,0,0,-1,1,1,0,-3,-1,3,0,-1,0,-1,0,-1,-1,0,1,0,1,0,0,0,0,0,0,0,0,3*K.1+3*K.1^3,3*K.1+3*K.1^3,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,-3*K.1-3*K.1^3,3*K.1+3*K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-2,-2,-2,2,1,1,1,-1,1,-1,0,1,1,-1,0,-1,1,0,-1,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, 8, 0, 0, 8, 8, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, -1, 2, 8, -1, -1, 2, -1, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, -1, 2, 8, -1, -1, -1, -1, 0, 0, -1, -1, -1, -1, 2, 2, 2, -1, 0, 2, -1, -1, 0, -1, 2, 0, -1, 0, -1, 0, -1, -1, -1, 2, 0, -1, 0, -1, 2, 2, -1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 2, 2, 2, 2, -1, 0, -1, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, 8, 0, 0, 8, 8, -2, -2, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -1, 2, 8, -1, -1, 2, -1, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, -2, -2, 0, 0, 0, -1, 2, 8, -1, -1, -1, -1, 0, 0, 1, 1, -1, -1, 2, 2, 2, -1, 0, 2, -1, -1, 0, -1, 2, 0, 1, 0, 1, 0, 1, -1, -1, 2, 0, 1, 0, 1, -2, -2, -1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 2, 2, 2, 2, -1, 0, 1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, 8, 0, 0, -8, -8, -2, -2, 0, 0, 0, 0, 0, -2, -2, -2, 2, 2, -1, 2, 8, -1, -1, 2, -1, 8, -8, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 2, 2, 0, 0, 0, -1, 2, 8, -1, -1, -1, -1, 0, 0, 1, 1, 1, 1, 2, 2, 2, -1, 0, -2, -1, -1, 0, -1, -2, 0, 1, 0, 1, 0, 1, 1, 1, 2, 0, -1, 0, -1, -2, -2, -1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 2, -2, -2, -2, -1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, 8, 0, 0, -8, -8, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, -2, -2, -1, 2, 8, -1, -1, 2, -1, 8, -8, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, -2, -2, 0, 0, 0, -1, 2, 8, -1, -1, -1, -1, 0, 0, -1, -1, 1, 1, 2, 2, 2, -1, 0, -2, -1, -1, 0, -1, -2, 0, -1, 0, -1, 0, -1, 1, 1, 2, 0, 1, 0, 1, 2, 2, -1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 2, -2, -2, -2, -1, 0, -1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 0, 0, 0, 8, -8, 0, 0, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, -1, 8, -1, -1, -1, 0, 0, 0, 0, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, -8, 1, 0, 0, 0, -8, 8, -8, -8, 8, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 1, 1, -1, -1, 1, 8, -8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 0, 0, 0, 8, -8, 0, 0, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, -1, 8, -1, -1, -1, 0, 0, 0, 0, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, -8, 1, 0, 0, 0, -8, 8, -8, 8, -8, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 1, 1, 1, -1, 1, -1, -8, 8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, 8, -8, -8, 0, 0, 0, 0, -8, -8, -8, 0, 0, 0, 0, 0, 0, 0, 8, 2, -4, 2, -4, -1, -1, 8, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 2, -4, 8, 8, 8, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, -4, 4, 0, 2, 2, 4, 2, 0, -2, 0, -2, 0, -2, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 0, 0, 0, 8, -8, -4, 4, 0, 0, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 8, -4, 2, -4, 2, -1, -1, 0, 0, 0, 0, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, 0, 0, 0, 0, 0, 0, 0, -8, 4, -2, 0, 0, 0, 4, -4, 4, 0, 0, -4, 4, 0, 0, 0, -2, -2, -2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, -2, 1, 2, 0, -2, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 0, 0, 0, 8, -8, 4, -4, 0, 0, 0, 0, 0, -4, 4, 0, 0, 0, 0, 0, 8, -4, 2, -4, 2, -1, -1, 0, 0, 0, 0, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, -8, 4, -2, 0, 0, 0, 4, -4, 4, 0, 0, 4, -4, 0, 0, 0, -2, -2, 2, 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 0, -2, 2, 1, -2, 0, 2, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |8,-8,0,0,0,-8,8,-4,4,0,0,0,0,0,-4,4,0,0,0,0,0,8,-4,2,-4,2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,4,-2,0,0,0,4,4,-4,0,0,-4,4,0,0,0,-2,2,-2,0,0,-2,0,2,0,0,0,0,0,0,2,-2,1,-2,0,2,0,0,0,1,-1,1,0,0,-4*K.1-4*K.1^3,4*K.1+4*K.1^3,4*K.1+4*K.1^3,-4*K.1-4*K.1^3,0,0,0,0,0,0,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,0,0,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |8,-8,0,0,0,-8,8,-4,4,0,0,0,0,0,-4,4,0,0,0,0,0,8,-4,2,-4,2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,4,-2,0,0,0,4,4,-4,0,0,-4,4,0,0,0,-2,2,-2,0,0,-2,0,2,0,0,0,0,0,0,2,-2,1,-2,0,2,0,0,0,1,-1,1,0,0,4*K.1+4*K.1^3,-4*K.1-4*K.1^3,-4*K.1-4*K.1^3,4*K.1+4*K.1^3,0,0,0,0,0,0,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,0,0,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |8,-8,0,0,0,-8,8,4,-4,0,0,0,0,0,4,-4,0,0,0,0,0,8,-4,2,-4,2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,4,-2,0,0,0,4,4,-4,0,0,4,-4,0,0,0,-2,2,2,0,0,-2,0,-2,0,0,0,0,0,0,-2,2,1,2,0,-2,0,0,0,1,-1,1,0,0,-4*K.1-4*K.1^3,4*K.1+4*K.1^3,4*K.1+4*K.1^3,-4*K.1-4*K.1^3,0,0,0,0,0,0,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,0,0,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |8,-8,0,0,0,-8,8,4,-4,0,0,0,0,0,4,-4,0,0,0,0,0,8,-4,2,-4,2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,4,-2,0,0,0,4,4,-4,0,0,4,-4,0,0,0,-2,2,2,0,0,-2,0,-2,0,0,0,0,0,0,-2,2,1,2,0,-2,0,0,0,1,-1,1,0,0,4*K.1+4*K.1^3,-4*K.1-4*K.1^3,-4*K.1-4*K.1^3,4*K.1+4*K.1^3,0,0,0,0,0,0,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,0,0,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[9, 9, -3, -3, 9, 9, 9, 3, 3, 3, 3, 9, -3, -3, 3, 3, -1, -1, 3, 1, 1, 9, 0, 0, 0, 0, 0, 0, -3, -3, 3, -3, -3, -3, -3, -3, 3, -3, 1, 1, -3, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 9, 0, 0, -3, 9, -3, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, -3, 1, 1, -3, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -3, -3, 3, -3, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, -3, 9, -3, 9, 9, 3, 3, 3, 3, -3, 9, -3, 3, 3, -1, 3, -1, 1, 1, 9, 0, 0, 0, 0, 0, 0, -3, 3, -3, -3, -3, -3, -3, 3, -3, -3, 1, -3, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 9, 0, 0, 9, -3, -3, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 3, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, 1, -3, -3, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -3, 3, -3, -3, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, 9, -3, -3, 9, 9, 3, 3, 3, 3, -3, -3, 9, 3, 3, 3, -1, -1, 1, 1, 9, 0, 0, 0, 0, 0, 0, -3, -3, -3, 3, -3, -3, -3, -3, -3, 3, -3, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 9, 0, 0, -3, -3, 9, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 3, 0, -1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -3, -3, -3, 3, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, -3, -3, 9, 9, 9, -3, -3, -3, -3, 9, -3, -3, -3, -3, 1, 1, -3, 1, 1, 9, 0, 0, 0, 0, 0, 0, -3, 3, -3, 3, -3, -3, -3, 3, -3, 3, 1, 1, -3, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 9, 0, 0, -3, 9, -3, 0, 0, 0, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -3, 3, -3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, -3, 9, -3, 9, 9, -3, -3, -3, -3, -3, 9, -3, -3, -3, 1, -3, 1, 1, 1, 9, 0, 0, 0, 0, 0, 0, -3, -3, 3, 3, -3, -3, -3, -3, 3, 3, 1, -3, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 9, 0, 0, 9, -3, -3, 0, 0, 0, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, -3, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -3, -3, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, 9, -3, -3, 9, 9, -3, -3, -3, -3, -3, -3, 9, -3, -3, -3, 1, 1, 1, 1, 9, 0, 0, 0, 0, 0, 0, -3, 3, 3, -3, -3, -3, -3, 3, 3, -3, -3, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 9, 0, 0, -3, -3, 9, 0, 0, 0, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -3, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -3, 3, 3, -3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, -3, -3, 9, 9, 9, -3, -3, 3, 3, 9, -3, -3, -3, -3, -1, -1, 3, -1, -1, 9, 0, 0, 0, 0, 0, 0, -3, 3, -3, 3, -3, -3, -3, 3, -3, 3, 1, 1, -3, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 9, 0, 0, -3, 9, -3, 0, 0, 0, 3, 3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, -3, 1, 1, -3, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -3, 3, -3, 3, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, -3, -3, 9, 9, 9, 3, 3, -3, -3, 9, -3, -3, 3, 3, 1, 1, -3, -1, -1, 9, 0, 0, 0, 0, 0, 0, -3, -3, 3, -3, -3, -3, -3, -3, 3, -3, 1, 1, -3, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 9, 0, 0, -3, 9, -3, 0, 0, 0, -3, -3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, 3, -1, -1, 3, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -3, -3, 3, -3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, -3, 9, -3, 9, 9, -3, -3, 3, 3, -3, 9, -3, -3, -3, -1, 3, -1, -1, -1, 9, 0, 0, 0, 0, 0, 0, -3, -3, 3, 3, -3, -3, -3, -3, 3, 3, 1, -3, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 9, 0, 0, 9, -3, -3, 0, 0, 0, 3, 3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, 3, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -3, -3, 3, 3, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, -3, 9, -3, 9, 9, 3, 3, -3, -3, -3, 9, -3, 3, 3, 1, -3, 1, -1, -1, 9, 0, 0, 0, 0, 0, 0, -3, 3, -3, -3, -3, -3, -3, 3, -3, -3, 1, -3, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 9, 0, 0, 9, -3, -3, 0, 0, 0, -3, -3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, -3, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, -1, 3, 3, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -3, 3, -3, -3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, 9, -3, -3, 9, 9, -3, -3, 3, 3, -3, -3, 9, -3, -3, 3, -1, -1, -1, -1, 9, 0, 0, 0, 0, 0, 0, -3, 3, 3, -3, -3, -3, -3, 3, 3, -3, -3, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 9, 0, 0, -3, -3, 9, 0, 0, 0, 3, 3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 3, 0, -1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -3, 3, 3, -3, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[9, 9, 9, -3, -3, 9, 9, 3, 3, -3, -3, -3, -3, 9, 3, 3, -3, 1, 1, -1, -1, 9, 0, 0, 0, 0, 0, 0, -3, -3, -3, 3, -3, -3, -3, -3, -3, 3, -3, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 9, 0, 0, -3, -3, 9, 0, 0, 0, -3, -3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -3, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -3, -3, -3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, -4, -4, 12, 12, 0, 0, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 12, -6, 0, -6, 0, 0, 0, 4, 0, 0, 0, 12, 12, 4, 0, 0, 0, -4, -4, -4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 12, -6, 0, -4, -4, -4, -6, -6, -6, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, -2, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, -4, 12, -12, -12, -4, -4, 0, 0, -12, 4, 4, 4, 4, 0, 0, 0, 0, 0, 12, 3, 0, 3, 0, 0, 0, -4, 4, -4, 4, 0, 0, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 3, 0, -4, 12, -4, 3, -3, -3, 0, 0, -4, -4, -1, -1, 3, 0, 0, -1, -1, 3, 0, -1, -1, 1, 0, -3, 0, 1, 0, -1, -1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 4, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, -4, 12, -12, -12, 4, 4, 0, 0, -12, 4, 4, -4, -4, 0, 0, 0, 0, 0, 12, 3, 0, 3, 0, 0, 0, -4, -4, 4, -4, 0, 0, 4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 3, 0, -4, 12, -4, 3, -3, -3, 0, 0, 4, 4, -1, -1, 3, 0, 0, 1, -1, 3, 0, -1, 1, 1, 0, -3, 0, 1, 0, 1, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, -4, -1, -1, 1, -1, -1, 1, 0, -1, 1, -1, 0, -1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, 12, -4, -12, -12, -4, -4, 0, 0, 4, -12, 4, 4, 4, 0, 0, 0, 0, 0, 12, 3, 0, 3, 0, 0, 0, -4, -4, 4, 4, 0, 0, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 3, 0, 12, -4, -4, 3, -3, -3, 0, 0, -4, -4, 3, -1, -1, 0, 0, -1, 3, -1, 0, -1, -1, 1, 0, 1, 0, -3, 0, -1, -1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 4, -1, -1, 1, 1, -1, 1, 0, -1, 1, 1, 0, -1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -4, 12, -4, -12, -12, 4, 4, 0, 0, 4, -12, 4, -4, -4, 0, 0, 0, 0, 0, 12, 3, 0, 3, 0, 0, 0, -4, 4, -4, -4, 0, 0, 4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 3, 0, 12, -4, -4, 3, -3, -3, 0, 0, 4, 4, 3, -1, -1, 0, 0, 1, 3, -1, 0, -1, 1, 1, 0, 1, 0, -3, 0, 1, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, -4, -1, 1, -1, -1, -1, 1, 0, 1, -1, -1, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 12, -4, -4, -12, -12, -4, -4, 0, 0, 4, 4, -12, 4, 4, 0, 0, 0, 0, 0, 12, 3, 0, 3, 0, 0, 0, -4, 4, 4, -4, 0, 0, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 3, 0, -4, -4, 12, 3, -3, -3, 0, 0, -4, -4, -1, 3, -1, 0, 0, -1, -1, -1, 0, 3, -1, -3, 0, 1, 0, 1, 0, -1, -1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, 4, -4, -1, 1, 1, -1, -1, 1, 0, 1, 1, -1, 0, -1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 12, -4, -4, -12, -12, 4, 4, 0, 0, 4, 4, -12, -4, -4, 0, 0, 0, 0, 0, 12, 3, 0, 3, 0, 0, 0, -4, -4, -4, 4, 0, 0, 4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 3, 0, -4, -4, 12, 3, -3, -3, 0, 0, 4, 4, -1, 3, -1, 0, 0, 1, -1, -1, 0, 3, 1, -3, 0, 1, 0, 1, 0, 1, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 4, -1, -1, -1, 1, -1, 1, 0, -1, -1, 1, 0, 1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 0, 0, 0, 12, -12, -6, 6, -4, 4, 0, 0, 0, 6, -6, 0, 0, 0, -2, 2, 12, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, -12, 0, -3, 0, 0, 0, 0, 0, 0, -4, 4, -6, 6, 0, 0, 0, -3, -3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 2, -1, 1, 0, 0, 0, 1, -1, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 0, 0, 0, 12, -12, -6, 6, 4, -4, 0, 0, 0, 6, -6, 0, 0, 0, 2, -2, 12, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, -12, 0, -3, 0, 0, 0, 0, 0, 0, 4, -4, -6, 6, 0, 0, 0, -3, -3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2, 1, -1, 0, 0, 0, -1, 1, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 0, 0, 0, 12, -12, 6, -6, -4, 4, 0, 0, 0, -6, 6, 0, 0, 0, 2, -2, 12, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, -12, 0, -3, 0, 0, 0, 0, 0, 0, -4, 4, 6, -6, 0, 0, 0, -3, -3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, -2, -1, 1, 0, 0, 0, 1, -1, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 0, 0, 0, 12, -12, 6, -6, 4, -4, 0, 0, 0, -6, 6, 0, 0, 0, -2, 2, 12, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, -12, 0, -3, 0, 0, 0, 0, 0, 0, 4, -4, 6, -6, 0, 0, 0, -3, -3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 2, 1, -1, 0, 0, 0, -1, 1, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |12,12,-4,-4,-4,-12,-12,0,0,0,0,4,4,4,0,0,0,0,0,0,0,12,-6,0,-6,0,0,0,4,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,-6,0,-4,-4,-4,-6,6,6,0,0,0,0,2,2,2,0,0,0,2,2,0,2,0,-2,0,-2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6*K.1-6*K.1^3,-6*K.1-6*K.1^3,6*K.1+6*K.1^3,6*K.1+6*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,0,0,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,0,0,0,0,0,0,0,0,4,0,0,0,-2,0,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |12,12,-4,-4,-4,-12,-12,0,0,0,0,4,4,4,0,0,0,0,0,0,0,12,-6,0,-6,0,0,0,4,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,-6,0,-4,-4,-4,-6,6,6,0,0,0,0,2,2,2,0,0,0,2,2,0,2,0,-2,0,-2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6*K.1+6*K.1^3,6*K.1+6*K.1^3,-6*K.1-6*K.1^3,-6*K.1-6*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,0,0,-2*K.1-2*K.1^3,2*K.1+2*K.1^3,0,0,0,0,0,0,0,0,4,0,0,0,-2,0,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[16, 16, 16, 16, 16, 0, 0, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 16, 1, -2, -2, 1, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 16, -2, -2, -2, 1, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 0, -2, 1, 1, 0, 1, -2, 0, 0, 0, 0, 0, 0, 1, 1, -2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[16, 16, 16, 16, 16, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, -2, 4, -8, -2, 1, -2, 1, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, -8, -2, -2, -2, -2, 0, 0, -2, -2, 0, 0, 4, 4, 4, 1, 0, 0, -2, -2, 0, -2, 0, 0, -2, 0, -2, 0, -2, 0, 0, -2, 0, 0, 0, 0, -2, -2, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[16, -16, 0, 0, 0, -16, 16, -8, 8, 0, 0, 0, 0, 0, -8, 8, 0, 0, 0, 0, 0, 16, 4, 4, 4, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, -4, -4, 0, 0, 0, -4, -4, 4, 0, 0, -8, 8, 0, 0, 0, -4, 4, 2, 0, 0, -4, 0, -2, 0, 0, 0, 0, 0, 0, -2, 2, -1, 2, 0, -2, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[16, -16, 0, 0, 0, -16, 16, 8, -8, 0, 0, 0, 0, 0, 8, -8, 0, 0, 0, 0, 0, 16, 4, 4, 4, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, -4, -4, 0, 0, 0, -4, -4, 4, 0, 0, 8, -8, 0, 0, 0, -4, 4, -2, 0, 0, -4, 0, 2, 0, 0, 0, 0, 0, 0, 2, -2, -1, -2, 0, 2, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[16, -16, 0, 0, 0, 16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, -8, -2, -8, -2, 1, 1, 0, 0, 0, 0, 16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, 8, 2, 0, 0, 0, 8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[16, 16, 16, 16, 16, 0, 0, -16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 16, 1, -2, -2, 1, 16, -16, -16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 16, -2, -2, -2, 1, 0, 0, 0, 0, 2, 2, -2, -2, -2, -2, 0, 2, 1, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, -1, -1, -2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 2, -2, 2, 2, 2, 1, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[16, 16, 16, 16, 16, 0, 0, 0, 0, -4, -4, 0, 0, 0, 0, 0, -4, -4, -4, 0, 0, -2, 4, -8, -2, 1, -2, 1, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, -8, -2, -2, -2, -2, 0, 0, 2, 2, 0, 0, 4, 4, 4, 1, 0, 0, -2, -2, 0, -2, 0, 0, 2, 0, 2, 0, 2, 0, 0, -2, 0, 0, 0, 0, 2, 2, 1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |16,-16,0,0,0,-16,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,-8,-2,-8,-2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-16,8,2,0,0,0,8,8,-8,0,0,0,0,0,0,0,2,-2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,1,-1,0,0,-8*K.1-8*K.1^3,8*K.1+8*K.1^3,8*K.1+8*K.1^3,-8*K.1-8*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |16,-16,0,0,0,-16,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,-8,-2,-8,-2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-16,8,2,0,0,0,8,8,-8,0,0,0,0,0,0,0,2,-2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,1,-1,0,0,8*K.1+8*K.1^3,-8*K.1-8*K.1^3,-8*K.1-8*K.1^3,8*K.1+8*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[18, 18, -6, -6, -6, 18, 18, 0, 0, 6, 6, -6, -6, -6, 0, 0, -2, -2, -2, 0, 0, 18, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, -6, -6, 6, 0, 0, 0, 2, 2, 2, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 18, 0, 0, -6, -6, -6, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, -6, -6, 2, 2, 2, 2, 2, 2, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[18, 18, -6, -6, -6, 18, 18, 0, 0, -6, -6, -6, -6, -6, 0, 0, 2, 2, 2, 0, 0, 18, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, -6, -6, 6, 0, 0, 0, 2, 2, 2, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 18, 0, 0, -6, -6, -6, 0, 0, 0, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, -2, -2, -2, -2, -2, -2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -8, -8, 24, 0, 0, 8, 8, 6, 6, 0, 0, 0, 0, 0, -2, -2, 6, 2, 2, -3, 6, 0, -3, 0, 0, 0, -8, -8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 2, -2, 0, 0, 0, -3, 6, 0, 1, -3, 1, -3, 0, 0, -3, -3, -1, -1, -2, -2, 6, 0, 0, 2, 1, -3, 0, 1, 2, 0, -3, 0, 1, 0, 1, -1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, -2, -2, 2, -2, 1, 0, 1, 1, -1, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -8, 24, -8, 0, 0, 8, 8, 6, 6, 0, 0, 0, 0, 0, -2, 6, -2, 2, 2, -3, 6, 0, -3, 0, 0, 0, -8, 8, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, -2, 2, 0, 0, 0, -3, 6, 0, -3, 1, 1, -3, 0, 0, -3, -3, -1, -1, 6, -2, -2, 0, 0, 2, -3, 1, 0, 1, 2, 0, 1, 0, 1, 0, -3, -1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, -2, 2, -2, -2, 1, 0, 1, -1, 1, 1, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, 24, -8, -8, 0, 0, 8, 8, 6, 6, 0, 0, 0, 0, 0, 6, -2, -2, 2, 2, -3, 6, 0, -3, 0, 0, 0, -8, -8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, -2, -2, 0, 0, 0, -3, 6, 0, 1, 1, -3, -3, 0, 0, -3, -3, -1, -1, -2, 6, -2, 0, 0, 2, 1, 1, 0, -3, 2, 0, 1, 0, -3, 0, 1, -1, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -2, -2, -2, 2, 1, 0, 1, 1, 1, -1, 0, 0, 0, 0, 0, -1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -8, -8, -8, -24, -24, 0, 0, 0, 0, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 24, 6, 0, 6, 0, 0, 0, 8, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 6, 0, -8, -8, -8, 6, -6, -6, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, -2, -2, 0, -2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -8, -8, 24, 0, 0, -8, -8, -6, -6, 0, 0, 0, 0, 0, 2, 2, -6, 2, 2, -3, 6, 0, -3, 0, 0, 0, -8, 8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, 2, -2, 0, 0, 0, -3, 6, 0, 1, -3, 1, -3, 0, 0, 3, 3, 1, 1, -2, -2, 6, 0, 0, -2, 1, -3, 0, 1, -2, 0, 3, 0, -1, 0, -1, 1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, -2, 2, -2, 2, 1, 0, -1, -1, 1, -1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -8, -8, 24, 0, 0, -8, -8, 6, 6, 0, 0, 0, 0, 0, -2, -2, 6, -2, -2, -3, 6, 0, -3, 0, 0, 0, -8, 8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, -2, 2, 0, 0, 0, -3, 6, 0, 1, -3, 1, -3, 0, 0, -3, -3, 1, 1, -2, -2, 6, 0, 0, -2, 1, -3, 0, 1, -2, 0, -3, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, -2, 2, -2, 2, 1, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -8, -8, 24, 0, 0, 8, 8, -6, -6, 0, 0, 0, 0, 0, 2, 2, -6, -2, -2, -3, 6, 0, -3, 0, 0, 0, -8, -8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, -2, 2, 0, 0, 0, -3, 6, 0, 1, -3, 1, -3, 0, 0, 3, 3, -1, -1, -2, -2, 6, 0, 0, 2, 1, -3, 0, 1, 2, 0, 3, 0, -1, 0, -1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, -2, -2, 2, -2, 1, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -8, 24, -8, 0, 0, -8, -8, -6, -6, 0, 0, 0, 0, 0, 2, -6, 2, 2, 2, -3, 6, 0, -3, 0, 0, 0, -8, -8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, -2, 2, 0, 0, 0, -3, 6, 0, -3, 1, 1, -3, 0, 0, 3, 3, 1, 1, 6, -2, -2, 0, 0, -2, -3, 1, 0, 1, -2, 0, -1, 0, -1, 0, 3, 1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -2, -2, 2, 2, 1, 0, -1, 1, -1, -1, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -8, 24, -8, 0, 0, -8, -8, 6, 6, 0, 0, 0, 0, 0, -2, 6, -2, -2, -2, -3, 6, 0, -3, 0, 0, 0, -8, -8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 2, -2, 0, 0, 0, -3, 6, 0, -3, 1, 1, -3, 0, 0, -3, -3, 1, 1, 6, -2, -2, 0, 0, -2, -3, 1, 0, 1, -2, 0, 1, 0, 1, 0, -3, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -2, -2, 2, 2, 1, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -8, 24, -8, 0, 0, 8, 8, -6, -6, 0, 0, 0, 0, 0, 2, -6, 2, -2, -2, -3, 6, 0, -3, 0, 0, 0, -8, 8, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, -2, 0, 0, 0, -3, 6, 0, -3, 1, 1, -3, 0, 0, 3, 3, -1, -1, 6, -2, -2, 0, 0, 2, -3, 1, 0, 1, 2, 0, -1, 0, -1, 0, 3, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, -2, 2, -2, -2, 1, 0, -1, -1, 1, 1, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, 24, -8, -8, 0, 0, -8, -8, -6, -6, 0, 0, 0, 0, 0, -6, 2, 2, 2, 2, -3, 6, 0, -3, 0, 0, 0, -8, 8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, -2, -2, 0, 0, 0, -3, 6, 0, 1, 1, -3, -3, 0, 0, 3, 3, 1, 1, -2, 6, -2, 0, 0, -2, 1, 1, 0, -3, -2, 0, -1, 0, 3, 0, -1, 1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -2, 2, 2, -2, 1, 0, -1, -1, -1, 1, 0, 0, 0, 0, 0, -1, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, 24, -8, -8, 0, 0, -8, -8, 6, 6, 0, 0, 0, 0, 0, 6, -2, -2, -2, -2, -3, 6, 0, -3, 0, 0, 0, -8, 8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -2, 2, 2, 0, 0, 0, -3, 6, 0, 1, 1, -3, -3, 0, 0, -3, -3, 1, 1, -2, 6, -2, 0, 0, -2, 1, 1, 0, -3, -2, 0, 1, 0, -3, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -2, 2, 2, -2, 1, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, 24, -8, -8, 0, 0, 8, 8, -6, -6, 0, 0, 0, 0, 0, -6, 2, 2, -2, -2, -3, 6, 0, -3, 0, 0, 0, -8, -8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, 2, 2, 0, 0, 0, -3, 6, 0, 1, 1, -3, -3, 0, 0, 3, 3, -1, -1, -2, 6, -2, 0, 0, 2, 1, 1, 0, -3, 2, 0, -1, 0, 3, 0, -1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -2, -2, -2, 2, 1, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, -24, 0, 0, 0, 24, -24, 0, 0, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, -3, 0, -3, 0, 0, 0, 0, 0, 0, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -24, 0, 3, 0, 0, 0, 0, 0, 0, -8, 8, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, -8, 8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, -24, 0, 0, 0, 24, -24, 0, 0, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, -3, 0, -3, 0, 0, 0, 0, 0, 0, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -24, 0, 3, 0, 0, 0, 0, 0, 0, 8, -8, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 8, -8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[32, 32, 32, 32, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -16, 2, 2, 2, -1, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -16, -4, -4, -4, 2, 0, 0, 0, 0, 0, 0, -4, -4, -4, 2, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[32, -32, 0, 0, 0, 0, 0, -16, 16, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 8, 8, -4, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -8, -8, 0, 0, 0, 4, 0, 0, 4, -4, 2, -2, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 2, 0, -2, -2, 2, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[32, -32, 0, 0, 0, 0, 0, -16, 16, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, 8, 8, -4, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -8, -8, 0, 0, 0, 4, 0, 0, -4, 4, 2, -2, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, -2, 0, 2, 2, -2, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[32, -32, 0, 0, 0, 0, 0, 16, -16, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, 8, 8, -4, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -8, -8, 0, 0, 0, 4, 0, 0, 4, -4, -2, 2, 0, 0, 0, 1, 0, -4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, -2, 0, 2, -2, 2, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[32, -32, 0, 0, 0, 0, 0, 16, -16, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 8, 8, -4, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -8, -8, 0, 0, 0, 4, 0, 0, -4, 4, -2, 2, 0, 0, 0, 1, 0, -4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 2, 0, -2, 2, -2, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[32, -32, 0, 0, 0, -32, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 8, -4, 8, -4, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -32, -8, 4, 0, 0, 0, -8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 4, -4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[48, 48, -16, -16, -16, 0, 0, 0, 0, 12, 12, 0, 0, 0, 0, 0, -4, -4, -4, 0, 0, -6, 12, 0, -6, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 12, 0, 2, 2, 2, -6, 0, 0, -6, -6, 0, 0, -4, -4, -4, 0, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[48, 48, -16, -16, 48, 0, 0, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 3, 0, 0, 0, -16, -16, 16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 2, -6, 2, 3, 0, 0, 0, 0, -2, -2, 2, 2, -6, 0, 0, -2, -1, 3, 0, -1, -2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, 2, 2, 2, -2, 2, -1, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[48, 48, -16, 48, -16, 0, 0, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 3, 0, 0, 0, -16, 16, -16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, -6, 2, 2, 3, 0, 0, 0, 0, -2, -2, -6, 2, 2, 0, 0, -2, 3, -1, 0, -1, -2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 2, 2, -2, 2, 2, -1, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[48, 48, 48, -16, -16, 0, 0, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 3, 0, 0, 0, -16, -16, -16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 2, 2, -6, 3, 0, 0, 0, 0, -2, -2, 2, -6, 2, 0, 0, -2, -1, -1, 0, 3, -2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, 2, 2, 2, -2, -1, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[48, 48, -16, -16, -16, 0, 0, 0, 0, -12, -12, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, -6, 12, 0, -6, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 12, 0, 2, 2, 2, -6, 0, 0, 6, 6, 0, 0, -4, -4, -4, 0, 0, 0, 2, 2, 0, 2, 0, 0, -2, 0, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[48, 48, -16, -16, 48, 0, 0, -16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 3, 0, 0, 0, -16, 16, -16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 2, -6, 2, 3, 0, 0, 0, 0, 2, 2, 2, 2, -6, 0, 0, 2, -1, 3, 0, -1, 2, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, 2, -2, 2, -2, -1, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[48, 48, -16, 48, -16, 0, 0, -16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 3, 0, 0, 0, -16, -16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, -6, 2, 2, 3, 0, 0, 0, 0, 2, 2, -6, 2, 2, 0, 0, 2, 3, -1, 0, -1, 2, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 2, 2, -2, -2, -1, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[48, 48, 48, -16, -16, 0, 0, -16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 3, 0, 0, 0, -16, 16, 16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 2, 2, -6, 3, 0, 0, 0, 0, 2, 2, 2, -6, 2, 0, 0, 2, -1, -1, 0, 3, 2, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, 2, -1, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[64, -64, 0, 0, 0, 0, 0, -32, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, -8, 16, 4, -2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, -16, 0, 0, 0, -4, 0, 0, 0, 0, 4, -4, 0, 0, 0, 2, 0, -4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[64, -64, 0, 0, 0, 0, 0, 0, 0, -16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 16, -8, -8, 1, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, -16, 8, 0, 0, 0, 8, 0, 0, 8, -8, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, -2, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[64, -64, 0, 0, 0, 0, 0, 0, 0, 16, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 16, -8, -8, 1, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, -16, 8, 0, 0, 0, 8, 0, 0, -8, 8, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -2, 2, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[64, -64, 0, 0, 0, 0, 0, 32, -32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, -8, 16, 4, -2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, -16, 0, 0, 0, -4, 0, 0, 0, 0, -4, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 2, -2, 2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[96, 96, -32, -32, -32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, -12, 0, 6, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, -12, 0, 4, 4, 4, 6, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, -2, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[128, -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, -16, -16, 8, 2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 16, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_82944_gr:= KnownIrreducibles(CR);