/* Group 816.54 downloaded from the LMFDB on 05 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, -2, -2, -2, -3, -17, 12, 31, 6723, 69, 16804, 118]); a,b := Explode([GPC.1, GPC.4]); AssignNames(~GPC, ["a", "a2", "a4", "b", "b2", "b6"]); GPerm := PermutationGroup< 30 | (18,19)(20,21,22,24,23,25,26,27)(29,30), (18,19), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17), (20,22,23,26)(21,24,25,27), (20,23)(21,25)(22,26)(24,27), (28,29,30) >; GLZN := MatrixGroup< 2, Integers(51) | [[1, 3, 0, 1], [1, 17, 0, 1], [13, 0, 0, 13], [16, 0, 0, 16], [49, 17, 0, 32], [38, 0, 0, 38]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_816_54 := rec< RF | Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b^51>,< 2, 1, a^4*b^51>,< 2, 1, a^4>,< 3, 2, b^34>,< 4, 1, a^2>,< 4, 1, a^6>,< 4, 1, a^6*b^51>,< 4, 1, a^2*b^51>,< 6, 2, b^17>,< 6, 2, a^4*b^17>,< 6, 2, a^4*b^68>,< 8, 3, a>,< 8, 3, a^7>,< 8, 3, a^3>,< 8, 3, a^5>,< 8, 3, a*b^85>,< 8, 3, a^7*b^85>,< 8, 3, a^3*b^85>,< 8, 3, a^5*b^85>,< 12, 2, a^2*b^34>,< 12, 2, a^6*b^68>,< 12, 2, a^2*b^17>,< 12, 2, a^6*b^85>,< 17, 1, b^6>,< 17, 1, b^96>,< 17, 1, b^12>,< 17, 1, b^90>,< 17, 1, b^18>,< 17, 1, b^84>,< 17, 1, b^24>,< 17, 1, b^78>,< 17, 1, b^30>,< 17, 1, b^72>,< 17, 1, b^36>,< 17, 1, b^66>,< 17, 1, b^42>,< 17, 1, b^60>,< 17, 1, b^48>,< 17, 1, b^54>,< 34, 1, b^3>,< 34, 1, b^99>,< 34, 1, b^9>,< 34, 1, b^93>,< 34, 1, b^15>,< 34, 1, b^87>,< 34, 1, b^21>,< 34, 1, b^81>,< 34, 1, b^27>,< 34, 1, b^75>,< 34, 1, b^33>,< 34, 1, b^69>,< 34, 1, b^39>,< 34, 1, b^63>,< 34, 1, b^45>,< 34, 1, b^57>,< 34, 1, a^4*b^3>,< 34, 1, a^4*b^99>,< 34, 1, a^4*b^9>,< 34, 1, a^4*b^93>,< 34, 1, a^4*b^15>,< 34, 1, a^4*b^87>,< 34, 1, a^4*b^21>,< 34, 1, a^4*b^81>,< 34, 1, a^4*b^27>,< 34, 1, a^4*b^75>,< 34, 1, a^4*b^33>,< 34, 1, a^4*b^69>,< 34, 1, a^4*b^39>,< 34, 1, a^4*b^63>,< 34, 1, a^4*b^45>,< 34, 1, a^4*b^57>,< 34, 1, a^4*b^24>,< 34, 1, a^4*b^78>,< 34, 1, a^4*b^72>,< 34, 1, a^4*b^30>,< 34, 1, a^4*b^18>,< 34, 1, a^4*b^84>,< 34, 1, a^4*b^66>,< 34, 1, a^4*b^36>,< 34, 1, a^4*b^12>,< 34, 1, a^4*b^90>,< 34, 1, a^4*b^60>,< 34, 1, a^4*b^42>,< 34, 1, a^4*b^6>,< 34, 1, a^4*b^96>,< 34, 1, a^4*b^54>,< 34, 1, a^4*b^48>,< 51, 2, b^2>,< 51, 2, b^100>,< 51, 2, b^4>,< 51, 2, b^98>,< 51, 2, b^8>,< 51, 2, b^94>,< 51, 2, b^10>,< 51, 2, b^92>,< 51, 2, b^14>,< 51, 2, b^88>,< 51, 2, b^16>,< 51, 2, b^86>,< 51, 2, b^22>,< 51, 2, b^80>,< 51, 2, b^28>,< 51, 2, b^74>,< 68, 1, a^2*b^12>,< 68, 1, a^6*b^90>,< 68, 1, a^6*b^36>,< 68, 1, a^2*b^66>,< 68, 1, a^2*b^60>,< 68, 1, a^6*b^42>,< 68, 1, a^6*b^84>,< 68, 1, a^2*b^18>,< 68, 1, a^2*b^6>,< 68, 1, a^6*b^96>,< 68, 1, a^6*b^30>,< 68, 1, a^2*b^72>,< 68, 1, a^2*b^54>,< 68, 1, a^6*b^48>,< 68, 1, a^6*b^78>,< 68, 1, a^2*b^24>,< 68, 1, a^6*b^24>,< 68, 1, a^2*b^78>,< 68, 1, a^2*b^48>,< 68, 1, a^6*b^54>,< 68, 1, a^6*b^72>,< 68, 1, a^2*b^30>,< 68, 1, a^2*b^96>,< 68, 1, a^6*b^6>,< 68, 1, a^6*b^18>,< 68, 1, a^2*b^84>,< 68, 1, a^2*b^42>,< 68, 1, a^6*b^60>,< 68, 1, a^6*b^66>,< 68, 1, a^2*b^36>,< 68, 1, a^2*b^90>,< 68, 1, a^6*b^12>,< 68, 1, a^6*b^3>,< 68, 1, a^2*b^99>,< 68, 1, a^2*b^9>,< 68, 1, a^6*b^93>,< 68, 1, a^6*b^15>,< 68, 1, a^2*b^87>,< 68, 1, a^2*b^21>,< 68, 1, a^6*b^81>,< 68, 1, a^6*b^27>,< 68, 1, a^2*b^75>,< 68, 1, a^2*b^33>,< 68, 1, a^6*b^69>,< 68, 1, a^6*b^39>,< 68, 1, a^2*b^63>,< 68, 1, a^2*b^45>,< 68, 1, a^6*b^57>,< 68, 1, a^2*b^57>,< 68, 1, a^6*b^45>,< 68, 1, a^6*b^63>,< 68, 1, a^2*b^39>,< 68, 1, a^2*b^69>,< 68, 1, a^6*b^33>,< 68, 1, a^6*b^75>,< 68, 1, a^2*b^27>,< 68, 1, a^2*b^81>,< 68, 1, a^6*b^21>,< 68, 1, a^6*b^87>,< 68, 1, a^2*b^15>,< 68, 1, a^2*b^93>,< 68, 1, a^6*b^9>,< 68, 1, a^6*b^99>,< 68, 1, a^2*b^3>,< 102, 2, b>,< 102, 2, b^67>,< 102, 2, b^5>,< 102, 2, b^97>,< 102, 2, b^7>,< 102, 2, b^61>,< 102, 2, b^79>,< 102, 2, b^91>,< 102, 2, b^13>,< 102, 2, b^55>,< 102, 2, b^19>,< 102, 2, b^49>,< 102, 2, b^25>,< 102, 2, b^43>,< 102, 2, b^31>,< 102, 2, b^37>,< 102, 2, a^4*b>,< 102, 2, a^4*b^67>,< 102, 2, a^4*b^5>,< 102, 2, a^4*b^97>,< 102, 2, a^4*b^7>,< 102, 2, a^4*b^61>,< 102, 2, a^4*b^79>,< 102, 2, a^4*b^91>,< 102, 2, a^4*b^13>,< 102, 2, a^4*b^55>,< 102, 2, a^4*b^19>,< 102, 2, a^4*b^49>,< 102, 2, a^4*b^25>,< 102, 2, a^4*b^43>,< 102, 2, a^4*b^31>,< 102, 2, a^4*b^37>,< 102, 2, a^4*b^4>,< 102, 2, a^4*b^98>,< 102, 2, a^4*b^20>,< 102, 2, a^4*b^82>,< 102, 2, a^4*b^28>,< 102, 2, a^4*b^74>,< 102, 2, a^4*b^44>,< 102, 2, a^4*b^58>,< 102, 2, a^4*b^52>,< 102, 2, a^4*b^50>,< 102, 2, a^4*b^76>,< 102, 2, a^4*b^26>,< 102, 2, a^4*b^100>,< 102, 2, a^4*b^2>,< 102, 2, a^4*b^22>,< 102, 2, a^4*b^80>,< 136, 3, a*b^6>,< 136, 3, a^7*b^96>,< 136, 3, a^3*b^18>,< 136, 3, a^5*b^84>,< 136, 3, a^5*b^30>,< 136, 3, a^3*b^4>,< 136, 3, a^7*b^42>,< 136, 3, a*b^60>,< 136, 3, a*b^54>,< 136, 3, a^7*b^48>,< 136, 3, a^3*b^66>,< 136, 3, a^5*b^2>,< 136, 3, a^5*b^78>,< 136, 3, a^3*b^24>,< 136, 3, a^7*b^90>,< 136, 3, a*b^12>,< 136, 3, a^3*b^12>,< 136, 3, a^5*b^90>,< 136, 3, a^5*b^24>,< 136, 3, a^3*b^78>,< 136, 3, a^7*b^2>,< 136, 3, a*b^66>,< 136, 3, a*b^48>,< 136, 3, a^7*b^54>,< 136, 3, a^3*b^60>,< 136, 3, a^5*b^42>,< 136, 3, a^5*b^4>,< 136, 3, a^3*b^30>,< 136, 3, a^7*b^84>,< 136, 3, a*b^18>,< 136, 3, a*b^96>,< 136, 3, a^7*b^6>,< 136, 3, a^3*b^6>,< 136, 3, a^5*b^96>,< 136, 3, a^5*b^18>,< 136, 3, a^3*b^84>,< 136, 3, a^7*b^30>,< 136, 3, a*b^4>,< 136, 3, a*b^42>,< 136, 3, a^7*b^60>,< 136, 3, a^3*b^54>,< 136, 3, a^5*b^48>,< 136, 3, a^5*b^66>,< 136, 3, a^3*b^2>,< 136, 3, a^7*b^78>,< 136, 3, a*b^24>,< 136, 3, a*b^90>,< 136, 3, a^7*b^12>,< 136, 3, a^5*b^12>,< 136, 3, a^3*b^90>,< 136, 3, a^7*b^24>,< 136, 3, a*b^78>,< 136, 3, a*b^2>,< 136, 3, a^7*b^66>,< 136, 3, a^3*b^48>,< 136, 3, a^5*b^54>,< 136, 3, a^5*b^60>,< 136, 3, a^3*b^42>,< 136, 3, a^7*b^4>,< 136, 3, a*b^30>,< 136, 3, a*b^84>,< 136, 3, a^7*b^18>,< 136, 3, a^3*b^96>,< 136, 3, a^5*b^6>,< 136, 3, a*b>,< 136, 3, a^7*b^67>,< 136, 3, a^3*b^3>,< 136, 3, a^5*b^31>,< 136, 3, a^5*b^5>,< 136, 3, a^3*b^97>,< 136, 3, a^7*b^7>,< 136, 3, a*b^61>,< 136, 3, a*b^43>,< 136, 3, a^7*b^25>,< 136, 3, a^3*b^79>,< 136, 3, a^5*b^91>,< 136, 3, a^5*b^13>,< 136, 3, a^3*b^55>,< 136, 3, a^7*b^49>,< 136, 3, a*b^19>,< 136, 3, a^3*b^19>,< 136, 3, a^5*b^49>,< 136, 3, a^5*b^55>,< 136, 3, a^3*b^13>,< 136, 3, a^7*b^91>,< 136, 3, a*b^79>,< 136, 3, a*b^25>,< 136, 3, a^7*b^43>,< 136, 3, a^3*b^61>,< 136, 3, a^5*b^7>,< 136, 3, a^5*b^97>,< 136, 3, a^3*b^5>,< 136, 3, a^7*b^31>,< 136, 3, a*b^3>,< 136, 3, a*b^67>,< 136, 3, a^7*b>,< 136, 3, a^3*b>,< 136, 3, a^5*b^67>,< 136, 3, a^5*b^3>,< 136, 3, a^3*b^31>,< 136, 3, a^7*b^5>,< 136, 3, a*b^97>,< 136, 3, a*b^7>,< 136, 3, a^7*b^61>,< 136, 3, a^3*b^43>,< 136, 3, a^5*b^25>,< 136, 3, a^5*b^79>,< 136, 3, a^3*b^91>,< 136, 3, a^7*b^13>,< 136, 3, a*b^55>,< 136, 3, a*b^49>,< 136, 3, a^7*b^19>,< 136, 3, a^5*b^19>,< 136, 3, a^3*b^49>,< 136, 3, a^7*b^55>,< 136, 3, a*b^13>,< 136, 3, a*b^91>,< 136, 3, a^7*b^79>,< 136, 3, a^3*b^25>,< 136, 3, a^5*b^43>,< 136, 3, a^5*b^61>,< 136, 3, a^3*b^7>,< 136, 3, a^7*b^97>,< 136, 3, a*b^5>,< 136, 3, a*b^31>,< 136, 3, a^7*b^3>,< 136, 3, a^3*b^67>,< 136, 3, a^5*b>,< 204, 2, a^2*b^2>,< 204, 2, a^6*b^32>,< 204, 2, a^2*b^10>,< 204, 2, a^6*b^58>,< 204, 2, a^6*b^14>,< 204, 2, a^2*b^20>,< 204, 2, a^6*b^22>,< 204, 2, a^2*b^46>,< 204, 2, a^2*b^26>,< 204, 2, a^6*b^8>,< 204, 2, a^6*b^4>,< 204, 2, a^2*b^64>,< 204, 2, a^6*b^46>,< 204, 2, a^2*b^22>,< 204, 2, a^2*b^16>,< 204, 2, a^6*b^52>,< 204, 2, a^2*b^58>,< 204, 2, a^6*b^10>,< 204, 2, a^6*b^28>,< 204, 2, a^2*b^40>,< 204, 2, a^6*b^2>,< 204, 2, a^2*b^32>,< 204, 2, a^2*b^14>,< 204, 2, a^6*b^20>,< 204, 2, a^6*b^26>,< 204, 2, a^2*b^8>,< 204, 2, a^2*b^4>,< 204, 2, a^6*b^64>,< 204, 2, a^6*b^16>,< 204, 2, a^2*b^52>,< 204, 2, a^2*b^28>,< 204, 2, a^6*b^40>,< 204, 2, a^2*b>,< 204, 2, a^6*b^67>,< 204, 2, a^2*b^5>,< 204, 2, a^6*b^97>,< 204, 2, a^6*b^7>,< 204, 2, a^2*b^61>,< 204, 2, a^6*b^79>,< 204, 2, a^2*b^91>,< 204, 2, a^2*b^13>,< 204, 2, a^6*b^55>,< 204, 2, a^6*b^19>,< 204, 2, a^2*b^49>,< 204, 2, a^6*b^91>,< 204, 2, a^2*b^79>,< 204, 2, a^2*b^25>,< 204, 2, a^6*b^43>,< 204, 2, a^2*b^97>,< 204, 2, a^6*b^5>,< 204, 2, a^6*b^31>,< 204, 2, a^2*b^37>,< 204, 2, a^6*b>,< 204, 2, a^2*b^67>,< 204, 2, a^2*b^7>,< 204, 2, a^6*b^61>,< 204, 2, a^6*b^13>,< 204, 2, a^2*b^55>,< 204, 2, a^2*b^19>,< 204, 2, a^6*b^49>,< 204, 2, a^6*b^25>,< 204, 2, a^2*b^43>,< 204, 2, a^2*b^31>,< 204, 2, a^6*b^37>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1,1,1,-1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1,1,1,-1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,-1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,K.1^3,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,1,-1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,1,-1,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,-1,-1,-1*K.1,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,-1,-1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1*K.1^3,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,-1,-1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1^3,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,-1,-1,-1*K.1^3,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,1,-1,-1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,K.1^3,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-8,K.1^4,K.1^-5,K.1^2,K.1^-2,K.1^-7,K.1^6,K.1^-3,K.1^5,K.1^3,K.1^-1,K.1,K.1^-4,K.1^8,K.1^7,K.1^-6,K.1^-3,K.1,K.1^7,K.1^-4,K.1,K.1^5,K.1^-5,K.1^-6,K.1^5,K.1^-2,K.1^4,K.1^-7,K.1^-2,K.1^8,K.1^3,K.1^-3,K.1^8,K.1^-6,K.1^8,K.1^-7,K.1^-1,K.1^2,K.1^-1,K.1^-4,K.1^-7,K.1^7,K.1^4,K.1^5,K.1^-6,K.1^-3,K.1^6,K.1^3,K.1^6,K.1^-8,K.1^-5,K.1^-8,K.1^2,K.1^-1,K.1^-4,K.1^2,K.1^3,K.1^6,K.1^-8,K.1^-5,K.1^-2,K.1,K.1^4,K.1^7,K.1^-4,K.1^5,K.1^8,K.1^-7,K.1^-1,K.1^4,K.1^7,K.1^-3,K.1^-8,K.1^3,K.1^2,K.1^-2,K.1,K.1^-5,K.1^-6,K.1^6,K.1,K.1^-4,K.1^-6,K.1^-7,K.1^-4,K.1^-1,K.1^-2,K.1^5,K.1^-1,K.1^-6,K.1^-7,K.1^6,K.1^7,K.1^3,K.1,K.1^-8,K.1^-5,K.1^8,K.1^6,K.1^6,K.1^-6,K.1^4,K.1^-8,K.1,K.1^7,K.1^-7,K.1^-3,K.1^-8,K.1^-3,K.1^5,K.1^-2,K.1^5,K.1^-6,K.1^4,K.1^-1,K.1^7,K.1^3,K.1^-5,K.1^8,K.1^-1,K.1^-4,K.1^-7,K.1^2,K.1^2,K.1^8,K.1^-4,K.1^-3,K.1^-2,K.1^5,K.1^4,K.1^6,K.1^-2,K.1^-5,K.1^-8,K.1^3,K.1^3,K.1^7,K.1^2,K.1^-5,K.1^4,K.1^8,K.1,K.1^2,K.1^-3,K.1^-6,K.1^8,K.1^5,K.1^-5,K.1^-2,K.1,K.1^-3,K.1^3,K.1^-8,K.1^-1,K.1^-7,K.1^7,K.1^4,K.1^6,K.1^5,K.1^-5,K.1^-3,K.1^-2,K.1^3,K.1^-8,K.1^-2,K.1^5,K.1^-1,K.1^8,K.1^6,K.1^-5,K.1^2,K.1^-4,K.1^4,K.1^4,K.1^6,K.1^-1,K.1^-6,K.1,K.1^2,K.1^-7,K.1^-3,K.1^-6,K.1^-4,K.1^-7,K.1^3,K.1,K.1^7,K.1^8,K.1^-8,K.1^2,K.1^-4,K.1^7,K.1^-1,K.1^-7,K.1^-7,K.1^-4,K.1^-4,K.1^-2,K.1^-2,K.1^-5,K.1^-5,K.1^5,K.1^5,K.1^8,K.1^8,K.1^3,K.1^3,K.1^7,K.1^7,K.1^8,K.1,K.1^3,K.1^5,K.1^-4,K.1^3,K.1^5,K.1^-4,K.1^6,K.1^-2,K.1^-7,K.1^6,K.1^-2,K.1^8,K.1,K.1^-3,K.1^4,K.1^4,K.1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-8,K.1^-8,K.1^6,K.1^6,K.1^-6,K.1^-6,K.1^-3,K.1^7,K.1^-8,K.1^-1,K.1^-7,K.1^-5,K.1^4,K.1^-3,K.1^-5,K.1^4,K.1^-6,K.1^2,K.1^7,K.1^-6,K.1^2,K.1^-8,K.1^-1,K.1^-3,K.1^7,K.1^4,K.1^4,K.1^-4,K.1^-4,K.1^-1,K.1^-1,K.1^-5,K.1^-5,K.1^-8,K.1^-8,K.1^8,K.1^8,K.1^-6,K.1^-6,K.1^7,K.1^-3,K.1^-8,K.1,K.1^-7,K.1^5,K.1^4,K.1^-3,K.1^5,K.1^4,K.1^6,K.1^2,K.1^-7,K.1^6,K.1^2,K.1^-8,K.1,K.1^-3,K.1^-7,K.1^-7,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^5,K.1^5,K.1^6,K.1^6,K.1^3,K.1^3,K.1^-3,K.1^7,K.1^8,K.1^-1,K.1^3,K.1^-5,K.1^-4,K.1^3,K.1^-5,K.1^-4,K.1^-6,K.1^-2,K.1^7,K.1^-6,K.1^-2,K.1^8,K.1,K.1^-5,K.1^-6,K.1^7,K.1^2,K.1,K.1^-3,K.1^-6,K.1^-2,K.1^3,K.1^7,K.1,K.1^-5,K.1^8,K.1^8,K.1^2,K.1^3,K.1^-6,K.1^-8,K.1^8,K.1^-5,K.1^-4,K.1,K.1^-7,K.1^8,K.1^6,K.1^-8,K.1^-4,K.1^-3,K.1^5,K.1^-3,K.1^5,K.1^6,K.1^5,K.1^2,K.1^-8,K.1^-7,K.1^4,K.1^-2,K.1^-2,K.1^2,K.1^7,K.1^-1,K.1^3,K.1^3,K.1^4,K.1^4,K.1^-1,K.1^-7,K.1^-4,K.1^-2,K.1^-5,K.1^4,K.1^-1,K.1^-1,K.1^-3,K.1^-8,K.1^-6,K.1^-7,K.1^6,K.1^-4,K.1^7,K.1^6,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^8,K.1^-4,K.1^5,K.1^-2,K.1^2,K.1^7,K.1^-6,K.1^3,K.1^-5,K.1^-3,K.1,K.1^-1,K.1^4,K.1^-8,K.1^-7,K.1^6,K.1^3,K.1^-1,K.1^-7,K.1^4,K.1^-1,K.1^-5,K.1^5,K.1^6,K.1^-5,K.1^2,K.1^-4,K.1^7,K.1^2,K.1^-8,K.1^-3,K.1^3,K.1^-8,K.1^6,K.1^-8,K.1^7,K.1,K.1^-2,K.1,K.1^4,K.1^7,K.1^-7,K.1^-4,K.1^-5,K.1^6,K.1^3,K.1^-6,K.1^-3,K.1^-6,K.1^8,K.1^5,K.1^8,K.1^-2,K.1,K.1^4,K.1^-2,K.1^-3,K.1^-6,K.1^8,K.1^5,K.1^2,K.1^-1,K.1^-4,K.1^-7,K.1^4,K.1^-5,K.1^-8,K.1^7,K.1,K.1^-4,K.1^-7,K.1^3,K.1^8,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^5,K.1^6,K.1^-6,K.1^-1,K.1^4,K.1^6,K.1^7,K.1^4,K.1,K.1^2,K.1^-5,K.1,K.1^6,K.1^7,K.1^-6,K.1^-7,K.1^-3,K.1^-1,K.1^8,K.1^5,K.1^-8,K.1^-6,K.1^-6,K.1^6,K.1^-4,K.1^8,K.1^-1,K.1^-7,K.1^7,K.1^3,K.1^8,K.1^3,K.1^-5,K.1^2,K.1^-5,K.1^6,K.1^-4,K.1,K.1^-7,K.1^-3,K.1^5,K.1^-8,K.1,K.1^4,K.1^7,K.1^-2,K.1^-2,K.1^-8,K.1^4,K.1^3,K.1^2,K.1^-5,K.1^-4,K.1^-6,K.1^2,K.1^5,K.1^8,K.1^-3,K.1^-3,K.1^-7,K.1^-2,K.1^5,K.1^-4,K.1^-8,K.1^-1,K.1^-2,K.1^3,K.1^6,K.1^-8,K.1^-5,K.1^5,K.1^2,K.1^-1,K.1^3,K.1^-3,K.1^8,K.1,K.1^7,K.1^-7,K.1^-4,K.1^-6,K.1^-5,K.1^5,K.1^3,K.1^2,K.1^-3,K.1^8,K.1^2,K.1^-5,K.1,K.1^-8,K.1^-6,K.1^5,K.1^-2,K.1^4,K.1^-4,K.1^-4,K.1^-6,K.1,K.1^6,K.1^-1,K.1^-2,K.1^7,K.1^3,K.1^6,K.1^4,K.1^7,K.1^-3,K.1^-1,K.1^-7,K.1^-8,K.1^8,K.1^-2,K.1^4,K.1^-7,K.1,K.1^7,K.1^7,K.1^4,K.1^4,K.1^2,K.1^2,K.1^5,K.1^5,K.1^-5,K.1^-5,K.1^-8,K.1^-8,K.1^-3,K.1^-3,K.1^-7,K.1^-7,K.1^-8,K.1^-1,K.1^-3,K.1^-5,K.1^4,K.1^-3,K.1^-5,K.1^4,K.1^-6,K.1^2,K.1^7,K.1^-6,K.1^2,K.1^-8,K.1^-1,K.1^3,K.1^-4,K.1^-4,K.1^-1,K.1^-1,K.1,K.1,K.1^-2,K.1^-2,K.1^8,K.1^8,K.1^-6,K.1^-6,K.1^6,K.1^6,K.1^3,K.1^-7,K.1^8,K.1,K.1^7,K.1^5,K.1^-4,K.1^3,K.1^5,K.1^-4,K.1^6,K.1^-2,K.1^-7,K.1^6,K.1^-2,K.1^8,K.1,K.1^3,K.1^-7,K.1^-4,K.1^-4,K.1^4,K.1^4,K.1,K.1,K.1^5,K.1^5,K.1^8,K.1^8,K.1^-8,K.1^-8,K.1^6,K.1^6,K.1^-7,K.1^3,K.1^8,K.1^-1,K.1^7,K.1^-5,K.1^-4,K.1^3,K.1^-5,K.1^-4,K.1^-6,K.1^-2,K.1^7,K.1^-6,K.1^-2,K.1^8,K.1^-1,K.1^3,K.1^7,K.1^7,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-5,K.1^-5,K.1^-6,K.1^-6,K.1^-3,K.1^-3,K.1^3,K.1^-7,K.1^-8,K.1,K.1^-3,K.1^5,K.1^4,K.1^-3,K.1^5,K.1^4,K.1^6,K.1^2,K.1^-7,K.1^6,K.1^2,K.1^-8,K.1^-1,K.1^5,K.1^6,K.1^-7,K.1^-2,K.1^-1,K.1^3,K.1^6,K.1^2,K.1^-3,K.1^-7,K.1^-1,K.1^5,K.1^-8,K.1^-8,K.1^-2,K.1^-3,K.1^6,K.1^8,K.1^-8,K.1^5,K.1^4,K.1^-1,K.1^7,K.1^-8,K.1^-6,K.1^8,K.1^4,K.1^3,K.1^-5,K.1^3,K.1^-5,K.1^-6,K.1^-5,K.1^-2,K.1^8,K.1^7,K.1^-4,K.1^2,K.1^2,K.1^-2,K.1^-7,K.1,K.1^-3,K.1^-3,K.1^-4,K.1^-4,K.1,K.1^7,K.1^4,K.1^2,K.1^5,K.1^-4,K.1,K.1,K.1^3,K.1^8,K.1^6,K.1^7,K.1^-6,K.1^4,K.1^-7,K.1^-6,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-7,K.1^-5,K.1^2,K.1^6,K.1^-6,K.1^-4,K.1,K.1^8,K.1^-2,K.1^-8,K.1^-3,K.1^3,K.1^5,K.1^7,K.1^4,K.1^-1,K.1^8,K.1^3,K.1^4,K.1^5,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-6,K.1^-5,K.1^-4,K.1^-6,K.1^7,K.1^-8,K.1^8,K.1^7,K.1^-1,K.1^7,K.1^-4,K.1^-3,K.1^6,K.1^-3,K.1^5,K.1^-4,K.1^4,K.1^-5,K.1^-2,K.1^-1,K.1^8,K.1,K.1^-8,K.1,K.1^-7,K.1^2,K.1^-7,K.1^6,K.1^-3,K.1^5,K.1^6,K.1^-8,K.1,K.1^-7,K.1^2,K.1^-6,K.1^3,K.1^-5,K.1^4,K.1^5,K.1^-2,K.1^7,K.1^-4,K.1^-3,K.1^-5,K.1^4,K.1^8,K.1^-7,K.1^-8,K.1^6,K.1^-6,K.1^3,K.1^2,K.1^-1,K.1,K.1^3,K.1^5,K.1^-1,K.1^-4,K.1^5,K.1^-3,K.1^-6,K.1^-2,K.1^-3,K.1^-1,K.1^-4,K.1,K.1^4,K.1^-8,K.1^3,K.1^-7,K.1^2,K.1^7,K.1,K.1,K.1^-1,K.1^-5,K.1^-7,K.1^3,K.1^4,K.1^-4,K.1^8,K.1^-7,K.1^8,K.1^-2,K.1^-6,K.1^-2,K.1^-1,K.1^-5,K.1^-3,K.1^4,K.1^-8,K.1^2,K.1^7,K.1^-3,K.1^5,K.1^-4,K.1^6,K.1^6,K.1^7,K.1^5,K.1^8,K.1^-6,K.1^-2,K.1^-5,K.1,K.1^-6,K.1^2,K.1^-7,K.1^-8,K.1^-8,K.1^4,K.1^6,K.1^2,K.1^-5,K.1^7,K.1^3,K.1^6,K.1^8,K.1^-1,K.1^7,K.1^-2,K.1^2,K.1^-6,K.1^3,K.1^8,K.1^-8,K.1^-7,K.1^-3,K.1^-4,K.1^4,K.1^-5,K.1,K.1^-2,K.1^2,K.1^8,K.1^-6,K.1^-8,K.1^-7,K.1^-6,K.1^-2,K.1^-3,K.1^7,K.1,K.1^2,K.1^6,K.1^5,K.1^-5,K.1^-5,K.1,K.1^-3,K.1^-1,K.1^3,K.1^6,K.1^-4,K.1^8,K.1^-1,K.1^5,K.1^-4,K.1^-8,K.1^3,K.1^4,K.1^7,K.1^-7,K.1^6,K.1^5,K.1^4,K.1^-3,K.1^-4,K.1^-4,K.1^5,K.1^5,K.1^-6,K.1^-6,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^7,K.1^7,K.1^-8,K.1^-8,K.1^4,K.1^4,K.1^7,K.1^3,K.1^-8,K.1^-2,K.1^5,K.1^-8,K.1^-2,K.1^5,K.1,K.1^-6,K.1^-4,K.1,K.1^-6,K.1^7,K.1^3,K.1^8,K.1^-5,K.1^-5,K.1^3,K.1^3,K.1^-3,K.1^-3,K.1^6,K.1^6,K.1^-7,K.1^-7,K.1,K.1,K.1^-1,K.1^-1,K.1^8,K.1^4,K.1^-7,K.1^-3,K.1^-4,K.1^2,K.1^-5,K.1^8,K.1^2,K.1^-5,K.1^-1,K.1^6,K.1^4,K.1^-1,K.1^6,K.1^-7,K.1^-3,K.1^8,K.1^4,K.1^-5,K.1^-5,K.1^5,K.1^5,K.1^-3,K.1^-3,K.1^2,K.1^2,K.1^-7,K.1^-7,K.1^7,K.1^7,K.1^-1,K.1^-1,K.1^4,K.1^8,K.1^-7,K.1^3,K.1^-4,K.1^-2,K.1^-5,K.1^8,K.1^-2,K.1^-5,K.1,K.1^6,K.1^-4,K.1,K.1^6,K.1^-7,K.1^3,K.1^8,K.1^-4,K.1^-4,K.1^3,K.1^3,K.1^-6,K.1^-6,K.1^6,K.1^6,K.1^-2,K.1^-2,K.1,K.1,K.1^-8,K.1^-8,K.1^8,K.1^4,K.1^7,K.1^-3,K.1^-8,K.1^2,K.1^5,K.1^-8,K.1^2,K.1^5,K.1^-1,K.1^-6,K.1^4,K.1^-1,K.1^-6,K.1^7,K.1^3,K.1^2,K.1^-1,K.1^4,K.1^6,K.1^3,K.1^8,K.1^-1,K.1^-6,K.1^-8,K.1^4,K.1^3,K.1^2,K.1^7,K.1^7,K.1^6,K.1^-8,K.1^-1,K.1^-7,K.1^7,K.1^2,K.1^5,K.1^3,K.1^-4,K.1^7,K.1,K.1^-7,K.1^5,K.1^8,K.1^-2,K.1^8,K.1^-2,K.1,K.1^-2,K.1^6,K.1^-7,K.1^-4,K.1^-5,K.1^-6,K.1^-6,K.1^6,K.1^4,K.1^-3,K.1^-8,K.1^-8,K.1^-5,K.1^-5,K.1^-3,K.1^-4,K.1^5,K.1^-6,K.1^2,K.1^-5,K.1^-3,K.1^-3,K.1^8,K.1^-7,K.1^-1,K.1^-4,K.1,K.1^5,K.1^4,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^7,K.1^5,K.1^-2,K.1^-6,K.1^6,K.1^4,K.1^-1,K.1^-8,K.1^2,K.1^8,K.1^3,K.1^-3,K.1^-5,K.1^-7,K.1^-4,K.1,K.1^-8,K.1^-3,K.1^-4,K.1^-5,K.1^-3,K.1^2,K.1^-2,K.1,K.1^2,K.1^6,K.1^5,K.1^4,K.1^6,K.1^-7,K.1^8,K.1^-8,K.1^-7,K.1,K.1^-7,K.1^4,K.1^3,K.1^-6,K.1^3,K.1^-5,K.1^4,K.1^-4,K.1^5,K.1^2,K.1,K.1^-8,K.1^-1,K.1^8,K.1^-1,K.1^7,K.1^-2,K.1^7,K.1^-6,K.1^3,K.1^-5,K.1^-6,K.1^8,K.1^-1,K.1^7,K.1^-2,K.1^6,K.1^-3,K.1^5,K.1^-4,K.1^-5,K.1^2,K.1^-7,K.1^4,K.1^3,K.1^5,K.1^-4,K.1^-8,K.1^7,K.1^8,K.1^-6,K.1^6,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^-5,K.1,K.1^4,K.1^-5,K.1^3,K.1^6,K.1^2,K.1^3,K.1,K.1^4,K.1^-1,K.1^-4,K.1^8,K.1^-3,K.1^7,K.1^-2,K.1^-7,K.1^-1,K.1^-1,K.1,K.1^5,K.1^7,K.1^-3,K.1^-4,K.1^4,K.1^-8,K.1^7,K.1^-8,K.1^2,K.1^6,K.1^2,K.1,K.1^5,K.1^3,K.1^-4,K.1^8,K.1^-2,K.1^-7,K.1^3,K.1^-5,K.1^4,K.1^-6,K.1^-6,K.1^-7,K.1^-5,K.1^-8,K.1^6,K.1^2,K.1^5,K.1^-1,K.1^6,K.1^-2,K.1^7,K.1^8,K.1^8,K.1^-4,K.1^-6,K.1^-2,K.1^5,K.1^-7,K.1^-3,K.1^-6,K.1^-8,K.1,K.1^-7,K.1^2,K.1^-2,K.1^6,K.1^-3,K.1^-8,K.1^8,K.1^7,K.1^3,K.1^4,K.1^-4,K.1^5,K.1^-1,K.1^2,K.1^-2,K.1^-8,K.1^6,K.1^8,K.1^7,K.1^6,K.1^2,K.1^3,K.1^-7,K.1^-1,K.1^-2,K.1^-6,K.1^-5,K.1^5,K.1^5,K.1^-1,K.1^3,K.1,K.1^-3,K.1^-6,K.1^4,K.1^-8,K.1,K.1^-5,K.1^4,K.1^8,K.1^-3,K.1^-4,K.1^-7,K.1^7,K.1^-6,K.1^-5,K.1^-4,K.1^3,K.1^4,K.1^4,K.1^-5,K.1^-5,K.1^6,K.1^6,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-7,K.1^-7,K.1^8,K.1^8,K.1^-4,K.1^-4,K.1^-7,K.1^-3,K.1^8,K.1^2,K.1^-5,K.1^8,K.1^2,K.1^-5,K.1^-1,K.1^6,K.1^4,K.1^-1,K.1^6,K.1^-7,K.1^-3,K.1^-8,K.1^5,K.1^5,K.1^-3,K.1^-3,K.1^3,K.1^3,K.1^-6,K.1^-6,K.1^7,K.1^7,K.1^-1,K.1^-1,K.1,K.1,K.1^-8,K.1^-4,K.1^7,K.1^3,K.1^4,K.1^-2,K.1^5,K.1^-8,K.1^-2,K.1^5,K.1,K.1^-6,K.1^-4,K.1,K.1^-6,K.1^7,K.1^3,K.1^-8,K.1^-4,K.1^5,K.1^5,K.1^-5,K.1^-5,K.1^3,K.1^3,K.1^-2,K.1^-2,K.1^7,K.1^7,K.1^-7,K.1^-7,K.1,K.1,K.1^-4,K.1^-8,K.1^7,K.1^-3,K.1^4,K.1^2,K.1^5,K.1^-8,K.1^2,K.1^5,K.1^-1,K.1^-6,K.1^4,K.1^-1,K.1^-6,K.1^7,K.1^-3,K.1^-8,K.1^4,K.1^4,K.1^-3,K.1^-3,K.1^6,K.1^6,K.1^-6,K.1^-6,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^8,K.1^8,K.1^-8,K.1^-4,K.1^-7,K.1^3,K.1^8,K.1^-2,K.1^-5,K.1^8,K.1^-2,K.1^-5,K.1,K.1^6,K.1^-4,K.1,K.1^6,K.1^-7,K.1^-3,K.1^-2,K.1,K.1^-4,K.1^-6,K.1^-3,K.1^-8,K.1,K.1^6,K.1^8,K.1^-4,K.1^-3,K.1^-2,K.1^-7,K.1^-7,K.1^-6,K.1^8,K.1,K.1^7,K.1^-7,K.1^-2,K.1^-5,K.1^-3,K.1^4,K.1^-7,K.1^-1,K.1^7,K.1^-5,K.1^-8,K.1^2,K.1^-8,K.1^2,K.1^-1,K.1^2,K.1^-6,K.1^7,K.1^4,K.1^5,K.1^6,K.1^6,K.1^-6,K.1^-4,K.1^3,K.1^8,K.1^8,K.1^5,K.1^5,K.1^3,K.1^4,K.1^-5,K.1^6,K.1^-2,K.1^5,K.1^3,K.1^3,K.1^-8,K.1^7,K.1,K.1^4,K.1^-1,K.1^-5,K.1^-4,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-6,K.1^3,K.1^-8,K.1^-7,K.1^7,K.1^-1,K.1^-4,K.1^2,K.1^8,K.1^-2,K.1^-5,K.1^5,K.1^-3,K.1^6,K.1,K.1^4,K.1^2,K.1^5,K.1,K.1^-3,K.1^5,K.1^8,K.1^-8,K.1^4,K.1^8,K.1^7,K.1^3,K.1^-1,K.1^7,K.1^6,K.1^-2,K.1^2,K.1^6,K.1^4,K.1^6,K.1^-1,K.1^-5,K.1^-7,K.1^-5,K.1^-3,K.1^-1,K.1,K.1^3,K.1^8,K.1^4,K.1^2,K.1^-4,K.1^-2,K.1^-4,K.1^-6,K.1^-8,K.1^-6,K.1^-7,K.1^-5,K.1^-3,K.1^-7,K.1^-2,K.1^-4,K.1^-6,K.1^-8,K.1^7,K.1^5,K.1^3,K.1,K.1^-3,K.1^8,K.1^6,K.1^-1,K.1^-5,K.1^3,K.1,K.1^2,K.1^-6,K.1^-2,K.1^-7,K.1^7,K.1^5,K.1^-8,K.1^4,K.1^-4,K.1^5,K.1^-3,K.1^4,K.1^-1,K.1^-3,K.1^-5,K.1^7,K.1^8,K.1^-5,K.1^4,K.1^-1,K.1^-4,K.1,K.1^-2,K.1^5,K.1^-6,K.1^-8,K.1^6,K.1^-4,K.1^-4,K.1^4,K.1^3,K.1^-6,K.1^5,K.1,K.1^-1,K.1^2,K.1^-6,K.1^2,K.1^8,K.1^7,K.1^8,K.1^4,K.1^3,K.1^-5,K.1,K.1^-2,K.1^-8,K.1^6,K.1^-5,K.1^-3,K.1^-1,K.1^-7,K.1^-7,K.1^6,K.1^-3,K.1^2,K.1^7,K.1^8,K.1^3,K.1^-4,K.1^7,K.1^-8,K.1^-6,K.1^-2,K.1^-2,K.1,K.1^-7,K.1^-8,K.1^3,K.1^6,K.1^5,K.1^-7,K.1^2,K.1^4,K.1^6,K.1^8,K.1^-8,K.1^7,K.1^5,K.1^2,K.1^-2,K.1^-6,K.1^-5,K.1^-1,K.1,K.1^3,K.1^-4,K.1^8,K.1^-8,K.1^2,K.1^7,K.1^-2,K.1^-6,K.1^7,K.1^8,K.1^-5,K.1^6,K.1^-4,K.1^-8,K.1^-7,K.1^-3,K.1^3,K.1^3,K.1^-4,K.1^-5,K.1^4,K.1^5,K.1^-7,K.1^-1,K.1^2,K.1^4,K.1^-3,K.1^-1,K.1^-2,K.1^5,K.1,K.1^6,K.1^-6,K.1^-7,K.1^-3,K.1,K.1^-5,K.1^-1,K.1^-1,K.1^-3,K.1^-3,K.1^7,K.1^7,K.1^-8,K.1^-8,K.1^8,K.1^8,K.1^6,K.1^6,K.1^-2,K.1^-2,K.1,K.1,K.1^6,K.1^5,K.1^-2,K.1^8,K.1^-3,K.1^-2,K.1^8,K.1^-3,K.1^-4,K.1^7,K.1^-1,K.1^-4,K.1^7,K.1^6,K.1^5,K.1^2,K.1^3,K.1^3,K.1^5,K.1^5,K.1^-5,K.1^-5,K.1^-7,K.1^-7,K.1^-6,K.1^-6,K.1^-4,K.1^-4,K.1^4,K.1^4,K.1^2,K.1,K.1^-6,K.1^-5,K.1^-1,K.1^-8,K.1^3,K.1^2,K.1^-8,K.1^3,K.1^4,K.1^-7,K.1,K.1^4,K.1^-7,K.1^-6,K.1^-5,K.1^2,K.1,K.1^3,K.1^3,K.1^-3,K.1^-3,K.1^-5,K.1^-5,K.1^-8,K.1^-8,K.1^-6,K.1^-6,K.1^6,K.1^6,K.1^4,K.1^4,K.1,K.1^2,K.1^-6,K.1^5,K.1^-1,K.1^8,K.1^3,K.1^2,K.1^8,K.1^3,K.1^-4,K.1^-7,K.1^-1,K.1^-4,K.1^-7,K.1^-6,K.1^5,K.1^2,K.1^-1,K.1^-1,K.1^5,K.1^5,K.1^7,K.1^7,K.1^-7,K.1^-7,K.1^8,K.1^8,K.1^-4,K.1^-4,K.1^-2,K.1^-2,K.1^2,K.1,K.1^6,K.1^-5,K.1^-2,K.1^-8,K.1^-3,K.1^-2,K.1^-8,K.1^-3,K.1^4,K.1^7,K.1,K.1^4,K.1^7,K.1^6,K.1^5,K.1^-8,K.1^4,K.1,K.1^-7,K.1^5,K.1^2,K.1^4,K.1^7,K.1^-2,K.1,K.1^5,K.1^-8,K.1^6,K.1^6,K.1^-7,K.1^-2,K.1^4,K.1^-6,K.1^6,K.1^-8,K.1^-3,K.1^5,K.1^-1,K.1^6,K.1^-4,K.1^-6,K.1^-3,K.1^2,K.1^8,K.1^2,K.1^8,K.1^-4,K.1^8,K.1^-7,K.1^-6,K.1^-1,K.1^3,K.1^7,K.1^7,K.1^-7,K.1,K.1^-5,K.1^-2,K.1^-2,K.1^3,K.1^3,K.1^-5,K.1^-1,K.1^-3,K.1^7,K.1^-8,K.1^3,K.1^-5,K.1^-5,K.1^2,K.1^-6,K.1^4,K.1^-1,K.1^-4,K.1^-3,K.1,K.1^-4,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^6,K.1^-3,K.1^8,K.1^7,K.1^-7,K.1,K.1^4,K.1^-2,K.1^-8,K.1^2,K.1^5,K.1^-5,K.1^3,K.1^-6,K.1^-1,K.1^-4,K.1^-2,K.1^-5,K.1^-1,K.1^3,K.1^-5,K.1^-8,K.1^8,K.1^-4,K.1^-8,K.1^-7,K.1^-3,K.1,K.1^-7,K.1^-6,K.1^2,K.1^-2,K.1^-6,K.1^-4,K.1^-6,K.1,K.1^5,K.1^7,K.1^5,K.1^3,K.1,K.1^-1,K.1^-3,K.1^-8,K.1^-4,K.1^-2,K.1^4,K.1^2,K.1^4,K.1^6,K.1^8,K.1^6,K.1^7,K.1^5,K.1^3,K.1^7,K.1^2,K.1^4,K.1^6,K.1^8,K.1^-7,K.1^-5,K.1^-3,K.1^-1,K.1^3,K.1^-8,K.1^-6,K.1,K.1^5,K.1^-3,K.1^-1,K.1^-2,K.1^6,K.1^2,K.1^7,K.1^-7,K.1^-5,K.1^8,K.1^-4,K.1^4,K.1^-5,K.1^3,K.1^-4,K.1,K.1^3,K.1^5,K.1^-7,K.1^-8,K.1^5,K.1^-4,K.1,K.1^4,K.1^-1,K.1^2,K.1^-5,K.1^6,K.1^8,K.1^-6,K.1^4,K.1^4,K.1^-4,K.1^-3,K.1^6,K.1^-5,K.1^-1,K.1,K.1^-2,K.1^6,K.1^-2,K.1^-8,K.1^-7,K.1^-8,K.1^-4,K.1^-3,K.1^5,K.1^-1,K.1^2,K.1^8,K.1^-6,K.1^5,K.1^3,K.1,K.1^7,K.1^7,K.1^-6,K.1^3,K.1^-2,K.1^-7,K.1^-8,K.1^-3,K.1^4,K.1^-7,K.1^8,K.1^6,K.1^2,K.1^2,K.1^-1,K.1^7,K.1^8,K.1^-3,K.1^-6,K.1^-5,K.1^7,K.1^-2,K.1^-4,K.1^-6,K.1^-8,K.1^8,K.1^-7,K.1^-5,K.1^-2,K.1^2,K.1^6,K.1^5,K.1,K.1^-1,K.1^-3,K.1^4,K.1^-8,K.1^8,K.1^-2,K.1^-7,K.1^2,K.1^6,K.1^-7,K.1^-8,K.1^5,K.1^-6,K.1^4,K.1^8,K.1^7,K.1^3,K.1^-3,K.1^-3,K.1^4,K.1^5,K.1^-4,K.1^-5,K.1^7,K.1,K.1^-2,K.1^-4,K.1^3,K.1,K.1^2,K.1^-5,K.1^-1,K.1^-6,K.1^6,K.1^7,K.1^3,K.1^-1,K.1^5,K.1,K.1,K.1^3,K.1^3,K.1^-7,K.1^-7,K.1^8,K.1^8,K.1^-8,K.1^-8,K.1^-6,K.1^-6,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-6,K.1^-5,K.1^2,K.1^-8,K.1^3,K.1^2,K.1^-8,K.1^3,K.1^4,K.1^-7,K.1,K.1^4,K.1^-7,K.1^-6,K.1^-5,K.1^-2,K.1^-3,K.1^-3,K.1^-5,K.1^-5,K.1^5,K.1^5,K.1^7,K.1^7,K.1^6,K.1^6,K.1^4,K.1^4,K.1^-4,K.1^-4,K.1^-2,K.1^-1,K.1^6,K.1^5,K.1,K.1^8,K.1^-3,K.1^-2,K.1^8,K.1^-3,K.1^-4,K.1^7,K.1^-1,K.1^-4,K.1^7,K.1^6,K.1^5,K.1^-2,K.1^-1,K.1^-3,K.1^-3,K.1^3,K.1^3,K.1^5,K.1^5,K.1^8,K.1^8,K.1^6,K.1^6,K.1^-6,K.1^-6,K.1^-4,K.1^-4,K.1^-1,K.1^-2,K.1^6,K.1^-5,K.1,K.1^-8,K.1^-3,K.1^-2,K.1^-8,K.1^-3,K.1^4,K.1^7,K.1,K.1^4,K.1^7,K.1^6,K.1^-5,K.1^-2,K.1,K.1,K.1^-5,K.1^-5,K.1^-7,K.1^-7,K.1^7,K.1^7,K.1^-8,K.1^-8,K.1^4,K.1^4,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-6,K.1^5,K.1^2,K.1^8,K.1^3,K.1^2,K.1^8,K.1^3,K.1^-4,K.1^-7,K.1^-1,K.1^-4,K.1^-7,K.1^-6,K.1^-5,K.1^8,K.1^-4,K.1^-1,K.1^7,K.1^-5,K.1^-2,K.1^-4,K.1^-7,K.1^2,K.1^-1,K.1^-5,K.1^8,K.1^-6,K.1^-6,K.1^7,K.1^2,K.1^-4,K.1^6,K.1^-6,K.1^8,K.1^3,K.1^-5,K.1,K.1^-6,K.1^4,K.1^6,K.1^3,K.1^-2,K.1^-8,K.1^-2,K.1^-8,K.1^4,K.1^-8,K.1^7,K.1^6,K.1,K.1^-3,K.1^-7,K.1^-7,K.1^7,K.1^-1,K.1^5,K.1^2,K.1^2,K.1^-3,K.1^-3,K.1^5,K.1,K.1^3,K.1^-7,K.1^8,K.1^-3,K.1^5,K.1^5,K.1^-2,K.1^6,K.1^-4,K.1,K.1^4,K.1^3,K.1^-1,K.1^4,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^-6,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^8,K.1^-4,K.1,K.1^4,K.1^-7,K.1^7,K.1^6,K.1^5,K.1^-2,K.1^-8,K.1^-4,K.1^7,K.1^-2,K.1^6,K.1^7,K.1,K.1^-1,K.1^-8,K.1,K.1^3,K.1^-6,K.1^2,K.1^3,K.1^5,K.1^4,K.1^-4,K.1^5,K.1^-8,K.1^5,K.1^2,K.1^-7,K.1^-3,K.1^-7,K.1^6,K.1^2,K.1^-2,K.1^-6,K.1,K.1^-8,K.1^-4,K.1^8,K.1^4,K.1^8,K.1^-5,K.1^-1,K.1^-5,K.1^-3,K.1^-7,K.1^6,K.1^-3,K.1^4,K.1^8,K.1^-5,K.1^-1,K.1^3,K.1^7,K.1^-6,K.1^-2,K.1^6,K.1,K.1^5,K.1^2,K.1^-7,K.1^-6,K.1^-2,K.1^-4,K.1^-5,K.1^4,K.1^-3,K.1^3,K.1^7,K.1^-1,K.1^-8,K.1^8,K.1^7,K.1^6,K.1^-8,K.1^2,K.1^6,K.1^-7,K.1^3,K.1,K.1^-7,K.1^-8,K.1^2,K.1^8,K.1^-2,K.1^4,K.1^7,K.1^-5,K.1^-1,K.1^5,K.1^8,K.1^8,K.1^-8,K.1^-6,K.1^-5,K.1^7,K.1^-2,K.1^2,K.1^-4,K.1^-5,K.1^-4,K.1,K.1^3,K.1,K.1^-8,K.1^-6,K.1^-7,K.1^-2,K.1^4,K.1^-1,K.1^5,K.1^-7,K.1^6,K.1^2,K.1^-3,K.1^-3,K.1^5,K.1^6,K.1^-4,K.1^3,K.1,K.1^-6,K.1^8,K.1^3,K.1^-1,K.1^-5,K.1^4,K.1^4,K.1^-2,K.1^-3,K.1^-1,K.1^-6,K.1^5,K.1^7,K.1^-3,K.1^-4,K.1^-8,K.1^5,K.1,K.1^-1,K.1^3,K.1^7,K.1^-4,K.1^4,K.1^-5,K.1^-7,K.1^2,K.1^-2,K.1^-6,K.1^8,K.1,K.1^-1,K.1^-4,K.1^3,K.1^4,K.1^-5,K.1^3,K.1,K.1^-7,K.1^5,K.1^8,K.1^-1,K.1^-3,K.1^6,K.1^-6,K.1^-6,K.1^8,K.1^-7,K.1^-8,K.1^7,K.1^-3,K.1^2,K.1^-4,K.1^-8,K.1^6,K.1^2,K.1^4,K.1^7,K.1^-2,K.1^5,K.1^-5,K.1^-3,K.1^6,K.1^-2,K.1^-7,K.1^2,K.1^2,K.1^6,K.1^6,K.1^3,K.1^3,K.1^-1,K.1^-1,K.1,K.1,K.1^5,K.1^5,K.1^4,K.1^4,K.1^-2,K.1^-2,K.1^5,K.1^7,K.1^4,K.1,K.1^6,K.1^4,K.1,K.1^6,K.1^8,K.1^3,K.1^2,K.1^8,K.1^3,K.1^5,K.1^7,K.1^-4,K.1^-6,K.1^-6,K.1^7,K.1^7,K.1^-7,K.1^-7,K.1^-3,K.1^-3,K.1^-5,K.1^-5,K.1^8,K.1^8,K.1^-8,K.1^-8,K.1^-4,K.1^-2,K.1^-5,K.1^-7,K.1^2,K.1^-1,K.1^-6,K.1^-4,K.1^-1,K.1^-6,K.1^-8,K.1^-3,K.1^-2,K.1^-8,K.1^-3,K.1^-5,K.1^-7,K.1^-4,K.1^-2,K.1^-6,K.1^-6,K.1^6,K.1^6,K.1^-7,K.1^-7,K.1^-1,K.1^-1,K.1^-5,K.1^-5,K.1^5,K.1^5,K.1^-8,K.1^-8,K.1^-2,K.1^-4,K.1^-5,K.1^7,K.1^2,K.1,K.1^-6,K.1^-4,K.1,K.1^-6,K.1^8,K.1^-3,K.1^2,K.1^8,K.1^-3,K.1^-5,K.1^7,K.1^-4,K.1^2,K.1^2,K.1^7,K.1^7,K.1^3,K.1^3,K.1^-3,K.1^-3,K.1,K.1,K.1^8,K.1^8,K.1^4,K.1^4,K.1^-4,K.1^-2,K.1^5,K.1^-7,K.1^4,K.1^-1,K.1^6,K.1^4,K.1^-1,K.1^6,K.1^-8,K.1^3,K.1^-2,K.1^-8,K.1^3,K.1^5,K.1^7,K.1^-1,K.1^-8,K.1^-2,K.1^-3,K.1^7,K.1^-4,K.1^-8,K.1^3,K.1^4,K.1^-2,K.1^7,K.1^-1,K.1^5,K.1^5,K.1^-3,K.1^4,K.1^-8,K.1^-5,K.1^5,K.1^-1,K.1^6,K.1^7,K.1^2,K.1^5,K.1^8,K.1^-5,K.1^6,K.1^-4,K.1,K.1^-4,K.1,K.1^8,K.1,K.1^-3,K.1^-5,K.1^2,K.1^-6,K.1^3,K.1^3,K.1^-3,K.1^-2,K.1^-7,K.1^4,K.1^4,K.1^-6,K.1^-6,K.1^-7,K.1^2,K.1^6,K.1^3,K.1^-1,K.1^-6,K.1^-7,K.1^-7,K.1^-4,K.1^-5,K.1^-8,K.1^2,K.1^8,K.1^6,K.1^-2,K.1^8,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^6,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-8,K.1^4,K.1^-1,K.1^-4,K.1^7,K.1^-7,K.1^-6,K.1^-5,K.1^2,K.1^8,K.1^4,K.1^-7,K.1^2,K.1^-6,K.1^-7,K.1^-1,K.1,K.1^8,K.1^-1,K.1^-3,K.1^6,K.1^-2,K.1^-3,K.1^-5,K.1^-4,K.1^4,K.1^-5,K.1^8,K.1^-5,K.1^-2,K.1^7,K.1^3,K.1^7,K.1^-6,K.1^-2,K.1^2,K.1^6,K.1^-1,K.1^8,K.1^4,K.1^-8,K.1^-4,K.1^-8,K.1^5,K.1,K.1^5,K.1^3,K.1^7,K.1^-6,K.1^3,K.1^-4,K.1^-8,K.1^5,K.1,K.1^-3,K.1^-7,K.1^6,K.1^2,K.1^-6,K.1^-1,K.1^-5,K.1^-2,K.1^7,K.1^6,K.1^2,K.1^4,K.1^5,K.1^-4,K.1^3,K.1^-3,K.1^-7,K.1,K.1^8,K.1^-8,K.1^-7,K.1^-6,K.1^8,K.1^-2,K.1^-6,K.1^7,K.1^-3,K.1^-1,K.1^7,K.1^8,K.1^-2,K.1^-8,K.1^2,K.1^-4,K.1^-7,K.1^5,K.1,K.1^-5,K.1^-8,K.1^-8,K.1^8,K.1^6,K.1^5,K.1^-7,K.1^2,K.1^-2,K.1^4,K.1^5,K.1^4,K.1^-1,K.1^-3,K.1^-1,K.1^8,K.1^6,K.1^7,K.1^2,K.1^-4,K.1,K.1^-5,K.1^7,K.1^-6,K.1^-2,K.1^3,K.1^3,K.1^-5,K.1^-6,K.1^4,K.1^-3,K.1^-1,K.1^6,K.1^-8,K.1^-3,K.1,K.1^5,K.1^-4,K.1^-4,K.1^2,K.1^3,K.1,K.1^6,K.1^-5,K.1^-7,K.1^3,K.1^4,K.1^8,K.1^-5,K.1^-1,K.1,K.1^-3,K.1^-7,K.1^4,K.1^-4,K.1^5,K.1^7,K.1^-2,K.1^2,K.1^6,K.1^-8,K.1^-1,K.1,K.1^4,K.1^-3,K.1^-4,K.1^5,K.1^-3,K.1^-1,K.1^7,K.1^-5,K.1^-8,K.1,K.1^3,K.1^-6,K.1^6,K.1^6,K.1^-8,K.1^7,K.1^8,K.1^-7,K.1^3,K.1^-2,K.1^4,K.1^8,K.1^-6,K.1^-2,K.1^-4,K.1^-7,K.1^2,K.1^-5,K.1^5,K.1^3,K.1^-6,K.1^2,K.1^7,K.1^-2,K.1^-2,K.1^-6,K.1^-6,K.1^-3,K.1^-3,K.1,K.1,K.1^-1,K.1^-1,K.1^-5,K.1^-5,K.1^-4,K.1^-4,K.1^2,K.1^2,K.1^-5,K.1^-7,K.1^-4,K.1^-1,K.1^-6,K.1^-4,K.1^-1,K.1^-6,K.1^-8,K.1^-3,K.1^-2,K.1^-8,K.1^-3,K.1^-5,K.1^-7,K.1^4,K.1^6,K.1^6,K.1^-7,K.1^-7,K.1^7,K.1^7,K.1^3,K.1^3,K.1^5,K.1^5,K.1^-8,K.1^-8,K.1^8,K.1^8,K.1^4,K.1^2,K.1^5,K.1^7,K.1^-2,K.1,K.1^6,K.1^4,K.1,K.1^6,K.1^8,K.1^3,K.1^2,K.1^8,K.1^3,K.1^5,K.1^7,K.1^4,K.1^2,K.1^6,K.1^6,K.1^-6,K.1^-6,K.1^7,K.1^7,K.1,K.1,K.1^5,K.1^5,K.1^-5,K.1^-5,K.1^8,K.1^8,K.1^2,K.1^4,K.1^5,K.1^-7,K.1^-2,K.1^-1,K.1^6,K.1^4,K.1^-1,K.1^6,K.1^-8,K.1^3,K.1^-2,K.1^-8,K.1^3,K.1^5,K.1^-7,K.1^4,K.1^-2,K.1^-2,K.1^-7,K.1^-7,K.1^-3,K.1^-3,K.1^3,K.1^3,K.1^-1,K.1^-1,K.1^-8,K.1^-8,K.1^-4,K.1^-4,K.1^4,K.1^2,K.1^-5,K.1^7,K.1^-4,K.1,K.1^-6,K.1^-4,K.1,K.1^-6,K.1^8,K.1^-3,K.1^2,K.1^8,K.1^-3,K.1^-5,K.1^-7,K.1,K.1^8,K.1^2,K.1^3,K.1^-7,K.1^4,K.1^8,K.1^-3,K.1^-4,K.1^2,K.1^-7,K.1,K.1^-5,K.1^-5,K.1^3,K.1^-4,K.1^8,K.1^5,K.1^-5,K.1,K.1^-6,K.1^-7,K.1^-2,K.1^-5,K.1^-8,K.1^5,K.1^-6,K.1^4,K.1^-1,K.1^4,K.1^-1,K.1^-8,K.1^-1,K.1^3,K.1^5,K.1^-2,K.1^6,K.1^-3,K.1^-3,K.1^3,K.1^2,K.1^7,K.1^-4,K.1^-4,K.1^6,K.1^6,K.1^7,K.1^-2,K.1^-6,K.1^-3,K.1,K.1^6,K.1^7,K.1^7,K.1^4,K.1^5,K.1^8,K.1^-2,K.1^-8,K.1^-6,K.1^2,K.1^-8,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-4,K.1^2,K.1^6,K.1,K.1^-1,K.1^5,K.1^3,K.1^7,K.1^-6,K.1^-7,K.1^8,K.1^-8,K.1^-2,K.1^4,K.1^-5,K.1^-3,K.1^7,K.1^-8,K.1^-5,K.1^-2,K.1^-8,K.1^-6,K.1^6,K.1^-3,K.1^-6,K.1^-1,K.1^2,K.1^5,K.1^-1,K.1^4,K.1^-7,K.1^7,K.1^4,K.1^-3,K.1^4,K.1^5,K.1^8,K.1,K.1^8,K.1^-2,K.1^5,K.1^-5,K.1^2,K.1^-6,K.1^-3,K.1^7,K.1^3,K.1^-7,K.1^3,K.1^-4,K.1^6,K.1^-4,K.1,K.1^8,K.1^-2,K.1,K.1^-7,K.1^3,K.1^-4,K.1^6,K.1^-1,K.1^-8,K.1^2,K.1^-5,K.1^-2,K.1^-6,K.1^4,K.1^5,K.1^8,K.1^2,K.1^-5,K.1^7,K.1^-4,K.1^-7,K.1,K.1^-1,K.1^-8,K.1^6,K.1^-3,K.1^3,K.1^-8,K.1^-2,K.1^-3,K.1^5,K.1^-2,K.1^8,K.1^-1,K.1^-6,K.1^8,K.1^-3,K.1^5,K.1^3,K.1^-5,K.1^-7,K.1^-8,K.1^-4,K.1^6,K.1^4,K.1^3,K.1^3,K.1^-3,K.1^2,K.1^-4,K.1^-8,K.1^-5,K.1^5,K.1^7,K.1^-4,K.1^7,K.1^-6,K.1^-1,K.1^-6,K.1^-3,K.1^2,K.1^8,K.1^-5,K.1^-7,K.1^6,K.1^4,K.1^8,K.1^-2,K.1^5,K.1,K.1,K.1^4,K.1^-2,K.1^7,K.1^-1,K.1^-6,K.1^2,K.1^3,K.1^-1,K.1^6,K.1^-4,K.1^-7,K.1^-7,K.1^-5,K.1,K.1^6,K.1^2,K.1^4,K.1^-8,K.1,K.1^7,K.1^-3,K.1^4,K.1^-6,K.1^6,K.1^-1,K.1^-8,K.1^7,K.1^-7,K.1^-4,K.1^8,K.1^5,K.1^-5,K.1^2,K.1^3,K.1^-6,K.1^6,K.1^7,K.1^-1,K.1^-7,K.1^-4,K.1^-1,K.1^-6,K.1^8,K.1^4,K.1^3,K.1^6,K.1,K.1^-2,K.1^2,K.1^2,K.1^3,K.1^8,K.1^-3,K.1^-8,K.1,K.1^5,K.1^7,K.1^-3,K.1^-2,K.1^5,K.1^-7,K.1^-8,K.1^-5,K.1^4,K.1^-4,K.1,K.1^-2,K.1^-5,K.1^8,K.1^5,K.1^5,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^6,K.1^6,K.1^-6,K.1^-6,K.1^4,K.1^4,K.1^-7,K.1^-7,K.1^-5,K.1^-5,K.1^4,K.1^-8,K.1^-7,K.1^-6,K.1^-2,K.1^-7,K.1^-6,K.1^-2,K.1^3,K.1^-1,K.1^5,K.1^3,K.1^-1,K.1^4,K.1^-8,K.1^7,K.1^2,K.1^2,K.1^-8,K.1^-8,K.1^8,K.1^8,K.1,K.1,K.1^-4,K.1^-4,K.1^3,K.1^3,K.1^-3,K.1^-3,K.1^7,K.1^-5,K.1^-4,K.1^8,K.1^5,K.1^6,K.1^2,K.1^7,K.1^6,K.1^2,K.1^-3,K.1,K.1^-5,K.1^-3,K.1,K.1^-4,K.1^8,K.1^7,K.1^-5,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^8,K.1^8,K.1^6,K.1^6,K.1^-4,K.1^-4,K.1^4,K.1^4,K.1^-3,K.1^-3,K.1^-5,K.1^7,K.1^-4,K.1^-8,K.1^5,K.1^-6,K.1^2,K.1^7,K.1^-6,K.1^2,K.1^3,K.1,K.1^5,K.1^3,K.1,K.1^-4,K.1^-8,K.1^7,K.1^5,K.1^5,K.1^-8,K.1^-8,K.1^-1,K.1^-1,K.1,K.1,K.1^-6,K.1^-6,K.1^3,K.1^3,K.1^-7,K.1^-7,K.1^7,K.1^-5,K.1^4,K.1^8,K.1^-7,K.1^6,K.1^-2,K.1^-7,K.1^6,K.1^-2,K.1^-3,K.1^-1,K.1^-5,K.1^-3,K.1^-1,K.1^4,K.1^-8,K.1^6,K.1^-3,K.1^-5,K.1,K.1^-8,K.1^7,K.1^-3,K.1^-1,K.1^-7,K.1^-5,K.1^-8,K.1^6,K.1^4,K.1^4,K.1,K.1^-7,K.1^-3,K.1^-4,K.1^4,K.1^6,K.1^-2,K.1^-8,K.1^5,K.1^4,K.1^3,K.1^-4,K.1^-2,K.1^7,K.1^-6,K.1^7,K.1^-6,K.1^3,K.1^-6,K.1,K.1^-4,K.1^5,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-5,K.1^8,K.1^-7,K.1^-7,K.1^2,K.1^2,K.1^8,K.1^5,K.1^-2,K.1^-1,K.1^6,K.1^2,K.1^8,K.1^8,K.1^7,K.1^-4,K.1^-3,K.1^5,K.1^3,K.1^-2,K.1^-5,K.1^3,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^4,K.1^-2,K.1^-6,K.1^-1,K.1,K.1^-5,K.1^-3,K.1^-7,K.1^6,K.1^7,K.1^-8,K.1^8,K.1^2,K.1^-4,K.1^5,K.1^3,K.1^-7,K.1^8,K.1^5,K.1^2,K.1^8,K.1^6,K.1^-6,K.1^3,K.1^6,K.1,K.1^-2,K.1^-5,K.1,K.1^-4,K.1^7,K.1^-7,K.1^-4,K.1^3,K.1^-4,K.1^-5,K.1^-8,K.1^-1,K.1^-8,K.1^2,K.1^-5,K.1^5,K.1^-2,K.1^6,K.1^3,K.1^-7,K.1^-3,K.1^7,K.1^-3,K.1^4,K.1^-6,K.1^4,K.1^-1,K.1^-8,K.1^2,K.1^-1,K.1^7,K.1^-3,K.1^4,K.1^-6,K.1,K.1^8,K.1^-2,K.1^5,K.1^2,K.1^6,K.1^-4,K.1^-5,K.1^-8,K.1^-2,K.1^5,K.1^-7,K.1^4,K.1^7,K.1^-1,K.1,K.1^8,K.1^-6,K.1^3,K.1^-3,K.1^8,K.1^2,K.1^3,K.1^-5,K.1^2,K.1^-8,K.1,K.1^6,K.1^-8,K.1^3,K.1^-5,K.1^-3,K.1^5,K.1^7,K.1^8,K.1^4,K.1^-6,K.1^-4,K.1^-3,K.1^-3,K.1^3,K.1^-2,K.1^4,K.1^8,K.1^5,K.1^-5,K.1^-7,K.1^4,K.1^-7,K.1^6,K.1,K.1^6,K.1^3,K.1^-2,K.1^-8,K.1^5,K.1^7,K.1^-6,K.1^-4,K.1^-8,K.1^2,K.1^-5,K.1^-1,K.1^-1,K.1^-4,K.1^2,K.1^-7,K.1,K.1^6,K.1^-2,K.1^-3,K.1,K.1^-6,K.1^4,K.1^7,K.1^7,K.1^5,K.1^-1,K.1^-6,K.1^-2,K.1^-4,K.1^8,K.1^-1,K.1^-7,K.1^3,K.1^-4,K.1^6,K.1^-6,K.1,K.1^8,K.1^-7,K.1^7,K.1^4,K.1^-8,K.1^-5,K.1^5,K.1^-2,K.1^-3,K.1^6,K.1^-6,K.1^-7,K.1,K.1^7,K.1^4,K.1,K.1^6,K.1^-8,K.1^-4,K.1^-3,K.1^-6,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-3,K.1^-8,K.1^3,K.1^8,K.1^-1,K.1^-5,K.1^-7,K.1^3,K.1^2,K.1^-5,K.1^7,K.1^8,K.1^5,K.1^-4,K.1^4,K.1^-1,K.1^2,K.1^5,K.1^-8,K.1^-5,K.1^-5,K.1^2,K.1^2,K.1,K.1,K.1^-6,K.1^-6,K.1^6,K.1^6,K.1^-4,K.1^-4,K.1^7,K.1^7,K.1^5,K.1^5,K.1^-4,K.1^8,K.1^7,K.1^6,K.1^2,K.1^7,K.1^6,K.1^2,K.1^-3,K.1,K.1^-5,K.1^-3,K.1,K.1^-4,K.1^8,K.1^-7,K.1^-2,K.1^-2,K.1^8,K.1^8,K.1^-8,K.1^-8,K.1^-1,K.1^-1,K.1^4,K.1^4,K.1^-3,K.1^-3,K.1^3,K.1^3,K.1^-7,K.1^5,K.1^4,K.1^-8,K.1^-5,K.1^-6,K.1^-2,K.1^-7,K.1^-6,K.1^-2,K.1^3,K.1^-1,K.1^5,K.1^3,K.1^-1,K.1^4,K.1^-8,K.1^-7,K.1^5,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-8,K.1^-8,K.1^-6,K.1^-6,K.1^4,K.1^4,K.1^-4,K.1^-4,K.1^3,K.1^3,K.1^5,K.1^-7,K.1^4,K.1^8,K.1^-5,K.1^6,K.1^-2,K.1^-7,K.1^6,K.1^-2,K.1^-3,K.1^-1,K.1^-5,K.1^-3,K.1^-1,K.1^4,K.1^8,K.1^-7,K.1^-5,K.1^-5,K.1^8,K.1^8,K.1,K.1,K.1^-1,K.1^-1,K.1^6,K.1^6,K.1^-3,K.1^-3,K.1^7,K.1^7,K.1^-7,K.1^5,K.1^-4,K.1^-8,K.1^7,K.1^-6,K.1^2,K.1^7,K.1^-6,K.1^2,K.1^3,K.1,K.1^5,K.1^3,K.1,K.1^-4,K.1^8,K.1^-6,K.1^3,K.1^5,K.1^-1,K.1^8,K.1^-7,K.1^3,K.1,K.1^7,K.1^5,K.1^8,K.1^-6,K.1^-4,K.1^-4,K.1^-1,K.1^7,K.1^3,K.1^4,K.1^-4,K.1^-6,K.1^2,K.1^8,K.1^-5,K.1^-4,K.1^-3,K.1^4,K.1^2,K.1^-7,K.1^6,K.1^-7,K.1^6,K.1^-3,K.1^6,K.1^-1,K.1^4,K.1^-5,K.1^-2,K.1,K.1,K.1^-1,K.1^5,K.1^-8,K.1^7,K.1^7,K.1^-2,K.1^-2,K.1^-8,K.1^-5,K.1^2,K.1,K.1^-6,K.1^-2,K.1^-8,K.1^-8,K.1^-7,K.1^4,K.1^3,K.1^-5,K.1^-3,K.1^2,K.1^5,K.1^-3,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-3,K.1^-7,K.1^-4,K.1^5,K.1^-5,K.1^8,K.1^-2,K.1,K.1^4,K.1^-1,K.1^6,K.1^-6,K.1^7,K.1^3,K.1^-8,K.1^2,K.1,K.1^-6,K.1^-8,K.1^7,K.1^-6,K.1^4,K.1^-4,K.1^2,K.1^4,K.1^-5,K.1^-7,K.1^8,K.1^-5,K.1^3,K.1^-1,K.1,K.1^3,K.1^2,K.1^3,K.1^8,K.1^6,K.1^5,K.1^6,K.1^7,K.1^8,K.1^-8,K.1^-7,K.1^4,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-3,K.1^-4,K.1^-3,K.1^5,K.1^6,K.1^7,K.1^5,K.1^-1,K.1^-2,K.1^-3,K.1^-4,K.1^-5,K.1^-6,K.1^-7,K.1^-8,K.1^7,K.1^4,K.1^3,K.1^8,K.1^6,K.1^-7,K.1^-8,K.1,K.1^-3,K.1^-1,K.1^5,K.1^-5,K.1^-6,K.1^-4,K.1^2,K.1^-2,K.1^-6,K.1^7,K.1^2,K.1^8,K.1^7,K.1^6,K.1^-5,K.1^4,K.1^6,K.1^2,K.1^8,K.1^-2,K.1^-8,K.1^-1,K.1^-6,K.1^-3,K.1^-4,K.1^3,K.1^-2,K.1^-2,K.1^2,K.1^-7,K.1^-3,K.1^-6,K.1^-8,K.1^8,K.1,K.1^-3,K.1,K.1^4,K.1^-5,K.1^4,K.1^2,K.1^-7,K.1^6,K.1^-8,K.1^-1,K.1^-4,K.1^3,K.1^6,K.1^7,K.1^8,K.1^5,K.1^5,K.1^3,K.1^7,K.1,K.1^-5,K.1^4,K.1^-7,K.1^-2,K.1^-5,K.1^-4,K.1^-3,K.1^-1,K.1^-1,K.1^-8,K.1^5,K.1^-4,K.1^-7,K.1^3,K.1^-6,K.1^5,K.1,K.1^2,K.1^3,K.1^4,K.1^-4,K.1^-5,K.1^-6,K.1,K.1^-1,K.1^-3,K.1^6,K.1^8,K.1^-8,K.1^-7,K.1^-2,K.1^4,K.1^-4,K.1,K.1^-5,K.1^-1,K.1^-3,K.1^-5,K.1^4,K.1^6,K.1^3,K.1^-2,K.1^-4,K.1^5,K.1^7,K.1^-7,K.1^-7,K.1^-2,K.1^6,K.1^2,K.1^-6,K.1^5,K.1^8,K.1,K.1^2,K.1^7,K.1^8,K.1^-1,K.1^-6,K.1^-8,K.1^3,K.1^-3,K.1^5,K.1^7,K.1^-8,K.1^6,K.1^8,K.1^8,K.1^7,K.1^7,K.1^-5,K.1^-5,K.1^-4,K.1^-4,K.1^4,K.1^4,K.1^3,K.1^3,K.1^-1,K.1^-1,K.1^-8,K.1^-8,K.1^3,K.1^-6,K.1^-1,K.1^4,K.1^7,K.1^-1,K.1^4,K.1^7,K.1^-2,K.1^-5,K.1^8,K.1^-2,K.1^-5,K.1^3,K.1^-6,K.1,K.1^-7,K.1^-7,K.1^-6,K.1^-6,K.1^6,K.1^6,K.1^5,K.1^5,K.1^-3,K.1^-3,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1,K.1^-8,K.1^-3,K.1^6,K.1^8,K.1^-4,K.1^-7,K.1,K.1^-4,K.1^-7,K.1^2,K.1^5,K.1^-8,K.1^2,K.1^5,K.1^-3,K.1^6,K.1,K.1^-8,K.1^-7,K.1^-7,K.1^7,K.1^7,K.1^6,K.1^6,K.1^-4,K.1^-4,K.1^-3,K.1^-3,K.1^3,K.1^3,K.1^2,K.1^2,K.1^-8,K.1,K.1^-3,K.1^-6,K.1^8,K.1^4,K.1^-7,K.1,K.1^4,K.1^-7,K.1^-2,K.1^5,K.1^8,K.1^-2,K.1^5,K.1^-3,K.1^-6,K.1,K.1^8,K.1^8,K.1^-6,K.1^-6,K.1^-5,K.1^-5,K.1^5,K.1^5,K.1^4,K.1^4,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-8,K.1^3,K.1^6,K.1^-1,K.1^-4,K.1^7,K.1^-1,K.1^-4,K.1^7,K.1^2,K.1^-5,K.1^-8,K.1^2,K.1^-5,K.1^3,K.1^-6,K.1^-4,K.1^2,K.1^-8,K.1^5,K.1^-6,K.1,K.1^2,K.1^-5,K.1^-1,K.1^-8,K.1^-6,K.1^-4,K.1^3,K.1^3,K.1^5,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^-4,K.1^7,K.1^-6,K.1^8,K.1^3,K.1^-2,K.1^-3,K.1^7,K.1,K.1^4,K.1,K.1^4,K.1^-2,K.1^4,K.1^5,K.1^-3,K.1^8,K.1^-7,K.1^-5,K.1^-5,K.1^5,K.1^-8,K.1^6,K.1^-1,K.1^-1,K.1^-7,K.1^-7,K.1^6,K.1^8,K.1^7,K.1^-5,K.1^-4,K.1^-7,K.1^6,K.1^6,K.1,K.1^-3,K.1^2,K.1^8,K.1^-2,K.1^7,K.1^-8,K.1^-2,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^3,K.1^7,K.1^4,K.1^-5,K.1^5,K.1^-8,K.1^2,K.1^-1,K.1^-4,K.1,K.1^-6,K.1^6,K.1^-7,K.1^-3,K.1^8,K.1^-2,K.1^-1,K.1^6,K.1^8,K.1^-7,K.1^6,K.1^-4,K.1^4,K.1^-2,K.1^-4,K.1^5,K.1^7,K.1^-8,K.1^5,K.1^-3,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^-3,K.1^-8,K.1^-6,K.1^-5,K.1^-6,K.1^-7,K.1^-8,K.1^8,K.1^7,K.1^-4,K.1^-2,K.1^-1,K.1^2,K.1,K.1^2,K.1^3,K.1^4,K.1^3,K.1^-5,K.1^-6,K.1^-7,K.1^-5,K.1,K.1^2,K.1^3,K.1^4,K.1^5,K.1^6,K.1^7,K.1^8,K.1^-7,K.1^-4,K.1^-3,K.1^-8,K.1^-6,K.1^7,K.1^8,K.1^-1,K.1^3,K.1,K.1^-5,K.1^5,K.1^6,K.1^4,K.1^-2,K.1^2,K.1^6,K.1^-7,K.1^-2,K.1^-8,K.1^-7,K.1^-6,K.1^5,K.1^-4,K.1^-6,K.1^-2,K.1^-8,K.1^2,K.1^8,K.1,K.1^6,K.1^3,K.1^4,K.1^-3,K.1^2,K.1^2,K.1^-2,K.1^7,K.1^3,K.1^6,K.1^8,K.1^-8,K.1^-1,K.1^3,K.1^-1,K.1^-4,K.1^5,K.1^-4,K.1^-2,K.1^7,K.1^-6,K.1^8,K.1,K.1^4,K.1^-3,K.1^-6,K.1^-7,K.1^-8,K.1^-5,K.1^-5,K.1^-3,K.1^-7,K.1^-1,K.1^5,K.1^-4,K.1^7,K.1^2,K.1^5,K.1^4,K.1^3,K.1,K.1,K.1^8,K.1^-5,K.1^4,K.1^7,K.1^-3,K.1^6,K.1^-5,K.1^-1,K.1^-2,K.1^-3,K.1^-4,K.1^4,K.1^5,K.1^6,K.1^-1,K.1,K.1^3,K.1^-6,K.1^-8,K.1^8,K.1^7,K.1^2,K.1^-4,K.1^4,K.1^-1,K.1^5,K.1,K.1^3,K.1^5,K.1^-4,K.1^-6,K.1^-3,K.1^2,K.1^4,K.1^-5,K.1^-7,K.1^7,K.1^7,K.1^2,K.1^-6,K.1^-2,K.1^6,K.1^-5,K.1^-8,K.1^-1,K.1^-2,K.1^-7,K.1^-8,K.1,K.1^6,K.1^8,K.1^-3,K.1^3,K.1^-5,K.1^-7,K.1^8,K.1^-6,K.1^-8,K.1^-8,K.1^-7,K.1^-7,K.1^5,K.1^5,K.1^4,K.1^4,K.1^-4,K.1^-4,K.1^-3,K.1^-3,K.1,K.1,K.1^8,K.1^8,K.1^-3,K.1^6,K.1,K.1^-4,K.1^-7,K.1,K.1^-4,K.1^-7,K.1^2,K.1^5,K.1^-8,K.1^2,K.1^5,K.1^-3,K.1^6,K.1^-1,K.1^7,K.1^7,K.1^6,K.1^6,K.1^-6,K.1^-6,K.1^-5,K.1^-5,K.1^3,K.1^3,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^8,K.1^3,K.1^-6,K.1^-8,K.1^4,K.1^7,K.1^-1,K.1^4,K.1^7,K.1^-2,K.1^-5,K.1^8,K.1^-2,K.1^-5,K.1^3,K.1^-6,K.1^-1,K.1^8,K.1^7,K.1^7,K.1^-7,K.1^-7,K.1^-6,K.1^-6,K.1^4,K.1^4,K.1^3,K.1^3,K.1^-3,K.1^-3,K.1^-2,K.1^-2,K.1^8,K.1^-1,K.1^3,K.1^6,K.1^-8,K.1^-4,K.1^7,K.1^-1,K.1^-4,K.1^7,K.1^2,K.1^-5,K.1^-8,K.1^2,K.1^-5,K.1^3,K.1^6,K.1^-1,K.1^-8,K.1^-8,K.1^6,K.1^6,K.1^5,K.1^5,K.1^-5,K.1^-5,K.1^-4,K.1^-4,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1^8,K.1^-3,K.1^-6,K.1,K.1^4,K.1^-7,K.1,K.1^4,K.1^-7,K.1^-2,K.1^5,K.1^8,K.1^-2,K.1^5,K.1^-3,K.1^6,K.1^4,K.1^-2,K.1^8,K.1^-5,K.1^6,K.1^-1,K.1^-2,K.1^5,K.1,K.1^8,K.1^6,K.1^4,K.1^-3,K.1^-3,K.1^-5,K.1,K.1^-2,K.1^3,K.1^-3,K.1^4,K.1^-7,K.1^6,K.1^-8,K.1^-3,K.1^2,K.1^3,K.1^-7,K.1^-1,K.1^-4,K.1^-1,K.1^-4,K.1^2,K.1^-4,K.1^-5,K.1^3,K.1^-8,K.1^7,K.1^5,K.1^5,K.1^-5,K.1^8,K.1^-6,K.1,K.1,K.1^7,K.1^7,K.1^-6,K.1^-8,K.1^-7,K.1^5,K.1^4,K.1^7,K.1^-6,K.1^-6,K.1^-1,K.1^3,K.1^-2,K.1^-8,K.1^2,K.1^-7,K.1^8,K.1^2,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^3,K.1^-8,K.1^8,K.1^-6,K.1^-7,K.1^-5,K.1^-3,K.1^5,K.1^4,K.1^-4,K.1^-1,K.1^2,K.1^6,K.1^7,K.1^-5,K.1^-4,K.1^6,K.1^-1,K.1^-4,K.1^-3,K.1^3,K.1^7,K.1^-3,K.1^8,K.1,K.1^-6,K.1^8,K.1^2,K.1^5,K.1^-5,K.1^2,K.1^7,K.1^2,K.1^-6,K.1^4,K.1^-8,K.1^4,K.1^-1,K.1^-6,K.1^6,K.1,K.1^-3,K.1^7,K.1^-5,K.1^-7,K.1^5,K.1^-7,K.1^-2,K.1^3,K.1^-2,K.1^-8,K.1^4,K.1^-1,K.1^-8,K.1^5,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^-4,K.1,K.1^6,K.1^-1,K.1^-3,K.1^2,K.1^-6,K.1^4,K.1,K.1^6,K.1^-5,K.1^-2,K.1^5,K.1^-8,K.1^8,K.1^-4,K.1^3,K.1^7,K.1^-7,K.1^-4,K.1^-1,K.1^7,K.1^-6,K.1^-1,K.1^4,K.1^8,K.1^-3,K.1^4,K.1^7,K.1^-6,K.1^-7,K.1^6,K.1^5,K.1^-4,K.1^-2,K.1^3,K.1^2,K.1^-7,K.1^-7,K.1^7,K.1,K.1^-2,K.1^-4,K.1^6,K.1^-6,K.1^-5,K.1^-2,K.1^-5,K.1^-3,K.1^8,K.1^-3,K.1^7,K.1,K.1^4,K.1^6,K.1^5,K.1^3,K.1^2,K.1^4,K.1^-1,K.1^-6,K.1^-8,K.1^-8,K.1^2,K.1^-1,K.1^-5,K.1^8,K.1^-3,K.1,K.1^-7,K.1^8,K.1^3,K.1^-2,K.1^5,K.1^5,K.1^6,K.1^-8,K.1^3,K.1,K.1^2,K.1^-4,K.1^-8,K.1^-5,K.1^7,K.1^2,K.1^-3,K.1^3,K.1^8,K.1^-4,K.1^-5,K.1^5,K.1^-2,K.1^4,K.1^-6,K.1^6,K.1,K.1^-7,K.1^-3,K.1^3,K.1^-5,K.1^8,K.1^5,K.1^-2,K.1^8,K.1^-3,K.1^4,K.1^2,K.1^-7,K.1^3,K.1^-8,K.1^-1,K.1,K.1,K.1^-7,K.1^4,K.1^7,K.1^-4,K.1^-8,K.1^-6,K.1^-5,K.1^7,K.1^-1,K.1^-6,K.1^5,K.1^-4,K.1^6,K.1^2,K.1^-2,K.1^-8,K.1^-1,K.1^6,K.1^4,K.1^-6,K.1^-6,K.1^-1,K.1^-1,K.1^8,K.1^8,K.1^3,K.1^3,K.1^-3,K.1^-3,K.1^2,K.1^2,K.1^5,K.1^5,K.1^6,K.1^6,K.1^2,K.1^-4,K.1^5,K.1^-3,K.1^-1,K.1^5,K.1^-3,K.1^-1,K.1^-7,K.1^8,K.1^-6,K.1^-7,K.1^8,K.1^2,K.1^-4,K.1^-5,K.1,K.1,K.1^-4,K.1^-4,K.1^4,K.1^4,K.1^-8,K.1^-8,K.1^-2,K.1^-2,K.1^-7,K.1^-7,K.1^7,K.1^7,K.1^-5,K.1^6,K.1^-2,K.1^4,K.1^-6,K.1^3,K.1,K.1^-5,K.1^3,K.1,K.1^7,K.1^-8,K.1^6,K.1^7,K.1^-8,K.1^-2,K.1^4,K.1^-5,K.1^6,K.1,K.1,K.1^-1,K.1^-1,K.1^4,K.1^4,K.1^3,K.1^3,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^7,K.1^7,K.1^6,K.1^-5,K.1^-2,K.1^-4,K.1^-6,K.1^-3,K.1,K.1^-5,K.1^-3,K.1,K.1^-7,K.1^-8,K.1^-6,K.1^-7,K.1^-8,K.1^-2,K.1^-4,K.1^-5,K.1^-6,K.1^-6,K.1^-4,K.1^-4,K.1^8,K.1^8,K.1^-8,K.1^-8,K.1^-3,K.1^-3,K.1^-7,K.1^-7,K.1^5,K.1^5,K.1^-5,K.1^6,K.1^2,K.1^4,K.1^5,K.1^3,K.1^-1,K.1^5,K.1^3,K.1^-1,K.1^7,K.1^8,K.1^6,K.1^7,K.1^8,K.1^2,K.1^-4,K.1^3,K.1^7,K.1^6,K.1^-8,K.1^-4,K.1^-5,K.1^7,K.1^8,K.1^5,K.1^6,K.1^-4,K.1^3,K.1^2,K.1^2,K.1^-8,K.1^5,K.1^7,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^-4,K.1^-6,K.1^2,K.1^-7,K.1^-2,K.1^-1,K.1^-5,K.1^-3,K.1^-5,K.1^-3,K.1^-7,K.1^-3,K.1^-8,K.1^-2,K.1^-6,K.1,K.1^8,K.1^8,K.1^-8,K.1^6,K.1^4,K.1^5,K.1^5,K.1,K.1,K.1^4,K.1^-6,K.1^-1,K.1^8,K.1^3,K.1,K.1^4,K.1^4,K.1^-5,K.1^-2,K.1^7,K.1^-6,K.1^-7,K.1^-1,K.1^6,K.1^-7,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1^-3,K.1^8,K.1^-8,K.1^6,K.1^7,K.1^5,K.1^3,K.1^-5,K.1^-4,K.1^4,K.1,K.1^-2,K.1^-6,K.1^-7,K.1^5,K.1^4,K.1^-6,K.1,K.1^4,K.1^3,K.1^-3,K.1^-7,K.1^3,K.1^-8,K.1^-1,K.1^6,K.1^-8,K.1^-2,K.1^-5,K.1^5,K.1^-2,K.1^-7,K.1^-2,K.1^6,K.1^-4,K.1^8,K.1^-4,K.1,K.1^6,K.1^-6,K.1^-1,K.1^3,K.1^-7,K.1^5,K.1^7,K.1^-5,K.1^7,K.1^2,K.1^-3,K.1^2,K.1^8,K.1^-4,K.1,K.1^8,K.1^-5,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^4,K.1^-1,K.1^-6,K.1,K.1^3,K.1^-2,K.1^6,K.1^-4,K.1^-1,K.1^-6,K.1^5,K.1^2,K.1^-5,K.1^8,K.1^-8,K.1^4,K.1^-3,K.1^-7,K.1^7,K.1^4,K.1,K.1^-7,K.1^6,K.1,K.1^-4,K.1^-8,K.1^3,K.1^-4,K.1^-7,K.1^6,K.1^7,K.1^-6,K.1^-5,K.1^4,K.1^2,K.1^-3,K.1^-2,K.1^7,K.1^7,K.1^-7,K.1^-1,K.1^2,K.1^4,K.1^-6,K.1^6,K.1^5,K.1^2,K.1^5,K.1^3,K.1^-8,K.1^3,K.1^-7,K.1^-1,K.1^-4,K.1^-6,K.1^-5,K.1^-3,K.1^-2,K.1^-4,K.1,K.1^6,K.1^8,K.1^8,K.1^-2,K.1,K.1^5,K.1^-8,K.1^3,K.1^-1,K.1^7,K.1^-8,K.1^-3,K.1^2,K.1^-5,K.1^-5,K.1^-6,K.1^8,K.1^-3,K.1^-1,K.1^-2,K.1^4,K.1^8,K.1^5,K.1^-7,K.1^-2,K.1^3,K.1^-3,K.1^-8,K.1^4,K.1^5,K.1^-5,K.1^2,K.1^-4,K.1^6,K.1^-6,K.1^-1,K.1^7,K.1^3,K.1^-3,K.1^5,K.1^-8,K.1^-5,K.1^2,K.1^-8,K.1^3,K.1^-4,K.1^-2,K.1^7,K.1^-3,K.1^8,K.1,K.1^-1,K.1^-1,K.1^7,K.1^-4,K.1^-7,K.1^4,K.1^8,K.1^6,K.1^5,K.1^-7,K.1,K.1^6,K.1^-5,K.1^4,K.1^-6,K.1^-2,K.1^2,K.1^8,K.1,K.1^-6,K.1^-4,K.1^6,K.1^6,K.1,K.1,K.1^-8,K.1^-8,K.1^-3,K.1^-3,K.1^3,K.1^3,K.1^-2,K.1^-2,K.1^-5,K.1^-5,K.1^-6,K.1^-6,K.1^-2,K.1^4,K.1^-5,K.1^3,K.1,K.1^-5,K.1^3,K.1,K.1^7,K.1^-8,K.1^6,K.1^7,K.1^-8,K.1^-2,K.1^4,K.1^5,K.1^-1,K.1^-1,K.1^4,K.1^4,K.1^-4,K.1^-4,K.1^8,K.1^8,K.1^2,K.1^2,K.1^7,K.1^7,K.1^-7,K.1^-7,K.1^5,K.1^-6,K.1^2,K.1^-4,K.1^6,K.1^-3,K.1^-1,K.1^5,K.1^-3,K.1^-1,K.1^-7,K.1^8,K.1^-6,K.1^-7,K.1^8,K.1^2,K.1^-4,K.1^5,K.1^-6,K.1^-1,K.1^-1,K.1,K.1,K.1^-4,K.1^-4,K.1^-3,K.1^-3,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-7,K.1^-7,K.1^-6,K.1^5,K.1^2,K.1^4,K.1^6,K.1^3,K.1^-1,K.1^5,K.1^3,K.1^-1,K.1^7,K.1^8,K.1^6,K.1^7,K.1^8,K.1^2,K.1^4,K.1^5,K.1^6,K.1^6,K.1^4,K.1^4,K.1^-8,K.1^-8,K.1^8,K.1^8,K.1^3,K.1^3,K.1^7,K.1^7,K.1^-5,K.1^-5,K.1^5,K.1^-6,K.1^-2,K.1^-4,K.1^-5,K.1^-3,K.1,K.1^-5,K.1^-3,K.1,K.1^-7,K.1^-8,K.1^-6,K.1^-7,K.1^-8,K.1^-2,K.1^4,K.1^-3,K.1^-7,K.1^-6,K.1^8,K.1^4,K.1^5,K.1^-7,K.1^-8,K.1^-5,K.1^-6,K.1^4,K.1^-3,K.1^-2,K.1^-2,K.1^8,K.1^-5,K.1^-7,K.1^2,K.1^-2,K.1^-3,K.1,K.1^4,K.1^6,K.1^-2,K.1^7,K.1^2,K.1,K.1^5,K.1^3,K.1^5,K.1^3,K.1^7,K.1^3,K.1^8,K.1^2,K.1^6,K.1^-1,K.1^-8,K.1^-8,K.1^8,K.1^-6,K.1^-4,K.1^-5,K.1^-5,K.1^-1,K.1^-1,K.1^-4,K.1^6,K.1,K.1^-8,K.1^-3,K.1^-1,K.1^-4,K.1^-4,K.1^5,K.1^2,K.1^-7,K.1^6,K.1^7,K.1,K.1^-6,K.1^7,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-8,K.1^-7,K.1^-4,K.1^4,K.1^-3,K.1^5,K.1^6,K.1^7,K.1^-6,K.1^2,K.1^-2,K.1^8,K.1,K.1^3,K.1^-5,K.1^6,K.1^-2,K.1^3,K.1^8,K.1^-2,K.1^7,K.1^-7,K.1^-5,K.1^7,K.1^4,K.1^-8,K.1^-3,K.1^4,K.1,K.1^-6,K.1^6,K.1,K.1^-5,K.1,K.1^-3,K.1^2,K.1^-4,K.1^2,K.1^8,K.1^-3,K.1^3,K.1^-8,K.1^7,K.1^-5,K.1^6,K.1^5,K.1^-6,K.1^5,K.1^-1,K.1^-7,K.1^-1,K.1^-4,K.1^2,K.1^8,K.1^-4,K.1^-6,K.1^5,K.1^-1,K.1^-7,K.1^4,K.1^-2,K.1^-8,K.1^3,K.1^8,K.1^7,K.1,K.1^-3,K.1^2,K.1^-8,K.1^3,K.1^6,K.1^-1,K.1^-6,K.1^-4,K.1^4,K.1^-2,K.1^-7,K.1^-5,K.1^5,K.1^-2,K.1^8,K.1^-5,K.1^-3,K.1^8,K.1^2,K.1^4,K.1^7,K.1^2,K.1^-5,K.1^-3,K.1^5,K.1^3,K.1^-6,K.1^-2,K.1^-1,K.1^-7,K.1,K.1^5,K.1^5,K.1^-5,K.1^-8,K.1^-1,K.1^-2,K.1^3,K.1^-3,K.1^6,K.1^-1,K.1^6,K.1^7,K.1^4,K.1^7,K.1^-5,K.1^-8,K.1^2,K.1^3,K.1^-6,K.1^-7,K.1,K.1^2,K.1^8,K.1^-3,K.1^-4,K.1^-4,K.1,K.1^8,K.1^6,K.1^4,K.1^7,K.1^-8,K.1^5,K.1^4,K.1^-7,K.1^-1,K.1^-6,K.1^-6,K.1^3,K.1^-4,K.1^-7,K.1^-8,K.1,K.1^-2,K.1^-4,K.1^6,K.1^-5,K.1,K.1^7,K.1^-7,K.1^4,K.1^-2,K.1^6,K.1^-6,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^-8,K.1^5,K.1^7,K.1^-7,K.1^6,K.1^4,K.1^-6,K.1^-1,K.1^4,K.1^7,K.1^2,K.1,K.1^5,K.1^-7,K.1^-4,K.1^8,K.1^-8,K.1^-8,K.1^5,K.1^2,K.1^-5,K.1^-2,K.1^-4,K.1^-3,K.1^6,K.1^-5,K.1^8,K.1^-3,K.1^-6,K.1^-2,K.1^3,K.1,K.1^-1,K.1^-4,K.1^8,K.1^3,K.1^2,K.1^-3,K.1^-3,K.1^8,K.1^8,K.1^4,K.1^4,K.1^-7,K.1^-7,K.1^7,K.1^7,K.1,K.1,K.1^-6,K.1^-6,K.1^3,K.1^3,K.1,K.1^-2,K.1^-6,K.1^7,K.1^8,K.1^-6,K.1^7,K.1^8,K.1^5,K.1^4,K.1^-3,K.1^5,K.1^4,K.1,K.1^-2,K.1^6,K.1^-8,K.1^-8,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-4,K.1^-4,K.1^-1,K.1^-1,K.1^5,K.1^5,K.1^-5,K.1^-5,K.1^6,K.1^3,K.1^-1,K.1^2,K.1^-3,K.1^-7,K.1^-8,K.1^6,K.1^-7,K.1^-8,K.1^-5,K.1^-4,K.1^3,K.1^-5,K.1^-4,K.1^-1,K.1^2,K.1^6,K.1^3,K.1^-8,K.1^-8,K.1^8,K.1^8,K.1^2,K.1^2,K.1^-7,K.1^-7,K.1^-1,K.1^-1,K.1,K.1,K.1^-5,K.1^-5,K.1^3,K.1^6,K.1^-1,K.1^-2,K.1^-3,K.1^7,K.1^-8,K.1^6,K.1^7,K.1^-8,K.1^5,K.1^-4,K.1^-3,K.1^5,K.1^-4,K.1^-1,K.1^-2,K.1^6,K.1^-3,K.1^-3,K.1^-2,K.1^-2,K.1^4,K.1^4,K.1^-4,K.1^-4,K.1^7,K.1^7,K.1^5,K.1^5,K.1^-6,K.1^-6,K.1^6,K.1^3,K.1,K.1^2,K.1^-6,K.1^-7,K.1^8,K.1^-6,K.1^-7,K.1^8,K.1^-5,K.1^4,K.1^3,K.1^-5,K.1^4,K.1,K.1^-2,K.1^-7,K.1^-5,K.1^3,K.1^-4,K.1^-2,K.1^6,K.1^-5,K.1^4,K.1^-6,K.1^3,K.1^-2,K.1^-7,K.1,K.1,K.1^-4,K.1^-6,K.1^-5,K.1^-1,K.1,K.1^-7,K.1^8,K.1^-2,K.1^-3,K.1,K.1^5,K.1^-1,K.1^8,K.1^6,K.1^7,K.1^6,K.1^7,K.1^5,K.1^7,K.1^-4,K.1^-1,K.1^-3,K.1^-8,K.1^4,K.1^4,K.1^-4,K.1^3,K.1^2,K.1^-6,K.1^-6,K.1^-8,K.1^-8,K.1^2,K.1^-3,K.1^8,K.1^4,K.1^-7,K.1^-8,K.1^2,K.1^2,K.1^6,K.1^-1,K.1^-5,K.1^-3,K.1^5,K.1^8,K.1^3,K.1^5,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^8,K.1^7,K.1^4,K.1^-4,K.1^3,K.1^-5,K.1^-6,K.1^-7,K.1^6,K.1^-2,K.1^2,K.1^-8,K.1^-1,K.1^-3,K.1^5,K.1^-6,K.1^2,K.1^-3,K.1^-8,K.1^2,K.1^-7,K.1^7,K.1^5,K.1^-7,K.1^-4,K.1^8,K.1^3,K.1^-4,K.1^-1,K.1^6,K.1^-6,K.1^-1,K.1^5,K.1^-1,K.1^3,K.1^-2,K.1^4,K.1^-2,K.1^-8,K.1^3,K.1^-3,K.1^8,K.1^-7,K.1^5,K.1^-6,K.1^-5,K.1^6,K.1^-5,K.1,K.1^7,K.1,K.1^4,K.1^-2,K.1^-8,K.1^4,K.1^6,K.1^-5,K.1,K.1^7,K.1^-4,K.1^2,K.1^8,K.1^-3,K.1^-8,K.1^-7,K.1^-1,K.1^3,K.1^-2,K.1^8,K.1^-3,K.1^-6,K.1,K.1^6,K.1^4,K.1^-4,K.1^2,K.1^7,K.1^5,K.1^-5,K.1^2,K.1^-8,K.1^5,K.1^3,K.1^-8,K.1^-2,K.1^-4,K.1^-7,K.1^-2,K.1^5,K.1^3,K.1^-5,K.1^-3,K.1^6,K.1^2,K.1,K.1^7,K.1^-1,K.1^-5,K.1^-5,K.1^5,K.1^8,K.1,K.1^2,K.1^-3,K.1^3,K.1^-6,K.1,K.1^-6,K.1^-7,K.1^-4,K.1^-7,K.1^5,K.1^8,K.1^-2,K.1^-3,K.1^6,K.1^7,K.1^-1,K.1^-2,K.1^-8,K.1^3,K.1^4,K.1^4,K.1^-1,K.1^-8,K.1^-6,K.1^-4,K.1^-7,K.1^8,K.1^-5,K.1^-4,K.1^7,K.1,K.1^6,K.1^6,K.1^-3,K.1^4,K.1^7,K.1^8,K.1^-1,K.1^2,K.1^4,K.1^-6,K.1^5,K.1^-1,K.1^-7,K.1^7,K.1^-4,K.1^2,K.1^-6,K.1^6,K.1,K.1^-2,K.1^3,K.1^-3,K.1^8,K.1^-5,K.1^-7,K.1^7,K.1^-6,K.1^-4,K.1^6,K.1,K.1^-4,K.1^-7,K.1^-2,K.1^-1,K.1^-5,K.1^7,K.1^4,K.1^-8,K.1^8,K.1^8,K.1^-5,K.1^-2,K.1^5,K.1^2,K.1^4,K.1^3,K.1^-6,K.1^5,K.1^-8,K.1^3,K.1^6,K.1^2,K.1^-3,K.1^-1,K.1,K.1^4,K.1^-8,K.1^-3,K.1^-2,K.1^3,K.1^3,K.1^-8,K.1^-8,K.1^-4,K.1^-4,K.1^7,K.1^7,K.1^-7,K.1^-7,K.1^-1,K.1^-1,K.1^6,K.1^6,K.1^-3,K.1^-3,K.1^-1,K.1^2,K.1^6,K.1^-7,K.1^-8,K.1^6,K.1^-7,K.1^-8,K.1^-5,K.1^-4,K.1^3,K.1^-5,K.1^-4,K.1^-1,K.1^2,K.1^-6,K.1^8,K.1^8,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^4,K.1^4,K.1,K.1,K.1^-5,K.1^-5,K.1^5,K.1^5,K.1^-6,K.1^-3,K.1,K.1^-2,K.1^3,K.1^7,K.1^8,K.1^-6,K.1^7,K.1^8,K.1^5,K.1^4,K.1^-3,K.1^5,K.1^4,K.1,K.1^-2,K.1^-6,K.1^-3,K.1^8,K.1^8,K.1^-8,K.1^-8,K.1^-2,K.1^-2,K.1^7,K.1^7,K.1,K.1,K.1^-1,K.1^-1,K.1^5,K.1^5,K.1^-3,K.1^-6,K.1,K.1^2,K.1^3,K.1^-7,K.1^8,K.1^-6,K.1^-7,K.1^8,K.1^-5,K.1^4,K.1^3,K.1^-5,K.1^4,K.1,K.1^2,K.1^-6,K.1^3,K.1^3,K.1^2,K.1^2,K.1^-4,K.1^-4,K.1^4,K.1^4,K.1^-7,K.1^-7,K.1^-5,K.1^-5,K.1^6,K.1^6,K.1^-6,K.1^-3,K.1^-1,K.1^-2,K.1^6,K.1^7,K.1^-8,K.1^6,K.1^7,K.1^-8,K.1^5,K.1^-4,K.1^-3,K.1^5,K.1^-4,K.1^-1,K.1^2,K.1^7,K.1^5,K.1^-3,K.1^4,K.1^2,K.1^-6,K.1^5,K.1^-4,K.1^6,K.1^-3,K.1^2,K.1^7,K.1^-1,K.1^-1,K.1^4,K.1^6,K.1^5,K.1,K.1^-1,K.1^7,K.1^-8,K.1^2,K.1^3,K.1^-1,K.1^-5,K.1,K.1^-8,K.1^-6,K.1^-7,K.1^-6,K.1^-7,K.1^-5,K.1^-7,K.1^4,K.1,K.1^3,K.1^8,K.1^-4,K.1^-4,K.1^4,K.1^-3,K.1^-2,K.1^6,K.1^6,K.1^8,K.1^8,K.1^-2,K.1^3,K.1^-8,K.1^-4,K.1^7,K.1^8,K.1^-2,K.1^-2,K.1^-6,K.1,K.1^5,K.1^3,K.1^-5,K.1^-8,K.1^-3,K.1^-5,K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^-8,K.1^4,K.1^-5,K.1^2,K.1^-2,K.1^-7,K.1^6,K.1^-3,K.1^5,K.1^3,K.1^-1,K.1,K.1^-4,K.1^8,K.1^7,K.1^-6,K.1^-3,-1*K.1,-1*K.1^7,-1*K.1^-4,-1*K.1,-1*K.1^5,-1*K.1^-5,-1*K.1^-6,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^-7,-1*K.1^-2,-1*K.1^8,-1*K.1^3,-1*K.1^-3,-1*K.1^8,K.1^-6,K.1^8,K.1^-7,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-4,-1*K.1^-7,-1*K.1^7,-1*K.1^4,K.1^5,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^6,-1*K.1^-8,-1*K.1^-5,-1*K.1^-8,K.1^2,K.1^-1,K.1^-4,-1*K.1^2,K.1^3,K.1^6,K.1^-8,K.1^-5,K.1^-2,K.1,K.1^4,K.1^7,K.1^-4,K.1^5,K.1^8,K.1^-7,K.1^-1,K.1^4,K.1^7,K.1^-3,K.1^-8,K.1^3,K.1^2,K.1^-2,K.1,K.1^-5,K.1^-6,K.1^6,-1*K.1,-1*K.1^-4,K.1^-6,K.1^-7,K.1^-4,K.1^-1,K.1^-2,-1*K.1^5,-1*K.1^-1,-1*K.1^-6,-1*K.1^-7,-1*K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1^-8,K.1^-5,K.1^8,K.1^6,K.1^6,-1*K.1^-6,K.1^4,K.1^-8,K.1,K.1^7,-1*K.1^-7,K.1^-3,-1*K.1^-8,-1*K.1^-3,-1*K.1^5,K.1^-2,K.1^5,K.1^-6,-1*K.1^4,-1*K.1^-1,K.1^7,-1*K.1^3,K.1^-5,K.1^8,K.1^-1,K.1^-4,K.1^-7,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^-4,-1*K.1^-3,-1*K.1^-2,K.1^5,-1*K.1^4,-1*K.1^6,-1*K.1^-2,-1*K.1^-5,K.1^-8,K.1^3,K.1^3,-1*K.1^7,-1*K.1^2,-1*K.1^-5,K.1^4,-1*K.1^8,K.1,K.1^2,K.1^-3,-1*K.1^-6,K.1^8,K.1^5,K.1^-5,K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1^-7,-1*K.1^7,-1*K.1^4,-1*K.1^6,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1^-1,-1*K.1^8,-1*K.1^6,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^4,K.1^4,K.1^6,K.1^-1,K.1^-6,K.1,K.1^2,K.1^-7,K.1^-3,-1*K.1^-6,K.1^-4,-1*K.1^-7,K.1^3,-1*K.1,K.1^7,-1*K.1^8,K.1^-8,-1*K.1^2,-1*K.1^-4,-1*K.1^7,K.1^-1,-1*K.1^-7,K.1^-7,-1*K.1^-4,K.1^-4,K.1^-2,-1*K.1^-2,K.1^-5,-1*K.1^-5,-1*K.1^5,K.1^5,-1*K.1^8,K.1^8,K.1^3,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1^8,K.1,-1*K.1^3,K.1^5,K.1^-4,K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^6,-1*K.1^-2,K.1^-7,K.1^6,K.1^-2,K.1^8,-1*K.1,K.1^-3,K.1^4,-1*K.1^4,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^2,K.1^2,K.1^-8,-1*K.1^-8,K.1^6,-1*K.1^6,-1*K.1^-6,K.1^-6,-1*K.1^-3,K.1^7,K.1^-8,-1*K.1^-1,-1*K.1^-7,-1*K.1^-5,-1*K.1^4,-1*K.1^-3,K.1^-5,K.1^4,K.1^-6,K.1^2,-1*K.1^7,-1*K.1^-6,-1*K.1^2,-1*K.1^-8,K.1^-1,K.1^-3,-1*K.1^7,K.1^4,-1*K.1^4,-1*K.1^-4,K.1^-4,-1*K.1^-1,K.1^-1,K.1^-5,-1*K.1^-5,K.1^-8,-1*K.1^-8,-1*K.1^8,K.1^8,-1*K.1^-6,K.1^-6,K.1^7,K.1^-3,K.1^-8,K.1,-1*K.1^-7,K.1^5,-1*K.1^4,-1*K.1^-3,-1*K.1^5,K.1^4,-1*K.1^6,K.1^2,K.1^-7,K.1^6,-1*K.1^2,-1*K.1^-8,-1*K.1,K.1^-3,-1*K.1^-7,K.1^-7,K.1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^5,K.1^5,K.1^6,-1*K.1^6,K.1^3,-1*K.1^3,-1*K.1^-3,K.1^7,-1*K.1^8,-1*K.1^-1,-1*K.1^3,-1*K.1^-5,K.1^-4,K.1^3,K.1^-5,-1*K.1^-4,K.1^-6,-1*K.1^-2,-1*K.1^7,-1*K.1^-6,K.1^-2,K.1^8,K.1,-1*K.1^-5,-1*K.1^-6,K.1^7,-1*K.1^2,-1*K.1,-1*K.1^-3,-1*K.1^-6,-1*K.1^-2,K.1^3,K.1^7,K.1,-1*K.1^-5,K.1^8,K.1^8,K.1^2,-1*K.1^3,K.1^-6,K.1^-8,-1*K.1^8,K.1^-5,-1*K.1^-4,-1*K.1,K.1^-7,-1*K.1^8,K.1^6,-1*K.1^-8,K.1^-4,-1*K.1^-3,K.1^5,K.1^-3,-1*K.1^5,-1*K.1^6,K.1^5,K.1^2,K.1^-8,-1*K.1^-7,K.1^4,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^7,K.1^-1,-1*K.1^3,K.1^3,-1*K.1^4,K.1^4,-1*K.1^-1,-1*K.1^-7,K.1^-4,-1*K.1^-2,K.1^-5,-1*K.1^4,-1*K.1^-1,K.1^-1,K.1^-3,-1*K.1^-8,K.1^-6,K.1^-7,-1*K.1^6,-1*K.1^-4,-1*K.1^7,K.1^6,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^8,K.1^-4,K.1^5,K.1^-2,K.1^2,K.1^7,K.1^-6,K.1^3,K.1^-5,K.1^-3,K.1,K.1^-1,K.1^4,K.1^-8,K.1^-7,K.1^6,K.1^3,-1*K.1^-1,-1*K.1^-7,-1*K.1^4,-1*K.1^-1,-1*K.1^-5,-1*K.1^5,-1*K.1^6,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^7,-1*K.1^2,-1*K.1^-8,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,K.1^6,K.1^-8,K.1^7,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^4,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,K.1^-5,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^-6,-1*K.1^8,-1*K.1^5,-1*K.1^8,K.1^-2,K.1,K.1^4,-1*K.1^-2,K.1^-3,K.1^-6,K.1^8,K.1^5,K.1^2,K.1^-1,K.1^-4,K.1^-7,K.1^4,K.1^-5,K.1^-8,K.1^7,K.1,K.1^-4,K.1^-7,K.1^3,K.1^8,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^5,K.1^6,K.1^-6,-1*K.1^-1,-1*K.1^4,K.1^6,K.1^7,K.1^4,K.1,K.1^2,-1*K.1^-5,-1*K.1,-1*K.1^6,-1*K.1^7,-1*K.1^-6,-1*K.1^-7,-1*K.1^-3,-1*K.1^-1,-1*K.1^8,K.1^5,K.1^-8,K.1^-6,K.1^-6,-1*K.1^6,K.1^-4,K.1^8,K.1^-1,K.1^-7,-1*K.1^7,K.1^3,-1*K.1^8,-1*K.1^3,-1*K.1^-5,K.1^2,K.1^-5,K.1^6,-1*K.1^-4,-1*K.1,K.1^-7,-1*K.1^-3,K.1^5,K.1^-8,K.1,K.1^4,K.1^7,K.1^-2,-1*K.1^-2,-1*K.1^-8,-1*K.1^4,-1*K.1^3,-1*K.1^2,K.1^-5,-1*K.1^-4,-1*K.1^-6,-1*K.1^2,-1*K.1^5,K.1^8,K.1^-3,K.1^-3,-1*K.1^-7,-1*K.1^-2,-1*K.1^5,K.1^-4,-1*K.1^-8,K.1^-1,K.1^-2,K.1^3,-1*K.1^6,K.1^-8,K.1^-5,K.1^5,K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,-1*K.1^-6,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1,-1*K.1^-8,-1*K.1^-6,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^-4,K.1^-4,K.1^-6,K.1,K.1^6,K.1^-1,K.1^-2,K.1^7,K.1^3,-1*K.1^6,K.1^4,-1*K.1^7,K.1^-3,-1*K.1^-1,K.1^-7,-1*K.1^-8,K.1^8,-1*K.1^-2,-1*K.1^4,-1*K.1^-7,K.1,-1*K.1^7,K.1^7,-1*K.1^4,K.1^4,K.1^2,-1*K.1^2,K.1^5,-1*K.1^5,-1*K.1^-5,K.1^-5,-1*K.1^-8,K.1^-8,K.1^-3,-1*K.1^-3,K.1^-7,-1*K.1^-7,-1*K.1^-8,K.1^-1,-1*K.1^-3,K.1^-5,K.1^4,K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^-6,-1*K.1^2,K.1^7,K.1^-6,K.1^2,K.1^-8,-1*K.1^-1,K.1^3,K.1^-4,-1*K.1^-4,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-2,K.1^-2,K.1^8,-1*K.1^8,K.1^-6,-1*K.1^-6,-1*K.1^6,K.1^6,-1*K.1^3,K.1^-7,K.1^8,-1*K.1,-1*K.1^7,-1*K.1^5,-1*K.1^-4,-1*K.1^3,K.1^5,K.1^-4,K.1^6,K.1^-2,-1*K.1^-7,-1*K.1^6,-1*K.1^-2,-1*K.1^8,K.1,K.1^3,-1*K.1^-7,K.1^-4,-1*K.1^-4,-1*K.1^4,K.1^4,-1*K.1,K.1,K.1^5,-1*K.1^5,K.1^8,-1*K.1^8,-1*K.1^-8,K.1^-8,-1*K.1^6,K.1^6,K.1^-7,K.1^3,K.1^8,K.1^-1,-1*K.1^7,K.1^-5,-1*K.1^-4,-1*K.1^3,-1*K.1^-5,K.1^-4,-1*K.1^-6,K.1^-2,K.1^7,K.1^-6,-1*K.1^-2,-1*K.1^8,-1*K.1^-1,K.1^3,-1*K.1^7,K.1^7,K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^-5,K.1^-5,K.1^-6,-1*K.1^-6,K.1^-3,-1*K.1^-3,-1*K.1^3,K.1^-7,-1*K.1^-8,-1*K.1,-1*K.1^-3,-1*K.1^5,K.1^4,K.1^-3,K.1^5,-1*K.1^4,K.1^6,-1*K.1^2,-1*K.1^-7,-1*K.1^6,K.1^2,K.1^-8,K.1^-1,-1*K.1^5,-1*K.1^6,K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^3,-1*K.1^6,-1*K.1^2,K.1^-3,K.1^-7,K.1^-1,-1*K.1^5,K.1^-8,K.1^-8,K.1^-2,-1*K.1^-3,K.1^6,K.1^8,-1*K.1^-8,K.1^5,-1*K.1^4,-1*K.1^-1,K.1^7,-1*K.1^-8,K.1^-6,-1*K.1^8,K.1^4,-1*K.1^3,K.1^-5,K.1^3,-1*K.1^-5,-1*K.1^-6,K.1^-5,K.1^-2,K.1^8,-1*K.1^7,K.1^-4,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-7,K.1,-1*K.1^-3,K.1^-3,-1*K.1^-4,K.1^-4,-1*K.1,-1*K.1^7,K.1^4,-1*K.1^2,K.1^5,-1*K.1^-4,-1*K.1,K.1,K.1^3,-1*K.1^8,K.1^6,K.1^7,-1*K.1^-6,-1*K.1^4,-1*K.1^-7,K.1^-6,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^-7,K.1^-5,K.1^2,K.1^6,K.1^-6,K.1^-4,K.1,K.1^8,K.1^-2,K.1^-8,K.1^-3,K.1^3,K.1^5,K.1^7,K.1^4,K.1^-1,K.1^8,-1*K.1^3,-1*K.1^4,-1*K.1^5,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-6,-1*K.1^-5,-1*K.1^-4,-1*K.1^-6,-1*K.1^7,-1*K.1^-8,-1*K.1^8,-1*K.1^7,K.1^-1,K.1^7,K.1^-4,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^5,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,K.1^-2,-1*K.1^-1,-1*K.1^8,-1*K.1,-1*K.1^-8,-1*K.1,-1*K.1^-7,-1*K.1^2,-1*K.1^-7,K.1^6,K.1^-3,K.1^5,-1*K.1^6,K.1^-8,K.1,K.1^-7,K.1^2,K.1^-6,K.1^3,K.1^-5,K.1^4,K.1^5,K.1^-2,K.1^7,K.1^-4,K.1^-3,K.1^-5,K.1^4,K.1^8,K.1^-7,K.1^-8,K.1^6,K.1^-6,K.1^3,K.1^2,K.1^-1,K.1,-1*K.1^3,-1*K.1^5,K.1^-1,K.1^-4,K.1^5,K.1^-3,K.1^-6,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-4,-1*K.1,-1*K.1^4,-1*K.1^-8,-1*K.1^3,-1*K.1^-7,K.1^2,K.1^7,K.1,K.1,-1*K.1^-1,K.1^-5,K.1^-7,K.1^3,K.1^4,-1*K.1^-4,K.1^8,-1*K.1^-7,-1*K.1^8,-1*K.1^-2,K.1^-6,K.1^-2,K.1^-1,-1*K.1^-5,-1*K.1^-3,K.1^4,-1*K.1^-8,K.1^2,K.1^7,K.1^-3,K.1^5,K.1^-4,K.1^6,-1*K.1^6,-1*K.1^7,-1*K.1^5,-1*K.1^8,-1*K.1^-6,K.1^-2,-1*K.1^-5,-1*K.1,-1*K.1^-6,-1*K.1^2,K.1^-7,K.1^-8,K.1^-8,-1*K.1^4,-1*K.1^6,-1*K.1^2,K.1^-5,-1*K.1^7,K.1^3,K.1^6,K.1^8,-1*K.1^-1,K.1^7,K.1^-2,K.1^2,K.1^-6,-1*K.1^3,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^8,-1*K.1^-6,-1*K.1^-8,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-3,-1*K.1^7,-1*K.1,-1*K.1^2,-1*K.1^6,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1,K.1^-3,K.1^-1,K.1^3,K.1^6,K.1^-4,K.1^8,-1*K.1^-1,K.1^5,-1*K.1^-4,K.1^-8,-1*K.1^3,K.1^4,-1*K.1^7,K.1^-7,-1*K.1^6,-1*K.1^5,-1*K.1^4,K.1^-3,-1*K.1^-4,K.1^-4,-1*K.1^5,K.1^5,K.1^-6,-1*K.1^-6,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^7,K.1^7,K.1^-8,-1*K.1^-8,K.1^4,-1*K.1^4,-1*K.1^7,K.1^3,-1*K.1^-8,K.1^-2,K.1^5,K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1,-1*K.1^-6,K.1^-4,K.1,K.1^-6,K.1^7,-1*K.1^3,K.1^8,K.1^-5,-1*K.1^-5,K.1^3,-1*K.1^3,-1*K.1^-3,K.1^-3,-1*K.1^6,K.1^6,K.1^-7,-1*K.1^-7,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^8,K.1^4,K.1^-7,-1*K.1^-3,-1*K.1^-4,-1*K.1^2,-1*K.1^-5,-1*K.1^8,K.1^2,K.1^-5,K.1^-1,K.1^6,-1*K.1^4,-1*K.1^-1,-1*K.1^6,-1*K.1^-7,K.1^-3,K.1^8,-1*K.1^4,K.1^-5,-1*K.1^-5,-1*K.1^5,K.1^5,-1*K.1^-3,K.1^-3,K.1^2,-1*K.1^2,K.1^-7,-1*K.1^-7,-1*K.1^7,K.1^7,-1*K.1^-1,K.1^-1,K.1^4,K.1^8,K.1^-7,K.1^3,-1*K.1^-4,K.1^-2,-1*K.1^-5,-1*K.1^8,-1*K.1^-2,K.1^-5,-1*K.1,K.1^6,K.1^-4,K.1,-1*K.1^6,-1*K.1^-7,-1*K.1^3,K.1^8,-1*K.1^-4,K.1^-4,K.1^3,-1*K.1^3,K.1^-6,-1*K.1^-6,-1*K.1^6,K.1^6,-1*K.1^-2,K.1^-2,K.1,-1*K.1,K.1^-8,-1*K.1^-8,-1*K.1^8,K.1^4,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^2,K.1^5,K.1^-8,K.1^2,-1*K.1^5,K.1^-1,-1*K.1^-6,-1*K.1^4,-1*K.1^-1,K.1^-6,K.1^7,K.1^3,-1*K.1^2,-1*K.1^-1,K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^8,-1*K.1^-1,-1*K.1^-6,K.1^-8,K.1^4,K.1^3,-1*K.1^2,K.1^7,K.1^7,K.1^6,-1*K.1^-8,K.1^-1,K.1^-7,-1*K.1^7,K.1^2,-1*K.1^5,-1*K.1^3,K.1^-4,-1*K.1^7,K.1,-1*K.1^-7,K.1^5,-1*K.1^8,K.1^-2,K.1^8,-1*K.1^-2,-1*K.1,K.1^-2,K.1^6,K.1^-7,-1*K.1^-4,K.1^-5,K.1^-6,K.1^-6,-1*K.1^6,-1*K.1^4,K.1^-3,-1*K.1^-8,K.1^-8,-1*K.1^-5,K.1^-5,-1*K.1^-3,-1*K.1^-4,K.1^5,-1*K.1^-6,K.1^2,-1*K.1^-5,-1*K.1^-3,K.1^-3,K.1^8,-1*K.1^-7,K.1^-1,K.1^-4,-1*K.1,-1*K.1^5,-1*K.1^4,K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^7,K.1^5,K.1^-2,K.1^-6,K.1^6,K.1^4,K.1^-1,K.1^-8,K.1^2,K.1^8,K.1^3,K.1^-3,K.1^-5,K.1^-7,K.1^-4,K.1,K.1^-8,-1*K.1^-3,-1*K.1^-4,-1*K.1^-5,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^6,-1*K.1^5,-1*K.1^4,-1*K.1^6,-1*K.1^-7,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,K.1,K.1^-7,K.1^4,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^-5,-1*K.1^4,-1*K.1^-4,-1*K.1^5,K.1^2,-1*K.1,-1*K.1^-8,-1*K.1^-1,-1*K.1^8,-1*K.1^-1,-1*K.1^7,-1*K.1^-2,-1*K.1^7,K.1^-6,K.1^3,K.1^-5,-1*K.1^-6,K.1^8,K.1^-1,K.1^7,K.1^-2,K.1^6,K.1^-3,K.1^5,K.1^-4,K.1^-5,K.1^2,K.1^-7,K.1^4,K.1^3,K.1^5,K.1^-4,K.1^-8,K.1^7,K.1^8,K.1^-6,K.1^6,K.1^-3,K.1^-2,K.1,K.1^-1,-1*K.1^-3,-1*K.1^-5,K.1,K.1^4,K.1^-5,K.1^3,K.1^6,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^4,-1*K.1^-1,-1*K.1^-4,-1*K.1^8,-1*K.1^-3,-1*K.1^7,K.1^-2,K.1^-7,K.1^-1,K.1^-1,-1*K.1,K.1^5,K.1^7,K.1^-3,K.1^-4,-1*K.1^4,K.1^-8,-1*K.1^7,-1*K.1^-8,-1*K.1^2,K.1^6,K.1^2,K.1,-1*K.1^5,-1*K.1^3,K.1^-4,-1*K.1^8,K.1^-2,K.1^-7,K.1^3,K.1^-5,K.1^4,K.1^-6,-1*K.1^-6,-1*K.1^-7,-1*K.1^-5,-1*K.1^-8,-1*K.1^6,K.1^2,-1*K.1^5,-1*K.1^-1,-1*K.1^6,-1*K.1^-2,K.1^7,K.1^8,K.1^8,-1*K.1^-4,-1*K.1^-6,-1*K.1^-2,K.1^5,-1*K.1^-7,K.1^-3,K.1^-6,K.1^-8,-1*K.1,K.1^-7,K.1^2,K.1^-2,K.1^6,-1*K.1^-3,-1*K.1^-8,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^4,-1*K.1^-4,-1*K.1^5,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-8,-1*K.1^6,-1*K.1^8,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^3,-1*K.1^-7,-1*K.1^-1,-1*K.1^-2,-1*K.1^-6,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^-1,K.1^3,K.1,K.1^-3,K.1^-6,K.1^4,K.1^-8,-1*K.1,K.1^-5,-1*K.1^4,K.1^8,-1*K.1^-3,K.1^-4,-1*K.1^-7,K.1^7,-1*K.1^-6,-1*K.1^-5,-1*K.1^-4,K.1^3,-1*K.1^4,K.1^4,-1*K.1^-5,K.1^-5,K.1^6,-1*K.1^6,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-7,K.1^-7,K.1^8,-1*K.1^8,K.1^-4,-1*K.1^-4,-1*K.1^-7,K.1^-3,-1*K.1^8,K.1^2,K.1^-5,K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1^-1,-1*K.1^6,K.1^4,K.1^-1,K.1^6,K.1^-7,-1*K.1^-3,K.1^-8,K.1^5,-1*K.1^5,K.1^-3,-1*K.1^-3,-1*K.1^3,K.1^3,-1*K.1^-6,K.1^-6,K.1^7,-1*K.1^7,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-8,K.1^-4,K.1^7,-1*K.1^3,-1*K.1^4,-1*K.1^-2,-1*K.1^5,-1*K.1^-8,K.1^-2,K.1^5,K.1,K.1^-6,-1*K.1^-4,-1*K.1,-1*K.1^-6,-1*K.1^7,K.1^3,K.1^-8,-1*K.1^-4,K.1^5,-1*K.1^5,-1*K.1^-5,K.1^-5,-1*K.1^3,K.1^3,K.1^-2,-1*K.1^-2,K.1^7,-1*K.1^7,-1*K.1^-7,K.1^-7,-1*K.1,K.1,K.1^-4,K.1^-8,K.1^7,K.1^-3,-1*K.1^4,K.1^2,-1*K.1^5,-1*K.1^-8,-1*K.1^2,K.1^5,-1*K.1^-1,K.1^-6,K.1^4,K.1^-1,-1*K.1^-6,-1*K.1^7,-1*K.1^-3,K.1^-8,-1*K.1^4,K.1^4,K.1^-3,-1*K.1^-3,K.1^6,-1*K.1^6,-1*K.1^-6,K.1^-6,-1*K.1^2,K.1^2,K.1^-1,-1*K.1^-1,K.1^8,-1*K.1^8,-1*K.1^-8,K.1^-4,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-2,K.1^-5,K.1^8,K.1^-2,-1*K.1^-5,K.1,-1*K.1^6,-1*K.1^-4,-1*K.1,K.1^6,K.1^-7,K.1^-3,-1*K.1^-2,-1*K.1,K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1^-8,-1*K.1,-1*K.1^6,K.1^8,K.1^-4,K.1^-3,-1*K.1^-2,K.1^-7,K.1^-7,K.1^-6,-1*K.1^8,K.1,K.1^7,-1*K.1^-7,K.1^-2,-1*K.1^-5,-1*K.1^-3,K.1^4,-1*K.1^-7,K.1^-1,-1*K.1^7,K.1^-5,-1*K.1^-8,K.1^2,K.1^-8,-1*K.1^2,-1*K.1^-1,K.1^2,K.1^-6,K.1^7,-1*K.1^4,K.1^5,K.1^6,K.1^6,-1*K.1^-6,-1*K.1^-4,K.1^3,-1*K.1^8,K.1^8,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1^4,K.1^-5,-1*K.1^6,K.1^-2,-1*K.1^5,-1*K.1^3,K.1^3,K.1^-8,-1*K.1^7,K.1,K.1^4,-1*K.1^-1,-1*K.1^-5,-1*K.1^-4,K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^-6,K.1^3,K.1^-8,K.1^-7,K.1^7,K.1^-1,K.1^-4,K.1^2,K.1^8,K.1^-2,K.1^-5,K.1^5,K.1^-3,K.1^6,K.1,K.1^4,K.1^2,-1*K.1^5,-1*K.1,-1*K.1^-3,-1*K.1^5,-1*K.1^8,-1*K.1^-8,-1*K.1^4,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^-1,-1*K.1^7,-1*K.1^6,-1*K.1^-2,-1*K.1^2,-1*K.1^6,K.1^4,K.1^6,K.1^-1,-1*K.1^-5,-1*K.1^-7,-1*K.1^-5,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^3,K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^-4,-1*K.1^-2,-1*K.1^-4,-1*K.1^-6,-1*K.1^-8,-1*K.1^-6,K.1^-7,K.1^-5,K.1^-3,-1*K.1^-7,K.1^-2,K.1^-4,K.1^-6,K.1^-8,K.1^7,K.1^5,K.1^3,K.1,K.1^-3,K.1^8,K.1^6,K.1^-1,K.1^-5,K.1^3,K.1,K.1^2,K.1^-6,K.1^-2,K.1^-7,K.1^7,K.1^5,K.1^-8,K.1^4,K.1^-4,-1*K.1^5,-1*K.1^-3,K.1^4,K.1^-1,K.1^-3,K.1^-5,K.1^7,-1*K.1^8,-1*K.1^-5,-1*K.1^4,-1*K.1^-1,-1*K.1^-4,-1*K.1,-1*K.1^-2,-1*K.1^5,-1*K.1^-6,K.1^-8,K.1^6,K.1^-4,K.1^-4,-1*K.1^4,K.1^3,K.1^-6,K.1^5,K.1,-1*K.1^-1,K.1^2,-1*K.1^-6,-1*K.1^2,-1*K.1^8,K.1^7,K.1^8,K.1^4,-1*K.1^3,-1*K.1^-5,K.1,-1*K.1^-2,K.1^-8,K.1^6,K.1^-5,K.1^-3,K.1^-1,K.1^-7,-1*K.1^-7,-1*K.1^6,-1*K.1^-3,-1*K.1^2,-1*K.1^7,K.1^8,-1*K.1^3,-1*K.1^-4,-1*K.1^7,-1*K.1^-8,K.1^-6,K.1^-2,K.1^-2,-1*K.1,-1*K.1^-7,-1*K.1^-8,K.1^3,-1*K.1^6,K.1^5,K.1^-7,K.1^2,-1*K.1^4,K.1^6,K.1^8,K.1^-8,K.1^7,-1*K.1^5,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-4,-1*K.1^8,-1*K.1^-8,-1*K.1^2,-1*K.1^7,-1*K.1^-2,-1*K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^-5,-1*K.1^6,-1*K.1^-4,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1^3,K.1^3,K.1^-4,K.1^-5,K.1^4,K.1^5,K.1^-7,K.1^-1,K.1^2,-1*K.1^4,K.1^-3,-1*K.1^-1,K.1^-2,-1*K.1^5,K.1,-1*K.1^6,K.1^-6,-1*K.1^-7,-1*K.1^-3,-1*K.1,K.1^-5,-1*K.1^-1,K.1^-1,-1*K.1^-3,K.1^-3,K.1^7,-1*K.1^7,K.1^-8,-1*K.1^-8,-1*K.1^8,K.1^8,-1*K.1^6,K.1^6,K.1^-2,-1*K.1^-2,K.1,-1*K.1,-1*K.1^6,K.1^5,-1*K.1^-2,K.1^8,K.1^-3,K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^-4,-1*K.1^7,K.1^-1,K.1^-4,K.1^7,K.1^6,-1*K.1^5,K.1^2,K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,-1*K.1^-5,K.1^-5,-1*K.1^-7,K.1^-7,K.1^-6,-1*K.1^-6,K.1^-4,-1*K.1^-4,-1*K.1^4,K.1^4,-1*K.1^2,K.1,K.1^-6,-1*K.1^-5,-1*K.1^-1,-1*K.1^-8,-1*K.1^3,-1*K.1^2,K.1^-8,K.1^3,K.1^4,K.1^-7,-1*K.1,-1*K.1^4,-1*K.1^-7,-1*K.1^-6,K.1^-5,K.1^2,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^-3,K.1^-3,-1*K.1^-5,K.1^-5,K.1^-8,-1*K.1^-8,K.1^-6,-1*K.1^-6,-1*K.1^6,K.1^6,-1*K.1^4,K.1^4,K.1,K.1^2,K.1^-6,K.1^5,-1*K.1^-1,K.1^8,-1*K.1^3,-1*K.1^2,-1*K.1^8,K.1^3,-1*K.1^-4,K.1^-7,K.1^-1,K.1^-4,-1*K.1^-7,-1*K.1^-6,-1*K.1^5,K.1^2,-1*K.1^-1,K.1^-1,K.1^5,-1*K.1^5,K.1^7,-1*K.1^7,-1*K.1^-7,K.1^-7,-1*K.1^8,K.1^8,K.1^-4,-1*K.1^-4,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^6,-1*K.1^-5,-1*K.1^-2,-1*K.1^-8,K.1^-3,K.1^-2,K.1^-8,-1*K.1^-3,K.1^4,-1*K.1^7,-1*K.1,-1*K.1^4,K.1^7,K.1^6,K.1^5,-1*K.1^-8,-1*K.1^4,K.1,-1*K.1^-7,-1*K.1^5,-1*K.1^2,-1*K.1^4,-1*K.1^7,K.1^-2,K.1,K.1^5,-1*K.1^-8,K.1^6,K.1^6,K.1^-7,-1*K.1^-2,K.1^4,K.1^-6,-1*K.1^6,K.1^-8,-1*K.1^-3,-1*K.1^5,K.1^-1,-1*K.1^6,K.1^-4,-1*K.1^-6,K.1^-3,-1*K.1^2,K.1^8,K.1^2,-1*K.1^8,-1*K.1^-4,K.1^8,K.1^-7,K.1^-6,-1*K.1^-1,K.1^3,K.1^7,K.1^7,-1*K.1^-7,-1*K.1,K.1^-5,-1*K.1^-2,K.1^-2,-1*K.1^3,K.1^3,-1*K.1^-5,-1*K.1^-1,K.1^-3,-1*K.1^7,K.1^-8,-1*K.1^3,-1*K.1^-5,K.1^-5,K.1^2,-1*K.1^-6,K.1^4,K.1^-1,-1*K.1^-4,-1*K.1^-3,-1*K.1,K.1^-4,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^6,K.1^-3,K.1^8,K.1^7,K.1^-7,K.1,K.1^4,K.1^-2,K.1^-8,K.1^2,K.1^5,K.1^-5,K.1^3,K.1^-6,K.1^-1,K.1^-4,K.1^-2,-1*K.1^-5,-1*K.1^-1,-1*K.1^3,-1*K.1^-5,-1*K.1^-8,-1*K.1^8,-1*K.1^-4,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1,-1*K.1^-7,-1*K.1^-6,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,K.1^-4,K.1^-6,K.1,-1*K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^-3,K.1^-8,-1*K.1^-4,-1*K.1^-2,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^6,K.1^7,K.1^5,K.1^3,-1*K.1^7,K.1^2,K.1^4,K.1^6,K.1^8,K.1^-7,K.1^-5,K.1^-3,K.1^-1,K.1^3,K.1^-8,K.1^-6,K.1,K.1^5,K.1^-3,K.1^-1,K.1^-2,K.1^6,K.1^2,K.1^7,K.1^-7,K.1^-5,K.1^8,K.1^-4,K.1^4,-1*K.1^-5,-1*K.1^3,K.1^-4,K.1,K.1^3,K.1^5,K.1^-7,-1*K.1^-8,-1*K.1^5,-1*K.1^-4,-1*K.1,-1*K.1^4,-1*K.1^-1,-1*K.1^2,-1*K.1^-5,-1*K.1^6,K.1^8,K.1^-6,K.1^4,K.1^4,-1*K.1^-4,K.1^-3,K.1^6,K.1^-5,K.1^-1,-1*K.1,K.1^-2,-1*K.1^6,-1*K.1^-2,-1*K.1^-8,K.1^-7,K.1^-8,K.1^-4,-1*K.1^-3,-1*K.1^5,K.1^-1,-1*K.1^2,K.1^8,K.1^-6,K.1^5,K.1^3,K.1,K.1^7,-1*K.1^7,-1*K.1^-6,-1*K.1^3,-1*K.1^-2,-1*K.1^-7,K.1^-8,-1*K.1^-3,-1*K.1^4,-1*K.1^-7,-1*K.1^8,K.1^6,K.1^2,K.1^2,-1*K.1^-1,-1*K.1^7,-1*K.1^8,K.1^-3,-1*K.1^-6,K.1^-5,K.1^7,K.1^-2,-1*K.1^-4,K.1^-6,K.1^-8,K.1^8,K.1^-7,-1*K.1^-5,-1*K.1^-2,-1*K.1^2,-1*K.1^6,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^4,-1*K.1^-8,-1*K.1^8,-1*K.1^-2,-1*K.1^-7,-1*K.1^2,-1*K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1^5,-1*K.1^-6,-1*K.1^4,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^-3,K.1^-3,K.1^4,K.1^5,K.1^-4,K.1^-5,K.1^7,K.1,K.1^-2,-1*K.1^-4,K.1^3,-1*K.1,K.1^2,-1*K.1^-5,K.1^-1,-1*K.1^-6,K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1^-1,K.1^5,-1*K.1,K.1,-1*K.1^3,K.1^3,K.1^-7,-1*K.1^-7,K.1^8,-1*K.1^8,-1*K.1^-8,K.1^-8,-1*K.1^-6,K.1^-6,K.1^2,-1*K.1^2,K.1^-1,-1*K.1^-1,-1*K.1^-6,K.1^-5,-1*K.1^2,K.1^-8,K.1^3,K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^4,-1*K.1^-7,K.1,K.1^4,K.1^-7,K.1^-6,-1*K.1^-5,K.1^-2,K.1^-3,-1*K.1^-3,K.1^-5,-1*K.1^-5,-1*K.1^5,K.1^5,-1*K.1^7,K.1^7,K.1^6,-1*K.1^6,K.1^4,-1*K.1^4,-1*K.1^-4,K.1^-4,-1*K.1^-2,K.1^-1,K.1^6,-1*K.1^5,-1*K.1,-1*K.1^8,-1*K.1^-3,-1*K.1^-2,K.1^8,K.1^-3,K.1^-4,K.1^7,-1*K.1^-1,-1*K.1^-4,-1*K.1^7,-1*K.1^6,K.1^5,K.1^-2,-1*K.1^-1,K.1^-3,-1*K.1^-3,-1*K.1^3,K.1^3,-1*K.1^5,K.1^5,K.1^8,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^-6,K.1^-6,-1*K.1^-4,K.1^-4,K.1^-1,K.1^-2,K.1^6,K.1^-5,-1*K.1,K.1^-8,-1*K.1^-3,-1*K.1^-2,-1*K.1^-8,K.1^-3,-1*K.1^4,K.1^7,K.1,K.1^4,-1*K.1^7,-1*K.1^6,-1*K.1^-5,K.1^-2,-1*K.1,K.1,K.1^-5,-1*K.1^-5,K.1^-7,-1*K.1^-7,-1*K.1^7,K.1^7,-1*K.1^-8,K.1^-8,K.1^4,-1*K.1^4,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-6,-1*K.1^5,-1*K.1^2,-1*K.1^8,K.1^3,K.1^2,K.1^8,-1*K.1^3,K.1^-4,-1*K.1^-7,-1*K.1^-1,-1*K.1^-4,K.1^-7,K.1^-6,K.1^-5,-1*K.1^8,-1*K.1^-4,K.1^-1,-1*K.1^7,-1*K.1^-5,-1*K.1^-2,-1*K.1^-4,-1*K.1^-7,K.1^2,K.1^-1,K.1^-5,-1*K.1^8,K.1^-6,K.1^-6,K.1^7,-1*K.1^2,K.1^-4,K.1^6,-1*K.1^-6,K.1^8,-1*K.1^3,-1*K.1^-5,K.1,-1*K.1^-6,K.1^4,-1*K.1^6,K.1^3,-1*K.1^-2,K.1^-8,K.1^-2,-1*K.1^-8,-1*K.1^4,K.1^-8,K.1^7,K.1^6,-1*K.1,K.1^-3,K.1^-7,K.1^-7,-1*K.1^7,-1*K.1^-1,K.1^5,-1*K.1^2,K.1^2,-1*K.1^-3,K.1^-3,-1*K.1^5,-1*K.1,K.1^3,-1*K.1^-7,K.1^8,-1*K.1^-3,-1*K.1^5,K.1^5,K.1^-2,-1*K.1^6,K.1^-4,K.1,-1*K.1^4,-1*K.1^3,-1*K.1^-1,K.1^4,-1*K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^-5,K.1^-6,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^8,K.1^-4,K.1,K.1^4,K.1^-7,K.1^7,K.1^6,K.1^5,K.1^-2,K.1^-8,K.1^-4,-1*K.1^7,-1*K.1^-2,-1*K.1^6,-1*K.1^7,-1*K.1,-1*K.1^-1,-1*K.1^-8,-1*K.1,-1*K.1^3,-1*K.1^-6,-1*K.1^2,-1*K.1^3,-1*K.1^5,-1*K.1^4,-1*K.1^-4,-1*K.1^5,K.1^-8,K.1^5,K.1^2,-1*K.1^-7,-1*K.1^-3,-1*K.1^-7,-1*K.1^6,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,K.1,-1*K.1^-8,-1*K.1^-4,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^-5,-1*K.1^-1,-1*K.1^-5,K.1^-3,K.1^-7,K.1^6,-1*K.1^-3,K.1^4,K.1^8,K.1^-5,K.1^-1,K.1^3,K.1^7,K.1^-6,K.1^-2,K.1^6,K.1,K.1^5,K.1^2,K.1^-7,K.1^-6,K.1^-2,K.1^-4,K.1^-5,K.1^4,K.1^-3,K.1^3,K.1^7,K.1^-1,K.1^-8,K.1^8,-1*K.1^7,-1*K.1^6,K.1^-8,K.1^2,K.1^6,K.1^-7,K.1^3,-1*K.1,-1*K.1^-7,-1*K.1^-8,-1*K.1^2,-1*K.1^8,-1*K.1^-2,-1*K.1^4,-1*K.1^7,-1*K.1^-5,K.1^-1,K.1^5,K.1^8,K.1^8,-1*K.1^-8,K.1^-6,K.1^-5,K.1^7,K.1^-2,-1*K.1^2,K.1^-4,-1*K.1^-5,-1*K.1^-4,-1*K.1,K.1^3,K.1,K.1^-8,-1*K.1^-6,-1*K.1^-7,K.1^-2,-1*K.1^4,K.1^-1,K.1^5,K.1^-7,K.1^6,K.1^2,K.1^-3,-1*K.1^-3,-1*K.1^5,-1*K.1^6,-1*K.1^-4,-1*K.1^3,K.1,-1*K.1^-6,-1*K.1^8,-1*K.1^3,-1*K.1^-1,K.1^-5,K.1^4,K.1^4,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,K.1^-6,-1*K.1^5,K.1^7,K.1^-3,K.1^-4,-1*K.1^-8,K.1^5,K.1,K.1^-1,K.1^3,-1*K.1^7,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,-1*K.1^-7,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,-1*K.1^8,-1*K.1,-1*K.1^-1,-1*K.1^-4,-1*K.1^3,-1*K.1^4,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^-7,-1*K.1^5,-1*K.1^8,-1*K.1^-1,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,K.1^-6,K.1^8,K.1^-7,K.1^-8,K.1^7,K.1^-3,K.1^2,K.1^-4,-1*K.1^-8,K.1^6,-1*K.1^2,K.1^4,-1*K.1^7,K.1^-2,-1*K.1^5,K.1^-5,-1*K.1^-3,-1*K.1^6,-1*K.1^-2,K.1^-7,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^3,-1*K.1^3,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^5,K.1^5,K.1^4,-1*K.1^4,K.1^-2,-1*K.1^-2,-1*K.1^5,K.1^7,-1*K.1^4,K.1,K.1^6,K.1^4,-1*K.1,-1*K.1^6,-1*K.1^8,-1*K.1^3,K.1^2,K.1^8,K.1^3,K.1^5,-1*K.1^7,K.1^-4,K.1^-6,-1*K.1^-6,K.1^7,-1*K.1^7,-1*K.1^-7,K.1^-7,-1*K.1^-3,K.1^-3,K.1^-5,-1*K.1^-5,K.1^8,-1*K.1^8,-1*K.1^-8,K.1^-8,-1*K.1^-4,K.1^-2,K.1^-5,-1*K.1^-7,-1*K.1^2,-1*K.1^-1,-1*K.1^-6,-1*K.1^-4,K.1^-1,K.1^-6,K.1^-8,K.1^-3,-1*K.1^-2,-1*K.1^-8,-1*K.1^-3,-1*K.1^-5,K.1^-7,K.1^-4,-1*K.1^-2,K.1^-6,-1*K.1^-6,-1*K.1^6,K.1^6,-1*K.1^-7,K.1^-7,K.1^-1,-1*K.1^-1,K.1^-5,-1*K.1^-5,-1*K.1^5,K.1^5,-1*K.1^-8,K.1^-8,K.1^-2,K.1^-4,K.1^-5,K.1^7,-1*K.1^2,K.1,-1*K.1^-6,-1*K.1^-4,-1*K.1,K.1^-6,-1*K.1^8,K.1^-3,K.1^2,K.1^8,-1*K.1^-3,-1*K.1^-5,-1*K.1^7,K.1^-4,-1*K.1^2,K.1^2,K.1^7,-1*K.1^7,K.1^3,-1*K.1^3,-1*K.1^-3,K.1^-3,-1*K.1,K.1,K.1^8,-1*K.1^8,K.1^4,-1*K.1^4,-1*K.1^-4,K.1^-2,-1*K.1^5,-1*K.1^-7,-1*K.1^4,-1*K.1^-1,K.1^6,K.1^4,K.1^-1,-1*K.1^6,K.1^-8,-1*K.1^3,-1*K.1^-2,-1*K.1^-8,K.1^3,K.1^5,K.1^7,-1*K.1^-1,-1*K.1^-8,K.1^-2,-1*K.1^-3,-1*K.1^7,-1*K.1^-4,-1*K.1^-8,-1*K.1^3,K.1^4,K.1^-2,K.1^7,-1*K.1^-1,K.1^5,K.1^5,K.1^-3,-1*K.1^4,K.1^-8,K.1^-5,-1*K.1^5,K.1^-1,-1*K.1^6,-1*K.1^7,K.1^2,-1*K.1^5,K.1^8,-1*K.1^-5,K.1^6,-1*K.1^-4,K.1,K.1^-4,-1*K.1,-1*K.1^8,K.1,K.1^-3,K.1^-5,-1*K.1^2,K.1^-6,K.1^3,K.1^3,-1*K.1^-3,-1*K.1^-2,K.1^-7,-1*K.1^4,K.1^4,-1*K.1^-6,K.1^-6,-1*K.1^-7,-1*K.1^2,K.1^6,-1*K.1^3,K.1^-1,-1*K.1^-6,-1*K.1^-7,K.1^-7,K.1^-4,-1*K.1^-5,K.1^-8,K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^-2,K.1^8,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^5,K.1^6,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-8,K.1^4,K.1^-1,K.1^-4,K.1^7,K.1^-7,K.1^-6,K.1^-5,K.1^2,K.1^8,K.1^4,-1*K.1^-7,-1*K.1^2,-1*K.1^-6,-1*K.1^-7,-1*K.1^-1,-1*K.1,-1*K.1^8,-1*K.1^-1,-1*K.1^-3,-1*K.1^6,-1*K.1^-2,-1*K.1^-3,-1*K.1^-5,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,K.1^8,K.1^-5,K.1^-2,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^-6,-1*K.1^-2,-1*K.1^2,-1*K.1^6,K.1^-1,-1*K.1^8,-1*K.1^4,-1*K.1^-8,-1*K.1^-4,-1*K.1^-8,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^3,K.1^7,K.1^-6,-1*K.1^3,K.1^-4,K.1^-8,K.1^5,K.1,K.1^-3,K.1^-7,K.1^6,K.1^2,K.1^-6,K.1^-1,K.1^-5,K.1^-2,K.1^7,K.1^6,K.1^2,K.1^4,K.1^5,K.1^-4,K.1^3,K.1^-3,K.1^-7,K.1,K.1^8,K.1^-8,-1*K.1^-7,-1*K.1^-6,K.1^8,K.1^-2,K.1^-6,K.1^7,K.1^-3,-1*K.1^-1,-1*K.1^7,-1*K.1^8,-1*K.1^-2,-1*K.1^-8,-1*K.1^2,-1*K.1^-4,-1*K.1^-7,-1*K.1^5,K.1,K.1^-5,K.1^-8,K.1^-8,-1*K.1^8,K.1^6,K.1^5,K.1^-7,K.1^2,-1*K.1^-2,K.1^4,-1*K.1^5,-1*K.1^4,-1*K.1^-1,K.1^-3,K.1^-1,K.1^8,-1*K.1^6,-1*K.1^7,K.1^2,-1*K.1^-4,K.1,K.1^-5,K.1^7,K.1^-6,K.1^-2,K.1^3,-1*K.1^3,-1*K.1^-5,-1*K.1^-6,-1*K.1^4,-1*K.1^-3,K.1^-1,-1*K.1^6,-1*K.1^-8,-1*K.1^-3,-1*K.1,K.1^5,K.1^-4,K.1^-4,-1*K.1^2,-1*K.1^3,-1*K.1,K.1^6,-1*K.1^-5,K.1^-7,K.1^3,K.1^4,-1*K.1^8,K.1^-5,K.1^-1,K.1,K.1^-3,-1*K.1^-7,-1*K.1^4,-1*K.1^-4,-1*K.1^5,-1*K.1^7,-1*K.1^-2,-1*K.1^2,-1*K.1^6,-1*K.1^-8,-1*K.1^-1,-1*K.1,-1*K.1^4,-1*K.1^-3,-1*K.1^-4,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^7,-1*K.1^-5,-1*K.1^-8,-1*K.1,-1*K.1^3,-1*K.1^-6,-1*K.1^6,K.1^6,K.1^-8,K.1^7,K.1^8,K.1^-7,K.1^3,K.1^-2,K.1^4,-1*K.1^8,K.1^-6,-1*K.1^-2,K.1^-4,-1*K.1^-7,K.1^2,-1*K.1^-5,K.1^5,-1*K.1^3,-1*K.1^-6,-1*K.1^2,K.1^7,-1*K.1^-2,K.1^-2,-1*K.1^-6,K.1^-6,K.1^-3,-1*K.1^-3,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-5,K.1^-5,K.1^-4,-1*K.1^-4,K.1^2,-1*K.1^2,-1*K.1^-5,K.1^-7,-1*K.1^-4,K.1^-1,K.1^-6,K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^-8,-1*K.1^-3,K.1^-2,K.1^-8,K.1^-3,K.1^-5,-1*K.1^-7,K.1^4,K.1^6,-1*K.1^6,K.1^-7,-1*K.1^-7,-1*K.1^7,K.1^7,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,K.1^-8,-1*K.1^-8,-1*K.1^8,K.1^8,-1*K.1^4,K.1^2,K.1^5,-1*K.1^7,-1*K.1^-2,-1*K.1,-1*K.1^6,-1*K.1^4,K.1,K.1^6,K.1^8,K.1^3,-1*K.1^2,-1*K.1^8,-1*K.1^3,-1*K.1^5,K.1^7,K.1^4,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^-6,K.1^-6,-1*K.1^7,K.1^7,K.1,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^-5,K.1^-5,-1*K.1^8,K.1^8,K.1^2,K.1^4,K.1^5,K.1^-7,-1*K.1^-2,K.1^-1,-1*K.1^6,-1*K.1^4,-1*K.1^-1,K.1^6,-1*K.1^-8,K.1^3,K.1^-2,K.1^-8,-1*K.1^3,-1*K.1^5,-1*K.1^-7,K.1^4,-1*K.1^-2,K.1^-2,K.1^-7,-1*K.1^-7,K.1^-3,-1*K.1^-3,-1*K.1^3,K.1^3,-1*K.1^-1,K.1^-1,K.1^-8,-1*K.1^-8,K.1^-4,-1*K.1^-4,-1*K.1^4,K.1^2,-1*K.1^-5,-1*K.1^7,-1*K.1^-4,-1*K.1,K.1^-6,K.1^-4,K.1,-1*K.1^-6,K.1^8,-1*K.1^-3,-1*K.1^2,-1*K.1^8,K.1^-3,K.1^-5,K.1^-7,-1*K.1,-1*K.1^8,K.1^2,-1*K.1^3,-1*K.1^-7,-1*K.1^4,-1*K.1^8,-1*K.1^-3,K.1^-4,K.1^2,K.1^-7,-1*K.1,K.1^-5,K.1^-5,K.1^3,-1*K.1^-4,K.1^8,K.1^5,-1*K.1^-5,K.1,-1*K.1^-6,-1*K.1^-7,K.1^-2,-1*K.1^-5,K.1^-8,-1*K.1^5,K.1^-6,-1*K.1^4,K.1^-1,K.1^4,-1*K.1^-1,-1*K.1^-8,K.1^-1,K.1^3,K.1^5,-1*K.1^-2,K.1^6,K.1^-3,K.1^-3,-1*K.1^3,-1*K.1^2,K.1^7,-1*K.1^-4,K.1^-4,-1*K.1^6,K.1^6,-1*K.1^7,-1*K.1^-2,K.1^-6,-1*K.1^-3,K.1,-1*K.1^6,-1*K.1^7,K.1^7,K.1^4,-1*K.1^5,K.1^8,K.1^-2,-1*K.1^-8,-1*K.1^-6,-1*K.1^2,K.1^-8,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^-4,K.1^2,K.1^6,K.1,K.1^-1,K.1^5,K.1^3,K.1^7,K.1^-6,K.1^-7,K.1^8,K.1^-8,K.1^-2,K.1^4,K.1^-5,K.1^-3,K.1^7,-1*K.1^-8,-1*K.1^-5,-1*K.1^-2,-1*K.1^-8,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-6,-1*K.1^-1,-1*K.1^2,-1*K.1^5,-1*K.1^-1,-1*K.1^4,-1*K.1^-7,-1*K.1^7,-1*K.1^4,K.1^-3,K.1^4,K.1^5,-1*K.1^8,-1*K.1,-1*K.1^8,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1^2,K.1^-6,-1*K.1^-3,-1*K.1^7,-1*K.1^3,-1*K.1^-7,-1*K.1^3,-1*K.1^-4,-1*K.1^6,-1*K.1^-4,K.1,K.1^8,K.1^-2,-1*K.1,K.1^-7,K.1^3,K.1^-4,K.1^6,K.1^-1,K.1^-8,K.1^2,K.1^-5,K.1^-2,K.1^-6,K.1^4,K.1^5,K.1^8,K.1^2,K.1^-5,K.1^7,K.1^-4,K.1^-7,K.1,K.1^-1,K.1^-8,K.1^6,K.1^-3,K.1^3,-1*K.1^-8,-1*K.1^-2,K.1^-3,K.1^5,K.1^-2,K.1^8,K.1^-1,-1*K.1^-6,-1*K.1^8,-1*K.1^-3,-1*K.1^5,-1*K.1^3,-1*K.1^-5,-1*K.1^-7,-1*K.1^-8,-1*K.1^-4,K.1^6,K.1^4,K.1^3,K.1^3,-1*K.1^-3,K.1^2,K.1^-4,K.1^-8,K.1^-5,-1*K.1^5,K.1^7,-1*K.1^-4,-1*K.1^7,-1*K.1^-6,K.1^-1,K.1^-6,K.1^-3,-1*K.1^2,-1*K.1^8,K.1^-5,-1*K.1^-7,K.1^6,K.1^4,K.1^8,K.1^-2,K.1^5,K.1,-1*K.1,-1*K.1^4,-1*K.1^-2,-1*K.1^7,-1*K.1^-1,K.1^-6,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^6,K.1^-4,K.1^-7,K.1^-7,-1*K.1^-5,-1*K.1,-1*K.1^6,K.1^2,-1*K.1^4,K.1^-8,K.1,K.1^7,-1*K.1^-3,K.1^4,K.1^-6,K.1^6,K.1^-1,-1*K.1^-8,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,-1*K.1^8,-1*K.1^5,-1*K.1^-5,-1*K.1^2,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^7,-1*K.1^-1,-1*K.1^-7,-1*K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^8,-1*K.1^4,-1*K.1^3,-1*K.1^6,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^3,K.1^8,K.1^-3,K.1^-8,K.1,K.1^5,K.1^7,-1*K.1^-3,K.1^-2,-1*K.1^5,K.1^-7,-1*K.1^-8,K.1^-5,-1*K.1^4,K.1^-4,-1*K.1,-1*K.1^-2,-1*K.1^-5,K.1^8,-1*K.1^5,K.1^5,-1*K.1^-2,K.1^-2,K.1^-1,-1*K.1^-1,K.1^6,-1*K.1^6,-1*K.1^-6,K.1^-6,-1*K.1^4,K.1^4,K.1^-7,-1*K.1^-7,K.1^-5,-1*K.1^-5,-1*K.1^4,K.1^-8,-1*K.1^-7,K.1^-6,K.1^-2,K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,K.1^5,K.1^3,K.1^-1,K.1^4,-1*K.1^-8,K.1^7,K.1^2,-1*K.1^2,K.1^-8,-1*K.1^-8,-1*K.1^8,K.1^8,-1*K.1,K.1,K.1^-4,-1*K.1^-4,K.1^3,-1*K.1^3,-1*K.1^-3,K.1^-3,-1*K.1^7,K.1^-5,K.1^-4,-1*K.1^8,-1*K.1^5,-1*K.1^6,-1*K.1^2,-1*K.1^7,K.1^6,K.1^2,K.1^-3,K.1,-1*K.1^-5,-1*K.1^-3,-1*K.1,-1*K.1^-4,K.1^8,K.1^7,-1*K.1^-5,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^8,K.1^8,K.1^6,-1*K.1^6,K.1^-4,-1*K.1^-4,-1*K.1^4,K.1^4,-1*K.1^-3,K.1^-3,K.1^-5,K.1^7,K.1^-4,K.1^-8,-1*K.1^5,K.1^-6,-1*K.1^2,-1*K.1^7,-1*K.1^-6,K.1^2,-1*K.1^3,K.1,K.1^5,K.1^3,-1*K.1,-1*K.1^-4,-1*K.1^-8,K.1^7,-1*K.1^5,K.1^5,K.1^-8,-1*K.1^-8,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-6,K.1^-6,K.1^3,-1*K.1^3,K.1^-7,-1*K.1^-7,-1*K.1^7,K.1^-5,-1*K.1^4,-1*K.1^8,-1*K.1^-7,-1*K.1^6,K.1^-2,K.1^-7,K.1^6,-1*K.1^-2,K.1^-3,-1*K.1^-1,-1*K.1^-5,-1*K.1^-3,K.1^-1,K.1^4,K.1^-8,-1*K.1^6,-1*K.1^-3,K.1^-5,-1*K.1,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,-1*K.1^-1,K.1^-7,K.1^-5,K.1^-8,-1*K.1^6,K.1^4,K.1^4,K.1,-1*K.1^-7,K.1^-3,K.1^-4,-1*K.1^4,K.1^6,-1*K.1^-2,-1*K.1^-8,K.1^5,-1*K.1^4,K.1^3,-1*K.1^-4,K.1^-2,-1*K.1^7,K.1^-6,K.1^7,-1*K.1^-6,-1*K.1^3,K.1^-6,K.1,K.1^-4,-1*K.1^5,K.1^2,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-5,K.1^8,-1*K.1^-7,K.1^-7,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^5,K.1^-2,-1*K.1^-1,K.1^6,-1*K.1^2,-1*K.1^8,K.1^8,K.1^7,-1*K.1^-4,K.1^-3,K.1^5,-1*K.1^3,-1*K.1^-2,-1*K.1^-5,K.1^3,-1*K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^4,K.1^-2,K.1^-6,K.1^-1,K.1,K.1^-5,K.1^-3,K.1^-7,K.1^6,K.1^7,K.1^-8,K.1^8,K.1^2,K.1^-4,K.1^5,K.1^3,K.1^-7,-1*K.1^8,-1*K.1^5,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^6,-1*K.1,-1*K.1^-2,-1*K.1^-5,-1*K.1,-1*K.1^-4,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,K.1^3,K.1^-4,K.1^-5,-1*K.1^-8,-1*K.1^-1,-1*K.1^-8,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,K.1^6,-1*K.1^3,-1*K.1^-7,-1*K.1^-3,-1*K.1^7,-1*K.1^-3,-1*K.1^4,-1*K.1^-6,-1*K.1^4,K.1^-1,K.1^-8,K.1^2,-1*K.1^-1,K.1^7,K.1^-3,K.1^4,K.1^-6,K.1,K.1^8,K.1^-2,K.1^5,K.1^2,K.1^6,K.1^-4,K.1^-5,K.1^-8,K.1^-2,K.1^5,K.1^-7,K.1^4,K.1^7,K.1^-1,K.1,K.1^8,K.1^-6,K.1^3,K.1^-3,-1*K.1^8,-1*K.1^2,K.1^3,K.1^-5,K.1^2,K.1^-8,K.1,-1*K.1^6,-1*K.1^-8,-1*K.1^3,-1*K.1^-5,-1*K.1^-3,-1*K.1^5,-1*K.1^7,-1*K.1^8,-1*K.1^4,K.1^-6,K.1^-4,K.1^-3,K.1^-3,-1*K.1^3,K.1^-2,K.1^4,K.1^8,K.1^5,-1*K.1^-5,K.1^-7,-1*K.1^4,-1*K.1^-7,-1*K.1^6,K.1,K.1^6,K.1^3,-1*K.1^-2,-1*K.1^-8,K.1^5,-1*K.1^7,K.1^-6,K.1^-4,K.1^-8,K.1^2,K.1^-5,K.1^-1,-1*K.1^-1,-1*K.1^-4,-1*K.1^2,-1*K.1^-7,-1*K.1,K.1^6,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^-6,K.1^4,K.1^7,K.1^7,-1*K.1^5,-1*K.1^-1,-1*K.1^-6,K.1^-2,-1*K.1^-4,K.1^8,K.1^-1,K.1^-7,-1*K.1^3,K.1^-4,K.1^6,K.1^-6,K.1,-1*K.1^8,-1*K.1^-7,-1*K.1^7,-1*K.1^4,-1*K.1^-8,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^-7,-1*K.1,-1*K.1^7,-1*K.1^4,-1*K.1,-1*K.1^6,-1*K.1^-8,-1*K.1^-4,-1*K.1^-3,-1*K.1^-6,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-3,K.1^-8,K.1^3,K.1^8,K.1^-1,K.1^-5,K.1^-7,-1*K.1^3,K.1^2,-1*K.1^-5,K.1^7,-1*K.1^8,K.1^5,-1*K.1^-4,K.1^4,-1*K.1^-1,-1*K.1^2,-1*K.1^5,K.1^-8,-1*K.1^-5,K.1^-5,-1*K.1^2,K.1^2,K.1,-1*K.1,K.1^-6,-1*K.1^-6,-1*K.1^6,K.1^6,-1*K.1^-4,K.1^-4,K.1^7,-1*K.1^7,K.1^5,-1*K.1^5,-1*K.1^-4,K.1^8,-1*K.1^7,K.1^6,K.1^2,K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^-3,-1*K.1,K.1^-5,K.1^-3,K.1,K.1^-4,-1*K.1^8,K.1^-7,K.1^-2,-1*K.1^-2,K.1^8,-1*K.1^8,-1*K.1^-8,K.1^-8,-1*K.1^-1,K.1^-1,K.1^4,-1*K.1^4,K.1^-3,-1*K.1^-3,-1*K.1^3,K.1^3,-1*K.1^-7,K.1^5,K.1^4,-1*K.1^-8,-1*K.1^-5,-1*K.1^-6,-1*K.1^-2,-1*K.1^-7,K.1^-6,K.1^-2,K.1^3,K.1^-1,-1*K.1^5,-1*K.1^3,-1*K.1^-1,-1*K.1^4,K.1^-8,K.1^-7,-1*K.1^5,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-8,K.1^-8,K.1^-6,-1*K.1^-6,K.1^4,-1*K.1^4,-1*K.1^-4,K.1^-4,-1*K.1^3,K.1^3,K.1^5,K.1^-7,K.1^4,K.1^8,-1*K.1^-5,K.1^6,-1*K.1^-2,-1*K.1^-7,-1*K.1^6,K.1^-2,-1*K.1^-3,K.1^-1,K.1^-5,K.1^-3,-1*K.1^-1,-1*K.1^4,-1*K.1^8,K.1^-7,-1*K.1^-5,K.1^-5,K.1^8,-1*K.1^8,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^6,K.1^6,K.1^-3,-1*K.1^-3,K.1^7,-1*K.1^7,-1*K.1^-7,K.1^5,-1*K.1^-4,-1*K.1^-8,-1*K.1^7,-1*K.1^-6,K.1^2,K.1^7,K.1^-6,-1*K.1^2,K.1^3,-1*K.1,-1*K.1^5,-1*K.1^3,K.1,K.1^-4,K.1^8,-1*K.1^-6,-1*K.1^3,K.1^5,-1*K.1^-1,-1*K.1^8,-1*K.1^-7,-1*K.1^3,-1*K.1,K.1^7,K.1^5,K.1^8,-1*K.1^-6,K.1^-4,K.1^-4,K.1^-1,-1*K.1^7,K.1^3,K.1^4,-1*K.1^-4,K.1^-6,-1*K.1^2,-1*K.1^8,K.1^-5,-1*K.1^-4,K.1^-3,-1*K.1^4,K.1^2,-1*K.1^-7,K.1^6,K.1^-7,-1*K.1^6,-1*K.1^-3,K.1^6,K.1^-1,K.1^4,-1*K.1^-5,K.1^-2,K.1,K.1,-1*K.1^-1,-1*K.1^5,K.1^-8,-1*K.1^7,K.1^7,-1*K.1^-2,K.1^-2,-1*K.1^-8,-1*K.1^-5,K.1^2,-1*K.1,K.1^-6,-1*K.1^-2,-1*K.1^-8,K.1^-8,K.1^-7,-1*K.1^4,K.1^3,K.1^-5,-1*K.1^-3,-1*K.1^2,-1*K.1^5,K.1^-3,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^-3,K.1^-7,K.1^-4,K.1^5,K.1^-5,K.1^8,K.1^-2,K.1,K.1^4,K.1^-1,K.1^6,K.1^-6,K.1^7,K.1^3,K.1^-8,K.1^2,K.1,-1*K.1^-6,-1*K.1^-8,-1*K.1^7,-1*K.1^-6,-1*K.1^4,-1*K.1^-4,-1*K.1^2,-1*K.1^4,-1*K.1^-5,-1*K.1^-7,-1*K.1^8,-1*K.1^-5,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^3,K.1^2,K.1^3,K.1^8,-1*K.1^6,-1*K.1^5,-1*K.1^6,-1*K.1^7,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,K.1^4,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-4,-1*K.1^-3,K.1^5,K.1^6,K.1^7,-1*K.1^5,K.1^-1,K.1^-2,K.1^-3,K.1^-4,K.1^-5,K.1^-6,K.1^-7,K.1^-8,K.1^7,K.1^4,K.1^3,K.1^8,K.1^6,K.1^-7,K.1^-8,K.1,K.1^-3,K.1^-1,K.1^5,K.1^-5,K.1^-6,K.1^-4,K.1^2,K.1^-2,-1*K.1^-6,-1*K.1^7,K.1^2,K.1^8,K.1^7,K.1^6,K.1^-5,-1*K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^-2,-1*K.1^-8,-1*K.1^-1,-1*K.1^-6,-1*K.1^-3,K.1^-4,K.1^3,K.1^-2,K.1^-2,-1*K.1^2,K.1^-7,K.1^-3,K.1^-6,K.1^-8,-1*K.1^8,K.1,-1*K.1^-3,-1*K.1,-1*K.1^4,K.1^-5,K.1^4,K.1^2,-1*K.1^-7,-1*K.1^6,K.1^-8,-1*K.1^-1,K.1^-4,K.1^3,K.1^6,K.1^7,K.1^8,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1^-5,K.1^4,-1*K.1^-7,-1*K.1^-2,-1*K.1^-5,-1*K.1^-4,K.1^-3,K.1^-1,K.1^-1,-1*K.1^-8,-1*K.1^5,-1*K.1^-4,K.1^-7,-1*K.1^3,K.1^-6,K.1^5,K.1,-1*K.1^2,K.1^3,K.1^4,K.1^-4,K.1^-5,-1*K.1^-6,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^6,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,-1*K.1^-2,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-5,-1*K.1^-1,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^-2,-1*K.1^-4,-1*K.1^5,-1*K.1^7,-1*K.1^-7,K.1^-7,K.1^-2,K.1^6,K.1^2,K.1^-6,K.1^5,K.1^8,K.1,-1*K.1^2,K.1^7,-1*K.1^8,K.1^-1,-1*K.1^-6,K.1^-8,-1*K.1^3,K.1^-3,-1*K.1^5,-1*K.1^7,-1*K.1^-8,K.1^6,-1*K.1^8,K.1^8,-1*K.1^7,K.1^7,K.1^-5,-1*K.1^-5,K.1^-4,-1*K.1^-4,-1*K.1^4,K.1^4,-1*K.1^3,K.1^3,K.1^-1,-1*K.1^-1,K.1^-8,-1*K.1^-8,-1*K.1^3,K.1^-6,-1*K.1^-1,K.1^4,K.1^7,K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^-2,-1*K.1^-5,K.1^8,K.1^-2,K.1^-5,K.1^3,-1*K.1^-6,K.1,K.1^-7,-1*K.1^-7,K.1^-6,-1*K.1^-6,-1*K.1^6,K.1^6,-1*K.1^5,K.1^5,K.1^-3,-1*K.1^-3,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1,K.1^-8,K.1^-3,-1*K.1^6,-1*K.1^8,-1*K.1^-4,-1*K.1^-7,-1*K.1,K.1^-4,K.1^-7,K.1^2,K.1^5,-1*K.1^-8,-1*K.1^2,-1*K.1^5,-1*K.1^-3,K.1^6,K.1,-1*K.1^-8,K.1^-7,-1*K.1^-7,-1*K.1^7,K.1^7,-1*K.1^6,K.1^6,K.1^-4,-1*K.1^-4,K.1^-3,-1*K.1^-3,-1*K.1^3,K.1^3,-1*K.1^2,K.1^2,K.1^-8,K.1,K.1^-3,K.1^-6,-1*K.1^8,K.1^4,-1*K.1^-7,-1*K.1,-1*K.1^4,K.1^-7,-1*K.1^-2,K.1^5,K.1^8,K.1^-2,-1*K.1^5,-1*K.1^-3,-1*K.1^-6,K.1,-1*K.1^8,K.1^8,K.1^-6,-1*K.1^-6,K.1^-5,-1*K.1^-5,-1*K.1^5,K.1^5,-1*K.1^4,K.1^4,K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-8,-1*K.1^3,-1*K.1^6,-1*K.1^-1,-1*K.1^-4,K.1^7,K.1^-1,K.1^-4,-1*K.1^7,K.1^2,-1*K.1^-5,-1*K.1^-8,-1*K.1^2,K.1^-5,K.1^3,K.1^-6,-1*K.1^-4,-1*K.1^2,K.1^-8,-1*K.1^5,-1*K.1^-6,-1*K.1,-1*K.1^2,-1*K.1^-5,K.1^-1,K.1^-8,K.1^-6,-1*K.1^-4,K.1^3,K.1^3,K.1^5,-1*K.1^-1,K.1^2,K.1^-3,-1*K.1^3,K.1^-4,-1*K.1^7,-1*K.1^-6,K.1^8,-1*K.1^3,K.1^-2,-1*K.1^-3,K.1^7,-1*K.1,K.1^4,K.1,-1*K.1^4,-1*K.1^-2,K.1^4,K.1^5,K.1^-3,-1*K.1^8,K.1^-7,K.1^-5,K.1^-5,-1*K.1^5,-1*K.1^-8,K.1^6,-1*K.1^-1,K.1^-1,-1*K.1^-7,K.1^-7,-1*K.1^6,-1*K.1^8,K.1^7,-1*K.1^-5,K.1^-4,-1*K.1^-7,-1*K.1^6,K.1^6,K.1,-1*K.1^-3,K.1^2,K.1^8,-1*K.1^-2,-1*K.1^7,-1*K.1^-8,K.1^-2,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^3,K.1^7,K.1^4,K.1^-5,K.1^5,K.1^-8,K.1^2,K.1^-1,K.1^-4,K.1,K.1^-6,K.1^6,K.1^-7,K.1^-3,K.1^8,K.1^-2,K.1^-1,-1*K.1^6,-1*K.1^8,-1*K.1^-7,-1*K.1^6,-1*K.1^-4,-1*K.1^4,-1*K.1^-2,-1*K.1^-4,-1*K.1^5,-1*K.1^7,-1*K.1^-8,-1*K.1^5,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^-3,K.1^-2,K.1^-3,K.1^-8,-1*K.1^-6,-1*K.1^-5,-1*K.1^-6,-1*K.1^-7,-1*K.1^-8,-1*K.1^8,-1*K.1^7,K.1^-4,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^4,-1*K.1^3,K.1^-5,K.1^-6,K.1^-7,-1*K.1^-5,K.1,K.1^2,K.1^3,K.1^4,K.1^5,K.1^6,K.1^7,K.1^8,K.1^-7,K.1^-4,K.1^-3,K.1^-8,K.1^-6,K.1^7,K.1^8,K.1^-1,K.1^3,K.1,K.1^-5,K.1^5,K.1^6,K.1^4,K.1^-2,K.1^2,-1*K.1^6,-1*K.1^-7,K.1^-2,K.1^-8,K.1^-7,K.1^-6,K.1^5,-1*K.1^-4,-1*K.1^-6,-1*K.1^-2,-1*K.1^-8,-1*K.1^2,-1*K.1^8,-1*K.1,-1*K.1^6,-1*K.1^3,K.1^4,K.1^-3,K.1^2,K.1^2,-1*K.1^-2,K.1^7,K.1^3,K.1^6,K.1^8,-1*K.1^-8,K.1^-1,-1*K.1^3,-1*K.1^-1,-1*K.1^-4,K.1^5,K.1^-4,K.1^-2,-1*K.1^7,-1*K.1^-6,K.1^8,-1*K.1,K.1^4,K.1^-3,K.1^-6,K.1^-7,K.1^-8,K.1^-5,-1*K.1^-5,-1*K.1^-3,-1*K.1^-7,-1*K.1^-1,-1*K.1^5,K.1^-4,-1*K.1^7,-1*K.1^2,-1*K.1^5,-1*K.1^4,K.1^3,K.1,K.1,-1*K.1^8,-1*K.1^-5,-1*K.1^4,K.1^7,-1*K.1^-3,K.1^6,K.1^-5,K.1^-1,-1*K.1^-2,K.1^-3,K.1^-4,K.1^4,K.1^5,-1*K.1^6,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-6,-1*K.1^-8,-1*K.1^8,-1*K.1^7,-1*K.1^2,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1^2,-1*K.1^4,-1*K.1^-5,-1*K.1^-7,-1*K.1^7,K.1^7,K.1^2,K.1^-6,K.1^-2,K.1^6,K.1^-5,K.1^-8,K.1^-1,-1*K.1^-2,K.1^-7,-1*K.1^-8,K.1,-1*K.1^6,K.1^8,-1*K.1^-3,K.1^3,-1*K.1^-5,-1*K.1^-7,-1*K.1^8,K.1^-6,-1*K.1^-8,K.1^-8,-1*K.1^-7,K.1^-7,K.1^5,-1*K.1^5,K.1^4,-1*K.1^4,-1*K.1^-4,K.1^-4,-1*K.1^-3,K.1^-3,K.1,-1*K.1,K.1^8,-1*K.1^8,-1*K.1^-3,K.1^6,-1*K.1,K.1^-4,K.1^-7,K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^2,-1*K.1^5,K.1^-8,K.1^2,K.1^5,K.1^-3,-1*K.1^6,K.1^-1,K.1^7,-1*K.1^7,K.1^6,-1*K.1^6,-1*K.1^-6,K.1^-6,-1*K.1^-5,K.1^-5,K.1^3,-1*K.1^3,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^-1,K.1^8,K.1^3,-1*K.1^-6,-1*K.1^-8,-1*K.1^4,-1*K.1^7,-1*K.1^-1,K.1^4,K.1^7,K.1^-2,K.1^-5,-1*K.1^8,-1*K.1^-2,-1*K.1^-5,-1*K.1^3,K.1^-6,K.1^-1,-1*K.1^8,K.1^7,-1*K.1^7,-1*K.1^-7,K.1^-7,-1*K.1^-6,K.1^-6,K.1^4,-1*K.1^4,K.1^3,-1*K.1^3,-1*K.1^-3,K.1^-3,-1*K.1^-2,K.1^-2,K.1^8,K.1^-1,K.1^3,K.1^6,-1*K.1^-8,K.1^-4,-1*K.1^7,-1*K.1^-1,-1*K.1^-4,K.1^7,-1*K.1^2,K.1^-5,K.1^-8,K.1^2,-1*K.1^-5,-1*K.1^3,-1*K.1^6,K.1^-1,-1*K.1^-8,K.1^-8,K.1^6,-1*K.1^6,K.1^5,-1*K.1^5,-1*K.1^-5,K.1^-5,-1*K.1^-4,K.1^-4,K.1^2,-1*K.1^2,K.1,-1*K.1,-1*K.1^-1,K.1^8,-1*K.1^-3,-1*K.1^-6,-1*K.1,-1*K.1^4,K.1^-7,K.1,K.1^4,-1*K.1^-7,K.1^-2,-1*K.1^5,-1*K.1^8,-1*K.1^-2,K.1^5,K.1^-3,K.1^6,-1*K.1^4,-1*K.1^-2,K.1^8,-1*K.1^-5,-1*K.1^6,-1*K.1^-1,-1*K.1^-2,-1*K.1^5,K.1,K.1^8,K.1^6,-1*K.1^4,K.1^-3,K.1^-3,K.1^-5,-1*K.1,K.1^-2,K.1^3,-1*K.1^-3,K.1^4,-1*K.1^-7,-1*K.1^6,K.1^-8,-1*K.1^-3,K.1^2,-1*K.1^3,K.1^-7,-1*K.1^-1,K.1^-4,K.1^-1,-1*K.1^-4,-1*K.1^2,K.1^-4,K.1^-5,K.1^3,-1*K.1^-8,K.1^7,K.1^5,K.1^5,-1*K.1^-5,-1*K.1^8,K.1^-6,-1*K.1,K.1,-1*K.1^7,K.1^7,-1*K.1^-6,-1*K.1^-8,K.1^-7,-1*K.1^5,K.1^4,-1*K.1^7,-1*K.1^-6,K.1^-6,K.1^-1,-1*K.1^3,K.1^-2,K.1^-8,-1*K.1^2,-1*K.1^-7,-1*K.1^8,K.1^2,-1*K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^-2,K.1,K.1^3,K.1^-8,K.1^8,K.1^-6,K.1^-7,K.1^-5,K.1^-3,K.1^5,K.1^4,K.1^-4,K.1^-1,K.1^2,K.1^6,K.1^7,K.1^-5,-1*K.1^-4,-1*K.1^6,-1*K.1^-1,-1*K.1^-4,-1*K.1^-3,-1*K.1^3,-1*K.1^7,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^-6,-1*K.1^8,-1*K.1^2,-1*K.1^5,-1*K.1^-5,-1*K.1^2,K.1^7,K.1^2,K.1^-6,-1*K.1^4,-1*K.1^-8,-1*K.1^4,-1*K.1^-1,-1*K.1^-6,-1*K.1^6,-1*K.1,K.1^-3,-1*K.1^7,-1*K.1^-5,-1*K.1^-7,-1*K.1^5,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,K.1^-8,K.1^4,K.1^-1,-1*K.1^-8,K.1^5,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^-4,K.1,K.1^6,K.1^-1,K.1^-3,K.1^2,K.1^-6,K.1^4,K.1,K.1^6,K.1^-5,K.1^-2,K.1^5,K.1^-8,K.1^8,K.1^-4,K.1^3,K.1^7,K.1^-7,-1*K.1^-4,-1*K.1^-1,K.1^7,K.1^-6,K.1^-1,K.1^4,K.1^8,-1*K.1^-3,-1*K.1^4,-1*K.1^7,-1*K.1^-6,-1*K.1^-7,-1*K.1^6,-1*K.1^5,-1*K.1^-4,-1*K.1^-2,K.1^3,K.1^2,K.1^-7,K.1^-7,-1*K.1^7,K.1,K.1^-2,K.1^-4,K.1^6,-1*K.1^-6,K.1^-5,-1*K.1^-2,-1*K.1^-5,-1*K.1^-3,K.1^8,K.1^-3,K.1^7,-1*K.1,-1*K.1^4,K.1^6,-1*K.1^5,K.1^3,K.1^2,K.1^4,K.1^-1,K.1^-6,K.1^-8,-1*K.1^-8,-1*K.1^2,-1*K.1^-1,-1*K.1^-5,-1*K.1^8,K.1^-3,-1*K.1,-1*K.1^-7,-1*K.1^8,-1*K.1^3,K.1^-2,K.1^5,K.1^5,-1*K.1^6,-1*K.1^-8,-1*K.1^3,K.1,-1*K.1^2,K.1^-4,K.1^-8,K.1^-5,-1*K.1^7,K.1^2,K.1^-3,K.1^3,K.1^8,-1*K.1^-4,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^-6,-1*K.1^6,-1*K.1,-1*K.1^-7,-1*K.1^-3,-1*K.1^3,-1*K.1^-5,-1*K.1^8,-1*K.1^5,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^-7,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1,K.1,K.1^-7,K.1^4,K.1^7,K.1^-4,K.1^-8,K.1^-6,K.1^-5,-1*K.1^7,K.1^-1,-1*K.1^-6,K.1^5,-1*K.1^-4,K.1^6,-1*K.1^2,K.1^-2,-1*K.1^-8,-1*K.1^-1,-1*K.1^6,K.1^4,-1*K.1^-6,K.1^-6,-1*K.1^-1,K.1^-1,K.1^8,-1*K.1^8,K.1^3,-1*K.1^3,-1*K.1^-3,K.1^-3,-1*K.1^2,K.1^2,K.1^5,-1*K.1^5,K.1^6,-1*K.1^6,-1*K.1^2,K.1^-4,-1*K.1^5,K.1^-3,K.1^-1,K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^-7,-1*K.1^8,K.1^-6,K.1^-7,K.1^8,K.1^2,-1*K.1^-4,K.1^-5,K.1,-1*K.1,K.1^-4,-1*K.1^-4,-1*K.1^4,K.1^4,-1*K.1^-8,K.1^-8,K.1^-2,-1*K.1^-2,K.1^-7,-1*K.1^-7,-1*K.1^7,K.1^7,-1*K.1^-5,K.1^6,K.1^-2,-1*K.1^4,-1*K.1^-6,-1*K.1^3,-1*K.1,-1*K.1^-5,K.1^3,K.1,K.1^7,K.1^-8,-1*K.1^6,-1*K.1^7,-1*K.1^-8,-1*K.1^-2,K.1^4,K.1^-5,-1*K.1^6,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^4,K.1^4,K.1^3,-1*K.1^3,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^7,K.1^7,K.1^6,K.1^-5,K.1^-2,K.1^-4,-1*K.1^-6,K.1^-3,-1*K.1,-1*K.1^-5,-1*K.1^-3,K.1,-1*K.1^-7,K.1^-8,K.1^-6,K.1^-7,-1*K.1^-8,-1*K.1^-2,-1*K.1^-4,K.1^-5,-1*K.1^-6,K.1^-6,K.1^-4,-1*K.1^-4,K.1^8,-1*K.1^8,-1*K.1^-8,K.1^-8,-1*K.1^-3,K.1^-3,K.1^-7,-1*K.1^-7,K.1^5,-1*K.1^5,-1*K.1^-5,K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^5,-1*K.1^3,K.1^-1,K.1^5,K.1^3,-1*K.1^-1,K.1^7,-1*K.1^8,-1*K.1^6,-1*K.1^7,K.1^8,K.1^2,K.1^-4,-1*K.1^3,-1*K.1^7,K.1^6,-1*K.1^-8,-1*K.1^-4,-1*K.1^-5,-1*K.1^7,-1*K.1^8,K.1^5,K.1^6,K.1^-4,-1*K.1^3,K.1^2,K.1^2,K.1^-8,-1*K.1^5,K.1^7,K.1^-2,-1*K.1^2,K.1^3,-1*K.1^-1,-1*K.1^-4,K.1^-6,-1*K.1^2,K.1^-7,-1*K.1^-2,K.1^-1,-1*K.1^-5,K.1^-3,K.1^-5,-1*K.1^-3,-1*K.1^-7,K.1^-3,K.1^-8,K.1^-2,-1*K.1^-6,K.1,K.1^8,K.1^8,-1*K.1^-8,-1*K.1^6,K.1^4,-1*K.1^5,K.1^5,-1*K.1,K.1,-1*K.1^4,-1*K.1^-6,K.1^-1,-1*K.1^8,K.1^3,-1*K.1,-1*K.1^4,K.1^4,K.1^-5,-1*K.1^-2,K.1^7,K.1^-6,-1*K.1^-7,-1*K.1^-1,-1*K.1^6,K.1^-7,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^2,K.1^-1,K.1^-3,K.1^8,K.1^-8,K.1^6,K.1^7,K.1^5,K.1^3,K.1^-5,K.1^-4,K.1^4,K.1,K.1^-2,K.1^-6,K.1^-7,K.1^5,-1*K.1^4,-1*K.1^-6,-1*K.1,-1*K.1^4,-1*K.1^3,-1*K.1^-3,-1*K.1^-7,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1^6,-1*K.1^-8,-1*K.1^-2,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,K.1^-7,K.1^-2,K.1^6,-1*K.1^-4,-1*K.1^8,-1*K.1^-4,-1*K.1,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,K.1^3,-1*K.1^-7,-1*K.1^5,-1*K.1^7,-1*K.1^-5,-1*K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^2,K.1^8,K.1^-4,K.1,-1*K.1^8,K.1^-5,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^4,K.1^-1,K.1^-6,K.1,K.1^3,K.1^-2,K.1^6,K.1^-4,K.1^-1,K.1^-6,K.1^5,K.1^2,K.1^-5,K.1^8,K.1^-8,K.1^4,K.1^-3,K.1^-7,K.1^7,-1*K.1^4,-1*K.1,K.1^-7,K.1^6,K.1,K.1^-4,K.1^-8,-1*K.1^3,-1*K.1^-4,-1*K.1^-7,-1*K.1^6,-1*K.1^7,-1*K.1^-6,-1*K.1^-5,-1*K.1^4,-1*K.1^2,K.1^-3,K.1^-2,K.1^7,K.1^7,-1*K.1^-7,K.1^-1,K.1^2,K.1^4,K.1^-6,-1*K.1^6,K.1^5,-1*K.1^2,-1*K.1^5,-1*K.1^3,K.1^-8,K.1^3,K.1^-7,-1*K.1^-1,-1*K.1^-4,K.1^-6,-1*K.1^-5,K.1^-3,K.1^-2,K.1^-4,K.1,K.1^6,K.1^8,-1*K.1^8,-1*K.1^-2,-1*K.1,-1*K.1^5,-1*K.1^-8,K.1^3,-1*K.1^-1,-1*K.1^7,-1*K.1^-8,-1*K.1^-3,K.1^2,K.1^-5,K.1^-5,-1*K.1^-6,-1*K.1^8,-1*K.1^-3,K.1^-1,-1*K.1^-2,K.1^4,K.1^8,K.1^5,-1*K.1^-7,K.1^-2,K.1^3,K.1^-3,K.1^-8,-1*K.1^4,-1*K.1^5,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,-1*K.1^7,-1*K.1^3,-1*K.1^-3,-1*K.1^5,-1*K.1^-8,-1*K.1^-5,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^7,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^-1,K.1^-1,K.1^7,K.1^-4,K.1^-7,K.1^4,K.1^8,K.1^6,K.1^5,-1*K.1^-7,K.1,-1*K.1^6,K.1^-5,-1*K.1^4,K.1^-6,-1*K.1^-2,K.1^2,-1*K.1^8,-1*K.1,-1*K.1^-6,K.1^-4,-1*K.1^6,K.1^6,-1*K.1,K.1,K.1^-8,-1*K.1^-8,K.1^-3,-1*K.1^-3,-1*K.1^3,K.1^3,-1*K.1^-2,K.1^-2,K.1^-5,-1*K.1^-5,K.1^-6,-1*K.1^-6,-1*K.1^-2,K.1^4,-1*K.1^-5,K.1^3,K.1,K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^-8,K.1^6,K.1^7,K.1^-8,K.1^-2,-1*K.1^4,K.1^5,K.1^-1,-1*K.1^-1,K.1^4,-1*K.1^4,-1*K.1^-4,K.1^-4,-1*K.1^8,K.1^8,K.1^2,-1*K.1^2,K.1^7,-1*K.1^7,-1*K.1^-7,K.1^-7,-1*K.1^5,K.1^-6,K.1^2,-1*K.1^-4,-1*K.1^6,-1*K.1^-3,-1*K.1^-1,-1*K.1^5,K.1^-3,K.1^-1,K.1^-7,K.1^8,-1*K.1^-6,-1*K.1^-7,-1*K.1^8,-1*K.1^2,K.1^-4,K.1^5,-1*K.1^-6,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-4,K.1^-4,K.1^-3,-1*K.1^-3,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^-7,K.1^-7,K.1^-6,K.1^5,K.1^2,K.1^4,-1*K.1^6,K.1^3,-1*K.1^-1,-1*K.1^5,-1*K.1^3,K.1^-1,-1*K.1^7,K.1^8,K.1^6,K.1^7,-1*K.1^8,-1*K.1^2,-1*K.1^4,K.1^5,-1*K.1^6,K.1^6,K.1^4,-1*K.1^4,K.1^-8,-1*K.1^-8,-1*K.1^8,K.1^8,-1*K.1^3,K.1^3,K.1^7,-1*K.1^7,K.1^-5,-1*K.1^-5,-1*K.1^5,K.1^-6,-1*K.1^-2,-1*K.1^-4,-1*K.1^-5,-1*K.1^-3,K.1,K.1^-5,K.1^-3,-1*K.1,K.1^-7,-1*K.1^-8,-1*K.1^-6,-1*K.1^-7,K.1^-8,K.1^-2,K.1^4,-1*K.1^-3,-1*K.1^-7,K.1^-6,-1*K.1^8,-1*K.1^4,-1*K.1^5,-1*K.1^-7,-1*K.1^-8,K.1^-5,K.1^-6,K.1^4,-1*K.1^-3,K.1^-2,K.1^-2,K.1^8,-1*K.1^-5,K.1^-7,K.1^2,-1*K.1^-2,K.1^-3,-1*K.1,-1*K.1^4,K.1^6,-1*K.1^-2,K.1^7,-1*K.1^2,K.1,-1*K.1^5,K.1^3,K.1^5,-1*K.1^3,-1*K.1^7,K.1^3,K.1^8,K.1^2,-1*K.1^6,K.1^-1,K.1^-8,K.1^-8,-1*K.1^8,-1*K.1^-6,K.1^-4,-1*K.1^-5,K.1^-5,-1*K.1^-1,K.1^-1,-1*K.1^-4,-1*K.1^6,K.1,-1*K.1^-8,K.1^-3,-1*K.1^-1,-1*K.1^-4,K.1^-4,K.1^5,-1*K.1^2,K.1^-7,K.1^6,-1*K.1^7,-1*K.1,-1*K.1^-6,K.1^7,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1^-1,K.1^-8,K.1^-7,K.1^-4,K.1^4,K.1^-3,K.1^5,K.1^6,K.1^7,K.1^-6,K.1^2,K.1^-2,K.1^8,K.1,K.1^3,K.1^-5,K.1^6,-1*K.1^-2,-1*K.1^3,-1*K.1^8,-1*K.1^-2,-1*K.1^7,-1*K.1^-7,-1*K.1^-5,-1*K.1^7,-1*K.1^4,-1*K.1^-8,-1*K.1^-3,-1*K.1^4,-1*K.1,-1*K.1^-6,-1*K.1^6,-1*K.1,K.1^-5,K.1,K.1^-3,-1*K.1^2,-1*K.1^-4,-1*K.1^2,-1*K.1^8,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,K.1^7,-1*K.1^-5,-1*K.1^6,-1*K.1^5,-1*K.1^-6,-1*K.1^5,-1*K.1^-1,-1*K.1^-7,-1*K.1^-1,K.1^-4,K.1^2,K.1^8,-1*K.1^-4,K.1^-6,K.1^5,K.1^-1,K.1^-7,K.1^4,K.1^-2,K.1^-8,K.1^3,K.1^8,K.1^7,K.1,K.1^-3,K.1^2,K.1^-8,K.1^3,K.1^6,K.1^-1,K.1^-6,K.1^-4,K.1^4,K.1^-2,K.1^-7,K.1^-5,K.1^5,-1*K.1^-2,-1*K.1^8,K.1^-5,K.1^-3,K.1^8,K.1^2,K.1^4,-1*K.1^7,-1*K.1^2,-1*K.1^-5,-1*K.1^-3,-1*K.1^5,-1*K.1^3,-1*K.1^-6,-1*K.1^-2,-1*K.1^-1,K.1^-7,K.1,K.1^5,K.1^5,-1*K.1^-5,K.1^-8,K.1^-1,K.1^-2,K.1^3,-1*K.1^-3,K.1^6,-1*K.1^-1,-1*K.1^6,-1*K.1^7,K.1^4,K.1^7,K.1^-5,-1*K.1^-8,-1*K.1^2,K.1^3,-1*K.1^-6,K.1^-7,K.1,K.1^2,K.1^8,K.1^-3,K.1^-4,-1*K.1^-4,-1*K.1,-1*K.1^8,-1*K.1^6,-1*K.1^4,K.1^7,-1*K.1^-8,-1*K.1^5,-1*K.1^4,-1*K.1^-7,K.1^-1,K.1^-6,K.1^-6,-1*K.1^3,-1*K.1^-4,-1*K.1^-7,K.1^-8,-1*K.1,K.1^-2,K.1^-4,K.1^6,-1*K.1^-5,K.1,K.1^7,K.1^-7,K.1^4,-1*K.1^-2,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,-1*K.1^5,-1*K.1^7,-1*K.1^-7,-1*K.1^6,-1*K.1^4,-1*K.1^-6,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^2,-1*K.1,-1*K.1^5,-1*K.1^-7,-1*K.1^-4,-1*K.1^8,-1*K.1^-8,K.1^-8,K.1^5,K.1^2,K.1^-5,K.1^-2,K.1^-4,K.1^-3,K.1^6,-1*K.1^-5,K.1^8,-1*K.1^-3,K.1^-6,-1*K.1^-2,K.1^3,-1*K.1,K.1^-1,-1*K.1^-4,-1*K.1^8,-1*K.1^3,K.1^2,-1*K.1^-3,K.1^-3,-1*K.1^8,K.1^8,K.1^4,-1*K.1^4,K.1^-7,-1*K.1^-7,-1*K.1^7,K.1^7,-1*K.1,K.1,K.1^-6,-1*K.1^-6,K.1^3,-1*K.1^3,-1*K.1,K.1^-2,-1*K.1^-6,K.1^7,K.1^8,K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^5,-1*K.1^4,K.1^-3,K.1^5,K.1^4,K.1,-1*K.1^-2,K.1^6,K.1^-8,-1*K.1^-8,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-4,K.1^-4,K.1^-1,-1*K.1^-1,K.1^5,-1*K.1^5,-1*K.1^-5,K.1^-5,-1*K.1^6,K.1^3,K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^-7,-1*K.1^-8,-1*K.1^6,K.1^-7,K.1^-8,K.1^-5,K.1^-4,-1*K.1^3,-1*K.1^-5,-1*K.1^-4,-1*K.1^-1,K.1^2,K.1^6,-1*K.1^3,K.1^-8,-1*K.1^-8,-1*K.1^8,K.1^8,-1*K.1^2,K.1^2,K.1^-7,-1*K.1^-7,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-5,K.1^-5,K.1^3,K.1^6,K.1^-1,K.1^-2,-1*K.1^-3,K.1^7,-1*K.1^-8,-1*K.1^6,-1*K.1^7,K.1^-8,-1*K.1^5,K.1^-4,K.1^-3,K.1^5,-1*K.1^-4,-1*K.1^-1,-1*K.1^-2,K.1^6,-1*K.1^-3,K.1^-3,K.1^-2,-1*K.1^-2,K.1^4,-1*K.1^4,-1*K.1^-4,K.1^-4,-1*K.1^7,K.1^7,K.1^5,-1*K.1^5,K.1^-6,-1*K.1^-6,-1*K.1^6,K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-6,-1*K.1^-7,K.1^8,K.1^-6,K.1^-7,-1*K.1^8,K.1^-5,-1*K.1^4,-1*K.1^3,-1*K.1^-5,K.1^4,K.1,K.1^-2,-1*K.1^-7,-1*K.1^-5,K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^6,-1*K.1^-5,-1*K.1^4,K.1^-6,K.1^3,K.1^-2,-1*K.1^-7,K.1,K.1,K.1^-4,-1*K.1^-6,K.1^-5,K.1^-1,-1*K.1,K.1^-7,-1*K.1^8,-1*K.1^-2,K.1^-3,-1*K.1,K.1^5,-1*K.1^-1,K.1^8,-1*K.1^6,K.1^7,K.1^6,-1*K.1^7,-1*K.1^5,K.1^7,K.1^-4,K.1^-1,-1*K.1^-3,K.1^-8,K.1^4,K.1^4,-1*K.1^-4,-1*K.1^3,K.1^2,-1*K.1^-6,K.1^-6,-1*K.1^-8,K.1^-8,-1*K.1^2,-1*K.1^-3,K.1^8,-1*K.1^4,K.1^-7,-1*K.1^-8,-1*K.1^2,K.1^2,K.1^6,-1*K.1^-1,K.1^-5,K.1^-3,-1*K.1^5,-1*K.1^8,-1*K.1^3,K.1^5,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,K.1,K.1^8,K.1^7,K.1^4,K.1^-4,K.1^3,K.1^-5,K.1^-6,K.1^-7,K.1^6,K.1^-2,K.1^2,K.1^-8,K.1^-1,K.1^-3,K.1^5,K.1^-6,-1*K.1^2,-1*K.1^-3,-1*K.1^-8,-1*K.1^2,-1*K.1^-7,-1*K.1^7,-1*K.1^5,-1*K.1^-7,-1*K.1^-4,-1*K.1^8,-1*K.1^3,-1*K.1^-4,-1*K.1^-1,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,K.1^5,K.1^-1,K.1^3,-1*K.1^-2,-1*K.1^4,-1*K.1^-2,-1*K.1^-8,-1*K.1^3,-1*K.1^-3,-1*K.1^8,K.1^-7,-1*K.1^5,-1*K.1^-6,-1*K.1^-5,-1*K.1^6,-1*K.1^-5,-1*K.1,-1*K.1^7,-1*K.1,K.1^4,K.1^-2,K.1^-8,-1*K.1^4,K.1^6,K.1^-5,K.1,K.1^7,K.1^-4,K.1^2,K.1^8,K.1^-3,K.1^-8,K.1^-7,K.1^-1,K.1^3,K.1^-2,K.1^8,K.1^-3,K.1^-6,K.1,K.1^6,K.1^4,K.1^-4,K.1^2,K.1^7,K.1^5,K.1^-5,-1*K.1^2,-1*K.1^-8,K.1^5,K.1^3,K.1^-8,K.1^-2,K.1^-4,-1*K.1^-7,-1*K.1^-2,-1*K.1^5,-1*K.1^3,-1*K.1^-5,-1*K.1^-3,-1*K.1^6,-1*K.1^2,-1*K.1,K.1^7,K.1^-1,K.1^-5,K.1^-5,-1*K.1^5,K.1^8,K.1,K.1^2,K.1^-3,-1*K.1^3,K.1^-6,-1*K.1,-1*K.1^-6,-1*K.1^-7,K.1^-4,K.1^-7,K.1^5,-1*K.1^8,-1*K.1^-2,K.1^-3,-1*K.1^6,K.1^7,K.1^-1,K.1^-2,K.1^-8,K.1^3,K.1^4,-1*K.1^4,-1*K.1^-1,-1*K.1^-8,-1*K.1^-6,-1*K.1^-4,K.1^-7,-1*K.1^8,-1*K.1^-5,-1*K.1^-4,-1*K.1^7,K.1,K.1^6,K.1^6,-1*K.1^-3,-1*K.1^4,-1*K.1^7,K.1^8,-1*K.1^-1,K.1^2,K.1^4,K.1^-6,-1*K.1^5,K.1^-1,K.1^-7,K.1^7,K.1^-4,-1*K.1^2,-1*K.1^-6,-1*K.1^6,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^8,-1*K.1^-5,-1*K.1^-7,-1*K.1^7,-1*K.1^-6,-1*K.1^-4,-1*K.1^6,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^-5,-1*K.1^7,-1*K.1^4,-1*K.1^-8,-1*K.1^8,K.1^8,K.1^-5,K.1^-2,K.1^5,K.1^2,K.1^4,K.1^3,K.1^-6,-1*K.1^5,K.1^-8,-1*K.1^3,K.1^6,-1*K.1^2,K.1^-3,-1*K.1^-1,K.1,-1*K.1^4,-1*K.1^-8,-1*K.1^-3,K.1^-2,-1*K.1^3,K.1^3,-1*K.1^-8,K.1^-8,K.1^-4,-1*K.1^-4,K.1^7,-1*K.1^7,-1*K.1^-7,K.1^-7,-1*K.1^-1,K.1^-1,K.1^6,-1*K.1^6,K.1^-3,-1*K.1^-3,-1*K.1^-1,K.1^2,-1*K.1^6,K.1^-7,K.1^-8,K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1^-5,-1*K.1^-4,K.1^3,K.1^-5,K.1^-4,K.1^-1,-1*K.1^2,K.1^-6,K.1^8,-1*K.1^8,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1^4,K.1^4,K.1,-1*K.1,K.1^-5,-1*K.1^-5,-1*K.1^5,K.1^5,-1*K.1^-6,K.1^-3,K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^7,-1*K.1^8,-1*K.1^-6,K.1^7,K.1^8,K.1^5,K.1^4,-1*K.1^-3,-1*K.1^5,-1*K.1^4,-1*K.1,K.1^-2,K.1^-6,-1*K.1^-3,K.1^8,-1*K.1^8,-1*K.1^-8,K.1^-8,-1*K.1^-2,K.1^-2,K.1^7,-1*K.1^7,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^5,K.1^5,K.1^-3,K.1^-6,K.1,K.1^2,-1*K.1^3,K.1^-7,-1*K.1^8,-1*K.1^-6,-1*K.1^-7,K.1^8,-1*K.1^-5,K.1^4,K.1^3,K.1^-5,-1*K.1^4,-1*K.1,-1*K.1^2,K.1^-6,-1*K.1^3,K.1^3,K.1^2,-1*K.1^2,K.1^-4,-1*K.1^-4,-1*K.1^4,K.1^4,-1*K.1^-7,K.1^-7,K.1^-5,-1*K.1^-5,K.1^6,-1*K.1^6,-1*K.1^-6,K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^6,-1*K.1^7,K.1^-8,K.1^6,K.1^7,-1*K.1^-8,K.1^5,-1*K.1^-4,-1*K.1^-3,-1*K.1^5,K.1^-4,K.1^-1,K.1^2,-1*K.1^7,-1*K.1^5,K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^-6,-1*K.1^5,-1*K.1^-4,K.1^6,K.1^-3,K.1^2,-1*K.1^7,K.1^-1,K.1^-1,K.1^4,-1*K.1^6,K.1^5,K.1,-1*K.1^-1,K.1^7,-1*K.1^-8,-1*K.1^2,K.1^3,-1*K.1^-1,K.1^-5,-1*K.1,K.1^-8,-1*K.1^-6,K.1^-7,K.1^-6,-1*K.1^-7,-1*K.1^-5,K.1^-7,K.1^4,K.1,-1*K.1^3,K.1^8,K.1^-4,K.1^-4,-1*K.1^4,-1*K.1^-3,K.1^-2,-1*K.1^6,K.1^6,-1*K.1^8,K.1^8,-1*K.1^-2,-1*K.1^3,K.1^-8,-1*K.1^-4,K.1^7,-1*K.1^8,-1*K.1^-2,K.1^-2,K.1^-6,-1*K.1,K.1^5,K.1^3,-1*K.1^-5,-1*K.1^-8,-1*K.1^-3,K.1^-5,-1*K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^-8,K.1^4,K.1^-5,K.1^2,K.1^-2,K.1^-7,K.1^6,K.1^-3,K.1^5,K.1^3,K.1^-1,K.1,K.1^-4,K.1^8,K.1^7,K.1^-6,K.1^-3,-1*K.1,-1*K.1^7,-1*K.1^-4,-1*K.1,-1*K.1^5,-1*K.1^-5,-1*K.1^-6,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^-7,-1*K.1^-2,-1*K.1^8,-1*K.1^3,-1*K.1^-3,-1*K.1^8,K.1^-6,K.1^8,K.1^-7,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-4,-1*K.1^-7,-1*K.1^7,-1*K.1^4,K.1^5,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^6,-1*K.1^-8,-1*K.1^-5,-1*K.1^-8,K.1^2,K.1^-1,K.1^-4,-1*K.1^2,K.1^3,K.1^6,K.1^-8,K.1^-5,K.1^-2,K.1,K.1^4,K.1^7,K.1^-4,K.1^5,K.1^8,K.1^-7,K.1^-1,K.1^4,K.1^7,K.1^-3,K.1^-8,K.1^3,K.1^2,K.1^-2,K.1,K.1^-5,K.1^-6,K.1^6,-1*K.1,-1*K.1^-4,K.1^-6,K.1^-7,K.1^-4,K.1^-1,K.1^-2,-1*K.1^5,-1*K.1^-1,-1*K.1^-6,-1*K.1^-7,-1*K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1^-8,K.1^-5,K.1^8,K.1^6,K.1^6,-1*K.1^-6,K.1^4,K.1^-8,K.1,K.1^7,-1*K.1^-7,K.1^-3,-1*K.1^-8,-1*K.1^-3,-1*K.1^5,K.1^-2,K.1^5,K.1^-6,-1*K.1^4,-1*K.1^-1,K.1^7,-1*K.1^3,K.1^-5,K.1^8,K.1^-1,K.1^-4,K.1^-7,K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^-4,-1*K.1^-3,-1*K.1^-2,K.1^5,-1*K.1^4,-1*K.1^6,-1*K.1^-2,-1*K.1^-5,K.1^-8,K.1^3,K.1^3,-1*K.1^7,-1*K.1^2,-1*K.1^-5,K.1^4,-1*K.1^8,K.1,K.1^2,K.1^-3,-1*K.1^-6,K.1^8,K.1^5,K.1^-5,K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1^-7,-1*K.1^7,-1*K.1^4,-1*K.1^6,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1^-1,-1*K.1^8,-1*K.1^6,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^4,K.1^4,K.1^6,K.1^-1,K.1^-6,K.1,K.1^2,K.1^-7,K.1^-3,-1*K.1^-6,K.1^-4,-1*K.1^-7,K.1^3,-1*K.1,K.1^7,-1*K.1^8,K.1^-8,-1*K.1^2,-1*K.1^-4,-1*K.1^7,-1*K.1^-1,K.1^-7,-1*K.1^-7,K.1^-4,-1*K.1^-4,-1*K.1^-2,K.1^-2,-1*K.1^-5,K.1^-5,K.1^5,-1*K.1^5,K.1^8,-1*K.1^8,-1*K.1^3,K.1^3,-1*K.1^7,K.1^7,K.1^8,-1*K.1,K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^3,K.1^5,K.1^-4,K.1^6,K.1^-2,-1*K.1^-7,-1*K.1^6,-1*K.1^-2,-1*K.1^8,K.1,-1*K.1^-3,-1*K.1^4,K.1^4,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-8,K.1^-8,-1*K.1^6,K.1^6,K.1^-6,-1*K.1^-6,K.1^-3,-1*K.1^7,-1*K.1^-8,K.1^-1,K.1^-7,K.1^-5,K.1^4,K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^-6,-1*K.1^2,K.1^7,K.1^-6,K.1^2,K.1^-8,-1*K.1^-1,-1*K.1^-3,K.1^7,-1*K.1^4,K.1^4,K.1^-4,-1*K.1^-4,K.1^-1,-1*K.1^-1,-1*K.1^-5,K.1^-5,-1*K.1^-8,K.1^-8,K.1^8,-1*K.1^8,K.1^-6,-1*K.1^-6,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1,K.1^-7,-1*K.1^5,K.1^4,K.1^-3,K.1^5,-1*K.1^4,K.1^6,-1*K.1^2,-1*K.1^-7,-1*K.1^6,K.1^2,K.1^-8,K.1,-1*K.1^-3,K.1^-7,-1*K.1^-7,-1*K.1,K.1,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1^2,K.1^5,-1*K.1^5,-1*K.1^6,K.1^6,-1*K.1^3,K.1^3,K.1^-3,-1*K.1^7,K.1^8,K.1^-1,K.1^3,K.1^-5,-1*K.1^-4,-1*K.1^3,-1*K.1^-5,K.1^-4,-1*K.1^-6,K.1^-2,K.1^7,K.1^-6,-1*K.1^-2,-1*K.1^8,K.1,-1*K.1^-5,-1*K.1^-6,K.1^7,-1*K.1^2,-1*K.1,-1*K.1^-3,-1*K.1^-6,-1*K.1^-2,K.1^3,K.1^7,K.1,-1*K.1^-5,K.1^8,K.1^8,K.1^2,-1*K.1^3,K.1^-6,K.1^-8,-1*K.1^8,K.1^-5,-1*K.1^-4,-1*K.1,K.1^-7,-1*K.1^8,K.1^6,-1*K.1^-8,K.1^-4,-1*K.1^-3,K.1^5,K.1^-3,-1*K.1^5,-1*K.1^6,K.1^5,K.1^2,K.1^-8,-1*K.1^-7,K.1^4,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^7,K.1^-1,-1*K.1^3,K.1^3,-1*K.1^4,K.1^4,-1*K.1^-1,-1*K.1^-7,K.1^-4,-1*K.1^-2,K.1^-5,-1*K.1^4,-1*K.1^-1,K.1^-1,K.1^-3,-1*K.1^-8,K.1^-6,K.1^-7,-1*K.1^6,-1*K.1^-4,-1*K.1^7,K.1^6,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^8,K.1^-4,K.1^5,K.1^-2,K.1^2,K.1^7,K.1^-6,K.1^3,K.1^-5,K.1^-3,K.1,K.1^-1,K.1^4,K.1^-8,K.1^-7,K.1^6,K.1^3,-1*K.1^-1,-1*K.1^-7,-1*K.1^4,-1*K.1^-1,-1*K.1^-5,-1*K.1^5,-1*K.1^6,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^7,-1*K.1^2,-1*K.1^-8,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,K.1^6,K.1^-8,K.1^7,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^4,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,K.1^-5,-1*K.1^6,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^-6,-1*K.1^8,-1*K.1^5,-1*K.1^8,K.1^-2,K.1,K.1^4,-1*K.1^-2,K.1^-3,K.1^-6,K.1^8,K.1^5,K.1^2,K.1^-1,K.1^-4,K.1^-7,K.1^4,K.1^-5,K.1^-8,K.1^7,K.1,K.1^-4,K.1^-7,K.1^3,K.1^8,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^5,K.1^6,K.1^-6,-1*K.1^-1,-1*K.1^4,K.1^6,K.1^7,K.1^4,K.1,K.1^2,-1*K.1^-5,-1*K.1,-1*K.1^6,-1*K.1^7,-1*K.1^-6,-1*K.1^-7,-1*K.1^-3,-1*K.1^-1,-1*K.1^8,K.1^5,K.1^-8,K.1^-6,K.1^-6,-1*K.1^6,K.1^-4,K.1^8,K.1^-1,K.1^-7,-1*K.1^7,K.1^3,-1*K.1^8,-1*K.1^3,-1*K.1^-5,K.1^2,K.1^-5,K.1^6,-1*K.1^-4,-1*K.1,K.1^-7,-1*K.1^-3,K.1^5,K.1^-8,K.1,K.1^4,K.1^7,K.1^-2,-1*K.1^-2,-1*K.1^-8,-1*K.1^4,-1*K.1^3,-1*K.1^2,K.1^-5,-1*K.1^-4,-1*K.1^-6,-1*K.1^2,-1*K.1^5,K.1^8,K.1^-3,K.1^-3,-1*K.1^-7,-1*K.1^-2,-1*K.1^5,K.1^-4,-1*K.1^-8,K.1^-1,K.1^-2,K.1^3,-1*K.1^6,K.1^-8,K.1^-5,K.1^5,K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,-1*K.1^-6,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1,-1*K.1^-8,-1*K.1^-6,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^-4,K.1^-4,K.1^-6,K.1,K.1^6,K.1^-1,K.1^-2,K.1^7,K.1^3,-1*K.1^6,K.1^4,-1*K.1^7,K.1^-3,-1*K.1^-1,K.1^-7,-1*K.1^-8,K.1^8,-1*K.1^-2,-1*K.1^4,-1*K.1^-7,-1*K.1,K.1^7,-1*K.1^7,K.1^4,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^5,K.1^5,K.1^-5,-1*K.1^-5,K.1^-8,-1*K.1^-8,-1*K.1^-3,K.1^-3,-1*K.1^-7,K.1^-7,K.1^-8,-1*K.1^-1,K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^-3,K.1^-5,K.1^4,K.1^-6,K.1^2,-1*K.1^7,-1*K.1^-6,-1*K.1^2,-1*K.1^-8,K.1^-1,-1*K.1^3,-1*K.1^-4,K.1^-4,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^8,K.1^8,-1*K.1^-6,K.1^-6,K.1^6,-1*K.1^6,K.1^3,-1*K.1^-7,-1*K.1^8,K.1,K.1^7,K.1^5,K.1^-4,K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^6,-1*K.1^-2,K.1^-7,K.1^6,K.1^-2,K.1^8,-1*K.1,-1*K.1^3,K.1^-7,-1*K.1^-4,K.1^-4,K.1^4,-1*K.1^4,K.1,-1*K.1,-1*K.1^5,K.1^5,-1*K.1^8,K.1^8,K.1^-8,-1*K.1^-8,K.1^6,-1*K.1^6,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-1,K.1^7,-1*K.1^-5,K.1^-4,K.1^3,K.1^-5,-1*K.1^-4,K.1^-6,-1*K.1^-2,-1*K.1^7,-1*K.1^-6,K.1^-2,K.1^8,K.1^-1,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1^-1,K.1^-1,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^-2,K.1^-5,-1*K.1^-5,-1*K.1^-6,K.1^-6,-1*K.1^-3,K.1^-3,K.1^3,-1*K.1^-7,K.1^-8,K.1,K.1^-3,K.1^5,-1*K.1^4,-1*K.1^-3,-1*K.1^5,K.1^4,-1*K.1^6,K.1^2,K.1^-7,K.1^6,-1*K.1^2,-1*K.1^-8,K.1^-1,-1*K.1^5,-1*K.1^6,K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^3,-1*K.1^6,-1*K.1^2,K.1^-3,K.1^-7,K.1^-1,-1*K.1^5,K.1^-8,K.1^-8,K.1^-2,-1*K.1^-3,K.1^6,K.1^8,-1*K.1^-8,K.1^5,-1*K.1^4,-1*K.1^-1,K.1^7,-1*K.1^-8,K.1^-6,-1*K.1^8,K.1^4,-1*K.1^3,K.1^-5,K.1^3,-1*K.1^-5,-1*K.1^-6,K.1^-5,K.1^-2,K.1^8,-1*K.1^7,K.1^-4,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-7,K.1,-1*K.1^-3,K.1^-3,-1*K.1^-4,K.1^-4,-1*K.1,-1*K.1^7,K.1^4,-1*K.1^2,K.1^5,-1*K.1^-4,-1*K.1,K.1,K.1^3,-1*K.1^8,K.1^6,K.1^7,-1*K.1^-6,-1*K.1^4,-1*K.1^-7,K.1^-6,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^-7,K.1^-5,K.1^2,K.1^6,K.1^-6,K.1^-4,K.1,K.1^8,K.1^-2,K.1^-8,K.1^-3,K.1^3,K.1^5,K.1^7,K.1^4,K.1^-1,K.1^8,-1*K.1^3,-1*K.1^4,-1*K.1^5,-1*K.1^3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-6,-1*K.1^-5,-1*K.1^-4,-1*K.1^-6,-1*K.1^7,-1*K.1^-8,-1*K.1^8,-1*K.1^7,K.1^-1,K.1^7,K.1^-4,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^5,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,K.1^-2,-1*K.1^-1,-1*K.1^8,-1*K.1,-1*K.1^-8,-1*K.1,-1*K.1^-7,-1*K.1^2,-1*K.1^-7,K.1^6,K.1^-3,K.1^5,-1*K.1^6,K.1^-8,K.1,K.1^-7,K.1^2,K.1^-6,K.1^3,K.1^-5,K.1^4,K.1^5,K.1^-2,K.1^7,K.1^-4,K.1^-3,K.1^-5,K.1^4,K.1^8,K.1^-7,K.1^-8,K.1^6,K.1^-6,K.1^3,K.1^2,K.1^-1,K.1,-1*K.1^3,-1*K.1^5,K.1^-1,K.1^-4,K.1^5,K.1^-3,K.1^-6,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-4,-1*K.1,-1*K.1^4,-1*K.1^-8,-1*K.1^3,-1*K.1^-7,K.1^2,K.1^7,K.1,K.1,-1*K.1^-1,K.1^-5,K.1^-7,K.1^3,K.1^4,-1*K.1^-4,K.1^8,-1*K.1^-7,-1*K.1^8,-1*K.1^-2,K.1^-6,K.1^-2,K.1^-1,-1*K.1^-5,-1*K.1^-3,K.1^4,-1*K.1^-8,K.1^2,K.1^7,K.1^-3,K.1^5,K.1^-4,K.1^6,-1*K.1^6,-1*K.1^7,-1*K.1^5,-1*K.1^8,-1*K.1^-6,K.1^-2,-1*K.1^-5,-1*K.1,-1*K.1^-6,-1*K.1^2,K.1^-7,K.1^-8,K.1^-8,-1*K.1^4,-1*K.1^6,-1*K.1^2,K.1^-5,-1*K.1^7,K.1^3,K.1^6,K.1^8,-1*K.1^-1,K.1^7,K.1^-2,K.1^2,K.1^-6,-1*K.1^3,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^8,-1*K.1^-6,-1*K.1^-8,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-3,-1*K.1^7,-1*K.1,-1*K.1^2,-1*K.1^6,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1,K.1^-3,K.1^-1,K.1^3,K.1^6,K.1^-4,K.1^8,-1*K.1^-1,K.1^5,-1*K.1^-4,K.1^-8,-1*K.1^3,K.1^4,-1*K.1^7,K.1^-7,-1*K.1^6,-1*K.1^5,-1*K.1^4,-1*K.1^-3,K.1^-4,-1*K.1^-4,K.1^5,-1*K.1^5,-1*K.1^-6,K.1^-6,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^-2,K.1^7,-1*K.1^7,-1*K.1^-8,K.1^-8,-1*K.1^4,K.1^4,K.1^7,-1*K.1^3,K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1^-8,K.1^-2,K.1^5,K.1,K.1^-6,-1*K.1^-4,-1*K.1,-1*K.1^-6,-1*K.1^7,K.1^3,-1*K.1^8,-1*K.1^-5,K.1^-5,-1*K.1^3,K.1^3,K.1^-3,-1*K.1^-3,K.1^6,-1*K.1^6,-1*K.1^-7,K.1^-7,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^8,-1*K.1^4,-1*K.1^-7,K.1^-3,K.1^-4,K.1^2,K.1^-5,K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1^-1,-1*K.1^6,K.1^4,K.1^-1,K.1^6,K.1^-7,-1*K.1^-3,-1*K.1^8,K.1^4,-1*K.1^-5,K.1^-5,K.1^5,-1*K.1^5,K.1^-3,-1*K.1^-3,-1*K.1^2,K.1^2,-1*K.1^-7,K.1^-7,K.1^7,-1*K.1^7,K.1^-1,-1*K.1^-1,-1*K.1^4,-1*K.1^8,-1*K.1^-7,-1*K.1^3,K.1^-4,-1*K.1^-2,K.1^-5,K.1^8,K.1^-2,-1*K.1^-5,K.1,-1*K.1^6,-1*K.1^-4,-1*K.1,K.1^6,K.1^-7,K.1^3,-1*K.1^8,K.1^-4,-1*K.1^-4,-1*K.1^3,K.1^3,-1*K.1^-6,K.1^-6,K.1^6,-1*K.1^6,K.1^-2,-1*K.1^-2,-1*K.1,K.1,-1*K.1^-8,K.1^-8,K.1^8,-1*K.1^4,K.1^7,K.1^-3,K.1^-8,K.1^2,-1*K.1^5,-1*K.1^-8,-1*K.1^2,K.1^5,-1*K.1^-1,K.1^-6,K.1^4,K.1^-1,-1*K.1^-6,-1*K.1^7,K.1^3,-1*K.1^2,-1*K.1^-1,K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^8,-1*K.1^-1,-1*K.1^-6,K.1^-8,K.1^4,K.1^3,-1*K.1^2,K.1^7,K.1^7,K.1^6,-1*K.1^-8,K.1^-1,K.1^-7,-1*K.1^7,K.1^2,-1*K.1^5,-1*K.1^3,K.1^-4,-1*K.1^7,K.1,-1*K.1^-7,K.1^5,-1*K.1^8,K.1^-2,K.1^8,-1*K.1^-2,-1*K.1,K.1^-2,K.1^6,K.1^-7,-1*K.1^-4,K.1^-5,K.1^-6,K.1^-6,-1*K.1^6,-1*K.1^4,K.1^-3,-1*K.1^-8,K.1^-8,-1*K.1^-5,K.1^-5,-1*K.1^-3,-1*K.1^-4,K.1^5,-1*K.1^-6,K.1^2,-1*K.1^-5,-1*K.1^-3,K.1^-3,K.1^8,-1*K.1^-7,K.1^-1,K.1^-4,-1*K.1,-1*K.1^5,-1*K.1^4,K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^7,K.1^5,K.1^-2,K.1^-6,K.1^6,K.1^4,K.1^-1,K.1^-8,K.1^2,K.1^8,K.1^3,K.1^-3,K.1^-5,K.1^-7,K.1^-4,K.1,K.1^-8,-1*K.1^-3,-1*K.1^-4,-1*K.1^-5,-1*K.1^-3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^6,-1*K.1^5,-1*K.1^4,-1*K.1^6,-1*K.1^-7,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,K.1,K.1^-7,K.1^4,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^-5,-1*K.1^4,-1*K.1^-4,-1*K.1^5,K.1^2,-1*K.1,-1*K.1^-8,-1*K.1^-1,-1*K.1^8,-1*K.1^-1,-1*K.1^7,-1*K.1^-2,-1*K.1^7,K.1^-6,K.1^3,K.1^-5,-1*K.1^-6,K.1^8,K.1^-1,K.1^7,K.1^-2,K.1^6,K.1^-3,K.1^5,K.1^-4,K.1^-5,K.1^2,K.1^-7,K.1^4,K.1^3,K.1^5,K.1^-4,K.1^-8,K.1^7,K.1^8,K.1^-6,K.1^6,K.1^-3,K.1^-2,K.1,K.1^-1,-1*K.1^-3,-1*K.1^-5,K.1,K.1^4,K.1^-5,K.1^3,K.1^6,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^4,-1*K.1^-1,-1*K.1^-4,-1*K.1^8,-1*K.1^-3,-1*K.1^7,K.1^-2,K.1^-7,K.1^-1,K.1^-1,-1*K.1,K.1^5,K.1^7,K.1^-3,K.1^-4,-1*K.1^4,K.1^-8,-1*K.1^7,-1*K.1^-8,-1*K.1^2,K.1^6,K.1^2,K.1,-1*K.1^5,-1*K.1^3,K.1^-4,-1*K.1^8,K.1^-2,K.1^-7,K.1^3,K.1^-5,K.1^4,K.1^-6,-1*K.1^-6,-1*K.1^-7,-1*K.1^-5,-1*K.1^-8,-1*K.1^6,K.1^2,-1*K.1^5,-1*K.1^-1,-1*K.1^6,-1*K.1^-2,K.1^7,K.1^8,K.1^8,-1*K.1^-4,-1*K.1^-6,-1*K.1^-2,K.1^5,-1*K.1^-7,K.1^-3,K.1^-6,K.1^-8,-1*K.1,K.1^-7,K.1^2,K.1^-2,K.1^6,-1*K.1^-3,-1*K.1^-8,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^4,-1*K.1^-4,-1*K.1^5,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-8,-1*K.1^6,-1*K.1^8,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^3,-1*K.1^-7,-1*K.1^-1,-1*K.1^-2,-1*K.1^-6,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^-1,K.1^3,K.1,K.1^-3,K.1^-6,K.1^4,K.1^-8,-1*K.1,K.1^-5,-1*K.1^4,K.1^8,-1*K.1^-3,K.1^-4,-1*K.1^-7,K.1^7,-1*K.1^-6,-1*K.1^-5,-1*K.1^-4,-1*K.1^3,K.1^4,-1*K.1^4,K.1^-5,-1*K.1^-5,-1*K.1^6,K.1^6,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1^2,K.1^-7,-1*K.1^-7,-1*K.1^8,K.1^8,-1*K.1^-4,K.1^-4,K.1^-7,-1*K.1^-3,K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1^8,K.1^2,K.1^-5,K.1^-1,K.1^6,-1*K.1^4,-1*K.1^-1,-1*K.1^6,-1*K.1^-7,K.1^-3,-1*K.1^-8,-1*K.1^5,K.1^5,-1*K.1^-3,K.1^-3,K.1^3,-1*K.1^3,K.1^-6,-1*K.1^-6,-1*K.1^7,K.1^7,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-8,-1*K.1^-4,-1*K.1^7,K.1^3,K.1^4,K.1^-2,K.1^5,K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1,-1*K.1^-6,K.1^-4,K.1,K.1^-6,K.1^7,-1*K.1^3,-1*K.1^-8,K.1^-4,-1*K.1^5,K.1^5,K.1^-5,-1*K.1^-5,K.1^3,-1*K.1^3,-1*K.1^-2,K.1^-2,-1*K.1^7,K.1^7,K.1^-7,-1*K.1^-7,K.1,-1*K.1,-1*K.1^-4,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,K.1^4,-1*K.1^2,K.1^5,K.1^-8,K.1^2,-1*K.1^5,K.1^-1,-1*K.1^-6,-1*K.1^4,-1*K.1^-1,K.1^-6,K.1^7,K.1^-3,-1*K.1^-8,K.1^4,-1*K.1^4,-1*K.1^-3,K.1^-3,-1*K.1^6,K.1^6,K.1^-6,-1*K.1^-6,K.1^2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^8,K.1^8,K.1^-8,-1*K.1^-4,K.1^-7,K.1^3,K.1^8,K.1^-2,-1*K.1^-5,-1*K.1^8,-1*K.1^-2,K.1^-5,-1*K.1,K.1^6,K.1^-4,K.1,-1*K.1^6,-1*K.1^-7,K.1^-3,-1*K.1^-2,-1*K.1,K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1^-8,-1*K.1,-1*K.1^6,K.1^8,K.1^-4,K.1^-3,-1*K.1^-2,K.1^-7,K.1^-7,K.1^-6,-1*K.1^8,K.1,K.1^7,-1*K.1^-7,K.1^-2,-1*K.1^-5,-1*K.1^-3,K.1^4,-1*K.1^-7,K.1^-1,-1*K.1^7,K.1^-5,-1*K.1^-8,K.1^2,K.1^-8,-1*K.1^2,-1*K.1^-1,K.1^2,K.1^-6,K.1^7,-1*K.1^4,K.1^5,K.1^6,K.1^6,-1*K.1^-6,-1*K.1^-4,K.1^3,-1*K.1^8,K.1^8,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1^4,K.1^-5,-1*K.1^6,K.1^-2,-1*K.1^5,-1*K.1^3,K.1^3,K.1^-8,-1*K.1^7,K.1,K.1^4,-1*K.1^-1,-1*K.1^-5,-1*K.1^-4,K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^-6,K.1^3,K.1^-8,K.1^-7,K.1^7,K.1^-1,K.1^-4,K.1^2,K.1^8,K.1^-2,K.1^-5,K.1^5,K.1^-3,K.1^6,K.1,K.1^4,K.1^2,-1*K.1^5,-1*K.1,-1*K.1^-3,-1*K.1^5,-1*K.1^8,-1*K.1^-8,-1*K.1^4,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^-1,-1*K.1^7,-1*K.1^6,-1*K.1^-2,-1*K.1^2,-1*K.1^6,K.1^4,K.1^6,K.1^-1,-1*K.1^-5,-1*K.1^-7,-1*K.1^-5,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^3,K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^-4,-1*K.1^-2,-1*K.1^-4,-1*K.1^-6,-1*K.1^-8,-1*K.1^-6,K.1^-7,K.1^-5,K.1^-3,-1*K.1^-7,K.1^-2,K.1^-4,K.1^-6,K.1^-8,K.1^7,K.1^5,K.1^3,K.1,K.1^-3,K.1^8,K.1^6,K.1^-1,K.1^-5,K.1^3,K.1,K.1^2,K.1^-6,K.1^-2,K.1^-7,K.1^7,K.1^5,K.1^-8,K.1^4,K.1^-4,-1*K.1^5,-1*K.1^-3,K.1^4,K.1^-1,K.1^-3,K.1^-5,K.1^7,-1*K.1^8,-1*K.1^-5,-1*K.1^4,-1*K.1^-1,-1*K.1^-4,-1*K.1,-1*K.1^-2,-1*K.1^5,-1*K.1^-6,K.1^-8,K.1^6,K.1^-4,K.1^-4,-1*K.1^4,K.1^3,K.1^-6,K.1^5,K.1,-1*K.1^-1,K.1^2,-1*K.1^-6,-1*K.1^2,-1*K.1^8,K.1^7,K.1^8,K.1^4,-1*K.1^3,-1*K.1^-5,K.1,-1*K.1^-2,K.1^-8,K.1^6,K.1^-5,K.1^-3,K.1^-1,K.1^-7,-1*K.1^-7,-1*K.1^6,-1*K.1^-3,-1*K.1^2,-1*K.1^7,K.1^8,-1*K.1^3,-1*K.1^-4,-1*K.1^7,-1*K.1^-8,K.1^-6,K.1^-2,K.1^-2,-1*K.1,-1*K.1^-7,-1*K.1^-8,K.1^3,-1*K.1^6,K.1^5,K.1^-7,K.1^2,-1*K.1^4,K.1^6,K.1^8,K.1^-8,K.1^7,-1*K.1^5,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-4,-1*K.1^8,-1*K.1^-8,-1*K.1^2,-1*K.1^7,-1*K.1^-2,-1*K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^-5,-1*K.1^6,-1*K.1^-4,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1^3,K.1^3,K.1^-4,K.1^-5,K.1^4,K.1^5,K.1^-7,K.1^-1,K.1^2,-1*K.1^4,K.1^-3,-1*K.1^-1,K.1^-2,-1*K.1^5,K.1,-1*K.1^6,K.1^-6,-1*K.1^-7,-1*K.1^-3,-1*K.1,-1*K.1^-5,K.1^-1,-1*K.1^-1,K.1^-3,-1*K.1^-3,-1*K.1^7,K.1^7,-1*K.1^-8,K.1^-8,K.1^8,-1*K.1^8,K.1^6,-1*K.1^6,-1*K.1^-2,K.1^-2,-1*K.1,K.1,K.1^6,-1*K.1^5,K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^-2,K.1^8,K.1^-3,K.1^-4,K.1^7,-1*K.1^-1,-1*K.1^-4,-1*K.1^7,-1*K.1^6,K.1^5,-1*K.1^2,-1*K.1^3,K.1^3,-1*K.1^5,K.1^5,K.1^-5,-1*K.1^-5,K.1^-7,-1*K.1^-7,-1*K.1^-6,K.1^-6,-1*K.1^-4,K.1^-4,K.1^4,-1*K.1^4,K.1^2,-1*K.1,-1*K.1^-6,K.1^-5,K.1^-1,K.1^-8,K.1^3,K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^4,-1*K.1^-7,K.1,K.1^4,K.1^-7,K.1^-6,-1*K.1^-5,-1*K.1^2,K.1,-1*K.1^3,K.1^3,K.1^-3,-1*K.1^-3,K.1^-5,-1*K.1^-5,-1*K.1^-8,K.1^-8,-1*K.1^-6,K.1^-6,K.1^6,-1*K.1^6,K.1^4,-1*K.1^4,-1*K.1,-1*K.1^2,-1*K.1^-6,-1*K.1^5,K.1^-1,-1*K.1^8,K.1^3,K.1^2,K.1^8,-1*K.1^3,K.1^-4,-1*K.1^-7,-1*K.1^-1,-1*K.1^-4,K.1^-7,K.1^-6,K.1^5,-1*K.1^2,K.1^-1,-1*K.1^-1,-1*K.1^5,K.1^5,-1*K.1^7,K.1^7,K.1^-7,-1*K.1^-7,K.1^8,-1*K.1^8,-1*K.1^-4,K.1^-4,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1,K.1^6,K.1^-5,K.1^-2,K.1^-8,-1*K.1^-3,-1*K.1^-2,-1*K.1^-8,K.1^-3,-1*K.1^4,K.1^7,K.1,K.1^4,-1*K.1^7,-1*K.1^6,K.1^5,-1*K.1^-8,-1*K.1^4,K.1,-1*K.1^-7,-1*K.1^5,-1*K.1^2,-1*K.1^4,-1*K.1^7,K.1^-2,K.1,K.1^5,-1*K.1^-8,K.1^6,K.1^6,K.1^-7,-1*K.1^-2,K.1^4,K.1^-6,-1*K.1^6,K.1^-8,-1*K.1^-3,-1*K.1^5,K.1^-1,-1*K.1^6,K.1^-4,-1*K.1^-6,K.1^-3,-1*K.1^2,K.1^8,K.1^2,-1*K.1^8,-1*K.1^-4,K.1^8,K.1^-7,K.1^-6,-1*K.1^-1,K.1^3,K.1^7,K.1^7,-1*K.1^-7,-1*K.1,K.1^-5,-1*K.1^-2,K.1^-2,-1*K.1^3,K.1^3,-1*K.1^-5,-1*K.1^-1,K.1^-3,-1*K.1^7,K.1^-8,-1*K.1^3,-1*K.1^-5,K.1^-5,K.1^2,-1*K.1^-6,K.1^4,K.1^-1,-1*K.1^-4,-1*K.1^-3,-1*K.1,K.1^-4,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^6,K.1^-3,K.1^8,K.1^7,K.1^-7,K.1,K.1^4,K.1^-2,K.1^-8,K.1^2,K.1^5,K.1^-5,K.1^3,K.1^-6,K.1^-1,K.1^-4,K.1^-2,-1*K.1^-5,-1*K.1^-1,-1*K.1^3,-1*K.1^-5,-1*K.1^-8,-1*K.1^8,-1*K.1^-4,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1,-1*K.1^-7,-1*K.1^-6,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,K.1^-4,K.1^-6,K.1,-1*K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^-3,K.1^-8,-1*K.1^-4,-1*K.1^-2,-1*K.1^4,-1*K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^6,K.1^7,K.1^5,K.1^3,-1*K.1^7,K.1^2,K.1^4,K.1^6,K.1^8,K.1^-7,K.1^-5,K.1^-3,K.1^-1,K.1^3,K.1^-8,K.1^-6,K.1,K.1^5,K.1^-3,K.1^-1,K.1^-2,K.1^6,K.1^2,K.1^7,K.1^-7,K.1^-5,K.1^8,K.1^-4,K.1^4,-1*K.1^-5,-1*K.1^3,K.1^-4,K.1,K.1^3,K.1^5,K.1^-7,-1*K.1^-8,-1*K.1^5,-1*K.1^-4,-1*K.1,-1*K.1^4,-1*K.1^-1,-1*K.1^2,-1*K.1^-5,-1*K.1^6,K.1^8,K.1^-6,K.1^4,K.1^4,-1*K.1^-4,K.1^-3,K.1^6,K.1^-5,K.1^-1,-1*K.1,K.1^-2,-1*K.1^6,-1*K.1^-2,-1*K.1^-8,K.1^-7,K.1^-8,K.1^-4,-1*K.1^-3,-1*K.1^5,K.1^-1,-1*K.1^2,K.1^8,K.1^-6,K.1^5,K.1^3,K.1,K.1^7,-1*K.1^7,-1*K.1^-6,-1*K.1^3,-1*K.1^-2,-1*K.1^-7,K.1^-8,-1*K.1^-3,-1*K.1^4,-1*K.1^-7,-1*K.1^8,K.1^6,K.1^2,K.1^2,-1*K.1^-1,-1*K.1^7,-1*K.1^8,K.1^-3,-1*K.1^-6,K.1^-5,K.1^7,K.1^-2,-1*K.1^-4,K.1^-6,K.1^-8,K.1^8,K.1^-7,-1*K.1^-5,-1*K.1^-2,-1*K.1^2,-1*K.1^6,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^4,-1*K.1^-8,-1*K.1^8,-1*K.1^-2,-1*K.1^-7,-1*K.1^2,-1*K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1^5,-1*K.1^-6,-1*K.1^4,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^-3,K.1^-3,K.1^4,K.1^5,K.1^-4,K.1^-5,K.1^7,K.1,K.1^-2,-1*K.1^-4,K.1^3,-1*K.1,K.1^2,-1*K.1^-5,K.1^-1,-1*K.1^-6,K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1^-1,-1*K.1^5,K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^-7,K.1^-7,-1*K.1^8,K.1^8,K.1^-8,-1*K.1^-8,K.1^-6,-1*K.1^-6,-1*K.1^2,K.1^2,-1*K.1^-1,K.1^-1,K.1^-6,-1*K.1^-5,K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^2,K.1^-8,K.1^3,K.1^4,K.1^-7,-1*K.1,-1*K.1^4,-1*K.1^-7,-1*K.1^-6,K.1^-5,-1*K.1^-2,-1*K.1^-3,K.1^-3,-1*K.1^-5,K.1^-5,K.1^5,-1*K.1^5,K.1^7,-1*K.1^7,-1*K.1^6,K.1^6,-1*K.1^4,K.1^4,K.1^-4,-1*K.1^-4,K.1^-2,-1*K.1^-1,-1*K.1^6,K.1^5,K.1,K.1^8,K.1^-3,K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^-4,-1*K.1^7,K.1^-1,K.1^-4,K.1^7,K.1^6,-1*K.1^5,-1*K.1^-2,K.1^-1,-1*K.1^-3,K.1^-3,K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,-1*K.1^8,K.1^8,-1*K.1^6,K.1^6,K.1^-6,-1*K.1^-6,K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^-2,-1*K.1^6,-1*K.1^-5,K.1,-1*K.1^-8,K.1^-3,K.1^-2,K.1^-8,-1*K.1^-3,K.1^4,-1*K.1^7,-1*K.1,-1*K.1^4,K.1^7,K.1^6,K.1^-5,-1*K.1^-2,K.1,-1*K.1,-1*K.1^-5,K.1^-5,-1*K.1^-7,K.1^-7,K.1^7,-1*K.1^7,K.1^-8,-1*K.1^-8,-1*K.1^4,K.1^4,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^-1,K.1^-6,K.1^5,K.1^2,K.1^8,-1*K.1^3,-1*K.1^2,-1*K.1^8,K.1^3,-1*K.1^-4,K.1^-7,K.1^-1,K.1^-4,-1*K.1^-7,-1*K.1^-6,K.1^-5,-1*K.1^8,-1*K.1^-4,K.1^-1,-1*K.1^7,-1*K.1^-5,-1*K.1^-2,-1*K.1^-4,-1*K.1^-7,K.1^2,K.1^-1,K.1^-5,-1*K.1^8,K.1^-6,K.1^-6,K.1^7,-1*K.1^2,K.1^-4,K.1^6,-1*K.1^-6,K.1^8,-1*K.1^3,-1*K.1^-5,K.1,-1*K.1^-6,K.1^4,-1*K.1^6,K.1^3,-1*K.1^-2,K.1^-8,K.1^-2,-1*K.1^-8,-1*K.1^4,K.1^-8,K.1^7,K.1^6,-1*K.1,K.1^-3,K.1^-7,K.1^-7,-1*K.1^7,-1*K.1^-1,K.1^5,-1*K.1^2,K.1^2,-1*K.1^-3,K.1^-3,-1*K.1^5,-1*K.1,K.1^3,-1*K.1^-7,K.1^8,-1*K.1^-3,-1*K.1^5,K.1^5,K.1^-2,-1*K.1^6,K.1^-4,K.1,-1*K.1^4,-1*K.1^3,-1*K.1^-1,K.1^4,-1*K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^-5,K.1^-6,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^8,K.1^-4,K.1,K.1^4,K.1^-7,K.1^7,K.1^6,K.1^5,K.1^-2,K.1^-8,K.1^-4,-1*K.1^7,-1*K.1^-2,-1*K.1^6,-1*K.1^7,-1*K.1,-1*K.1^-1,-1*K.1^-8,-1*K.1,-1*K.1^3,-1*K.1^-6,-1*K.1^2,-1*K.1^3,-1*K.1^5,-1*K.1^4,-1*K.1^-4,-1*K.1^5,K.1^-8,K.1^5,K.1^2,-1*K.1^-7,-1*K.1^-3,-1*K.1^-7,-1*K.1^6,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,K.1,-1*K.1^-8,-1*K.1^-4,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^-5,-1*K.1^-1,-1*K.1^-5,K.1^-3,K.1^-7,K.1^6,-1*K.1^-3,K.1^4,K.1^8,K.1^-5,K.1^-1,K.1^3,K.1^7,K.1^-6,K.1^-2,K.1^6,K.1,K.1^5,K.1^2,K.1^-7,K.1^-6,K.1^-2,K.1^-4,K.1^-5,K.1^4,K.1^-3,K.1^3,K.1^7,K.1^-1,K.1^-8,K.1^8,-1*K.1^7,-1*K.1^6,K.1^-8,K.1^2,K.1^6,K.1^-7,K.1^3,-1*K.1,-1*K.1^-7,-1*K.1^-8,-1*K.1^2,-1*K.1^8,-1*K.1^-2,-1*K.1^4,-1*K.1^7,-1*K.1^-5,K.1^-1,K.1^5,K.1^8,K.1^8,-1*K.1^-8,K.1^-6,K.1^-5,K.1^7,K.1^-2,-1*K.1^2,K.1^-4,-1*K.1^-5,-1*K.1^-4,-1*K.1,K.1^3,K.1,K.1^-8,-1*K.1^-6,-1*K.1^-7,K.1^-2,-1*K.1^4,K.1^-1,K.1^5,K.1^-7,K.1^6,K.1^2,K.1^-3,-1*K.1^-3,-1*K.1^5,-1*K.1^6,-1*K.1^-4,-1*K.1^3,K.1,-1*K.1^-6,-1*K.1^8,-1*K.1^3,-1*K.1^-1,K.1^-5,K.1^4,K.1^4,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,K.1^-6,-1*K.1^5,K.1^7,K.1^-3,K.1^-4,-1*K.1^-8,K.1^5,K.1,K.1^-1,K.1^3,-1*K.1^7,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,-1*K.1^-7,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,-1*K.1^8,-1*K.1,-1*K.1^-1,-1*K.1^-4,-1*K.1^3,-1*K.1^4,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^-7,-1*K.1^5,-1*K.1^8,-1*K.1^-1,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,K.1^-6,K.1^8,K.1^-7,K.1^-8,K.1^7,K.1^-3,K.1^2,K.1^-4,-1*K.1^-8,K.1^6,-1*K.1^2,K.1^4,-1*K.1^7,K.1^-2,-1*K.1^5,K.1^-5,-1*K.1^-3,-1*K.1^6,-1*K.1^-2,-1*K.1^-7,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^3,K.1^3,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^4,K.1^4,-1*K.1^-2,K.1^-2,K.1^5,-1*K.1^7,K.1^4,-1*K.1,-1*K.1^6,-1*K.1^4,K.1,K.1^6,K.1^8,K.1^3,-1*K.1^2,-1*K.1^8,-1*K.1^3,-1*K.1^5,K.1^7,-1*K.1^-4,-1*K.1^-6,K.1^-6,-1*K.1^7,K.1^7,K.1^-7,-1*K.1^-7,K.1^-3,-1*K.1^-3,-1*K.1^-5,K.1^-5,-1*K.1^8,K.1^8,K.1^-8,-1*K.1^-8,K.1^-4,-1*K.1^-2,-1*K.1^-5,K.1^-7,K.1^2,K.1^-1,K.1^-6,K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^-8,-1*K.1^-3,K.1^-2,K.1^-8,K.1^-3,K.1^-5,-1*K.1^-7,-1*K.1^-4,K.1^-2,-1*K.1^-6,K.1^-6,K.1^6,-1*K.1^6,K.1^-7,-1*K.1^-7,-1*K.1^-1,K.1^-1,-1*K.1^-5,K.1^-5,K.1^5,-1*K.1^5,K.1^-8,-1*K.1^-8,-1*K.1^-2,-1*K.1^-4,-1*K.1^-5,-1*K.1^7,K.1^2,-1*K.1,K.1^-6,K.1^-4,K.1,-1*K.1^-6,K.1^8,-1*K.1^-3,-1*K.1^2,-1*K.1^8,K.1^-3,K.1^-5,K.1^7,-1*K.1^-4,K.1^2,-1*K.1^2,-1*K.1^7,K.1^7,-1*K.1^3,K.1^3,K.1^-3,-1*K.1^-3,K.1,-1*K.1,-1*K.1^8,K.1^8,-1*K.1^4,K.1^4,K.1^-4,-1*K.1^-2,K.1^5,K.1^-7,K.1^4,K.1^-1,-1*K.1^6,-1*K.1^4,-1*K.1^-1,K.1^6,-1*K.1^-8,K.1^3,K.1^-2,K.1^-8,-1*K.1^3,-1*K.1^5,K.1^7,-1*K.1^-1,-1*K.1^-8,K.1^-2,-1*K.1^-3,-1*K.1^7,-1*K.1^-4,-1*K.1^-8,-1*K.1^3,K.1^4,K.1^-2,K.1^7,-1*K.1^-1,K.1^5,K.1^5,K.1^-3,-1*K.1^4,K.1^-8,K.1^-5,-1*K.1^5,K.1^-1,-1*K.1^6,-1*K.1^7,K.1^2,-1*K.1^5,K.1^8,-1*K.1^-5,K.1^6,-1*K.1^-4,K.1,K.1^-4,-1*K.1,-1*K.1^8,K.1,K.1^-3,K.1^-5,-1*K.1^2,K.1^-6,K.1^3,K.1^3,-1*K.1^-3,-1*K.1^-2,K.1^-7,-1*K.1^4,K.1^4,-1*K.1^-6,K.1^-6,-1*K.1^-7,-1*K.1^2,K.1^6,-1*K.1^3,K.1^-1,-1*K.1^-6,-1*K.1^-7,K.1^-7,K.1^-4,-1*K.1^-5,K.1^-8,K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^-2,K.1^8,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^5,K.1^6,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-8,K.1^4,K.1^-1,K.1^-4,K.1^7,K.1^-7,K.1^-6,K.1^-5,K.1^2,K.1^8,K.1^4,-1*K.1^-7,-1*K.1^2,-1*K.1^-6,-1*K.1^-7,-1*K.1^-1,-1*K.1,-1*K.1^8,-1*K.1^-1,-1*K.1^-3,-1*K.1^6,-1*K.1^-2,-1*K.1^-3,-1*K.1^-5,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,K.1^8,K.1^-5,K.1^-2,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^-6,-1*K.1^-2,-1*K.1^2,-1*K.1^6,K.1^-1,-1*K.1^8,-1*K.1^4,-1*K.1^-8,-1*K.1^-4,-1*K.1^-8,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^3,K.1^7,K.1^-6,-1*K.1^3,K.1^-4,K.1^-8,K.1^5,K.1,K.1^-3,K.1^-7,K.1^6,K.1^2,K.1^-6,K.1^-1,K.1^-5,K.1^-2,K.1^7,K.1^6,K.1^2,K.1^4,K.1^5,K.1^-4,K.1^3,K.1^-3,K.1^-7,K.1,K.1^8,K.1^-8,-1*K.1^-7,-1*K.1^-6,K.1^8,K.1^-2,K.1^-6,K.1^7,K.1^-3,-1*K.1^-1,-1*K.1^7,-1*K.1^8,-1*K.1^-2,-1*K.1^-8,-1*K.1^2,-1*K.1^-4,-1*K.1^-7,-1*K.1^5,K.1,K.1^-5,K.1^-8,K.1^-8,-1*K.1^8,K.1^6,K.1^5,K.1^-7,K.1^2,-1*K.1^-2,K.1^4,-1*K.1^5,-1*K.1^4,-1*K.1^-1,K.1^-3,K.1^-1,K.1^8,-1*K.1^6,-1*K.1^7,K.1^2,-1*K.1^-4,K.1,K.1^-5,K.1^7,K.1^-6,K.1^-2,K.1^3,-1*K.1^3,-1*K.1^-5,-1*K.1^-6,-1*K.1^4,-1*K.1^-3,K.1^-1,-1*K.1^6,-1*K.1^-8,-1*K.1^-3,-1*K.1,K.1^5,K.1^-4,K.1^-4,-1*K.1^2,-1*K.1^3,-1*K.1,K.1^6,-1*K.1^-5,K.1^-7,K.1^3,K.1^4,-1*K.1^8,K.1^-5,K.1^-1,K.1,K.1^-3,-1*K.1^-7,-1*K.1^4,-1*K.1^-4,-1*K.1^5,-1*K.1^7,-1*K.1^-2,-1*K.1^2,-1*K.1^6,-1*K.1^-8,-1*K.1^-1,-1*K.1,-1*K.1^4,-1*K.1^-3,-1*K.1^-4,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^7,-1*K.1^-5,-1*K.1^-8,-1*K.1,-1*K.1^3,-1*K.1^-6,-1*K.1^6,K.1^6,K.1^-8,K.1^7,K.1^8,K.1^-7,K.1^3,K.1^-2,K.1^4,-1*K.1^8,K.1^-6,-1*K.1^-2,K.1^-4,-1*K.1^-7,K.1^2,-1*K.1^-5,K.1^5,-1*K.1^3,-1*K.1^-6,-1*K.1^2,-1*K.1^7,K.1^-2,-1*K.1^-2,K.1^-6,-1*K.1^-6,-1*K.1^-3,K.1^-3,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-5,-1*K.1^-5,-1*K.1^-4,K.1^-4,-1*K.1^2,K.1^2,K.1^-5,-1*K.1^-7,K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^-4,K.1^-1,K.1^-6,K.1^-8,K.1^-3,-1*K.1^-2,-1*K.1^-8,-1*K.1^-3,-1*K.1^-5,K.1^-7,-1*K.1^4,-1*K.1^6,K.1^6,-1*K.1^-7,K.1^-7,K.1^7,-1*K.1^7,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,-1*K.1^-8,K.1^-8,K.1^8,-1*K.1^8,K.1^4,-1*K.1^2,-1*K.1^5,K.1^7,K.1^-2,K.1,K.1^6,K.1^4,-1*K.1,-1*K.1^6,-1*K.1^8,-1*K.1^3,K.1^2,K.1^8,K.1^3,K.1^5,-1*K.1^7,-1*K.1^4,K.1^2,-1*K.1^6,K.1^6,K.1^-6,-1*K.1^-6,K.1^7,-1*K.1^7,-1*K.1,K.1,-1*K.1^5,K.1^5,K.1^-5,-1*K.1^-5,K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^4,-1*K.1^5,-1*K.1^-7,K.1^-2,-1*K.1^-1,K.1^6,K.1^4,K.1^-1,-1*K.1^6,K.1^-8,-1*K.1^3,-1*K.1^-2,-1*K.1^-8,K.1^3,K.1^5,K.1^-7,-1*K.1^4,K.1^-2,-1*K.1^-2,-1*K.1^-7,K.1^-7,-1*K.1^-3,K.1^-3,K.1^3,-1*K.1^3,K.1^-1,-1*K.1^-1,-1*K.1^-8,K.1^-8,-1*K.1^-4,K.1^-4,K.1^4,-1*K.1^2,K.1^-5,K.1^7,K.1^-4,K.1,-1*K.1^-6,-1*K.1^-4,-1*K.1,K.1^-6,-1*K.1^8,K.1^-3,K.1^2,K.1^8,-1*K.1^-3,-1*K.1^-5,K.1^-7,-1*K.1,-1*K.1^8,K.1^2,-1*K.1^3,-1*K.1^-7,-1*K.1^4,-1*K.1^8,-1*K.1^-3,K.1^-4,K.1^2,K.1^-7,-1*K.1,K.1^-5,K.1^-5,K.1^3,-1*K.1^-4,K.1^8,K.1^5,-1*K.1^-5,K.1,-1*K.1^-6,-1*K.1^-7,K.1^-2,-1*K.1^-5,K.1^-8,-1*K.1^5,K.1^-6,-1*K.1^4,K.1^-1,K.1^4,-1*K.1^-1,-1*K.1^-8,K.1^-1,K.1^3,K.1^5,-1*K.1^-2,K.1^6,K.1^-3,K.1^-3,-1*K.1^3,-1*K.1^2,K.1^7,-1*K.1^-4,K.1^-4,-1*K.1^6,K.1^6,-1*K.1^7,-1*K.1^-2,K.1^-6,-1*K.1^-3,K.1,-1*K.1^6,-1*K.1^7,K.1^7,K.1^4,-1*K.1^5,K.1^8,K.1^-2,-1*K.1^-8,-1*K.1^-6,-1*K.1^2,K.1^-8,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^-4,K.1^2,K.1^6,K.1,K.1^-1,K.1^5,K.1^3,K.1^7,K.1^-6,K.1^-7,K.1^8,K.1^-8,K.1^-2,K.1^4,K.1^-5,K.1^-3,K.1^7,-1*K.1^-8,-1*K.1^-5,-1*K.1^-2,-1*K.1^-8,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-6,-1*K.1^-1,-1*K.1^2,-1*K.1^5,-1*K.1^-1,-1*K.1^4,-1*K.1^-7,-1*K.1^7,-1*K.1^4,K.1^-3,K.1^4,K.1^5,-1*K.1^8,-1*K.1,-1*K.1^8,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1^2,K.1^-6,-1*K.1^-3,-1*K.1^7,-1*K.1^3,-1*K.1^-7,-1*K.1^3,-1*K.1^-4,-1*K.1^6,-1*K.1^-4,K.1,K.1^8,K.1^-2,-1*K.1,K.1^-7,K.1^3,K.1^-4,K.1^6,K.1^-1,K.1^-8,K.1^2,K.1^-5,K.1^-2,K.1^-6,K.1^4,K.1^5,K.1^8,K.1^2,K.1^-5,K.1^7,K.1^-4,K.1^-7,K.1,K.1^-1,K.1^-8,K.1^6,K.1^-3,K.1^3,-1*K.1^-8,-1*K.1^-2,K.1^-3,K.1^5,K.1^-2,K.1^8,K.1^-1,-1*K.1^-6,-1*K.1^8,-1*K.1^-3,-1*K.1^5,-1*K.1^3,-1*K.1^-5,-1*K.1^-7,-1*K.1^-8,-1*K.1^-4,K.1^6,K.1^4,K.1^3,K.1^3,-1*K.1^-3,K.1^2,K.1^-4,K.1^-8,K.1^-5,-1*K.1^5,K.1^7,-1*K.1^-4,-1*K.1^7,-1*K.1^-6,K.1^-1,K.1^-6,K.1^-3,-1*K.1^2,-1*K.1^8,K.1^-5,-1*K.1^-7,K.1^6,K.1^4,K.1^8,K.1^-2,K.1^5,K.1,-1*K.1,-1*K.1^4,-1*K.1^-2,-1*K.1^7,-1*K.1^-1,K.1^-6,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^6,K.1^-4,K.1^-7,K.1^-7,-1*K.1^-5,-1*K.1,-1*K.1^6,K.1^2,-1*K.1^4,K.1^-8,K.1,K.1^7,-1*K.1^-3,K.1^4,K.1^-6,K.1^6,K.1^-1,-1*K.1^-8,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,-1*K.1^8,-1*K.1^5,-1*K.1^-5,-1*K.1^2,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^7,-1*K.1^-1,-1*K.1^-7,-1*K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^8,-1*K.1^4,-1*K.1^3,-1*K.1^6,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1^3,K.1^8,K.1^-3,K.1^-8,K.1,K.1^5,K.1^7,-1*K.1^-3,K.1^-2,-1*K.1^5,K.1^-7,-1*K.1^-8,K.1^-5,-1*K.1^4,K.1^-4,-1*K.1,-1*K.1^-2,-1*K.1^-5,-1*K.1^8,K.1^5,-1*K.1^5,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^6,K.1^6,K.1^-6,-1*K.1^-6,K.1^4,-1*K.1^4,-1*K.1^-7,K.1^-7,-1*K.1^-5,K.1^-5,K.1^4,-1*K.1^-8,K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-7,K.1^-6,K.1^-2,K.1^3,K.1^-1,-1*K.1^5,-1*K.1^3,-1*K.1^-1,-1*K.1^4,K.1^-8,-1*K.1^7,-1*K.1^2,K.1^2,-1*K.1^-8,K.1^-8,K.1^8,-1*K.1^8,K.1,-1*K.1,-1*K.1^-4,K.1^-4,-1*K.1^3,K.1^3,K.1^-3,-1*K.1^-3,K.1^7,-1*K.1^-5,-1*K.1^-4,K.1^8,K.1^5,K.1^6,K.1^2,K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^-3,-1*K.1,K.1^-5,K.1^-3,K.1,K.1^-4,-1*K.1^8,-1*K.1^7,K.1^-5,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^-2,K.1^8,-1*K.1^8,-1*K.1^6,K.1^6,-1*K.1^-4,K.1^-4,K.1^4,-1*K.1^4,K.1^-3,-1*K.1^-3,-1*K.1^-5,-1*K.1^7,-1*K.1^-4,-1*K.1^-8,K.1^5,-1*K.1^-6,K.1^2,K.1^7,K.1^-6,-1*K.1^2,K.1^3,-1*K.1,-1*K.1^5,-1*K.1^3,K.1,K.1^-4,K.1^-8,-1*K.1^7,K.1^5,-1*K.1^5,-1*K.1^-8,K.1^-8,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-6,-1*K.1^-6,-1*K.1^3,K.1^3,-1*K.1^-7,K.1^-7,K.1^7,-1*K.1^-5,K.1^4,K.1^8,K.1^-7,K.1^6,-1*K.1^-2,-1*K.1^-7,-1*K.1^6,K.1^-2,-1*K.1^-3,K.1^-1,K.1^-5,K.1^-3,-1*K.1^-1,-1*K.1^4,K.1^-8,-1*K.1^6,-1*K.1^-3,K.1^-5,-1*K.1,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,-1*K.1^-1,K.1^-7,K.1^-5,K.1^-8,-1*K.1^6,K.1^4,K.1^4,K.1,-1*K.1^-7,K.1^-3,K.1^-4,-1*K.1^4,K.1^6,-1*K.1^-2,-1*K.1^-8,K.1^5,-1*K.1^4,K.1^3,-1*K.1^-4,K.1^-2,-1*K.1^7,K.1^-6,K.1^7,-1*K.1^-6,-1*K.1^3,K.1^-6,K.1,K.1^-4,-1*K.1^5,K.1^2,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-5,K.1^8,-1*K.1^-7,K.1^-7,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^5,K.1^-2,-1*K.1^-1,K.1^6,-1*K.1^2,-1*K.1^8,K.1^8,K.1^7,-1*K.1^-4,K.1^-3,K.1^5,-1*K.1^3,-1*K.1^-2,-1*K.1^-5,K.1^3,-1*K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^4,K.1^-2,K.1^-6,K.1^-1,K.1,K.1^-5,K.1^-3,K.1^-7,K.1^6,K.1^7,K.1^-8,K.1^8,K.1^2,K.1^-4,K.1^5,K.1^3,K.1^-7,-1*K.1^8,-1*K.1^5,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^6,-1*K.1,-1*K.1^-2,-1*K.1^-5,-1*K.1,-1*K.1^-4,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,K.1^3,K.1^-4,K.1^-5,-1*K.1^-8,-1*K.1^-1,-1*K.1^-8,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,K.1^6,-1*K.1^3,-1*K.1^-7,-1*K.1^-3,-1*K.1^7,-1*K.1^-3,-1*K.1^4,-1*K.1^-6,-1*K.1^4,K.1^-1,K.1^-8,K.1^2,-1*K.1^-1,K.1^7,K.1^-3,K.1^4,K.1^-6,K.1,K.1^8,K.1^-2,K.1^5,K.1^2,K.1^6,K.1^-4,K.1^-5,K.1^-8,K.1^-2,K.1^5,K.1^-7,K.1^4,K.1^7,K.1^-1,K.1,K.1^8,K.1^-6,K.1^3,K.1^-3,-1*K.1^8,-1*K.1^2,K.1^3,K.1^-5,K.1^2,K.1^-8,K.1,-1*K.1^6,-1*K.1^-8,-1*K.1^3,-1*K.1^-5,-1*K.1^-3,-1*K.1^5,-1*K.1^7,-1*K.1^8,-1*K.1^4,K.1^-6,K.1^-4,K.1^-3,K.1^-3,-1*K.1^3,K.1^-2,K.1^4,K.1^8,K.1^5,-1*K.1^-5,K.1^-7,-1*K.1^4,-1*K.1^-7,-1*K.1^6,K.1,K.1^6,K.1^3,-1*K.1^-2,-1*K.1^-8,K.1^5,-1*K.1^7,K.1^-6,K.1^-4,K.1^-8,K.1^2,K.1^-5,K.1^-1,-1*K.1^-1,-1*K.1^-4,-1*K.1^2,-1*K.1^-7,-1*K.1,K.1^6,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^-6,K.1^4,K.1^7,K.1^7,-1*K.1^5,-1*K.1^-1,-1*K.1^-6,K.1^-2,-1*K.1^-4,K.1^8,K.1^-1,K.1^-7,-1*K.1^3,K.1^-4,K.1^6,K.1^-6,K.1,-1*K.1^8,-1*K.1^-7,-1*K.1^7,-1*K.1^4,-1*K.1^-8,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^-7,-1*K.1,-1*K.1^7,-1*K.1^4,-1*K.1,-1*K.1^6,-1*K.1^-8,-1*K.1^-4,-1*K.1^-3,-1*K.1^-6,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-3,K.1^-8,K.1^3,K.1^8,K.1^-1,K.1^-5,K.1^-7,-1*K.1^3,K.1^2,-1*K.1^-5,K.1^7,-1*K.1^8,K.1^5,-1*K.1^-4,K.1^4,-1*K.1^-1,-1*K.1^2,-1*K.1^5,-1*K.1^-8,K.1^-5,-1*K.1^-5,K.1^2,-1*K.1^2,-1*K.1,K.1,-1*K.1^-6,K.1^-6,K.1^6,-1*K.1^6,K.1^-4,-1*K.1^-4,-1*K.1^7,K.1^7,-1*K.1^5,K.1^5,K.1^-4,-1*K.1^8,K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^7,K.1^6,K.1^2,K.1^-3,K.1,-1*K.1^-5,-1*K.1^-3,-1*K.1,-1*K.1^-4,K.1^8,-1*K.1^-7,-1*K.1^-2,K.1^-2,-1*K.1^8,K.1^8,K.1^-8,-1*K.1^-8,K.1^-1,-1*K.1^-1,-1*K.1^4,K.1^4,-1*K.1^-3,K.1^-3,K.1^3,-1*K.1^3,K.1^-7,-1*K.1^5,-1*K.1^4,K.1^-8,K.1^-5,K.1^-6,K.1^-2,K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,K.1^5,K.1^3,K.1^-1,K.1^4,-1*K.1^-8,-1*K.1^-7,K.1^5,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1^2,K.1^-8,-1*K.1^-8,-1*K.1^-6,K.1^-6,-1*K.1^4,K.1^4,K.1^-4,-1*K.1^-4,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^-7,-1*K.1^4,-1*K.1^8,K.1^-5,-1*K.1^6,K.1^-2,K.1^-7,K.1^6,-1*K.1^-2,K.1^-3,-1*K.1^-1,-1*K.1^-5,-1*K.1^-3,K.1^-1,K.1^4,K.1^8,-1*K.1^-7,K.1^-5,-1*K.1^-5,-1*K.1^8,K.1^8,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^6,-1*K.1^6,-1*K.1^-3,K.1^-3,-1*K.1^7,K.1^7,K.1^-7,-1*K.1^5,K.1^-4,K.1^-8,K.1^7,K.1^-6,-1*K.1^2,-1*K.1^7,-1*K.1^-6,K.1^2,-1*K.1^3,K.1,K.1^5,K.1^3,-1*K.1,-1*K.1^-4,K.1^8,-1*K.1^-6,-1*K.1^3,K.1^5,-1*K.1^-1,-1*K.1^8,-1*K.1^-7,-1*K.1^3,-1*K.1,K.1^7,K.1^5,K.1^8,-1*K.1^-6,K.1^-4,K.1^-4,K.1^-1,-1*K.1^7,K.1^3,K.1^4,-1*K.1^-4,K.1^-6,-1*K.1^2,-1*K.1^8,K.1^-5,-1*K.1^-4,K.1^-3,-1*K.1^4,K.1^2,-1*K.1^-7,K.1^6,K.1^-7,-1*K.1^6,-1*K.1^-3,K.1^6,K.1^-1,K.1^4,-1*K.1^-5,K.1^-2,K.1,K.1,-1*K.1^-1,-1*K.1^5,K.1^-8,-1*K.1^7,K.1^7,-1*K.1^-2,K.1^-2,-1*K.1^-8,-1*K.1^-5,K.1^2,-1*K.1,K.1^-6,-1*K.1^-2,-1*K.1^-8,K.1^-8,K.1^-7,-1*K.1^4,K.1^3,K.1^-5,-1*K.1^-3,-1*K.1^2,-1*K.1^5,K.1^-3,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^-3,K.1^-7,K.1^-4,K.1^5,K.1^-5,K.1^8,K.1^-2,K.1,K.1^4,K.1^-1,K.1^6,K.1^-6,K.1^7,K.1^3,K.1^-8,K.1^2,K.1,-1*K.1^-6,-1*K.1^-8,-1*K.1^7,-1*K.1^-6,-1*K.1^4,-1*K.1^-4,-1*K.1^2,-1*K.1^4,-1*K.1^-5,-1*K.1^-7,-1*K.1^8,-1*K.1^-5,-1*K.1^3,-1*K.1^-1,-1*K.1,-1*K.1^3,K.1^2,K.1^3,K.1^8,-1*K.1^6,-1*K.1^5,-1*K.1^6,-1*K.1^7,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,K.1^4,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-4,-1*K.1^-3,K.1^5,K.1^6,K.1^7,-1*K.1^5,K.1^-1,K.1^-2,K.1^-3,K.1^-4,K.1^-5,K.1^-6,K.1^-7,K.1^-8,K.1^7,K.1^4,K.1^3,K.1^8,K.1^6,K.1^-7,K.1^-8,K.1,K.1^-3,K.1^-1,K.1^5,K.1^-5,K.1^-6,K.1^-4,K.1^2,K.1^-2,-1*K.1^-6,-1*K.1^7,K.1^2,K.1^8,K.1^7,K.1^6,K.1^-5,-1*K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^-2,-1*K.1^-8,-1*K.1^-1,-1*K.1^-6,-1*K.1^-3,K.1^-4,K.1^3,K.1^-2,K.1^-2,-1*K.1^2,K.1^-7,K.1^-3,K.1^-6,K.1^-8,-1*K.1^8,K.1,-1*K.1^-3,-1*K.1,-1*K.1^4,K.1^-5,K.1^4,K.1^2,-1*K.1^-7,-1*K.1^6,K.1^-8,-1*K.1^-1,K.1^-4,K.1^3,K.1^6,K.1^7,K.1^8,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1^-5,K.1^4,-1*K.1^-7,-1*K.1^-2,-1*K.1^-5,-1*K.1^-4,K.1^-3,K.1^-1,K.1^-1,-1*K.1^-8,-1*K.1^5,-1*K.1^-4,K.1^-7,-1*K.1^3,K.1^-6,K.1^5,K.1,-1*K.1^2,K.1^3,K.1^4,K.1^-4,K.1^-5,-1*K.1^-6,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^6,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,-1*K.1^-2,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-5,-1*K.1^-1,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^-2,-1*K.1^-4,-1*K.1^5,-1*K.1^7,-1*K.1^-7,K.1^-7,K.1^-2,K.1^6,K.1^2,K.1^-6,K.1^5,K.1^8,K.1,-1*K.1^2,K.1^7,-1*K.1^8,K.1^-1,-1*K.1^-6,K.1^-8,-1*K.1^3,K.1^-3,-1*K.1^5,-1*K.1^7,-1*K.1^-8,-1*K.1^6,K.1^8,-1*K.1^8,K.1^7,-1*K.1^7,-1*K.1^-5,K.1^-5,-1*K.1^-4,K.1^-4,K.1^4,-1*K.1^4,K.1^3,-1*K.1^3,-1*K.1^-1,K.1^-1,-1*K.1^-8,K.1^-8,K.1^3,-1*K.1^-6,K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^-1,K.1^4,K.1^7,K.1^-2,K.1^-5,-1*K.1^8,-1*K.1^-2,-1*K.1^-5,-1*K.1^3,K.1^-6,-1*K.1,-1*K.1^-7,K.1^-7,-1*K.1^-6,K.1^-6,K.1^6,-1*K.1^6,K.1^5,-1*K.1^5,-1*K.1^-3,K.1^-3,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1^2,K.1,-1*K.1^-8,-1*K.1^-3,K.1^6,K.1^8,K.1^-4,K.1^-7,K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^2,-1*K.1^5,K.1^-8,K.1^2,K.1^5,K.1^-3,-1*K.1^6,-1*K.1,K.1^-8,-1*K.1^-7,K.1^-7,K.1^7,-1*K.1^7,K.1^6,-1*K.1^6,-1*K.1^-4,K.1^-4,-1*K.1^-3,K.1^-3,K.1^3,-1*K.1^3,K.1^2,-1*K.1^2,-1*K.1^-8,-1*K.1,-1*K.1^-3,-1*K.1^-6,K.1^8,-1*K.1^4,K.1^-7,K.1,K.1^4,-1*K.1^-7,K.1^-2,-1*K.1^5,-1*K.1^8,-1*K.1^-2,K.1^5,K.1^-3,K.1^-6,-1*K.1,K.1^8,-1*K.1^8,-1*K.1^-6,K.1^-6,-1*K.1^-5,K.1^-5,K.1^5,-1*K.1^5,K.1^4,-1*K.1^4,-1*K.1^-2,K.1^-2,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-8,K.1^3,K.1^6,K.1^-1,K.1^-4,-1*K.1^7,-1*K.1^-1,-1*K.1^-4,K.1^7,-1*K.1^2,K.1^-5,K.1^-8,K.1^2,-1*K.1^-5,-1*K.1^3,K.1^-6,-1*K.1^-4,-1*K.1^2,K.1^-8,-1*K.1^5,-1*K.1^-6,-1*K.1,-1*K.1^2,-1*K.1^-5,K.1^-1,K.1^-8,K.1^-6,-1*K.1^-4,K.1^3,K.1^3,K.1^5,-1*K.1^-1,K.1^2,K.1^-3,-1*K.1^3,K.1^-4,-1*K.1^7,-1*K.1^-6,K.1^8,-1*K.1^3,K.1^-2,-1*K.1^-3,K.1^7,-1*K.1,K.1^4,K.1,-1*K.1^4,-1*K.1^-2,K.1^4,K.1^5,K.1^-3,-1*K.1^8,K.1^-7,K.1^-5,K.1^-5,-1*K.1^5,-1*K.1^-8,K.1^6,-1*K.1^-1,K.1^-1,-1*K.1^-7,K.1^-7,-1*K.1^6,-1*K.1^8,K.1^7,-1*K.1^-5,K.1^-4,-1*K.1^-7,-1*K.1^6,K.1^6,K.1,-1*K.1^-3,K.1^2,K.1^8,-1*K.1^-2,-1*K.1^7,-1*K.1^-8,K.1^-2,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^3,K.1^7,K.1^4,K.1^-5,K.1^5,K.1^-8,K.1^2,K.1^-1,K.1^-4,K.1,K.1^-6,K.1^6,K.1^-7,K.1^-3,K.1^8,K.1^-2,K.1^-1,-1*K.1^6,-1*K.1^8,-1*K.1^-7,-1*K.1^6,-1*K.1^-4,-1*K.1^4,-1*K.1^-2,-1*K.1^-4,-1*K.1^5,-1*K.1^7,-1*K.1^-8,-1*K.1^5,-1*K.1^-3,-1*K.1,-1*K.1^-1,-1*K.1^-3,K.1^-2,K.1^-3,K.1^-8,-1*K.1^-6,-1*K.1^-5,-1*K.1^-6,-1*K.1^-7,-1*K.1^-8,-1*K.1^8,-1*K.1^7,K.1^-4,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^4,-1*K.1^3,K.1^-5,K.1^-6,K.1^-7,-1*K.1^-5,K.1,K.1^2,K.1^3,K.1^4,K.1^5,K.1^6,K.1^7,K.1^8,K.1^-7,K.1^-4,K.1^-3,K.1^-8,K.1^-6,K.1^7,K.1^8,K.1^-1,K.1^3,K.1,K.1^-5,K.1^5,K.1^6,K.1^4,K.1^-2,K.1^2,-1*K.1^6,-1*K.1^-7,K.1^-2,K.1^-8,K.1^-7,K.1^-6,K.1^5,-1*K.1^-4,-1*K.1^-6,-1*K.1^-2,-1*K.1^-8,-1*K.1^2,-1*K.1^8,-1*K.1,-1*K.1^6,-1*K.1^3,K.1^4,K.1^-3,K.1^2,K.1^2,-1*K.1^-2,K.1^7,K.1^3,K.1^6,K.1^8,-1*K.1^-8,K.1^-1,-1*K.1^3,-1*K.1^-1,-1*K.1^-4,K.1^5,K.1^-4,K.1^-2,-1*K.1^7,-1*K.1^-6,K.1^8,-1*K.1,K.1^4,K.1^-3,K.1^-6,K.1^-7,K.1^-8,K.1^-5,-1*K.1^-5,-1*K.1^-3,-1*K.1^-7,-1*K.1^-1,-1*K.1^5,K.1^-4,-1*K.1^7,-1*K.1^2,-1*K.1^5,-1*K.1^4,K.1^3,K.1,K.1,-1*K.1^8,-1*K.1^-5,-1*K.1^4,K.1^7,-1*K.1^-3,K.1^6,K.1^-5,K.1^-1,-1*K.1^-2,K.1^-3,K.1^-4,K.1^4,K.1^5,-1*K.1^6,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-6,-1*K.1^-8,-1*K.1^8,-1*K.1^7,-1*K.1^2,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1^2,-1*K.1^4,-1*K.1^-5,-1*K.1^-7,-1*K.1^7,K.1^7,K.1^2,K.1^-6,K.1^-2,K.1^6,K.1^-5,K.1^-8,K.1^-1,-1*K.1^-2,K.1^-7,-1*K.1^-8,K.1,-1*K.1^6,K.1^8,-1*K.1^-3,K.1^3,-1*K.1^-5,-1*K.1^-7,-1*K.1^8,-1*K.1^-6,K.1^-8,-1*K.1^-8,K.1^-7,-1*K.1^-7,-1*K.1^5,K.1^5,-1*K.1^4,K.1^4,K.1^-4,-1*K.1^-4,K.1^-3,-1*K.1^-3,-1*K.1,K.1,-1*K.1^8,K.1^8,K.1^-3,-1*K.1^6,K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1,K.1^-4,K.1^-7,K.1^2,K.1^5,-1*K.1^-8,-1*K.1^2,-1*K.1^5,-1*K.1^-3,K.1^6,-1*K.1^-1,-1*K.1^7,K.1^7,-1*K.1^6,K.1^6,K.1^-6,-1*K.1^-6,K.1^-5,-1*K.1^-5,-1*K.1^3,K.1^3,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^8,-1*K.1^3,K.1^-6,K.1^-8,K.1^4,K.1^7,K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^-2,-1*K.1^-5,K.1^8,K.1^-2,K.1^-5,K.1^3,-1*K.1^-6,-1*K.1^-1,K.1^8,-1*K.1^7,K.1^7,K.1^-7,-1*K.1^-7,K.1^-6,-1*K.1^-6,-1*K.1^4,K.1^4,-1*K.1^3,K.1^3,K.1^-3,-1*K.1^-3,K.1^-2,-1*K.1^-2,-1*K.1^8,-1*K.1^-1,-1*K.1^3,-1*K.1^6,K.1^-8,-1*K.1^-4,K.1^7,K.1^-1,K.1^-4,-1*K.1^7,K.1^2,-1*K.1^-5,-1*K.1^-8,-1*K.1^2,K.1^-5,K.1^3,K.1^6,-1*K.1^-1,K.1^-8,-1*K.1^-8,-1*K.1^6,K.1^6,-1*K.1^5,K.1^5,K.1^-5,-1*K.1^-5,K.1^-4,-1*K.1^-4,-1*K.1^2,K.1^2,-1*K.1,K.1,K.1^-1,-1*K.1^8,K.1^-3,K.1^-6,K.1,K.1^4,-1*K.1^-7,-1*K.1,-1*K.1^4,K.1^-7,-1*K.1^-2,K.1^5,K.1^8,K.1^-2,-1*K.1^5,-1*K.1^-3,K.1^6,-1*K.1^4,-1*K.1^-2,K.1^8,-1*K.1^-5,-1*K.1^6,-1*K.1^-1,-1*K.1^-2,-1*K.1^5,K.1,K.1^8,K.1^6,-1*K.1^4,K.1^-3,K.1^-3,K.1^-5,-1*K.1,K.1^-2,K.1^3,-1*K.1^-3,K.1^4,-1*K.1^-7,-1*K.1^6,K.1^-8,-1*K.1^-3,K.1^2,-1*K.1^3,K.1^-7,-1*K.1^-1,K.1^-4,K.1^-1,-1*K.1^-4,-1*K.1^2,K.1^-4,K.1^-5,K.1^3,-1*K.1^-8,K.1^7,K.1^5,K.1^5,-1*K.1^-5,-1*K.1^8,K.1^-6,-1*K.1,K.1,-1*K.1^7,K.1^7,-1*K.1^-6,-1*K.1^-8,K.1^-7,-1*K.1^5,K.1^4,-1*K.1^7,-1*K.1^-6,K.1^-6,K.1^-1,-1*K.1^3,K.1^-2,K.1^-8,-1*K.1^2,-1*K.1^-7,-1*K.1^8,K.1^2,-1*K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^-2,K.1,K.1^3,K.1^-8,K.1^8,K.1^-6,K.1^-7,K.1^-5,K.1^-3,K.1^5,K.1^4,K.1^-4,K.1^-1,K.1^2,K.1^6,K.1^7,K.1^-5,-1*K.1^-4,-1*K.1^6,-1*K.1^-1,-1*K.1^-4,-1*K.1^-3,-1*K.1^3,-1*K.1^7,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^-6,-1*K.1^8,-1*K.1^2,-1*K.1^5,-1*K.1^-5,-1*K.1^2,K.1^7,K.1^2,K.1^-6,-1*K.1^4,-1*K.1^-8,-1*K.1^4,-1*K.1^-1,-1*K.1^-6,-1*K.1^6,-1*K.1,K.1^-3,-1*K.1^7,-1*K.1^-5,-1*K.1^-7,-1*K.1^5,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,K.1^-8,K.1^4,K.1^-1,-1*K.1^-8,K.1^5,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^-4,K.1,K.1^6,K.1^-1,K.1^-3,K.1^2,K.1^-6,K.1^4,K.1,K.1^6,K.1^-5,K.1^-2,K.1^5,K.1^-8,K.1^8,K.1^-4,K.1^3,K.1^7,K.1^-7,-1*K.1^-4,-1*K.1^-1,K.1^7,K.1^-6,K.1^-1,K.1^4,K.1^8,-1*K.1^-3,-1*K.1^4,-1*K.1^7,-1*K.1^-6,-1*K.1^-7,-1*K.1^6,-1*K.1^5,-1*K.1^-4,-1*K.1^-2,K.1^3,K.1^2,K.1^-7,K.1^-7,-1*K.1^7,K.1,K.1^-2,K.1^-4,K.1^6,-1*K.1^-6,K.1^-5,-1*K.1^-2,-1*K.1^-5,-1*K.1^-3,K.1^8,K.1^-3,K.1^7,-1*K.1,-1*K.1^4,K.1^6,-1*K.1^5,K.1^3,K.1^2,K.1^4,K.1^-1,K.1^-6,K.1^-8,-1*K.1^-8,-1*K.1^2,-1*K.1^-1,-1*K.1^-5,-1*K.1^8,K.1^-3,-1*K.1,-1*K.1^-7,-1*K.1^8,-1*K.1^3,K.1^-2,K.1^5,K.1^5,-1*K.1^6,-1*K.1^-8,-1*K.1^3,K.1,-1*K.1^2,K.1^-4,K.1^-8,K.1^-5,-1*K.1^7,K.1^2,K.1^-3,K.1^3,K.1^8,-1*K.1^-4,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^-6,-1*K.1^6,-1*K.1,-1*K.1^-7,-1*K.1^-3,-1*K.1^3,-1*K.1^-5,-1*K.1^8,-1*K.1^5,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^-7,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1,K.1,K.1^-7,K.1^4,K.1^7,K.1^-4,K.1^-8,K.1^-6,K.1^-5,-1*K.1^7,K.1^-1,-1*K.1^-6,K.1^5,-1*K.1^-4,K.1^6,-1*K.1^2,K.1^-2,-1*K.1^-8,-1*K.1^-1,-1*K.1^6,-1*K.1^4,K.1^-6,-1*K.1^-6,K.1^-1,-1*K.1^-1,-1*K.1^8,K.1^8,-1*K.1^3,K.1^3,K.1^-3,-1*K.1^-3,K.1^2,-1*K.1^2,-1*K.1^5,K.1^5,-1*K.1^6,K.1^6,K.1^2,-1*K.1^-4,K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^5,K.1^-3,K.1^-1,K.1^-7,K.1^8,-1*K.1^-6,-1*K.1^-7,-1*K.1^8,-1*K.1^2,K.1^-4,-1*K.1^-5,-1*K.1,K.1,-1*K.1^-4,K.1^-4,K.1^4,-1*K.1^4,K.1^-8,-1*K.1^-8,-1*K.1^-2,K.1^-2,-1*K.1^-7,K.1^-7,K.1^7,-1*K.1^7,K.1^-5,-1*K.1^6,-1*K.1^-2,K.1^4,K.1^-6,K.1^3,K.1,K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^-8,K.1^6,K.1^7,K.1^-8,K.1^-2,-1*K.1^4,-1*K.1^-5,K.1^6,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^4,-1*K.1^4,-1*K.1^3,K.1^3,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1^2,K.1^7,-1*K.1^7,-1*K.1^6,-1*K.1^-5,-1*K.1^-2,-1*K.1^-4,K.1^-6,-1*K.1^-3,K.1,K.1^-5,K.1^-3,-1*K.1,K.1^-7,-1*K.1^-8,-1*K.1^-6,-1*K.1^-7,K.1^-8,K.1^-2,K.1^-4,-1*K.1^-5,K.1^-6,-1*K.1^-6,-1*K.1^-4,K.1^-4,-1*K.1^8,K.1^8,K.1^-8,-1*K.1^-8,K.1^-3,-1*K.1^-3,-1*K.1^-7,K.1^-7,-1*K.1^5,K.1^5,K.1^-5,-1*K.1^6,K.1^2,K.1^4,K.1^5,K.1^3,-1*K.1^-1,-1*K.1^5,-1*K.1^3,K.1^-1,-1*K.1^7,K.1^8,K.1^6,K.1^7,-1*K.1^8,-1*K.1^2,K.1^-4,-1*K.1^3,-1*K.1^7,K.1^6,-1*K.1^-8,-1*K.1^-4,-1*K.1^-5,-1*K.1^7,-1*K.1^8,K.1^5,K.1^6,K.1^-4,-1*K.1^3,K.1^2,K.1^2,K.1^-8,-1*K.1^5,K.1^7,K.1^-2,-1*K.1^2,K.1^3,-1*K.1^-1,-1*K.1^-4,K.1^-6,-1*K.1^2,K.1^-7,-1*K.1^-2,K.1^-1,-1*K.1^-5,K.1^-3,K.1^-5,-1*K.1^-3,-1*K.1^-7,K.1^-3,K.1^-8,K.1^-2,-1*K.1^-6,K.1,K.1^8,K.1^8,-1*K.1^-8,-1*K.1^6,K.1^4,-1*K.1^5,K.1^5,-1*K.1,K.1,-1*K.1^4,-1*K.1^-6,K.1^-1,-1*K.1^8,K.1^3,-1*K.1,-1*K.1^4,K.1^4,K.1^-5,-1*K.1^-2,K.1^7,K.1^-6,-1*K.1^-7,-1*K.1^-1,-1*K.1^6,K.1^-7,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^2,K.1^-1,K.1^-3,K.1^8,K.1^-8,K.1^6,K.1^7,K.1^5,K.1^3,K.1^-5,K.1^-4,K.1^4,K.1,K.1^-2,K.1^-6,K.1^-7,K.1^5,-1*K.1^4,-1*K.1^-6,-1*K.1,-1*K.1^4,-1*K.1^3,-1*K.1^-3,-1*K.1^-7,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1^6,-1*K.1^-8,-1*K.1^-2,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,K.1^-7,K.1^-2,K.1^6,-1*K.1^-4,-1*K.1^8,-1*K.1^-4,-1*K.1,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,K.1^3,-1*K.1^-7,-1*K.1^5,-1*K.1^7,-1*K.1^-5,-1*K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^2,K.1^8,K.1^-4,K.1,-1*K.1^8,K.1^-5,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^4,K.1^-1,K.1^-6,K.1,K.1^3,K.1^-2,K.1^6,K.1^-4,K.1^-1,K.1^-6,K.1^5,K.1^2,K.1^-5,K.1^8,K.1^-8,K.1^4,K.1^-3,K.1^-7,K.1^7,-1*K.1^4,-1*K.1,K.1^-7,K.1^6,K.1,K.1^-4,K.1^-8,-1*K.1^3,-1*K.1^-4,-1*K.1^-7,-1*K.1^6,-1*K.1^7,-1*K.1^-6,-1*K.1^-5,-1*K.1^4,-1*K.1^2,K.1^-3,K.1^-2,K.1^7,K.1^7,-1*K.1^-7,K.1^-1,K.1^2,K.1^4,K.1^-6,-1*K.1^6,K.1^5,-1*K.1^2,-1*K.1^5,-1*K.1^3,K.1^-8,K.1^3,K.1^-7,-1*K.1^-1,-1*K.1^-4,K.1^-6,-1*K.1^-5,K.1^-3,K.1^-2,K.1^-4,K.1,K.1^6,K.1^8,-1*K.1^8,-1*K.1^-2,-1*K.1,-1*K.1^5,-1*K.1^-8,K.1^3,-1*K.1^-1,-1*K.1^7,-1*K.1^-8,-1*K.1^-3,K.1^2,K.1^-5,K.1^-5,-1*K.1^-6,-1*K.1^8,-1*K.1^-3,K.1^-1,-1*K.1^-2,K.1^4,K.1^8,K.1^5,-1*K.1^-7,K.1^-2,K.1^3,K.1^-3,K.1^-8,-1*K.1^4,-1*K.1^5,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,-1*K.1^7,-1*K.1^3,-1*K.1^-3,-1*K.1^5,-1*K.1^-8,-1*K.1^-5,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^7,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^-1,K.1^-1,K.1^7,K.1^-4,K.1^-7,K.1^4,K.1^8,K.1^6,K.1^5,-1*K.1^-7,K.1,-1*K.1^6,K.1^-5,-1*K.1^4,K.1^-6,-1*K.1^-2,K.1^2,-1*K.1^8,-1*K.1,-1*K.1^-6,-1*K.1^-4,K.1^6,-1*K.1^6,K.1,-1*K.1,-1*K.1^-8,K.1^-8,-1*K.1^-3,K.1^-3,K.1^3,-1*K.1^3,K.1^-2,-1*K.1^-2,-1*K.1^-5,K.1^-5,-1*K.1^-6,K.1^-6,K.1^-2,-1*K.1^4,K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^-5,K.1^3,K.1,K.1^7,K.1^-8,-1*K.1^6,-1*K.1^7,-1*K.1^-8,-1*K.1^-2,K.1^4,-1*K.1^5,-1*K.1^-1,K.1^-1,-1*K.1^4,K.1^4,K.1^-4,-1*K.1^-4,K.1^8,-1*K.1^8,-1*K.1^2,K.1^2,-1*K.1^7,K.1^7,K.1^-7,-1*K.1^-7,K.1^5,-1*K.1^-6,-1*K.1^2,K.1^-4,K.1^6,K.1^-3,K.1^-1,K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^-7,-1*K.1^8,K.1^-6,K.1^-7,K.1^8,K.1^2,-1*K.1^-4,-1*K.1^5,K.1^-6,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-4,-1*K.1^-4,-1*K.1^-3,K.1^-3,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^-2,K.1^-7,-1*K.1^-7,-1*K.1^-6,-1*K.1^5,-1*K.1^2,-1*K.1^4,K.1^6,-1*K.1^3,K.1^-1,K.1^5,K.1^3,-1*K.1^-1,K.1^7,-1*K.1^8,-1*K.1^6,-1*K.1^7,K.1^8,K.1^2,K.1^4,-1*K.1^5,K.1^6,-1*K.1^6,-1*K.1^4,K.1^4,-1*K.1^-8,K.1^-8,K.1^8,-1*K.1^8,K.1^3,-1*K.1^3,-1*K.1^7,K.1^7,-1*K.1^-5,K.1^-5,K.1^5,-1*K.1^-6,K.1^-2,K.1^-4,K.1^-5,K.1^-3,-1*K.1,-1*K.1^-5,-1*K.1^-3,K.1,-1*K.1^-7,K.1^-8,K.1^-6,K.1^-7,-1*K.1^-8,-1*K.1^-2,K.1^4,-1*K.1^-3,-1*K.1^-7,K.1^-6,-1*K.1^8,-1*K.1^4,-1*K.1^5,-1*K.1^-7,-1*K.1^-8,K.1^-5,K.1^-6,K.1^4,-1*K.1^-3,K.1^-2,K.1^-2,K.1^8,-1*K.1^-5,K.1^-7,K.1^2,-1*K.1^-2,K.1^-3,-1*K.1,-1*K.1^4,K.1^6,-1*K.1^-2,K.1^7,-1*K.1^2,K.1,-1*K.1^5,K.1^3,K.1^5,-1*K.1^3,-1*K.1^7,K.1^3,K.1^8,K.1^2,-1*K.1^6,K.1^-1,K.1^-8,K.1^-8,-1*K.1^8,-1*K.1^-6,K.1^-4,-1*K.1^-5,K.1^-5,-1*K.1^-1,K.1^-1,-1*K.1^-4,-1*K.1^6,K.1,-1*K.1^-8,K.1^-3,-1*K.1^-1,-1*K.1^-4,K.1^-4,K.1^5,-1*K.1^2,K.1^-7,K.1^6,-1*K.1^7,-1*K.1,-1*K.1^-6,K.1^7,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1^-1,K.1^-8,K.1^-7,K.1^-4,K.1^4,K.1^-3,K.1^5,K.1^6,K.1^7,K.1^-6,K.1^2,K.1^-2,K.1^8,K.1,K.1^3,K.1^-5,K.1^6,-1*K.1^-2,-1*K.1^3,-1*K.1^8,-1*K.1^-2,-1*K.1^7,-1*K.1^-7,-1*K.1^-5,-1*K.1^7,-1*K.1^4,-1*K.1^-8,-1*K.1^-3,-1*K.1^4,-1*K.1,-1*K.1^-6,-1*K.1^6,-1*K.1,K.1^-5,K.1,K.1^-3,-1*K.1^2,-1*K.1^-4,-1*K.1^2,-1*K.1^8,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,K.1^7,-1*K.1^-5,-1*K.1^6,-1*K.1^5,-1*K.1^-6,-1*K.1^5,-1*K.1^-1,-1*K.1^-7,-1*K.1^-1,K.1^-4,K.1^2,K.1^8,-1*K.1^-4,K.1^-6,K.1^5,K.1^-1,K.1^-7,K.1^4,K.1^-2,K.1^-8,K.1^3,K.1^8,K.1^7,K.1,K.1^-3,K.1^2,K.1^-8,K.1^3,K.1^6,K.1^-1,K.1^-6,K.1^-4,K.1^4,K.1^-2,K.1^-7,K.1^-5,K.1^5,-1*K.1^-2,-1*K.1^8,K.1^-5,K.1^-3,K.1^8,K.1^2,K.1^4,-1*K.1^7,-1*K.1^2,-1*K.1^-5,-1*K.1^-3,-1*K.1^5,-1*K.1^3,-1*K.1^-6,-1*K.1^-2,-1*K.1^-1,K.1^-7,K.1,K.1^5,K.1^5,-1*K.1^-5,K.1^-8,K.1^-1,K.1^-2,K.1^3,-1*K.1^-3,K.1^6,-1*K.1^-1,-1*K.1^6,-1*K.1^7,K.1^4,K.1^7,K.1^-5,-1*K.1^-8,-1*K.1^2,K.1^3,-1*K.1^-6,K.1^-7,K.1,K.1^2,K.1^8,K.1^-3,K.1^-4,-1*K.1^-4,-1*K.1,-1*K.1^8,-1*K.1^6,-1*K.1^4,K.1^7,-1*K.1^-8,-1*K.1^5,-1*K.1^4,-1*K.1^-7,K.1^-1,K.1^-6,K.1^-6,-1*K.1^3,-1*K.1^-4,-1*K.1^-7,K.1^-8,-1*K.1,K.1^-2,K.1^-4,K.1^6,-1*K.1^-5,K.1,K.1^7,K.1^-7,K.1^4,-1*K.1^-2,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,-1*K.1^5,-1*K.1^7,-1*K.1^-7,-1*K.1^6,-1*K.1^4,-1*K.1^-6,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^2,-1*K.1,-1*K.1^5,-1*K.1^-7,-1*K.1^-4,-1*K.1^8,-1*K.1^-8,K.1^-8,K.1^5,K.1^2,K.1^-5,K.1^-2,K.1^-4,K.1^-3,K.1^6,-1*K.1^-5,K.1^8,-1*K.1^-3,K.1^-6,-1*K.1^-2,K.1^3,-1*K.1,K.1^-1,-1*K.1^-4,-1*K.1^8,-1*K.1^3,-1*K.1^2,K.1^-3,-1*K.1^-3,K.1^8,-1*K.1^8,-1*K.1^4,K.1^4,-1*K.1^-7,K.1^-7,K.1^7,-1*K.1^7,K.1,-1*K.1,-1*K.1^-6,K.1^-6,-1*K.1^3,K.1^3,K.1,-1*K.1^-2,K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^-6,K.1^7,K.1^8,K.1^5,K.1^4,-1*K.1^-3,-1*K.1^5,-1*K.1^4,-1*K.1,K.1^-2,-1*K.1^6,-1*K.1^-8,K.1^-8,-1*K.1^-2,K.1^-2,K.1^2,-1*K.1^2,K.1^-4,-1*K.1^-4,-1*K.1^-1,K.1^-1,-1*K.1^5,K.1^5,K.1^-5,-1*K.1^-5,K.1^6,-1*K.1^3,-1*K.1^-1,K.1^2,K.1^-3,K.1^-7,K.1^-8,K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1^-5,-1*K.1^-4,K.1^3,K.1^-5,K.1^-4,K.1^-1,-1*K.1^2,-1*K.1^6,K.1^3,-1*K.1^-8,K.1^-8,K.1^8,-1*K.1^8,K.1^2,-1*K.1^2,-1*K.1^-7,K.1^-7,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1^-5,-1*K.1^-5,-1*K.1^3,-1*K.1^6,-1*K.1^-1,-1*K.1^-2,K.1^-3,-1*K.1^7,K.1^-8,K.1^6,K.1^7,-1*K.1^-8,K.1^5,-1*K.1^-4,-1*K.1^-3,-1*K.1^5,K.1^-4,K.1^-1,K.1^-2,-1*K.1^6,K.1^-3,-1*K.1^-3,-1*K.1^-2,K.1^-2,-1*K.1^4,K.1^4,K.1^-4,-1*K.1^-4,K.1^7,-1*K.1^7,-1*K.1^5,K.1^5,-1*K.1^-6,K.1^-6,K.1^6,-1*K.1^3,K.1,K.1^2,K.1^-6,K.1^-7,-1*K.1^8,-1*K.1^-6,-1*K.1^-7,K.1^8,-1*K.1^-5,K.1^4,K.1^3,K.1^-5,-1*K.1^4,-1*K.1,K.1^-2,-1*K.1^-7,-1*K.1^-5,K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^6,-1*K.1^-5,-1*K.1^4,K.1^-6,K.1^3,K.1^-2,-1*K.1^-7,K.1,K.1,K.1^-4,-1*K.1^-6,K.1^-5,K.1^-1,-1*K.1,K.1^-7,-1*K.1^8,-1*K.1^-2,K.1^-3,-1*K.1,K.1^5,-1*K.1^-1,K.1^8,-1*K.1^6,K.1^7,K.1^6,-1*K.1^7,-1*K.1^5,K.1^7,K.1^-4,K.1^-1,-1*K.1^-3,K.1^-8,K.1^4,K.1^4,-1*K.1^-4,-1*K.1^3,K.1^2,-1*K.1^-6,K.1^-6,-1*K.1^-8,K.1^-8,-1*K.1^2,-1*K.1^-3,K.1^8,-1*K.1^4,K.1^-7,-1*K.1^-8,-1*K.1^2,K.1^2,K.1^6,-1*K.1^-1,K.1^-5,K.1^-3,-1*K.1^5,-1*K.1^8,-1*K.1^3,K.1^5,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,K.1,K.1^8,K.1^7,K.1^4,K.1^-4,K.1^3,K.1^-5,K.1^-6,K.1^-7,K.1^6,K.1^-2,K.1^2,K.1^-8,K.1^-1,K.1^-3,K.1^5,K.1^-6,-1*K.1^2,-1*K.1^-3,-1*K.1^-8,-1*K.1^2,-1*K.1^-7,-1*K.1^7,-1*K.1^5,-1*K.1^-7,-1*K.1^-4,-1*K.1^8,-1*K.1^3,-1*K.1^-4,-1*K.1^-1,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,K.1^5,K.1^-1,K.1^3,-1*K.1^-2,-1*K.1^4,-1*K.1^-2,-1*K.1^-8,-1*K.1^3,-1*K.1^-3,-1*K.1^8,K.1^-7,-1*K.1^5,-1*K.1^-6,-1*K.1^-5,-1*K.1^6,-1*K.1^-5,-1*K.1,-1*K.1^7,-1*K.1,K.1^4,K.1^-2,K.1^-8,-1*K.1^4,K.1^6,K.1^-5,K.1,K.1^7,K.1^-4,K.1^2,K.1^8,K.1^-3,K.1^-8,K.1^-7,K.1^-1,K.1^3,K.1^-2,K.1^8,K.1^-3,K.1^-6,K.1,K.1^6,K.1^4,K.1^-4,K.1^2,K.1^7,K.1^5,K.1^-5,-1*K.1^2,-1*K.1^-8,K.1^5,K.1^3,K.1^-8,K.1^-2,K.1^-4,-1*K.1^-7,-1*K.1^-2,-1*K.1^5,-1*K.1^3,-1*K.1^-5,-1*K.1^-3,-1*K.1^6,-1*K.1^2,-1*K.1,K.1^7,K.1^-1,K.1^-5,K.1^-5,-1*K.1^5,K.1^8,K.1,K.1^2,K.1^-3,-1*K.1^3,K.1^-6,-1*K.1,-1*K.1^-6,-1*K.1^-7,K.1^-4,K.1^-7,K.1^5,-1*K.1^8,-1*K.1^-2,K.1^-3,-1*K.1^6,K.1^7,K.1^-1,K.1^-2,K.1^-8,K.1^3,K.1^4,-1*K.1^4,-1*K.1^-1,-1*K.1^-8,-1*K.1^-6,-1*K.1^-4,K.1^-7,-1*K.1^8,-1*K.1^-5,-1*K.1^-4,-1*K.1^7,K.1,K.1^6,K.1^6,-1*K.1^-3,-1*K.1^4,-1*K.1^7,K.1^8,-1*K.1^-1,K.1^2,K.1^4,K.1^-6,-1*K.1^5,K.1^-1,K.1^-7,K.1^7,K.1^-4,-1*K.1^2,-1*K.1^-6,-1*K.1^6,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^8,-1*K.1^-5,-1*K.1^-7,-1*K.1^7,-1*K.1^-6,-1*K.1^-4,-1*K.1^6,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^-5,-1*K.1^7,-1*K.1^4,-1*K.1^-8,-1*K.1^8,K.1^8,K.1^-5,K.1^-2,K.1^5,K.1^2,K.1^4,K.1^3,K.1^-6,-1*K.1^5,K.1^-8,-1*K.1^3,K.1^6,-1*K.1^2,K.1^-3,-1*K.1^-1,K.1,-1*K.1^4,-1*K.1^-8,-1*K.1^-3,-1*K.1^-2,K.1^3,-1*K.1^3,K.1^-8,-1*K.1^-8,-1*K.1^-4,K.1^-4,-1*K.1^7,K.1^7,K.1^-7,-1*K.1^-7,K.1^-1,-1*K.1^-1,-1*K.1^6,K.1^6,-1*K.1^-3,K.1^-3,K.1^-1,-1*K.1^2,K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1^6,K.1^-7,K.1^-8,K.1^-5,K.1^-4,-1*K.1^3,-1*K.1^-5,-1*K.1^-4,-1*K.1^-1,K.1^2,-1*K.1^-6,-1*K.1^8,K.1^8,-1*K.1^2,K.1^2,K.1^-2,-1*K.1^-2,K.1^4,-1*K.1^4,-1*K.1,K.1,-1*K.1^-5,K.1^-5,K.1^5,-1*K.1^5,K.1^-6,-1*K.1^-3,-1*K.1,K.1^-2,K.1^3,K.1^7,K.1^8,K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^5,-1*K.1^4,K.1^-3,K.1^5,K.1^4,K.1,-1*K.1^-2,-1*K.1^-6,K.1^-3,-1*K.1^8,K.1^8,K.1^-8,-1*K.1^-8,K.1^-2,-1*K.1^-2,-1*K.1^7,K.1^7,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^5,-1*K.1^5,-1*K.1^-3,-1*K.1^-6,-1*K.1,-1*K.1^2,K.1^3,-1*K.1^-7,K.1^8,K.1^-6,K.1^-7,-1*K.1^8,K.1^-5,-1*K.1^4,-1*K.1^3,-1*K.1^-5,K.1^4,K.1,K.1^2,-1*K.1^-6,K.1^3,-1*K.1^3,-1*K.1^2,K.1^2,-1*K.1^-4,K.1^-4,K.1^4,-1*K.1^4,K.1^-7,-1*K.1^-7,-1*K.1^-5,K.1^-5,-1*K.1^6,K.1^6,K.1^-6,-1*K.1^-3,K.1^-1,K.1^-2,K.1^6,K.1^7,-1*K.1^-8,-1*K.1^6,-1*K.1^7,K.1^-8,-1*K.1^5,K.1^-4,K.1^-3,K.1^5,-1*K.1^-4,-1*K.1^-1,K.1^2,-1*K.1^7,-1*K.1^5,K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^-6,-1*K.1^5,-1*K.1^-4,K.1^6,K.1^-3,K.1^2,-1*K.1^7,K.1^-1,K.1^-1,K.1^4,-1*K.1^6,K.1^5,K.1,-1*K.1^-1,K.1^7,-1*K.1^-8,-1*K.1^2,K.1^3,-1*K.1^-1,K.1^-5,-1*K.1,K.1^-8,-1*K.1^-6,K.1^-7,K.1^-6,-1*K.1^-7,-1*K.1^-5,K.1^-7,K.1^4,K.1,-1*K.1^3,K.1^8,K.1^-4,K.1^-4,-1*K.1^4,-1*K.1^-3,K.1^-2,-1*K.1^6,K.1^6,-1*K.1^8,K.1^8,-1*K.1^-2,-1*K.1^3,K.1^-8,-1*K.1^-4,K.1^7,-1*K.1^8,-1*K.1^-2,K.1^-2,K.1^-6,-1*K.1,K.1^5,K.1^3,-1*K.1^-5,-1*K.1^-8,-1*K.1^-3,K.1^-5,-1*K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^-8,K.1^4,K.1^-5,K.1^2,K.1^-2,K.1^-7,K.1^6,K.1^-3,K.1^5,K.1^3,K.1^-1,K.1,K.1^-4,K.1^8,K.1^7,K.1^-6,K.1^-3,K.1,K.1^7,K.1^-4,K.1,K.1^5,K.1^-5,K.1^-6,K.1^5,K.1^-2,K.1^4,K.1^-7,K.1^-2,K.1^8,K.1^3,K.1^-3,K.1^8,K.1^-6,K.1^8,K.1^-7,K.1^-1,K.1^2,K.1^-1,K.1^-4,K.1^-7,K.1^7,K.1^4,K.1^5,K.1^-6,K.1^-3,K.1^6,K.1^3,K.1^6,K.1^-8,K.1^-5,K.1^-8,K.1^2,K.1^-1,K.1^-4,K.1^2,K.1^3,K.1^6,K.1^-8,K.1^-5,K.1^-2,K.1,K.1^4,K.1^7,K.1^-4,K.1^5,K.1^8,K.1^-7,K.1^-1,K.1^4,K.1^7,K.1^-3,K.1^-8,K.1^3,K.1^2,K.1^-2,K.1,K.1^-5,K.1^-6,K.1^6,K.1,K.1^-4,K.1^-6,K.1^-7,K.1^-4,K.1^-1,K.1^-2,K.1^5,K.1^-1,K.1^-6,K.1^-7,K.1^6,K.1^7,K.1^3,K.1,K.1^-8,K.1^-5,K.1^8,K.1^6,K.1^6,K.1^-6,K.1^4,K.1^-8,K.1,K.1^7,K.1^-7,K.1^-3,K.1^-8,K.1^-3,K.1^5,K.1^-2,K.1^5,K.1^-6,K.1^4,K.1^-1,K.1^7,K.1^3,K.1^-5,K.1^8,K.1^-1,K.1^-4,K.1^-7,K.1^2,K.1^2,K.1^8,K.1^-4,K.1^-3,K.1^-2,K.1^5,K.1^4,K.1^6,K.1^-2,K.1^-5,K.1^-8,K.1^3,K.1^3,K.1^7,K.1^2,K.1^-5,K.1^4,K.1^8,K.1,K.1^2,K.1^-3,K.1^-6,K.1^8,K.1^5,K.1^-5,K.1^-2,K.1,K.1^-3,K.1^3,K.1^-8,K.1^-1,K.1^-7,K.1^7,K.1^4,K.1^6,K.1^5,K.1^-5,K.1^-3,K.1^-2,K.1^3,K.1^-8,K.1^-2,K.1^5,K.1^-1,K.1^8,K.1^6,K.1^-5,K.1^2,K.1^-4,K.1^4,K.1^4,K.1^6,K.1^-1,K.1^-6,K.1,K.1^2,K.1^-7,K.1^-3,K.1^-6,K.1^-4,K.1^-7,K.1^3,K.1,K.1^7,K.1^8,K.1^-8,K.1^2,K.1^-4,K.1^7,-1*K.1^-1,-1*K.1^-7,-1*K.1^-7,-1*K.1^-4,-1*K.1^-4,-1*K.1^-2,-1*K.1^-2,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^8,-1*K.1^8,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^8,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^6,-1*K.1^-2,-1*K.1^-7,-1*K.1^6,-1*K.1^-2,-1*K.1^8,-1*K.1,-1*K.1^-3,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-8,-1*K.1^-8,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^-3,-1*K.1^7,-1*K.1^-8,-1*K.1^-1,-1*K.1^-7,-1*K.1^-5,-1*K.1^4,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^-6,-1*K.1^2,-1*K.1^7,-1*K.1^-6,-1*K.1^2,-1*K.1^-8,-1*K.1^-1,-1*K.1^-3,-1*K.1^7,-1*K.1^4,-1*K.1^4,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^-1,-1*K.1^-5,-1*K.1^-5,-1*K.1^-8,-1*K.1^-8,-1*K.1^8,-1*K.1^8,-1*K.1^-6,-1*K.1^-6,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1,-1*K.1^-7,-1*K.1^5,-1*K.1^4,-1*K.1^-3,-1*K.1^5,-1*K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^-7,-1*K.1^6,-1*K.1^2,-1*K.1^-8,-1*K.1,-1*K.1^-3,-1*K.1^-7,-1*K.1^-7,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^5,-1*K.1^5,-1*K.1^6,-1*K.1^6,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^7,-1*K.1^8,-1*K.1^-1,-1*K.1^3,-1*K.1^-5,-1*K.1^-4,-1*K.1^3,-1*K.1^-5,-1*K.1^-4,-1*K.1^-6,-1*K.1^-2,-1*K.1^7,-1*K.1^-6,-1*K.1^-2,-1*K.1^8,K.1,K.1^-5,K.1^-6,K.1^7,K.1^2,K.1,K.1^-3,K.1^-6,K.1^-2,K.1^3,K.1^7,K.1,K.1^-5,K.1^8,K.1^8,K.1^2,K.1^3,K.1^-6,K.1^-8,K.1^8,K.1^-5,K.1^-4,K.1,K.1^-7,K.1^8,K.1^6,K.1^-8,K.1^-4,K.1^-3,K.1^5,K.1^-3,K.1^5,K.1^6,K.1^5,K.1^2,K.1^-8,K.1^-7,K.1^4,K.1^-2,K.1^-2,K.1^2,K.1^7,K.1^-1,K.1^3,K.1^3,K.1^4,K.1^4,K.1^-1,K.1^-7,K.1^-4,K.1^-2,K.1^-5,K.1^4,K.1^-1,K.1^-1,K.1^-3,K.1^-8,K.1^-6,K.1^-7,K.1^6,K.1^-4,K.1^7,K.1^6,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^8,K.1^-4,K.1^5,K.1^-2,K.1^2,K.1^7,K.1^-6,K.1^3,K.1^-5,K.1^-3,K.1,K.1^-1,K.1^4,K.1^-8,K.1^-7,K.1^6,K.1^3,K.1^-1,K.1^-7,K.1^4,K.1^-1,K.1^-5,K.1^5,K.1^6,K.1^-5,K.1^2,K.1^-4,K.1^7,K.1^2,K.1^-8,K.1^-3,K.1^3,K.1^-8,K.1^6,K.1^-8,K.1^7,K.1,K.1^-2,K.1,K.1^4,K.1^7,K.1^-7,K.1^-4,K.1^-5,K.1^6,K.1^3,K.1^-6,K.1^-3,K.1^-6,K.1^8,K.1^5,K.1^8,K.1^-2,K.1,K.1^4,K.1^-2,K.1^-3,K.1^-6,K.1^8,K.1^5,K.1^2,K.1^-1,K.1^-4,K.1^-7,K.1^4,K.1^-5,K.1^-8,K.1^7,K.1,K.1^-4,K.1^-7,K.1^3,K.1^8,K.1^-3,K.1^-2,K.1^2,K.1^-1,K.1^5,K.1^6,K.1^-6,K.1^-1,K.1^4,K.1^6,K.1^7,K.1^4,K.1,K.1^2,K.1^-5,K.1,K.1^6,K.1^7,K.1^-6,K.1^-7,K.1^-3,K.1^-1,K.1^8,K.1^5,K.1^-8,K.1^-6,K.1^-6,K.1^6,K.1^-4,K.1^8,K.1^-1,K.1^-7,K.1^7,K.1^3,K.1^8,K.1^3,K.1^-5,K.1^2,K.1^-5,K.1^6,K.1^-4,K.1,K.1^-7,K.1^-3,K.1^5,K.1^-8,K.1,K.1^4,K.1^7,K.1^-2,K.1^-2,K.1^-8,K.1^4,K.1^3,K.1^2,K.1^-5,K.1^-4,K.1^-6,K.1^2,K.1^5,K.1^8,K.1^-3,K.1^-3,K.1^-7,K.1^-2,K.1^5,K.1^-4,K.1^-8,K.1^-1,K.1^-2,K.1^3,K.1^6,K.1^-8,K.1^-5,K.1^5,K.1^2,K.1^-1,K.1^3,K.1^-3,K.1^8,K.1,K.1^7,K.1^-7,K.1^-4,K.1^-6,K.1^-5,K.1^5,K.1^3,K.1^2,K.1^-3,K.1^8,K.1^2,K.1^-5,K.1,K.1^-8,K.1^-6,K.1^5,K.1^-2,K.1^4,K.1^-4,K.1^-4,K.1^-6,K.1,K.1^6,K.1^-1,K.1^-2,K.1^7,K.1^3,K.1^6,K.1^4,K.1^7,K.1^-3,K.1^-1,K.1^-7,K.1^-8,K.1^8,K.1^-2,K.1^4,K.1^-7,-1*K.1,-1*K.1^7,-1*K.1^7,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-8,-1*K.1^-8,-1*K.1^-3,-1*K.1^-3,-1*K.1^-7,-1*K.1^-7,-1*K.1^-8,-1*K.1^-1,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^-6,-1*K.1^2,-1*K.1^7,-1*K.1^-6,-1*K.1^2,-1*K.1^-8,-1*K.1^-1,-1*K.1^3,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^8,-1*K.1^8,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^3,-1*K.1^-7,-1*K.1^8,-1*K.1,-1*K.1^7,-1*K.1^5,-1*K.1^-4,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^6,-1*K.1^-2,-1*K.1^-7,-1*K.1^6,-1*K.1^-2,-1*K.1^8,-1*K.1,-1*K.1^3,-1*K.1^-7,-1*K.1^-4,-1*K.1^-4,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^8,-1*K.1^8,-1*K.1^-8,-1*K.1^-8,-1*K.1^6,-1*K.1^6,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-1,-1*K.1^7,-1*K.1^-5,-1*K.1^-4,-1*K.1^3,-1*K.1^-5,-1*K.1^-4,-1*K.1^-6,-1*K.1^-2,-1*K.1^7,-1*K.1^-6,-1*K.1^-2,-1*K.1^8,-1*K.1^-1,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-5,-1*K.1^-5,-1*K.1^-6,-1*K.1^-6,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^-7,-1*K.1^-8,-1*K.1,-1*K.1^-3,-1*K.1^5,-1*K.1^4,-1*K.1^-3,-1*K.1^5,-1*K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^-7,-1*K.1^6,-1*K.1^2,-1*K.1^-8,K.1^-1,K.1^5,K.1^6,K.1^-7,K.1^-2,K.1^-1,K.1^3,K.1^6,K.1^2,K.1^-3,K.1^-7,K.1^-1,K.1^5,K.1^-8,K.1^-8,K.1^-2,K.1^-3,K.1^6,K.1^8,K.1^-8,K.1^5,K.1^4,K.1^-1,K.1^7,K.1^-8,K.1^-6,K.1^8,K.1^4,K.1^3,K.1^-5,K.1^3,K.1^-5,K.1^-6,K.1^-5,K.1^-2,K.1^8,K.1^7,K.1^-4,K.1^2,K.1^2,K.1^-2,K.1^-7,K.1,K.1^-3,K.1^-3,K.1^-4,K.1^-4,K.1,K.1^7,K.1^4,K.1^2,K.1^5,K.1^-4,K.1,K.1,K.1^3,K.1^8,K.1^6,K.1^7,K.1^-6,K.1^4,K.1^-7,K.1^-6,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^-7,K.1^-5,K.1^2,K.1^6,K.1^-6,K.1^-4,K.1,K.1^8,K.1^-2,K.1^-8,K.1^-3,K.1^3,K.1^5,K.1^7,K.1^4,K.1^-1,K.1^8,K.1^3,K.1^4,K.1^5,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-6,K.1^-5,K.1^-4,K.1^-6,K.1^7,K.1^-8,K.1^8,K.1^7,K.1^-1,K.1^7,K.1^-4,K.1^-3,K.1^6,K.1^-3,K.1^5,K.1^-4,K.1^4,K.1^-5,K.1^-2,K.1^-1,K.1^8,K.1,K.1^-8,K.1,K.1^-7,K.1^2,K.1^-7,K.1^6,K.1^-3,K.1^5,K.1^6,K.1^-8,K.1,K.1^-7,K.1^2,K.1^-6,K.1^3,K.1^-5,K.1^4,K.1^5,K.1^-2,K.1^7,K.1^-4,K.1^-3,K.1^-5,K.1^4,K.1^8,K.1^-7,K.1^-8,K.1^6,K.1^-6,K.1^3,K.1^2,K.1^-1,K.1,K.1^3,K.1^5,K.1^-1,K.1^-4,K.1^5,K.1^-3,K.1^-6,K.1^-2,K.1^-3,K.1^-1,K.1^-4,K.1,K.1^4,K.1^-8,K.1^3,K.1^-7,K.1^2,K.1^7,K.1,K.1,K.1^-1,K.1^-5,K.1^-7,K.1^3,K.1^4,K.1^-4,K.1^8,K.1^-7,K.1^8,K.1^-2,K.1^-6,K.1^-2,K.1^-1,K.1^-5,K.1^-3,K.1^4,K.1^-8,K.1^2,K.1^7,K.1^-3,K.1^5,K.1^-4,K.1^6,K.1^6,K.1^7,K.1^5,K.1^8,K.1^-6,K.1^-2,K.1^-5,K.1,K.1^-6,K.1^2,K.1^-7,K.1^-8,K.1^-8,K.1^4,K.1^6,K.1^2,K.1^-5,K.1^7,K.1^3,K.1^6,K.1^8,K.1^-1,K.1^7,K.1^-2,K.1^2,K.1^-6,K.1^3,K.1^8,K.1^-8,K.1^-7,K.1^-3,K.1^-4,K.1^4,K.1^-5,K.1,K.1^-2,K.1^2,K.1^8,K.1^-6,K.1^-8,K.1^-7,K.1^-6,K.1^-2,K.1^-3,K.1^7,K.1,K.1^2,K.1^6,K.1^5,K.1^-5,K.1^-5,K.1,K.1^-3,K.1^-1,K.1^3,K.1^6,K.1^-4,K.1^8,K.1^-1,K.1^5,K.1^-4,K.1^-8,K.1^3,K.1^4,K.1^7,K.1^-7,K.1^6,K.1^5,K.1^4,-1*K.1^-3,-1*K.1^-4,-1*K.1^-4,-1*K.1^5,-1*K.1^5,-1*K.1^-6,-1*K.1^-6,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^7,-1*K.1^7,-1*K.1^-8,-1*K.1^-8,-1*K.1^4,-1*K.1^4,-1*K.1^7,-1*K.1^3,-1*K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1,-1*K.1^-6,-1*K.1^-4,-1*K.1,-1*K.1^-6,-1*K.1^7,-1*K.1^3,-1*K.1^8,-1*K.1^-5,-1*K.1^-5,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^-7,-1*K.1^-7,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^8,-1*K.1^4,-1*K.1^-7,-1*K.1^-3,-1*K.1^-4,-1*K.1^2,-1*K.1^-5,-1*K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1^-1,-1*K.1^6,-1*K.1^4,-1*K.1^-1,-1*K.1^6,-1*K.1^-7,-1*K.1^-3,-1*K.1^8,-1*K.1^4,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^2,-1*K.1^-7,-1*K.1^-7,-1*K.1^7,-1*K.1^7,-1*K.1^-1,-1*K.1^-1,-1*K.1^4,-1*K.1^8,-1*K.1^-7,-1*K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^-5,-1*K.1^8,-1*K.1^-2,-1*K.1^-5,-1*K.1,-1*K.1^6,-1*K.1^-4,-1*K.1,-1*K.1^6,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-4,-1*K.1^-4,-1*K.1^3,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-8,-1*K.1^-8,-1*K.1^8,-1*K.1^4,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^2,-1*K.1^5,-1*K.1^-8,-1*K.1^2,-1*K.1^5,-1*K.1^-1,-1*K.1^-6,-1*K.1^4,-1*K.1^-1,-1*K.1^-6,-1*K.1^7,K.1^3,K.1^2,K.1^-1,K.1^4,K.1^6,K.1^3,K.1^8,K.1^-1,K.1^-6,K.1^-8,K.1^4,K.1^3,K.1^2,K.1^7,K.1^7,K.1^6,K.1^-8,K.1^-1,K.1^-7,K.1^7,K.1^2,K.1^5,K.1^3,K.1^-4,K.1^7,K.1,K.1^-7,K.1^5,K.1^8,K.1^-2,K.1^8,K.1^-2,K.1,K.1^-2,K.1^6,K.1^-7,K.1^-4,K.1^-5,K.1^-6,K.1^-6,K.1^6,K.1^4,K.1^-3,K.1^-8,K.1^-8,K.1^-5,K.1^-5,K.1^-3,K.1^-4,K.1^5,K.1^-6,K.1^2,K.1^-5,K.1^-3,K.1^-3,K.1^8,K.1^-7,K.1^-1,K.1^-4,K.1,K.1^5,K.1^4,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^7,K.1^5,K.1^-2,K.1^-6,K.1^6,K.1^4,K.1^-1,K.1^-8,K.1^2,K.1^8,K.1^3,K.1^-3,K.1^-5,K.1^-7,K.1^-4,K.1,K.1^-8,K.1^-3,K.1^-4,K.1^-5,K.1^-3,K.1^2,K.1^-2,K.1,K.1^2,K.1^6,K.1^5,K.1^4,K.1^6,K.1^-7,K.1^8,K.1^-8,K.1^-7,K.1,K.1^-7,K.1^4,K.1^3,K.1^-6,K.1^3,K.1^-5,K.1^4,K.1^-4,K.1^5,K.1^2,K.1,K.1^-8,K.1^-1,K.1^8,K.1^-1,K.1^7,K.1^-2,K.1^7,K.1^-6,K.1^3,K.1^-5,K.1^-6,K.1^8,K.1^-1,K.1^7,K.1^-2,K.1^6,K.1^-3,K.1^5,K.1^-4,K.1^-5,K.1^2,K.1^-7,K.1^4,K.1^3,K.1^5,K.1^-4,K.1^-8,K.1^7,K.1^8,K.1^-6,K.1^6,K.1^-3,K.1^-2,K.1,K.1^-1,K.1^-3,K.1^-5,K.1,K.1^4,K.1^-5,K.1^3,K.1^6,K.1^2,K.1^3,K.1,K.1^4,K.1^-1,K.1^-4,K.1^8,K.1^-3,K.1^7,K.1^-2,K.1^-7,K.1^-1,K.1^-1,K.1,K.1^5,K.1^7,K.1^-3,K.1^-4,K.1^4,K.1^-8,K.1^7,K.1^-8,K.1^2,K.1^6,K.1^2,K.1,K.1^5,K.1^3,K.1^-4,K.1^8,K.1^-2,K.1^-7,K.1^3,K.1^-5,K.1^4,K.1^-6,K.1^-6,K.1^-7,K.1^-5,K.1^-8,K.1^6,K.1^2,K.1^5,K.1^-1,K.1^6,K.1^-2,K.1^7,K.1^8,K.1^8,K.1^-4,K.1^-6,K.1^-2,K.1^5,K.1^-7,K.1^-3,K.1^-6,K.1^-8,K.1,K.1^-7,K.1^2,K.1^-2,K.1^6,K.1^-3,K.1^-8,K.1^8,K.1^7,K.1^3,K.1^4,K.1^-4,K.1^5,K.1^-1,K.1^2,K.1^-2,K.1^-8,K.1^6,K.1^8,K.1^7,K.1^6,K.1^2,K.1^3,K.1^-7,K.1^-1,K.1^-2,K.1^-6,K.1^-5,K.1^5,K.1^5,K.1^-1,K.1^3,K.1,K.1^-3,K.1^-6,K.1^4,K.1^-8,K.1,K.1^-5,K.1^4,K.1^8,K.1^-3,K.1^-4,K.1^-7,K.1^7,K.1^-6,K.1^-5,K.1^-4,-1*K.1^3,-1*K.1^4,-1*K.1^4,-1*K.1^-5,-1*K.1^-5,-1*K.1^6,-1*K.1^6,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-7,-1*K.1^-7,-1*K.1^8,-1*K.1^8,-1*K.1^-4,-1*K.1^-4,-1*K.1^-7,-1*K.1^-3,-1*K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1^-1,-1*K.1^6,-1*K.1^4,-1*K.1^-1,-1*K.1^6,-1*K.1^-7,-1*K.1^-3,-1*K.1^-8,-1*K.1^5,-1*K.1^5,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^-6,-1*K.1^-6,-1*K.1^7,-1*K.1^7,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-8,-1*K.1^-4,-1*K.1^7,-1*K.1^3,-1*K.1^4,-1*K.1^-2,-1*K.1^5,-1*K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1,-1*K.1^-6,-1*K.1^-4,-1*K.1,-1*K.1^-6,-1*K.1^7,-1*K.1^3,-1*K.1^-8,-1*K.1^-4,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^-2,-1*K.1^7,-1*K.1^7,-1*K.1^-7,-1*K.1^-7,-1*K.1,-1*K.1,-1*K.1^-4,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^5,-1*K.1^-8,-1*K.1^2,-1*K.1^5,-1*K.1^-1,-1*K.1^-6,-1*K.1^4,-1*K.1^-1,-1*K.1^-6,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^4,-1*K.1^4,-1*K.1^-3,-1*K.1^-3,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^8,-1*K.1^8,-1*K.1^-8,-1*K.1^-4,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-2,-1*K.1^-5,-1*K.1^8,-1*K.1^-2,-1*K.1^-5,-1*K.1,-1*K.1^6,-1*K.1^-4,-1*K.1,-1*K.1^6,-1*K.1^-7,K.1^-3,K.1^-2,K.1,K.1^-4,K.1^-6,K.1^-3,K.1^-8,K.1,K.1^6,K.1^8,K.1^-4,K.1^-3,K.1^-2,K.1^-7,K.1^-7,K.1^-6,K.1^8,K.1,K.1^7,K.1^-7,K.1^-2,K.1^-5,K.1^-3,K.1^4,K.1^-7,K.1^-1,K.1^7,K.1^-5,K.1^-8,K.1^2,K.1^-8,K.1^2,K.1^-1,K.1^2,K.1^-6,K.1^7,K.1^4,K.1^5,K.1^6,K.1^6,K.1^-6,K.1^-4,K.1^3,K.1^8,K.1^8,K.1^5,K.1^5,K.1^3,K.1^4,K.1^-5,K.1^6,K.1^-2,K.1^5,K.1^3,K.1^3,K.1^-8,K.1^7,K.1,K.1^4,K.1^-1,K.1^-5,K.1^-4,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^-6,K.1^3,K.1^-8,K.1^-7,K.1^7,K.1^-1,K.1^-4,K.1^2,K.1^8,K.1^-2,K.1^-5,K.1^5,K.1^-3,K.1^6,K.1,K.1^4,K.1^2,K.1^5,K.1,K.1^-3,K.1^5,K.1^8,K.1^-8,K.1^4,K.1^8,K.1^7,K.1^3,K.1^-1,K.1^7,K.1^6,K.1^-2,K.1^2,K.1^6,K.1^4,K.1^6,K.1^-1,K.1^-5,K.1^-7,K.1^-5,K.1^-3,K.1^-1,K.1,K.1^3,K.1^8,K.1^4,K.1^2,K.1^-4,K.1^-2,K.1^-4,K.1^-6,K.1^-8,K.1^-6,K.1^-7,K.1^-5,K.1^-3,K.1^-7,K.1^-2,K.1^-4,K.1^-6,K.1^-8,K.1^7,K.1^5,K.1^3,K.1,K.1^-3,K.1^8,K.1^6,K.1^-1,K.1^-5,K.1^3,K.1,K.1^2,K.1^-6,K.1^-2,K.1^-7,K.1^7,K.1^5,K.1^-8,K.1^4,K.1^-4,K.1^5,K.1^-3,K.1^4,K.1^-1,K.1^-3,K.1^-5,K.1^7,K.1^8,K.1^-5,K.1^4,K.1^-1,K.1^-4,K.1,K.1^-2,K.1^5,K.1^-6,K.1^-8,K.1^6,K.1^-4,K.1^-4,K.1^4,K.1^3,K.1^-6,K.1^5,K.1,K.1^-1,K.1^2,K.1^-6,K.1^2,K.1^8,K.1^7,K.1^8,K.1^4,K.1^3,K.1^-5,K.1,K.1^-2,K.1^-8,K.1^6,K.1^-5,K.1^-3,K.1^-1,K.1^-7,K.1^-7,K.1^6,K.1^-3,K.1^2,K.1^7,K.1^8,K.1^3,K.1^-4,K.1^7,K.1^-8,K.1^-6,K.1^-2,K.1^-2,K.1,K.1^-7,K.1^-8,K.1^3,K.1^6,K.1^5,K.1^-7,K.1^2,K.1^4,K.1^6,K.1^8,K.1^-8,K.1^7,K.1^5,K.1^2,K.1^-2,K.1^-6,K.1^-5,K.1^-1,K.1,K.1^3,K.1^-4,K.1^8,K.1^-8,K.1^2,K.1^7,K.1^-2,K.1^-6,K.1^7,K.1^8,K.1^-5,K.1^6,K.1^-4,K.1^-8,K.1^-7,K.1^-3,K.1^3,K.1^3,K.1^-4,K.1^-5,K.1^4,K.1^5,K.1^-7,K.1^-1,K.1^2,K.1^4,K.1^-3,K.1^-1,K.1^-2,K.1^5,K.1,K.1^6,K.1^-6,K.1^-7,K.1^-3,K.1,-1*K.1^-5,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^7,-1*K.1^7,-1*K.1^-8,-1*K.1^-8,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^6,-1*K.1^5,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^-4,-1*K.1^7,-1*K.1^-1,-1*K.1^-4,-1*K.1^7,-1*K.1^6,-1*K.1^5,-1*K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-7,-1*K.1^-7,-1*K.1^-6,-1*K.1^-6,-1*K.1^-4,-1*K.1^-4,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1,-1*K.1^-6,-1*K.1^-5,-1*K.1^-1,-1*K.1^-8,-1*K.1^3,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^4,-1*K.1^-7,-1*K.1,-1*K.1^4,-1*K.1^-7,-1*K.1^-6,-1*K.1^-5,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^-5,-1*K.1^-5,-1*K.1^-8,-1*K.1^-8,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1^2,-1*K.1^-6,-1*K.1^5,-1*K.1^-1,-1*K.1^8,-1*K.1^3,-1*K.1^2,-1*K.1^8,-1*K.1^3,-1*K.1^-4,-1*K.1^-7,-1*K.1^-1,-1*K.1^-4,-1*K.1^-7,-1*K.1^-6,-1*K.1^5,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^7,-1*K.1^-7,-1*K.1^-7,-1*K.1^8,-1*K.1^8,-1*K.1^-4,-1*K.1^-4,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^6,-1*K.1^-5,-1*K.1^-2,-1*K.1^-8,-1*K.1^-3,-1*K.1^-2,-1*K.1^-8,-1*K.1^-3,-1*K.1^4,-1*K.1^7,-1*K.1,-1*K.1^4,-1*K.1^7,-1*K.1^6,K.1^5,K.1^-8,K.1^4,K.1,K.1^-7,K.1^5,K.1^2,K.1^4,K.1^7,K.1^-2,K.1,K.1^5,K.1^-8,K.1^6,K.1^6,K.1^-7,K.1^-2,K.1^4,K.1^-6,K.1^6,K.1^-8,K.1^-3,K.1^5,K.1^-1,K.1^6,K.1^-4,K.1^-6,K.1^-3,K.1^2,K.1^8,K.1^2,K.1^8,K.1^-4,K.1^8,K.1^-7,K.1^-6,K.1^-1,K.1^3,K.1^7,K.1^7,K.1^-7,K.1,K.1^-5,K.1^-2,K.1^-2,K.1^3,K.1^3,K.1^-5,K.1^-1,K.1^-3,K.1^7,K.1^-8,K.1^3,K.1^-5,K.1^-5,K.1^2,K.1^-6,K.1^4,K.1^-1,K.1^-4,K.1^-3,K.1,K.1^-4,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^6,K.1^-3,K.1^8,K.1^7,K.1^-7,K.1,K.1^4,K.1^-2,K.1^-8,K.1^2,K.1^5,K.1^-5,K.1^3,K.1^-6,K.1^-1,K.1^-4,K.1^-2,K.1^-5,K.1^-1,K.1^3,K.1^-5,K.1^-8,K.1^8,K.1^-4,K.1^-8,K.1^-7,K.1^-3,K.1,K.1^-7,K.1^-6,K.1^2,K.1^-2,K.1^-6,K.1^-4,K.1^-6,K.1,K.1^5,K.1^7,K.1^5,K.1^3,K.1,K.1^-1,K.1^-3,K.1^-8,K.1^-4,K.1^-2,K.1^4,K.1^2,K.1^4,K.1^6,K.1^8,K.1^6,K.1^7,K.1^5,K.1^3,K.1^7,K.1^2,K.1^4,K.1^6,K.1^8,K.1^-7,K.1^-5,K.1^-3,K.1^-1,K.1^3,K.1^-8,K.1^-6,K.1,K.1^5,K.1^-3,K.1^-1,K.1^-2,K.1^6,K.1^2,K.1^7,K.1^-7,K.1^-5,K.1^8,K.1^-4,K.1^4,K.1^-5,K.1^3,K.1^-4,K.1,K.1^3,K.1^5,K.1^-7,K.1^-8,K.1^5,K.1^-4,K.1,K.1^4,K.1^-1,K.1^2,K.1^-5,K.1^6,K.1^8,K.1^-6,K.1^4,K.1^4,K.1^-4,K.1^-3,K.1^6,K.1^-5,K.1^-1,K.1,K.1^-2,K.1^6,K.1^-2,K.1^-8,K.1^-7,K.1^-8,K.1^-4,K.1^-3,K.1^5,K.1^-1,K.1^2,K.1^8,K.1^-6,K.1^5,K.1^3,K.1,K.1^7,K.1^7,K.1^-6,K.1^3,K.1^-2,K.1^-7,K.1^-8,K.1^-3,K.1^4,K.1^-7,K.1^8,K.1^6,K.1^2,K.1^2,K.1^-1,K.1^7,K.1^8,K.1^-3,K.1^-6,K.1^-5,K.1^7,K.1^-2,K.1^-4,K.1^-6,K.1^-8,K.1^8,K.1^-7,K.1^-5,K.1^-2,K.1^2,K.1^6,K.1^5,K.1,K.1^-1,K.1^-3,K.1^4,K.1^-8,K.1^8,K.1^-2,K.1^-7,K.1^2,K.1^6,K.1^-7,K.1^-8,K.1^5,K.1^-6,K.1^4,K.1^8,K.1^7,K.1^3,K.1^-3,K.1^-3,K.1^4,K.1^5,K.1^-4,K.1^-5,K.1^7,K.1,K.1^-2,K.1^-4,K.1^3,K.1,K.1^2,K.1^-5,K.1^-1,K.1^-6,K.1^6,K.1^7,K.1^3,K.1^-1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^-7,-1*K.1^-7,-1*K.1^8,-1*K.1^8,-1*K.1^-8,-1*K.1^-8,-1*K.1^-6,-1*K.1^-6,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-6,-1*K.1^-5,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^4,-1*K.1^-7,-1*K.1,-1*K.1^4,-1*K.1^-7,-1*K.1^-6,-1*K.1^-5,-1*K.1^-2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^7,-1*K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^-4,-1*K.1^-4,-1*K.1^-2,-1*K.1^-1,-1*K.1^6,-1*K.1^5,-1*K.1,-1*K.1^8,-1*K.1^-3,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^-4,-1*K.1^7,-1*K.1^-1,-1*K.1^-4,-1*K.1^7,-1*K.1^6,-1*K.1^5,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^-2,-1*K.1^6,-1*K.1^-5,-1*K.1,-1*K.1^-8,-1*K.1^-3,-1*K.1^-2,-1*K.1^-8,-1*K.1^-3,-1*K.1^4,-1*K.1^7,-1*K.1,-1*K.1^4,-1*K.1^7,-1*K.1^6,-1*K.1^-5,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-5,-1*K.1^-5,-1*K.1^-7,-1*K.1^-7,-1*K.1^7,-1*K.1^7,-1*K.1^-8,-1*K.1^-8,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-6,-1*K.1^5,-1*K.1^2,-1*K.1^8,-1*K.1^3,-1*K.1^2,-1*K.1^8,-1*K.1^3,-1*K.1^-4,-1*K.1^-7,-1*K.1^-1,-1*K.1^-4,-1*K.1^-7,-1*K.1^-6,K.1^-5,K.1^8,K.1^-4,K.1^-1,K.1^7,K.1^-5,K.1^-2,K.1^-4,K.1^-7,K.1^2,K.1^-1,K.1^-5,K.1^8,K.1^-6,K.1^-6,K.1^7,K.1^2,K.1^-4,K.1^6,K.1^-6,K.1^8,K.1^3,K.1^-5,K.1,K.1^-6,K.1^4,K.1^6,K.1^3,K.1^-2,K.1^-8,K.1^-2,K.1^-8,K.1^4,K.1^-8,K.1^7,K.1^6,K.1,K.1^-3,K.1^-7,K.1^-7,K.1^7,K.1^-1,K.1^5,K.1^2,K.1^2,K.1^-3,K.1^-3,K.1^5,K.1,K.1^3,K.1^-7,K.1^8,K.1^-3,K.1^5,K.1^5,K.1^-2,K.1^6,K.1^-4,K.1,K.1^4,K.1^3,K.1^-1,K.1^4,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^-5,K.1^-6,K.1^-1,K.1^-3,K.1^3,K.1^2,K.1^8,K.1^-4,K.1,K.1^4,K.1^-7,K.1^7,K.1^6,K.1^5,K.1^-2,K.1^-8,K.1^-4,K.1^7,K.1^-2,K.1^6,K.1^7,K.1,K.1^-1,K.1^-8,K.1,K.1^3,K.1^-6,K.1^2,K.1^3,K.1^5,K.1^4,K.1^-4,K.1^5,K.1^-8,K.1^5,K.1^2,K.1^-7,K.1^-3,K.1^-7,K.1^6,K.1^2,K.1^-2,K.1^-6,K.1,K.1^-8,K.1^-4,K.1^8,K.1^4,K.1^8,K.1^-5,K.1^-1,K.1^-5,K.1^-3,K.1^-7,K.1^6,K.1^-3,K.1^4,K.1^8,K.1^-5,K.1^-1,K.1^3,K.1^7,K.1^-6,K.1^-2,K.1^6,K.1,K.1^5,K.1^2,K.1^-7,K.1^-6,K.1^-2,K.1^-4,K.1^-5,K.1^4,K.1^-3,K.1^3,K.1^7,K.1^-1,K.1^-8,K.1^8,K.1^7,K.1^6,K.1^-8,K.1^2,K.1^6,K.1^-7,K.1^3,K.1,K.1^-7,K.1^-8,K.1^2,K.1^8,K.1^-2,K.1^4,K.1^7,K.1^-5,K.1^-1,K.1^5,K.1^8,K.1^8,K.1^-8,K.1^-6,K.1^-5,K.1^7,K.1^-2,K.1^2,K.1^-4,K.1^-5,K.1^-4,K.1,K.1^3,K.1,K.1^-8,K.1^-6,K.1^-7,K.1^-2,K.1^4,K.1^-1,K.1^5,K.1^-7,K.1^6,K.1^2,K.1^-3,K.1^-3,K.1^5,K.1^6,K.1^-4,K.1^3,K.1,K.1^-6,K.1^8,K.1^3,K.1^-1,K.1^-5,K.1^4,K.1^4,K.1^-2,K.1^-3,K.1^-1,K.1^-6,K.1^5,K.1^7,K.1^-3,K.1^-4,K.1^-8,K.1^5,K.1,K.1^-1,K.1^3,K.1^7,K.1^-4,K.1^4,K.1^-5,K.1^-7,K.1^2,K.1^-2,K.1^-6,K.1^8,K.1,K.1^-1,K.1^-4,K.1^3,K.1^4,K.1^-5,K.1^3,K.1,K.1^-7,K.1^5,K.1^8,K.1^-1,K.1^-3,K.1^6,K.1^-6,K.1^-6,K.1^8,K.1^-7,K.1^-8,K.1^7,K.1^-3,K.1^2,K.1^-4,K.1^-8,K.1^6,K.1^2,K.1^4,K.1^7,K.1^-2,K.1^5,K.1^-5,K.1^-3,K.1^6,K.1^-2,-1*K.1^-7,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^4,-1*K.1^4,-1*K.1^-2,-1*K.1^-2,-1*K.1^5,-1*K.1^7,-1*K.1^4,-1*K.1,-1*K.1^6,-1*K.1^4,-1*K.1,-1*K.1^6,-1*K.1^8,-1*K.1^3,-1*K.1^2,-1*K.1^8,-1*K.1^3,-1*K.1^5,-1*K.1^7,-1*K.1^-4,-1*K.1^-6,-1*K.1^-6,-1*K.1^7,-1*K.1^7,-1*K.1^-7,-1*K.1^-7,-1*K.1^-3,-1*K.1^-3,-1*K.1^-5,-1*K.1^-5,-1*K.1^8,-1*K.1^8,-1*K.1^-8,-1*K.1^-8,-1*K.1^-4,-1*K.1^-2,-1*K.1^-5,-1*K.1^-7,-1*K.1^2,-1*K.1^-1,-1*K.1^-6,-1*K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^-8,-1*K.1^-3,-1*K.1^-2,-1*K.1^-8,-1*K.1^-3,-1*K.1^-5,-1*K.1^-7,-1*K.1^-4,-1*K.1^-2,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^-7,-1*K.1^-7,-1*K.1^-1,-1*K.1^-1,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-8,-1*K.1^-8,-1*K.1^-2,-1*K.1^-4,-1*K.1^-5,-1*K.1^7,-1*K.1^2,-1*K.1,-1*K.1^-6,-1*K.1^-4,-1*K.1,-1*K.1^-6,-1*K.1^8,-1*K.1^-3,-1*K.1^2,-1*K.1^8,-1*K.1^-3,-1*K.1^-5,-1*K.1^7,-1*K.1^-4,-1*K.1^2,-1*K.1^2,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^-4,-1*K.1^-2,-1*K.1^5,-1*K.1^-7,-1*K.1^4,-1*K.1^-1,-1*K.1^6,-1*K.1^4,-1*K.1^-1,-1*K.1^6,-1*K.1^-8,-1*K.1^3,-1*K.1^-2,-1*K.1^-8,-1*K.1^3,-1*K.1^5,K.1^7,K.1^-1,K.1^-8,K.1^-2,K.1^-3,K.1^7,K.1^-4,K.1^-8,K.1^3,K.1^4,K.1^-2,K.1^7,K.1^-1,K.1^5,K.1^5,K.1^-3,K.1^4,K.1^-8,K.1^-5,K.1^5,K.1^-1,K.1^6,K.1^7,K.1^2,K.1^5,K.1^8,K.1^-5,K.1^6,K.1^-4,K.1,K.1^-4,K.1,K.1^8,K.1,K.1^-3,K.1^-5,K.1^2,K.1^-6,K.1^3,K.1^3,K.1^-3,K.1^-2,K.1^-7,K.1^4,K.1^4,K.1^-6,K.1^-6,K.1^-7,K.1^2,K.1^6,K.1^3,K.1^-1,K.1^-6,K.1^-7,K.1^-7,K.1^-4,K.1^-5,K.1^-8,K.1^2,K.1^8,K.1^6,K.1^-2,K.1^8,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^5,K.1^6,K.1,K.1^3,K.1^-3,K.1^-2,K.1^-8,K.1^4,K.1^-1,K.1^-4,K.1^7,K.1^-7,K.1^-6,K.1^-5,K.1^2,K.1^8,K.1^4,K.1^-7,K.1^2,K.1^-6,K.1^-7,K.1^-1,K.1,K.1^8,K.1^-1,K.1^-3,K.1^6,K.1^-2,K.1^-3,K.1^-5,K.1^-4,K.1^4,K.1^-5,K.1^8,K.1^-5,K.1^-2,K.1^7,K.1^3,K.1^7,K.1^-6,K.1^-2,K.1^2,K.1^6,K.1^-1,K.1^8,K.1^4,K.1^-8,K.1^-4,K.1^-8,K.1^5,K.1,K.1^5,K.1^3,K.1^7,K.1^-6,K.1^3,K.1^-4,K.1^-8,K.1^5,K.1,K.1^-3,K.1^-7,K.1^6,K.1^2,K.1^-6,K.1^-1,K.1^-5,K.1^-2,K.1^7,K.1^6,K.1^2,K.1^4,K.1^5,K.1^-4,K.1^3,K.1^-3,K.1^-7,K.1,K.1^8,K.1^-8,K.1^-7,K.1^-6,K.1^8,K.1^-2,K.1^-6,K.1^7,K.1^-3,K.1^-1,K.1^7,K.1^8,K.1^-2,K.1^-8,K.1^2,K.1^-4,K.1^-7,K.1^5,K.1,K.1^-5,K.1^-8,K.1^-8,K.1^8,K.1^6,K.1^5,K.1^-7,K.1^2,K.1^-2,K.1^4,K.1^5,K.1^4,K.1^-1,K.1^-3,K.1^-1,K.1^8,K.1^6,K.1^7,K.1^2,K.1^-4,K.1,K.1^-5,K.1^7,K.1^-6,K.1^-2,K.1^3,K.1^3,K.1^-5,K.1^-6,K.1^4,K.1^-3,K.1^-1,K.1^6,K.1^-8,K.1^-3,K.1,K.1^5,K.1^-4,K.1^-4,K.1^2,K.1^3,K.1,K.1^6,K.1^-5,K.1^-7,K.1^3,K.1^4,K.1^8,K.1^-5,K.1^-1,K.1,K.1^-3,K.1^-7,K.1^4,K.1^-4,K.1^5,K.1^7,K.1^-2,K.1^2,K.1^6,K.1^-8,K.1^-1,K.1,K.1^4,K.1^-3,K.1^-4,K.1^5,K.1^-3,K.1^-1,K.1^7,K.1^-5,K.1^-8,K.1,K.1^3,K.1^-6,K.1^6,K.1^6,K.1^-8,K.1^7,K.1^8,K.1^-7,K.1^3,K.1^-2,K.1^4,K.1^8,K.1^-6,K.1^-2,K.1^-4,K.1^-7,K.1^2,K.1^-5,K.1^5,K.1^3,K.1^-6,K.1^2,-1*K.1^7,-1*K.1^-2,-1*K.1^-2,-1*K.1^-6,-1*K.1^-6,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-5,-1*K.1^-5,-1*K.1^-4,-1*K.1^-4,-1*K.1^2,-1*K.1^2,-1*K.1^-5,-1*K.1^-7,-1*K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^-8,-1*K.1^-3,-1*K.1^-2,-1*K.1^-8,-1*K.1^-3,-1*K.1^-5,-1*K.1^-7,-1*K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^-7,-1*K.1^-7,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^-8,-1*K.1^-8,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^2,-1*K.1^5,-1*K.1^7,-1*K.1^-2,-1*K.1,-1*K.1^6,-1*K.1^4,-1*K.1,-1*K.1^6,-1*K.1^8,-1*K.1^3,-1*K.1^2,-1*K.1^8,-1*K.1^3,-1*K.1^5,-1*K.1^7,-1*K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^4,-1*K.1^5,-1*K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^6,-1*K.1^4,-1*K.1^-1,-1*K.1^6,-1*K.1^-8,-1*K.1^3,-1*K.1^-2,-1*K.1^-8,-1*K.1^3,-1*K.1^5,-1*K.1^-7,-1*K.1^4,-1*K.1^-2,-1*K.1^-2,-1*K.1^-7,-1*K.1^-7,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-8,-1*K.1^-8,-1*K.1^-4,-1*K.1^-4,-1*K.1^4,-1*K.1^2,-1*K.1^-5,-1*K.1^7,-1*K.1^-4,-1*K.1,-1*K.1^-6,-1*K.1^-4,-1*K.1,-1*K.1^-6,-1*K.1^8,-1*K.1^-3,-1*K.1^2,-1*K.1^8,-1*K.1^-3,-1*K.1^-5,K.1^-7,K.1,K.1^8,K.1^2,K.1^3,K.1^-7,K.1^4,K.1^8,K.1^-3,K.1^-4,K.1^2,K.1^-7,K.1,K.1^-5,K.1^-5,K.1^3,K.1^-4,K.1^8,K.1^5,K.1^-5,K.1,K.1^-6,K.1^-7,K.1^-2,K.1^-5,K.1^-8,K.1^5,K.1^-6,K.1^4,K.1^-1,K.1^4,K.1^-1,K.1^-8,K.1^-1,K.1^3,K.1^5,K.1^-2,K.1^6,K.1^-3,K.1^-3,K.1^3,K.1^2,K.1^7,K.1^-4,K.1^-4,K.1^6,K.1^6,K.1^7,K.1^-2,K.1^-6,K.1^-3,K.1,K.1^6,K.1^7,K.1^7,K.1^4,K.1^5,K.1^8,K.1^-2,K.1^-8,K.1^-6,K.1^2,K.1^-8,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^-4,K.1^2,K.1^6,K.1,K.1^-1,K.1^5,K.1^3,K.1^7,K.1^-6,K.1^-7,K.1^8,K.1^-8,K.1^-2,K.1^4,K.1^-5,K.1^-3,K.1^7,K.1^-8,K.1^-5,K.1^-2,K.1^-8,K.1^-6,K.1^6,K.1^-3,K.1^-6,K.1^-1,K.1^2,K.1^5,K.1^-1,K.1^4,K.1^-7,K.1^7,K.1^4,K.1^-3,K.1^4,K.1^5,K.1^8,K.1,K.1^8,K.1^-2,K.1^5,K.1^-5,K.1^2,K.1^-6,K.1^-3,K.1^7,K.1^3,K.1^-7,K.1^3,K.1^-4,K.1^6,K.1^-4,K.1,K.1^8,K.1^-2,K.1,K.1^-7,K.1^3,K.1^-4,K.1^6,K.1^-1,K.1^-8,K.1^2,K.1^-5,K.1^-2,K.1^-6,K.1^4,K.1^5,K.1^8,K.1^2,K.1^-5,K.1^7,K.1^-4,K.1^-7,K.1,K.1^-1,K.1^-8,K.1^6,K.1^-3,K.1^3,K.1^-8,K.1^-2,K.1^-3,K.1^5,K.1^-2,K.1^8,K.1^-1,K.1^-6,K.1^8,K.1^-3,K.1^5,K.1^3,K.1^-5,K.1^-7,K.1^-8,K.1^-4,K.1^6,K.1^4,K.1^3,K.1^3,K.1^-3,K.1^2,K.1^-4,K.1^-8,K.1^-5,K.1^5,K.1^7,K.1^-4,K.1^7,K.1^-6,K.1^-1,K.1^-6,K.1^-3,K.1^2,K.1^8,K.1^-5,K.1^-7,K.1^6,K.1^4,K.1^8,K.1^-2,K.1^5,K.1,K.1,K.1^4,K.1^-2,K.1^7,K.1^-1,K.1^-6,K.1^2,K.1^3,K.1^-1,K.1^6,K.1^-4,K.1^-7,K.1^-7,K.1^-5,K.1,K.1^6,K.1^2,K.1^4,K.1^-8,K.1,K.1^7,K.1^-3,K.1^4,K.1^-6,K.1^6,K.1^-1,K.1^-8,K.1^7,K.1^-7,K.1^-4,K.1^8,K.1^5,K.1^-5,K.1^2,K.1^3,K.1^-6,K.1^6,K.1^7,K.1^-1,K.1^-7,K.1^-4,K.1^-1,K.1^-6,K.1^8,K.1^4,K.1^3,K.1^6,K.1,K.1^-2,K.1^2,K.1^2,K.1^3,K.1^8,K.1^-3,K.1^-8,K.1,K.1^5,K.1^7,K.1^-3,K.1^-2,K.1^5,K.1^-7,K.1^-8,K.1^-5,K.1^4,K.1^-4,K.1,K.1^-2,K.1^-5,-1*K.1^8,-1*K.1^5,-1*K.1^5,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^4,-1*K.1^4,-1*K.1^-7,-1*K.1^-7,-1*K.1^-5,-1*K.1^-5,-1*K.1^4,-1*K.1^-8,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^5,-1*K.1^3,-1*K.1^-1,-1*K.1^4,-1*K.1^-8,-1*K.1^7,-1*K.1^2,-1*K.1^2,-1*K.1^-8,-1*K.1^-8,-1*K.1^8,-1*K.1^8,-1*K.1,-1*K.1,-1*K.1^-4,-1*K.1^-4,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^7,-1*K.1^-5,-1*K.1^-4,-1*K.1^8,-1*K.1^5,-1*K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^-5,-1*K.1^-3,-1*K.1,-1*K.1^-4,-1*K.1^8,-1*K.1^7,-1*K.1^-5,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^8,-1*K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^-4,-1*K.1^-4,-1*K.1^4,-1*K.1^4,-1*K.1^-3,-1*K.1^-3,-1*K.1^-5,-1*K.1^7,-1*K.1^-4,-1*K.1^-8,-1*K.1^5,-1*K.1^-6,-1*K.1^2,-1*K.1^7,-1*K.1^-6,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1^-4,-1*K.1^-8,-1*K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1^-8,-1*K.1^-8,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-6,-1*K.1^-6,-1*K.1^3,-1*K.1^3,-1*K.1^-7,-1*K.1^-7,-1*K.1^7,-1*K.1^-5,-1*K.1^4,-1*K.1^8,-1*K.1^-7,-1*K.1^6,-1*K.1^-2,-1*K.1^-7,-1*K.1^6,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-5,-1*K.1^-3,-1*K.1^-1,-1*K.1^4,K.1^-8,K.1^6,K.1^-3,K.1^-5,K.1,K.1^-8,K.1^7,K.1^-3,K.1^-1,K.1^-7,K.1^-5,K.1^-8,K.1^6,K.1^4,K.1^4,K.1,K.1^-7,K.1^-3,K.1^-4,K.1^4,K.1^6,K.1^-2,K.1^-8,K.1^5,K.1^4,K.1^3,K.1^-4,K.1^-2,K.1^7,K.1^-6,K.1^7,K.1^-6,K.1^3,K.1^-6,K.1,K.1^-4,K.1^5,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-5,K.1^8,K.1^-7,K.1^-7,K.1^2,K.1^2,K.1^8,K.1^5,K.1^-2,K.1^-1,K.1^6,K.1^2,K.1^8,K.1^8,K.1^7,K.1^-4,K.1^-3,K.1^5,K.1^3,K.1^-2,K.1^-5,K.1^3,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^4,K.1^-2,K.1^-6,K.1^-1,K.1,K.1^-5,K.1^-3,K.1^-7,K.1^6,K.1^7,K.1^-8,K.1^8,K.1^2,K.1^-4,K.1^5,K.1^3,K.1^-7,K.1^8,K.1^5,K.1^2,K.1^8,K.1^6,K.1^-6,K.1^3,K.1^6,K.1,K.1^-2,K.1^-5,K.1,K.1^-4,K.1^7,K.1^-7,K.1^-4,K.1^3,K.1^-4,K.1^-5,K.1^-8,K.1^-1,K.1^-8,K.1^2,K.1^-5,K.1^5,K.1^-2,K.1^6,K.1^3,K.1^-7,K.1^-3,K.1^7,K.1^-3,K.1^4,K.1^-6,K.1^4,K.1^-1,K.1^-8,K.1^2,K.1^-1,K.1^7,K.1^-3,K.1^4,K.1^-6,K.1,K.1^8,K.1^-2,K.1^5,K.1^2,K.1^6,K.1^-4,K.1^-5,K.1^-8,K.1^-2,K.1^5,K.1^-7,K.1^4,K.1^7,K.1^-1,K.1,K.1^8,K.1^-6,K.1^3,K.1^-3,K.1^8,K.1^2,K.1^3,K.1^-5,K.1^2,K.1^-8,K.1,K.1^6,K.1^-8,K.1^3,K.1^-5,K.1^-3,K.1^5,K.1^7,K.1^8,K.1^4,K.1^-6,K.1^-4,K.1^-3,K.1^-3,K.1^3,K.1^-2,K.1^4,K.1^8,K.1^5,K.1^-5,K.1^-7,K.1^4,K.1^-7,K.1^6,K.1,K.1^6,K.1^3,K.1^-2,K.1^-8,K.1^5,K.1^7,K.1^-6,K.1^-4,K.1^-8,K.1^2,K.1^-5,K.1^-1,K.1^-1,K.1^-4,K.1^2,K.1^-7,K.1,K.1^6,K.1^-2,K.1^-3,K.1,K.1^-6,K.1^4,K.1^7,K.1^7,K.1^5,K.1^-1,K.1^-6,K.1^-2,K.1^-4,K.1^8,K.1^-1,K.1^-7,K.1^3,K.1^-4,K.1^6,K.1^-6,K.1,K.1^8,K.1^-7,K.1^7,K.1^4,K.1^-8,K.1^-5,K.1^5,K.1^-2,K.1^-3,K.1^6,K.1^-6,K.1^-7,K.1,K.1^7,K.1^4,K.1,K.1^6,K.1^-8,K.1^-4,K.1^-3,K.1^-6,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-3,K.1^-8,K.1^3,K.1^8,K.1^-1,K.1^-5,K.1^-7,K.1^3,K.1^2,K.1^-5,K.1^7,K.1^8,K.1^5,K.1^-4,K.1^4,K.1^-1,K.1^2,K.1^5,-1*K.1^-8,-1*K.1^-5,-1*K.1^-5,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^-4,-1*K.1^-4,-1*K.1^7,-1*K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1^-4,-1*K.1^8,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^-5,-1*K.1^-3,-1*K.1,-1*K.1^-4,-1*K.1^8,-1*K.1^-7,-1*K.1^-2,-1*K.1^-2,-1*K.1^8,-1*K.1^8,-1*K.1^-8,-1*K.1^-8,-1*K.1^-1,-1*K.1^-1,-1*K.1^4,-1*K.1^4,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^-7,-1*K.1^5,-1*K.1^4,-1*K.1^-8,-1*K.1^-5,-1*K.1^-6,-1*K.1^-2,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^5,-1*K.1^3,-1*K.1^-1,-1*K.1^4,-1*K.1^-8,-1*K.1^-7,-1*K.1^5,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-8,-1*K.1^-8,-1*K.1^-6,-1*K.1^-6,-1*K.1^4,-1*K.1^4,-1*K.1^-4,-1*K.1^-4,-1*K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^-7,-1*K.1^4,-1*K.1^8,-1*K.1^-5,-1*K.1^6,-1*K.1^-2,-1*K.1^-7,-1*K.1^6,-1*K.1^-2,-1*K.1^-3,-1*K.1^-1,-1*K.1^-5,-1*K.1^-3,-1*K.1^-1,-1*K.1^4,-1*K.1^8,-1*K.1^-7,-1*K.1^-5,-1*K.1^-5,-1*K.1^8,-1*K.1^8,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^6,-1*K.1^6,-1*K.1^-3,-1*K.1^-3,-1*K.1^7,-1*K.1^7,-1*K.1^-7,-1*K.1^5,-1*K.1^-4,-1*K.1^-8,-1*K.1^7,-1*K.1^-6,-1*K.1^2,-1*K.1^7,-1*K.1^-6,-1*K.1^2,-1*K.1^3,-1*K.1,-1*K.1^5,-1*K.1^3,-1*K.1,-1*K.1^-4,K.1^8,K.1^-6,K.1^3,K.1^5,K.1^-1,K.1^8,K.1^-7,K.1^3,K.1,K.1^7,K.1^5,K.1^8,K.1^-6,K.1^-4,K.1^-4,K.1^-1,K.1^7,K.1^3,K.1^4,K.1^-4,K.1^-6,K.1^2,K.1^8,K.1^-5,K.1^-4,K.1^-3,K.1^4,K.1^2,K.1^-7,K.1^6,K.1^-7,K.1^6,K.1^-3,K.1^6,K.1^-1,K.1^4,K.1^-5,K.1^-2,K.1,K.1,K.1^-1,K.1^5,K.1^-8,K.1^7,K.1^7,K.1^-2,K.1^-2,K.1^-8,K.1^-5,K.1^2,K.1,K.1^-6,K.1^-2,K.1^-8,K.1^-8,K.1^-7,K.1^4,K.1^3,K.1^-5,K.1^-3,K.1^2,K.1^5,K.1^-3,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^-3,K.1^-7,K.1^-4,K.1^5,K.1^-5,K.1^8,K.1^-2,K.1,K.1^4,K.1^-1,K.1^6,K.1^-6,K.1^7,K.1^3,K.1^-8,K.1^2,K.1,K.1^-6,K.1^-8,K.1^7,K.1^-6,K.1^4,K.1^-4,K.1^2,K.1^4,K.1^-5,K.1^-7,K.1^8,K.1^-5,K.1^3,K.1^-1,K.1,K.1^3,K.1^2,K.1^3,K.1^8,K.1^6,K.1^5,K.1^6,K.1^7,K.1^8,K.1^-8,K.1^-7,K.1^4,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-3,K.1^-4,K.1^-3,K.1^5,K.1^6,K.1^7,K.1^5,K.1^-1,K.1^-2,K.1^-3,K.1^-4,K.1^-5,K.1^-6,K.1^-7,K.1^-8,K.1^7,K.1^4,K.1^3,K.1^8,K.1^6,K.1^-7,K.1^-8,K.1,K.1^-3,K.1^-1,K.1^5,K.1^-5,K.1^-6,K.1^-4,K.1^2,K.1^-2,K.1^-6,K.1^7,K.1^2,K.1^8,K.1^7,K.1^6,K.1^-5,K.1^4,K.1^6,K.1^2,K.1^8,K.1^-2,K.1^-8,K.1^-1,K.1^-6,K.1^-3,K.1^-4,K.1^3,K.1^-2,K.1^-2,K.1^2,K.1^-7,K.1^-3,K.1^-6,K.1^-8,K.1^8,K.1,K.1^-3,K.1,K.1^4,K.1^-5,K.1^4,K.1^2,K.1^-7,K.1^6,K.1^-8,K.1^-1,K.1^-4,K.1^3,K.1^6,K.1^7,K.1^8,K.1^5,K.1^5,K.1^3,K.1^7,K.1,K.1^-5,K.1^4,K.1^-7,K.1^-2,K.1^-5,K.1^-4,K.1^-3,K.1^-1,K.1^-1,K.1^-8,K.1^5,K.1^-4,K.1^-7,K.1^3,K.1^-6,K.1^5,K.1,K.1^2,K.1^3,K.1^4,K.1^-4,K.1^-5,K.1^-6,K.1,K.1^-1,K.1^-3,K.1^6,K.1^8,K.1^-8,K.1^-7,K.1^-2,K.1^4,K.1^-4,K.1,K.1^-5,K.1^-1,K.1^-3,K.1^-5,K.1^4,K.1^6,K.1^3,K.1^-2,K.1^-4,K.1^5,K.1^7,K.1^-7,K.1^-7,K.1^-2,K.1^6,K.1^2,K.1^-6,K.1^5,K.1^8,K.1,K.1^2,K.1^7,K.1^8,K.1^-1,K.1^-6,K.1^-8,K.1^3,K.1^-3,K.1^5,K.1^7,K.1^-8,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^7,-1*K.1^7,-1*K.1^-5,-1*K.1^-5,-1*K.1^-4,-1*K.1^-4,-1*K.1^4,-1*K.1^4,-1*K.1^3,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-8,-1*K.1^-8,-1*K.1^3,-1*K.1^-6,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^-2,-1*K.1^-5,-1*K.1^8,-1*K.1^-2,-1*K.1^-5,-1*K.1^3,-1*K.1^-6,-1*K.1,-1*K.1^-7,-1*K.1^-7,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^5,-1*K.1^5,-1*K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-8,-1*K.1^-3,-1*K.1^6,-1*K.1^8,-1*K.1^-4,-1*K.1^-7,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^2,-1*K.1^5,-1*K.1^-8,-1*K.1^2,-1*K.1^5,-1*K.1^-3,-1*K.1^6,-1*K.1,-1*K.1^-8,-1*K.1^-7,-1*K.1^-7,-1*K.1^7,-1*K.1^7,-1*K.1^6,-1*K.1^6,-1*K.1^-4,-1*K.1^-4,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-8,-1*K.1,-1*K.1^-3,-1*K.1^-6,-1*K.1^8,-1*K.1^4,-1*K.1^-7,-1*K.1,-1*K.1^4,-1*K.1^-7,-1*K.1^-2,-1*K.1^5,-1*K.1^8,-1*K.1^-2,-1*K.1^5,-1*K.1^-3,-1*K.1^-6,-1*K.1,-1*K.1^8,-1*K.1^8,-1*K.1^-6,-1*K.1^-6,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^4,-1*K.1^4,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-8,-1*K.1^3,-1*K.1^6,-1*K.1^-1,-1*K.1^-4,-1*K.1^7,-1*K.1^-1,-1*K.1^-4,-1*K.1^7,-1*K.1^2,-1*K.1^-5,-1*K.1^-8,-1*K.1^2,-1*K.1^-5,-1*K.1^3,K.1^-6,K.1^-4,K.1^2,K.1^-8,K.1^5,K.1^-6,K.1,K.1^2,K.1^-5,K.1^-1,K.1^-8,K.1^-6,K.1^-4,K.1^3,K.1^3,K.1^5,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^-4,K.1^7,K.1^-6,K.1^8,K.1^3,K.1^-2,K.1^-3,K.1^7,K.1,K.1^4,K.1,K.1^4,K.1^-2,K.1^4,K.1^5,K.1^-3,K.1^8,K.1^-7,K.1^-5,K.1^-5,K.1^5,K.1^-8,K.1^6,K.1^-1,K.1^-1,K.1^-7,K.1^-7,K.1^6,K.1^8,K.1^7,K.1^-5,K.1^-4,K.1^-7,K.1^6,K.1^6,K.1,K.1^-3,K.1^2,K.1^8,K.1^-2,K.1^7,K.1^-8,K.1^-2,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^3,K.1^7,K.1^4,K.1^-5,K.1^5,K.1^-8,K.1^2,K.1^-1,K.1^-4,K.1,K.1^-6,K.1^6,K.1^-7,K.1^-3,K.1^8,K.1^-2,K.1^-1,K.1^6,K.1^8,K.1^-7,K.1^6,K.1^-4,K.1^4,K.1^-2,K.1^-4,K.1^5,K.1^7,K.1^-8,K.1^5,K.1^-3,K.1,K.1^-1,K.1^-3,K.1^-2,K.1^-3,K.1^-8,K.1^-6,K.1^-5,K.1^-6,K.1^-7,K.1^-8,K.1^8,K.1^7,K.1^-4,K.1^-2,K.1^-1,K.1^2,K.1,K.1^2,K.1^3,K.1^4,K.1^3,K.1^-5,K.1^-6,K.1^-7,K.1^-5,K.1,K.1^2,K.1^3,K.1^4,K.1^5,K.1^6,K.1^7,K.1^8,K.1^-7,K.1^-4,K.1^-3,K.1^-8,K.1^-6,K.1^7,K.1^8,K.1^-1,K.1^3,K.1,K.1^-5,K.1^5,K.1^6,K.1^4,K.1^-2,K.1^2,K.1^6,K.1^-7,K.1^-2,K.1^-8,K.1^-7,K.1^-6,K.1^5,K.1^-4,K.1^-6,K.1^-2,K.1^-8,K.1^2,K.1^8,K.1,K.1^6,K.1^3,K.1^4,K.1^-3,K.1^2,K.1^2,K.1^-2,K.1^7,K.1^3,K.1^6,K.1^8,K.1^-8,K.1^-1,K.1^3,K.1^-1,K.1^-4,K.1^5,K.1^-4,K.1^-2,K.1^7,K.1^-6,K.1^8,K.1,K.1^4,K.1^-3,K.1^-6,K.1^-7,K.1^-8,K.1^-5,K.1^-5,K.1^-3,K.1^-7,K.1^-1,K.1^5,K.1^-4,K.1^7,K.1^2,K.1^5,K.1^4,K.1^3,K.1,K.1,K.1^8,K.1^-5,K.1^4,K.1^7,K.1^-3,K.1^6,K.1^-5,K.1^-1,K.1^-2,K.1^-3,K.1^-4,K.1^4,K.1^5,K.1^6,K.1^-1,K.1,K.1^3,K.1^-6,K.1^-8,K.1^8,K.1^7,K.1^2,K.1^-4,K.1^4,K.1^-1,K.1^5,K.1,K.1^3,K.1^5,K.1^-4,K.1^-6,K.1^-3,K.1^2,K.1^4,K.1^-5,K.1^-7,K.1^7,K.1^7,K.1^2,K.1^-6,K.1^-2,K.1^6,K.1^-5,K.1^-8,K.1^-1,K.1^-2,K.1^-7,K.1^-8,K.1,K.1^6,K.1^8,K.1^-3,K.1^3,K.1^-5,K.1^-7,K.1^8,-1*K.1^-6,-1*K.1^-8,-1*K.1^-8,-1*K.1^-7,-1*K.1^-7,-1*K.1^5,-1*K.1^5,-1*K.1^4,-1*K.1^4,-1*K.1^-4,-1*K.1^-4,-1*K.1^-3,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^8,-1*K.1^8,-1*K.1^-3,-1*K.1^6,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^2,-1*K.1^5,-1*K.1^-8,-1*K.1^2,-1*K.1^5,-1*K.1^-3,-1*K.1^6,-1*K.1^-1,-1*K.1^7,-1*K.1^7,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^-5,-1*K.1^-5,-1*K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^8,-1*K.1^3,-1*K.1^-6,-1*K.1^-8,-1*K.1^4,-1*K.1^7,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^-2,-1*K.1^-5,-1*K.1^8,-1*K.1^-2,-1*K.1^-5,-1*K.1^3,-1*K.1^-6,-1*K.1^-1,-1*K.1^8,-1*K.1^7,-1*K.1^7,-1*K.1^-7,-1*K.1^-7,-1*K.1^-6,-1*K.1^-6,-1*K.1^4,-1*K.1^4,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^8,-1*K.1^-1,-1*K.1^3,-1*K.1^6,-1*K.1^-8,-1*K.1^-4,-1*K.1^7,-1*K.1^-1,-1*K.1^-4,-1*K.1^7,-1*K.1^2,-1*K.1^-5,-1*K.1^-8,-1*K.1^2,-1*K.1^-5,-1*K.1^3,-1*K.1^6,-1*K.1^-1,-1*K.1^-8,-1*K.1^-8,-1*K.1^6,-1*K.1^6,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-4,-1*K.1^-4,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^8,-1*K.1^-3,-1*K.1^-6,-1*K.1,-1*K.1^4,-1*K.1^-7,-1*K.1,-1*K.1^4,-1*K.1^-7,-1*K.1^-2,-1*K.1^5,-1*K.1^8,-1*K.1^-2,-1*K.1^5,-1*K.1^-3,K.1^6,K.1^4,K.1^-2,K.1^8,K.1^-5,K.1^6,K.1^-1,K.1^-2,K.1^5,K.1,K.1^8,K.1^6,K.1^4,K.1^-3,K.1^-3,K.1^-5,K.1,K.1^-2,K.1^3,K.1^-3,K.1^4,K.1^-7,K.1^6,K.1^-8,K.1^-3,K.1^2,K.1^3,K.1^-7,K.1^-1,K.1^-4,K.1^-1,K.1^-4,K.1^2,K.1^-4,K.1^-5,K.1^3,K.1^-8,K.1^7,K.1^5,K.1^5,K.1^-5,K.1^8,K.1^-6,K.1,K.1,K.1^7,K.1^7,K.1^-6,K.1^-8,K.1^-7,K.1^5,K.1^4,K.1^7,K.1^-6,K.1^-6,K.1^-1,K.1^3,K.1^-2,K.1^-8,K.1^2,K.1^-7,K.1^8,K.1^2,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^-2,K.1,K.1^3,K.1^-8,K.1^8,K.1^-6,K.1^-7,K.1^-5,K.1^-3,K.1^5,K.1^4,K.1^-4,K.1^-1,K.1^2,K.1^6,K.1^7,K.1^-5,K.1^-4,K.1^6,K.1^-1,K.1^-4,K.1^-3,K.1^3,K.1^7,K.1^-3,K.1^8,K.1,K.1^-6,K.1^8,K.1^2,K.1^5,K.1^-5,K.1^2,K.1^7,K.1^2,K.1^-6,K.1^4,K.1^-8,K.1^4,K.1^-1,K.1^-6,K.1^6,K.1,K.1^-3,K.1^7,K.1^-5,K.1^-7,K.1^5,K.1^-7,K.1^-2,K.1^3,K.1^-2,K.1^-8,K.1^4,K.1^-1,K.1^-8,K.1^5,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^-4,K.1,K.1^6,K.1^-1,K.1^-3,K.1^2,K.1^-6,K.1^4,K.1,K.1^6,K.1^-5,K.1^-2,K.1^5,K.1^-8,K.1^8,K.1^-4,K.1^3,K.1^7,K.1^-7,K.1^-4,K.1^-1,K.1^7,K.1^-6,K.1^-1,K.1^4,K.1^8,K.1^-3,K.1^4,K.1^7,K.1^-6,K.1^-7,K.1^6,K.1^5,K.1^-4,K.1^-2,K.1^3,K.1^2,K.1^-7,K.1^-7,K.1^7,K.1,K.1^-2,K.1^-4,K.1^6,K.1^-6,K.1^-5,K.1^-2,K.1^-5,K.1^-3,K.1^8,K.1^-3,K.1^7,K.1,K.1^4,K.1^6,K.1^5,K.1^3,K.1^2,K.1^4,K.1^-1,K.1^-6,K.1^-8,K.1^-8,K.1^2,K.1^-1,K.1^-5,K.1^8,K.1^-3,K.1,K.1^-7,K.1^8,K.1^3,K.1^-2,K.1^5,K.1^5,K.1^6,K.1^-8,K.1^3,K.1,K.1^2,K.1^-4,K.1^-8,K.1^-5,K.1^7,K.1^2,K.1^-3,K.1^3,K.1^8,K.1^-4,K.1^-5,K.1^5,K.1^-2,K.1^4,K.1^-6,K.1^6,K.1,K.1^-7,K.1^-3,K.1^3,K.1^-5,K.1^8,K.1^5,K.1^-2,K.1^8,K.1^-3,K.1^4,K.1^2,K.1^-7,K.1^3,K.1^-8,K.1^-1,K.1,K.1,K.1^-7,K.1^4,K.1^7,K.1^-4,K.1^-8,K.1^-6,K.1^-5,K.1^7,K.1^-1,K.1^-6,K.1^5,K.1^-4,K.1^6,K.1^2,K.1^-2,K.1^-8,K.1^-1,K.1^6,-1*K.1^4,-1*K.1^-6,-1*K.1^-6,-1*K.1^-1,-1*K.1^-1,-1*K.1^8,-1*K.1^8,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^2,-1*K.1^5,-1*K.1^5,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^-4,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^-7,-1*K.1^8,-1*K.1^-6,-1*K.1^-7,-1*K.1^8,-1*K.1^2,-1*K.1^-4,-1*K.1^-5,-1*K.1,-1*K.1,-1*K.1^-4,-1*K.1^-4,-1*K.1^4,-1*K.1^4,-1*K.1^-8,-1*K.1^-8,-1*K.1^-2,-1*K.1^-2,-1*K.1^-7,-1*K.1^-7,-1*K.1^7,-1*K.1^7,-1*K.1^-5,-1*K.1^6,-1*K.1^-2,-1*K.1^4,-1*K.1^-6,-1*K.1^3,-1*K.1,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^-8,-1*K.1^6,-1*K.1^7,-1*K.1^-8,-1*K.1^-2,-1*K.1^4,-1*K.1^-5,-1*K.1^6,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^4,-1*K.1^4,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^7,-1*K.1^7,-1*K.1^6,-1*K.1^-5,-1*K.1^-2,-1*K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1,-1*K.1^-5,-1*K.1^-3,-1*K.1,-1*K.1^-7,-1*K.1^-8,-1*K.1^-6,-1*K.1^-7,-1*K.1^-8,-1*K.1^-2,-1*K.1^-4,-1*K.1^-5,-1*K.1^-6,-1*K.1^-6,-1*K.1^-4,-1*K.1^-4,-1*K.1^8,-1*K.1^8,-1*K.1^-8,-1*K.1^-8,-1*K.1^-3,-1*K.1^-3,-1*K.1^-7,-1*K.1^-7,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^5,-1*K.1^3,-1*K.1^-1,-1*K.1^5,-1*K.1^3,-1*K.1^-1,-1*K.1^7,-1*K.1^8,-1*K.1^6,-1*K.1^7,-1*K.1^8,-1*K.1^2,K.1^-4,K.1^3,K.1^7,K.1^6,K.1^-8,K.1^-4,K.1^-5,K.1^7,K.1^8,K.1^5,K.1^6,K.1^-4,K.1^3,K.1^2,K.1^2,K.1^-8,K.1^5,K.1^7,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^-4,K.1^-6,K.1^2,K.1^-7,K.1^-2,K.1^-1,K.1^-5,K.1^-3,K.1^-5,K.1^-3,K.1^-7,K.1^-3,K.1^-8,K.1^-2,K.1^-6,K.1,K.1^8,K.1^8,K.1^-8,K.1^6,K.1^4,K.1^5,K.1^5,K.1,K.1,K.1^4,K.1^-6,K.1^-1,K.1^8,K.1^3,K.1,K.1^4,K.1^4,K.1^-5,K.1^-2,K.1^7,K.1^-6,K.1^-7,K.1^-1,K.1^6,K.1^-7,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^2,K.1^-1,K.1^-3,K.1^8,K.1^-8,K.1^6,K.1^7,K.1^5,K.1^3,K.1^-5,K.1^-4,K.1^4,K.1,K.1^-2,K.1^-6,K.1^-7,K.1^5,K.1^4,K.1^-6,K.1,K.1^4,K.1^3,K.1^-3,K.1^-7,K.1^3,K.1^-8,K.1^-1,K.1^6,K.1^-8,K.1^-2,K.1^-5,K.1^5,K.1^-2,K.1^-7,K.1^-2,K.1^6,K.1^-4,K.1^8,K.1^-4,K.1,K.1^6,K.1^-6,K.1^-1,K.1^3,K.1^-7,K.1^5,K.1^7,K.1^-5,K.1^7,K.1^2,K.1^-3,K.1^2,K.1^8,K.1^-4,K.1,K.1^8,K.1^-5,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^4,K.1^-1,K.1^-6,K.1,K.1^3,K.1^-2,K.1^6,K.1^-4,K.1^-1,K.1^-6,K.1^5,K.1^2,K.1^-5,K.1^8,K.1^-8,K.1^4,K.1^-3,K.1^-7,K.1^7,K.1^4,K.1,K.1^-7,K.1^6,K.1,K.1^-4,K.1^-8,K.1^3,K.1^-4,K.1^-7,K.1^6,K.1^7,K.1^-6,K.1^-5,K.1^4,K.1^2,K.1^-3,K.1^-2,K.1^7,K.1^7,K.1^-7,K.1^-1,K.1^2,K.1^4,K.1^-6,K.1^6,K.1^5,K.1^2,K.1^5,K.1^3,K.1^-8,K.1^3,K.1^-7,K.1^-1,K.1^-4,K.1^-6,K.1^-5,K.1^-3,K.1^-2,K.1^-4,K.1,K.1^6,K.1^8,K.1^8,K.1^-2,K.1,K.1^5,K.1^-8,K.1^3,K.1^-1,K.1^7,K.1^-8,K.1^-3,K.1^2,K.1^-5,K.1^-5,K.1^-6,K.1^8,K.1^-3,K.1^-1,K.1^-2,K.1^4,K.1^8,K.1^5,K.1^-7,K.1^-2,K.1^3,K.1^-3,K.1^-8,K.1^4,K.1^5,K.1^-5,K.1^2,K.1^-4,K.1^6,K.1^-6,K.1^-1,K.1^7,K.1^3,K.1^-3,K.1^5,K.1^-8,K.1^-5,K.1^2,K.1^-8,K.1^3,K.1^-4,K.1^-2,K.1^7,K.1^-3,K.1^8,K.1,K.1^-1,K.1^-1,K.1^7,K.1^-4,K.1^-7,K.1^4,K.1^8,K.1^6,K.1^5,K.1^-7,K.1,K.1^6,K.1^-5,K.1^4,K.1^-6,K.1^-2,K.1^2,K.1^8,K.1,K.1^-6,-1*K.1^-4,-1*K.1^6,-1*K.1^6,-1*K.1,-1*K.1,-1*K.1^-8,-1*K.1^-8,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^-2,-1*K.1^-2,-1*K.1^-5,-1*K.1^-5,-1*K.1^-6,-1*K.1^-6,-1*K.1^-2,-1*K.1^4,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^-8,-1*K.1^6,-1*K.1^7,-1*K.1^-8,-1*K.1^-2,-1*K.1^4,-1*K.1^5,-1*K.1^-1,-1*K.1^-1,-1*K.1^4,-1*K.1^4,-1*K.1^-4,-1*K.1^-4,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^7,-1*K.1^7,-1*K.1^-7,-1*K.1^-7,-1*K.1^5,-1*K.1^-6,-1*K.1^2,-1*K.1^-4,-1*K.1^6,-1*K.1^-3,-1*K.1^-1,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^-7,-1*K.1^8,-1*K.1^-6,-1*K.1^-7,-1*K.1^8,-1*K.1^2,-1*K.1^-4,-1*K.1^5,-1*K.1^-6,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-4,-1*K.1^-4,-1*K.1^-3,-1*K.1^-3,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-7,-1*K.1^-7,-1*K.1^-6,-1*K.1^5,-1*K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^-1,-1*K.1^5,-1*K.1^3,-1*K.1^-1,-1*K.1^7,-1*K.1^8,-1*K.1^6,-1*K.1^7,-1*K.1^8,-1*K.1^2,-1*K.1^4,-1*K.1^5,-1*K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^-8,-1*K.1^-8,-1*K.1^8,-1*K.1^8,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^-6,-1*K.1^-2,-1*K.1^-4,-1*K.1^-5,-1*K.1^-3,-1*K.1,-1*K.1^-5,-1*K.1^-3,-1*K.1,-1*K.1^-7,-1*K.1^-8,-1*K.1^-6,-1*K.1^-7,-1*K.1^-8,-1*K.1^-2,K.1^4,K.1^-3,K.1^-7,K.1^-6,K.1^8,K.1^4,K.1^5,K.1^-7,K.1^-8,K.1^-5,K.1^-6,K.1^4,K.1^-3,K.1^-2,K.1^-2,K.1^8,K.1^-5,K.1^-7,K.1^2,K.1^-2,K.1^-3,K.1,K.1^4,K.1^6,K.1^-2,K.1^7,K.1^2,K.1,K.1^5,K.1^3,K.1^5,K.1^3,K.1^7,K.1^3,K.1^8,K.1^2,K.1^6,K.1^-1,K.1^-8,K.1^-8,K.1^8,K.1^-6,K.1^-4,K.1^-5,K.1^-5,K.1^-1,K.1^-1,K.1^-4,K.1^6,K.1,K.1^-8,K.1^-3,K.1^-1,K.1^-4,K.1^-4,K.1^5,K.1^2,K.1^-7,K.1^6,K.1^7,K.1,K.1^-6,K.1^7,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^-1,K.1^-8,K.1^-7,K.1^-4,K.1^4,K.1^-3,K.1^5,K.1^6,K.1^7,K.1^-6,K.1^2,K.1^-2,K.1^8,K.1,K.1^3,K.1^-5,K.1^6,K.1^-2,K.1^3,K.1^8,K.1^-2,K.1^7,K.1^-7,K.1^-5,K.1^7,K.1^4,K.1^-8,K.1^-3,K.1^4,K.1,K.1^-6,K.1^6,K.1,K.1^-5,K.1,K.1^-3,K.1^2,K.1^-4,K.1^2,K.1^8,K.1^-3,K.1^3,K.1^-8,K.1^7,K.1^-5,K.1^6,K.1^5,K.1^-6,K.1^5,K.1^-1,K.1^-7,K.1^-1,K.1^-4,K.1^2,K.1^8,K.1^-4,K.1^-6,K.1^5,K.1^-1,K.1^-7,K.1^4,K.1^-2,K.1^-8,K.1^3,K.1^8,K.1^7,K.1,K.1^-3,K.1^2,K.1^-8,K.1^3,K.1^6,K.1^-1,K.1^-6,K.1^-4,K.1^4,K.1^-2,K.1^-7,K.1^-5,K.1^5,K.1^-2,K.1^8,K.1^-5,K.1^-3,K.1^8,K.1^2,K.1^4,K.1^7,K.1^2,K.1^-5,K.1^-3,K.1^5,K.1^3,K.1^-6,K.1^-2,K.1^-1,K.1^-7,K.1,K.1^5,K.1^5,K.1^-5,K.1^-8,K.1^-1,K.1^-2,K.1^3,K.1^-3,K.1^6,K.1^-1,K.1^6,K.1^7,K.1^4,K.1^7,K.1^-5,K.1^-8,K.1^2,K.1^3,K.1^-6,K.1^-7,K.1,K.1^2,K.1^8,K.1^-3,K.1^-4,K.1^-4,K.1,K.1^8,K.1^6,K.1^4,K.1^7,K.1^-8,K.1^5,K.1^4,K.1^-7,K.1^-1,K.1^-6,K.1^-6,K.1^3,K.1^-4,K.1^-7,K.1^-8,K.1,K.1^-2,K.1^-4,K.1^6,K.1^-5,K.1,K.1^7,K.1^-7,K.1^4,K.1^-2,K.1^6,K.1^-6,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^-8,K.1^5,K.1^7,K.1^-7,K.1^6,K.1^4,K.1^-6,K.1^-1,K.1^4,K.1^7,K.1^2,K.1,K.1^5,K.1^-7,K.1^-4,K.1^8,K.1^-8,K.1^-8,K.1^5,K.1^2,K.1^-5,K.1^-2,K.1^-4,K.1^-3,K.1^6,K.1^-5,K.1^8,K.1^-3,K.1^-6,K.1^-2,K.1^3,K.1,K.1^-1,K.1^-4,K.1^8,K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^-7,-1*K.1^-7,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^-6,-1*K.1^-6,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^-2,-1*K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^5,-1*K.1^4,-1*K.1^-3,-1*K.1^5,-1*K.1^4,-1*K.1,-1*K.1^-2,-1*K.1^6,-1*K.1^-8,-1*K.1^-8,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^-1,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^6,-1*K.1^3,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^-7,-1*K.1^-8,-1*K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1^-5,-1*K.1^-4,-1*K.1^3,-1*K.1^-5,-1*K.1^-4,-1*K.1^-1,-1*K.1^2,-1*K.1^6,-1*K.1^3,-1*K.1^-8,-1*K.1^-8,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^-7,-1*K.1^-7,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-5,-1*K.1^-5,-1*K.1^3,-1*K.1^6,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^7,-1*K.1^-8,-1*K.1^6,-1*K.1^7,-1*K.1^-8,-1*K.1^5,-1*K.1^-4,-1*K.1^-3,-1*K.1^5,-1*K.1^-4,-1*K.1^-1,-1*K.1^-2,-1*K.1^6,-1*K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^4,-1*K.1^4,-1*K.1^-4,-1*K.1^-4,-1*K.1^7,-1*K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-6,-1*K.1^-7,-1*K.1^8,-1*K.1^-6,-1*K.1^-7,-1*K.1^8,-1*K.1^-5,-1*K.1^4,-1*K.1^3,-1*K.1^-5,-1*K.1^4,-1*K.1,K.1^-2,K.1^-7,K.1^-5,K.1^3,K.1^-4,K.1^-2,K.1^6,K.1^-5,K.1^4,K.1^-6,K.1^3,K.1^-2,K.1^-7,K.1,K.1,K.1^-4,K.1^-6,K.1^-5,K.1^-1,K.1,K.1^-7,K.1^8,K.1^-2,K.1^-3,K.1,K.1^5,K.1^-1,K.1^8,K.1^6,K.1^7,K.1^6,K.1^7,K.1^5,K.1^7,K.1^-4,K.1^-1,K.1^-3,K.1^-8,K.1^4,K.1^4,K.1^-4,K.1^3,K.1^2,K.1^-6,K.1^-6,K.1^-8,K.1^-8,K.1^2,K.1^-3,K.1^8,K.1^4,K.1^-7,K.1^-8,K.1^2,K.1^2,K.1^6,K.1^-1,K.1^-5,K.1^-3,K.1^5,K.1^8,K.1^3,K.1^5,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1,K.1^8,K.1^7,K.1^4,K.1^-4,K.1^3,K.1^-5,K.1^-6,K.1^-7,K.1^6,K.1^-2,K.1^2,K.1^-8,K.1^-1,K.1^-3,K.1^5,K.1^-6,K.1^2,K.1^-3,K.1^-8,K.1^2,K.1^-7,K.1^7,K.1^5,K.1^-7,K.1^-4,K.1^8,K.1^3,K.1^-4,K.1^-1,K.1^6,K.1^-6,K.1^-1,K.1^5,K.1^-1,K.1^3,K.1^-2,K.1^4,K.1^-2,K.1^-8,K.1^3,K.1^-3,K.1^8,K.1^-7,K.1^5,K.1^-6,K.1^-5,K.1^6,K.1^-5,K.1,K.1^7,K.1,K.1^4,K.1^-2,K.1^-8,K.1^4,K.1^6,K.1^-5,K.1,K.1^7,K.1^-4,K.1^2,K.1^8,K.1^-3,K.1^-8,K.1^-7,K.1^-1,K.1^3,K.1^-2,K.1^8,K.1^-3,K.1^-6,K.1,K.1^6,K.1^4,K.1^-4,K.1^2,K.1^7,K.1^5,K.1^-5,K.1^2,K.1^-8,K.1^5,K.1^3,K.1^-8,K.1^-2,K.1^-4,K.1^-7,K.1^-2,K.1^5,K.1^3,K.1^-5,K.1^-3,K.1^6,K.1^2,K.1,K.1^7,K.1^-1,K.1^-5,K.1^-5,K.1^5,K.1^8,K.1,K.1^2,K.1^-3,K.1^3,K.1^-6,K.1,K.1^-6,K.1^-7,K.1^-4,K.1^-7,K.1^5,K.1^8,K.1^-2,K.1^-3,K.1^6,K.1^7,K.1^-1,K.1^-2,K.1^-8,K.1^3,K.1^4,K.1^4,K.1^-1,K.1^-8,K.1^-6,K.1^-4,K.1^-7,K.1^8,K.1^-5,K.1^-4,K.1^7,K.1,K.1^6,K.1^6,K.1^-3,K.1^4,K.1^7,K.1^8,K.1^-1,K.1^2,K.1^4,K.1^-6,K.1^5,K.1^-1,K.1^-7,K.1^7,K.1^-4,K.1^2,K.1^-6,K.1^6,K.1,K.1^-2,K.1^3,K.1^-3,K.1^8,K.1^-5,K.1^-7,K.1^7,K.1^-6,K.1^-4,K.1^6,K.1,K.1^-4,K.1^-7,K.1^-2,K.1^-1,K.1^-5,K.1^7,K.1^4,K.1^-8,K.1^8,K.1^8,K.1^-5,K.1^-2,K.1^5,K.1^2,K.1^4,K.1^3,K.1^-6,K.1^5,K.1^-8,K.1^3,K.1^6,K.1^2,K.1^-3,K.1^-1,K.1,K.1^4,K.1^-8,K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1^-8,-1*K.1^-8,-1*K.1^-4,-1*K.1^-4,-1*K.1^7,-1*K.1^7,-1*K.1^-7,-1*K.1^-7,-1*K.1^-1,-1*K.1^-1,-1*K.1^6,-1*K.1^6,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^2,-1*K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1^-5,-1*K.1^-4,-1*K.1^3,-1*K.1^-5,-1*K.1^-4,-1*K.1^-1,-1*K.1^2,-1*K.1^-6,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-6,-1*K.1^-3,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^7,-1*K.1^8,-1*K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^5,-1*K.1^4,-1*K.1^-3,-1*K.1^5,-1*K.1^4,-1*K.1,-1*K.1^-2,-1*K.1^-6,-1*K.1^-3,-1*K.1^8,-1*K.1^8,-1*K.1^-8,-1*K.1^-8,-1*K.1^-2,-1*K.1^-2,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^5,-1*K.1^5,-1*K.1^-3,-1*K.1^-6,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^-7,-1*K.1^8,-1*K.1^-6,-1*K.1^-7,-1*K.1^8,-1*K.1^-5,-1*K.1^4,-1*K.1^3,-1*K.1^-5,-1*K.1^4,-1*K.1,-1*K.1^2,-1*K.1^-6,-1*K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-4,-1*K.1^-4,-1*K.1^4,-1*K.1^4,-1*K.1^-7,-1*K.1^-7,-1*K.1^-5,-1*K.1^-5,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^6,-1*K.1^7,-1*K.1^-8,-1*K.1^6,-1*K.1^7,-1*K.1^-8,-1*K.1^5,-1*K.1^-4,-1*K.1^-3,-1*K.1^5,-1*K.1^-4,-1*K.1^-1,K.1^2,K.1^7,K.1^5,K.1^-3,K.1^4,K.1^2,K.1^-6,K.1^5,K.1^-4,K.1^6,K.1^-3,K.1^2,K.1^7,K.1^-1,K.1^-1,K.1^4,K.1^6,K.1^5,K.1,K.1^-1,K.1^7,K.1^-8,K.1^2,K.1^3,K.1^-1,K.1^-5,K.1,K.1^-8,K.1^-6,K.1^-7,K.1^-6,K.1^-7,K.1^-5,K.1^-7,K.1^4,K.1,K.1^3,K.1^8,K.1^-4,K.1^-4,K.1^4,K.1^-3,K.1^-2,K.1^6,K.1^6,K.1^8,K.1^8,K.1^-2,K.1^3,K.1^-8,K.1^-4,K.1^7,K.1^8,K.1^-2,K.1^-2,K.1^-6,K.1,K.1^5,K.1^3,K.1^-5,K.1^-8,K.1^-3,K.1^-5,K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,-1*K.1^2,K.1^16,-1*K.1^14,K.1^8,-1*K.1^26,-1*K.1^6,K.1^24,-1*K.1^22,K.1^20,K.1^12,-1*K.1^30,K.1^4,-1*K.1^18,K.1^32,K.1^28,-1*K.1^10,-1*K.1^22,-1*K.1^4,-1*K.1^28,K.1^18,-1*K.1^4,-1*K.1^20,K.1^14,K.1^10,-1*K.1^20,K.1^26,-1*K.1^16,K.1^6,K.1^26,-1*K.1^32,-1*K.1^12,K.1^22,-1*K.1^32,-1*K.1^10,K.1^32,-1*K.1^6,K.1^30,-1*K.1^8,K.1^30,K.1^18,K.1^6,-1*K.1^28,-1*K.1^16,K.1^20,K.1^10,K.1^22,-1*K.1^24,-1*K.1^12,-1*K.1^24,K.1^2,K.1^14,K.1^2,K.1^8,-1*K.1^30,-1*K.1^18,-1*K.1^8,K.1^12,K.1^24,-1*K.1^2,-1*K.1^14,-1*K.1^26,K.1^4,K.1^16,K.1^28,-1*K.1^18,K.1^20,K.1^32,-1*K.1^6,-1*K.1^30,K.1^16,K.1^28,-1*K.1^22,-1*K.1^2,K.1^12,K.1^8,-1*K.1^26,K.1^4,-1*K.1^14,-1*K.1^10,K.1^24,K.1^4,-1*K.1^18,K.1^10,K.1^6,K.1^18,K.1^30,K.1^26,K.1^20,-1*K.1^30,-1*K.1^10,-1*K.1^6,K.1^24,K.1^28,K.1^12,K.1^4,-1*K.1^2,K.1^14,-1*K.1^32,-1*K.1^24,-1*K.1^24,-1*K.1^10,-1*K.1^16,K.1^2,-1*K.1^4,-1*K.1^28,-1*K.1^6,K.1^22,-1*K.1^2,-1*K.1^22,K.1^20,K.1^26,-1*K.1^20,K.1^10,K.1^16,-1*K.1^30,-1*K.1^28,K.1^12,K.1^14,-1*K.1^32,K.1^30,K.1^18,K.1^6,-1*K.1^8,K.1^8,K.1^32,-1*K.1^18,-1*K.1^22,-1*K.1^26,-1*K.1^20,K.1^16,K.1^24,-1*K.1^26,-1*K.1^14,K.1^2,-1*K.1^12,-1*K.1^12,K.1^28,K.1^8,-1*K.1^14,-1*K.1^16,K.1^32,-1*K.1^4,-1*K.1^8,K.1^22,K.1^10,K.1^32,K.1^20,-1*K.1^14,-1*K.1^26,-1*K.1^4,K.1^22,-1*K.1^12,K.1^2,K.1^30,K.1^6,-1*K.1^28,-1*K.1^16,-1*K.1^24,-1*K.1^20,K.1^14,K.1^22,K.1^26,-1*K.1^12,K.1^2,K.1^26,-1*K.1^20,K.1^30,-1*K.1^32,-1*K.1^24,K.1^14,-1*K.1^8,K.1^18,-1*K.1^16,K.1^16,K.1^24,-1*K.1^30,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,-1*K.1^22,K.1^10,-1*K.1^18,K.1^6,K.1^12,-1*K.1^4,K.1^28,-1*K.1^32,-1*K.1^2,-1*K.1^8,K.1^18,-1*K.1^28,K.1^13,-1*K.1^23,K.1^23,K.1,-1*K.1,-1*K.1^9,K.1^9,K.1^31,-1*K.1^31,-1*K.1^3,K.1^3,-1*K.1^15,K.1^15,-1*K.1^29,K.1^29,K.1^11,-1*K.1^11,K.1^15,K.1^21,-1*K.1^29,-1*K.1^3,K.1,K.1^29,K.1^3,-1*K.1,K.1^7,-1*K.1^9,-1*K.1^23,-1*K.1^7,K.1^9,-1*K.1^15,-1*K.1^21,-1*K.1^5,-1*K.1^33,K.1^33,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,K.1^25,-1*K.1^25,K.1^19,-1*K.1^19,K.1^7,-1*K.1^7,-1*K.1^27,K.1^27,K.1^5,-1*K.1^11,-1*K.1^19,-1*K.1^13,K.1^23,K.1^31,-1*K.1^33,-1*K.1^5,-1*K.1^31,K.1^33,-1*K.1^27,K.1^25,K.1^11,K.1^27,-1*K.1^25,K.1^19,K.1^13,K.1^5,-1*K.1^11,-1*K.1^33,K.1^33,K.1,-1*K.1,K.1^13,-1*K.1^13,K.1^31,-1*K.1^31,K.1^19,-1*K.1^19,-1*K.1^15,K.1^15,-1*K.1^27,K.1^27,K.1^11,K.1^5,-1*K.1^19,K.1^21,K.1^23,-1*K.1^3,-1*K.1^33,-1*K.1^5,K.1^3,K.1^33,K.1^7,K.1^25,-1*K.1^23,-1*K.1^7,-1*K.1^25,K.1^19,-1*K.1^21,-1*K.1^5,-1*K.1^23,K.1^23,-1*K.1^21,K.1^21,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,-1*K.1^3,K.1^3,K.1^7,-1*K.1^7,-1*K.1^29,K.1^29,K.1^5,-1*K.1^11,K.1^15,-1*K.1^13,-1*K.1^29,K.1^31,K.1,K.1^29,-1*K.1^31,-1*K.1,-1*K.1^27,-1*K.1^9,K.1^11,K.1^27,K.1^9,-1*K.1^15,-1*K.1^4,-1*K.1^14,-1*K.1^10,-1*K.1^28,K.1^8,K.1^4,-1*K.1^22,-1*K.1^10,-1*K.1^26,-1*K.1^12,-1*K.1^28,-1*K.1^4,-1*K.1^14,-1*K.1^32,-1*K.1^32,-1*K.1^8,K.1^12,K.1^10,K.1^2,K.1^32,K.1^14,-1*K.1^18,K.1^4,K.1^6,K.1^32,-1*K.1^24,-1*K.1^2,K.1^18,-1*K.1^22,-1*K.1^20,K.1^22,K.1^20,K.1^24,-1*K.1^20,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^16,K.1^26,K.1^26,K.1^8,K.1^28,K.1^30,K.1^12,-1*K.1^12,K.1^16,-1*K.1^16,-1*K.1^30,-1*K.1^6,K.1^18,-1*K.1^26,K.1^14,K.1^16,-1*K.1^30,K.1^30,K.1^22,-1*K.1^2,K.1^10,K.1^6,K.1^24,-1*K.1^18,K.1^28,-1*K.1^24,K.1^20]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,K.1^32,-1*K.1^18,K.1^20,-1*K.1^26,K.1^8,K.1^28,-1*K.1^10,K.1^12,-1*K.1^14,-1*K.1^22,K.1^4,-1*K.1^30,K.1^16,-1*K.1^2,-1*K.1^6,K.1^24,K.1^12,K.1^30,K.1^6,-1*K.1^16,K.1^30,K.1^14,-1*K.1^20,-1*K.1^24,K.1^14,-1*K.1^8,K.1^18,-1*K.1^28,-1*K.1^8,K.1^2,K.1^22,-1*K.1^12,K.1^2,K.1^24,-1*K.1^2,K.1^28,-1*K.1^4,K.1^26,-1*K.1^4,-1*K.1^16,-1*K.1^28,K.1^6,K.1^18,-1*K.1^14,-1*K.1^24,-1*K.1^12,K.1^10,K.1^22,K.1^10,-1*K.1^32,-1*K.1^20,-1*K.1^32,-1*K.1^26,K.1^4,K.1^16,K.1^26,-1*K.1^22,-1*K.1^10,K.1^32,K.1^20,K.1^8,-1*K.1^30,-1*K.1^18,-1*K.1^6,K.1^16,-1*K.1^14,-1*K.1^2,K.1^28,K.1^4,-1*K.1^18,-1*K.1^6,K.1^12,K.1^32,-1*K.1^22,-1*K.1^26,K.1^8,-1*K.1^30,K.1^20,K.1^24,-1*K.1^10,-1*K.1^30,K.1^16,-1*K.1^24,-1*K.1^28,-1*K.1^16,-1*K.1^4,-1*K.1^8,-1*K.1^14,K.1^4,K.1^24,K.1^28,-1*K.1^10,-1*K.1^6,-1*K.1^22,-1*K.1^30,K.1^32,-1*K.1^20,K.1^2,K.1^10,K.1^10,K.1^24,K.1^18,-1*K.1^32,K.1^30,K.1^6,K.1^28,-1*K.1^12,K.1^32,K.1^12,-1*K.1^14,-1*K.1^8,K.1^14,-1*K.1^24,-1*K.1^18,K.1^4,K.1^6,-1*K.1^22,-1*K.1^20,K.1^2,-1*K.1^4,-1*K.1^16,-1*K.1^28,K.1^26,-1*K.1^26,-1*K.1^2,K.1^16,K.1^12,K.1^8,K.1^14,-1*K.1^18,-1*K.1^10,K.1^8,K.1^20,-1*K.1^32,K.1^22,K.1^22,-1*K.1^6,-1*K.1^26,K.1^20,K.1^18,-1*K.1^2,K.1^30,K.1^26,-1*K.1^12,-1*K.1^24,-1*K.1^2,-1*K.1^14,K.1^20,K.1^8,K.1^30,-1*K.1^12,K.1^22,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^6,K.1^18,K.1^10,K.1^14,-1*K.1^20,-1*K.1^12,-1*K.1^8,K.1^22,-1*K.1^32,-1*K.1^8,K.1^14,-1*K.1^4,K.1^2,K.1^10,-1*K.1^20,K.1^26,-1*K.1^16,K.1^18,-1*K.1^18,-1*K.1^10,K.1^4,K.1^24,-1*K.1^30,-1*K.1^26,K.1^28,K.1^12,-1*K.1^24,K.1^16,-1*K.1^28,-1*K.1^22,K.1^30,-1*K.1^6,K.1^2,K.1^32,K.1^26,-1*K.1^16,K.1^6,-1*K.1^21,K.1^11,-1*K.1^11,-1*K.1^33,K.1^33,K.1^25,-1*K.1^25,-1*K.1^3,K.1^3,K.1^31,-1*K.1^31,K.1^19,-1*K.1^19,K.1^5,-1*K.1^5,-1*K.1^23,K.1^23,-1*K.1^19,-1*K.1^13,K.1^5,K.1^31,-1*K.1^33,-1*K.1^5,-1*K.1^31,K.1^33,-1*K.1^27,K.1^25,K.1^11,K.1^27,-1*K.1^25,K.1^19,K.1^13,K.1^29,K.1,-1*K.1,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,-1*K.1^9,K.1^9,-1*K.1^15,K.1^15,-1*K.1^27,K.1^27,K.1^7,-1*K.1^7,-1*K.1^29,K.1^23,K.1^15,K.1^21,-1*K.1^11,-1*K.1^3,K.1,K.1^29,K.1^3,-1*K.1,K.1^7,-1*K.1^9,-1*K.1^23,-1*K.1^7,K.1^9,-1*K.1^15,-1*K.1^21,-1*K.1^29,K.1^23,K.1,-1*K.1,-1*K.1^33,K.1^33,-1*K.1^21,K.1^21,-1*K.1^3,K.1^3,-1*K.1^15,K.1^15,K.1^19,-1*K.1^19,K.1^7,-1*K.1^7,-1*K.1^23,-1*K.1^29,K.1^15,-1*K.1^13,-1*K.1^11,K.1^31,K.1,K.1^29,-1*K.1^31,-1*K.1,-1*K.1^27,-1*K.1^9,K.1^11,K.1^27,K.1^9,-1*K.1^15,K.1^13,K.1^29,K.1^11,-1*K.1^11,K.1^13,-1*K.1^13,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,K.1^31,-1*K.1^31,-1*K.1^27,K.1^27,K.1^5,-1*K.1^5,-1*K.1^29,K.1^23,-1*K.1^19,K.1^21,K.1^5,-1*K.1^3,-1*K.1^33,-1*K.1^5,K.1^3,K.1^33,K.1^7,K.1^25,-1*K.1^23,-1*K.1^7,-1*K.1^25,K.1^19,K.1^30,K.1^20,K.1^24,K.1^6,-1*K.1^26,-1*K.1^30,K.1^12,K.1^24,K.1^8,K.1^22,K.1^6,K.1^30,K.1^20,K.1^2,K.1^2,K.1^26,-1*K.1^22,-1*K.1^24,-1*K.1^32,-1*K.1^2,-1*K.1^20,K.1^16,-1*K.1^30,-1*K.1^28,-1*K.1^2,K.1^10,K.1^32,-1*K.1^16,K.1^12,K.1^14,-1*K.1^12,-1*K.1^14,-1*K.1^10,K.1^14,K.1^26,-1*K.1^32,K.1^28,K.1^18,-1*K.1^8,-1*K.1^8,-1*K.1^26,-1*K.1^6,-1*K.1^4,-1*K.1^22,K.1^22,-1*K.1^18,K.1^18,K.1^4,K.1^28,-1*K.1^16,K.1^8,-1*K.1^20,-1*K.1^18,K.1^4,-1*K.1^4,-1*K.1^12,K.1^32,-1*K.1^24,-1*K.1^28,-1*K.1^10,K.1^16,-1*K.1^6,K.1^10,-1*K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,K.1^32,-1*K.1^18,K.1^20,-1*K.1^26,K.1^8,K.1^28,-1*K.1^10,K.1^12,-1*K.1^14,-1*K.1^22,K.1^4,-1*K.1^30,K.1^16,-1*K.1^2,-1*K.1^6,K.1^24,K.1^12,K.1^30,K.1^6,-1*K.1^16,K.1^30,K.1^14,-1*K.1^20,-1*K.1^24,K.1^14,-1*K.1^8,K.1^18,-1*K.1^28,-1*K.1^8,K.1^2,K.1^22,-1*K.1^12,K.1^2,K.1^24,-1*K.1^2,K.1^28,-1*K.1^4,K.1^26,-1*K.1^4,-1*K.1^16,-1*K.1^28,K.1^6,K.1^18,-1*K.1^14,-1*K.1^24,-1*K.1^12,K.1^10,K.1^22,K.1^10,-1*K.1^32,-1*K.1^20,-1*K.1^32,-1*K.1^26,K.1^4,K.1^16,K.1^26,-1*K.1^22,-1*K.1^10,K.1^32,K.1^20,K.1^8,-1*K.1^30,-1*K.1^18,-1*K.1^6,K.1^16,-1*K.1^14,-1*K.1^2,K.1^28,K.1^4,-1*K.1^18,-1*K.1^6,K.1^12,K.1^32,-1*K.1^22,-1*K.1^26,K.1^8,-1*K.1^30,K.1^20,K.1^24,-1*K.1^10,-1*K.1^30,K.1^16,-1*K.1^24,-1*K.1^28,-1*K.1^16,-1*K.1^4,-1*K.1^8,-1*K.1^14,K.1^4,K.1^24,K.1^28,-1*K.1^10,-1*K.1^6,-1*K.1^22,-1*K.1^30,K.1^32,-1*K.1^20,K.1^2,K.1^10,K.1^10,K.1^24,K.1^18,-1*K.1^32,K.1^30,K.1^6,K.1^28,-1*K.1^12,K.1^32,K.1^12,-1*K.1^14,-1*K.1^8,K.1^14,-1*K.1^24,-1*K.1^18,K.1^4,K.1^6,-1*K.1^22,-1*K.1^20,K.1^2,-1*K.1^4,-1*K.1^16,-1*K.1^28,K.1^26,-1*K.1^26,-1*K.1^2,K.1^16,K.1^12,K.1^8,K.1^14,-1*K.1^18,-1*K.1^10,K.1^8,K.1^20,-1*K.1^32,K.1^22,K.1^22,-1*K.1^6,-1*K.1^26,K.1^20,K.1^18,-1*K.1^2,K.1^30,K.1^26,-1*K.1^12,-1*K.1^24,-1*K.1^2,-1*K.1^14,K.1^20,K.1^8,K.1^30,-1*K.1^12,K.1^22,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^6,K.1^18,K.1^10,K.1^14,-1*K.1^20,-1*K.1^12,-1*K.1^8,K.1^22,-1*K.1^32,-1*K.1^8,K.1^14,-1*K.1^4,K.1^2,K.1^10,-1*K.1^20,K.1^26,-1*K.1^16,K.1^18,-1*K.1^18,-1*K.1^10,K.1^4,K.1^24,-1*K.1^30,-1*K.1^26,K.1^28,K.1^12,-1*K.1^24,K.1^16,-1*K.1^28,-1*K.1^22,K.1^30,-1*K.1^6,K.1^2,K.1^32,K.1^26,-1*K.1^16,K.1^6,K.1^21,-1*K.1^11,K.1^11,K.1^33,-1*K.1^33,-1*K.1^25,K.1^25,K.1^3,-1*K.1^3,-1*K.1^31,K.1^31,-1*K.1^19,K.1^19,-1*K.1^5,K.1^5,K.1^23,-1*K.1^23,K.1^19,K.1^13,-1*K.1^5,-1*K.1^31,K.1^33,K.1^5,K.1^31,-1*K.1^33,K.1^27,-1*K.1^25,-1*K.1^11,-1*K.1^27,K.1^25,-1*K.1^19,-1*K.1^13,-1*K.1^29,-1*K.1,K.1,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,K.1^9,-1*K.1^9,K.1^15,-1*K.1^15,K.1^27,-1*K.1^27,-1*K.1^7,K.1^7,K.1^29,-1*K.1^23,-1*K.1^15,-1*K.1^21,K.1^11,K.1^3,-1*K.1,-1*K.1^29,-1*K.1^3,K.1,-1*K.1^7,K.1^9,K.1^23,K.1^7,-1*K.1^9,K.1^15,K.1^21,K.1^29,-1*K.1^23,-1*K.1,K.1,K.1^33,-1*K.1^33,K.1^21,-1*K.1^21,K.1^3,-1*K.1^3,K.1^15,-1*K.1^15,-1*K.1^19,K.1^19,-1*K.1^7,K.1^7,K.1^23,K.1^29,-1*K.1^15,K.1^13,K.1^11,-1*K.1^31,-1*K.1,-1*K.1^29,K.1^31,K.1,K.1^27,K.1^9,-1*K.1^11,-1*K.1^27,-1*K.1^9,K.1^15,-1*K.1^13,-1*K.1^29,-1*K.1^11,K.1^11,-1*K.1^13,K.1^13,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,-1*K.1^31,K.1^31,K.1^27,-1*K.1^27,-1*K.1^5,K.1^5,K.1^29,-1*K.1^23,K.1^19,-1*K.1^21,-1*K.1^5,K.1^3,K.1^33,K.1^5,-1*K.1^3,-1*K.1^33,-1*K.1^7,-1*K.1^25,K.1^23,K.1^7,K.1^25,-1*K.1^19,K.1^30,K.1^20,K.1^24,K.1^6,-1*K.1^26,-1*K.1^30,K.1^12,K.1^24,K.1^8,K.1^22,K.1^6,K.1^30,K.1^20,K.1^2,K.1^2,K.1^26,-1*K.1^22,-1*K.1^24,-1*K.1^32,-1*K.1^2,-1*K.1^20,K.1^16,-1*K.1^30,-1*K.1^28,-1*K.1^2,K.1^10,K.1^32,-1*K.1^16,K.1^12,K.1^14,-1*K.1^12,-1*K.1^14,-1*K.1^10,K.1^14,K.1^26,-1*K.1^32,K.1^28,K.1^18,-1*K.1^8,-1*K.1^8,-1*K.1^26,-1*K.1^6,-1*K.1^4,-1*K.1^22,K.1^22,-1*K.1^18,K.1^18,K.1^4,K.1^28,-1*K.1^16,K.1^8,-1*K.1^20,-1*K.1^18,K.1^4,-1*K.1^4,-1*K.1^12,K.1^32,-1*K.1^24,-1*K.1^28,-1*K.1^10,K.1^16,-1*K.1^6,K.1^10,-1*K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,-1*K.1^2,K.1^16,-1*K.1^14,K.1^8,-1*K.1^26,-1*K.1^6,K.1^24,-1*K.1^22,K.1^20,K.1^12,-1*K.1^30,K.1^4,-1*K.1^18,K.1^32,K.1^28,-1*K.1^10,-1*K.1^22,-1*K.1^4,-1*K.1^28,K.1^18,-1*K.1^4,-1*K.1^20,K.1^14,K.1^10,-1*K.1^20,K.1^26,-1*K.1^16,K.1^6,K.1^26,-1*K.1^32,-1*K.1^12,K.1^22,-1*K.1^32,-1*K.1^10,K.1^32,-1*K.1^6,K.1^30,-1*K.1^8,K.1^30,K.1^18,K.1^6,-1*K.1^28,-1*K.1^16,K.1^20,K.1^10,K.1^22,-1*K.1^24,-1*K.1^12,-1*K.1^24,K.1^2,K.1^14,K.1^2,K.1^8,-1*K.1^30,-1*K.1^18,-1*K.1^8,K.1^12,K.1^24,-1*K.1^2,-1*K.1^14,-1*K.1^26,K.1^4,K.1^16,K.1^28,-1*K.1^18,K.1^20,K.1^32,-1*K.1^6,-1*K.1^30,K.1^16,K.1^28,-1*K.1^22,-1*K.1^2,K.1^12,K.1^8,-1*K.1^26,K.1^4,-1*K.1^14,-1*K.1^10,K.1^24,K.1^4,-1*K.1^18,K.1^10,K.1^6,K.1^18,K.1^30,K.1^26,K.1^20,-1*K.1^30,-1*K.1^10,-1*K.1^6,K.1^24,K.1^28,K.1^12,K.1^4,-1*K.1^2,K.1^14,-1*K.1^32,-1*K.1^24,-1*K.1^24,-1*K.1^10,-1*K.1^16,K.1^2,-1*K.1^4,-1*K.1^28,-1*K.1^6,K.1^22,-1*K.1^2,-1*K.1^22,K.1^20,K.1^26,-1*K.1^20,K.1^10,K.1^16,-1*K.1^30,-1*K.1^28,K.1^12,K.1^14,-1*K.1^32,K.1^30,K.1^18,K.1^6,-1*K.1^8,K.1^8,K.1^32,-1*K.1^18,-1*K.1^22,-1*K.1^26,-1*K.1^20,K.1^16,K.1^24,-1*K.1^26,-1*K.1^14,K.1^2,-1*K.1^12,-1*K.1^12,K.1^28,K.1^8,-1*K.1^14,-1*K.1^16,K.1^32,-1*K.1^4,-1*K.1^8,K.1^22,K.1^10,K.1^32,K.1^20,-1*K.1^14,-1*K.1^26,-1*K.1^4,K.1^22,-1*K.1^12,K.1^2,K.1^30,K.1^6,-1*K.1^28,-1*K.1^16,-1*K.1^24,-1*K.1^20,K.1^14,K.1^22,K.1^26,-1*K.1^12,K.1^2,K.1^26,-1*K.1^20,K.1^30,-1*K.1^32,-1*K.1^24,K.1^14,-1*K.1^8,K.1^18,-1*K.1^16,K.1^16,K.1^24,-1*K.1^30,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,-1*K.1^22,K.1^10,-1*K.1^18,K.1^6,K.1^12,-1*K.1^4,K.1^28,-1*K.1^32,-1*K.1^2,-1*K.1^8,K.1^18,-1*K.1^28,-1*K.1^13,K.1^23,-1*K.1^23,-1*K.1,K.1,K.1^9,-1*K.1^9,-1*K.1^31,K.1^31,K.1^3,-1*K.1^3,K.1^15,-1*K.1^15,K.1^29,-1*K.1^29,-1*K.1^11,K.1^11,-1*K.1^15,-1*K.1^21,K.1^29,K.1^3,-1*K.1,-1*K.1^29,-1*K.1^3,K.1,-1*K.1^7,K.1^9,K.1^23,K.1^7,-1*K.1^9,K.1^15,K.1^21,K.1^5,K.1^33,-1*K.1^33,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,-1*K.1^25,K.1^25,-1*K.1^19,K.1^19,-1*K.1^7,K.1^7,K.1^27,-1*K.1^27,-1*K.1^5,K.1^11,K.1^19,K.1^13,-1*K.1^23,-1*K.1^31,K.1^33,K.1^5,K.1^31,-1*K.1^33,K.1^27,-1*K.1^25,-1*K.1^11,-1*K.1^27,K.1^25,-1*K.1^19,-1*K.1^13,-1*K.1^5,K.1^11,K.1^33,-1*K.1^33,-1*K.1,K.1,-1*K.1^13,K.1^13,-1*K.1^31,K.1^31,-1*K.1^19,K.1^19,K.1^15,-1*K.1^15,K.1^27,-1*K.1^27,-1*K.1^11,-1*K.1^5,K.1^19,-1*K.1^21,-1*K.1^23,K.1^3,K.1^33,K.1^5,-1*K.1^3,-1*K.1^33,-1*K.1^7,-1*K.1^25,K.1^23,K.1^7,K.1^25,-1*K.1^19,K.1^21,K.1^5,K.1^23,-1*K.1^23,K.1^21,-1*K.1^21,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,K.1^3,-1*K.1^3,-1*K.1^7,K.1^7,K.1^29,-1*K.1^29,-1*K.1^5,K.1^11,-1*K.1^15,K.1^13,K.1^29,-1*K.1^31,-1*K.1,-1*K.1^29,K.1^31,K.1,K.1^27,K.1^9,-1*K.1^11,-1*K.1^27,-1*K.1^9,K.1^15,-1*K.1^4,-1*K.1^14,-1*K.1^10,-1*K.1^28,K.1^8,K.1^4,-1*K.1^22,-1*K.1^10,-1*K.1^26,-1*K.1^12,-1*K.1^28,-1*K.1^4,-1*K.1^14,-1*K.1^32,-1*K.1^32,-1*K.1^8,K.1^12,K.1^10,K.1^2,K.1^32,K.1^14,-1*K.1^18,K.1^4,K.1^6,K.1^32,-1*K.1^24,-1*K.1^2,K.1^18,-1*K.1^22,-1*K.1^20,K.1^22,K.1^20,K.1^24,-1*K.1^20,-1*K.1^8,K.1^2,-1*K.1^6,-1*K.1^16,K.1^26,K.1^26,K.1^8,K.1^28,K.1^30,K.1^12,-1*K.1^12,K.1^16,-1*K.1^16,-1*K.1^30,-1*K.1^6,K.1^18,-1*K.1^26,K.1^14,K.1^16,-1*K.1^30,K.1^30,K.1^22,-1*K.1^2,K.1^10,K.1^6,K.1^24,-1*K.1^18,K.1^28,-1*K.1^24,K.1^20]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,-1*K.1^6,-1*K.1^14,K.1^8,K.1^24,-1*K.1^10,-1*K.1^18,K.1^4,K.1^32,-1*K.1^26,-1*K.1^2,-1*K.1^22,K.1^12,K.1^20,K.1^28,K.1^16,-1*K.1^30,K.1^32,-1*K.1^12,-1*K.1^16,-1*K.1^20,-1*K.1^12,K.1^26,-1*K.1^8,K.1^30,K.1^26,K.1^10,K.1^14,K.1^18,K.1^10,-1*K.1^28,K.1^2,-1*K.1^32,-1*K.1^28,-1*K.1^30,K.1^28,-1*K.1^18,K.1^22,-1*K.1^24,K.1^22,-1*K.1^20,K.1^18,-1*K.1^16,K.1^14,-1*K.1^26,K.1^30,-1*K.1^32,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^24,-1*K.1^22,K.1^20,-1*K.1^24,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^10,K.1^12,-1*K.1^14,K.1^16,K.1^20,-1*K.1^26,K.1^28,-1*K.1^18,-1*K.1^22,-1*K.1^14,K.1^16,K.1^32,-1*K.1^6,-1*K.1^2,K.1^24,-1*K.1^10,K.1^12,K.1^8,-1*K.1^30,K.1^4,K.1^12,K.1^20,K.1^30,K.1^18,-1*K.1^20,K.1^22,K.1^10,-1*K.1^26,-1*K.1^22,-1*K.1^30,-1*K.1^18,K.1^4,K.1^16,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^28,-1*K.1^4,-1*K.1^4,-1*K.1^30,K.1^14,K.1^6,-1*K.1^12,-1*K.1^16,-1*K.1^18,-1*K.1^32,-1*K.1^6,K.1^32,-1*K.1^26,K.1^10,K.1^26,K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^16,-1*K.1^2,-1*K.1^8,-1*K.1^28,K.1^22,-1*K.1^20,K.1^18,-1*K.1^24,K.1^24,K.1^28,K.1^20,K.1^32,-1*K.1^10,K.1^26,-1*K.1^14,K.1^4,-1*K.1^10,K.1^8,K.1^6,K.1^2,K.1^2,K.1^16,K.1^24,K.1^8,K.1^14,K.1^28,-1*K.1^12,-1*K.1^24,-1*K.1^32,K.1^30,K.1^28,-1*K.1^26,K.1^8,-1*K.1^10,-1*K.1^12,-1*K.1^32,K.1^2,K.1^6,K.1^22,K.1^18,-1*K.1^16,K.1^14,-1*K.1^4,K.1^26,-1*K.1^8,-1*K.1^32,K.1^10,K.1^2,K.1^6,K.1^10,K.1^26,K.1^22,-1*K.1^28,-1*K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^20,K.1^14,-1*K.1^14,K.1^4,-1*K.1^22,-1*K.1^30,K.1^12,K.1^24,-1*K.1^18,K.1^32,K.1^30,K.1^20,K.1^18,-1*K.1^2,-1*K.1^12,K.1^16,-1*K.1^28,-1*K.1^6,-1*K.1^24,-1*K.1^20,-1*K.1^16,K.1^5,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^27,-1*K.1^27,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,-1*K.1^11,K.1^11,K.1^19,-1*K.1^19,-1*K.1^33,K.1^33,K.1^11,K.1^29,K.1^19,K.1^9,-1*K.1^3,-1*K.1^19,-1*K.1^9,K.1^3,-1*K.1^21,K.1^27,K.1,K.1^21,-1*K.1^27,-1*K.1^11,-1*K.1^29,K.1^15,K.1^31,-1*K.1^31,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,-1*K.1^7,K.1^7,K.1^23,-1*K.1^23,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,-1*K.1^15,K.1^33,-1*K.1^23,-1*K.1^5,-1*K.1,-1*K.1^25,K.1^31,K.1^15,K.1^25,-1*K.1^31,K.1^13,-1*K.1^7,-1*K.1^33,-1*K.1^13,K.1^7,K.1^23,K.1^5,-1*K.1^15,K.1^33,K.1^31,-1*K.1^31,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,-1*K.1^25,K.1^25,K.1^23,-1*K.1^23,-1*K.1^11,K.1^11,K.1^13,-1*K.1^13,-1*K.1^33,-1*K.1^15,-1*K.1^23,K.1^29,-1*K.1,K.1^9,K.1^31,K.1^15,-1*K.1^9,-1*K.1^31,-1*K.1^21,-1*K.1^7,K.1,K.1^21,K.1^7,K.1^23,-1*K.1^29,K.1^15,K.1,-1*K.1,-1*K.1^29,K.1^29,K.1^27,-1*K.1^27,-1*K.1^7,K.1^7,K.1^9,-1*K.1^9,-1*K.1^21,K.1^21,K.1^19,-1*K.1^19,-1*K.1^15,K.1^33,K.1^11,-1*K.1^5,K.1^19,-1*K.1^25,-1*K.1^3,-1*K.1^19,K.1^25,K.1^3,K.1^13,K.1^27,-1*K.1^33,-1*K.1^13,-1*K.1^27,-1*K.1^11,-1*K.1^12,K.1^8,-1*K.1^30,-1*K.1^16,K.1^24,K.1^12,K.1^32,-1*K.1^30,-1*K.1^10,K.1^2,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^28,-1*K.1^28,-1*K.1^24,-1*K.1^2,K.1^30,K.1^6,K.1^28,-1*K.1^8,K.1^20,K.1^12,K.1^18,K.1^28,-1*K.1^4,-1*K.1^6,-1*K.1^20,K.1^32,K.1^26,-1*K.1^32,-1*K.1^26,K.1^4,K.1^26,-1*K.1^24,K.1^6,-1*K.1^18,K.1^14,K.1^10,K.1^10,K.1^24,K.1^16,K.1^22,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,-1*K.1^22,-1*K.1^18,-1*K.1^20,-1*K.1^10,-1*K.1^8,-1*K.1^14,-1*K.1^22,K.1^22,-1*K.1^32,-1*K.1^6,K.1^30,K.1^18,K.1^4,K.1^20,K.1^16,-1*K.1^4,-1*K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,K.1^28,K.1^20,-1*K.1^26,-1*K.1^10,K.1^24,K.1^16,-1*K.1^30,-1*K.1^2,K.1^8,K.1^32,K.1^12,-1*K.1^22,-1*K.1^14,-1*K.1^6,-1*K.1^18,K.1^4,-1*K.1^2,K.1^22,K.1^18,K.1^14,K.1^22,-1*K.1^8,K.1^26,-1*K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^20,-1*K.1^16,-1*K.1^24,K.1^6,-1*K.1^32,K.1^2,K.1^6,K.1^4,-1*K.1^6,K.1^16,-1*K.1^12,K.1^10,-1*K.1^12,K.1^14,-1*K.1^16,K.1^18,-1*K.1^20,K.1^8,-1*K.1^4,K.1^2,K.1^30,-1*K.1^32,K.1^30,-1*K.1^28,K.1^26,-1*K.1^28,-1*K.1^10,K.1^12,-1*K.1^14,K.1^10,K.1^32,-1*K.1^30,K.1^28,-1*K.1^26,K.1^24,-1*K.1^22,K.1^20,-1*K.1^18,-1*K.1^14,K.1^8,-1*K.1^6,K.1^16,K.1^12,K.1^20,-1*K.1^18,-1*K.1^2,K.1^28,K.1^32,-1*K.1^10,K.1^24,-1*K.1^22,-1*K.1^26,K.1^4,-1*K.1^30,-1*K.1^22,-1*K.1^14,-1*K.1^4,-1*K.1^16,K.1^14,-1*K.1^12,-1*K.1^24,K.1^8,K.1^12,K.1^4,K.1^16,-1*K.1^30,-1*K.1^18,K.1^32,-1*K.1^22,K.1^28,K.1^26,K.1^6,K.1^30,K.1^30,K.1^4,-1*K.1^20,-1*K.1^28,K.1^22,K.1^18,K.1^16,K.1^2,K.1^28,-1*K.1^2,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^4,K.1^20,K.1^12,K.1^18,K.1^32,K.1^26,K.1^6,-1*K.1^12,K.1^14,-1*K.1^16,K.1^10,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^24,-1*K.1^8,K.1^20,-1*K.1^30,K.1^24,-1*K.1^26,-1*K.1^28,-1*K.1^32,-1*K.1^32,-1*K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^20,-1*K.1^6,K.1^22,K.1^10,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^26,K.1^24,K.1^22,K.1^2,-1*K.1^32,-1*K.1^28,-1*K.1^12,-1*K.1^16,K.1^18,-1*K.1^20,K.1^30,-1*K.1^8,K.1^26,K.1^2,-1*K.1^24,-1*K.1^32,-1*K.1^28,-1*K.1^24,-1*K.1^8,-1*K.1^12,K.1^6,K.1^30,K.1^26,K.1^10,K.1^14,-1*K.1^20,K.1^20,-1*K.1^30,K.1^12,K.1^4,-1*K.1^22,-1*K.1^10,K.1^16,-1*K.1^2,-1*K.1^4,-1*K.1^14,-1*K.1^16,K.1^32,K.1^22,-1*K.1^18,K.1^6,K.1^28,K.1^10,K.1^14,K.1^18,-1*K.1^29,-1*K.1^33,K.1^33,K.1^31,-1*K.1^31,-1*K.1^7,K.1^7,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,K.1^23,-1*K.1^23,-1*K.1^15,K.1^15,K.1,-1*K.1,-1*K.1^23,-1*K.1^5,-1*K.1^15,-1*K.1^25,K.1^31,K.1^15,K.1^25,-1*K.1^31,K.1^13,-1*K.1^7,-1*K.1^33,-1*K.1^13,K.1^7,K.1^23,K.1^5,-1*K.1^19,-1*K.1^3,K.1^3,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,K.1^27,-1*K.1^27,-1*K.1^11,K.1^11,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,K.1^19,-1*K.1,K.1^11,K.1^29,K.1^33,K.1^9,-1*K.1^3,-1*K.1^19,-1*K.1^9,K.1^3,-1*K.1^21,K.1^27,K.1,K.1^21,-1*K.1^27,-1*K.1^11,-1*K.1^29,K.1^19,-1*K.1,-1*K.1^3,K.1^3,K.1^31,-1*K.1^31,-1*K.1^29,K.1^29,K.1^9,-1*K.1^9,-1*K.1^11,K.1^11,K.1^23,-1*K.1^23,-1*K.1^21,K.1^21,K.1,K.1^19,K.1^11,-1*K.1^5,K.1^33,-1*K.1^25,-1*K.1^3,-1*K.1^19,K.1^25,K.1^3,K.1^13,K.1^27,-1*K.1^33,-1*K.1^13,-1*K.1^27,-1*K.1^11,K.1^5,-1*K.1^19,-1*K.1^33,K.1^33,K.1^5,-1*K.1^5,-1*K.1^7,K.1^7,K.1^27,-1*K.1^27,-1*K.1^25,K.1^25,K.1^13,-1*K.1^13,-1*K.1^15,K.1^15,K.1^19,-1*K.1,-1*K.1^23,K.1^29,-1*K.1^15,K.1^9,K.1^31,K.1^15,-1*K.1^9,-1*K.1^31,-1*K.1^21,-1*K.1^7,K.1,K.1^21,K.1^7,K.1^23,K.1^22,-1*K.1^26,K.1^4,K.1^18,-1*K.1^10,-1*K.1^22,-1*K.1^2,K.1^4,K.1^24,-1*K.1^32,K.1^18,K.1^22,-1*K.1^26,K.1^6,K.1^6,K.1^10,K.1^32,-1*K.1^4,-1*K.1^28,-1*K.1^6,K.1^26,-1*K.1^14,-1*K.1^22,-1*K.1^16,-1*K.1^6,K.1^30,K.1^28,K.1^14,-1*K.1^2,-1*K.1^8,K.1^2,K.1^8,-1*K.1^30,-1*K.1^8,K.1^10,-1*K.1^28,K.1^16,-1*K.1^20,-1*K.1^24,-1*K.1^24,-1*K.1^10,-1*K.1^18,-1*K.1^12,K.1^32,-1*K.1^32,K.1^20,-1*K.1^20,K.1^12,K.1^16,K.1^14,K.1^24,K.1^26,K.1^20,K.1^12,-1*K.1^12,K.1^2,K.1^28,-1*K.1^4,-1*K.1^16,-1*K.1^30,-1*K.1^14,-1*K.1^18,K.1^30,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,K.1^28,K.1^20,-1*K.1^26,-1*K.1^10,K.1^24,K.1^16,-1*K.1^30,-1*K.1^2,K.1^8,K.1^32,K.1^12,-1*K.1^22,-1*K.1^14,-1*K.1^6,-1*K.1^18,K.1^4,-1*K.1^2,K.1^22,K.1^18,K.1^14,K.1^22,-1*K.1^8,K.1^26,-1*K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^20,-1*K.1^16,-1*K.1^24,K.1^6,-1*K.1^32,K.1^2,K.1^6,K.1^4,-1*K.1^6,K.1^16,-1*K.1^12,K.1^10,-1*K.1^12,K.1^14,-1*K.1^16,K.1^18,-1*K.1^20,K.1^8,-1*K.1^4,K.1^2,K.1^30,-1*K.1^32,K.1^30,-1*K.1^28,K.1^26,-1*K.1^28,-1*K.1^10,K.1^12,-1*K.1^14,K.1^10,K.1^32,-1*K.1^30,K.1^28,-1*K.1^26,K.1^24,-1*K.1^22,K.1^20,-1*K.1^18,-1*K.1^14,K.1^8,-1*K.1^6,K.1^16,K.1^12,K.1^20,-1*K.1^18,-1*K.1^2,K.1^28,K.1^32,-1*K.1^10,K.1^24,-1*K.1^22,-1*K.1^26,K.1^4,-1*K.1^30,-1*K.1^22,-1*K.1^14,-1*K.1^4,-1*K.1^16,K.1^14,-1*K.1^12,-1*K.1^24,K.1^8,K.1^12,K.1^4,K.1^16,-1*K.1^30,-1*K.1^18,K.1^32,-1*K.1^22,K.1^28,K.1^26,K.1^6,K.1^30,K.1^30,K.1^4,-1*K.1^20,-1*K.1^28,K.1^22,K.1^18,K.1^16,K.1^2,K.1^28,-1*K.1^2,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^4,K.1^20,K.1^12,K.1^18,K.1^32,K.1^26,K.1^6,-1*K.1^12,K.1^14,-1*K.1^16,K.1^10,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^2,K.1^24,-1*K.1^8,K.1^20,-1*K.1^30,K.1^24,-1*K.1^26,-1*K.1^28,-1*K.1^32,-1*K.1^32,-1*K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^20,-1*K.1^6,K.1^22,K.1^10,K.1^2,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^26,K.1^24,K.1^22,K.1^2,-1*K.1^32,-1*K.1^28,-1*K.1^12,-1*K.1^16,K.1^18,-1*K.1^20,K.1^30,-1*K.1^8,K.1^26,K.1^2,-1*K.1^24,-1*K.1^32,-1*K.1^28,-1*K.1^24,-1*K.1^8,-1*K.1^12,K.1^6,K.1^30,K.1^26,K.1^10,K.1^14,-1*K.1^20,K.1^20,-1*K.1^30,K.1^12,K.1^4,-1*K.1^22,-1*K.1^10,K.1^16,-1*K.1^2,-1*K.1^4,-1*K.1^14,-1*K.1^16,K.1^32,K.1^22,-1*K.1^18,K.1^6,K.1^28,K.1^10,K.1^14,K.1^18,K.1^29,K.1^33,-1*K.1^33,-1*K.1^31,K.1^31,K.1^7,-1*K.1^7,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,-1*K.1^23,K.1^23,K.1^15,-1*K.1^15,-1*K.1,K.1,K.1^23,K.1^5,K.1^15,K.1^25,-1*K.1^31,-1*K.1^15,-1*K.1^25,K.1^31,-1*K.1^13,K.1^7,K.1^33,K.1^13,-1*K.1^7,-1*K.1^23,-1*K.1^5,K.1^19,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,-1*K.1^27,K.1^27,K.1^11,-1*K.1^11,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,-1*K.1^19,K.1,-1*K.1^11,-1*K.1^29,-1*K.1^33,-1*K.1^9,K.1^3,K.1^19,K.1^9,-1*K.1^3,K.1^21,-1*K.1^27,-1*K.1,-1*K.1^21,K.1^27,K.1^11,K.1^29,-1*K.1^19,K.1,K.1^3,-1*K.1^3,-1*K.1^31,K.1^31,K.1^29,-1*K.1^29,-1*K.1^9,K.1^9,K.1^11,-1*K.1^11,-1*K.1^23,K.1^23,K.1^21,-1*K.1^21,-1*K.1,-1*K.1^19,-1*K.1^11,K.1^5,-1*K.1^33,K.1^25,K.1^3,K.1^19,-1*K.1^25,-1*K.1^3,-1*K.1^13,-1*K.1^27,K.1^33,K.1^13,K.1^27,K.1^11,-1*K.1^5,K.1^19,K.1^33,-1*K.1^33,-1*K.1^5,K.1^5,K.1^7,-1*K.1^7,-1*K.1^27,K.1^27,K.1^25,-1*K.1^25,-1*K.1^13,K.1^13,K.1^15,-1*K.1^15,-1*K.1^19,K.1,K.1^23,-1*K.1^29,K.1^15,-1*K.1^9,-1*K.1^31,-1*K.1^15,K.1^9,K.1^31,K.1^21,K.1^7,-1*K.1,-1*K.1^21,-1*K.1^7,-1*K.1^23,K.1^22,-1*K.1^26,K.1^4,K.1^18,-1*K.1^10,-1*K.1^22,-1*K.1^2,K.1^4,K.1^24,-1*K.1^32,K.1^18,K.1^22,-1*K.1^26,K.1^6,K.1^6,K.1^10,K.1^32,-1*K.1^4,-1*K.1^28,-1*K.1^6,K.1^26,-1*K.1^14,-1*K.1^22,-1*K.1^16,-1*K.1^6,K.1^30,K.1^28,K.1^14,-1*K.1^2,-1*K.1^8,K.1^2,K.1^8,-1*K.1^30,-1*K.1^8,K.1^10,-1*K.1^28,K.1^16,-1*K.1^20,-1*K.1^24,-1*K.1^24,-1*K.1^10,-1*K.1^18,-1*K.1^12,K.1^32,-1*K.1^32,K.1^20,-1*K.1^20,K.1^12,K.1^16,K.1^14,K.1^24,K.1^26,K.1^20,K.1^12,-1*K.1^12,K.1^2,K.1^28,-1*K.1^4,-1*K.1^16,-1*K.1^30,-1*K.1^14,-1*K.1^18,K.1^30,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,-1*K.1^6,-1*K.1^14,K.1^8,K.1^24,-1*K.1^10,-1*K.1^18,K.1^4,K.1^32,-1*K.1^26,-1*K.1^2,-1*K.1^22,K.1^12,K.1^20,K.1^28,K.1^16,-1*K.1^30,K.1^32,-1*K.1^12,-1*K.1^16,-1*K.1^20,-1*K.1^12,K.1^26,-1*K.1^8,K.1^30,K.1^26,K.1^10,K.1^14,K.1^18,K.1^10,-1*K.1^28,K.1^2,-1*K.1^32,-1*K.1^28,-1*K.1^30,K.1^28,-1*K.1^18,K.1^22,-1*K.1^24,K.1^22,-1*K.1^20,K.1^18,-1*K.1^16,K.1^14,-1*K.1^26,K.1^30,-1*K.1^32,-1*K.1^4,K.1^2,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^24,-1*K.1^22,K.1^20,-1*K.1^24,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^10,K.1^12,-1*K.1^14,K.1^16,K.1^20,-1*K.1^26,K.1^28,-1*K.1^18,-1*K.1^22,-1*K.1^14,K.1^16,K.1^32,-1*K.1^6,-1*K.1^2,K.1^24,-1*K.1^10,K.1^12,K.1^8,-1*K.1^30,K.1^4,K.1^12,K.1^20,K.1^30,K.1^18,-1*K.1^20,K.1^22,K.1^10,-1*K.1^26,-1*K.1^22,-1*K.1^30,-1*K.1^18,K.1^4,K.1^16,-1*K.1^2,K.1^12,-1*K.1^6,-1*K.1^8,-1*K.1^28,-1*K.1^4,-1*K.1^4,-1*K.1^30,K.1^14,K.1^6,-1*K.1^12,-1*K.1^16,-1*K.1^18,-1*K.1^32,-1*K.1^6,K.1^32,-1*K.1^26,K.1^10,K.1^26,K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^16,-1*K.1^2,-1*K.1^8,-1*K.1^28,K.1^22,-1*K.1^20,K.1^18,-1*K.1^24,K.1^24,K.1^28,K.1^20,K.1^32,-1*K.1^10,K.1^26,-1*K.1^14,K.1^4,-1*K.1^10,K.1^8,K.1^6,K.1^2,K.1^2,K.1^16,K.1^24,K.1^8,K.1^14,K.1^28,-1*K.1^12,-1*K.1^24,-1*K.1^32,K.1^30,K.1^28,-1*K.1^26,K.1^8,-1*K.1^10,-1*K.1^12,-1*K.1^32,K.1^2,K.1^6,K.1^22,K.1^18,-1*K.1^16,K.1^14,-1*K.1^4,K.1^26,-1*K.1^8,-1*K.1^32,K.1^10,K.1^2,K.1^6,K.1^10,K.1^26,K.1^22,-1*K.1^28,-1*K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^20,K.1^14,-1*K.1^14,K.1^4,-1*K.1^22,-1*K.1^30,K.1^12,K.1^24,-1*K.1^18,K.1^32,K.1^30,K.1^20,K.1^18,-1*K.1^2,-1*K.1^12,K.1^16,-1*K.1^28,-1*K.1^6,-1*K.1^24,-1*K.1^20,-1*K.1^16,-1*K.1^5,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^27,K.1^27,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,K.1^11,-1*K.1^11,-1*K.1^19,K.1^19,K.1^33,-1*K.1^33,-1*K.1^11,-1*K.1^29,-1*K.1^19,-1*K.1^9,K.1^3,K.1^19,K.1^9,-1*K.1^3,K.1^21,-1*K.1^27,-1*K.1,-1*K.1^21,K.1^27,K.1^11,K.1^29,-1*K.1^15,-1*K.1^31,K.1^31,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,K.1^7,-1*K.1^7,-1*K.1^23,K.1^23,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,K.1^15,-1*K.1^33,K.1^23,K.1^5,K.1,K.1^25,-1*K.1^31,-1*K.1^15,-1*K.1^25,K.1^31,-1*K.1^13,K.1^7,K.1^33,K.1^13,-1*K.1^7,-1*K.1^23,-1*K.1^5,K.1^15,-1*K.1^33,-1*K.1^31,K.1^31,K.1^3,-1*K.1^3,-1*K.1^5,K.1^5,K.1^25,-1*K.1^25,-1*K.1^23,K.1^23,K.1^11,-1*K.1^11,-1*K.1^13,K.1^13,K.1^33,K.1^15,K.1^23,-1*K.1^29,K.1,-1*K.1^9,-1*K.1^31,-1*K.1^15,K.1^9,K.1^31,K.1^21,K.1^7,-1*K.1,-1*K.1^21,-1*K.1^7,-1*K.1^23,K.1^29,-1*K.1^15,-1*K.1,K.1,K.1^29,-1*K.1^29,-1*K.1^27,K.1^27,K.1^7,-1*K.1^7,-1*K.1^9,K.1^9,K.1^21,-1*K.1^21,-1*K.1^19,K.1^19,K.1^15,-1*K.1^33,-1*K.1^11,K.1^5,-1*K.1^19,K.1^25,K.1^3,K.1^19,-1*K.1^25,-1*K.1^3,-1*K.1^13,-1*K.1^27,K.1^33,K.1^13,K.1^27,K.1^11,-1*K.1^12,K.1^8,-1*K.1^30,-1*K.1^16,K.1^24,K.1^12,K.1^32,-1*K.1^30,-1*K.1^10,K.1^2,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^28,-1*K.1^28,-1*K.1^24,-1*K.1^2,K.1^30,K.1^6,K.1^28,-1*K.1^8,K.1^20,K.1^12,K.1^18,K.1^28,-1*K.1^4,-1*K.1^6,-1*K.1^20,K.1^32,K.1^26,-1*K.1^32,-1*K.1^26,K.1^4,K.1^26,-1*K.1^24,K.1^6,-1*K.1^18,K.1^14,K.1^10,K.1^10,K.1^24,K.1^16,K.1^22,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,-1*K.1^22,-1*K.1^18,-1*K.1^20,-1*K.1^10,-1*K.1^8,-1*K.1^14,-1*K.1^22,K.1^22,-1*K.1^32,-1*K.1^6,K.1^30,K.1^18,K.1^4,K.1^20,K.1^16,-1*K.1^4,-1*K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,-1*K.1^10,K.1^12,-1*K.1^2,-1*K.1^6,K.1^28,-1*K.1^30,-1*K.1^18,K.1^8,K.1^32,-1*K.1^26,-1*K.1^14,K.1^20,-1*K.1^22,K.1^24,K.1^4,K.1^16,K.1^8,-1*K.1^20,-1*K.1^4,K.1^22,-1*K.1^20,-1*K.1^32,K.1^2,-1*K.1^16,-1*K.1^32,-1*K.1^28,-1*K.1^12,K.1^30,-1*K.1^28,-1*K.1^24,K.1^26,-1*K.1^8,-1*K.1^24,K.1^16,K.1^24,-1*K.1^30,K.1^14,K.1^6,K.1^14,K.1^22,K.1^30,-1*K.1^4,-1*K.1^12,K.1^32,-1*K.1^16,-1*K.1^8,K.1^18,K.1^26,K.1^18,K.1^10,K.1^2,K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^22,K.1^6,-1*K.1^26,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^28,K.1^20,K.1^12,K.1^4,-1*K.1^22,K.1^32,K.1^24,-1*K.1^30,-1*K.1^14,K.1^12,K.1^4,K.1^8,-1*K.1^10,-1*K.1^26,-1*K.1^6,K.1^28,K.1^20,-1*K.1^2,K.1^16,-1*K.1^18,K.1^20,-1*K.1^22,-1*K.1^16,K.1^30,K.1^22,K.1^14,-1*K.1^28,K.1^32,-1*K.1^14,K.1^16,-1*K.1^30,-1*K.1^18,K.1^4,-1*K.1^26,K.1^20,-1*K.1^10,K.1^2,-1*K.1^24,K.1^18,K.1^18,K.1^16,-1*K.1^12,K.1^10,-1*K.1^20,-1*K.1^4,-1*K.1^30,-1*K.1^8,-1*K.1^10,K.1^8,K.1^32,-1*K.1^28,-1*K.1^32,-1*K.1^16,K.1^12,-1*K.1^14,-1*K.1^4,-1*K.1^26,K.1^2,-1*K.1^24,K.1^14,K.1^22,K.1^30,K.1^6,-1*K.1^6,K.1^24,-1*K.1^22,K.1^8,K.1^28,-1*K.1^32,K.1^12,-1*K.1^18,K.1^28,-1*K.1^2,K.1^10,K.1^26,K.1^26,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^12,K.1^24,-1*K.1^20,K.1^6,-1*K.1^8,-1*K.1^16,K.1^24,K.1^32,-1*K.1^2,K.1^28,-1*K.1^20,-1*K.1^8,K.1^26,K.1^10,K.1^14,K.1^30,-1*K.1^4,-1*K.1^12,K.1^18,-1*K.1^32,K.1^2,-1*K.1^8,-1*K.1^28,K.1^26,K.1^10,-1*K.1^28,-1*K.1^32,K.1^14,-1*K.1^24,K.1^18,K.1^2,K.1^6,K.1^22,-1*K.1^12,K.1^12,-1*K.1^18,-1*K.1^14,K.1^16,K.1^20,-1*K.1^6,-1*K.1^30,K.1^8,-1*K.1^16,-1*K.1^22,K.1^30,-1*K.1^26,-1*K.1^20,K.1^4,-1*K.1^24,-1*K.1^10,K.1^6,K.1^22,-1*K.1^4,-1*K.1^31,K.1^13,-1*K.1^13,K.1^5,-1*K.1^5,K.1^11,-1*K.1^11,K.1^19,-1*K.1^19,-1*K.1^15,K.1^15,-1*K.1^7,K.1^7,-1*K.1^9,K.1^9,-1*K.1^21,K.1^21,K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^15,K.1^5,K.1^9,K.1^15,-1*K.1^5,-1*K.1,K.1^11,K.1^13,K.1,-1*K.1^11,-1*K.1^7,K.1^3,-1*K.1^25,-1*K.1^29,K.1^29,K.1^3,-1*K.1^3,-1*K.1^31,K.1^31,-1*K.1^23,K.1^23,K.1^27,-1*K.1^27,-1*K.1,K.1,K.1^33,-1*K.1^33,K.1^25,K.1^21,-1*K.1^27,K.1^31,-1*K.1^13,K.1^19,-1*K.1^29,-1*K.1^25,-1*K.1^19,K.1^29,K.1^33,-1*K.1^23,-1*K.1^21,-1*K.1^33,K.1^23,K.1^27,-1*K.1^31,K.1^25,K.1^21,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,-1*K.1^31,K.1^31,K.1^19,-1*K.1^19,K.1^27,-1*K.1^27,-1*K.1^7,K.1^7,K.1^33,-1*K.1^33,-1*K.1^21,K.1^25,-1*K.1^27,-1*K.1^3,-1*K.1^13,-1*K.1^15,-1*K.1^29,-1*K.1^25,K.1^15,K.1^29,-1*K.1,-1*K.1^23,K.1^13,K.1,K.1^23,K.1^27,K.1^3,-1*K.1^25,K.1^13,-1*K.1^13,K.1^3,-1*K.1^3,K.1^11,-1*K.1^11,-1*K.1^23,K.1^23,-1*K.1^15,K.1^15,-1*K.1,K.1,-1*K.1^9,K.1^9,K.1^25,K.1^21,K.1^7,K.1^31,-1*K.1^9,K.1^19,K.1^5,K.1^9,-1*K.1^19,-1*K.1^5,K.1^33,K.1^11,-1*K.1^21,-1*K.1^33,-1*K.1^11,-1*K.1^7,-1*K.1^20,-1*K.1^2,K.1^16,-1*K.1^4,-1*K.1^6,K.1^20,K.1^8,K.1^16,K.1^28,K.1^26,-1*K.1^4,-1*K.1^20,-1*K.1^2,-1*K.1^24,-1*K.1^24,K.1^6,-1*K.1^26,-1*K.1^16,K.1^10,K.1^24,K.1^2,-1*K.1^22,K.1^20,K.1^30,K.1^24,K.1^18,-1*K.1^10,K.1^22,K.1^8,-1*K.1^32,-1*K.1^8,K.1^32,-1*K.1^18,-1*K.1^32,K.1^6,K.1^10,-1*K.1^30,-1*K.1^12,-1*K.1^28,-1*K.1^28,-1*K.1^6,K.1^4,K.1^14,-1*K.1^26,K.1^26,K.1^12,-1*K.1^12,-1*K.1^14,-1*K.1^30,K.1^22,K.1^28,K.1^2,K.1^12,-1*K.1^14,K.1^14,-1*K.1^8,-1*K.1^10,-1*K.1^16,K.1^30,-1*K.1^18,-1*K.1^22,K.1^4,K.1^18,K.1^32]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,K.1^24,-1*K.1^22,K.1^32,K.1^28,-1*K.1^6,K.1^4,K.1^16,-1*K.1^26,-1*K.1^2,K.1^8,K.1^20,-1*K.1^14,K.1^12,-1*K.1^10,-1*K.1^30,-1*K.1^18,-1*K.1^26,K.1^14,K.1^30,-1*K.1^12,K.1^14,K.1^2,-1*K.1^32,K.1^18,K.1^2,K.1^6,K.1^22,-1*K.1^4,K.1^6,K.1^10,-1*K.1^8,K.1^26,K.1^10,-1*K.1^18,-1*K.1^10,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^4,K.1^30,K.1^22,-1*K.1^2,K.1^18,K.1^26,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,-1*K.1^24,K.1^28,K.1^20,K.1^12,-1*K.1^28,K.1^8,K.1^16,K.1^24,K.1^32,-1*K.1^6,-1*K.1^14,-1*K.1^22,-1*K.1^30,K.1^12,-1*K.1^2,-1*K.1^10,K.1^4,K.1^20,-1*K.1^22,-1*K.1^30,-1*K.1^26,K.1^24,K.1^8,K.1^28,-1*K.1^6,-1*K.1^14,K.1^32,-1*K.1^18,K.1^16,-1*K.1^14,K.1^12,K.1^18,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^6,-1*K.1^2,K.1^20,-1*K.1^18,K.1^4,K.1^16,-1*K.1^30,K.1^8,-1*K.1^14,K.1^24,-1*K.1^32,K.1^10,-1*K.1^16,-1*K.1^16,-1*K.1^18,K.1^22,-1*K.1^24,K.1^14,K.1^30,K.1^4,K.1^26,K.1^24,-1*K.1^26,-1*K.1^2,K.1^6,K.1^2,K.1^18,-1*K.1^22,K.1^20,K.1^30,K.1^8,-1*K.1^32,K.1^10,-1*K.1^20,-1*K.1^12,-1*K.1^4,-1*K.1^28,K.1^28,-1*K.1^10,K.1^12,-1*K.1^26,-1*K.1^6,K.1^2,-1*K.1^22,K.1^16,-1*K.1^6,K.1^32,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^30,K.1^28,K.1^32,K.1^22,-1*K.1^10,K.1^14,-1*K.1^28,K.1^26,K.1^18,-1*K.1^10,-1*K.1^2,K.1^32,-1*K.1^6,K.1^14,K.1^26,-1*K.1^8,-1*K.1^24,-1*K.1^20,-1*K.1^4,K.1^30,K.1^22,-1*K.1^16,K.1^2,-1*K.1^32,K.1^26,K.1^6,-1*K.1^8,-1*K.1^24,K.1^6,K.1^2,-1*K.1^20,K.1^10,-1*K.1^16,-1*K.1^32,-1*K.1^28,-1*K.1^12,K.1^22,-1*K.1^22,K.1^16,K.1^20,-1*K.1^18,-1*K.1^14,K.1^28,K.1^4,-1*K.1^26,K.1^18,K.1^12,-1*K.1^4,K.1^8,K.1^14,-1*K.1^30,K.1^10,K.1^24,-1*K.1^28,-1*K.1^12,K.1^30,K.1^3,-1*K.1^21,K.1^21,-1*K.1^29,K.1^29,-1*K.1^23,K.1^23,-1*K.1^15,K.1^15,K.1^19,-1*K.1^19,K.1^27,-1*K.1^27,K.1^25,-1*K.1^25,K.1^13,-1*K.1^13,-1*K.1^27,K.1^31,K.1^25,K.1^19,-1*K.1^29,-1*K.1^25,-1*K.1^19,K.1^29,K.1^33,-1*K.1^23,-1*K.1^21,-1*K.1^33,K.1^23,K.1^27,-1*K.1^31,K.1^9,K.1^5,-1*K.1^5,-1*K.1^31,K.1^31,K.1^3,-1*K.1^3,K.1^11,-1*K.1^11,-1*K.1^7,K.1^7,K.1^33,-1*K.1^33,-1*K.1,K.1,-1*K.1^9,-1*K.1^13,K.1^7,-1*K.1^3,K.1^21,-1*K.1^15,K.1^5,K.1^9,K.1^15,-1*K.1^5,-1*K.1,K.1^11,K.1^13,K.1,-1*K.1^11,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1^13,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,K.1^3,-1*K.1^3,-1*K.1^15,K.1^15,-1*K.1^7,K.1^7,K.1^27,-1*K.1^27,-1*K.1,K.1,K.1^13,-1*K.1^9,K.1^7,K.1^31,K.1^21,K.1^19,K.1^5,K.1^9,-1*K.1^19,-1*K.1^5,K.1^33,K.1^11,-1*K.1^21,-1*K.1^33,-1*K.1^11,-1*K.1^7,-1*K.1^31,K.1^9,-1*K.1^21,K.1^21,-1*K.1^31,K.1^31,-1*K.1^23,K.1^23,K.1^11,-1*K.1^11,K.1^19,-1*K.1^19,K.1^33,-1*K.1^33,K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^13,-1*K.1^27,-1*K.1^3,K.1^25,-1*K.1^15,-1*K.1^29,-1*K.1^25,K.1^15,K.1^29,-1*K.1,-1*K.1^23,K.1^13,K.1,K.1^23,K.1^27,K.1^14,K.1^32,-1*K.1^18,K.1^30,K.1^28,-1*K.1^14,-1*K.1^26,-1*K.1^18,-1*K.1^6,-1*K.1^8,K.1^30,K.1^14,K.1^32,K.1^10,K.1^10,-1*K.1^28,K.1^8,K.1^18,-1*K.1^24,-1*K.1^10,-1*K.1^32,K.1^12,-1*K.1^14,-1*K.1^4,-1*K.1^10,-1*K.1^16,K.1^24,-1*K.1^12,-1*K.1^26,K.1^2,K.1^26,-1*K.1^2,K.1^16,K.1^2,-1*K.1^28,-1*K.1^24,K.1^4,K.1^22,K.1^6,K.1^6,K.1^28,-1*K.1^30,-1*K.1^20,K.1^8,-1*K.1^8,-1*K.1^22,K.1^22,K.1^20,K.1^4,-1*K.1^12,-1*K.1^6,-1*K.1^32,-1*K.1^22,K.1^20,-1*K.1^20,K.1^26,K.1^24,K.1^18,-1*K.1^4,K.1^16,K.1^12,-1*K.1^30,-1*K.1^16,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,K.1^24,-1*K.1^22,K.1^32,K.1^28,-1*K.1^6,K.1^4,K.1^16,-1*K.1^26,-1*K.1^2,K.1^8,K.1^20,-1*K.1^14,K.1^12,-1*K.1^10,-1*K.1^30,-1*K.1^18,-1*K.1^26,K.1^14,K.1^30,-1*K.1^12,K.1^14,K.1^2,-1*K.1^32,K.1^18,K.1^2,K.1^6,K.1^22,-1*K.1^4,K.1^6,K.1^10,-1*K.1^8,K.1^26,K.1^10,-1*K.1^18,-1*K.1^10,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^4,K.1^30,K.1^22,-1*K.1^2,K.1^18,K.1^26,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,-1*K.1^24,K.1^28,K.1^20,K.1^12,-1*K.1^28,K.1^8,K.1^16,K.1^24,K.1^32,-1*K.1^6,-1*K.1^14,-1*K.1^22,-1*K.1^30,K.1^12,-1*K.1^2,-1*K.1^10,K.1^4,K.1^20,-1*K.1^22,-1*K.1^30,-1*K.1^26,K.1^24,K.1^8,K.1^28,-1*K.1^6,-1*K.1^14,K.1^32,-1*K.1^18,K.1^16,-1*K.1^14,K.1^12,K.1^18,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^6,-1*K.1^2,K.1^20,-1*K.1^18,K.1^4,K.1^16,-1*K.1^30,K.1^8,-1*K.1^14,K.1^24,-1*K.1^32,K.1^10,-1*K.1^16,-1*K.1^16,-1*K.1^18,K.1^22,-1*K.1^24,K.1^14,K.1^30,K.1^4,K.1^26,K.1^24,-1*K.1^26,-1*K.1^2,K.1^6,K.1^2,K.1^18,-1*K.1^22,K.1^20,K.1^30,K.1^8,-1*K.1^32,K.1^10,-1*K.1^20,-1*K.1^12,-1*K.1^4,-1*K.1^28,K.1^28,-1*K.1^10,K.1^12,-1*K.1^26,-1*K.1^6,K.1^2,-1*K.1^22,K.1^16,-1*K.1^6,K.1^32,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^30,K.1^28,K.1^32,K.1^22,-1*K.1^10,K.1^14,-1*K.1^28,K.1^26,K.1^18,-1*K.1^10,-1*K.1^2,K.1^32,-1*K.1^6,K.1^14,K.1^26,-1*K.1^8,-1*K.1^24,-1*K.1^20,-1*K.1^4,K.1^30,K.1^22,-1*K.1^16,K.1^2,-1*K.1^32,K.1^26,K.1^6,-1*K.1^8,-1*K.1^24,K.1^6,K.1^2,-1*K.1^20,K.1^10,-1*K.1^16,-1*K.1^32,-1*K.1^28,-1*K.1^12,K.1^22,-1*K.1^22,K.1^16,K.1^20,-1*K.1^18,-1*K.1^14,K.1^28,K.1^4,-1*K.1^26,K.1^18,K.1^12,-1*K.1^4,K.1^8,K.1^14,-1*K.1^30,K.1^10,K.1^24,-1*K.1^28,-1*K.1^12,K.1^30,-1*K.1^3,K.1^21,-1*K.1^21,K.1^29,-1*K.1^29,K.1^23,-1*K.1^23,K.1^15,-1*K.1^15,-1*K.1^19,K.1^19,-1*K.1^27,K.1^27,-1*K.1^25,K.1^25,-1*K.1^13,K.1^13,K.1^27,-1*K.1^31,-1*K.1^25,-1*K.1^19,K.1^29,K.1^25,K.1^19,-1*K.1^29,-1*K.1^33,K.1^23,K.1^21,K.1^33,-1*K.1^23,-1*K.1^27,K.1^31,-1*K.1^9,-1*K.1^5,K.1^5,K.1^31,-1*K.1^31,-1*K.1^3,K.1^3,-1*K.1^11,K.1^11,K.1^7,-1*K.1^7,-1*K.1^33,K.1^33,K.1,-1*K.1,K.1^9,K.1^13,-1*K.1^7,K.1^3,-1*K.1^21,K.1^15,-1*K.1^5,-1*K.1^9,-1*K.1^15,K.1^5,K.1,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^11,K.1^7,-1*K.1^3,K.1^9,K.1^13,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,-1*K.1^3,K.1^3,K.1^15,-1*K.1^15,K.1^7,-1*K.1^7,-1*K.1^27,K.1^27,K.1,-1*K.1,-1*K.1^13,K.1^9,-1*K.1^7,-1*K.1^31,-1*K.1^21,-1*K.1^19,-1*K.1^5,-1*K.1^9,K.1^19,K.1^5,-1*K.1^33,-1*K.1^11,K.1^21,K.1^33,K.1^11,K.1^7,K.1^31,-1*K.1^9,K.1^21,-1*K.1^21,K.1^31,-1*K.1^31,K.1^23,-1*K.1^23,-1*K.1^11,K.1^11,-1*K.1^19,K.1^19,-1*K.1^33,K.1^33,-1*K.1^25,K.1^25,K.1^9,K.1^13,K.1^27,K.1^3,-1*K.1^25,K.1^15,K.1^29,K.1^25,-1*K.1^15,-1*K.1^29,K.1,K.1^23,-1*K.1^13,-1*K.1,-1*K.1^23,-1*K.1^27,K.1^14,K.1^32,-1*K.1^18,K.1^30,K.1^28,-1*K.1^14,-1*K.1^26,-1*K.1^18,-1*K.1^6,-1*K.1^8,K.1^30,K.1^14,K.1^32,K.1^10,K.1^10,-1*K.1^28,K.1^8,K.1^18,-1*K.1^24,-1*K.1^10,-1*K.1^32,K.1^12,-1*K.1^14,-1*K.1^4,-1*K.1^10,-1*K.1^16,K.1^24,-1*K.1^12,-1*K.1^26,K.1^2,K.1^26,-1*K.1^2,K.1^16,K.1^2,-1*K.1^28,-1*K.1^24,K.1^4,K.1^22,K.1^6,K.1^6,K.1^28,-1*K.1^30,-1*K.1^20,K.1^8,-1*K.1^8,-1*K.1^22,K.1^22,K.1^20,K.1^4,-1*K.1^12,-1*K.1^6,-1*K.1^32,-1*K.1^22,K.1^20,-1*K.1^20,K.1^26,K.1^24,K.1^18,-1*K.1^4,K.1^16,K.1^12,-1*K.1^30,-1*K.1^16,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,-1*K.1^10,K.1^12,-1*K.1^2,-1*K.1^6,K.1^28,-1*K.1^30,-1*K.1^18,K.1^8,K.1^32,-1*K.1^26,-1*K.1^14,K.1^20,-1*K.1^22,K.1^24,K.1^4,K.1^16,K.1^8,-1*K.1^20,-1*K.1^4,K.1^22,-1*K.1^20,-1*K.1^32,K.1^2,-1*K.1^16,-1*K.1^32,-1*K.1^28,-1*K.1^12,K.1^30,-1*K.1^28,-1*K.1^24,K.1^26,-1*K.1^8,-1*K.1^24,K.1^16,K.1^24,-1*K.1^30,K.1^14,K.1^6,K.1^14,K.1^22,K.1^30,-1*K.1^4,-1*K.1^12,K.1^32,-1*K.1^16,-1*K.1^8,K.1^18,K.1^26,K.1^18,K.1^10,K.1^2,K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^22,K.1^6,-1*K.1^26,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^28,K.1^20,K.1^12,K.1^4,-1*K.1^22,K.1^32,K.1^24,-1*K.1^30,-1*K.1^14,K.1^12,K.1^4,K.1^8,-1*K.1^10,-1*K.1^26,-1*K.1^6,K.1^28,K.1^20,-1*K.1^2,K.1^16,-1*K.1^18,K.1^20,-1*K.1^22,-1*K.1^16,K.1^30,K.1^22,K.1^14,-1*K.1^28,K.1^32,-1*K.1^14,K.1^16,-1*K.1^30,-1*K.1^18,K.1^4,-1*K.1^26,K.1^20,-1*K.1^10,K.1^2,-1*K.1^24,K.1^18,K.1^18,K.1^16,-1*K.1^12,K.1^10,-1*K.1^20,-1*K.1^4,-1*K.1^30,-1*K.1^8,-1*K.1^10,K.1^8,K.1^32,-1*K.1^28,-1*K.1^32,-1*K.1^16,K.1^12,-1*K.1^14,-1*K.1^4,-1*K.1^26,K.1^2,-1*K.1^24,K.1^14,K.1^22,K.1^30,K.1^6,-1*K.1^6,K.1^24,-1*K.1^22,K.1^8,K.1^28,-1*K.1^32,K.1^12,-1*K.1^18,K.1^28,-1*K.1^2,K.1^10,K.1^26,K.1^26,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^12,K.1^24,-1*K.1^20,K.1^6,-1*K.1^8,-1*K.1^16,K.1^24,K.1^32,-1*K.1^2,K.1^28,-1*K.1^20,-1*K.1^8,K.1^26,K.1^10,K.1^14,K.1^30,-1*K.1^4,-1*K.1^12,K.1^18,-1*K.1^32,K.1^2,-1*K.1^8,-1*K.1^28,K.1^26,K.1^10,-1*K.1^28,-1*K.1^32,K.1^14,-1*K.1^24,K.1^18,K.1^2,K.1^6,K.1^22,-1*K.1^12,K.1^12,-1*K.1^18,-1*K.1^14,K.1^16,K.1^20,-1*K.1^6,-1*K.1^30,K.1^8,-1*K.1^16,-1*K.1^22,K.1^30,-1*K.1^26,-1*K.1^20,K.1^4,-1*K.1^24,-1*K.1^10,K.1^6,K.1^22,-1*K.1^4,K.1^31,-1*K.1^13,K.1^13,-1*K.1^5,K.1^5,-1*K.1^11,K.1^11,-1*K.1^19,K.1^19,K.1^15,-1*K.1^15,K.1^7,-1*K.1^7,K.1^9,-1*K.1^9,K.1^21,-1*K.1^21,-1*K.1^7,K.1^3,K.1^9,K.1^15,-1*K.1^5,-1*K.1^9,-1*K.1^15,K.1^5,K.1,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^11,K.1^7,-1*K.1^3,K.1^25,K.1^29,-1*K.1^29,-1*K.1^3,K.1^3,K.1^31,-1*K.1^31,K.1^23,-1*K.1^23,-1*K.1^27,K.1^27,K.1,-1*K.1,-1*K.1^33,K.1^33,-1*K.1^25,-1*K.1^21,K.1^27,-1*K.1^31,K.1^13,-1*K.1^19,K.1^29,K.1^25,K.1^19,-1*K.1^29,-1*K.1^33,K.1^23,K.1^21,K.1^33,-1*K.1^23,-1*K.1^27,K.1^31,-1*K.1^25,-1*K.1^21,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,K.1^31,-1*K.1^31,-1*K.1^19,K.1^19,-1*K.1^27,K.1^27,K.1^7,-1*K.1^7,-1*K.1^33,K.1^33,K.1^21,-1*K.1^25,K.1^27,K.1^3,K.1^13,K.1^15,K.1^29,K.1^25,-1*K.1^15,-1*K.1^29,K.1,K.1^23,-1*K.1^13,-1*K.1,-1*K.1^23,-1*K.1^27,-1*K.1^3,K.1^25,-1*K.1^13,K.1^13,-1*K.1^3,K.1^3,-1*K.1^11,K.1^11,K.1^23,-1*K.1^23,K.1^15,-1*K.1^15,K.1,-1*K.1,K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^21,-1*K.1^7,-1*K.1^31,K.1^9,-1*K.1^19,-1*K.1^5,-1*K.1^9,K.1^19,K.1^5,-1*K.1^33,-1*K.1^11,K.1^21,K.1^33,K.1^11,K.1^7,-1*K.1^20,-1*K.1^2,K.1^16,-1*K.1^4,-1*K.1^6,K.1^20,K.1^8,K.1^16,K.1^28,K.1^26,-1*K.1^4,-1*K.1^20,-1*K.1^2,-1*K.1^24,-1*K.1^24,K.1^6,-1*K.1^26,-1*K.1^16,K.1^10,K.1^24,K.1^2,-1*K.1^22,K.1^20,K.1^30,K.1^24,K.1^18,-1*K.1^10,K.1^22,K.1^8,-1*K.1^32,-1*K.1^8,K.1^32,-1*K.1^18,-1*K.1^32,K.1^6,K.1^10,-1*K.1^30,-1*K.1^12,-1*K.1^28,-1*K.1^28,-1*K.1^6,K.1^4,K.1^14,-1*K.1^26,K.1^26,K.1^12,-1*K.1^12,-1*K.1^14,-1*K.1^30,K.1^22,K.1^28,K.1^2,K.1^12,-1*K.1^14,K.1^14,-1*K.1^8,-1*K.1^10,-1*K.1^16,K.1^30,-1*K.1^18,-1*K.1^22,K.1^4,K.1^18,K.1^32]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,-1*K.1^14,-1*K.1^10,-1*K.1^30,-1*K.1^22,K.1^12,K.1^8,K.1^32,-1*K.1^18,K.1^4,K.1^16,-1*K.1^6,K.1^28,K.1^24,K.1^20,-1*K.1^26,-1*K.1^2,-1*K.1^18,-1*K.1^28,K.1^26,-1*K.1^24,-1*K.1^28,-1*K.1^4,K.1^30,K.1^2,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^20,-1*K.1^16,K.1^18,-1*K.1^20,-1*K.1^2,K.1^20,K.1^8,K.1^6,K.1^22,K.1^6,-1*K.1^24,-1*K.1^8,K.1^26,K.1^10,K.1^4,K.1^2,K.1^18,-1*K.1^32,-1*K.1^16,-1*K.1^32,K.1^14,K.1^30,K.1^14,-1*K.1^22,-1*K.1^6,K.1^24,K.1^22,K.1^16,K.1^32,-1*K.1^14,-1*K.1^30,K.1^12,K.1^28,-1*K.1^10,-1*K.1^26,K.1^24,K.1^4,K.1^20,K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^26,-1*K.1^18,-1*K.1^14,K.1^16,-1*K.1^22,K.1^12,K.1^28,-1*K.1^30,-1*K.1^2,K.1^32,K.1^28,K.1^24,K.1^2,-1*K.1^8,-1*K.1^24,K.1^6,-1*K.1^12,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,K.1^32,-1*K.1^26,K.1^16,K.1^28,-1*K.1^14,K.1^30,-1*K.1^20,-1*K.1^32,-1*K.1^32,-1*K.1^2,K.1^10,K.1^14,-1*K.1^28,K.1^26,K.1^8,K.1^18,-1*K.1^14,-1*K.1^18,K.1^4,-1*K.1^12,-1*K.1^4,K.1^2,-1*K.1^10,-1*K.1^6,K.1^26,K.1^16,K.1^30,-1*K.1^20,K.1^6,-1*K.1^24,-1*K.1^8,K.1^22,-1*K.1^22,K.1^20,K.1^24,-1*K.1^18,K.1^12,-1*K.1^4,-1*K.1^10,K.1^32,K.1^12,-1*K.1^30,K.1^14,-1*K.1^16,-1*K.1^16,-1*K.1^26,-1*K.1^22,-1*K.1^30,K.1^10,K.1^20,-1*K.1^28,K.1^22,K.1^18,K.1^2,K.1^20,K.1^4,-1*K.1^30,K.1^12,-1*K.1^28,K.1^18,-1*K.1^16,K.1^14,K.1^6,-1*K.1^8,K.1^26,K.1^10,-1*K.1^32,-1*K.1^4,K.1^30,K.1^18,-1*K.1^12,-1*K.1^16,K.1^14,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^20,-1*K.1^32,K.1^30,K.1^22,-1*K.1^24,K.1^10,-1*K.1^10,K.1^32,-1*K.1^6,-1*K.1^2,K.1^28,-1*K.1^22,K.1^8,-1*K.1^18,K.1^2,K.1^24,-1*K.1^8,K.1^16,-1*K.1^28,-1*K.1^26,-1*K.1^20,-1*K.1^14,K.1^22,-1*K.1^24,K.1^26,-1*K.1^23,K.1^25,-1*K.1^25,-1*K.1^7,K.1^7,-1*K.1^29,K.1^29,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,-1*K.1^3,K.1^3,-1*K.1^33,K.1^33,-1*K.1^9,K.1^9,K.1^3,-1*K.1^11,-1*K.1^33,K.1^21,-1*K.1^7,K.1^33,-1*K.1^21,K.1^7,K.1^15,-1*K.1^29,K.1^25,-1*K.1^15,K.1^29,-1*K.1^3,K.1^11,-1*K.1,K.1^27,-1*K.1^27,K.1^11,-1*K.1^11,-1*K.1^23,K.1^23,K.1^5,-1*K.1^5,K.1^31,-1*K.1^31,K.1^15,-1*K.1^15,-1*K.1^19,K.1^19,K.1,K.1^9,-1*K.1^31,K.1^23,-1*K.1^25,-1*K.1^13,K.1^27,-1*K.1,K.1^13,-1*K.1^27,-1*K.1^19,K.1^5,-1*K.1^9,K.1^19,-1*K.1^5,K.1^31,-1*K.1^23,K.1,K.1^9,K.1^27,-1*K.1^27,-1*K.1^7,K.1^7,-1*K.1^23,K.1^23,-1*K.1^13,K.1^13,K.1^31,-1*K.1^31,-1*K.1^3,K.1^3,-1*K.1^19,K.1^19,-1*K.1^9,K.1,-1*K.1^31,-1*K.1^11,-1*K.1^25,K.1^21,K.1^27,-1*K.1,-1*K.1^21,-1*K.1^27,K.1^15,K.1^5,K.1^25,-1*K.1^15,-1*K.1^5,K.1^31,K.1^11,-1*K.1,K.1^25,-1*K.1^25,K.1^11,-1*K.1^11,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,K.1^21,-1*K.1^21,K.1^15,-1*K.1^15,-1*K.1^33,K.1^33,K.1,K.1^9,K.1^3,K.1^23,-1*K.1^33,-1*K.1^13,-1*K.1^7,K.1^33,K.1^13,K.1^7,-1*K.1^19,-1*K.1^29,-1*K.1^9,K.1^19,K.1^29,-1*K.1^3,-1*K.1^28,-1*K.1^30,-1*K.1^2,K.1^26,-1*K.1^22,K.1^28,-1*K.1^18,-1*K.1^2,K.1^12,-1*K.1^16,K.1^26,-1*K.1^28,-1*K.1^30,-1*K.1^20,-1*K.1^20,K.1^22,K.1^16,K.1^2,K.1^14,K.1^20,K.1^30,K.1^24,K.1^28,-1*K.1^8,K.1^20,-1*K.1^32,-1*K.1^14,-1*K.1^24,-1*K.1^18,-1*K.1^4,K.1^18,K.1^4,K.1^32,-1*K.1^4,K.1^22,K.1^14,K.1^8,K.1^10,-1*K.1^12,-1*K.1^12,-1*K.1^22,-1*K.1^26,K.1^6,K.1^16,-1*K.1^16,-1*K.1^10,K.1^10,-1*K.1^6,K.1^8,-1*K.1^24,K.1^12,K.1^30,-1*K.1^10,-1*K.1^6,K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^8,K.1^32,K.1^24,-1*K.1^26,-1*K.1^32,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,K.1^20,K.1^24,K.1^4,K.1^12,-1*K.1^22,-1*K.1^26,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^18,K.1^28,-1*K.1^6,-1*K.1^10,-1*K.1^14,K.1^8,K.1^32,K.1^16,K.1^6,-1*K.1^8,K.1^10,K.1^6,K.1^30,-1*K.1^4,-1*K.1^32,K.1^30,K.1^22,-1*K.1^24,K.1^26,K.1^22,K.1^14,K.1^18,-1*K.1^16,K.1^14,K.1^32,-1*K.1^14,-1*K.1^26,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^10,K.1^26,-1*K.1^8,-1*K.1^24,-1*K.1^30,-1*K.1^32,-1*K.1^16,K.1^2,K.1^18,K.1^2,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^12,K.1^28,-1*K.1^10,-1*K.1^12,-1*K.1^18,-1*K.1^2,K.1^20,K.1^4,-1*K.1^22,-1*K.1^6,K.1^24,K.1^8,-1*K.1^10,-1*K.1^30,-1*K.1^14,-1*K.1^26,K.1^28,K.1^24,K.1^8,K.1^16,K.1^20,-1*K.1^18,K.1^12,-1*K.1^22,-1*K.1^6,K.1^4,K.1^32,-1*K.1^2,-1*K.1^6,-1*K.1^10,-1*K.1^32,K.1^26,K.1^10,-1*K.1^28,K.1^22,-1*K.1^30,K.1^28,K.1^32,-1*K.1^26,-1*K.1^2,K.1^8,-1*K.1^18,-1*K.1^6,K.1^20,-1*K.1^4,K.1^14,K.1^2,K.1^2,K.1^32,-1*K.1^24,-1*K.1^20,K.1^6,-1*K.1^8,-1*K.1^26,-1*K.1^16,K.1^20,K.1^16,-1*K.1^30,K.1^22,K.1^30,-1*K.1^32,K.1^24,K.1^28,-1*K.1^8,-1*K.1^18,-1*K.1^4,K.1^14,-1*K.1^28,K.1^10,K.1^26,-1*K.1^12,K.1^12,-1*K.1^14,-1*K.1^10,K.1^16,-1*K.1^22,K.1^30,K.1^24,-1*K.1^2,-1*K.1^22,K.1^4,-1*K.1^20,K.1^18,K.1^18,K.1^8,K.1^12,K.1^4,-1*K.1^24,-1*K.1^14,K.1^6,-1*K.1^12,-1*K.1^16,-1*K.1^32,-1*K.1^14,-1*K.1^30,K.1^4,-1*K.1^22,K.1^6,-1*K.1^16,K.1^18,-1*K.1^20,-1*K.1^28,K.1^26,-1*K.1^8,-1*K.1^24,K.1^2,K.1^30,-1*K.1^4,-1*K.1^16,K.1^22,K.1^18,-1*K.1^20,K.1^22,K.1^30,-1*K.1^28,K.1^14,K.1^2,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^24,K.1^24,-1*K.1^2,K.1^28,K.1^32,-1*K.1^6,K.1^12,-1*K.1^26,K.1^16,-1*K.1^32,-1*K.1^10,K.1^26,-1*K.1^18,K.1^6,K.1^8,K.1^14,K.1^20,-1*K.1^12,K.1^10,-1*K.1^8,K.1^11,-1*K.1^9,K.1^9,K.1^27,-1*K.1^27,K.1^5,-1*K.1^5,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,K.1^31,-1*K.1^31,K.1,-1*K.1,K.1^25,-1*K.1^25,-1*K.1^31,K.1^23,K.1,-1*K.1^13,K.1^27,-1*K.1,K.1^13,-1*K.1^27,-1*K.1^19,K.1^5,-1*K.1^9,K.1^19,-1*K.1^5,K.1^31,-1*K.1^23,K.1^33,-1*K.1^7,K.1^7,-1*K.1^23,K.1^23,K.1^11,-1*K.1^11,-1*K.1^29,K.1^29,-1*K.1^3,K.1^3,-1*K.1^19,K.1^19,K.1^15,-1*K.1^15,-1*K.1^33,-1*K.1^25,K.1^3,-1*K.1^11,K.1^9,K.1^21,-1*K.1^7,K.1^33,-1*K.1^21,K.1^7,K.1^15,-1*K.1^29,K.1^25,-1*K.1^15,K.1^29,-1*K.1^3,K.1^11,-1*K.1^33,-1*K.1^25,-1*K.1^7,K.1^7,K.1^27,-1*K.1^27,K.1^11,-1*K.1^11,K.1^21,-1*K.1^21,-1*K.1^3,K.1^3,K.1^31,-1*K.1^31,K.1^15,-1*K.1^15,K.1^25,-1*K.1^33,K.1^3,K.1^23,K.1^9,-1*K.1^13,-1*K.1^7,K.1^33,K.1^13,K.1^7,-1*K.1^19,-1*K.1^29,-1*K.1^9,K.1^19,K.1^29,-1*K.1^3,-1*K.1^23,K.1^33,-1*K.1^9,K.1^9,-1*K.1^23,K.1^23,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,-1*K.1^13,K.1^13,-1*K.1^19,K.1^19,K.1,-1*K.1,-1*K.1^33,-1*K.1^25,-1*K.1^31,-1*K.1^11,K.1,K.1^21,K.1^27,-1*K.1,-1*K.1^21,-1*K.1^27,K.1^15,K.1^5,K.1^25,-1*K.1^15,-1*K.1^5,K.1^31,K.1^6,K.1^4,K.1^32,-1*K.1^8,K.1^12,-1*K.1^6,K.1^16,K.1^32,-1*K.1^22,K.1^18,-1*K.1^8,K.1^6,K.1^4,K.1^14,K.1^14,-1*K.1^12,-1*K.1^18,-1*K.1^32,-1*K.1^20,-1*K.1^14,-1*K.1^4,-1*K.1^10,-1*K.1^6,K.1^26,-1*K.1^14,K.1^2,K.1^20,K.1^10,K.1^16,K.1^30,-1*K.1^16,-1*K.1^30,-1*K.1^2,K.1^30,-1*K.1^12,-1*K.1^20,-1*K.1^26,-1*K.1^24,K.1^22,K.1^22,K.1^12,K.1^8,-1*K.1^28,-1*K.1^18,K.1^18,K.1^24,-1*K.1^24,K.1^28,-1*K.1^26,K.1^10,-1*K.1^22,-1*K.1^4,K.1^24,K.1^28,-1*K.1^28,-1*K.1^16,K.1^20,-1*K.1^32,K.1^26,-1*K.1^2,-1*K.1^10,K.1^8,K.1^2,-1*K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,K.1^20,K.1^24,K.1^4,K.1^12,-1*K.1^22,-1*K.1^26,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^18,K.1^28,-1*K.1^6,-1*K.1^10,-1*K.1^14,K.1^8,K.1^32,K.1^16,K.1^6,-1*K.1^8,K.1^10,K.1^6,K.1^30,-1*K.1^4,-1*K.1^32,K.1^30,K.1^22,-1*K.1^24,K.1^26,K.1^22,K.1^14,K.1^18,-1*K.1^16,K.1^14,K.1^32,-1*K.1^14,-1*K.1^26,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^10,K.1^26,-1*K.1^8,-1*K.1^24,-1*K.1^30,-1*K.1^32,-1*K.1^16,K.1^2,K.1^18,K.1^2,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^12,K.1^28,-1*K.1^10,-1*K.1^12,-1*K.1^18,-1*K.1^2,K.1^20,K.1^4,-1*K.1^22,-1*K.1^6,K.1^24,K.1^8,-1*K.1^10,-1*K.1^30,-1*K.1^14,-1*K.1^26,K.1^28,K.1^24,K.1^8,K.1^16,K.1^20,-1*K.1^18,K.1^12,-1*K.1^22,-1*K.1^6,K.1^4,K.1^32,-1*K.1^2,-1*K.1^6,-1*K.1^10,-1*K.1^32,K.1^26,K.1^10,-1*K.1^28,K.1^22,-1*K.1^30,K.1^28,K.1^32,-1*K.1^26,-1*K.1^2,K.1^8,-1*K.1^18,-1*K.1^6,K.1^20,-1*K.1^4,K.1^14,K.1^2,K.1^2,K.1^32,-1*K.1^24,-1*K.1^20,K.1^6,-1*K.1^8,-1*K.1^26,-1*K.1^16,K.1^20,K.1^16,-1*K.1^30,K.1^22,K.1^30,-1*K.1^32,K.1^24,K.1^28,-1*K.1^8,-1*K.1^18,-1*K.1^4,K.1^14,-1*K.1^28,K.1^10,K.1^26,-1*K.1^12,K.1^12,-1*K.1^14,-1*K.1^10,K.1^16,-1*K.1^22,K.1^30,K.1^24,-1*K.1^2,-1*K.1^22,K.1^4,-1*K.1^20,K.1^18,K.1^18,K.1^8,K.1^12,K.1^4,-1*K.1^24,-1*K.1^14,K.1^6,-1*K.1^12,-1*K.1^16,-1*K.1^32,-1*K.1^14,-1*K.1^30,K.1^4,-1*K.1^22,K.1^6,-1*K.1^16,K.1^18,-1*K.1^20,-1*K.1^28,K.1^26,-1*K.1^8,-1*K.1^24,K.1^2,K.1^30,-1*K.1^4,-1*K.1^16,K.1^22,K.1^18,-1*K.1^20,K.1^22,K.1^30,-1*K.1^28,K.1^14,K.1^2,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^24,K.1^24,-1*K.1^2,K.1^28,K.1^32,-1*K.1^6,K.1^12,-1*K.1^26,K.1^16,-1*K.1^32,-1*K.1^10,K.1^26,-1*K.1^18,K.1^6,K.1^8,K.1^14,K.1^20,-1*K.1^12,K.1^10,-1*K.1^8,-1*K.1^11,K.1^9,-1*K.1^9,-1*K.1^27,K.1^27,-1*K.1^5,K.1^5,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,-1*K.1^31,K.1^31,-1*K.1,K.1,-1*K.1^25,K.1^25,K.1^31,-1*K.1^23,-1*K.1,K.1^13,-1*K.1^27,K.1,-1*K.1^13,K.1^27,K.1^19,-1*K.1^5,K.1^9,-1*K.1^19,K.1^5,-1*K.1^31,K.1^23,-1*K.1^33,K.1^7,-1*K.1^7,K.1^23,-1*K.1^23,-1*K.1^11,K.1^11,K.1^29,-1*K.1^29,K.1^3,-1*K.1^3,K.1^19,-1*K.1^19,-1*K.1^15,K.1^15,K.1^33,K.1^25,-1*K.1^3,K.1^11,-1*K.1^9,-1*K.1^21,K.1^7,-1*K.1^33,K.1^21,-1*K.1^7,-1*K.1^15,K.1^29,-1*K.1^25,K.1^15,-1*K.1^29,K.1^3,-1*K.1^11,K.1^33,K.1^25,K.1^7,-1*K.1^7,-1*K.1^27,K.1^27,-1*K.1^11,K.1^11,-1*K.1^21,K.1^21,K.1^3,-1*K.1^3,-1*K.1^31,K.1^31,-1*K.1^15,K.1^15,-1*K.1^25,K.1^33,-1*K.1^3,-1*K.1^23,-1*K.1^9,K.1^13,K.1^7,-1*K.1^33,-1*K.1^13,-1*K.1^7,K.1^19,K.1^29,K.1^9,-1*K.1^19,-1*K.1^29,K.1^3,K.1^23,-1*K.1^33,K.1^9,-1*K.1^9,K.1^23,-1*K.1^23,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,K.1^13,-1*K.1^13,K.1^19,-1*K.1^19,-1*K.1,K.1,K.1^33,K.1^25,K.1^31,K.1^11,-1*K.1,-1*K.1^21,-1*K.1^27,K.1,K.1^21,K.1^27,-1*K.1^15,-1*K.1^5,-1*K.1^25,K.1^15,K.1^5,-1*K.1^31,K.1^6,K.1^4,K.1^32,-1*K.1^8,K.1^12,-1*K.1^6,K.1^16,K.1^32,-1*K.1^22,K.1^18,-1*K.1^8,K.1^6,K.1^4,K.1^14,K.1^14,-1*K.1^12,-1*K.1^18,-1*K.1^32,-1*K.1^20,-1*K.1^14,-1*K.1^4,-1*K.1^10,-1*K.1^6,K.1^26,-1*K.1^14,K.1^2,K.1^20,K.1^10,K.1^16,K.1^30,-1*K.1^16,-1*K.1^30,-1*K.1^2,K.1^30,-1*K.1^12,-1*K.1^20,-1*K.1^26,-1*K.1^24,K.1^22,K.1^22,K.1^12,K.1^8,-1*K.1^28,-1*K.1^18,K.1^18,K.1^24,-1*K.1^24,K.1^28,-1*K.1^26,K.1^10,-1*K.1^22,-1*K.1^4,K.1^24,K.1^28,-1*K.1^28,-1*K.1^16,K.1^20,-1*K.1^32,K.1^26,-1*K.1^2,-1*K.1^10,K.1^8,K.1^2,-1*K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,-1*K.1^14,-1*K.1^10,-1*K.1^30,-1*K.1^22,K.1^12,K.1^8,K.1^32,-1*K.1^18,K.1^4,K.1^16,-1*K.1^6,K.1^28,K.1^24,K.1^20,-1*K.1^26,-1*K.1^2,-1*K.1^18,-1*K.1^28,K.1^26,-1*K.1^24,-1*K.1^28,-1*K.1^4,K.1^30,K.1^2,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^8,-1*K.1^12,-1*K.1^20,-1*K.1^16,K.1^18,-1*K.1^20,-1*K.1^2,K.1^20,K.1^8,K.1^6,K.1^22,K.1^6,-1*K.1^24,-1*K.1^8,K.1^26,K.1^10,K.1^4,K.1^2,K.1^18,-1*K.1^32,-1*K.1^16,-1*K.1^32,K.1^14,K.1^30,K.1^14,-1*K.1^22,-1*K.1^6,K.1^24,K.1^22,K.1^16,K.1^32,-1*K.1^14,-1*K.1^30,K.1^12,K.1^28,-1*K.1^10,-1*K.1^26,K.1^24,K.1^4,K.1^20,K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^26,-1*K.1^18,-1*K.1^14,K.1^16,-1*K.1^22,K.1^12,K.1^28,-1*K.1^30,-1*K.1^2,K.1^32,K.1^28,K.1^24,K.1^2,-1*K.1^8,-1*K.1^24,K.1^6,-1*K.1^12,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,K.1^32,-1*K.1^26,K.1^16,K.1^28,-1*K.1^14,K.1^30,-1*K.1^20,-1*K.1^32,-1*K.1^32,-1*K.1^2,K.1^10,K.1^14,-1*K.1^28,K.1^26,K.1^8,K.1^18,-1*K.1^14,-1*K.1^18,K.1^4,-1*K.1^12,-1*K.1^4,K.1^2,-1*K.1^10,-1*K.1^6,K.1^26,K.1^16,K.1^30,-1*K.1^20,K.1^6,-1*K.1^24,-1*K.1^8,K.1^22,-1*K.1^22,K.1^20,K.1^24,-1*K.1^18,K.1^12,-1*K.1^4,-1*K.1^10,K.1^32,K.1^12,-1*K.1^30,K.1^14,-1*K.1^16,-1*K.1^16,-1*K.1^26,-1*K.1^22,-1*K.1^30,K.1^10,K.1^20,-1*K.1^28,K.1^22,K.1^18,K.1^2,K.1^20,K.1^4,-1*K.1^30,K.1^12,-1*K.1^28,K.1^18,-1*K.1^16,K.1^14,K.1^6,-1*K.1^8,K.1^26,K.1^10,-1*K.1^32,-1*K.1^4,K.1^30,K.1^18,-1*K.1^12,-1*K.1^16,K.1^14,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^20,-1*K.1^32,K.1^30,K.1^22,-1*K.1^24,K.1^10,-1*K.1^10,K.1^32,-1*K.1^6,-1*K.1^2,K.1^28,-1*K.1^22,K.1^8,-1*K.1^18,K.1^2,K.1^24,-1*K.1^8,K.1^16,-1*K.1^28,-1*K.1^26,-1*K.1^20,-1*K.1^14,K.1^22,-1*K.1^24,K.1^26,K.1^23,-1*K.1^25,K.1^25,K.1^7,-1*K.1^7,K.1^29,-1*K.1^29,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,K.1^3,-1*K.1^3,K.1^33,-1*K.1^33,K.1^9,-1*K.1^9,-1*K.1^3,K.1^11,K.1^33,-1*K.1^21,K.1^7,-1*K.1^33,K.1^21,-1*K.1^7,-1*K.1^15,K.1^29,-1*K.1^25,K.1^15,-1*K.1^29,K.1^3,-1*K.1^11,K.1,-1*K.1^27,K.1^27,-1*K.1^11,K.1^11,K.1^23,-1*K.1^23,-1*K.1^5,K.1^5,-1*K.1^31,K.1^31,-1*K.1^15,K.1^15,K.1^19,-1*K.1^19,-1*K.1,-1*K.1^9,K.1^31,-1*K.1^23,K.1^25,K.1^13,-1*K.1^27,K.1,-1*K.1^13,K.1^27,K.1^19,-1*K.1^5,K.1^9,-1*K.1^19,K.1^5,-1*K.1^31,K.1^23,-1*K.1,-1*K.1^9,-1*K.1^27,K.1^27,K.1^7,-1*K.1^7,K.1^23,-1*K.1^23,K.1^13,-1*K.1^13,-1*K.1^31,K.1^31,K.1^3,-1*K.1^3,K.1^19,-1*K.1^19,K.1^9,-1*K.1,K.1^31,K.1^11,K.1^25,-1*K.1^21,-1*K.1^27,K.1,K.1^21,K.1^27,-1*K.1^15,-1*K.1^5,-1*K.1^25,K.1^15,K.1^5,-1*K.1^31,-1*K.1^11,K.1,-1*K.1^25,K.1^25,-1*K.1^11,K.1^11,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,-1*K.1^21,K.1^21,-1*K.1^15,K.1^15,K.1^33,-1*K.1^33,-1*K.1,-1*K.1^9,-1*K.1^3,-1*K.1^23,K.1^33,K.1^13,K.1^7,-1*K.1^33,-1*K.1^13,-1*K.1^7,K.1^19,K.1^29,K.1^9,-1*K.1^19,-1*K.1^29,K.1^3,-1*K.1^28,-1*K.1^30,-1*K.1^2,K.1^26,-1*K.1^22,K.1^28,-1*K.1^18,-1*K.1^2,K.1^12,-1*K.1^16,K.1^26,-1*K.1^28,-1*K.1^30,-1*K.1^20,-1*K.1^20,K.1^22,K.1^16,K.1^2,K.1^14,K.1^20,K.1^30,K.1^24,K.1^28,-1*K.1^8,K.1^20,-1*K.1^32,-1*K.1^14,-1*K.1^24,-1*K.1^18,-1*K.1^4,K.1^18,K.1^4,K.1^32,-1*K.1^4,K.1^22,K.1^14,K.1^8,K.1^10,-1*K.1^12,-1*K.1^12,-1*K.1^22,-1*K.1^26,K.1^6,K.1^16,-1*K.1^16,-1*K.1^10,K.1^10,-1*K.1^6,K.1^8,-1*K.1^24,K.1^12,K.1^30,-1*K.1^10,-1*K.1^6,K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^8,K.1^32,K.1^24,-1*K.1^26,-1*K.1^32,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,-1*K.1^18,K.1^8,K.1^24,K.1^4,-1*K.1^30,K.1^20,K.1^12,K.1^28,-1*K.1^10,-1*K.1^6,K.1^32,-1*K.1^2,-1*K.1^26,K.1^16,-1*K.1^14,-1*K.1^22,K.1^28,K.1^2,K.1^14,K.1^26,K.1^2,K.1^10,-1*K.1^24,K.1^22,K.1^10,K.1^30,-1*K.1^8,-1*K.1^20,K.1^30,-1*K.1^16,K.1^6,-1*K.1^28,-1*K.1^16,-1*K.1^22,K.1^16,K.1^20,-1*K.1^32,-1*K.1^4,-1*K.1^32,K.1^26,-1*K.1^20,K.1^14,-1*K.1^8,-1*K.1^10,K.1^22,-1*K.1^28,-1*K.1^12,K.1^6,-1*K.1^12,K.1^18,-1*K.1^24,K.1^18,K.1^4,K.1^32,-1*K.1^26,-1*K.1^4,-1*K.1^6,K.1^12,-1*K.1^18,K.1^24,-1*K.1^30,-1*K.1^2,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^10,K.1^16,K.1^20,K.1^32,K.1^8,-1*K.1^14,K.1^28,-1*K.1^18,-1*K.1^6,K.1^4,-1*K.1^30,-1*K.1^2,K.1^24,-1*K.1^22,K.1^12,-1*K.1^2,-1*K.1^26,K.1^22,-1*K.1^20,K.1^26,-1*K.1^32,K.1^30,-1*K.1^10,K.1^32,-1*K.1^22,K.1^20,K.1^12,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^24,-1*K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^22,-1*K.1^8,K.1^18,K.1^2,K.1^14,K.1^20,-1*K.1^28,-1*K.1^18,K.1^28,-1*K.1^10,K.1^30,K.1^10,K.1^22,K.1^8,K.1^32,K.1^14,-1*K.1^6,-1*K.1^24,-1*K.1^16,-1*K.1^32,K.1^26,-1*K.1^20,-1*K.1^4,K.1^4,K.1^16,-1*K.1^26,K.1^28,-1*K.1^30,K.1^10,K.1^8,K.1^12,-1*K.1^30,K.1^24,K.1^18,K.1^6,K.1^6,-1*K.1^14,K.1^4,K.1^24,-1*K.1^8,K.1^16,K.1^2,-1*K.1^4,-1*K.1^28,K.1^22,K.1^16,-1*K.1^10,K.1^24,-1*K.1^30,K.1^2,-1*K.1^28,K.1^6,K.1^18,-1*K.1^32,-1*K.1^20,K.1^14,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^24,-1*K.1^28,K.1^30,K.1^6,K.1^18,K.1^30,K.1^10,-1*K.1^32,-1*K.1^16,-1*K.1^12,-1*K.1^24,-1*K.1^4,K.1^26,-1*K.1^8,K.1^8,K.1^12,K.1^32,-1*K.1^22,-1*K.1^2,K.1^4,K.1^20,K.1^28,K.1^22,-1*K.1^26,-1*K.1^20,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^16,-1*K.1^18,-1*K.1^4,K.1^26,K.1^14,-1*K.1^15,-1*K.1^3,K.1^3,K.1^9,-1*K.1^9,-1*K.1^13,K.1^13,K.1^7,-1*K.1^7,-1*K.1^27,K.1^27,K.1^33,-1*K.1^33,K.1^23,-1*K.1^23,K.1^31,-1*K.1^31,-1*K.1^33,-1*K.1^19,K.1^23,-1*K.1^27,K.1^9,-1*K.1^23,K.1^27,-1*K.1^9,-1*K.1^29,-1*K.1^13,-1*K.1^3,K.1^29,K.1^13,K.1^33,K.1^19,K.1^11,-1*K.1^25,K.1^25,K.1^19,-1*K.1^19,-1*K.1^15,K.1^15,K.1^21,-1*K.1^21,-1*K.1,K.1,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,-1*K.1^11,-1*K.1^31,K.1,K.1^15,K.1^3,K.1^7,-1*K.1^25,K.1^11,-1*K.1^7,K.1^25,K.1^5,K.1^21,K.1^31,-1*K.1^5,-1*K.1^21,-1*K.1,-1*K.1^15,-1*K.1^11,-1*K.1^31,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,-1*K.1^15,K.1^15,K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^33,-1*K.1^33,K.1^5,-1*K.1^5,K.1^31,-1*K.1^11,K.1,-1*K.1^19,K.1^3,-1*K.1^27,-1*K.1^25,K.1^11,K.1^27,K.1^25,-1*K.1^29,K.1^21,-1*K.1^3,K.1^29,-1*K.1^21,-1*K.1,K.1^19,K.1^11,-1*K.1^3,K.1^3,K.1^19,-1*K.1^19,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,-1*K.1^27,K.1^27,-1*K.1^29,K.1^29,K.1^23,-1*K.1^23,-1*K.1^11,-1*K.1^31,-1*K.1^33,K.1^15,K.1^23,K.1^7,K.1^9,-1*K.1^23,-1*K.1^7,-1*K.1^9,K.1^5,-1*K.1^13,K.1^31,-1*K.1^5,K.1^13,K.1^33,K.1^2,K.1^24,-1*K.1^22,K.1^14,K.1^4,-1*K.1^2,K.1^28,-1*K.1^22,-1*K.1^30,K.1^6,K.1^14,K.1^2,K.1^24,-1*K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^6,K.1^22,K.1^18,K.1^16,-1*K.1^24,-1*K.1^26,-1*K.1^2,-1*K.1^20,K.1^16,-1*K.1^12,-1*K.1^18,K.1^26,K.1^28,K.1^10,-1*K.1^28,-1*K.1^10,K.1^12,K.1^10,-1*K.1^4,K.1^18,K.1^20,-1*K.1^8,K.1^30,K.1^30,K.1^4,-1*K.1^14,-1*K.1^32,-1*K.1^6,K.1^6,K.1^8,-1*K.1^8,K.1^32,K.1^20,K.1^26,-1*K.1^30,-1*K.1^24,K.1^8,K.1^32,-1*K.1^32,-1*K.1^28,-1*K.1^18,K.1^22,-1*K.1^20,K.1^12,-1*K.1^26,-1*K.1^14,-1*K.1^12,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,K.1^16,-1*K.1^26,-1*K.1^10,-1*K.1^30,K.1^4,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^24,K.1^28,-1*K.1^2,K.1^32,K.1^8,-1*K.1^18,K.1^20,K.1^12,-1*K.1^6,-1*K.1^32,-1*K.1^20,-1*K.1^8,-1*K.1^32,-1*K.1^24,K.1^10,-1*K.1^12,-1*K.1^24,-1*K.1^4,K.1^26,K.1^14,-1*K.1^4,K.1^18,-1*K.1^28,K.1^6,K.1^18,K.1^12,-1*K.1^18,-1*K.1^14,K.1^2,K.1^30,K.1^2,-1*K.1^8,K.1^14,-1*K.1^20,K.1^26,K.1^24,-1*K.1^12,K.1^6,K.1^22,-1*K.1^28,K.1^22,-1*K.1^16,K.1^10,-1*K.1^16,-1*K.1^30,-1*K.1^2,K.1^8,K.1^30,K.1^28,-1*K.1^22,K.1^16,-1*K.1^10,K.1^4,K.1^32,-1*K.1^26,K.1^20,K.1^8,K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^26,K.1^20,-1*K.1^6,K.1^16,K.1^28,-1*K.1^30,K.1^4,K.1^32,-1*K.1^10,K.1^12,-1*K.1^22,K.1^32,K.1^8,-1*K.1^12,K.1^14,-1*K.1^8,K.1^2,-1*K.1^4,K.1^24,-1*K.1^2,K.1^12,-1*K.1^14,-1*K.1^22,K.1^20,K.1^28,K.1^32,K.1^16,K.1^10,K.1^18,K.1^22,K.1^22,K.1^12,K.1^26,-1*K.1^16,-1*K.1^32,-1*K.1^20,-1*K.1^14,K.1^6,K.1^16,-1*K.1^6,K.1^24,-1*K.1^4,-1*K.1^24,-1*K.1^12,-1*K.1^26,-1*K.1^2,-1*K.1^20,K.1^28,K.1^10,K.1^18,K.1^2,-1*K.1^8,K.1^14,K.1^30,-1*K.1^30,-1*K.1^18,K.1^8,-1*K.1^6,K.1^4,-1*K.1^24,-1*K.1^26,-1*K.1^22,K.1^4,-1*K.1^10,-1*K.1^16,-1*K.1^28,-1*K.1^28,K.1^20,-1*K.1^30,-1*K.1^10,K.1^26,-1*K.1^18,-1*K.1^32,K.1^30,K.1^6,-1*K.1^12,-1*K.1^18,K.1^24,-1*K.1^10,K.1^4,-1*K.1^32,K.1^6,-1*K.1^28,-1*K.1^16,K.1^2,K.1^14,-1*K.1^20,K.1^26,K.1^22,-1*K.1^24,K.1^10,K.1^6,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^4,-1*K.1^24,K.1^2,K.1^18,K.1^22,K.1^10,K.1^30,-1*K.1^8,K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^12,K.1^32,-1*K.1^30,-1*K.1^14,-1*K.1^6,-1*K.1^12,K.1^8,K.1^14,K.1^28,-1*K.1^32,K.1^20,K.1^18,K.1^16,K.1^30,-1*K.1^8,-1*K.1^20,K.1^19,K.1^31,-1*K.1^31,-1*K.1^25,K.1^25,K.1^21,-1*K.1^21,-1*K.1^27,K.1^27,K.1^7,-1*K.1^7,-1*K.1,K.1,-1*K.1^11,K.1^11,-1*K.1^3,K.1^3,K.1,K.1^15,-1*K.1^11,K.1^7,-1*K.1^25,K.1^11,-1*K.1^7,K.1^25,K.1^5,K.1^21,K.1^31,-1*K.1^5,-1*K.1^21,-1*K.1,-1*K.1^15,-1*K.1^23,K.1^9,-1*K.1^9,-1*K.1^15,K.1^15,K.1^19,-1*K.1^19,-1*K.1^13,K.1^13,K.1^33,-1*K.1^33,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,K.1^23,K.1^3,-1*K.1^33,-1*K.1^19,-1*K.1^31,-1*K.1^27,K.1^9,-1*K.1^23,K.1^27,-1*K.1^9,-1*K.1^29,-1*K.1^13,-1*K.1^3,K.1^29,K.1^13,K.1^33,K.1^19,K.1^23,K.1^3,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,K.1^19,-1*K.1^19,-1*K.1^27,K.1^27,K.1^33,-1*K.1^33,-1*K.1,K.1,-1*K.1^29,K.1^29,-1*K.1^3,K.1^23,-1*K.1^33,K.1^15,-1*K.1^31,K.1^7,K.1^9,-1*K.1^23,-1*K.1^7,-1*K.1^9,K.1^5,-1*K.1^13,K.1^31,-1*K.1^5,K.1^13,K.1^33,-1*K.1^15,-1*K.1^23,K.1^31,-1*K.1^31,-1*K.1^15,K.1^15,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,K.1^7,-1*K.1^7,K.1^5,-1*K.1^5,-1*K.1^11,K.1^11,K.1^23,K.1^3,K.1,-1*K.1^19,-1*K.1^11,-1*K.1^27,-1*K.1^25,K.1^11,K.1^27,K.1^25,-1*K.1^29,K.1^21,-1*K.1^3,K.1^29,-1*K.1^21,-1*K.1,-1*K.1^32,-1*K.1^10,K.1^12,-1*K.1^20,-1*K.1^30,K.1^32,-1*K.1^6,K.1^12,K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^32,-1*K.1^10,K.1^18,K.1^18,K.1^30,K.1^28,-1*K.1^12,-1*K.1^16,-1*K.1^18,K.1^10,K.1^8,K.1^32,K.1^14,-1*K.1^18,K.1^22,K.1^16,-1*K.1^8,-1*K.1^6,-1*K.1^24,K.1^6,K.1^24,-1*K.1^22,-1*K.1^24,K.1^30,-1*K.1^16,-1*K.1^14,K.1^26,-1*K.1^4,-1*K.1^4,-1*K.1^30,K.1^20,K.1^2,K.1^28,-1*K.1^28,-1*K.1^26,K.1^26,-1*K.1^2,-1*K.1^14,-1*K.1^8,K.1^4,K.1^10,-1*K.1^26,-1*K.1^2,K.1^2,K.1^6,K.1^16,-1*K.1^12,K.1^14,-1*K.1^22,K.1^8,K.1^20,K.1^22,K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,K.1^16,-1*K.1^26,-1*K.1^10,-1*K.1^30,K.1^4,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^24,K.1^28,-1*K.1^2,K.1^32,K.1^8,-1*K.1^18,K.1^20,K.1^12,-1*K.1^6,-1*K.1^32,-1*K.1^20,-1*K.1^8,-1*K.1^32,-1*K.1^24,K.1^10,-1*K.1^12,-1*K.1^24,-1*K.1^4,K.1^26,K.1^14,-1*K.1^4,K.1^18,-1*K.1^28,K.1^6,K.1^18,K.1^12,-1*K.1^18,-1*K.1^14,K.1^2,K.1^30,K.1^2,-1*K.1^8,K.1^14,-1*K.1^20,K.1^26,K.1^24,-1*K.1^12,K.1^6,K.1^22,-1*K.1^28,K.1^22,-1*K.1^16,K.1^10,-1*K.1^16,-1*K.1^30,-1*K.1^2,K.1^8,K.1^30,K.1^28,-1*K.1^22,K.1^16,-1*K.1^10,K.1^4,K.1^32,-1*K.1^26,K.1^20,K.1^8,K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^26,K.1^20,-1*K.1^6,K.1^16,K.1^28,-1*K.1^30,K.1^4,K.1^32,-1*K.1^10,K.1^12,-1*K.1^22,K.1^32,K.1^8,-1*K.1^12,K.1^14,-1*K.1^8,K.1^2,-1*K.1^4,K.1^24,-1*K.1^2,K.1^12,-1*K.1^14,-1*K.1^22,K.1^20,K.1^28,K.1^32,K.1^16,K.1^10,K.1^18,K.1^22,K.1^22,K.1^12,K.1^26,-1*K.1^16,-1*K.1^32,-1*K.1^20,-1*K.1^14,K.1^6,K.1^16,-1*K.1^6,K.1^24,-1*K.1^4,-1*K.1^24,-1*K.1^12,-1*K.1^26,-1*K.1^2,-1*K.1^20,K.1^28,K.1^10,K.1^18,K.1^2,-1*K.1^8,K.1^14,K.1^30,-1*K.1^30,-1*K.1^18,K.1^8,-1*K.1^6,K.1^4,-1*K.1^24,-1*K.1^26,-1*K.1^22,K.1^4,-1*K.1^10,-1*K.1^16,-1*K.1^28,-1*K.1^28,K.1^20,-1*K.1^30,-1*K.1^10,K.1^26,-1*K.1^18,-1*K.1^32,K.1^30,K.1^6,-1*K.1^12,-1*K.1^18,K.1^24,-1*K.1^10,K.1^4,-1*K.1^32,K.1^6,-1*K.1^28,-1*K.1^16,K.1^2,K.1^14,-1*K.1^20,K.1^26,K.1^22,-1*K.1^24,K.1^10,K.1^6,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^4,-1*K.1^24,K.1^2,K.1^18,K.1^22,K.1^10,K.1^30,-1*K.1^8,K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^12,K.1^32,-1*K.1^30,-1*K.1^14,-1*K.1^6,-1*K.1^12,K.1^8,K.1^14,K.1^28,-1*K.1^32,K.1^20,K.1^18,K.1^16,K.1^30,-1*K.1^8,-1*K.1^20,-1*K.1^19,-1*K.1^31,K.1^31,K.1^25,-1*K.1^25,-1*K.1^21,K.1^21,K.1^27,-1*K.1^27,-1*K.1^7,K.1^7,K.1,-1*K.1,K.1^11,-1*K.1^11,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^15,K.1^11,-1*K.1^7,K.1^25,-1*K.1^11,K.1^7,-1*K.1^25,-1*K.1^5,-1*K.1^21,-1*K.1^31,K.1^5,K.1^21,K.1,K.1^15,K.1^23,-1*K.1^9,K.1^9,K.1^15,-1*K.1^15,-1*K.1^19,K.1^19,K.1^13,-1*K.1^13,-1*K.1^33,K.1^33,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,-1*K.1^23,-1*K.1^3,K.1^33,K.1^19,K.1^31,K.1^27,-1*K.1^9,K.1^23,-1*K.1^27,K.1^9,K.1^29,K.1^13,K.1^3,-1*K.1^29,-1*K.1^13,-1*K.1^33,-1*K.1^19,-1*K.1^23,-1*K.1^3,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,-1*K.1^19,K.1^19,K.1^27,-1*K.1^27,-1*K.1^33,K.1^33,K.1,-1*K.1,K.1^29,-1*K.1^29,K.1^3,-1*K.1^23,K.1^33,-1*K.1^15,K.1^31,-1*K.1^7,-1*K.1^9,K.1^23,K.1^7,K.1^9,-1*K.1^5,K.1^13,-1*K.1^31,K.1^5,-1*K.1^13,-1*K.1^33,K.1^15,K.1^23,-1*K.1^31,K.1^31,K.1^15,-1*K.1^15,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,-1*K.1^7,K.1^7,-1*K.1^5,K.1^5,K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^3,-1*K.1,K.1^19,K.1^11,K.1^27,K.1^25,-1*K.1^11,-1*K.1^27,-1*K.1^25,K.1^29,-1*K.1^21,K.1^3,-1*K.1^29,K.1^21,K.1,-1*K.1^32,-1*K.1^10,K.1^12,-1*K.1^20,-1*K.1^30,K.1^32,-1*K.1^6,K.1^12,K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^32,-1*K.1^10,K.1^18,K.1^18,K.1^30,K.1^28,-1*K.1^12,-1*K.1^16,-1*K.1^18,K.1^10,K.1^8,K.1^32,K.1^14,-1*K.1^18,K.1^22,K.1^16,-1*K.1^8,-1*K.1^6,-1*K.1^24,K.1^6,K.1^24,-1*K.1^22,-1*K.1^24,K.1^30,-1*K.1^16,-1*K.1^14,K.1^26,-1*K.1^4,-1*K.1^4,-1*K.1^30,K.1^20,K.1^2,K.1^28,-1*K.1^28,-1*K.1^26,K.1^26,-1*K.1^2,-1*K.1^14,-1*K.1^8,K.1^4,K.1^10,-1*K.1^26,-1*K.1^2,K.1^2,K.1^6,K.1^16,-1*K.1^12,K.1^14,-1*K.1^22,K.1^8,K.1^20,K.1^22,K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,-1*K.1^18,K.1^8,K.1^24,K.1^4,-1*K.1^30,K.1^20,K.1^12,K.1^28,-1*K.1^10,-1*K.1^6,K.1^32,-1*K.1^2,-1*K.1^26,K.1^16,-1*K.1^14,-1*K.1^22,K.1^28,K.1^2,K.1^14,K.1^26,K.1^2,K.1^10,-1*K.1^24,K.1^22,K.1^10,K.1^30,-1*K.1^8,-1*K.1^20,K.1^30,-1*K.1^16,K.1^6,-1*K.1^28,-1*K.1^16,-1*K.1^22,K.1^16,K.1^20,-1*K.1^32,-1*K.1^4,-1*K.1^32,K.1^26,-1*K.1^20,K.1^14,-1*K.1^8,-1*K.1^10,K.1^22,-1*K.1^28,-1*K.1^12,K.1^6,-1*K.1^12,K.1^18,-1*K.1^24,K.1^18,K.1^4,K.1^32,-1*K.1^26,-1*K.1^4,-1*K.1^6,K.1^12,-1*K.1^18,K.1^24,-1*K.1^30,-1*K.1^2,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^10,K.1^16,K.1^20,K.1^32,K.1^8,-1*K.1^14,K.1^28,-1*K.1^18,-1*K.1^6,K.1^4,-1*K.1^30,-1*K.1^2,K.1^24,-1*K.1^22,K.1^12,-1*K.1^2,-1*K.1^26,K.1^22,-1*K.1^20,K.1^26,-1*K.1^32,K.1^30,-1*K.1^10,K.1^32,-1*K.1^22,K.1^20,K.1^12,-1*K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^24,-1*K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^22,-1*K.1^8,K.1^18,K.1^2,K.1^14,K.1^20,-1*K.1^28,-1*K.1^18,K.1^28,-1*K.1^10,K.1^30,K.1^10,K.1^22,K.1^8,K.1^32,K.1^14,-1*K.1^6,-1*K.1^24,-1*K.1^16,-1*K.1^32,K.1^26,-1*K.1^20,-1*K.1^4,K.1^4,K.1^16,-1*K.1^26,K.1^28,-1*K.1^30,K.1^10,K.1^8,K.1^12,-1*K.1^30,K.1^24,K.1^18,K.1^6,K.1^6,-1*K.1^14,K.1^4,K.1^24,-1*K.1^8,K.1^16,K.1^2,-1*K.1^4,-1*K.1^28,K.1^22,K.1^16,-1*K.1^10,K.1^24,-1*K.1^30,K.1^2,-1*K.1^28,K.1^6,K.1^18,-1*K.1^32,-1*K.1^20,K.1^14,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^24,-1*K.1^28,K.1^30,K.1^6,K.1^18,K.1^30,K.1^10,-1*K.1^32,-1*K.1^16,-1*K.1^12,-1*K.1^24,-1*K.1^4,K.1^26,-1*K.1^8,K.1^8,K.1^12,K.1^32,-1*K.1^22,-1*K.1^2,K.1^4,K.1^20,K.1^28,K.1^22,-1*K.1^26,-1*K.1^20,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^16,-1*K.1^18,-1*K.1^4,K.1^26,K.1^14,K.1^15,K.1^3,-1*K.1^3,-1*K.1^9,K.1^9,K.1^13,-1*K.1^13,-1*K.1^7,K.1^7,K.1^27,-1*K.1^27,-1*K.1^33,K.1^33,-1*K.1^23,K.1^23,-1*K.1^31,K.1^31,K.1^33,K.1^19,-1*K.1^23,K.1^27,-1*K.1^9,K.1^23,-1*K.1^27,K.1^9,K.1^29,K.1^13,K.1^3,-1*K.1^29,-1*K.1^13,-1*K.1^33,-1*K.1^19,-1*K.1^11,K.1^25,-1*K.1^25,-1*K.1^19,K.1^19,K.1^15,-1*K.1^15,-1*K.1^21,K.1^21,K.1,-1*K.1,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,K.1^11,K.1^31,-1*K.1,-1*K.1^15,-1*K.1^3,-1*K.1^7,K.1^25,-1*K.1^11,K.1^7,-1*K.1^25,-1*K.1^5,-1*K.1^21,-1*K.1^31,K.1^5,K.1^21,K.1,K.1^15,K.1^11,K.1^31,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,K.1^15,-1*K.1^15,-1*K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^33,K.1^33,-1*K.1^5,K.1^5,-1*K.1^31,K.1^11,-1*K.1,K.1^19,-1*K.1^3,K.1^27,K.1^25,-1*K.1^11,-1*K.1^27,-1*K.1^25,K.1^29,-1*K.1^21,K.1^3,-1*K.1^29,K.1^21,K.1,-1*K.1^19,-1*K.1^11,K.1^3,-1*K.1^3,-1*K.1^19,K.1^19,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,K.1^27,-1*K.1^27,K.1^29,-1*K.1^29,-1*K.1^23,K.1^23,K.1^11,K.1^31,K.1^33,-1*K.1^15,-1*K.1^23,-1*K.1^7,-1*K.1^9,K.1^23,K.1^7,K.1^9,-1*K.1^5,K.1^13,-1*K.1^31,K.1^5,-1*K.1^13,-1*K.1^33,K.1^2,K.1^24,-1*K.1^22,K.1^14,K.1^4,-1*K.1^2,K.1^28,-1*K.1^22,-1*K.1^30,K.1^6,K.1^14,K.1^2,K.1^24,-1*K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^6,K.1^22,K.1^18,K.1^16,-1*K.1^24,-1*K.1^26,-1*K.1^2,-1*K.1^20,K.1^16,-1*K.1^12,-1*K.1^18,K.1^26,K.1^28,K.1^10,-1*K.1^28,-1*K.1^10,K.1^12,K.1^10,-1*K.1^4,K.1^18,K.1^20,-1*K.1^8,K.1^30,K.1^30,K.1^4,-1*K.1^14,-1*K.1^32,-1*K.1^6,K.1^6,K.1^8,-1*K.1^8,K.1^32,K.1^20,K.1^26,-1*K.1^30,-1*K.1^24,K.1^8,K.1^32,-1*K.1^32,-1*K.1^28,-1*K.1^18,K.1^22,-1*K.1^20,K.1^12,-1*K.1^26,-1*K.1^14,-1*K.1^12,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,-1*K.1^22,-1*K.1^6,-1*K.1^18,K.1^20,-1*K.1^14,K.1^32,-1*K.1^26,K.1^4,K.1^16,-1*K.1^30,K.1^24,-1*K.1^10,K.1^28,K.1^12,-1*K.1^2,K.1^8,K.1^4,K.1^10,K.1^2,-1*K.1^28,K.1^10,-1*K.1^16,K.1^18,-1*K.1^8,-1*K.1^16,K.1^14,K.1^6,-1*K.1^32,K.1^14,-1*K.1^12,K.1^30,-1*K.1^4,-1*K.1^12,K.1^8,K.1^12,K.1^32,-1*K.1^24,-1*K.1^20,-1*K.1^24,-1*K.1^28,-1*K.1^32,K.1^2,K.1^6,K.1^16,-1*K.1^8,-1*K.1^4,K.1^26,K.1^30,K.1^26,K.1^22,K.1^18,K.1^22,K.1^20,K.1^24,K.1^28,-1*K.1^20,-1*K.1^30,-1*K.1^26,-1*K.1^22,-1*K.1^18,-1*K.1^14,-1*K.1^10,-1*K.1^6,-1*K.1^2,K.1^28,K.1^16,K.1^12,K.1^32,K.1^24,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^22,-1*K.1^30,K.1^20,-1*K.1^14,-1*K.1^10,-1*K.1^18,K.1^8,-1*K.1^26,-1*K.1^10,K.1^28,-1*K.1^8,-1*K.1^32,-1*K.1^28,-1*K.1^24,K.1^14,K.1^16,K.1^24,K.1^8,K.1^32,-1*K.1^26,-1*K.1^2,-1*K.1^30,-1*K.1^10,-1*K.1^22,K.1^18,-1*K.1^12,K.1^26,K.1^26,K.1^8,K.1^6,K.1^22,K.1^10,K.1^2,K.1^32,-1*K.1^4,-1*K.1^22,K.1^4,K.1^16,K.1^14,-1*K.1^16,-1*K.1^8,-1*K.1^6,K.1^24,K.1^2,-1*K.1^30,K.1^18,-1*K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^32,-1*K.1^20,K.1^20,K.1^12,K.1^28,K.1^4,-1*K.1^14,-1*K.1^16,-1*K.1^6,-1*K.1^26,-1*K.1^14,-1*K.1^18,K.1^22,K.1^30,K.1^30,-1*K.1^2,K.1^20,-1*K.1^18,K.1^6,K.1^12,K.1^10,-1*K.1^20,-1*K.1^4,-1*K.1^8,K.1^12,K.1^16,-1*K.1^18,-1*K.1^14,K.1^10,-1*K.1^4,K.1^30,K.1^22,-1*K.1^24,-1*K.1^32,K.1^2,K.1^6,K.1^26,-1*K.1^16,K.1^18,-1*K.1^4,K.1^14,K.1^30,K.1^22,K.1^14,-1*K.1^16,-1*K.1^24,-1*K.1^12,K.1^26,K.1^18,-1*K.1^20,-1*K.1^28,K.1^6,-1*K.1^6,-1*K.1^26,K.1^24,K.1^8,-1*K.1^10,K.1^20,K.1^32,K.1^4,-1*K.1^8,K.1^28,-1*K.1^32,-1*K.1^30,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^22,-1*K.1^20,-1*K.1^28,K.1^2,-1*K.1^7,-1*K.1^15,K.1^15,-1*K.1^11,K.1^11,K.1^31,-1*K.1^31,-1*K.1,K.1,K.1^33,-1*K.1^33,K.1^29,-1*K.1^29,-1*K.1^13,K.1^13,K.1^19,-1*K.1^19,-1*K.1^29,-1*K.1^27,-1*K.1^13,K.1^33,-1*K.1^11,K.1^13,-1*K.1^33,K.1^11,-1*K.1^9,K.1^31,-1*K.1^15,K.1^9,-1*K.1^31,K.1^29,K.1^27,-1*K.1^21,K.1^23,-1*K.1^23,K.1^27,-1*K.1^27,-1*K.1^7,K.1^7,-1*K.1^3,K.1^3,-1*K.1^5,K.1^5,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,K.1^21,-1*K.1^19,K.1^5,K.1^7,K.1^15,-1*K.1,K.1^23,-1*K.1^21,K.1,-1*K.1^23,K.1^25,-1*K.1^3,K.1^19,-1*K.1^25,K.1^3,-1*K.1^5,-1*K.1^7,K.1^21,-1*K.1^19,K.1^23,-1*K.1^23,-1*K.1^11,K.1^11,-1*K.1^7,K.1^7,-1*K.1,K.1,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,K.1^25,-1*K.1^25,K.1^19,K.1^21,K.1^5,-1*K.1^27,K.1^15,K.1^33,K.1^23,-1*K.1^21,-1*K.1^33,-1*K.1^23,-1*K.1^9,-1*K.1^3,-1*K.1^15,K.1^9,K.1^3,-1*K.1^5,K.1^27,-1*K.1^21,-1*K.1^15,K.1^15,K.1^27,-1*K.1^27,K.1^31,-1*K.1^31,-1*K.1^3,K.1^3,K.1^33,-1*K.1^33,-1*K.1^9,K.1^9,-1*K.1^13,K.1^13,K.1^21,-1*K.1^19,-1*K.1^29,K.1^7,-1*K.1^13,-1*K.1,-1*K.1^11,K.1^13,K.1,K.1^11,K.1^25,K.1^31,K.1^19,-1*K.1^25,-1*K.1^31,K.1^29,K.1^10,-1*K.1^18,K.1^8,K.1^2,K.1^20,-1*K.1^10,K.1^4,K.1^8,-1*K.1^14,K.1^30,K.1^2,K.1^10,-1*K.1^18,-1*K.1^12,-1*K.1^12,-1*K.1^20,-1*K.1^30,-1*K.1^8,K.1^22,K.1^12,K.1^18,K.1^28,-1*K.1^10,-1*K.1^32,K.1^12,K.1^26,-1*K.1^22,-1*K.1^28,K.1^4,-1*K.1^16,-1*K.1^4,K.1^16,-1*K.1^26,-1*K.1^16,-1*K.1^20,K.1^22,K.1^32,K.1^6,K.1^14,K.1^14,K.1^20,-1*K.1^2,-1*K.1^24,-1*K.1^30,K.1^30,-1*K.1^6,K.1^6,K.1^24,K.1^32,-1*K.1^28,-1*K.1^14,K.1^18,-1*K.1^6,K.1^24,-1*K.1^24,-1*K.1^4,-1*K.1^22,-1*K.1^8,-1*K.1^32,-1*K.1^26,K.1^28,-1*K.1^2,K.1^26,K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,K.1^12,K.1^28,K.1^16,-1*K.1^14,K.1^20,-1*K.1^2,K.1^8,-1*K.1^30,-1*K.1^18,K.1^4,-1*K.1^10,K.1^24,-1*K.1^6,-1*K.1^22,K.1^32,-1*K.1^26,-1*K.1^30,-1*K.1^24,-1*K.1^32,K.1^6,-1*K.1^24,K.1^18,-1*K.1^16,K.1^26,K.1^18,-1*K.1^20,-1*K.1^28,K.1^2,-1*K.1^20,K.1^22,-1*K.1^4,K.1^30,K.1^22,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^10,K.1^14,K.1^10,K.1^6,K.1^2,-1*K.1^32,-1*K.1^28,-1*K.1^18,K.1^26,K.1^30,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^14,-1*K.1^10,-1*K.1^6,K.1^14,K.1^4,K.1^8,K.1^12,K.1^16,K.1^20,K.1^24,K.1^28,K.1^32,-1*K.1^6,-1*K.1^18,-1*K.1^22,-1*K.1^2,-1*K.1^10,K.1^28,K.1^32,-1*K.1^30,K.1^12,K.1^4,-1*K.1^14,K.1^20,K.1^24,K.1^16,-1*K.1^26,K.1^8,K.1^24,-1*K.1^6,K.1^26,K.1^2,K.1^6,K.1^10,-1*K.1^20,-1*K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^2,K.1^8,K.1^32,K.1^4,K.1^24,K.1^12,-1*K.1^16,K.1^22,-1*K.1^8,-1*K.1^8,-1*K.1^26,-1*K.1^28,-1*K.1^12,-1*K.1^24,-1*K.1^32,-1*K.1^2,K.1^30,K.1^12,-1*K.1^30,-1*K.1^18,-1*K.1^20,K.1^18,K.1^26,K.1^28,-1*K.1^10,-1*K.1^32,K.1^4,-1*K.1^16,K.1^22,K.1^10,K.1^6,K.1^2,K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^30,K.1^20,K.1^18,K.1^28,K.1^8,K.1^20,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^32,-1*K.1^14,K.1^16,-1*K.1^28,-1*K.1^22,-1*K.1^24,K.1^14,K.1^30,K.1^26,-1*K.1^22,-1*K.1^18,K.1^16,K.1^20,-1*K.1^24,K.1^30,-1*K.1^4,-1*K.1^12,K.1^10,K.1^2,-1*K.1^32,-1*K.1^28,-1*K.1^8,K.1^18,-1*K.1^16,K.1^30,-1*K.1^20,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^18,K.1^10,K.1^22,-1*K.1^8,-1*K.1^16,K.1^14,K.1^6,-1*K.1^28,K.1^28,K.1^8,-1*K.1^10,-1*K.1^26,K.1^24,-1*K.1^14,-1*K.1^2,-1*K.1^30,K.1^26,-1*K.1^6,K.1^2,K.1^4,-1*K.1^24,K.1^32,K.1^22,K.1^12,K.1^14,K.1^6,-1*K.1^32,K.1^27,K.1^19,-1*K.1^19,K.1^23,-1*K.1^23,-1*K.1^3,K.1^3,K.1^33,-1*K.1^33,-1*K.1,K.1,-1*K.1^5,K.1^5,K.1^21,-1*K.1^21,-1*K.1^15,K.1^15,K.1^5,K.1^7,K.1^21,-1*K.1,K.1^23,-1*K.1^21,K.1,-1*K.1^23,K.1^25,-1*K.1^3,K.1^19,-1*K.1^25,K.1^3,-1*K.1^5,-1*K.1^7,K.1^13,-1*K.1^11,K.1^11,-1*K.1^7,K.1^7,K.1^27,-1*K.1^27,K.1^31,-1*K.1^31,K.1^29,-1*K.1^29,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,-1*K.1^13,K.1^15,-1*K.1^29,-1*K.1^27,-1*K.1^19,K.1^33,-1*K.1^11,K.1^13,-1*K.1^33,K.1^11,-1*K.1^9,K.1^31,-1*K.1^15,K.1^9,-1*K.1^31,K.1^29,K.1^27,-1*K.1^13,K.1^15,-1*K.1^11,K.1^11,K.1^23,-1*K.1^23,K.1^27,-1*K.1^27,K.1^33,-1*K.1^33,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,-1*K.1^9,K.1^9,-1*K.1^15,-1*K.1^13,-1*K.1^29,K.1^7,-1*K.1^19,-1*K.1,-1*K.1^11,K.1^13,K.1,K.1^11,K.1^25,K.1^31,K.1^19,-1*K.1^25,-1*K.1^31,K.1^29,-1*K.1^7,K.1^13,K.1^19,-1*K.1^19,-1*K.1^7,K.1^7,-1*K.1^3,K.1^3,K.1^31,-1*K.1^31,-1*K.1,K.1,K.1^25,-1*K.1^25,K.1^21,-1*K.1^21,-1*K.1^13,K.1^15,K.1^5,-1*K.1^27,K.1^21,K.1^33,K.1^23,-1*K.1^21,-1*K.1^33,-1*K.1^23,-1*K.1^9,-1*K.1^3,-1*K.1^15,K.1^9,K.1^3,-1*K.1^5,-1*K.1^24,K.1^16,-1*K.1^26,-1*K.1^32,-1*K.1^14,K.1^24,-1*K.1^30,-1*K.1^26,K.1^20,-1*K.1^4,-1*K.1^32,-1*K.1^24,K.1^16,K.1^22,K.1^22,K.1^14,K.1^4,K.1^26,-1*K.1^12,-1*K.1^22,-1*K.1^16,-1*K.1^6,K.1^24,K.1^2,-1*K.1^22,-1*K.1^8,K.1^12,K.1^6,-1*K.1^30,K.1^18,K.1^30,-1*K.1^18,K.1^8,K.1^18,K.1^14,-1*K.1^12,-1*K.1^2,-1*K.1^28,-1*K.1^20,-1*K.1^20,-1*K.1^14,K.1^32,K.1^10,K.1^4,-1*K.1^4,K.1^28,-1*K.1^28,-1*K.1^10,-1*K.1^2,K.1^6,K.1^20,-1*K.1^16,K.1^28,-1*K.1^10,K.1^10,K.1^30,K.1^12,K.1^26,K.1^2,K.1^8,-1*K.1^6,K.1^32,-1*K.1^8,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,K.1^12,K.1^28,K.1^16,-1*K.1^14,K.1^20,-1*K.1^2,K.1^8,-1*K.1^30,-1*K.1^18,K.1^4,-1*K.1^10,K.1^24,-1*K.1^6,-1*K.1^22,K.1^32,-1*K.1^26,-1*K.1^30,-1*K.1^24,-1*K.1^32,K.1^6,-1*K.1^24,K.1^18,-1*K.1^16,K.1^26,K.1^18,-1*K.1^20,-1*K.1^28,K.1^2,-1*K.1^20,K.1^22,-1*K.1^4,K.1^30,K.1^22,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^10,K.1^14,K.1^10,K.1^6,K.1^2,-1*K.1^32,-1*K.1^28,-1*K.1^18,K.1^26,K.1^30,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^14,-1*K.1^10,-1*K.1^6,K.1^14,K.1^4,K.1^8,K.1^12,K.1^16,K.1^20,K.1^24,K.1^28,K.1^32,-1*K.1^6,-1*K.1^18,-1*K.1^22,-1*K.1^2,-1*K.1^10,K.1^28,K.1^32,-1*K.1^30,K.1^12,K.1^4,-1*K.1^14,K.1^20,K.1^24,K.1^16,-1*K.1^26,K.1^8,K.1^24,-1*K.1^6,K.1^26,K.1^2,K.1^6,K.1^10,-1*K.1^20,-1*K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^2,K.1^8,K.1^32,K.1^4,K.1^24,K.1^12,-1*K.1^16,K.1^22,-1*K.1^8,-1*K.1^8,-1*K.1^26,-1*K.1^28,-1*K.1^12,-1*K.1^24,-1*K.1^32,-1*K.1^2,K.1^30,K.1^12,-1*K.1^30,-1*K.1^18,-1*K.1^20,K.1^18,K.1^26,K.1^28,-1*K.1^10,-1*K.1^32,K.1^4,-1*K.1^16,K.1^22,K.1^10,K.1^6,K.1^2,K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^30,K.1^20,K.1^18,K.1^28,K.1^8,K.1^20,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^32,-1*K.1^14,K.1^16,-1*K.1^28,-1*K.1^22,-1*K.1^24,K.1^14,K.1^30,K.1^26,-1*K.1^22,-1*K.1^18,K.1^16,K.1^20,-1*K.1^24,K.1^30,-1*K.1^4,-1*K.1^12,K.1^10,K.1^2,-1*K.1^32,-1*K.1^28,-1*K.1^8,K.1^18,-1*K.1^16,K.1^30,-1*K.1^20,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^18,K.1^10,K.1^22,-1*K.1^8,-1*K.1^16,K.1^14,K.1^6,-1*K.1^28,K.1^28,K.1^8,-1*K.1^10,-1*K.1^26,K.1^24,-1*K.1^14,-1*K.1^2,-1*K.1^30,K.1^26,-1*K.1^6,K.1^2,K.1^4,-1*K.1^24,K.1^32,K.1^22,K.1^12,K.1^14,K.1^6,-1*K.1^32,-1*K.1^27,-1*K.1^19,K.1^19,-1*K.1^23,K.1^23,K.1^3,-1*K.1^3,-1*K.1^33,K.1^33,K.1,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^21,K.1^21,K.1^15,-1*K.1^15,-1*K.1^5,-1*K.1^7,-1*K.1^21,K.1,-1*K.1^23,K.1^21,-1*K.1,K.1^23,-1*K.1^25,K.1^3,-1*K.1^19,K.1^25,-1*K.1^3,K.1^5,K.1^7,-1*K.1^13,K.1^11,-1*K.1^11,K.1^7,-1*K.1^7,-1*K.1^27,K.1^27,-1*K.1^31,K.1^31,-1*K.1^29,K.1^29,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,K.1^13,-1*K.1^15,K.1^29,K.1^27,K.1^19,-1*K.1^33,K.1^11,-1*K.1^13,K.1^33,-1*K.1^11,K.1^9,-1*K.1^31,K.1^15,-1*K.1^9,K.1^31,-1*K.1^29,-1*K.1^27,K.1^13,-1*K.1^15,K.1^11,-1*K.1^11,-1*K.1^23,K.1^23,-1*K.1^27,K.1^27,-1*K.1^33,K.1^33,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,K.1^9,-1*K.1^9,K.1^15,K.1^13,K.1^29,-1*K.1^7,K.1^19,K.1,K.1^11,-1*K.1^13,-1*K.1,-1*K.1^11,-1*K.1^25,-1*K.1^31,-1*K.1^19,K.1^25,K.1^31,-1*K.1^29,K.1^7,-1*K.1^13,-1*K.1^19,K.1^19,K.1^7,-1*K.1^7,K.1^3,-1*K.1^3,-1*K.1^31,K.1^31,K.1,-1*K.1,-1*K.1^25,K.1^25,-1*K.1^21,K.1^21,K.1^13,-1*K.1^15,-1*K.1^5,K.1^27,-1*K.1^21,-1*K.1^33,-1*K.1^23,K.1^21,K.1^33,K.1^23,K.1^9,K.1^3,K.1^15,-1*K.1^9,-1*K.1^3,K.1^5,-1*K.1^24,K.1^16,-1*K.1^26,-1*K.1^32,-1*K.1^14,K.1^24,-1*K.1^30,-1*K.1^26,K.1^20,-1*K.1^4,-1*K.1^32,-1*K.1^24,K.1^16,K.1^22,K.1^22,K.1^14,K.1^4,K.1^26,-1*K.1^12,-1*K.1^22,-1*K.1^16,-1*K.1^6,K.1^24,K.1^2,-1*K.1^22,-1*K.1^8,K.1^12,K.1^6,-1*K.1^30,K.1^18,K.1^30,-1*K.1^18,K.1^8,K.1^18,K.1^14,-1*K.1^12,-1*K.1^2,-1*K.1^28,-1*K.1^20,-1*K.1^20,-1*K.1^14,K.1^32,K.1^10,K.1^4,-1*K.1^4,K.1^28,-1*K.1^28,-1*K.1^10,-1*K.1^2,K.1^6,K.1^20,-1*K.1^16,K.1^28,-1*K.1^10,K.1^10,K.1^30,K.1^12,K.1^26,K.1^2,K.1^8,-1*K.1^6,K.1^32,-1*K.1^8,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,-1*K.1^22,-1*K.1^6,-1*K.1^18,K.1^20,-1*K.1^14,K.1^32,-1*K.1^26,K.1^4,K.1^16,-1*K.1^30,K.1^24,-1*K.1^10,K.1^28,K.1^12,-1*K.1^2,K.1^8,K.1^4,K.1^10,K.1^2,-1*K.1^28,K.1^10,-1*K.1^16,K.1^18,-1*K.1^8,-1*K.1^16,K.1^14,K.1^6,-1*K.1^32,K.1^14,-1*K.1^12,K.1^30,-1*K.1^4,-1*K.1^12,K.1^8,K.1^12,K.1^32,-1*K.1^24,-1*K.1^20,-1*K.1^24,-1*K.1^28,-1*K.1^32,K.1^2,K.1^6,K.1^16,-1*K.1^8,-1*K.1^4,K.1^26,K.1^30,K.1^26,K.1^22,K.1^18,K.1^22,K.1^20,K.1^24,K.1^28,-1*K.1^20,-1*K.1^30,-1*K.1^26,-1*K.1^22,-1*K.1^18,-1*K.1^14,-1*K.1^10,-1*K.1^6,-1*K.1^2,K.1^28,K.1^16,K.1^12,K.1^32,K.1^24,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^22,-1*K.1^30,K.1^20,-1*K.1^14,-1*K.1^10,-1*K.1^18,K.1^8,-1*K.1^26,-1*K.1^10,K.1^28,-1*K.1^8,-1*K.1^32,-1*K.1^28,-1*K.1^24,K.1^14,K.1^16,K.1^24,K.1^8,K.1^32,-1*K.1^26,-1*K.1^2,-1*K.1^30,-1*K.1^10,-1*K.1^22,K.1^18,-1*K.1^12,K.1^26,K.1^26,K.1^8,K.1^6,K.1^22,K.1^10,K.1^2,K.1^32,-1*K.1^4,-1*K.1^22,K.1^4,K.1^16,K.1^14,-1*K.1^16,-1*K.1^8,-1*K.1^6,K.1^24,K.1^2,-1*K.1^30,K.1^18,-1*K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^32,-1*K.1^20,K.1^20,K.1^12,K.1^28,K.1^4,-1*K.1^14,-1*K.1^16,-1*K.1^6,-1*K.1^26,-1*K.1^14,-1*K.1^18,K.1^22,K.1^30,K.1^30,-1*K.1^2,K.1^20,-1*K.1^18,K.1^6,K.1^12,K.1^10,-1*K.1^20,-1*K.1^4,-1*K.1^8,K.1^12,K.1^16,-1*K.1^18,-1*K.1^14,K.1^10,-1*K.1^4,K.1^30,K.1^22,-1*K.1^24,-1*K.1^32,K.1^2,K.1^6,K.1^26,-1*K.1^16,K.1^18,-1*K.1^4,K.1^14,K.1^30,K.1^22,K.1^14,-1*K.1^16,-1*K.1^24,-1*K.1^12,K.1^26,K.1^18,-1*K.1^20,-1*K.1^28,K.1^6,-1*K.1^6,-1*K.1^26,K.1^24,K.1^8,-1*K.1^10,K.1^20,K.1^32,K.1^4,-1*K.1^8,K.1^28,-1*K.1^32,-1*K.1^30,K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^22,-1*K.1^20,-1*K.1^28,K.1^2,K.1^7,K.1^15,-1*K.1^15,K.1^11,-1*K.1^11,-1*K.1^31,K.1^31,K.1,-1*K.1,-1*K.1^33,K.1^33,-1*K.1^29,K.1^29,K.1^13,-1*K.1^13,-1*K.1^19,K.1^19,K.1^29,K.1^27,K.1^13,-1*K.1^33,K.1^11,-1*K.1^13,K.1^33,-1*K.1^11,K.1^9,-1*K.1^31,K.1^15,-1*K.1^9,K.1^31,-1*K.1^29,-1*K.1^27,K.1^21,-1*K.1^23,K.1^23,-1*K.1^27,K.1^27,K.1^7,-1*K.1^7,K.1^3,-1*K.1^3,K.1^5,-1*K.1^5,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,-1*K.1^21,K.1^19,-1*K.1^5,-1*K.1^7,-1*K.1^15,K.1,-1*K.1^23,K.1^21,-1*K.1,K.1^23,-1*K.1^25,K.1^3,-1*K.1^19,K.1^25,-1*K.1^3,K.1^5,K.1^7,-1*K.1^21,K.1^19,-1*K.1^23,K.1^23,K.1^11,-1*K.1^11,K.1^7,-1*K.1^7,K.1,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,-1*K.1^25,K.1^25,-1*K.1^19,-1*K.1^21,-1*K.1^5,K.1^27,-1*K.1^15,-1*K.1^33,-1*K.1^23,K.1^21,K.1^33,K.1^23,K.1^9,K.1^3,K.1^15,-1*K.1^9,-1*K.1^3,K.1^5,-1*K.1^27,K.1^21,K.1^15,-1*K.1^15,-1*K.1^27,K.1^27,-1*K.1^31,K.1^31,K.1^3,-1*K.1^3,-1*K.1^33,K.1^33,K.1^9,-1*K.1^9,K.1^13,-1*K.1^13,-1*K.1^21,K.1^19,K.1^29,-1*K.1^7,K.1^13,K.1,K.1^11,-1*K.1^13,-1*K.1,-1*K.1^11,-1*K.1^25,-1*K.1^31,-1*K.1^19,K.1^25,K.1^31,-1*K.1^29,K.1^10,-1*K.1^18,K.1^8,K.1^2,K.1^20,-1*K.1^10,K.1^4,K.1^8,-1*K.1^14,K.1^30,K.1^2,K.1^10,-1*K.1^18,-1*K.1^12,-1*K.1^12,-1*K.1^20,-1*K.1^30,-1*K.1^8,K.1^22,K.1^12,K.1^18,K.1^28,-1*K.1^10,-1*K.1^32,K.1^12,K.1^26,-1*K.1^22,-1*K.1^28,K.1^4,-1*K.1^16,-1*K.1^4,K.1^16,-1*K.1^26,-1*K.1^16,-1*K.1^20,K.1^22,K.1^32,K.1^6,K.1^14,K.1^14,K.1^20,-1*K.1^2,-1*K.1^24,-1*K.1^30,K.1^30,-1*K.1^6,K.1^6,K.1^24,K.1^32,-1*K.1^28,-1*K.1^14,K.1^18,-1*K.1^6,K.1^24,-1*K.1^24,-1*K.1^4,-1*K.1^22,-1*K.1^8,-1*K.1^32,-1*K.1^26,K.1^28,-1*K.1^2,K.1^26,K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,-1*K.1^26,K.1^4,K.1^12,-1*K.1^2,K.1^32,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^22,K.1^20,K.1^16,-1*K.1^18,-1*K.1^30,K.1^8,K.1^24,K.1^28,-1*K.1^14,K.1^18,-1*K.1^24,K.1^30,K.1^18,K.1^22,-1*K.1^12,-1*K.1^28,K.1^22,-1*K.1^32,-1*K.1^4,K.1^10,-1*K.1^32,-1*K.1^8,-1*K.1^20,K.1^14,-1*K.1^8,K.1^28,K.1^8,-1*K.1^10,-1*K.1^16,K.1^2,-1*K.1^16,K.1^30,K.1^10,-1*K.1^24,-1*K.1^4,-1*K.1^22,-1*K.1^28,K.1^14,K.1^6,-1*K.1^20,K.1^6,K.1^26,-1*K.1^12,K.1^26,-1*K.1^2,K.1^16,-1*K.1^30,K.1^2,K.1^20,-1*K.1^6,-1*K.1^26,K.1^12,K.1^32,-1*K.1^18,K.1^4,K.1^24,-1*K.1^30,-1*K.1^22,K.1^8,-1*K.1^10,K.1^16,K.1^4,K.1^24,-1*K.1^14,-1*K.1^26,K.1^20,-1*K.1^2,K.1^32,-1*K.1^18,K.1^12,K.1^28,-1*K.1^6,-1*K.1^18,-1*K.1^30,-1*K.1^28,K.1^10,K.1^30,-1*K.1^16,-1*K.1^32,-1*K.1^22,K.1^16,K.1^28,-1*K.1^10,-1*K.1^6,K.1^24,K.1^20,-1*K.1^18,-1*K.1^26,-1*K.1^12,-1*K.1^8,K.1^6,K.1^6,K.1^28,-1*K.1^4,K.1^26,K.1^18,-1*K.1^24,-1*K.1^10,K.1^14,-1*K.1^26,-1*K.1^14,-1*K.1^22,-1*K.1^32,K.1^22,-1*K.1^28,K.1^4,K.1^16,-1*K.1^24,K.1^20,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^30,K.1^10,K.1^2,-1*K.1^2,K.1^8,-1*K.1^30,-1*K.1^14,K.1^32,K.1^22,K.1^4,-1*K.1^6,K.1^32,K.1^12,K.1^26,-1*K.1^20,-1*K.1^20,K.1^24,-1*K.1^2,K.1^12,-1*K.1^4,K.1^8,K.1^18,K.1^2,K.1^14,-1*K.1^28,K.1^8,-1*K.1^22,K.1^12,K.1^32,K.1^18,K.1^14,-1*K.1^20,K.1^26,-1*K.1^16,K.1^10,-1*K.1^24,-1*K.1^4,K.1^6,K.1^22,-1*K.1^12,K.1^14,-1*K.1^32,-1*K.1^20,K.1^26,-1*K.1^32,K.1^22,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^12,K.1^2,K.1^30,-1*K.1^4,K.1^4,-1*K.1^6,K.1^16,K.1^28,-1*K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^28,-1*K.1^30,K.1^10,K.1^20,K.1^18,K.1^24,-1*K.1^8,-1*K.1^26,K.1^2,K.1^30,-1*K.1^24,K.1^33,-1*K.1^27,K.1^27,K.1^13,-1*K.1^13,K.1^15,-1*K.1^15,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,K.1^25,-1*K.1^25,K.1^3,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1^25,K.1,K.1^3,K.1^5,K.1^13,-1*K.1^3,-1*K.1^5,-1*K.1^13,K.1^23,K.1^15,-1*K.1^27,-1*K.1^23,-1*K.1^15,K.1^25,-1*K.1,K.1^31,-1*K.1^21,K.1^21,-1*K.1,K.1,K.1^33,-1*K.1^33,-1*K.1^19,K.1^19,-1*K.1^9,K.1^9,K.1^23,-1*K.1^23,-1*K.1^11,K.1^11,-1*K.1^31,-1*K.1^7,K.1^9,-1*K.1^33,K.1^27,-1*K.1^29,-1*K.1^21,K.1^31,K.1^29,K.1^21,-1*K.1^11,-1*K.1^19,K.1^7,K.1^11,K.1^19,-1*K.1^9,K.1^33,-1*K.1^31,-1*K.1^7,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,K.1^33,-1*K.1^33,-1*K.1^29,K.1^29,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,-1*K.1^11,K.1^11,K.1^7,-1*K.1^31,K.1^9,K.1,K.1^27,K.1^5,-1*K.1^21,K.1^31,-1*K.1^5,K.1^21,K.1^23,-1*K.1^19,-1*K.1^27,-1*K.1^23,K.1^19,-1*K.1^9,-1*K.1,K.1^31,-1*K.1^27,K.1^27,-1*K.1,K.1,K.1^15,-1*K.1^15,-1*K.1^19,K.1^19,K.1^5,-1*K.1^5,K.1^23,-1*K.1^23,K.1^3,-1*K.1^3,-1*K.1^31,-1*K.1^7,-1*K.1^25,-1*K.1^33,K.1^3,-1*K.1^29,K.1^13,-1*K.1^3,K.1^29,-1*K.1^13,-1*K.1^11,K.1^15,K.1^7,K.1^11,-1*K.1^15,K.1^25,K.1^18,K.1^12,K.1^28,-1*K.1^24,-1*K.1^2,-1*K.1^18,-1*K.1^14,K.1^28,K.1^32,-1*K.1^20,-1*K.1^24,K.1^18,K.1^12,-1*K.1^8,-1*K.1^8,K.1^2,K.1^20,-1*K.1^28,K.1^26,K.1^8,-1*K.1^12,-1*K.1^30,-1*K.1^18,K.1^10,K.1^8,K.1^6,-1*K.1^26,K.1^30,-1*K.1^14,K.1^22,K.1^14,-1*K.1^22,-1*K.1^6,K.1^22,K.1^2,K.1^26,-1*K.1^10,-1*K.1^4,-1*K.1^32,-1*K.1^32,-1*K.1^2,K.1^24,-1*K.1^16,K.1^20,-1*K.1^20,K.1^4,-1*K.1^4,K.1^16,-1*K.1^10,K.1^30,K.1^32,-1*K.1^12,K.1^4,K.1^16,-1*K.1^16,K.1^14,-1*K.1^26,-1*K.1^28,K.1^10,-1*K.1^6,-1*K.1^30,K.1^24,K.1^6,-1*K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,K.1^8,-1*K.1^30,-1*K.1^22,K.1^32,-1*K.1^2,K.1^24,K.1^28,K.1^20,K.1^12,-1*K.1^14,-1*K.1^18,K.1^16,K.1^4,-1*K.1^26,-1*K.1^10,-1*K.1^6,K.1^20,-1*K.1^16,K.1^10,-1*K.1^4,-1*K.1^16,-1*K.1^12,K.1^22,K.1^6,-1*K.1^12,K.1^2,K.1^30,-1*K.1^24,K.1^2,K.1^26,K.1^14,-1*K.1^20,K.1^26,-1*K.1^6,-1*K.1^26,K.1^24,K.1^18,-1*K.1^32,K.1^18,-1*K.1^4,-1*K.1^24,K.1^10,K.1^30,K.1^12,K.1^6,-1*K.1^20,-1*K.1^28,K.1^14,-1*K.1^28,-1*K.1^8,K.1^22,-1*K.1^8,K.1^32,-1*K.1^18,K.1^4,-1*K.1^32,-1*K.1^14,K.1^28,K.1^8,-1*K.1^22,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^10,K.1^4,K.1^12,-1*K.1^26,K.1^24,-1*K.1^18,-1*K.1^30,-1*K.1^10,K.1^20,K.1^8,-1*K.1^14,K.1^32,-1*K.1^2,K.1^16,-1*K.1^22,-1*K.1^6,K.1^28,K.1^16,K.1^4,K.1^6,-1*K.1^24,-1*K.1^4,K.1^18,K.1^2,K.1^12,-1*K.1^18,-1*K.1^6,K.1^24,K.1^28,-1*K.1^10,-1*K.1^14,K.1^16,K.1^8,K.1^22,K.1^26,-1*K.1^28,-1*K.1^28,-1*K.1^6,K.1^30,-1*K.1^8,-1*K.1^16,K.1^10,K.1^24,-1*K.1^20,K.1^8,K.1^20,K.1^12,K.1^2,-1*K.1^12,K.1^6,-1*K.1^30,-1*K.1^18,K.1^10,-1*K.1^14,K.1^22,K.1^26,K.1^18,-1*K.1^4,-1*K.1^24,-1*K.1^32,K.1^32,-1*K.1^26,K.1^4,K.1^20,-1*K.1^2,-1*K.1^12,-1*K.1^30,K.1^28,-1*K.1^2,-1*K.1^22,-1*K.1^8,K.1^14,K.1^14,-1*K.1^10,K.1^32,-1*K.1^22,K.1^30,-1*K.1^26,-1*K.1^16,-1*K.1^32,-1*K.1^20,K.1^6,-1*K.1^26,K.1^12,-1*K.1^22,-1*K.1^2,-1*K.1^16,-1*K.1^20,K.1^14,-1*K.1^8,K.1^18,-1*K.1^24,K.1^10,K.1^30,-1*K.1^28,-1*K.1^12,K.1^22,-1*K.1^20,K.1^2,K.1^14,-1*K.1^8,K.1^2,-1*K.1^12,K.1^18,K.1^26,-1*K.1^28,K.1^22,-1*K.1^32,-1*K.1^4,K.1^30,-1*K.1^30,K.1^28,-1*K.1^18,-1*K.1^6,K.1^16,K.1^32,K.1^24,K.1^20,K.1^6,K.1^4,-1*K.1^24,-1*K.1^14,-1*K.1^16,-1*K.1^10,K.1^26,K.1^8,-1*K.1^32,-1*K.1^4,K.1^10,-1*K.1,K.1^7,-1*K.1^7,-1*K.1^21,K.1^21,-1*K.1^19,K.1^19,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,-1*K.1^9,K.1^9,-1*K.1^31,K.1^31,-1*K.1^27,K.1^27,K.1^9,-1*K.1^33,-1*K.1^31,-1*K.1^29,-1*K.1^21,K.1^31,K.1^29,K.1^21,-1*K.1^11,-1*K.1^19,K.1^7,K.1^11,K.1^19,-1*K.1^9,K.1^33,-1*K.1^3,K.1^13,-1*K.1^13,K.1^33,-1*K.1^33,-1*K.1,K.1,K.1^15,-1*K.1^15,K.1^25,-1*K.1^25,-1*K.1^11,K.1^11,K.1^23,-1*K.1^23,K.1^3,K.1^27,-1*K.1^25,K.1,-1*K.1^7,K.1^5,K.1^13,-1*K.1^3,-1*K.1^5,-1*K.1^13,K.1^23,K.1^15,-1*K.1^27,-1*K.1^23,-1*K.1^15,K.1^25,-1*K.1,K.1^3,K.1^27,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,-1*K.1,K.1,K.1^5,-1*K.1^5,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,K.1^23,-1*K.1^23,-1*K.1^27,K.1^3,-1*K.1^25,-1*K.1^33,-1*K.1^7,-1*K.1^29,K.1^13,-1*K.1^3,K.1^29,-1*K.1^13,-1*K.1^11,K.1^15,K.1^7,K.1^11,-1*K.1^15,K.1^25,K.1^33,-1*K.1^3,K.1^7,-1*K.1^7,K.1^33,-1*K.1^33,-1*K.1^19,K.1^19,K.1^15,-1*K.1^15,-1*K.1^29,K.1^29,-1*K.1^11,K.1^11,-1*K.1^31,K.1^31,K.1^3,K.1^27,K.1^9,K.1,-1*K.1^31,K.1^5,-1*K.1^21,K.1^31,-1*K.1^5,K.1^21,K.1^23,-1*K.1^19,-1*K.1^27,-1*K.1^23,K.1^19,-1*K.1^9,-1*K.1^16,-1*K.1^22,-1*K.1^6,K.1^10,K.1^32,K.1^16,K.1^20,-1*K.1^6,-1*K.1^2,K.1^14,K.1^10,-1*K.1^16,-1*K.1^22,K.1^26,K.1^26,-1*K.1^32,-1*K.1^14,K.1^6,-1*K.1^8,-1*K.1^26,K.1^22,K.1^4,K.1^16,-1*K.1^24,-1*K.1^26,-1*K.1^28,K.1^8,-1*K.1^4,K.1^20,-1*K.1^12,-1*K.1^20,K.1^12,K.1^28,-1*K.1^12,-1*K.1^32,-1*K.1^8,K.1^24,K.1^30,K.1^2,K.1^2,K.1^32,-1*K.1^10,K.1^18,-1*K.1^14,K.1^14,-1*K.1^30,K.1^30,-1*K.1^18,K.1^24,-1*K.1^4,-1*K.1^2,K.1^22,-1*K.1^30,-1*K.1^18,K.1^18,-1*K.1^20,K.1^8,K.1^6,-1*K.1^24,K.1^28,K.1^4,-1*K.1^10,-1*K.1^28,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,K.1^8,-1*K.1^30,-1*K.1^22,K.1^32,-1*K.1^2,K.1^24,K.1^28,K.1^20,K.1^12,-1*K.1^14,-1*K.1^18,K.1^16,K.1^4,-1*K.1^26,-1*K.1^10,-1*K.1^6,K.1^20,-1*K.1^16,K.1^10,-1*K.1^4,-1*K.1^16,-1*K.1^12,K.1^22,K.1^6,-1*K.1^12,K.1^2,K.1^30,-1*K.1^24,K.1^2,K.1^26,K.1^14,-1*K.1^20,K.1^26,-1*K.1^6,-1*K.1^26,K.1^24,K.1^18,-1*K.1^32,K.1^18,-1*K.1^4,-1*K.1^24,K.1^10,K.1^30,K.1^12,K.1^6,-1*K.1^20,-1*K.1^28,K.1^14,-1*K.1^28,-1*K.1^8,K.1^22,-1*K.1^8,K.1^32,-1*K.1^18,K.1^4,-1*K.1^32,-1*K.1^14,K.1^28,K.1^8,-1*K.1^22,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^10,K.1^4,K.1^12,-1*K.1^26,K.1^24,-1*K.1^18,-1*K.1^30,-1*K.1^10,K.1^20,K.1^8,-1*K.1^14,K.1^32,-1*K.1^2,K.1^16,-1*K.1^22,-1*K.1^6,K.1^28,K.1^16,K.1^4,K.1^6,-1*K.1^24,-1*K.1^4,K.1^18,K.1^2,K.1^12,-1*K.1^18,-1*K.1^6,K.1^24,K.1^28,-1*K.1^10,-1*K.1^14,K.1^16,K.1^8,K.1^22,K.1^26,-1*K.1^28,-1*K.1^28,-1*K.1^6,K.1^30,-1*K.1^8,-1*K.1^16,K.1^10,K.1^24,-1*K.1^20,K.1^8,K.1^20,K.1^12,K.1^2,-1*K.1^12,K.1^6,-1*K.1^30,-1*K.1^18,K.1^10,-1*K.1^14,K.1^22,K.1^26,K.1^18,-1*K.1^4,-1*K.1^24,-1*K.1^32,K.1^32,-1*K.1^26,K.1^4,K.1^20,-1*K.1^2,-1*K.1^12,-1*K.1^30,K.1^28,-1*K.1^2,-1*K.1^22,-1*K.1^8,K.1^14,K.1^14,-1*K.1^10,K.1^32,-1*K.1^22,K.1^30,-1*K.1^26,-1*K.1^16,-1*K.1^32,-1*K.1^20,K.1^6,-1*K.1^26,K.1^12,-1*K.1^22,-1*K.1^2,-1*K.1^16,-1*K.1^20,K.1^14,-1*K.1^8,K.1^18,-1*K.1^24,K.1^10,K.1^30,-1*K.1^28,-1*K.1^12,K.1^22,-1*K.1^20,K.1^2,K.1^14,-1*K.1^8,K.1^2,-1*K.1^12,K.1^18,K.1^26,-1*K.1^28,K.1^22,-1*K.1^32,-1*K.1^4,K.1^30,-1*K.1^30,K.1^28,-1*K.1^18,-1*K.1^6,K.1^16,K.1^32,K.1^24,K.1^20,K.1^6,K.1^4,-1*K.1^24,-1*K.1^14,-1*K.1^16,-1*K.1^10,K.1^26,K.1^8,-1*K.1^32,-1*K.1^4,K.1^10,K.1,-1*K.1^7,K.1^7,K.1^21,-1*K.1^21,K.1^19,-1*K.1^19,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,K.1^9,-1*K.1^9,K.1^31,-1*K.1^31,K.1^27,-1*K.1^27,-1*K.1^9,K.1^33,K.1^31,K.1^29,K.1^21,-1*K.1^31,-1*K.1^29,-1*K.1^21,K.1^11,K.1^19,-1*K.1^7,-1*K.1^11,-1*K.1^19,K.1^9,-1*K.1^33,K.1^3,-1*K.1^13,K.1^13,-1*K.1^33,K.1^33,K.1,-1*K.1,-1*K.1^15,K.1^15,-1*K.1^25,K.1^25,K.1^11,-1*K.1^11,-1*K.1^23,K.1^23,-1*K.1^3,-1*K.1^27,K.1^25,-1*K.1,K.1^7,-1*K.1^5,-1*K.1^13,K.1^3,K.1^5,K.1^13,-1*K.1^23,-1*K.1^15,K.1^27,K.1^23,K.1^15,-1*K.1^25,K.1,-1*K.1^3,-1*K.1^27,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,K.1,-1*K.1,-1*K.1^5,K.1^5,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,-1*K.1^23,K.1^23,K.1^27,-1*K.1^3,K.1^25,K.1^33,K.1^7,K.1^29,-1*K.1^13,K.1^3,-1*K.1^29,K.1^13,K.1^11,-1*K.1^15,-1*K.1^7,-1*K.1^11,K.1^15,-1*K.1^25,-1*K.1^33,K.1^3,-1*K.1^7,K.1^7,-1*K.1^33,K.1^33,K.1^19,-1*K.1^19,-1*K.1^15,K.1^15,K.1^29,-1*K.1^29,K.1^11,-1*K.1^11,K.1^31,-1*K.1^31,-1*K.1^3,-1*K.1^27,-1*K.1^9,-1*K.1,K.1^31,-1*K.1^5,K.1^21,-1*K.1^31,K.1^5,-1*K.1^21,-1*K.1^23,K.1^19,K.1^27,K.1^23,-1*K.1^19,K.1^9,-1*K.1^16,-1*K.1^22,-1*K.1^6,K.1^10,K.1^32,K.1^16,K.1^20,-1*K.1^6,-1*K.1^2,K.1^14,K.1^10,-1*K.1^16,-1*K.1^22,K.1^26,K.1^26,-1*K.1^32,-1*K.1^14,K.1^6,-1*K.1^8,-1*K.1^26,K.1^22,K.1^4,K.1^16,-1*K.1^24,-1*K.1^26,-1*K.1^28,K.1^8,-1*K.1^4,K.1^20,-1*K.1^12,-1*K.1^20,K.1^12,K.1^28,-1*K.1^12,-1*K.1^32,-1*K.1^8,K.1^24,K.1^30,K.1^2,K.1^2,K.1^32,-1*K.1^10,K.1^18,-1*K.1^14,K.1^14,-1*K.1^30,K.1^30,-1*K.1^18,K.1^24,-1*K.1^4,-1*K.1^2,K.1^22,-1*K.1^30,-1*K.1^18,K.1^18,-1*K.1^20,K.1^8,K.1^6,-1*K.1^24,K.1^28,K.1^4,-1*K.1^10,-1*K.1^28,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,-1*K.1^26,K.1^4,K.1^12,-1*K.1^2,K.1^32,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^22,K.1^20,K.1^16,-1*K.1^18,-1*K.1^30,K.1^8,K.1^24,K.1^28,-1*K.1^14,K.1^18,-1*K.1^24,K.1^30,K.1^18,K.1^22,-1*K.1^12,-1*K.1^28,K.1^22,-1*K.1^32,-1*K.1^4,K.1^10,-1*K.1^32,-1*K.1^8,-1*K.1^20,K.1^14,-1*K.1^8,K.1^28,K.1^8,-1*K.1^10,-1*K.1^16,K.1^2,-1*K.1^16,K.1^30,K.1^10,-1*K.1^24,-1*K.1^4,-1*K.1^22,-1*K.1^28,K.1^14,K.1^6,-1*K.1^20,K.1^6,K.1^26,-1*K.1^12,K.1^26,-1*K.1^2,K.1^16,-1*K.1^30,K.1^2,K.1^20,-1*K.1^6,-1*K.1^26,K.1^12,K.1^32,-1*K.1^18,K.1^4,K.1^24,-1*K.1^30,-1*K.1^22,K.1^8,-1*K.1^10,K.1^16,K.1^4,K.1^24,-1*K.1^14,-1*K.1^26,K.1^20,-1*K.1^2,K.1^32,-1*K.1^18,K.1^12,K.1^28,-1*K.1^6,-1*K.1^18,-1*K.1^30,-1*K.1^28,K.1^10,K.1^30,-1*K.1^16,-1*K.1^32,-1*K.1^22,K.1^16,K.1^28,-1*K.1^10,-1*K.1^6,K.1^24,K.1^20,-1*K.1^18,-1*K.1^26,-1*K.1^12,-1*K.1^8,K.1^6,K.1^6,K.1^28,-1*K.1^4,K.1^26,K.1^18,-1*K.1^24,-1*K.1^10,K.1^14,-1*K.1^26,-1*K.1^14,-1*K.1^22,-1*K.1^32,K.1^22,-1*K.1^28,K.1^4,K.1^16,-1*K.1^24,K.1^20,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^30,K.1^10,K.1^2,-1*K.1^2,K.1^8,-1*K.1^30,-1*K.1^14,K.1^32,K.1^22,K.1^4,-1*K.1^6,K.1^32,K.1^12,K.1^26,-1*K.1^20,-1*K.1^20,K.1^24,-1*K.1^2,K.1^12,-1*K.1^4,K.1^8,K.1^18,K.1^2,K.1^14,-1*K.1^28,K.1^8,-1*K.1^22,K.1^12,K.1^32,K.1^18,K.1^14,-1*K.1^20,K.1^26,-1*K.1^16,K.1^10,-1*K.1^24,-1*K.1^4,K.1^6,K.1^22,-1*K.1^12,K.1^14,-1*K.1^32,-1*K.1^20,K.1^26,-1*K.1^32,K.1^22,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^12,K.1^2,K.1^30,-1*K.1^4,K.1^4,-1*K.1^6,K.1^16,K.1^28,-1*K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^28,-1*K.1^30,K.1^10,K.1^20,K.1^18,K.1^24,-1*K.1^8,-1*K.1^26,K.1^2,K.1^30,-1*K.1^24,-1*K.1^33,K.1^27,-1*K.1^27,-1*K.1^13,K.1^13,-1*K.1^15,K.1^15,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,-1*K.1^25,K.1^25,-1*K.1^3,K.1^3,-1*K.1^7,K.1^7,K.1^25,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^13,K.1^3,K.1^5,K.1^13,-1*K.1^23,-1*K.1^15,K.1^27,K.1^23,K.1^15,-1*K.1^25,K.1,-1*K.1^31,K.1^21,-1*K.1^21,K.1,-1*K.1,-1*K.1^33,K.1^33,K.1^19,-1*K.1^19,K.1^9,-1*K.1^9,-1*K.1^23,K.1^23,K.1^11,-1*K.1^11,K.1^31,K.1^7,-1*K.1^9,K.1^33,-1*K.1^27,K.1^29,K.1^21,-1*K.1^31,-1*K.1^29,-1*K.1^21,K.1^11,K.1^19,-1*K.1^7,-1*K.1^11,-1*K.1^19,K.1^9,-1*K.1^33,K.1^31,K.1^7,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,-1*K.1^33,K.1^33,K.1^29,-1*K.1^29,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,K.1^11,-1*K.1^11,-1*K.1^7,K.1^31,-1*K.1^9,-1*K.1,-1*K.1^27,-1*K.1^5,K.1^21,-1*K.1^31,K.1^5,-1*K.1^21,-1*K.1^23,K.1^19,K.1^27,K.1^23,-1*K.1^19,K.1^9,K.1,-1*K.1^31,K.1^27,-1*K.1^27,K.1,-1*K.1,-1*K.1^15,K.1^15,K.1^19,-1*K.1^19,-1*K.1^5,K.1^5,-1*K.1^23,K.1^23,-1*K.1^3,K.1^3,K.1^31,K.1^7,K.1^25,K.1^33,-1*K.1^3,K.1^29,-1*K.1^13,K.1^3,-1*K.1^29,K.1^13,K.1^11,-1*K.1^15,-1*K.1^7,-1*K.1^11,K.1^15,-1*K.1^25,K.1^18,K.1^12,K.1^28,-1*K.1^24,-1*K.1^2,-1*K.1^18,-1*K.1^14,K.1^28,K.1^32,-1*K.1^20,-1*K.1^24,K.1^18,K.1^12,-1*K.1^8,-1*K.1^8,K.1^2,K.1^20,-1*K.1^28,K.1^26,K.1^8,-1*K.1^12,-1*K.1^30,-1*K.1^18,K.1^10,K.1^8,K.1^6,-1*K.1^26,K.1^30,-1*K.1^14,K.1^22,K.1^14,-1*K.1^22,-1*K.1^6,K.1^22,K.1^2,K.1^26,-1*K.1^10,-1*K.1^4,-1*K.1^32,-1*K.1^32,-1*K.1^2,K.1^24,-1*K.1^16,K.1^20,-1*K.1^20,K.1^4,-1*K.1^4,K.1^16,-1*K.1^10,K.1^30,K.1^32,-1*K.1^12,K.1^4,K.1^16,-1*K.1^16,K.1^14,-1*K.1^26,-1*K.1^28,K.1^10,-1*K.1^6,-1*K.1^30,K.1^24,K.1^6,-1*K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,-1*K.1^30,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^16,-1*K.1^22,K.1^20,K.1^24,K.1^28,-1*K.1^10,K.1^8,-1*K.1^26,K.1^32,K.1^4,K.1^12,-1*K.1^14,K.1^24,K.1^26,-1*K.1^12,-1*K.1^32,K.1^26,-1*K.1^28,K.1^6,K.1^14,-1*K.1^28,-1*K.1^16,K.1^2,K.1^22,-1*K.1^16,-1*K.1^4,K.1^10,-1*K.1^24,-1*K.1^4,-1*K.1^14,K.1^4,-1*K.1^22,-1*K.1^8,K.1^18,-1*K.1^8,-1*K.1^32,K.1^22,-1*K.1^12,K.1^2,K.1^28,K.1^14,-1*K.1^24,-1*K.1^20,K.1^10,-1*K.1^20,K.1^30,K.1^6,K.1^30,-1*K.1^18,K.1^8,K.1^32,K.1^18,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^6,K.1^16,-1*K.1^26,-1*K.1^2,K.1^12,K.1^32,K.1^28,K.1^4,-1*K.1^22,K.1^8,-1*K.1^2,K.1^12,K.1^24,-1*K.1^30,-1*K.1^10,-1*K.1^18,K.1^16,-1*K.1^26,-1*K.1^6,-1*K.1^14,K.1^20,-1*K.1^26,K.1^32,K.1^14,K.1^22,-1*K.1^32,-1*K.1^8,-1*K.1^16,K.1^28,K.1^8,-1*K.1^14,-1*K.1^22,K.1^20,K.1^12,-1*K.1^10,-1*K.1^26,-1*K.1^30,K.1^6,-1*K.1^4,-1*K.1^20,-1*K.1^20,-1*K.1^14,K.1^2,K.1^30,K.1^26,-1*K.1^12,-1*K.1^22,-1*K.1^24,-1*K.1^30,K.1^24,K.1^28,-1*K.1^16,-1*K.1^28,K.1^14,-1*K.1^2,K.1^8,-1*K.1^12,-1*K.1^10,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^32,K.1^22,K.1^18,-1*K.1^18,K.1^4,K.1^32,K.1^24,K.1^16,-1*K.1^28,-1*K.1^2,K.1^20,K.1^16,-1*K.1^6,K.1^30,K.1^10,K.1^10,K.1^12,-1*K.1^18,-1*K.1^6,K.1^2,K.1^4,K.1^26,K.1^18,-1*K.1^24,K.1^14,K.1^4,K.1^28,-1*K.1^6,K.1^16,K.1^26,-1*K.1^24,K.1^10,K.1^30,-1*K.1^8,K.1^22,-1*K.1^12,K.1^2,-1*K.1^20,-1*K.1^28,K.1^6,-1*K.1^24,-1*K.1^16,K.1^10,K.1^30,-1*K.1^16,-1*K.1^28,-1*K.1^8,-1*K.1^4,-1*K.1^20,K.1^6,K.1^18,-1*K.1^32,K.1^2,-1*K.1^2,K.1^20,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^18,-1*K.1^22,K.1^24,K.1^14,K.1^32,K.1^22,-1*K.1^10,K.1^26,K.1^12,-1*K.1^4,-1*K.1^30,K.1^18,-1*K.1^32,-1*K.1^12,K.1^25,K.1^5,-1*K.1^5,-1*K.1^15,K.1^15,-1*K.1^33,K.1^33,K.1^23,-1*K.1^23,-1*K.1^11,K.1^11,K.1^21,-1*K.1^21,K.1^27,-1*K.1^27,-1*K.1^29,K.1^29,-1*K.1^21,K.1^9,K.1^27,-1*K.1^11,-1*K.1^15,-1*K.1^27,K.1^11,K.1^15,K.1^3,-1*K.1^33,K.1^5,-1*K.1^3,K.1^33,K.1^21,-1*K.1^9,K.1^7,K.1^19,-1*K.1^19,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,K.1,-1*K.1,-1*K.1^13,K.1^13,K.1^3,-1*K.1^3,-1*K.1^31,K.1^31,-1*K.1^7,K.1^29,K.1^13,-1*K.1^25,-1*K.1^5,K.1^23,K.1^19,K.1^7,-1*K.1^23,-1*K.1^19,-1*K.1^31,K.1,-1*K.1^29,K.1^31,-1*K.1,-1*K.1^13,K.1^25,-1*K.1^7,K.1^29,K.1^19,-1*K.1^19,-1*K.1^15,K.1^15,K.1^25,-1*K.1^25,K.1^23,-1*K.1^23,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,-1*K.1^31,K.1^31,-1*K.1^29,-1*K.1^7,K.1^13,K.1^9,-1*K.1^5,-1*K.1^11,K.1^19,K.1^7,K.1^11,-1*K.1^19,K.1^3,K.1,K.1^5,-1*K.1^3,-1*K.1,-1*K.1^13,-1*K.1^9,K.1^7,K.1^5,-1*K.1^5,-1*K.1^9,K.1^9,-1*K.1^33,K.1^33,K.1,-1*K.1,-1*K.1^11,K.1^11,K.1^3,-1*K.1^3,K.1^27,-1*K.1^27,-1*K.1^7,K.1^29,-1*K.1^21,-1*K.1^25,K.1^27,K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,K.1^15,-1*K.1^31,-1*K.1^33,-1*K.1^29,K.1^31,K.1^33,K.1^21,K.1^26,-1*K.1^6,-1*K.1^14,-1*K.1^12,-1*K.1^18,-1*K.1^26,K.1^24,-1*K.1^14,K.1^16,K.1^10,-1*K.1^12,K.1^26,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^18,-1*K.1^10,K.1^14,K.1^30,K.1^4,K.1^6,K.1^32,-1*K.1^26,K.1^22,K.1^4,-1*K.1^20,-1*K.1^30,-1*K.1^32,K.1^24,-1*K.1^28,-1*K.1^24,K.1^28,K.1^20,-1*K.1^28,K.1^18,K.1^30,-1*K.1^22,K.1^2,-1*K.1^16,-1*K.1^16,-1*K.1^18,K.1^12,-1*K.1^8,-1*K.1^10,K.1^10,-1*K.1^2,K.1^2,K.1^8,-1*K.1^22,-1*K.1^32,K.1^16,K.1^6,-1*K.1^2,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^30,K.1^14,K.1^22,K.1^20,K.1^32,K.1^12,-1*K.1^20,K.1^28]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,K.1^4,K.1^32,K.1^28,K.1^16,-1*K.1^18,K.1^12,-1*K.1^14,-1*K.1^10,-1*K.1^6,K.1^24,-1*K.1^26,K.1^8,-1*K.1^2,-1*K.1^30,-1*K.1^22,K.1^20,-1*K.1^10,-1*K.1^8,K.1^22,K.1^2,-1*K.1^8,K.1^6,-1*K.1^28,-1*K.1^20,K.1^6,K.1^18,-1*K.1^32,-1*K.1^12,K.1^18,K.1^30,-1*K.1^24,K.1^10,K.1^30,K.1^20,-1*K.1^30,K.1^12,K.1^26,-1*K.1^16,K.1^26,K.1^2,-1*K.1^12,K.1^22,-1*K.1^32,-1*K.1^6,-1*K.1^20,K.1^10,K.1^14,-1*K.1^24,K.1^14,-1*K.1^4,-1*K.1^28,-1*K.1^4,K.1^16,-1*K.1^26,-1*K.1^2,-1*K.1^16,K.1^24,-1*K.1^14,K.1^4,K.1^28,-1*K.1^18,K.1^8,K.1^32,-1*K.1^22,-1*K.1^2,-1*K.1^6,-1*K.1^30,K.1^12,-1*K.1^26,K.1^32,-1*K.1^22,-1*K.1^10,K.1^4,K.1^24,K.1^16,-1*K.1^18,K.1^8,K.1^28,K.1^20,-1*K.1^14,K.1^8,-1*K.1^2,-1*K.1^20,-1*K.1^12,K.1^2,K.1^26,K.1^18,-1*K.1^6,-1*K.1^26,K.1^20,K.1^12,-1*K.1^14,-1*K.1^22,K.1^24,K.1^8,K.1^4,-1*K.1^28,K.1^30,K.1^14,K.1^14,K.1^20,-1*K.1^32,-1*K.1^4,-1*K.1^8,K.1^22,K.1^12,K.1^10,K.1^4,-1*K.1^10,-1*K.1^6,K.1^18,K.1^6,-1*K.1^20,K.1^32,-1*K.1^26,K.1^22,K.1^24,-1*K.1^28,K.1^30,K.1^26,K.1^2,-1*K.1^12,-1*K.1^16,K.1^16,-1*K.1^30,-1*K.1^2,-1*K.1^10,-1*K.1^18,K.1^6,K.1^32,-1*K.1^14,-1*K.1^18,K.1^28,-1*K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^22,K.1^16,K.1^28,-1*K.1^32,-1*K.1^30,-1*K.1^8,-1*K.1^16,K.1^10,-1*K.1^20,-1*K.1^30,-1*K.1^6,K.1^28,-1*K.1^18,-1*K.1^8,K.1^10,-1*K.1^24,-1*K.1^4,K.1^26,-1*K.1^12,K.1^22,-1*K.1^32,K.1^14,K.1^6,-1*K.1^28,K.1^10,K.1^18,-1*K.1^24,-1*K.1^4,K.1^18,K.1^6,K.1^26,K.1^30,K.1^14,-1*K.1^28,-1*K.1^16,K.1^2,-1*K.1^32,K.1^32,-1*K.1^14,-1*K.1^26,K.1^20,K.1^8,K.1^16,K.1^12,-1*K.1^10,-1*K.1^20,-1*K.1^2,-1*K.1^12,K.1^24,-1*K.1^8,-1*K.1^22,K.1^30,K.1^4,-1*K.1^16,K.1^2,K.1^22,-1*K.1^9,-1*K.1^29,K.1^29,K.1^19,-1*K.1^19,K.1,-1*K.1,-1*K.1^11,K.1^11,K.1^23,-1*K.1^23,-1*K.1^13,K.1^13,-1*K.1^7,K.1^7,K.1^5,-1*K.1^5,K.1^13,-1*K.1^25,-1*K.1^7,K.1^23,K.1^19,K.1^7,-1*K.1^23,-1*K.1^19,-1*K.1^31,K.1,-1*K.1^29,K.1^31,-1*K.1,-1*K.1^13,K.1^25,-1*K.1^27,-1*K.1^15,K.1^15,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,-1*K.1^33,K.1^33,K.1^21,-1*K.1^21,-1*K.1^31,K.1^31,K.1^3,-1*K.1^3,K.1^27,-1*K.1^5,-1*K.1^21,K.1^9,K.1^29,-1*K.1^11,-1*K.1^15,-1*K.1^27,K.1^11,K.1^15,K.1^3,-1*K.1^33,K.1^5,-1*K.1^3,K.1^33,K.1^21,-1*K.1^9,K.1^27,-1*K.1^5,-1*K.1^15,K.1^15,K.1^19,-1*K.1^19,-1*K.1^9,K.1^9,-1*K.1^11,K.1^11,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,K.1^3,-1*K.1^3,K.1^5,K.1^27,-1*K.1^21,-1*K.1^25,K.1^29,K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,K.1^15,-1*K.1^31,-1*K.1^33,-1*K.1^29,K.1^31,K.1^33,K.1^21,K.1^25,-1*K.1^27,-1*K.1^29,K.1^29,K.1^25,-1*K.1^25,K.1,-1*K.1,-1*K.1^33,K.1^33,K.1^23,-1*K.1^23,-1*K.1^31,K.1^31,-1*K.1^7,K.1^7,K.1^27,-1*K.1^5,K.1^13,K.1^9,-1*K.1^7,-1*K.1^11,K.1^19,K.1^7,K.1^11,-1*K.1^19,K.1^3,K.1,K.1^5,-1*K.1^3,-1*K.1,-1*K.1^13,-1*K.1^8,K.1^28,K.1^20,K.1^22,K.1^16,K.1^8,-1*K.1^10,K.1^20,-1*K.1^18,-1*K.1^24,K.1^22,-1*K.1^8,K.1^28,K.1^30,K.1^30,-1*K.1^16,K.1^24,-1*K.1^20,-1*K.1^4,-1*K.1^30,-1*K.1^28,-1*K.1^2,K.1^8,-1*K.1^12,-1*K.1^30,K.1^14,K.1^4,K.1^2,-1*K.1^10,K.1^6,K.1^10,-1*K.1^6,-1*K.1^14,K.1^6,-1*K.1^16,-1*K.1^4,K.1^12,-1*K.1^32,K.1^18,K.1^18,K.1^16,-1*K.1^22,K.1^26,K.1^24,-1*K.1^24,K.1^32,-1*K.1^32,-1*K.1^26,K.1^12,K.1^2,-1*K.1^18,-1*K.1^28,K.1^32,-1*K.1^26,K.1^26,K.1^10,K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^14,-1*K.1^2,-1*K.1^22,K.1^14,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1,1,1,-1,K.1^4,K.1^32,K.1^28,K.1^16,-1*K.1^18,K.1^12,-1*K.1^14,-1*K.1^10,-1*K.1^6,K.1^24,-1*K.1^26,K.1^8,-1*K.1^2,-1*K.1^30,-1*K.1^22,K.1^20,-1*K.1^10,-1*K.1^8,K.1^22,K.1^2,-1*K.1^8,K.1^6,-1*K.1^28,-1*K.1^20,K.1^6,K.1^18,-1*K.1^32,-1*K.1^12,K.1^18,K.1^30,-1*K.1^24,K.1^10,K.1^30,K.1^20,-1*K.1^30,K.1^12,K.1^26,-1*K.1^16,K.1^26,K.1^2,-1*K.1^12,K.1^22,-1*K.1^32,-1*K.1^6,-1*K.1^20,K.1^10,K.1^14,-1*K.1^24,K.1^14,-1*K.1^4,-1*K.1^28,-1*K.1^4,K.1^16,-1*K.1^26,-1*K.1^2,-1*K.1^16,K.1^24,-1*K.1^14,K.1^4,K.1^28,-1*K.1^18,K.1^8,K.1^32,-1*K.1^22,-1*K.1^2,-1*K.1^6,-1*K.1^30,K.1^12,-1*K.1^26,K.1^32,-1*K.1^22,-1*K.1^10,K.1^4,K.1^24,K.1^16,-1*K.1^18,K.1^8,K.1^28,K.1^20,-1*K.1^14,K.1^8,-1*K.1^2,-1*K.1^20,-1*K.1^12,K.1^2,K.1^26,K.1^18,-1*K.1^6,-1*K.1^26,K.1^20,K.1^12,-1*K.1^14,-1*K.1^22,K.1^24,K.1^8,K.1^4,-1*K.1^28,K.1^30,K.1^14,K.1^14,K.1^20,-1*K.1^32,-1*K.1^4,-1*K.1^8,K.1^22,K.1^12,K.1^10,K.1^4,-1*K.1^10,-1*K.1^6,K.1^18,K.1^6,-1*K.1^20,K.1^32,-1*K.1^26,K.1^22,K.1^24,-1*K.1^28,K.1^30,K.1^26,K.1^2,-1*K.1^12,-1*K.1^16,K.1^16,-1*K.1^30,-1*K.1^2,-1*K.1^10,-1*K.1^18,K.1^6,K.1^32,-1*K.1^14,-1*K.1^18,K.1^28,-1*K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^22,K.1^16,K.1^28,-1*K.1^32,-1*K.1^30,-1*K.1^8,-1*K.1^16,K.1^10,-1*K.1^20,-1*K.1^30,-1*K.1^6,K.1^28,-1*K.1^18,-1*K.1^8,K.1^10,-1*K.1^24,-1*K.1^4,K.1^26,-1*K.1^12,K.1^22,-1*K.1^32,K.1^14,K.1^6,-1*K.1^28,K.1^10,K.1^18,-1*K.1^24,-1*K.1^4,K.1^18,K.1^6,K.1^26,K.1^30,K.1^14,-1*K.1^28,-1*K.1^16,K.1^2,-1*K.1^32,K.1^32,-1*K.1^14,-1*K.1^26,K.1^20,K.1^8,K.1^16,K.1^12,-1*K.1^10,-1*K.1^20,-1*K.1^2,-1*K.1^12,K.1^24,-1*K.1^8,-1*K.1^22,K.1^30,K.1^4,-1*K.1^16,K.1^2,K.1^22,K.1^9,K.1^29,-1*K.1^29,-1*K.1^19,K.1^19,-1*K.1,K.1,K.1^11,-1*K.1^11,-1*K.1^23,K.1^23,K.1^13,-1*K.1^13,K.1^7,-1*K.1^7,-1*K.1^5,K.1^5,-1*K.1^13,K.1^25,K.1^7,-1*K.1^23,-1*K.1^19,-1*K.1^7,K.1^23,K.1^19,K.1^31,-1*K.1,K.1^29,-1*K.1^31,K.1,K.1^13,-1*K.1^25,K.1^27,K.1^15,-1*K.1^15,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,K.1^33,-1*K.1^33,-1*K.1^21,K.1^21,K.1^31,-1*K.1^31,-1*K.1^3,K.1^3,-1*K.1^27,K.1^5,K.1^21,-1*K.1^9,-1*K.1^29,K.1^11,K.1^15,K.1^27,-1*K.1^11,-1*K.1^15,-1*K.1^3,K.1^33,-1*K.1^5,K.1^3,-1*K.1^33,-1*K.1^21,K.1^9,-1*K.1^27,K.1^5,K.1^15,-1*K.1^15,-1*K.1^19,K.1^19,K.1^9,-1*K.1^9,K.1^11,-1*K.1^11,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,-1*K.1^3,K.1^3,-1*K.1^5,-1*K.1^27,K.1^21,K.1^25,-1*K.1^29,-1*K.1^23,K.1^15,K.1^27,K.1^23,-1*K.1^15,K.1^31,K.1^33,K.1^29,-1*K.1^31,-1*K.1^33,-1*K.1^21,-1*K.1^25,K.1^27,K.1^29,-1*K.1^29,-1*K.1^25,K.1^25,-1*K.1,K.1,K.1^33,-1*K.1^33,-1*K.1^23,K.1^23,K.1^31,-1*K.1^31,K.1^7,-1*K.1^7,-1*K.1^27,K.1^5,-1*K.1^13,-1*K.1^9,K.1^7,K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,K.1^19,-1*K.1^3,-1*K.1,-1*K.1^5,K.1^3,K.1,K.1^13,-1*K.1^8,K.1^28,K.1^20,K.1^22,K.1^16,K.1^8,-1*K.1^10,K.1^20,-1*K.1^18,-1*K.1^24,K.1^22,-1*K.1^8,K.1^28,K.1^30,K.1^30,-1*K.1^16,K.1^24,-1*K.1^20,-1*K.1^4,-1*K.1^30,-1*K.1^28,-1*K.1^2,K.1^8,-1*K.1^12,-1*K.1^30,K.1^14,K.1^4,K.1^2,-1*K.1^10,K.1^6,K.1^10,-1*K.1^6,-1*K.1^14,K.1^6,-1*K.1^16,-1*K.1^4,K.1^12,-1*K.1^32,K.1^18,K.1^18,K.1^16,-1*K.1^22,K.1^26,K.1^24,-1*K.1^24,K.1^32,-1*K.1^32,-1*K.1^26,K.1^12,K.1^2,-1*K.1^18,-1*K.1^28,K.1^32,-1*K.1^26,K.1^26,K.1^10,K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^14,-1*K.1^2,-1*K.1^22,K.1^14,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-1,1,1,-1,-1*K.1^30,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^16,-1*K.1^22,K.1^20,K.1^24,K.1^28,-1*K.1^10,K.1^8,-1*K.1^26,K.1^32,K.1^4,K.1^12,-1*K.1^14,K.1^24,K.1^26,-1*K.1^12,-1*K.1^32,K.1^26,-1*K.1^28,K.1^6,K.1^14,-1*K.1^28,-1*K.1^16,K.1^2,K.1^22,-1*K.1^16,-1*K.1^4,K.1^10,-1*K.1^24,-1*K.1^4,-1*K.1^14,K.1^4,-1*K.1^22,-1*K.1^8,K.1^18,-1*K.1^8,-1*K.1^32,K.1^22,-1*K.1^12,K.1^2,K.1^28,K.1^14,-1*K.1^24,-1*K.1^20,K.1^10,-1*K.1^20,K.1^30,K.1^6,K.1^30,-1*K.1^18,K.1^8,K.1^32,K.1^18,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^6,K.1^16,-1*K.1^26,-1*K.1^2,K.1^12,K.1^32,K.1^28,K.1^4,-1*K.1^22,K.1^8,-1*K.1^2,K.1^12,K.1^24,-1*K.1^30,-1*K.1^10,-1*K.1^18,K.1^16,-1*K.1^26,-1*K.1^6,-1*K.1^14,K.1^20,-1*K.1^26,K.1^32,K.1^14,K.1^22,-1*K.1^32,-1*K.1^8,-1*K.1^16,K.1^28,K.1^8,-1*K.1^14,-1*K.1^22,K.1^20,K.1^12,-1*K.1^10,-1*K.1^26,-1*K.1^30,K.1^6,-1*K.1^4,-1*K.1^20,-1*K.1^20,-1*K.1^14,K.1^2,K.1^30,K.1^26,-1*K.1^12,-1*K.1^22,-1*K.1^24,-1*K.1^30,K.1^24,K.1^28,-1*K.1^16,-1*K.1^28,K.1^14,-1*K.1^2,K.1^8,-1*K.1^12,-1*K.1^10,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^32,K.1^22,K.1^18,-1*K.1^18,K.1^4,K.1^32,K.1^24,K.1^16,-1*K.1^28,-1*K.1^2,K.1^20,K.1^16,-1*K.1^6,K.1^30,K.1^10,K.1^10,K.1^12,-1*K.1^18,-1*K.1^6,K.1^2,K.1^4,K.1^26,K.1^18,-1*K.1^24,K.1^14,K.1^4,K.1^28,-1*K.1^6,K.1^16,K.1^26,-1*K.1^24,K.1^10,K.1^30,-1*K.1^8,K.1^22,-1*K.1^12,K.1^2,-1*K.1^20,-1*K.1^28,K.1^6,-1*K.1^24,-1*K.1^16,K.1^10,K.1^30,-1*K.1^16,-1*K.1^28,-1*K.1^8,-1*K.1^4,-1*K.1^20,K.1^6,K.1^18,-1*K.1^32,K.1^2,-1*K.1^2,K.1^20,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^18,-1*K.1^22,K.1^24,K.1^14,K.1^32,K.1^22,-1*K.1^10,K.1^26,K.1^12,-1*K.1^4,-1*K.1^30,K.1^18,-1*K.1^32,-1*K.1^12,-1*K.1^25,-1*K.1^5,K.1^5,K.1^15,-1*K.1^15,K.1^33,-1*K.1^33,-1*K.1^23,K.1^23,K.1^11,-1*K.1^11,-1*K.1^21,K.1^21,-1*K.1^27,K.1^27,K.1^29,-1*K.1^29,K.1^21,-1*K.1^9,-1*K.1^27,K.1^11,K.1^15,K.1^27,-1*K.1^11,-1*K.1^15,-1*K.1^3,K.1^33,-1*K.1^5,K.1^3,-1*K.1^33,-1*K.1^21,K.1^9,-1*K.1^7,-1*K.1^19,K.1^19,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,-1*K.1,K.1,K.1^13,-1*K.1^13,-1*K.1^3,K.1^3,K.1^31,-1*K.1^31,K.1^7,-1*K.1^29,-1*K.1^13,K.1^25,K.1^5,-1*K.1^23,-1*K.1^19,-1*K.1^7,K.1^23,K.1^19,K.1^31,-1*K.1,K.1^29,-1*K.1^31,K.1,K.1^13,-1*K.1^25,K.1^7,-1*K.1^29,-1*K.1^19,K.1^19,K.1^15,-1*K.1^15,-1*K.1^25,K.1^25,-1*K.1^23,K.1^23,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,K.1^31,-1*K.1^31,K.1^29,K.1^7,-1*K.1^13,-1*K.1^9,K.1^5,K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,K.1^19,-1*K.1^3,-1*K.1,-1*K.1^5,K.1^3,K.1,K.1^13,K.1^9,-1*K.1^7,-1*K.1^5,K.1^5,K.1^9,-1*K.1^9,K.1^33,-1*K.1^33,-1*K.1,K.1,K.1^11,-1*K.1^11,-1*K.1^3,K.1^3,-1*K.1^27,K.1^27,K.1^7,-1*K.1^29,K.1^21,K.1^25,-1*K.1^27,-1*K.1^23,K.1^15,K.1^27,K.1^23,-1*K.1^15,K.1^31,K.1^33,K.1^29,-1*K.1^31,-1*K.1^33,-1*K.1^21,K.1^26,-1*K.1^6,-1*K.1^14,-1*K.1^12,-1*K.1^18,-1*K.1^26,K.1^24,-1*K.1^14,K.1^16,K.1^10,-1*K.1^12,K.1^26,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^18,-1*K.1^10,K.1^14,K.1^30,K.1^4,K.1^6,K.1^32,-1*K.1^26,K.1^22,K.1^4,-1*K.1^20,-1*K.1^30,-1*K.1^32,K.1^24,-1*K.1^28,-1*K.1^24,K.1^28,K.1^20,-1*K.1^28,K.1^18,K.1^30,-1*K.1^22,K.1^2,-1*K.1^16,-1*K.1^16,-1*K.1^18,K.1^12,-1*K.1^8,-1*K.1^10,K.1^10,-1*K.1^2,K.1^2,K.1^8,-1*K.1^22,-1*K.1^32,K.1^16,K.1^6,-1*K.1^2,K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^30,K.1^14,K.1^22,K.1^20,K.1^32,K.1^12,-1*K.1^20,K.1^28]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,-1*K.1^2,K.1^16,-1*K.1^14,K.1^8,-1*K.1^26,-1*K.1^6,K.1^24,-1*K.1^22,K.1^20,K.1^12,-1*K.1^30,K.1^4,-1*K.1^18,K.1^32,K.1^28,-1*K.1^10,-1*K.1^22,K.1^4,K.1^28,-1*K.1^18,K.1^4,K.1^20,-1*K.1^14,-1*K.1^10,K.1^20,-1*K.1^26,K.1^16,-1*K.1^6,-1*K.1^26,K.1^32,K.1^12,-1*K.1^22,K.1^32,-1*K.1^10,K.1^32,-1*K.1^6,-1*K.1^30,K.1^8,-1*K.1^30,-1*K.1^18,-1*K.1^6,K.1^28,K.1^16,K.1^20,-1*K.1^10,-1*K.1^22,K.1^24,K.1^12,K.1^24,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^8,-1*K.1^30,-1*K.1^18,K.1^8,K.1^12,K.1^24,-1*K.1^2,-1*K.1^14,-1*K.1^26,K.1^4,K.1^16,K.1^28,-1*K.1^18,K.1^20,K.1^32,-1*K.1^6,-1*K.1^30,K.1^16,K.1^28,-1*K.1^22,-1*K.1^2,K.1^12,K.1^8,-1*K.1^26,K.1^4,-1*K.1^14,-1*K.1^10,K.1^24,-1*K.1^4,K.1^18,K.1^10,K.1^6,K.1^18,K.1^30,K.1^26,-1*K.1^20,K.1^30,K.1^10,K.1^6,-1*K.1^24,-1*K.1^28,-1*K.1^12,-1*K.1^4,K.1^2,K.1^14,-1*K.1^32,-1*K.1^24,-1*K.1^24,K.1^10,-1*K.1^16,K.1^2,-1*K.1^4,-1*K.1^28,K.1^6,K.1^22,K.1^2,K.1^22,-1*K.1^20,K.1^26,-1*K.1^20,K.1^10,-1*K.1^16,K.1^30,-1*K.1^28,-1*K.1^12,K.1^14,-1*K.1^32,K.1^30,K.1^18,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^32,K.1^18,K.1^22,K.1^26,-1*K.1^20,-1*K.1^16,-1*K.1^24,K.1^26,K.1^14,K.1^2,-1*K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^8,K.1^14,-1*K.1^16,-1*K.1^32,-1*K.1^4,-1*K.1^8,K.1^22,-1*K.1^10,K.1^32,K.1^20,-1*K.1^14,-1*K.1^26,K.1^4,-1*K.1^22,K.1^12,-1*K.1^2,-1*K.1^30,-1*K.1^6,K.1^28,K.1^16,K.1^24,K.1^20,-1*K.1^14,-1*K.1^22,-1*K.1^26,K.1^12,-1*K.1^2,-1*K.1^26,K.1^20,-1*K.1^30,K.1^32,K.1^24,-1*K.1^14,K.1^8,-1*K.1^18,K.1^16,K.1^16,K.1^24,-1*K.1^30,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,-1*K.1^22,-1*K.1^10,-1*K.1^18,-1*K.1^6,K.1^12,K.1^4,K.1^28,K.1^32,-1*K.1^2,K.1^8,-1*K.1^18,K.1^28,-1*K.1^13,-1*K.1^23,-1*K.1^23,K.1,K.1,K.1^9,K.1^9,-1*K.1^31,-1*K.1^31,-1*K.1^3,-1*K.1^3,-1*K.1^15,-1*K.1^15,K.1^29,K.1^29,-1*K.1^11,-1*K.1^11,K.1^15,-1*K.1^21,-1*K.1^29,K.1^3,-1*K.1,-1*K.1^29,K.1^3,-1*K.1,K.1^7,-1*K.1^9,K.1^23,K.1^7,-1*K.1^9,K.1^15,-1*K.1^21,K.1^5,K.1^33,K.1^33,K.1^21,K.1^21,K.1^13,K.1^13,K.1^25,K.1^25,-1*K.1^19,-1*K.1^19,-1*K.1^7,-1*K.1^7,-1*K.1^27,-1*K.1^27,K.1^5,K.1^11,K.1^19,-1*K.1^13,K.1^23,K.1^31,-1*K.1^33,-1*K.1^5,K.1^31,-1*K.1^33,K.1^27,-1*K.1^25,K.1^11,K.1^27,-1*K.1^25,K.1^19,-1*K.1^13,-1*K.1^5,-1*K.1^11,K.1^33,K.1^33,K.1,K.1,K.1^13,K.1^13,-1*K.1^31,-1*K.1^31,-1*K.1^19,-1*K.1^19,-1*K.1^15,-1*K.1^15,-1*K.1^27,-1*K.1^27,-1*K.1^11,-1*K.1^5,K.1^19,-1*K.1^21,K.1^23,K.1^3,-1*K.1^33,-1*K.1^5,K.1^3,-1*K.1^33,K.1^7,-1*K.1^25,K.1^23,K.1^7,-1*K.1^25,K.1^19,-1*K.1^21,K.1^5,-1*K.1^23,-1*K.1^23,K.1^21,K.1^21,K.1^9,K.1^9,K.1^25,K.1^25,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^29,K.1^29,K.1^5,K.1^11,K.1^15,-1*K.1^13,-1*K.1^29,K.1^31,-1*K.1,-1*K.1^29,K.1^31,-1*K.1,K.1^27,-1*K.1^9,K.1^11,K.1^27,-1*K.1^9,K.1^15,-1*K.1^4,K.1^14,K.1^10,-1*K.1^28,-1*K.1^8,-1*K.1^4,K.1^22,K.1^10,K.1^26,-1*K.1^12,-1*K.1^28,-1*K.1^4,K.1^14,-1*K.1^32,-1*K.1^32,-1*K.1^8,-1*K.1^12,K.1^10,K.1^2,-1*K.1^32,K.1^14,K.1^18,-1*K.1^4,K.1^6,-1*K.1^32,-1*K.1^24,K.1^2,K.1^18,K.1^22,-1*K.1^20,K.1^22,-1*K.1^20,-1*K.1^24,-1*K.1^20,-1*K.1^8,K.1^2,K.1^6,-1*K.1^16,K.1^26,K.1^26,-1*K.1^8,-1*K.1^28,K.1^30,-1*K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^30,K.1^6,K.1^18,K.1^26,K.1^14,-1*K.1^16,K.1^30,K.1^30,K.1^22,K.1^2,K.1^10,K.1^6,-1*K.1^24,K.1^18,-1*K.1^28,-1*K.1^24,-1*K.1^20]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,K.1^32,-1*K.1^18,K.1^20,-1*K.1^26,K.1^8,K.1^28,-1*K.1^10,K.1^12,-1*K.1^14,-1*K.1^22,K.1^4,-1*K.1^30,K.1^16,-1*K.1^2,-1*K.1^6,K.1^24,K.1^12,-1*K.1^30,-1*K.1^6,K.1^16,-1*K.1^30,-1*K.1^14,K.1^20,K.1^24,-1*K.1^14,K.1^8,-1*K.1^18,K.1^28,K.1^8,-1*K.1^2,-1*K.1^22,K.1^12,-1*K.1^2,K.1^24,-1*K.1^2,K.1^28,K.1^4,-1*K.1^26,K.1^4,K.1^16,K.1^28,-1*K.1^6,-1*K.1^18,-1*K.1^14,K.1^24,K.1^12,-1*K.1^10,-1*K.1^22,-1*K.1^10,K.1^32,K.1^20,K.1^32,-1*K.1^26,K.1^4,K.1^16,-1*K.1^26,-1*K.1^22,-1*K.1^10,K.1^32,K.1^20,K.1^8,-1*K.1^30,-1*K.1^18,-1*K.1^6,K.1^16,-1*K.1^14,-1*K.1^2,K.1^28,K.1^4,-1*K.1^18,-1*K.1^6,K.1^12,K.1^32,-1*K.1^22,-1*K.1^26,K.1^8,-1*K.1^30,K.1^20,K.1^24,-1*K.1^10,K.1^30,-1*K.1^16,-1*K.1^24,-1*K.1^28,-1*K.1^16,-1*K.1^4,-1*K.1^8,K.1^14,-1*K.1^4,-1*K.1^24,-1*K.1^28,K.1^10,K.1^6,K.1^22,K.1^30,-1*K.1^32,-1*K.1^20,K.1^2,K.1^10,K.1^10,-1*K.1^24,K.1^18,-1*K.1^32,K.1^30,K.1^6,-1*K.1^28,-1*K.1^12,-1*K.1^32,-1*K.1^12,K.1^14,-1*K.1^8,K.1^14,-1*K.1^24,K.1^18,-1*K.1^4,K.1^6,K.1^22,-1*K.1^20,K.1^2,-1*K.1^4,-1*K.1^16,-1*K.1^28,K.1^26,K.1^26,K.1^2,-1*K.1^16,-1*K.1^12,-1*K.1^8,K.1^14,K.1^18,K.1^10,-1*K.1^8,-1*K.1^20,-1*K.1^32,K.1^22,K.1^22,K.1^6,K.1^26,-1*K.1^20,K.1^18,K.1^2,K.1^30,K.1^26,-1*K.1^12,K.1^24,-1*K.1^2,-1*K.1^14,K.1^20,K.1^8,-1*K.1^30,K.1^12,-1*K.1^22,K.1^32,K.1^4,K.1^28,-1*K.1^6,-1*K.1^18,-1*K.1^10,-1*K.1^14,K.1^20,K.1^12,K.1^8,-1*K.1^22,K.1^32,K.1^8,-1*K.1^14,K.1^4,-1*K.1^2,-1*K.1^10,K.1^20,-1*K.1^26,K.1^16,-1*K.1^18,-1*K.1^18,-1*K.1^10,K.1^4,K.1^24,-1*K.1^30,-1*K.1^26,K.1^28,K.1^12,K.1^24,K.1^16,K.1^28,-1*K.1^22,-1*K.1^30,-1*K.1^6,-1*K.1^2,K.1^32,-1*K.1^26,K.1^16,-1*K.1^6,K.1^21,K.1^11,K.1^11,-1*K.1^33,-1*K.1^33,-1*K.1^25,-1*K.1^25,K.1^3,K.1^3,K.1^31,K.1^31,K.1^19,K.1^19,-1*K.1^5,-1*K.1^5,K.1^23,K.1^23,-1*K.1^19,K.1^13,K.1^5,-1*K.1^31,K.1^33,K.1^5,-1*K.1^31,K.1^33,-1*K.1^27,K.1^25,-1*K.1^11,-1*K.1^27,K.1^25,-1*K.1^19,K.1^13,-1*K.1^29,-1*K.1,-1*K.1,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,-1*K.1^9,-1*K.1^9,K.1^15,K.1^15,K.1^27,K.1^27,K.1^7,K.1^7,-1*K.1^29,-1*K.1^23,-1*K.1^15,K.1^21,-1*K.1^11,-1*K.1^3,K.1,K.1^29,-1*K.1^3,K.1,-1*K.1^7,K.1^9,-1*K.1^23,-1*K.1^7,K.1^9,-1*K.1^15,K.1^21,K.1^29,K.1^23,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,-1*K.1^21,-1*K.1^21,K.1^3,K.1^3,K.1^15,K.1^15,K.1^19,K.1^19,K.1^7,K.1^7,K.1^23,K.1^29,-1*K.1^15,K.1^13,-1*K.1^11,-1*K.1^31,K.1,K.1^29,-1*K.1^31,K.1,-1*K.1^27,K.1^9,-1*K.1^11,-1*K.1^27,K.1^9,-1*K.1^15,K.1^13,-1*K.1^29,K.1^11,K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,K.1^31,K.1^31,K.1^27,K.1^27,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^23,-1*K.1^19,K.1^21,K.1^5,-1*K.1^3,K.1^33,K.1^5,-1*K.1^3,K.1^33,-1*K.1^7,K.1^25,-1*K.1^23,-1*K.1^7,K.1^25,-1*K.1^19,K.1^30,-1*K.1^20,-1*K.1^24,K.1^6,K.1^26,K.1^30,-1*K.1^12,-1*K.1^24,-1*K.1^8,K.1^22,K.1^6,K.1^30,-1*K.1^20,K.1^2,K.1^2,K.1^26,K.1^22,-1*K.1^24,-1*K.1^32,K.1^2,-1*K.1^20,-1*K.1^16,K.1^30,-1*K.1^28,K.1^2,K.1^10,-1*K.1^32,-1*K.1^16,-1*K.1^12,K.1^14,-1*K.1^12,K.1^14,K.1^10,K.1^14,K.1^26,-1*K.1^32,-1*K.1^28,K.1^18,-1*K.1^8,-1*K.1^8,K.1^26,K.1^6,-1*K.1^4,K.1^22,K.1^22,K.1^18,K.1^18,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^8,-1*K.1^20,K.1^18,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^32,-1*K.1^24,-1*K.1^28,K.1^10,-1*K.1^16,K.1^6,K.1^10,K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,K.1^32,-1*K.1^18,K.1^20,-1*K.1^26,K.1^8,K.1^28,-1*K.1^10,K.1^12,-1*K.1^14,-1*K.1^22,K.1^4,-1*K.1^30,K.1^16,-1*K.1^2,-1*K.1^6,K.1^24,K.1^12,-1*K.1^30,-1*K.1^6,K.1^16,-1*K.1^30,-1*K.1^14,K.1^20,K.1^24,-1*K.1^14,K.1^8,-1*K.1^18,K.1^28,K.1^8,-1*K.1^2,-1*K.1^22,K.1^12,-1*K.1^2,K.1^24,-1*K.1^2,K.1^28,K.1^4,-1*K.1^26,K.1^4,K.1^16,K.1^28,-1*K.1^6,-1*K.1^18,-1*K.1^14,K.1^24,K.1^12,-1*K.1^10,-1*K.1^22,-1*K.1^10,K.1^32,K.1^20,K.1^32,-1*K.1^26,K.1^4,K.1^16,-1*K.1^26,-1*K.1^22,-1*K.1^10,K.1^32,K.1^20,K.1^8,-1*K.1^30,-1*K.1^18,-1*K.1^6,K.1^16,-1*K.1^14,-1*K.1^2,K.1^28,K.1^4,-1*K.1^18,-1*K.1^6,K.1^12,K.1^32,-1*K.1^22,-1*K.1^26,K.1^8,-1*K.1^30,K.1^20,K.1^24,-1*K.1^10,K.1^30,-1*K.1^16,-1*K.1^24,-1*K.1^28,-1*K.1^16,-1*K.1^4,-1*K.1^8,K.1^14,-1*K.1^4,-1*K.1^24,-1*K.1^28,K.1^10,K.1^6,K.1^22,K.1^30,-1*K.1^32,-1*K.1^20,K.1^2,K.1^10,K.1^10,-1*K.1^24,K.1^18,-1*K.1^32,K.1^30,K.1^6,-1*K.1^28,-1*K.1^12,-1*K.1^32,-1*K.1^12,K.1^14,-1*K.1^8,K.1^14,-1*K.1^24,K.1^18,-1*K.1^4,K.1^6,K.1^22,-1*K.1^20,K.1^2,-1*K.1^4,-1*K.1^16,-1*K.1^28,K.1^26,K.1^26,K.1^2,-1*K.1^16,-1*K.1^12,-1*K.1^8,K.1^14,K.1^18,K.1^10,-1*K.1^8,-1*K.1^20,-1*K.1^32,K.1^22,K.1^22,K.1^6,K.1^26,-1*K.1^20,K.1^18,K.1^2,K.1^30,K.1^26,-1*K.1^12,K.1^24,-1*K.1^2,-1*K.1^14,K.1^20,K.1^8,-1*K.1^30,K.1^12,-1*K.1^22,K.1^32,K.1^4,K.1^28,-1*K.1^6,-1*K.1^18,-1*K.1^10,-1*K.1^14,K.1^20,K.1^12,K.1^8,-1*K.1^22,K.1^32,K.1^8,-1*K.1^14,K.1^4,-1*K.1^2,-1*K.1^10,K.1^20,-1*K.1^26,K.1^16,-1*K.1^18,-1*K.1^18,-1*K.1^10,K.1^4,K.1^24,-1*K.1^30,-1*K.1^26,K.1^28,K.1^12,K.1^24,K.1^16,K.1^28,-1*K.1^22,-1*K.1^30,-1*K.1^6,-1*K.1^2,K.1^32,-1*K.1^26,K.1^16,-1*K.1^6,-1*K.1^21,-1*K.1^11,-1*K.1^11,K.1^33,K.1^33,K.1^25,K.1^25,-1*K.1^3,-1*K.1^3,-1*K.1^31,-1*K.1^31,-1*K.1^19,-1*K.1^19,K.1^5,K.1^5,-1*K.1^23,-1*K.1^23,K.1^19,-1*K.1^13,-1*K.1^5,K.1^31,-1*K.1^33,-1*K.1^5,K.1^31,-1*K.1^33,K.1^27,-1*K.1^25,K.1^11,K.1^27,-1*K.1^25,K.1^19,-1*K.1^13,K.1^29,K.1,K.1,K.1^13,K.1^13,K.1^21,K.1^21,K.1^9,K.1^9,-1*K.1^15,-1*K.1^15,-1*K.1^27,-1*K.1^27,-1*K.1^7,-1*K.1^7,K.1^29,K.1^23,K.1^15,-1*K.1^21,K.1^11,K.1^3,-1*K.1,-1*K.1^29,K.1^3,-1*K.1,K.1^7,-1*K.1^9,K.1^23,K.1^7,-1*K.1^9,K.1^15,-1*K.1^21,-1*K.1^29,-1*K.1^23,K.1,K.1,K.1^33,K.1^33,K.1^21,K.1^21,-1*K.1^3,-1*K.1^3,-1*K.1^15,-1*K.1^15,-1*K.1^19,-1*K.1^19,-1*K.1^7,-1*K.1^7,-1*K.1^23,-1*K.1^29,K.1^15,-1*K.1^13,K.1^11,K.1^31,-1*K.1,-1*K.1^29,K.1^31,-1*K.1,K.1^27,-1*K.1^9,K.1^11,K.1^27,-1*K.1^9,K.1^15,-1*K.1^13,K.1^29,-1*K.1^11,-1*K.1^11,K.1^13,K.1^13,K.1^25,K.1^25,K.1^9,K.1^9,-1*K.1^31,-1*K.1^31,-1*K.1^27,-1*K.1^27,K.1^5,K.1^5,K.1^29,K.1^23,K.1^19,-1*K.1^21,-1*K.1^5,K.1^3,-1*K.1^33,-1*K.1^5,K.1^3,-1*K.1^33,K.1^7,-1*K.1^25,K.1^23,K.1^7,-1*K.1^25,K.1^19,K.1^30,-1*K.1^20,-1*K.1^24,K.1^6,K.1^26,K.1^30,-1*K.1^12,-1*K.1^24,-1*K.1^8,K.1^22,K.1^6,K.1^30,-1*K.1^20,K.1^2,K.1^2,K.1^26,K.1^22,-1*K.1^24,-1*K.1^32,K.1^2,-1*K.1^20,-1*K.1^16,K.1^30,-1*K.1^28,K.1^2,K.1^10,-1*K.1^32,-1*K.1^16,-1*K.1^12,K.1^14,-1*K.1^12,K.1^14,K.1^10,K.1^14,K.1^26,-1*K.1^32,-1*K.1^28,K.1^18,-1*K.1^8,-1*K.1^8,K.1^26,K.1^6,-1*K.1^4,K.1^22,K.1^22,K.1^18,K.1^18,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^8,-1*K.1^20,K.1^18,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^32,-1*K.1^24,-1*K.1^28,K.1^10,-1*K.1^16,K.1^6,K.1^10,K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,-1*K.1^2,K.1^16,-1*K.1^14,K.1^8,-1*K.1^26,-1*K.1^6,K.1^24,-1*K.1^22,K.1^20,K.1^12,-1*K.1^30,K.1^4,-1*K.1^18,K.1^32,K.1^28,-1*K.1^10,-1*K.1^22,K.1^4,K.1^28,-1*K.1^18,K.1^4,K.1^20,-1*K.1^14,-1*K.1^10,K.1^20,-1*K.1^26,K.1^16,-1*K.1^6,-1*K.1^26,K.1^32,K.1^12,-1*K.1^22,K.1^32,-1*K.1^10,K.1^32,-1*K.1^6,-1*K.1^30,K.1^8,-1*K.1^30,-1*K.1^18,-1*K.1^6,K.1^28,K.1^16,K.1^20,-1*K.1^10,-1*K.1^22,K.1^24,K.1^12,K.1^24,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^8,-1*K.1^30,-1*K.1^18,K.1^8,K.1^12,K.1^24,-1*K.1^2,-1*K.1^14,-1*K.1^26,K.1^4,K.1^16,K.1^28,-1*K.1^18,K.1^20,K.1^32,-1*K.1^6,-1*K.1^30,K.1^16,K.1^28,-1*K.1^22,-1*K.1^2,K.1^12,K.1^8,-1*K.1^26,K.1^4,-1*K.1^14,-1*K.1^10,K.1^24,-1*K.1^4,K.1^18,K.1^10,K.1^6,K.1^18,K.1^30,K.1^26,-1*K.1^20,K.1^30,K.1^10,K.1^6,-1*K.1^24,-1*K.1^28,-1*K.1^12,-1*K.1^4,K.1^2,K.1^14,-1*K.1^32,-1*K.1^24,-1*K.1^24,K.1^10,-1*K.1^16,K.1^2,-1*K.1^4,-1*K.1^28,K.1^6,K.1^22,K.1^2,K.1^22,-1*K.1^20,K.1^26,-1*K.1^20,K.1^10,-1*K.1^16,K.1^30,-1*K.1^28,-1*K.1^12,K.1^14,-1*K.1^32,K.1^30,K.1^18,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^32,K.1^18,K.1^22,K.1^26,-1*K.1^20,-1*K.1^16,-1*K.1^24,K.1^26,K.1^14,K.1^2,-1*K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^8,K.1^14,-1*K.1^16,-1*K.1^32,-1*K.1^4,-1*K.1^8,K.1^22,-1*K.1^10,K.1^32,K.1^20,-1*K.1^14,-1*K.1^26,K.1^4,-1*K.1^22,K.1^12,-1*K.1^2,-1*K.1^30,-1*K.1^6,K.1^28,K.1^16,K.1^24,K.1^20,-1*K.1^14,-1*K.1^22,-1*K.1^26,K.1^12,-1*K.1^2,-1*K.1^26,K.1^20,-1*K.1^30,K.1^32,K.1^24,-1*K.1^14,K.1^8,-1*K.1^18,K.1^16,K.1^16,K.1^24,-1*K.1^30,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,-1*K.1^22,-1*K.1^10,-1*K.1^18,-1*K.1^6,K.1^12,K.1^4,K.1^28,K.1^32,-1*K.1^2,K.1^8,-1*K.1^18,K.1^28,K.1^13,K.1^23,K.1^23,-1*K.1,-1*K.1,-1*K.1^9,-1*K.1^9,K.1^31,K.1^31,K.1^3,K.1^3,K.1^15,K.1^15,-1*K.1^29,-1*K.1^29,K.1^11,K.1^11,-1*K.1^15,K.1^21,K.1^29,-1*K.1^3,K.1,K.1^29,-1*K.1^3,K.1,-1*K.1^7,K.1^9,-1*K.1^23,-1*K.1^7,K.1^9,-1*K.1^15,K.1^21,-1*K.1^5,-1*K.1^33,-1*K.1^33,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,-1*K.1^25,-1*K.1^25,K.1^19,K.1^19,K.1^7,K.1^7,K.1^27,K.1^27,-1*K.1^5,-1*K.1^11,-1*K.1^19,K.1^13,-1*K.1^23,-1*K.1^31,K.1^33,K.1^5,-1*K.1^31,K.1^33,-1*K.1^27,K.1^25,-1*K.1^11,-1*K.1^27,K.1^25,-1*K.1^19,K.1^13,K.1^5,K.1^11,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,-1*K.1^13,-1*K.1^13,K.1^31,K.1^31,K.1^19,K.1^19,K.1^15,K.1^15,K.1^27,K.1^27,K.1^11,K.1^5,-1*K.1^19,K.1^21,-1*K.1^23,-1*K.1^3,K.1^33,K.1^5,-1*K.1^3,K.1^33,-1*K.1^7,K.1^25,-1*K.1^23,-1*K.1^7,K.1^25,-1*K.1^19,K.1^21,-1*K.1^5,K.1^23,K.1^23,-1*K.1^21,-1*K.1^21,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,K.1^3,K.1^3,K.1^7,K.1^7,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^11,-1*K.1^15,K.1^13,K.1^29,-1*K.1^31,K.1,K.1^29,-1*K.1^31,K.1,-1*K.1^27,K.1^9,-1*K.1^11,-1*K.1^27,K.1^9,-1*K.1^15,-1*K.1^4,K.1^14,K.1^10,-1*K.1^28,-1*K.1^8,-1*K.1^4,K.1^22,K.1^10,K.1^26,-1*K.1^12,-1*K.1^28,-1*K.1^4,K.1^14,-1*K.1^32,-1*K.1^32,-1*K.1^8,-1*K.1^12,K.1^10,K.1^2,-1*K.1^32,K.1^14,K.1^18,-1*K.1^4,K.1^6,-1*K.1^32,-1*K.1^24,K.1^2,K.1^18,K.1^22,-1*K.1^20,K.1^22,-1*K.1^20,-1*K.1^24,-1*K.1^20,-1*K.1^8,K.1^2,K.1^6,-1*K.1^16,K.1^26,K.1^26,-1*K.1^8,-1*K.1^28,K.1^30,-1*K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^30,K.1^6,K.1^18,K.1^26,K.1^14,-1*K.1^16,K.1^30,K.1^30,K.1^22,K.1^2,K.1^10,K.1^6,-1*K.1^24,K.1^18,-1*K.1^28,-1*K.1^24,-1*K.1^20]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,-1*K.1^6,-1*K.1^14,K.1^8,K.1^24,-1*K.1^10,-1*K.1^18,K.1^4,K.1^32,-1*K.1^26,-1*K.1^2,-1*K.1^22,K.1^12,K.1^20,K.1^28,K.1^16,-1*K.1^30,K.1^32,K.1^12,K.1^16,K.1^20,K.1^12,-1*K.1^26,K.1^8,-1*K.1^30,-1*K.1^26,-1*K.1^10,-1*K.1^14,-1*K.1^18,-1*K.1^10,K.1^28,-1*K.1^2,K.1^32,K.1^28,-1*K.1^30,K.1^28,-1*K.1^18,-1*K.1^22,K.1^24,-1*K.1^22,K.1^20,-1*K.1^18,K.1^16,-1*K.1^14,-1*K.1^26,-1*K.1^30,K.1^32,K.1^4,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^24,-1*K.1^22,K.1^20,K.1^24,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^10,K.1^12,-1*K.1^14,K.1^16,K.1^20,-1*K.1^26,K.1^28,-1*K.1^18,-1*K.1^22,-1*K.1^14,K.1^16,K.1^32,-1*K.1^6,-1*K.1^2,K.1^24,-1*K.1^10,K.1^12,K.1^8,-1*K.1^30,K.1^4,-1*K.1^12,-1*K.1^20,K.1^30,K.1^18,-1*K.1^20,K.1^22,K.1^10,K.1^26,K.1^22,K.1^30,K.1^18,-1*K.1^4,-1*K.1^16,K.1^2,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^28,-1*K.1^4,-1*K.1^4,K.1^30,K.1^14,K.1^6,-1*K.1^12,-1*K.1^16,K.1^18,-1*K.1^32,K.1^6,-1*K.1^32,K.1^26,K.1^10,K.1^26,K.1^30,K.1^14,K.1^22,-1*K.1^16,K.1^2,-1*K.1^8,-1*K.1^28,K.1^22,-1*K.1^20,K.1^18,-1*K.1^24,-1*K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^32,K.1^10,K.1^26,K.1^14,-1*K.1^4,K.1^10,-1*K.1^8,K.1^6,K.1^2,K.1^2,-1*K.1^16,-1*K.1^24,-1*K.1^8,K.1^14,-1*K.1^28,-1*K.1^12,-1*K.1^24,-1*K.1^32,-1*K.1^30,K.1^28,-1*K.1^26,K.1^8,-1*K.1^10,K.1^12,K.1^32,-1*K.1^2,-1*K.1^6,-1*K.1^22,-1*K.1^18,K.1^16,-1*K.1^14,K.1^4,-1*K.1^26,K.1^8,K.1^32,-1*K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^10,-1*K.1^26,-1*K.1^22,K.1^28,K.1^4,K.1^8,K.1^24,K.1^20,-1*K.1^14,-1*K.1^14,K.1^4,-1*K.1^22,-1*K.1^30,K.1^12,K.1^24,-1*K.1^18,K.1^32,-1*K.1^30,K.1^20,-1*K.1^18,-1*K.1^2,K.1^12,K.1^16,K.1^28,-1*K.1^6,K.1^24,K.1^20,K.1^16,-1*K.1^5,K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^27,-1*K.1^27,K.1^25,K.1^25,K.1^9,K.1^9,-1*K.1^11,-1*K.1^11,-1*K.1^19,-1*K.1^19,K.1^33,K.1^33,K.1^11,-1*K.1^29,K.1^19,-1*K.1^9,K.1^3,K.1^19,-1*K.1^9,K.1^3,-1*K.1^21,K.1^27,-1*K.1,-1*K.1^21,K.1^27,K.1^11,-1*K.1^29,-1*K.1^15,-1*K.1^31,-1*K.1^31,K.1^29,K.1^29,K.1^5,K.1^5,-1*K.1^7,-1*K.1^7,-1*K.1^23,-1*K.1^23,K.1^21,K.1^21,K.1^13,K.1^13,-1*K.1^15,-1*K.1^33,K.1^23,-1*K.1^5,-1*K.1,-1*K.1^25,K.1^31,K.1^15,-1*K.1^25,K.1^31,-1*K.1^13,K.1^7,-1*K.1^33,-1*K.1^13,K.1^7,K.1^23,-1*K.1^5,K.1^15,K.1^33,-1*K.1^31,-1*K.1^31,-1*K.1^3,-1*K.1^3,K.1^5,K.1^5,K.1^25,K.1^25,-1*K.1^23,-1*K.1^23,-1*K.1^11,-1*K.1^11,K.1^13,K.1^13,K.1^33,K.1^15,K.1^23,-1*K.1^29,-1*K.1,-1*K.1^9,K.1^31,K.1^15,-1*K.1^9,K.1^31,-1*K.1^21,K.1^7,-1*K.1,-1*K.1^21,K.1^7,K.1^23,-1*K.1^29,-1*K.1^15,K.1,K.1,K.1^29,K.1^29,-1*K.1^27,-1*K.1^27,-1*K.1^7,-1*K.1^7,K.1^9,K.1^9,K.1^21,K.1^21,-1*K.1^19,-1*K.1^19,-1*K.1^15,-1*K.1^33,K.1^11,-1*K.1^5,K.1^19,-1*K.1^25,K.1^3,K.1^19,-1*K.1^25,K.1^3,-1*K.1^13,K.1^27,-1*K.1^33,-1*K.1^13,K.1^27,K.1^11,-1*K.1^12,-1*K.1^8,K.1^30,-1*K.1^16,-1*K.1^24,-1*K.1^12,-1*K.1^32,K.1^30,K.1^10,K.1^2,-1*K.1^16,-1*K.1^12,-1*K.1^8,-1*K.1^28,-1*K.1^28,-1*K.1^24,K.1^2,K.1^30,K.1^6,-1*K.1^28,-1*K.1^8,-1*K.1^20,-1*K.1^12,K.1^18,-1*K.1^28,-1*K.1^4,K.1^6,-1*K.1^20,-1*K.1^32,K.1^26,-1*K.1^32,K.1^26,-1*K.1^4,K.1^26,-1*K.1^24,K.1^6,K.1^18,K.1^14,K.1^10,K.1^10,-1*K.1^24,-1*K.1^16,K.1^22,K.1^2,K.1^2,K.1^14,K.1^14,K.1^22,K.1^18,-1*K.1^20,K.1^10,-1*K.1^8,K.1^14,K.1^22,K.1^22,-1*K.1^32,K.1^6,K.1^30,K.1^18,-1*K.1^4,-1*K.1^20,-1*K.1^16,-1*K.1^4,K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,K.1^28,K.1^20,-1*K.1^26,-1*K.1^10,K.1^24,K.1^16,-1*K.1^30,-1*K.1^2,K.1^8,K.1^32,K.1^12,-1*K.1^22,-1*K.1^14,-1*K.1^6,-1*K.1^18,K.1^4,-1*K.1^2,-1*K.1^22,-1*K.1^18,-1*K.1^14,-1*K.1^22,K.1^8,-1*K.1^26,K.1^4,K.1^8,K.1^24,K.1^20,K.1^16,K.1^24,-1*K.1^6,K.1^32,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,K.1^16,K.1^12,-1*K.1^10,K.1^12,-1*K.1^14,K.1^16,-1*K.1^18,K.1^20,K.1^8,K.1^4,-1*K.1^2,-1*K.1^30,K.1^32,-1*K.1^30,K.1^28,-1*K.1^26,K.1^28,-1*K.1^10,K.1^12,-1*K.1^14,-1*K.1^10,K.1^32,-1*K.1^30,K.1^28,-1*K.1^26,K.1^24,-1*K.1^22,K.1^20,-1*K.1^18,-1*K.1^14,K.1^8,-1*K.1^6,K.1^16,K.1^12,K.1^20,-1*K.1^18,-1*K.1^2,K.1^28,K.1^32,-1*K.1^10,K.1^24,-1*K.1^22,-1*K.1^26,K.1^4,-1*K.1^30,K.1^22,K.1^14,-1*K.1^4,-1*K.1^16,K.1^14,-1*K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^30,K.1^18,-1*K.1^32,K.1^22,-1*K.1^28,K.1^26,K.1^6,K.1^30,K.1^30,-1*K.1^4,-1*K.1^20,-1*K.1^28,K.1^22,K.1^18,-1*K.1^16,K.1^2,-1*K.1^28,K.1^2,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^4,-1*K.1^20,-1*K.1^12,K.1^18,-1*K.1^32,K.1^26,K.1^6,-1*K.1^12,K.1^14,-1*K.1^16,K.1^10,K.1^10,K.1^6,K.1^14,K.1^2,-1*K.1^24,-1*K.1^8,-1*K.1^20,K.1^30,-1*K.1^24,K.1^26,-1*K.1^28,-1*K.1^32,-1*K.1^32,K.1^18,K.1^10,K.1^26,-1*K.1^20,K.1^6,K.1^22,K.1^10,K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^26,K.1^24,-1*K.1^22,-1*K.1^2,K.1^32,K.1^28,K.1^12,K.1^16,-1*K.1^18,K.1^20,-1*K.1^30,K.1^8,-1*K.1^26,-1*K.1^2,K.1^24,K.1^32,K.1^28,K.1^24,K.1^8,K.1^12,-1*K.1^6,-1*K.1^30,-1*K.1^26,-1*K.1^10,-1*K.1^14,K.1^20,K.1^20,-1*K.1^30,K.1^12,K.1^4,-1*K.1^22,-1*K.1^10,K.1^16,-1*K.1^2,K.1^4,-1*K.1^14,K.1^16,K.1^32,-1*K.1^22,-1*K.1^18,-1*K.1^6,K.1^28,-1*K.1^10,-1*K.1^14,-1*K.1^18,K.1^29,-1*K.1^33,-1*K.1^33,K.1^31,K.1^31,K.1^7,K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,K.1^23,K.1^23,K.1^15,K.1^15,-1*K.1,-1*K.1,-1*K.1^23,K.1^5,-1*K.1^15,K.1^25,-1*K.1^31,-1*K.1^15,K.1^25,-1*K.1^31,K.1^13,-1*K.1^7,K.1^33,K.1^13,-1*K.1^7,-1*K.1^23,K.1^5,K.1^19,K.1^3,K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,K.1^27,K.1^27,K.1^11,K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,K.1^19,K.1,-1*K.1^11,K.1^29,K.1^33,K.1^9,-1*K.1^3,-1*K.1^19,K.1^9,-1*K.1^3,K.1^21,-1*K.1^27,K.1,K.1^21,-1*K.1^27,-1*K.1^11,K.1^29,-1*K.1^19,-1*K.1,K.1^3,K.1^3,K.1^31,K.1^31,-1*K.1^29,-1*K.1^29,-1*K.1^9,-1*K.1^9,K.1^11,K.1^11,K.1^23,K.1^23,-1*K.1^21,-1*K.1^21,-1*K.1,-1*K.1^19,-1*K.1^11,K.1^5,K.1^33,K.1^25,-1*K.1^3,-1*K.1^19,K.1^25,-1*K.1^3,K.1^13,-1*K.1^27,K.1^33,K.1^13,-1*K.1^27,-1*K.1^11,K.1^5,K.1^19,-1*K.1^33,-1*K.1^33,-1*K.1^5,-1*K.1^5,K.1^7,K.1^7,K.1^27,K.1^27,-1*K.1^25,-1*K.1^25,-1*K.1^13,-1*K.1^13,K.1^15,K.1^15,K.1^19,K.1,-1*K.1^23,K.1^29,-1*K.1^15,K.1^9,-1*K.1^31,-1*K.1^15,K.1^9,-1*K.1^31,K.1^21,-1*K.1^7,K.1,K.1^21,-1*K.1^7,-1*K.1^23,K.1^22,K.1^26,-1*K.1^4,K.1^18,K.1^10,K.1^22,K.1^2,-1*K.1^4,-1*K.1^24,-1*K.1^32,K.1^18,K.1^22,K.1^26,K.1^6,K.1^6,K.1^10,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^6,K.1^26,K.1^14,K.1^22,-1*K.1^16,K.1^6,K.1^30,-1*K.1^28,K.1^14,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,K.1^30,-1*K.1^8,K.1^10,-1*K.1^28,-1*K.1^16,-1*K.1^20,-1*K.1^24,-1*K.1^24,K.1^10,K.1^18,-1*K.1^12,-1*K.1^32,-1*K.1^32,-1*K.1^20,-1*K.1^20,-1*K.1^12,-1*K.1^16,K.1^14,-1*K.1^24,K.1^26,-1*K.1^20,-1*K.1^12,-1*K.1^12,K.1^2,-1*K.1^28,-1*K.1^4,-1*K.1^16,K.1^30,K.1^14,K.1^18,K.1^30,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,K.1^28,K.1^20,-1*K.1^26,-1*K.1^10,K.1^24,K.1^16,-1*K.1^30,-1*K.1^2,K.1^8,K.1^32,K.1^12,-1*K.1^22,-1*K.1^14,-1*K.1^6,-1*K.1^18,K.1^4,-1*K.1^2,-1*K.1^22,-1*K.1^18,-1*K.1^14,-1*K.1^22,K.1^8,-1*K.1^26,K.1^4,K.1^8,K.1^24,K.1^20,K.1^16,K.1^24,-1*K.1^6,K.1^32,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,K.1^16,K.1^12,-1*K.1^10,K.1^12,-1*K.1^14,K.1^16,-1*K.1^18,K.1^20,K.1^8,K.1^4,-1*K.1^2,-1*K.1^30,K.1^32,-1*K.1^30,K.1^28,-1*K.1^26,K.1^28,-1*K.1^10,K.1^12,-1*K.1^14,-1*K.1^10,K.1^32,-1*K.1^30,K.1^28,-1*K.1^26,K.1^24,-1*K.1^22,K.1^20,-1*K.1^18,-1*K.1^14,K.1^8,-1*K.1^6,K.1^16,K.1^12,K.1^20,-1*K.1^18,-1*K.1^2,K.1^28,K.1^32,-1*K.1^10,K.1^24,-1*K.1^22,-1*K.1^26,K.1^4,-1*K.1^30,K.1^22,K.1^14,-1*K.1^4,-1*K.1^16,K.1^14,-1*K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^30,K.1^18,-1*K.1^32,K.1^22,-1*K.1^28,K.1^26,K.1^6,K.1^30,K.1^30,-1*K.1^4,-1*K.1^20,-1*K.1^28,K.1^22,K.1^18,-1*K.1^16,K.1^2,-1*K.1^28,K.1^2,-1*K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^4,-1*K.1^20,-1*K.1^12,K.1^18,-1*K.1^32,K.1^26,K.1^6,-1*K.1^12,K.1^14,-1*K.1^16,K.1^10,K.1^10,K.1^6,K.1^14,K.1^2,-1*K.1^24,-1*K.1^8,-1*K.1^20,K.1^30,-1*K.1^24,K.1^26,-1*K.1^28,-1*K.1^32,-1*K.1^32,K.1^18,K.1^10,K.1^26,-1*K.1^20,K.1^6,K.1^22,K.1^10,K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^26,K.1^24,-1*K.1^22,-1*K.1^2,K.1^32,K.1^28,K.1^12,K.1^16,-1*K.1^18,K.1^20,-1*K.1^30,K.1^8,-1*K.1^26,-1*K.1^2,K.1^24,K.1^32,K.1^28,K.1^24,K.1^8,K.1^12,-1*K.1^6,-1*K.1^30,-1*K.1^26,-1*K.1^10,-1*K.1^14,K.1^20,K.1^20,-1*K.1^30,K.1^12,K.1^4,-1*K.1^22,-1*K.1^10,K.1^16,-1*K.1^2,K.1^4,-1*K.1^14,K.1^16,K.1^32,-1*K.1^22,-1*K.1^18,-1*K.1^6,K.1^28,-1*K.1^10,-1*K.1^14,-1*K.1^18,-1*K.1^29,K.1^33,K.1^33,-1*K.1^31,-1*K.1^31,-1*K.1^7,-1*K.1^7,K.1^9,K.1^9,K.1^25,K.1^25,-1*K.1^23,-1*K.1^23,-1*K.1^15,-1*K.1^15,K.1,K.1,K.1^23,-1*K.1^5,K.1^15,-1*K.1^25,K.1^31,K.1^15,-1*K.1^25,K.1^31,-1*K.1^13,K.1^7,-1*K.1^33,-1*K.1^13,K.1^7,K.1^23,-1*K.1^5,-1*K.1^19,-1*K.1^3,-1*K.1^3,K.1^5,K.1^5,K.1^29,K.1^29,-1*K.1^27,-1*K.1^27,-1*K.1^11,-1*K.1^11,K.1^13,K.1^13,K.1^21,K.1^21,-1*K.1^19,-1*K.1,K.1^11,-1*K.1^29,-1*K.1^33,-1*K.1^9,K.1^3,K.1^19,-1*K.1^9,K.1^3,-1*K.1^21,K.1^27,-1*K.1,-1*K.1^21,K.1^27,K.1^11,-1*K.1^29,K.1^19,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^31,-1*K.1^31,K.1^29,K.1^29,K.1^9,K.1^9,-1*K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^23,K.1^21,K.1^21,K.1,K.1^19,K.1^11,-1*K.1^5,-1*K.1^33,-1*K.1^25,K.1^3,K.1^19,-1*K.1^25,K.1^3,-1*K.1^13,K.1^27,-1*K.1^33,-1*K.1^13,K.1^27,K.1^11,-1*K.1^5,-1*K.1^19,K.1^33,K.1^33,K.1^5,K.1^5,-1*K.1^7,-1*K.1^7,-1*K.1^27,-1*K.1^27,K.1^25,K.1^25,K.1^13,K.1^13,-1*K.1^15,-1*K.1^15,-1*K.1^19,-1*K.1,K.1^23,-1*K.1^29,K.1^15,-1*K.1^9,K.1^31,K.1^15,-1*K.1^9,K.1^31,-1*K.1^21,K.1^7,-1*K.1,-1*K.1^21,K.1^7,K.1^23,K.1^22,K.1^26,-1*K.1^4,K.1^18,K.1^10,K.1^22,K.1^2,-1*K.1^4,-1*K.1^24,-1*K.1^32,K.1^18,K.1^22,K.1^26,K.1^6,K.1^6,K.1^10,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^6,K.1^26,K.1^14,K.1^22,-1*K.1^16,K.1^6,K.1^30,-1*K.1^28,K.1^14,K.1^2,-1*K.1^8,K.1^2,-1*K.1^8,K.1^30,-1*K.1^8,K.1^10,-1*K.1^28,-1*K.1^16,-1*K.1^20,-1*K.1^24,-1*K.1^24,K.1^10,K.1^18,-1*K.1^12,-1*K.1^32,-1*K.1^32,-1*K.1^20,-1*K.1^20,-1*K.1^12,-1*K.1^16,K.1^14,-1*K.1^24,K.1^26,-1*K.1^20,-1*K.1^12,-1*K.1^12,K.1^2,-1*K.1^28,-1*K.1^4,-1*K.1^16,K.1^30,K.1^14,K.1^18,K.1^30,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,-1*K.1^6,-1*K.1^14,K.1^8,K.1^24,-1*K.1^10,-1*K.1^18,K.1^4,K.1^32,-1*K.1^26,-1*K.1^2,-1*K.1^22,K.1^12,K.1^20,K.1^28,K.1^16,-1*K.1^30,K.1^32,K.1^12,K.1^16,K.1^20,K.1^12,-1*K.1^26,K.1^8,-1*K.1^30,-1*K.1^26,-1*K.1^10,-1*K.1^14,-1*K.1^18,-1*K.1^10,K.1^28,-1*K.1^2,K.1^32,K.1^28,-1*K.1^30,K.1^28,-1*K.1^18,-1*K.1^22,K.1^24,-1*K.1^22,K.1^20,-1*K.1^18,K.1^16,-1*K.1^14,-1*K.1^26,-1*K.1^30,K.1^32,K.1^4,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^24,-1*K.1^22,K.1^20,K.1^24,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^10,K.1^12,-1*K.1^14,K.1^16,K.1^20,-1*K.1^26,K.1^28,-1*K.1^18,-1*K.1^22,-1*K.1^14,K.1^16,K.1^32,-1*K.1^6,-1*K.1^2,K.1^24,-1*K.1^10,K.1^12,K.1^8,-1*K.1^30,K.1^4,-1*K.1^12,-1*K.1^20,K.1^30,K.1^18,-1*K.1^20,K.1^22,K.1^10,K.1^26,K.1^22,K.1^30,K.1^18,-1*K.1^4,-1*K.1^16,K.1^2,-1*K.1^12,K.1^6,-1*K.1^8,-1*K.1^28,-1*K.1^4,-1*K.1^4,K.1^30,K.1^14,K.1^6,-1*K.1^12,-1*K.1^16,K.1^18,-1*K.1^32,K.1^6,-1*K.1^32,K.1^26,K.1^10,K.1^26,K.1^30,K.1^14,K.1^22,-1*K.1^16,K.1^2,-1*K.1^8,-1*K.1^28,K.1^22,-1*K.1^20,K.1^18,-1*K.1^24,-1*K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^32,K.1^10,K.1^26,K.1^14,-1*K.1^4,K.1^10,-1*K.1^8,K.1^6,K.1^2,K.1^2,-1*K.1^16,-1*K.1^24,-1*K.1^8,K.1^14,-1*K.1^28,-1*K.1^12,-1*K.1^24,-1*K.1^32,-1*K.1^30,K.1^28,-1*K.1^26,K.1^8,-1*K.1^10,K.1^12,K.1^32,-1*K.1^2,-1*K.1^6,-1*K.1^22,-1*K.1^18,K.1^16,-1*K.1^14,K.1^4,-1*K.1^26,K.1^8,K.1^32,-1*K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^10,-1*K.1^26,-1*K.1^22,K.1^28,K.1^4,K.1^8,K.1^24,K.1^20,-1*K.1^14,-1*K.1^14,K.1^4,-1*K.1^22,-1*K.1^30,K.1^12,K.1^24,-1*K.1^18,K.1^32,-1*K.1^30,K.1^20,-1*K.1^18,-1*K.1^2,K.1^12,K.1^16,K.1^28,-1*K.1^6,K.1^24,K.1^20,K.1^16,K.1^5,-1*K.1,-1*K.1,K.1^3,K.1^3,K.1^27,K.1^27,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,K.1^11,K.1^11,K.1^19,K.1^19,-1*K.1^33,-1*K.1^33,-1*K.1^11,K.1^29,-1*K.1^19,K.1^9,-1*K.1^3,-1*K.1^19,K.1^9,-1*K.1^3,K.1^21,-1*K.1^27,K.1,K.1^21,-1*K.1^27,-1*K.1^11,K.1^29,K.1^15,K.1^31,K.1^31,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,K.1^7,K.1^7,K.1^23,K.1^23,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,K.1^15,K.1^33,-1*K.1^23,K.1^5,K.1,K.1^25,-1*K.1^31,-1*K.1^15,K.1^25,-1*K.1^31,K.1^13,-1*K.1^7,K.1^33,K.1^13,-1*K.1^7,-1*K.1^23,K.1^5,-1*K.1^15,-1*K.1^33,K.1^31,K.1^31,K.1^3,K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^25,-1*K.1^25,K.1^23,K.1^23,K.1^11,K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1^33,-1*K.1^15,-1*K.1^23,K.1^29,K.1,K.1^9,-1*K.1^31,-1*K.1^15,K.1^9,-1*K.1^31,K.1^21,-1*K.1^7,K.1,K.1^21,-1*K.1^7,-1*K.1^23,K.1^29,K.1^15,-1*K.1,-1*K.1,-1*K.1^29,-1*K.1^29,K.1^27,K.1^27,K.1^7,K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^21,-1*K.1^21,K.1^19,K.1^19,K.1^15,K.1^33,-1*K.1^11,K.1^5,-1*K.1^19,K.1^25,-1*K.1^3,-1*K.1^19,K.1^25,-1*K.1^3,K.1^13,-1*K.1^27,K.1^33,K.1^13,-1*K.1^27,-1*K.1^11,-1*K.1^12,-1*K.1^8,K.1^30,-1*K.1^16,-1*K.1^24,-1*K.1^12,-1*K.1^32,K.1^30,K.1^10,K.1^2,-1*K.1^16,-1*K.1^12,-1*K.1^8,-1*K.1^28,-1*K.1^28,-1*K.1^24,K.1^2,K.1^30,K.1^6,-1*K.1^28,-1*K.1^8,-1*K.1^20,-1*K.1^12,K.1^18,-1*K.1^28,-1*K.1^4,K.1^6,-1*K.1^20,-1*K.1^32,K.1^26,-1*K.1^32,K.1^26,-1*K.1^4,K.1^26,-1*K.1^24,K.1^6,K.1^18,K.1^14,K.1^10,K.1^10,-1*K.1^24,-1*K.1^16,K.1^22,K.1^2,K.1^2,K.1^14,K.1^14,K.1^22,K.1^18,-1*K.1^20,K.1^10,-1*K.1^8,K.1^14,K.1^22,K.1^22,-1*K.1^32,K.1^6,K.1^30,K.1^18,-1*K.1^4,-1*K.1^20,-1*K.1^16,-1*K.1^4,K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,-1*K.1^10,K.1^12,-1*K.1^2,-1*K.1^6,K.1^28,-1*K.1^30,-1*K.1^18,K.1^8,K.1^32,-1*K.1^26,-1*K.1^14,K.1^20,-1*K.1^22,K.1^24,K.1^4,K.1^16,K.1^8,K.1^20,K.1^4,-1*K.1^22,K.1^20,K.1^32,-1*K.1^2,K.1^16,K.1^32,K.1^28,K.1^12,-1*K.1^30,K.1^28,K.1^24,-1*K.1^26,K.1^8,K.1^24,K.1^16,K.1^24,-1*K.1^30,-1*K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^22,-1*K.1^30,K.1^4,K.1^12,K.1^32,K.1^16,K.1^8,-1*K.1^18,-1*K.1^26,-1*K.1^18,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^26,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^28,K.1^20,K.1^12,K.1^4,-1*K.1^22,K.1^32,K.1^24,-1*K.1^30,-1*K.1^14,K.1^12,K.1^4,K.1^8,-1*K.1^10,-1*K.1^26,-1*K.1^6,K.1^28,K.1^20,-1*K.1^2,K.1^16,-1*K.1^18,-1*K.1^20,K.1^22,-1*K.1^16,K.1^30,K.1^22,K.1^14,-1*K.1^28,-1*K.1^32,K.1^14,-1*K.1^16,K.1^30,K.1^18,-1*K.1^4,K.1^26,-1*K.1^20,K.1^10,K.1^2,-1*K.1^24,K.1^18,K.1^18,-1*K.1^16,-1*K.1^12,K.1^10,-1*K.1^20,-1*K.1^4,K.1^30,-1*K.1^8,K.1^10,-1*K.1^8,-1*K.1^32,-1*K.1^28,-1*K.1^32,-1*K.1^16,-1*K.1^12,K.1^14,-1*K.1^4,K.1^26,K.1^2,-1*K.1^24,K.1^14,K.1^22,K.1^30,K.1^6,K.1^6,-1*K.1^24,K.1^22,-1*K.1^8,-1*K.1^28,-1*K.1^32,-1*K.1^12,K.1^18,-1*K.1^28,K.1^2,K.1^10,K.1^26,K.1^26,-1*K.1^4,K.1^6,K.1^2,-1*K.1^12,-1*K.1^24,-1*K.1^20,K.1^6,-1*K.1^8,K.1^16,K.1^24,K.1^32,-1*K.1^2,K.1^28,K.1^20,K.1^8,-1*K.1^26,-1*K.1^10,-1*K.1^14,-1*K.1^30,K.1^4,K.1^12,-1*K.1^18,K.1^32,-1*K.1^2,K.1^8,K.1^28,-1*K.1^26,-1*K.1^10,K.1^28,K.1^32,-1*K.1^14,K.1^24,-1*K.1^18,-1*K.1^2,-1*K.1^6,-1*K.1^22,K.1^12,K.1^12,-1*K.1^18,-1*K.1^14,K.1^16,K.1^20,-1*K.1^6,-1*K.1^30,K.1^8,K.1^16,-1*K.1^22,-1*K.1^30,-1*K.1^26,K.1^20,K.1^4,K.1^24,-1*K.1^10,-1*K.1^6,-1*K.1^22,K.1^4,K.1^31,K.1^13,K.1^13,K.1^5,K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^19,-1*K.1^19,-1*K.1^15,-1*K.1^15,-1*K.1^7,-1*K.1^7,K.1^9,K.1^9,K.1^21,K.1^21,K.1^7,K.1^3,-1*K.1^9,K.1^15,-1*K.1^5,-1*K.1^9,K.1^15,-1*K.1^5,-1*K.1,K.1^11,-1*K.1^13,-1*K.1,K.1^11,K.1^7,K.1^3,K.1^25,K.1^29,K.1^29,-1*K.1^3,-1*K.1^3,-1*K.1^31,-1*K.1^31,-1*K.1^23,-1*K.1^23,-1*K.1^27,-1*K.1^27,K.1,K.1,K.1^33,K.1^33,K.1^25,-1*K.1^21,K.1^27,K.1^31,-1*K.1^13,K.1^19,-1*K.1^29,-1*K.1^25,K.1^19,-1*K.1^29,-1*K.1^33,K.1^23,-1*K.1^21,-1*K.1^33,K.1^23,K.1^27,K.1^31,-1*K.1^25,K.1^21,K.1^29,K.1^29,K.1^5,K.1^5,-1*K.1^31,-1*K.1^31,-1*K.1^19,-1*K.1^19,-1*K.1^27,-1*K.1^27,-1*K.1^7,-1*K.1^7,K.1^33,K.1^33,K.1^21,-1*K.1^25,K.1^27,K.1^3,-1*K.1^13,K.1^15,-1*K.1^29,-1*K.1^25,K.1^15,-1*K.1^29,-1*K.1,K.1^23,-1*K.1^13,-1*K.1,K.1^23,K.1^27,K.1^3,K.1^25,K.1^13,K.1^13,-1*K.1^3,-1*K.1^3,-1*K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^23,-1*K.1^15,-1*K.1^15,K.1,K.1,K.1^9,K.1^9,K.1^25,-1*K.1^21,K.1^7,K.1^31,-1*K.1^9,K.1^19,-1*K.1^5,-1*K.1^9,K.1^19,-1*K.1^5,-1*K.1^33,K.1^11,-1*K.1^21,-1*K.1^33,K.1^11,K.1^7,-1*K.1^20,K.1^2,-1*K.1^16,-1*K.1^4,K.1^6,-1*K.1^20,-1*K.1^8,-1*K.1^16,-1*K.1^28,K.1^26,-1*K.1^4,-1*K.1^20,K.1^2,-1*K.1^24,-1*K.1^24,K.1^6,K.1^26,-1*K.1^16,K.1^10,-1*K.1^24,K.1^2,K.1^22,-1*K.1^20,K.1^30,-1*K.1^24,K.1^18,K.1^10,K.1^22,-1*K.1^8,-1*K.1^32,-1*K.1^8,-1*K.1^32,K.1^18,-1*K.1^32,K.1^6,K.1^10,K.1^30,-1*K.1^12,-1*K.1^28,-1*K.1^28,K.1^6,-1*K.1^4,K.1^14,K.1^26,K.1^26,-1*K.1^12,-1*K.1^12,K.1^14,K.1^30,K.1^22,-1*K.1^28,K.1^2,-1*K.1^12,K.1^14,K.1^14,-1*K.1^8,K.1^10,-1*K.1^16,K.1^30,K.1^18,K.1^22,-1*K.1^4,K.1^18,-1*K.1^32]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,K.1^24,-1*K.1^22,K.1^32,K.1^28,-1*K.1^6,K.1^4,K.1^16,-1*K.1^26,-1*K.1^2,K.1^8,K.1^20,-1*K.1^14,K.1^12,-1*K.1^10,-1*K.1^30,-1*K.1^18,-1*K.1^26,-1*K.1^14,-1*K.1^30,K.1^12,-1*K.1^14,-1*K.1^2,K.1^32,-1*K.1^18,-1*K.1^2,-1*K.1^6,-1*K.1^22,K.1^4,-1*K.1^6,-1*K.1^10,K.1^8,-1*K.1^26,-1*K.1^10,-1*K.1^18,-1*K.1^10,K.1^4,K.1^20,K.1^28,K.1^20,K.1^12,K.1^4,-1*K.1^30,-1*K.1^22,-1*K.1^2,-1*K.1^18,-1*K.1^26,K.1^16,K.1^8,K.1^16,K.1^24,K.1^32,K.1^24,K.1^28,K.1^20,K.1^12,K.1^28,K.1^8,K.1^16,K.1^24,K.1^32,-1*K.1^6,-1*K.1^14,-1*K.1^22,-1*K.1^30,K.1^12,-1*K.1^2,-1*K.1^10,K.1^4,K.1^20,-1*K.1^22,-1*K.1^30,-1*K.1^26,K.1^24,K.1^8,K.1^28,-1*K.1^6,-1*K.1^14,K.1^32,-1*K.1^18,K.1^16,K.1^14,-1*K.1^12,K.1^18,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^6,K.1^2,-1*K.1^20,K.1^18,-1*K.1^4,-1*K.1^16,K.1^30,-1*K.1^8,K.1^14,-1*K.1^24,-1*K.1^32,K.1^10,-1*K.1^16,-1*K.1^16,K.1^18,K.1^22,-1*K.1^24,K.1^14,K.1^30,-1*K.1^4,K.1^26,-1*K.1^24,K.1^26,K.1^2,K.1^6,K.1^2,K.1^18,K.1^22,-1*K.1^20,K.1^30,-1*K.1^8,-1*K.1^32,K.1^10,-1*K.1^20,-1*K.1^12,-1*K.1^4,-1*K.1^28,-1*K.1^28,K.1^10,-1*K.1^12,K.1^26,K.1^6,K.1^2,K.1^22,-1*K.1^16,K.1^6,-1*K.1^32,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^30,-1*K.1^28,-1*K.1^32,K.1^22,K.1^10,K.1^14,-1*K.1^28,K.1^26,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^32,-1*K.1^6,-1*K.1^14,-1*K.1^26,K.1^8,K.1^24,K.1^20,K.1^4,-1*K.1^30,-1*K.1^22,K.1^16,-1*K.1^2,K.1^32,-1*K.1^26,-1*K.1^6,K.1^8,K.1^24,-1*K.1^6,-1*K.1^2,K.1^20,-1*K.1^10,K.1^16,K.1^32,K.1^28,K.1^12,-1*K.1^22,-1*K.1^22,K.1^16,K.1^20,-1*K.1^18,-1*K.1^14,K.1^28,K.1^4,-1*K.1^26,-1*K.1^18,K.1^12,K.1^4,K.1^8,-1*K.1^14,-1*K.1^30,-1*K.1^10,K.1^24,K.1^28,K.1^12,-1*K.1^30,-1*K.1^3,-1*K.1^21,-1*K.1^21,-1*K.1^29,-1*K.1^29,K.1^23,K.1^23,K.1^15,K.1^15,K.1^19,K.1^19,K.1^27,K.1^27,-1*K.1^25,-1*K.1^25,-1*K.1^13,-1*K.1^13,-1*K.1^27,-1*K.1^31,K.1^25,-1*K.1^19,K.1^29,K.1^25,-1*K.1^19,K.1^29,K.1^33,-1*K.1^23,K.1^21,K.1^33,-1*K.1^23,-1*K.1^27,-1*K.1^31,-1*K.1^9,-1*K.1^5,-1*K.1^5,K.1^31,K.1^31,K.1^3,K.1^3,K.1^11,K.1^11,K.1^7,K.1^7,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,-1*K.1^9,K.1^13,-1*K.1^7,-1*K.1^3,K.1^21,-1*K.1^15,K.1^5,K.1^9,-1*K.1^15,K.1^5,K.1,-1*K.1^11,K.1^13,K.1,-1*K.1^11,-1*K.1^7,-1*K.1^3,K.1^9,-1*K.1^13,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,K.1^3,K.1^3,K.1^15,K.1^15,K.1^7,K.1^7,K.1^27,K.1^27,-1*K.1,-1*K.1,-1*K.1^13,K.1^9,-1*K.1^7,-1*K.1^31,K.1^21,-1*K.1^19,K.1^5,K.1^9,-1*K.1^19,K.1^5,K.1^33,-1*K.1^11,K.1^21,K.1^33,-1*K.1^11,-1*K.1^7,-1*K.1^31,-1*K.1^9,-1*K.1^21,-1*K.1^21,K.1^31,K.1^31,K.1^23,K.1^23,K.1^11,K.1^11,K.1^19,K.1^19,-1*K.1^33,-1*K.1^33,-1*K.1^25,-1*K.1^25,-1*K.1^9,K.1^13,-1*K.1^27,-1*K.1^3,K.1^25,-1*K.1^15,K.1^29,K.1^25,-1*K.1^15,K.1^29,K.1,-1*K.1^23,K.1^13,K.1,-1*K.1^23,-1*K.1^27,K.1^14,-1*K.1^32,K.1^18,K.1^30,-1*K.1^28,K.1^14,K.1^26,K.1^18,K.1^6,-1*K.1^8,K.1^30,K.1^14,-1*K.1^32,K.1^10,K.1^10,-1*K.1^28,-1*K.1^8,K.1^18,-1*K.1^24,K.1^10,-1*K.1^32,-1*K.1^12,K.1^14,-1*K.1^4,K.1^10,-1*K.1^16,-1*K.1^24,-1*K.1^12,K.1^26,K.1^2,K.1^26,K.1^2,-1*K.1^16,K.1^2,-1*K.1^28,-1*K.1^24,-1*K.1^4,K.1^22,K.1^6,K.1^6,-1*K.1^28,K.1^30,-1*K.1^20,-1*K.1^8,-1*K.1^8,K.1^22,K.1^22,-1*K.1^20,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^32,K.1^22,-1*K.1^20,-1*K.1^20,K.1^26,-1*K.1^24,K.1^18,-1*K.1^4,-1*K.1^16,-1*K.1^12,K.1^30,-1*K.1^16,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,K.1^24,-1*K.1^22,K.1^32,K.1^28,-1*K.1^6,K.1^4,K.1^16,-1*K.1^26,-1*K.1^2,K.1^8,K.1^20,-1*K.1^14,K.1^12,-1*K.1^10,-1*K.1^30,-1*K.1^18,-1*K.1^26,-1*K.1^14,-1*K.1^30,K.1^12,-1*K.1^14,-1*K.1^2,K.1^32,-1*K.1^18,-1*K.1^2,-1*K.1^6,-1*K.1^22,K.1^4,-1*K.1^6,-1*K.1^10,K.1^8,-1*K.1^26,-1*K.1^10,-1*K.1^18,-1*K.1^10,K.1^4,K.1^20,K.1^28,K.1^20,K.1^12,K.1^4,-1*K.1^30,-1*K.1^22,-1*K.1^2,-1*K.1^18,-1*K.1^26,K.1^16,K.1^8,K.1^16,K.1^24,K.1^32,K.1^24,K.1^28,K.1^20,K.1^12,K.1^28,K.1^8,K.1^16,K.1^24,K.1^32,-1*K.1^6,-1*K.1^14,-1*K.1^22,-1*K.1^30,K.1^12,-1*K.1^2,-1*K.1^10,K.1^4,K.1^20,-1*K.1^22,-1*K.1^30,-1*K.1^26,K.1^24,K.1^8,K.1^28,-1*K.1^6,-1*K.1^14,K.1^32,-1*K.1^18,K.1^16,K.1^14,-1*K.1^12,K.1^18,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^6,K.1^2,-1*K.1^20,K.1^18,-1*K.1^4,-1*K.1^16,K.1^30,-1*K.1^8,K.1^14,-1*K.1^24,-1*K.1^32,K.1^10,-1*K.1^16,-1*K.1^16,K.1^18,K.1^22,-1*K.1^24,K.1^14,K.1^30,-1*K.1^4,K.1^26,-1*K.1^24,K.1^26,K.1^2,K.1^6,K.1^2,K.1^18,K.1^22,-1*K.1^20,K.1^30,-1*K.1^8,-1*K.1^32,K.1^10,-1*K.1^20,-1*K.1^12,-1*K.1^4,-1*K.1^28,-1*K.1^28,K.1^10,-1*K.1^12,K.1^26,K.1^6,K.1^2,K.1^22,-1*K.1^16,K.1^6,-1*K.1^32,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^30,-1*K.1^28,-1*K.1^32,K.1^22,K.1^10,K.1^14,-1*K.1^28,K.1^26,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^32,-1*K.1^6,-1*K.1^14,-1*K.1^26,K.1^8,K.1^24,K.1^20,K.1^4,-1*K.1^30,-1*K.1^22,K.1^16,-1*K.1^2,K.1^32,-1*K.1^26,-1*K.1^6,K.1^8,K.1^24,-1*K.1^6,-1*K.1^2,K.1^20,-1*K.1^10,K.1^16,K.1^32,K.1^28,K.1^12,-1*K.1^22,-1*K.1^22,K.1^16,K.1^20,-1*K.1^18,-1*K.1^14,K.1^28,K.1^4,-1*K.1^26,-1*K.1^18,K.1^12,K.1^4,K.1^8,-1*K.1^14,-1*K.1^30,-1*K.1^10,K.1^24,K.1^28,K.1^12,-1*K.1^30,K.1^3,K.1^21,K.1^21,K.1^29,K.1^29,-1*K.1^23,-1*K.1^23,-1*K.1^15,-1*K.1^15,-1*K.1^19,-1*K.1^19,-1*K.1^27,-1*K.1^27,K.1^25,K.1^25,K.1^13,K.1^13,K.1^27,K.1^31,-1*K.1^25,K.1^19,-1*K.1^29,-1*K.1^25,K.1^19,-1*K.1^29,-1*K.1^33,K.1^23,-1*K.1^21,-1*K.1^33,K.1^23,K.1^27,K.1^31,K.1^9,K.1^5,K.1^5,-1*K.1^31,-1*K.1^31,-1*K.1^3,-1*K.1^3,-1*K.1^11,-1*K.1^11,-1*K.1^7,-1*K.1^7,K.1^33,K.1^33,K.1,K.1,K.1^9,-1*K.1^13,K.1^7,K.1^3,-1*K.1^21,K.1^15,-1*K.1^5,-1*K.1^9,K.1^15,-1*K.1^5,-1*K.1,K.1^11,-1*K.1^13,-1*K.1,K.1^11,K.1^7,K.1^3,-1*K.1^9,K.1^13,K.1^5,K.1^5,K.1^29,K.1^29,-1*K.1^3,-1*K.1^3,-1*K.1^15,-1*K.1^15,-1*K.1^7,-1*K.1^7,-1*K.1^27,-1*K.1^27,K.1,K.1,K.1^13,-1*K.1^9,K.1^7,K.1^31,-1*K.1^21,K.1^19,-1*K.1^5,-1*K.1^9,K.1^19,-1*K.1^5,-1*K.1^33,K.1^11,-1*K.1^21,-1*K.1^33,K.1^11,K.1^7,K.1^31,K.1^9,K.1^21,K.1^21,-1*K.1^31,-1*K.1^31,-1*K.1^23,-1*K.1^23,-1*K.1^11,-1*K.1^11,-1*K.1^19,-1*K.1^19,K.1^33,K.1^33,K.1^25,K.1^25,K.1^9,-1*K.1^13,K.1^27,K.1^3,-1*K.1^25,K.1^15,-1*K.1^29,-1*K.1^25,K.1^15,-1*K.1^29,-1*K.1,K.1^23,-1*K.1^13,-1*K.1,K.1^23,K.1^27,K.1^14,-1*K.1^32,K.1^18,K.1^30,-1*K.1^28,K.1^14,K.1^26,K.1^18,K.1^6,-1*K.1^8,K.1^30,K.1^14,-1*K.1^32,K.1^10,K.1^10,-1*K.1^28,-1*K.1^8,K.1^18,-1*K.1^24,K.1^10,-1*K.1^32,-1*K.1^12,K.1^14,-1*K.1^4,K.1^10,-1*K.1^16,-1*K.1^24,-1*K.1^12,K.1^26,K.1^2,K.1^26,K.1^2,-1*K.1^16,K.1^2,-1*K.1^28,-1*K.1^24,-1*K.1^4,K.1^22,K.1^6,K.1^6,-1*K.1^28,K.1^30,-1*K.1^20,-1*K.1^8,-1*K.1^8,K.1^22,K.1^22,-1*K.1^20,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^32,K.1^22,-1*K.1^20,-1*K.1^20,K.1^26,-1*K.1^24,K.1^18,-1*K.1^4,-1*K.1^16,-1*K.1^12,K.1^30,-1*K.1^16,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,-1*K.1^10,K.1^12,-1*K.1^2,-1*K.1^6,K.1^28,-1*K.1^30,-1*K.1^18,K.1^8,K.1^32,-1*K.1^26,-1*K.1^14,K.1^20,-1*K.1^22,K.1^24,K.1^4,K.1^16,K.1^8,K.1^20,K.1^4,-1*K.1^22,K.1^20,K.1^32,-1*K.1^2,K.1^16,K.1^32,K.1^28,K.1^12,-1*K.1^30,K.1^28,K.1^24,-1*K.1^26,K.1^8,K.1^24,K.1^16,K.1^24,-1*K.1^30,-1*K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^22,-1*K.1^30,K.1^4,K.1^12,K.1^32,K.1^16,K.1^8,-1*K.1^18,-1*K.1^26,-1*K.1^18,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^26,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^28,K.1^20,K.1^12,K.1^4,-1*K.1^22,K.1^32,K.1^24,-1*K.1^30,-1*K.1^14,K.1^12,K.1^4,K.1^8,-1*K.1^10,-1*K.1^26,-1*K.1^6,K.1^28,K.1^20,-1*K.1^2,K.1^16,-1*K.1^18,-1*K.1^20,K.1^22,-1*K.1^16,K.1^30,K.1^22,K.1^14,-1*K.1^28,-1*K.1^32,K.1^14,-1*K.1^16,K.1^30,K.1^18,-1*K.1^4,K.1^26,-1*K.1^20,K.1^10,K.1^2,-1*K.1^24,K.1^18,K.1^18,-1*K.1^16,-1*K.1^12,K.1^10,-1*K.1^20,-1*K.1^4,K.1^30,-1*K.1^8,K.1^10,-1*K.1^8,-1*K.1^32,-1*K.1^28,-1*K.1^32,-1*K.1^16,-1*K.1^12,K.1^14,-1*K.1^4,K.1^26,K.1^2,-1*K.1^24,K.1^14,K.1^22,K.1^30,K.1^6,K.1^6,-1*K.1^24,K.1^22,-1*K.1^8,-1*K.1^28,-1*K.1^32,-1*K.1^12,K.1^18,-1*K.1^28,K.1^2,K.1^10,K.1^26,K.1^26,-1*K.1^4,K.1^6,K.1^2,-1*K.1^12,-1*K.1^24,-1*K.1^20,K.1^6,-1*K.1^8,K.1^16,K.1^24,K.1^32,-1*K.1^2,K.1^28,K.1^20,K.1^8,-1*K.1^26,-1*K.1^10,-1*K.1^14,-1*K.1^30,K.1^4,K.1^12,-1*K.1^18,K.1^32,-1*K.1^2,K.1^8,K.1^28,-1*K.1^26,-1*K.1^10,K.1^28,K.1^32,-1*K.1^14,K.1^24,-1*K.1^18,-1*K.1^2,-1*K.1^6,-1*K.1^22,K.1^12,K.1^12,-1*K.1^18,-1*K.1^14,K.1^16,K.1^20,-1*K.1^6,-1*K.1^30,K.1^8,K.1^16,-1*K.1^22,-1*K.1^30,-1*K.1^26,K.1^20,K.1^4,K.1^24,-1*K.1^10,-1*K.1^6,-1*K.1^22,K.1^4,-1*K.1^31,-1*K.1^13,-1*K.1^13,-1*K.1^5,-1*K.1^5,K.1^11,K.1^11,K.1^19,K.1^19,K.1^15,K.1^15,K.1^7,K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^21,-1*K.1^21,-1*K.1^7,-1*K.1^3,K.1^9,-1*K.1^15,K.1^5,K.1^9,-1*K.1^15,K.1^5,K.1,-1*K.1^11,K.1^13,K.1,-1*K.1^11,-1*K.1^7,-1*K.1^3,-1*K.1^25,-1*K.1^29,-1*K.1^29,K.1^3,K.1^3,K.1^31,K.1^31,K.1^23,K.1^23,K.1^27,K.1^27,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,-1*K.1^25,K.1^21,-1*K.1^27,-1*K.1^31,K.1^13,-1*K.1^19,K.1^29,K.1^25,-1*K.1^19,K.1^29,K.1^33,-1*K.1^23,K.1^21,K.1^33,-1*K.1^23,-1*K.1^27,-1*K.1^31,K.1^25,-1*K.1^21,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,K.1^31,K.1^31,K.1^19,K.1^19,K.1^27,K.1^27,K.1^7,K.1^7,-1*K.1^33,-1*K.1^33,-1*K.1^21,K.1^25,-1*K.1^27,-1*K.1^3,K.1^13,-1*K.1^15,K.1^29,K.1^25,-1*K.1^15,K.1^29,K.1,-1*K.1^23,K.1^13,K.1,-1*K.1^23,-1*K.1^27,-1*K.1^3,-1*K.1^25,-1*K.1^13,-1*K.1^13,K.1^3,K.1^3,K.1^11,K.1^11,K.1^23,K.1^23,K.1^15,K.1^15,-1*K.1,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1^25,K.1^21,-1*K.1^7,-1*K.1^31,K.1^9,-1*K.1^19,K.1^5,K.1^9,-1*K.1^19,K.1^5,K.1^33,-1*K.1^11,K.1^21,K.1^33,-1*K.1^11,-1*K.1^7,-1*K.1^20,K.1^2,-1*K.1^16,-1*K.1^4,K.1^6,-1*K.1^20,-1*K.1^8,-1*K.1^16,-1*K.1^28,K.1^26,-1*K.1^4,-1*K.1^20,K.1^2,-1*K.1^24,-1*K.1^24,K.1^6,K.1^26,-1*K.1^16,K.1^10,-1*K.1^24,K.1^2,K.1^22,-1*K.1^20,K.1^30,-1*K.1^24,K.1^18,K.1^10,K.1^22,-1*K.1^8,-1*K.1^32,-1*K.1^8,-1*K.1^32,K.1^18,-1*K.1^32,K.1^6,K.1^10,K.1^30,-1*K.1^12,-1*K.1^28,-1*K.1^28,K.1^6,-1*K.1^4,K.1^14,K.1^26,K.1^26,-1*K.1^12,-1*K.1^12,K.1^14,K.1^30,K.1^22,-1*K.1^28,K.1^2,-1*K.1^12,K.1^14,K.1^14,-1*K.1^8,K.1^10,-1*K.1^16,K.1^30,K.1^18,K.1^22,-1*K.1^4,K.1^18,-1*K.1^32]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,-1*K.1^14,-1*K.1^10,-1*K.1^30,-1*K.1^22,K.1^12,K.1^8,K.1^32,-1*K.1^18,K.1^4,K.1^16,-1*K.1^6,K.1^28,K.1^24,K.1^20,-1*K.1^26,-1*K.1^2,-1*K.1^18,K.1^28,-1*K.1^26,K.1^24,K.1^28,K.1^4,-1*K.1^30,-1*K.1^2,K.1^4,K.1^12,-1*K.1^10,K.1^8,K.1^12,K.1^20,K.1^16,-1*K.1^18,K.1^20,-1*K.1^2,K.1^20,K.1^8,-1*K.1^6,-1*K.1^22,-1*K.1^6,K.1^24,K.1^8,-1*K.1^26,-1*K.1^10,K.1^4,-1*K.1^2,-1*K.1^18,K.1^32,K.1^16,K.1^32,-1*K.1^14,-1*K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^24,-1*K.1^22,K.1^16,K.1^32,-1*K.1^14,-1*K.1^30,K.1^12,K.1^28,-1*K.1^10,-1*K.1^26,K.1^24,K.1^4,K.1^20,K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^26,-1*K.1^18,-1*K.1^14,K.1^16,-1*K.1^22,K.1^12,K.1^28,-1*K.1^30,-1*K.1^2,K.1^32,-1*K.1^28,-1*K.1^24,K.1^2,-1*K.1^8,-1*K.1^24,K.1^6,-1*K.1^12,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^32,K.1^26,-1*K.1^16,-1*K.1^28,K.1^14,K.1^30,-1*K.1^20,-1*K.1^32,-1*K.1^32,K.1^2,K.1^10,K.1^14,-1*K.1^28,K.1^26,-1*K.1^8,K.1^18,K.1^14,K.1^18,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^2,K.1^10,K.1^6,K.1^26,-1*K.1^16,K.1^30,-1*K.1^20,K.1^6,-1*K.1^24,-1*K.1^8,K.1^22,K.1^22,-1*K.1^20,-1*K.1^24,K.1^18,-1*K.1^12,-1*K.1^4,K.1^10,-1*K.1^32,-1*K.1^12,K.1^30,K.1^14,-1*K.1^16,-1*K.1^16,K.1^26,K.1^22,K.1^30,K.1^10,-1*K.1^20,-1*K.1^28,K.1^22,K.1^18,-1*K.1^2,K.1^20,K.1^4,-1*K.1^30,K.1^12,K.1^28,-1*K.1^18,K.1^16,-1*K.1^14,-1*K.1^6,K.1^8,-1*K.1^26,-1*K.1^10,K.1^32,K.1^4,-1*K.1^30,-1*K.1^18,K.1^12,K.1^16,-1*K.1^14,K.1^12,K.1^4,-1*K.1^6,K.1^20,K.1^32,-1*K.1^30,-1*K.1^22,K.1^24,-1*K.1^10,-1*K.1^10,K.1^32,-1*K.1^6,-1*K.1^2,K.1^28,-1*K.1^22,K.1^8,-1*K.1^18,-1*K.1^2,K.1^24,K.1^8,K.1^16,K.1^28,-1*K.1^26,K.1^20,-1*K.1^14,-1*K.1^22,K.1^24,-1*K.1^26,K.1^23,K.1^25,K.1^25,-1*K.1^7,-1*K.1^7,K.1^29,K.1^29,K.1^13,K.1^13,K.1^21,K.1^21,-1*K.1^3,-1*K.1^3,K.1^33,K.1^33,K.1^9,K.1^9,K.1^3,K.1^11,-1*K.1^33,-1*K.1^21,K.1^7,-1*K.1^33,-1*K.1^21,K.1^7,K.1^15,-1*K.1^29,-1*K.1^25,K.1^15,-1*K.1^29,K.1^3,K.1^11,K.1,-1*K.1^27,-1*K.1^27,-1*K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^23,K.1^5,K.1^5,-1*K.1^31,-1*K.1^31,-1*K.1^15,-1*K.1^15,-1*K.1^19,-1*K.1^19,K.1,-1*K.1^9,K.1^31,K.1^23,-1*K.1^25,-1*K.1^13,K.1^27,-1*K.1,-1*K.1^13,K.1^27,K.1^19,-1*K.1^5,-1*K.1^9,K.1^19,-1*K.1^5,K.1^31,K.1^23,-1*K.1,K.1^9,-1*K.1^27,-1*K.1^27,-1*K.1^7,-1*K.1^7,-1*K.1^23,-1*K.1^23,K.1^13,K.1^13,-1*K.1^31,-1*K.1^31,-1*K.1^3,-1*K.1^3,-1*K.1^19,-1*K.1^19,K.1^9,-1*K.1,K.1^31,K.1^11,-1*K.1^25,-1*K.1^21,K.1^27,-1*K.1,-1*K.1^21,K.1^27,K.1^15,-1*K.1^5,-1*K.1^25,K.1^15,-1*K.1^5,K.1^31,K.1^11,K.1,K.1^25,K.1^25,-1*K.1^11,-1*K.1^11,K.1^29,K.1^29,K.1^5,K.1^5,K.1^21,K.1^21,-1*K.1^15,-1*K.1^15,K.1^33,K.1^33,K.1,-1*K.1^9,K.1^3,K.1^23,-1*K.1^33,-1*K.1^13,K.1^7,-1*K.1^33,-1*K.1^13,K.1^7,K.1^19,-1*K.1^29,-1*K.1^9,K.1^19,-1*K.1^29,K.1^3,-1*K.1^28,K.1^30,K.1^2,K.1^26,K.1^22,-1*K.1^28,K.1^18,K.1^2,-1*K.1^12,-1*K.1^16,K.1^26,-1*K.1^28,K.1^30,-1*K.1^20,-1*K.1^20,K.1^22,-1*K.1^16,K.1^2,K.1^14,-1*K.1^20,K.1^30,-1*K.1^24,-1*K.1^28,-1*K.1^8,-1*K.1^20,-1*K.1^32,K.1^14,-1*K.1^24,K.1^18,-1*K.1^4,K.1^18,-1*K.1^4,-1*K.1^32,-1*K.1^4,K.1^22,K.1^14,-1*K.1^8,K.1^10,-1*K.1^12,-1*K.1^12,K.1^22,K.1^26,K.1^6,-1*K.1^16,-1*K.1^16,K.1^10,K.1^10,K.1^6,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^30,K.1^10,K.1^6,K.1^6,K.1^18,K.1^14,K.1^2,-1*K.1^8,-1*K.1^32,-1*K.1^24,K.1^26,-1*K.1^32,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,K.1^20,K.1^24,K.1^4,K.1^12,-1*K.1^22,-1*K.1^26,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^18,K.1^28,-1*K.1^6,-1*K.1^10,-1*K.1^14,K.1^8,K.1^32,K.1^16,-1*K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^30,K.1^4,K.1^32,-1*K.1^30,-1*K.1^22,K.1^24,-1*K.1^26,-1*K.1^22,-1*K.1^14,-1*K.1^18,K.1^16,-1*K.1^14,K.1^32,-1*K.1^14,-1*K.1^26,K.1^28,K.1^12,K.1^28,-1*K.1^10,-1*K.1^26,K.1^8,K.1^24,-1*K.1^30,K.1^32,K.1^16,-1*K.1^2,-1*K.1^18,-1*K.1^2,K.1^20,K.1^4,K.1^20,K.1^12,K.1^28,-1*K.1^10,K.1^12,-1*K.1^18,-1*K.1^2,K.1^20,K.1^4,-1*K.1^22,-1*K.1^6,K.1^24,K.1^8,-1*K.1^10,-1*K.1^30,-1*K.1^14,-1*K.1^26,K.1^28,K.1^24,K.1^8,K.1^16,K.1^20,-1*K.1^18,K.1^12,-1*K.1^22,-1*K.1^6,K.1^4,K.1^32,-1*K.1^2,K.1^6,K.1^10,-1*K.1^32,K.1^26,K.1^10,-1*K.1^28,K.1^22,K.1^30,-1*K.1^28,-1*K.1^32,K.1^26,K.1^2,-1*K.1^8,K.1^18,K.1^6,-1*K.1^20,-1*K.1^4,K.1^14,K.1^2,K.1^2,-1*K.1^32,-1*K.1^24,-1*K.1^20,K.1^6,-1*K.1^8,K.1^26,-1*K.1^16,-1*K.1^20,-1*K.1^16,K.1^30,K.1^22,K.1^30,-1*K.1^32,-1*K.1^24,-1*K.1^28,-1*K.1^8,K.1^18,-1*K.1^4,K.1^14,-1*K.1^28,K.1^10,K.1^26,-1*K.1^12,-1*K.1^12,K.1^14,K.1^10,-1*K.1^16,K.1^22,K.1^30,-1*K.1^24,K.1^2,K.1^22,-1*K.1^4,-1*K.1^20,K.1^18,K.1^18,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^24,K.1^14,K.1^6,-1*K.1^12,-1*K.1^16,K.1^32,-1*K.1^14,-1*K.1^30,K.1^4,-1*K.1^22,-1*K.1^6,K.1^16,-1*K.1^18,K.1^20,K.1^28,-1*K.1^26,K.1^8,K.1^24,-1*K.1^2,-1*K.1^30,K.1^4,K.1^16,-1*K.1^22,-1*K.1^18,K.1^20,-1*K.1^22,-1*K.1^30,K.1^28,-1*K.1^14,-1*K.1^2,K.1^4,K.1^12,-1*K.1^10,K.1^24,K.1^24,-1*K.1^2,K.1^28,K.1^32,-1*K.1^6,K.1^12,-1*K.1^26,K.1^16,K.1^32,-1*K.1^10,-1*K.1^26,-1*K.1^18,-1*K.1^6,K.1^8,-1*K.1^14,K.1^20,K.1^12,-1*K.1^10,K.1^8,-1*K.1^11,-1*K.1^9,-1*K.1^9,K.1^27,K.1^27,-1*K.1^5,-1*K.1^5,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,K.1^31,K.1^31,-1*K.1,-1*K.1,-1*K.1^25,-1*K.1^25,-1*K.1^31,-1*K.1^23,K.1,K.1^13,-1*K.1^27,K.1,K.1^13,-1*K.1^27,-1*K.1^19,K.1^5,K.1^9,-1*K.1^19,K.1^5,-1*K.1^31,-1*K.1^23,-1*K.1^33,K.1^7,K.1^7,K.1^23,K.1^23,K.1^11,K.1^11,-1*K.1^29,-1*K.1^29,K.1^3,K.1^3,K.1^19,K.1^19,K.1^15,K.1^15,-1*K.1^33,K.1^25,-1*K.1^3,-1*K.1^11,K.1^9,K.1^21,-1*K.1^7,K.1^33,K.1^21,-1*K.1^7,-1*K.1^15,K.1^29,K.1^25,-1*K.1^15,K.1^29,-1*K.1^3,-1*K.1^11,K.1^33,-1*K.1^25,K.1^7,K.1^7,K.1^27,K.1^27,K.1^11,K.1^11,-1*K.1^21,-1*K.1^21,K.1^3,K.1^3,K.1^31,K.1^31,K.1^15,K.1^15,-1*K.1^25,K.1^33,-1*K.1^3,-1*K.1^23,K.1^9,K.1^13,-1*K.1^7,K.1^33,K.1^13,-1*K.1^7,-1*K.1^19,K.1^29,K.1^9,-1*K.1^19,K.1^29,-1*K.1^3,-1*K.1^23,-1*K.1^33,-1*K.1^9,-1*K.1^9,K.1^23,K.1^23,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,-1*K.1^13,-1*K.1^13,K.1^19,K.1^19,-1*K.1,-1*K.1,-1*K.1^33,K.1^25,-1*K.1^31,-1*K.1^11,K.1,K.1^21,-1*K.1^27,K.1,K.1^21,-1*K.1^27,-1*K.1^15,K.1^5,K.1^25,-1*K.1^15,K.1^5,-1*K.1^31,K.1^6,-1*K.1^4,-1*K.1^32,-1*K.1^8,-1*K.1^12,K.1^6,-1*K.1^16,-1*K.1^32,K.1^22,K.1^18,-1*K.1^8,K.1^6,-1*K.1^4,K.1^14,K.1^14,-1*K.1^12,K.1^18,-1*K.1^32,-1*K.1^20,K.1^14,-1*K.1^4,K.1^10,K.1^6,K.1^26,K.1^14,K.1^2,-1*K.1^20,K.1^10,-1*K.1^16,K.1^30,-1*K.1^16,K.1^30,K.1^2,K.1^30,-1*K.1^12,-1*K.1^20,K.1^26,-1*K.1^24,K.1^22,K.1^22,-1*K.1^12,-1*K.1^8,-1*K.1^28,K.1^18,K.1^18,-1*K.1^24,-1*K.1^24,-1*K.1^28,K.1^26,K.1^10,K.1^22,-1*K.1^4,-1*K.1^24,-1*K.1^28,-1*K.1^28,-1*K.1^16,-1*K.1^20,-1*K.1^32,K.1^26,K.1^2,K.1^10,-1*K.1^8,K.1^2,K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,K.1^20,K.1^24,K.1^4,K.1^12,-1*K.1^22,-1*K.1^26,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^18,K.1^28,-1*K.1^6,-1*K.1^10,-1*K.1^14,K.1^8,K.1^32,K.1^16,-1*K.1^6,K.1^8,-1*K.1^10,-1*K.1^6,-1*K.1^30,K.1^4,K.1^32,-1*K.1^30,-1*K.1^22,K.1^24,-1*K.1^26,-1*K.1^22,-1*K.1^14,-1*K.1^18,K.1^16,-1*K.1^14,K.1^32,-1*K.1^14,-1*K.1^26,K.1^28,K.1^12,K.1^28,-1*K.1^10,-1*K.1^26,K.1^8,K.1^24,-1*K.1^30,K.1^32,K.1^16,-1*K.1^2,-1*K.1^18,-1*K.1^2,K.1^20,K.1^4,K.1^20,K.1^12,K.1^28,-1*K.1^10,K.1^12,-1*K.1^18,-1*K.1^2,K.1^20,K.1^4,-1*K.1^22,-1*K.1^6,K.1^24,K.1^8,-1*K.1^10,-1*K.1^30,-1*K.1^14,-1*K.1^26,K.1^28,K.1^24,K.1^8,K.1^16,K.1^20,-1*K.1^18,K.1^12,-1*K.1^22,-1*K.1^6,K.1^4,K.1^32,-1*K.1^2,K.1^6,K.1^10,-1*K.1^32,K.1^26,K.1^10,-1*K.1^28,K.1^22,K.1^30,-1*K.1^28,-1*K.1^32,K.1^26,K.1^2,-1*K.1^8,K.1^18,K.1^6,-1*K.1^20,-1*K.1^4,K.1^14,K.1^2,K.1^2,-1*K.1^32,-1*K.1^24,-1*K.1^20,K.1^6,-1*K.1^8,K.1^26,-1*K.1^16,-1*K.1^20,-1*K.1^16,K.1^30,K.1^22,K.1^30,-1*K.1^32,-1*K.1^24,-1*K.1^28,-1*K.1^8,K.1^18,-1*K.1^4,K.1^14,-1*K.1^28,K.1^10,K.1^26,-1*K.1^12,-1*K.1^12,K.1^14,K.1^10,-1*K.1^16,K.1^22,K.1^30,-1*K.1^24,K.1^2,K.1^22,-1*K.1^4,-1*K.1^20,K.1^18,K.1^18,-1*K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^24,K.1^14,K.1^6,-1*K.1^12,-1*K.1^16,K.1^32,-1*K.1^14,-1*K.1^30,K.1^4,-1*K.1^22,-1*K.1^6,K.1^16,-1*K.1^18,K.1^20,K.1^28,-1*K.1^26,K.1^8,K.1^24,-1*K.1^2,-1*K.1^30,K.1^4,K.1^16,-1*K.1^22,-1*K.1^18,K.1^20,-1*K.1^22,-1*K.1^30,K.1^28,-1*K.1^14,-1*K.1^2,K.1^4,K.1^12,-1*K.1^10,K.1^24,K.1^24,-1*K.1^2,K.1^28,K.1^32,-1*K.1^6,K.1^12,-1*K.1^26,K.1^16,K.1^32,-1*K.1^10,-1*K.1^26,-1*K.1^18,-1*K.1^6,K.1^8,-1*K.1^14,K.1^20,K.1^12,-1*K.1^10,K.1^8,K.1^11,K.1^9,K.1^9,-1*K.1^27,-1*K.1^27,K.1^5,K.1^5,K.1^21,K.1^21,K.1^13,K.1^13,-1*K.1^31,-1*K.1^31,K.1,K.1,K.1^25,K.1^25,K.1^31,K.1^23,-1*K.1,-1*K.1^13,K.1^27,-1*K.1,-1*K.1^13,K.1^27,K.1^19,-1*K.1^5,-1*K.1^9,K.1^19,-1*K.1^5,K.1^31,K.1^23,K.1^33,-1*K.1^7,-1*K.1^7,-1*K.1^23,-1*K.1^23,-1*K.1^11,-1*K.1^11,K.1^29,K.1^29,-1*K.1^3,-1*K.1^3,-1*K.1^19,-1*K.1^19,-1*K.1^15,-1*K.1^15,K.1^33,-1*K.1^25,K.1^3,K.1^11,-1*K.1^9,-1*K.1^21,K.1^7,-1*K.1^33,-1*K.1^21,K.1^7,K.1^15,-1*K.1^29,-1*K.1^25,K.1^15,-1*K.1^29,K.1^3,K.1^11,-1*K.1^33,K.1^25,-1*K.1^7,-1*K.1^7,-1*K.1^27,-1*K.1^27,-1*K.1^11,-1*K.1^11,K.1^21,K.1^21,-1*K.1^3,-1*K.1^3,-1*K.1^31,-1*K.1^31,-1*K.1^15,-1*K.1^15,K.1^25,-1*K.1^33,K.1^3,K.1^23,-1*K.1^9,-1*K.1^13,K.1^7,-1*K.1^33,-1*K.1^13,K.1^7,K.1^19,-1*K.1^29,-1*K.1^9,K.1^19,-1*K.1^29,K.1^3,K.1^23,K.1^33,K.1^9,K.1^9,-1*K.1^23,-1*K.1^23,K.1^5,K.1^5,K.1^29,K.1^29,K.1^13,K.1^13,-1*K.1^19,-1*K.1^19,K.1,K.1,K.1^33,-1*K.1^25,K.1^31,K.1^11,-1*K.1,-1*K.1^21,K.1^27,-1*K.1,-1*K.1^21,K.1^27,K.1^15,-1*K.1^5,-1*K.1^25,K.1^15,-1*K.1^5,K.1^31,K.1^6,-1*K.1^4,-1*K.1^32,-1*K.1^8,-1*K.1^12,K.1^6,-1*K.1^16,-1*K.1^32,K.1^22,K.1^18,-1*K.1^8,K.1^6,-1*K.1^4,K.1^14,K.1^14,-1*K.1^12,K.1^18,-1*K.1^32,-1*K.1^20,K.1^14,-1*K.1^4,K.1^10,K.1^6,K.1^26,K.1^14,K.1^2,-1*K.1^20,K.1^10,-1*K.1^16,K.1^30,-1*K.1^16,K.1^30,K.1^2,K.1^30,-1*K.1^12,-1*K.1^20,K.1^26,-1*K.1^24,K.1^22,K.1^22,-1*K.1^12,-1*K.1^8,-1*K.1^28,K.1^18,K.1^18,-1*K.1^24,-1*K.1^24,-1*K.1^28,K.1^26,K.1^10,K.1^22,-1*K.1^4,-1*K.1^24,-1*K.1^28,-1*K.1^28,-1*K.1^16,-1*K.1^20,-1*K.1^32,K.1^26,K.1^2,K.1^10,-1*K.1^8,K.1^2,K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,-1*K.1^14,-1*K.1^10,-1*K.1^30,-1*K.1^22,K.1^12,K.1^8,K.1^32,-1*K.1^18,K.1^4,K.1^16,-1*K.1^6,K.1^28,K.1^24,K.1^20,-1*K.1^26,-1*K.1^2,-1*K.1^18,K.1^28,-1*K.1^26,K.1^24,K.1^28,K.1^4,-1*K.1^30,-1*K.1^2,K.1^4,K.1^12,-1*K.1^10,K.1^8,K.1^12,K.1^20,K.1^16,-1*K.1^18,K.1^20,-1*K.1^2,K.1^20,K.1^8,-1*K.1^6,-1*K.1^22,-1*K.1^6,K.1^24,K.1^8,-1*K.1^26,-1*K.1^10,K.1^4,-1*K.1^2,-1*K.1^18,K.1^32,K.1^16,K.1^32,-1*K.1^14,-1*K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^24,-1*K.1^22,K.1^16,K.1^32,-1*K.1^14,-1*K.1^30,K.1^12,K.1^28,-1*K.1^10,-1*K.1^26,K.1^24,K.1^4,K.1^20,K.1^8,-1*K.1^6,-1*K.1^10,-1*K.1^26,-1*K.1^18,-1*K.1^14,K.1^16,-1*K.1^22,K.1^12,K.1^28,-1*K.1^30,-1*K.1^2,K.1^32,-1*K.1^28,-1*K.1^24,K.1^2,-1*K.1^8,-1*K.1^24,K.1^6,-1*K.1^12,-1*K.1^4,K.1^6,K.1^2,-1*K.1^8,-1*K.1^32,K.1^26,-1*K.1^16,-1*K.1^28,K.1^14,K.1^30,-1*K.1^20,-1*K.1^32,-1*K.1^32,K.1^2,K.1^10,K.1^14,-1*K.1^28,K.1^26,-1*K.1^8,K.1^18,K.1^14,K.1^18,-1*K.1^4,-1*K.1^12,-1*K.1^4,K.1^2,K.1^10,K.1^6,K.1^26,-1*K.1^16,K.1^30,-1*K.1^20,K.1^6,-1*K.1^24,-1*K.1^8,K.1^22,K.1^22,-1*K.1^20,-1*K.1^24,K.1^18,-1*K.1^12,-1*K.1^4,K.1^10,-1*K.1^32,-1*K.1^12,K.1^30,K.1^14,-1*K.1^16,-1*K.1^16,K.1^26,K.1^22,K.1^30,K.1^10,-1*K.1^20,-1*K.1^28,K.1^22,K.1^18,-1*K.1^2,K.1^20,K.1^4,-1*K.1^30,K.1^12,K.1^28,-1*K.1^18,K.1^16,-1*K.1^14,-1*K.1^6,K.1^8,-1*K.1^26,-1*K.1^10,K.1^32,K.1^4,-1*K.1^30,-1*K.1^18,K.1^12,K.1^16,-1*K.1^14,K.1^12,K.1^4,-1*K.1^6,K.1^20,K.1^32,-1*K.1^30,-1*K.1^22,K.1^24,-1*K.1^10,-1*K.1^10,K.1^32,-1*K.1^6,-1*K.1^2,K.1^28,-1*K.1^22,K.1^8,-1*K.1^18,-1*K.1^2,K.1^24,K.1^8,K.1^16,K.1^28,-1*K.1^26,K.1^20,-1*K.1^14,-1*K.1^22,K.1^24,-1*K.1^26,-1*K.1^23,-1*K.1^25,-1*K.1^25,K.1^7,K.1^7,-1*K.1^29,-1*K.1^29,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,K.1^3,K.1^3,-1*K.1^33,-1*K.1^33,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^11,K.1^33,K.1^21,-1*K.1^7,K.1^33,K.1^21,-1*K.1^7,-1*K.1^15,K.1^29,K.1^25,-1*K.1^15,K.1^29,-1*K.1^3,-1*K.1^11,-1*K.1,K.1^27,K.1^27,K.1^11,K.1^11,K.1^23,K.1^23,-1*K.1^5,-1*K.1^5,K.1^31,K.1^31,K.1^15,K.1^15,K.1^19,K.1^19,-1*K.1,K.1^9,-1*K.1^31,-1*K.1^23,K.1^25,K.1^13,-1*K.1^27,K.1,K.1^13,-1*K.1^27,-1*K.1^19,K.1^5,K.1^9,-1*K.1^19,K.1^5,-1*K.1^31,-1*K.1^23,K.1,-1*K.1^9,K.1^27,K.1^27,K.1^7,K.1^7,K.1^23,K.1^23,-1*K.1^13,-1*K.1^13,K.1^31,K.1^31,K.1^3,K.1^3,K.1^19,K.1^19,-1*K.1^9,K.1,-1*K.1^31,-1*K.1^11,K.1^25,K.1^21,-1*K.1^27,K.1,K.1^21,-1*K.1^27,-1*K.1^15,K.1^5,K.1^25,-1*K.1^15,K.1^5,-1*K.1^31,-1*K.1^11,-1*K.1,-1*K.1^25,-1*K.1^25,K.1^11,K.1^11,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,-1*K.1^21,-1*K.1^21,K.1^15,K.1^15,-1*K.1^33,-1*K.1^33,-1*K.1,K.1^9,-1*K.1^3,-1*K.1^23,K.1^33,K.1^13,-1*K.1^7,K.1^33,K.1^13,-1*K.1^7,-1*K.1^19,K.1^29,K.1^9,-1*K.1^19,K.1^29,-1*K.1^3,-1*K.1^28,K.1^30,K.1^2,K.1^26,K.1^22,-1*K.1^28,K.1^18,K.1^2,-1*K.1^12,-1*K.1^16,K.1^26,-1*K.1^28,K.1^30,-1*K.1^20,-1*K.1^20,K.1^22,-1*K.1^16,K.1^2,K.1^14,-1*K.1^20,K.1^30,-1*K.1^24,-1*K.1^28,-1*K.1^8,-1*K.1^20,-1*K.1^32,K.1^14,-1*K.1^24,K.1^18,-1*K.1^4,K.1^18,-1*K.1^4,-1*K.1^32,-1*K.1^4,K.1^22,K.1^14,-1*K.1^8,K.1^10,-1*K.1^12,-1*K.1^12,K.1^22,K.1^26,K.1^6,-1*K.1^16,-1*K.1^16,K.1^10,K.1^10,K.1^6,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^30,K.1^10,K.1^6,K.1^6,K.1^18,K.1^14,K.1^2,-1*K.1^8,-1*K.1^32,-1*K.1^24,K.1^26,-1*K.1^32,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,-1*K.1^18,K.1^8,K.1^24,K.1^4,-1*K.1^30,K.1^20,K.1^12,K.1^28,-1*K.1^10,-1*K.1^6,K.1^32,-1*K.1^2,-1*K.1^26,K.1^16,-1*K.1^14,-1*K.1^22,K.1^28,-1*K.1^2,-1*K.1^14,-1*K.1^26,-1*K.1^2,-1*K.1^10,K.1^24,-1*K.1^22,-1*K.1^10,-1*K.1^30,K.1^8,K.1^20,-1*K.1^30,K.1^16,-1*K.1^6,K.1^28,K.1^16,-1*K.1^22,K.1^16,K.1^20,K.1^32,K.1^4,K.1^32,-1*K.1^26,K.1^20,-1*K.1^14,K.1^8,-1*K.1^10,-1*K.1^22,K.1^28,K.1^12,-1*K.1^6,K.1^12,-1*K.1^18,K.1^24,-1*K.1^18,K.1^4,K.1^32,-1*K.1^26,K.1^4,-1*K.1^6,K.1^12,-1*K.1^18,K.1^24,-1*K.1^30,-1*K.1^2,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^10,K.1^16,K.1^20,K.1^32,K.1^8,-1*K.1^14,K.1^28,-1*K.1^18,-1*K.1^6,K.1^4,-1*K.1^30,-1*K.1^2,K.1^24,-1*K.1^22,K.1^12,K.1^2,K.1^26,K.1^22,-1*K.1^20,K.1^26,-1*K.1^32,K.1^30,K.1^10,-1*K.1^32,K.1^22,-1*K.1^20,-1*K.1^12,K.1^14,K.1^6,K.1^2,K.1^18,-1*K.1^24,-1*K.1^16,-1*K.1^12,-1*K.1^12,K.1^22,-1*K.1^8,K.1^18,K.1^2,K.1^14,-1*K.1^20,-1*K.1^28,K.1^18,-1*K.1^28,K.1^10,K.1^30,K.1^10,K.1^22,-1*K.1^8,-1*K.1^32,K.1^14,K.1^6,-1*K.1^24,-1*K.1^16,-1*K.1^32,K.1^26,-1*K.1^20,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^26,-1*K.1^28,K.1^30,K.1^10,-1*K.1^8,-1*K.1^12,K.1^30,-1*K.1^24,K.1^18,K.1^6,K.1^6,K.1^14,-1*K.1^4,-1*K.1^24,-1*K.1^8,-1*K.1^16,K.1^2,-1*K.1^4,-1*K.1^28,-1*K.1^22,K.1^16,-1*K.1^10,K.1^24,-1*K.1^30,-1*K.1^2,K.1^28,-1*K.1^6,-1*K.1^18,K.1^32,K.1^20,-1*K.1^14,K.1^8,K.1^12,-1*K.1^10,K.1^24,K.1^28,-1*K.1^30,-1*K.1^6,-1*K.1^18,-1*K.1^30,-1*K.1^10,K.1^32,K.1^16,K.1^12,K.1^24,K.1^4,-1*K.1^26,K.1^8,K.1^8,K.1^12,K.1^32,-1*K.1^22,-1*K.1^2,K.1^4,K.1^20,K.1^28,-1*K.1^22,-1*K.1^26,K.1^20,-1*K.1^6,-1*K.1^2,-1*K.1^14,K.1^16,-1*K.1^18,K.1^4,-1*K.1^26,-1*K.1^14,K.1^15,-1*K.1^3,-1*K.1^3,K.1^9,K.1^9,K.1^13,K.1^13,-1*K.1^7,-1*K.1^7,-1*K.1^27,-1*K.1^27,K.1^33,K.1^33,-1*K.1^23,-1*K.1^23,-1*K.1^31,-1*K.1^31,-1*K.1^33,K.1^19,K.1^23,K.1^27,-1*K.1^9,K.1^23,K.1^27,-1*K.1^9,-1*K.1^29,-1*K.1^13,K.1^3,-1*K.1^29,-1*K.1^13,-1*K.1^33,K.1^19,-1*K.1^11,K.1^25,K.1^25,-1*K.1^19,-1*K.1^19,-1*K.1^15,-1*K.1^15,K.1^21,K.1^21,K.1,K.1,K.1^29,K.1^29,K.1^5,K.1^5,-1*K.1^11,K.1^31,-1*K.1,K.1^15,K.1^3,K.1^7,-1*K.1^25,K.1^11,K.1^7,-1*K.1^25,-1*K.1^5,-1*K.1^21,K.1^31,-1*K.1^5,-1*K.1^21,-1*K.1,K.1^15,K.1^11,-1*K.1^31,K.1^25,K.1^25,K.1^9,K.1^9,-1*K.1^15,-1*K.1^15,-1*K.1^7,-1*K.1^7,K.1,K.1,K.1^33,K.1^33,K.1^5,K.1^5,-1*K.1^31,K.1^11,-1*K.1,K.1^19,K.1^3,K.1^27,-1*K.1^25,K.1^11,K.1^27,-1*K.1^25,-1*K.1^29,-1*K.1^21,K.1^3,-1*K.1^29,-1*K.1^21,-1*K.1,K.1^19,-1*K.1^11,-1*K.1^3,-1*K.1^3,-1*K.1^19,-1*K.1^19,K.1^13,K.1^13,K.1^21,K.1^21,-1*K.1^27,-1*K.1^27,K.1^29,K.1^29,-1*K.1^23,-1*K.1^23,-1*K.1^11,K.1^31,-1*K.1^33,K.1^15,K.1^23,K.1^7,-1*K.1^9,K.1^23,K.1^7,-1*K.1^9,-1*K.1^5,-1*K.1^13,K.1^31,-1*K.1^5,-1*K.1^13,-1*K.1^33,K.1^2,-1*K.1^24,K.1^22,K.1^14,-1*K.1^4,K.1^2,-1*K.1^28,K.1^22,K.1^30,K.1^6,K.1^14,K.1^2,-1*K.1^24,-1*K.1^16,-1*K.1^16,-1*K.1^4,K.1^6,K.1^22,K.1^18,-1*K.1^16,-1*K.1^24,K.1^26,K.1^2,-1*K.1^20,-1*K.1^16,-1*K.1^12,K.1^18,K.1^26,-1*K.1^28,K.1^10,-1*K.1^28,K.1^10,-1*K.1^12,K.1^10,-1*K.1^4,K.1^18,-1*K.1^20,-1*K.1^8,K.1^30,K.1^30,-1*K.1^4,K.1^14,-1*K.1^32,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^32,-1*K.1^20,K.1^26,K.1^30,-1*K.1^24,-1*K.1^8,-1*K.1^32,-1*K.1^32,-1*K.1^28,K.1^18,K.1^22,-1*K.1^20,-1*K.1^12,K.1^26,K.1^14,-1*K.1^12,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,K.1^16,-1*K.1^26,-1*K.1^10,-1*K.1^30,K.1^4,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^24,K.1^28,-1*K.1^2,K.1^32,K.1^8,-1*K.1^18,K.1^20,K.1^12,-1*K.1^6,K.1^32,K.1^20,K.1^8,K.1^32,K.1^24,-1*K.1^10,K.1^12,K.1^24,K.1^4,-1*K.1^26,-1*K.1^14,K.1^4,-1*K.1^18,K.1^28,-1*K.1^6,-1*K.1^18,K.1^12,-1*K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^30,-1*K.1^2,K.1^8,-1*K.1^14,K.1^20,-1*K.1^26,K.1^24,K.1^12,-1*K.1^6,-1*K.1^22,K.1^28,-1*K.1^22,K.1^16,-1*K.1^10,K.1^16,-1*K.1^30,-1*K.1^2,K.1^8,-1*K.1^30,K.1^28,-1*K.1^22,K.1^16,-1*K.1^10,K.1^4,K.1^32,-1*K.1^26,K.1^20,K.1^8,K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^26,K.1^20,-1*K.1^6,K.1^16,K.1^28,-1*K.1^30,K.1^4,K.1^32,-1*K.1^10,K.1^12,-1*K.1^22,-1*K.1^32,-1*K.1^8,-1*K.1^12,K.1^14,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^24,K.1^2,-1*K.1^12,K.1^14,K.1^22,-1*K.1^20,-1*K.1^28,-1*K.1^32,-1*K.1^16,K.1^10,K.1^18,K.1^22,K.1^22,-1*K.1^12,K.1^26,-1*K.1^16,-1*K.1^32,-1*K.1^20,K.1^14,K.1^6,-1*K.1^16,K.1^6,-1*K.1^24,-1*K.1^4,-1*K.1^24,-1*K.1^12,K.1^26,K.1^2,-1*K.1^20,-1*K.1^28,K.1^10,K.1^18,K.1^2,-1*K.1^8,K.1^14,K.1^30,K.1^30,K.1^18,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^24,K.1^26,K.1^22,-1*K.1^4,K.1^10,-1*K.1^16,-1*K.1^28,-1*K.1^28,-1*K.1^20,K.1^30,K.1^10,K.1^26,K.1^18,-1*K.1^32,K.1^30,K.1^6,K.1^12,-1*K.1^18,K.1^24,-1*K.1^10,K.1^4,K.1^32,-1*K.1^6,K.1^28,K.1^16,-1*K.1^2,-1*K.1^14,K.1^20,-1*K.1^26,-1*K.1^22,K.1^24,-1*K.1^10,-1*K.1^6,K.1^4,K.1^28,K.1^16,K.1^4,K.1^24,-1*K.1^2,-1*K.1^18,-1*K.1^22,-1*K.1^10,-1*K.1^30,K.1^8,-1*K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^12,K.1^32,-1*K.1^30,-1*K.1^14,-1*K.1^6,K.1^12,K.1^8,-1*K.1^14,K.1^28,K.1^32,K.1^20,-1*K.1^18,K.1^16,-1*K.1^30,K.1^8,K.1^20,-1*K.1^19,K.1^31,K.1^31,-1*K.1^25,-1*K.1^25,-1*K.1^21,-1*K.1^21,K.1^27,K.1^27,K.1^7,K.1^7,-1*K.1,-1*K.1,K.1^11,K.1^11,K.1^3,K.1^3,K.1,-1*K.1^15,-1*K.1^11,-1*K.1^7,K.1^25,-1*K.1^11,-1*K.1^7,K.1^25,K.1^5,K.1^21,-1*K.1^31,K.1^5,K.1^21,K.1,-1*K.1^15,K.1^23,-1*K.1^9,-1*K.1^9,K.1^15,K.1^15,K.1^19,K.1^19,-1*K.1^13,-1*K.1^13,-1*K.1^33,-1*K.1^33,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,K.1^23,-1*K.1^3,K.1^33,-1*K.1^19,-1*K.1^31,-1*K.1^27,K.1^9,-1*K.1^23,-1*K.1^27,K.1^9,K.1^29,K.1^13,-1*K.1^3,K.1^29,K.1^13,K.1^33,-1*K.1^19,-1*K.1^23,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,K.1^19,K.1^19,K.1^27,K.1^27,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,-1*K.1^29,-1*K.1^29,K.1^3,-1*K.1^23,K.1^33,-1*K.1^15,-1*K.1^31,-1*K.1^7,K.1^9,-1*K.1^23,-1*K.1^7,K.1^9,K.1^5,K.1^13,-1*K.1^31,K.1^5,K.1^13,K.1^33,-1*K.1^15,K.1^23,K.1^31,K.1^31,K.1^15,K.1^15,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,K.1^7,K.1^7,-1*K.1^5,-1*K.1^5,K.1^11,K.1^11,K.1^23,-1*K.1^3,K.1,-1*K.1^19,-1*K.1^11,-1*K.1^27,K.1^25,-1*K.1^11,-1*K.1^27,K.1^25,K.1^29,K.1^21,-1*K.1^3,K.1^29,K.1^21,K.1,-1*K.1^32,K.1^10,-1*K.1^12,-1*K.1^20,K.1^30,-1*K.1^32,K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^32,K.1^10,K.1^18,K.1^18,K.1^30,-1*K.1^28,-1*K.1^12,-1*K.1^16,K.1^18,K.1^10,-1*K.1^8,-1*K.1^32,K.1^14,K.1^18,K.1^22,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^24,K.1^6,-1*K.1^24,K.1^22,-1*K.1^24,K.1^30,-1*K.1^16,K.1^14,K.1^26,-1*K.1^4,-1*K.1^4,K.1^30,-1*K.1^20,K.1^2,-1*K.1^28,-1*K.1^28,K.1^26,K.1^26,K.1^2,K.1^14,-1*K.1^8,-1*K.1^4,K.1^10,K.1^26,K.1^2,K.1^2,K.1^6,-1*K.1^16,-1*K.1^12,K.1^14,K.1^22,-1*K.1^8,-1*K.1^20,K.1^22,-1*K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,K.1^16,-1*K.1^26,-1*K.1^10,-1*K.1^30,K.1^4,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^24,K.1^28,-1*K.1^2,K.1^32,K.1^8,-1*K.1^18,K.1^20,K.1^12,-1*K.1^6,K.1^32,K.1^20,K.1^8,K.1^32,K.1^24,-1*K.1^10,K.1^12,K.1^24,K.1^4,-1*K.1^26,-1*K.1^14,K.1^4,-1*K.1^18,K.1^28,-1*K.1^6,-1*K.1^18,K.1^12,-1*K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^30,-1*K.1^2,K.1^8,-1*K.1^14,K.1^20,-1*K.1^26,K.1^24,K.1^12,-1*K.1^6,-1*K.1^22,K.1^28,-1*K.1^22,K.1^16,-1*K.1^10,K.1^16,-1*K.1^30,-1*K.1^2,K.1^8,-1*K.1^30,K.1^28,-1*K.1^22,K.1^16,-1*K.1^10,K.1^4,K.1^32,-1*K.1^26,K.1^20,K.1^8,K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^26,K.1^20,-1*K.1^6,K.1^16,K.1^28,-1*K.1^30,K.1^4,K.1^32,-1*K.1^10,K.1^12,-1*K.1^22,-1*K.1^32,-1*K.1^8,-1*K.1^12,K.1^14,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^24,K.1^2,-1*K.1^12,K.1^14,K.1^22,-1*K.1^20,-1*K.1^28,-1*K.1^32,-1*K.1^16,K.1^10,K.1^18,K.1^22,K.1^22,-1*K.1^12,K.1^26,-1*K.1^16,-1*K.1^32,-1*K.1^20,K.1^14,K.1^6,-1*K.1^16,K.1^6,-1*K.1^24,-1*K.1^4,-1*K.1^24,-1*K.1^12,K.1^26,K.1^2,-1*K.1^20,-1*K.1^28,K.1^10,K.1^18,K.1^2,-1*K.1^8,K.1^14,K.1^30,K.1^30,K.1^18,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^24,K.1^26,K.1^22,-1*K.1^4,K.1^10,-1*K.1^16,-1*K.1^28,-1*K.1^28,-1*K.1^20,K.1^30,K.1^10,K.1^26,K.1^18,-1*K.1^32,K.1^30,K.1^6,K.1^12,-1*K.1^18,K.1^24,-1*K.1^10,K.1^4,K.1^32,-1*K.1^6,K.1^28,K.1^16,-1*K.1^2,-1*K.1^14,K.1^20,-1*K.1^26,-1*K.1^22,K.1^24,-1*K.1^10,-1*K.1^6,K.1^4,K.1^28,K.1^16,K.1^4,K.1^24,-1*K.1^2,-1*K.1^18,-1*K.1^22,-1*K.1^10,-1*K.1^30,K.1^8,-1*K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^12,K.1^32,-1*K.1^30,-1*K.1^14,-1*K.1^6,K.1^12,K.1^8,-1*K.1^14,K.1^28,K.1^32,K.1^20,-1*K.1^18,K.1^16,-1*K.1^30,K.1^8,K.1^20,K.1^19,-1*K.1^31,-1*K.1^31,K.1^25,K.1^25,K.1^21,K.1^21,-1*K.1^27,-1*K.1^27,-1*K.1^7,-1*K.1^7,K.1,K.1,-1*K.1^11,-1*K.1^11,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^15,K.1^11,K.1^7,-1*K.1^25,K.1^11,K.1^7,-1*K.1^25,-1*K.1^5,-1*K.1^21,K.1^31,-1*K.1^5,-1*K.1^21,-1*K.1,K.1^15,-1*K.1^23,K.1^9,K.1^9,-1*K.1^15,-1*K.1^15,-1*K.1^19,-1*K.1^19,K.1^13,K.1^13,K.1^33,K.1^33,K.1^5,K.1^5,K.1^29,K.1^29,-1*K.1^23,K.1^3,-1*K.1^33,K.1^19,K.1^31,K.1^27,-1*K.1^9,K.1^23,K.1^27,-1*K.1^9,-1*K.1^29,-1*K.1^13,K.1^3,-1*K.1^29,-1*K.1^13,-1*K.1^33,K.1^19,K.1^23,-1*K.1^3,K.1^9,K.1^9,K.1^25,K.1^25,-1*K.1^19,-1*K.1^19,-1*K.1^27,-1*K.1^27,K.1^33,K.1^33,K.1,K.1,K.1^29,K.1^29,-1*K.1^3,K.1^23,-1*K.1^33,K.1^15,K.1^31,K.1^7,-1*K.1^9,K.1^23,K.1^7,-1*K.1^9,-1*K.1^5,-1*K.1^13,K.1^31,-1*K.1^5,-1*K.1^13,-1*K.1^33,K.1^15,-1*K.1^23,-1*K.1^31,-1*K.1^31,-1*K.1^15,-1*K.1^15,K.1^21,K.1^21,K.1^13,K.1^13,-1*K.1^7,-1*K.1^7,K.1^5,K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^23,K.1^3,-1*K.1,K.1^19,K.1^11,K.1^27,-1*K.1^25,K.1^11,K.1^27,-1*K.1^25,-1*K.1^29,-1*K.1^21,K.1^3,-1*K.1^29,-1*K.1^21,-1*K.1,-1*K.1^32,K.1^10,-1*K.1^12,-1*K.1^20,K.1^30,-1*K.1^32,K.1^6,-1*K.1^12,-1*K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^32,K.1^10,K.1^18,K.1^18,K.1^30,-1*K.1^28,-1*K.1^12,-1*K.1^16,K.1^18,K.1^10,-1*K.1^8,-1*K.1^32,K.1^14,K.1^18,K.1^22,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^24,K.1^6,-1*K.1^24,K.1^22,-1*K.1^24,K.1^30,-1*K.1^16,K.1^14,K.1^26,-1*K.1^4,-1*K.1^4,K.1^30,-1*K.1^20,K.1^2,-1*K.1^28,-1*K.1^28,K.1^26,K.1^26,K.1^2,K.1^14,-1*K.1^8,-1*K.1^4,K.1^10,K.1^26,K.1^2,K.1^2,K.1^6,-1*K.1^16,-1*K.1^12,K.1^14,K.1^22,-1*K.1^8,-1*K.1^20,K.1^22,-1*K.1^24]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,-1*K.1^18,K.1^8,K.1^24,K.1^4,-1*K.1^30,K.1^20,K.1^12,K.1^28,-1*K.1^10,-1*K.1^6,K.1^32,-1*K.1^2,-1*K.1^26,K.1^16,-1*K.1^14,-1*K.1^22,K.1^28,-1*K.1^2,-1*K.1^14,-1*K.1^26,-1*K.1^2,-1*K.1^10,K.1^24,-1*K.1^22,-1*K.1^10,-1*K.1^30,K.1^8,K.1^20,-1*K.1^30,K.1^16,-1*K.1^6,K.1^28,K.1^16,-1*K.1^22,K.1^16,K.1^20,K.1^32,K.1^4,K.1^32,-1*K.1^26,K.1^20,-1*K.1^14,K.1^8,-1*K.1^10,-1*K.1^22,K.1^28,K.1^12,-1*K.1^6,K.1^12,-1*K.1^18,K.1^24,-1*K.1^18,K.1^4,K.1^32,-1*K.1^26,K.1^4,-1*K.1^6,K.1^12,-1*K.1^18,K.1^24,-1*K.1^30,-1*K.1^2,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^10,K.1^16,K.1^20,K.1^32,K.1^8,-1*K.1^14,K.1^28,-1*K.1^18,-1*K.1^6,K.1^4,-1*K.1^30,-1*K.1^2,K.1^24,-1*K.1^22,K.1^12,K.1^2,K.1^26,K.1^22,-1*K.1^20,K.1^26,-1*K.1^32,K.1^30,K.1^10,-1*K.1^32,K.1^22,-1*K.1^20,-1*K.1^12,K.1^14,K.1^6,K.1^2,K.1^18,-1*K.1^24,-1*K.1^16,-1*K.1^12,-1*K.1^12,K.1^22,-1*K.1^8,K.1^18,K.1^2,K.1^14,-1*K.1^20,-1*K.1^28,K.1^18,-1*K.1^28,K.1^10,K.1^30,K.1^10,K.1^22,-1*K.1^8,-1*K.1^32,K.1^14,K.1^6,-1*K.1^24,-1*K.1^16,-1*K.1^32,K.1^26,-1*K.1^20,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^26,-1*K.1^28,K.1^30,K.1^10,-1*K.1^8,-1*K.1^12,K.1^30,-1*K.1^24,K.1^18,K.1^6,K.1^6,K.1^14,-1*K.1^4,-1*K.1^24,-1*K.1^8,-1*K.1^16,K.1^2,-1*K.1^4,-1*K.1^28,-1*K.1^22,K.1^16,-1*K.1^10,K.1^24,-1*K.1^30,-1*K.1^2,K.1^28,-1*K.1^6,-1*K.1^18,K.1^32,K.1^20,-1*K.1^14,K.1^8,K.1^12,-1*K.1^10,K.1^24,K.1^28,-1*K.1^30,-1*K.1^6,-1*K.1^18,-1*K.1^30,-1*K.1^10,K.1^32,K.1^16,K.1^12,K.1^24,K.1^4,-1*K.1^26,K.1^8,K.1^8,K.1^12,K.1^32,-1*K.1^22,-1*K.1^2,K.1^4,K.1^20,K.1^28,-1*K.1^22,-1*K.1^26,K.1^20,-1*K.1^6,-1*K.1^2,-1*K.1^14,K.1^16,-1*K.1^18,K.1^4,-1*K.1^26,-1*K.1^14,-1*K.1^15,K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^13,-1*K.1^13,K.1^7,K.1^7,K.1^27,K.1^27,-1*K.1^33,-1*K.1^33,K.1^23,K.1^23,K.1^31,K.1^31,K.1^33,-1*K.1^19,-1*K.1^23,-1*K.1^27,K.1^9,-1*K.1^23,-1*K.1^27,K.1^9,K.1^29,K.1^13,-1*K.1^3,K.1^29,K.1^13,K.1^33,-1*K.1^19,K.1^11,-1*K.1^25,-1*K.1^25,K.1^19,K.1^19,K.1^15,K.1^15,-1*K.1^21,-1*K.1^21,-1*K.1,-1*K.1,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,K.1^11,-1*K.1^31,K.1,-1*K.1^15,-1*K.1^3,-1*K.1^7,K.1^25,-1*K.1^11,-1*K.1^7,K.1^25,K.1^5,K.1^21,-1*K.1^31,K.1^5,K.1^21,K.1,-1*K.1^15,-1*K.1^11,K.1^31,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,K.1^15,K.1^15,K.1^7,K.1^7,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,-1*K.1^5,-1*K.1^5,K.1^31,-1*K.1^11,K.1,-1*K.1^19,-1*K.1^3,-1*K.1^27,K.1^25,-1*K.1^11,-1*K.1^27,K.1^25,K.1^29,K.1^21,-1*K.1^3,K.1^29,K.1^21,K.1,-1*K.1^19,K.1^11,K.1^3,K.1^3,K.1^19,K.1^19,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,K.1^27,K.1^27,-1*K.1^29,-1*K.1^29,K.1^23,K.1^23,K.1^11,-1*K.1^31,K.1^33,-1*K.1^15,-1*K.1^23,-1*K.1^7,K.1^9,-1*K.1^23,-1*K.1^7,K.1^9,K.1^5,K.1^13,-1*K.1^31,K.1^5,K.1^13,K.1^33,K.1^2,-1*K.1^24,K.1^22,K.1^14,-1*K.1^4,K.1^2,-1*K.1^28,K.1^22,K.1^30,K.1^6,K.1^14,K.1^2,-1*K.1^24,-1*K.1^16,-1*K.1^16,-1*K.1^4,K.1^6,K.1^22,K.1^18,-1*K.1^16,-1*K.1^24,K.1^26,K.1^2,-1*K.1^20,-1*K.1^16,-1*K.1^12,K.1^18,K.1^26,-1*K.1^28,K.1^10,-1*K.1^28,K.1^10,-1*K.1^12,K.1^10,-1*K.1^4,K.1^18,-1*K.1^20,-1*K.1^8,K.1^30,K.1^30,-1*K.1^4,K.1^14,-1*K.1^32,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^32,-1*K.1^20,K.1^26,K.1^30,-1*K.1^24,-1*K.1^8,-1*K.1^32,-1*K.1^32,-1*K.1^28,K.1^18,K.1^22,-1*K.1^20,-1*K.1^12,K.1^26,K.1^14,-1*K.1^12,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,-1*K.1^22,-1*K.1^6,-1*K.1^18,K.1^20,-1*K.1^14,K.1^32,-1*K.1^26,K.1^4,K.1^16,-1*K.1^30,K.1^24,-1*K.1^10,K.1^28,K.1^12,-1*K.1^2,K.1^8,K.1^4,-1*K.1^10,-1*K.1^2,K.1^28,-1*K.1^10,K.1^16,-1*K.1^18,K.1^8,K.1^16,-1*K.1^14,-1*K.1^6,K.1^32,-1*K.1^14,K.1^12,-1*K.1^30,K.1^4,K.1^12,K.1^8,K.1^12,K.1^32,K.1^24,K.1^20,K.1^24,K.1^28,K.1^32,-1*K.1^2,-1*K.1^6,K.1^16,K.1^8,K.1^4,-1*K.1^26,-1*K.1^30,-1*K.1^26,-1*K.1^22,-1*K.1^18,-1*K.1^22,K.1^20,K.1^24,K.1^28,K.1^20,-1*K.1^30,-1*K.1^26,-1*K.1^22,-1*K.1^18,-1*K.1^14,-1*K.1^10,-1*K.1^6,-1*K.1^2,K.1^28,K.1^16,K.1^12,K.1^32,K.1^24,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^22,-1*K.1^30,K.1^20,-1*K.1^14,-1*K.1^10,-1*K.1^18,K.1^8,-1*K.1^26,K.1^10,-1*K.1^28,-1*K.1^8,-1*K.1^32,-1*K.1^28,-1*K.1^24,K.1^14,-1*K.1^16,-1*K.1^24,-1*K.1^8,-1*K.1^32,K.1^26,K.1^2,K.1^30,K.1^10,K.1^22,K.1^18,-1*K.1^12,K.1^26,K.1^26,-1*K.1^8,K.1^6,K.1^22,K.1^10,K.1^2,-1*K.1^32,-1*K.1^4,K.1^22,-1*K.1^4,-1*K.1^16,K.1^14,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^24,K.1^2,K.1^30,K.1^18,-1*K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^32,-1*K.1^20,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^4,K.1^14,-1*K.1^16,K.1^6,K.1^26,K.1^14,K.1^18,K.1^22,K.1^30,K.1^30,K.1^2,-1*K.1^20,K.1^18,K.1^6,-1*K.1^12,K.1^10,-1*K.1^20,-1*K.1^4,K.1^8,K.1^12,K.1^16,-1*K.1^18,-1*K.1^14,-1*K.1^10,K.1^4,-1*K.1^30,-1*K.1^22,K.1^24,K.1^32,-1*K.1^2,-1*K.1^6,-1*K.1^26,K.1^16,-1*K.1^18,K.1^4,-1*K.1^14,-1*K.1^30,-1*K.1^22,-1*K.1^14,K.1^16,K.1^24,K.1^12,-1*K.1^26,-1*K.1^18,K.1^20,K.1^28,-1*K.1^6,-1*K.1^6,-1*K.1^26,K.1^24,K.1^8,-1*K.1^10,K.1^20,K.1^32,K.1^4,K.1^8,K.1^28,K.1^32,-1*K.1^30,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^22,K.1^20,K.1^28,-1*K.1^2,K.1^7,-1*K.1^15,-1*K.1^15,-1*K.1^11,-1*K.1^11,-1*K.1^31,-1*K.1^31,K.1,K.1,K.1^33,K.1^33,K.1^29,K.1^29,K.1^13,K.1^13,-1*K.1^19,-1*K.1^19,-1*K.1^29,K.1^27,-1*K.1^13,-1*K.1^33,K.1^11,-1*K.1^13,-1*K.1^33,K.1^11,-1*K.1^9,K.1^31,K.1^15,-1*K.1^9,K.1^31,-1*K.1^29,K.1^27,K.1^21,-1*K.1^23,-1*K.1^23,-1*K.1^27,-1*K.1^27,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^3,K.1^5,K.1^5,K.1^9,K.1^9,K.1^25,K.1^25,K.1^21,K.1^19,-1*K.1^5,K.1^7,K.1^15,-1*K.1,K.1^23,-1*K.1^21,-1*K.1,K.1^23,-1*K.1^25,K.1^3,K.1^19,-1*K.1^25,K.1^3,-1*K.1^5,K.1^7,-1*K.1^21,-1*K.1^19,-1*K.1^23,-1*K.1^23,-1*K.1^11,-1*K.1^11,-1*K.1^7,-1*K.1^7,K.1,K.1,K.1^5,K.1^5,K.1^29,K.1^29,K.1^25,K.1^25,-1*K.1^19,-1*K.1^21,-1*K.1^5,K.1^27,K.1^15,-1*K.1^33,K.1^23,-1*K.1^21,-1*K.1^33,K.1^23,-1*K.1^9,K.1^3,K.1^15,-1*K.1^9,K.1^3,-1*K.1^5,K.1^27,K.1^21,-1*K.1^15,-1*K.1^15,-1*K.1^27,-1*K.1^27,-1*K.1^31,-1*K.1^31,-1*K.1^3,-1*K.1^3,K.1^33,K.1^33,K.1^9,K.1^9,K.1^13,K.1^13,K.1^21,K.1^19,-1*K.1^29,K.1^7,-1*K.1^13,-1*K.1,K.1^11,-1*K.1^13,-1*K.1,K.1^11,-1*K.1^25,K.1^31,K.1^19,-1*K.1^25,K.1^31,-1*K.1^29,K.1^10,K.1^18,-1*K.1^8,K.1^2,-1*K.1^20,K.1^10,-1*K.1^4,-1*K.1^8,K.1^14,K.1^30,K.1^2,K.1^10,K.1^18,-1*K.1^12,-1*K.1^12,-1*K.1^20,K.1^30,-1*K.1^8,K.1^22,-1*K.1^12,K.1^18,-1*K.1^28,K.1^10,-1*K.1^32,-1*K.1^12,K.1^26,K.1^22,-1*K.1^28,-1*K.1^4,-1*K.1^16,-1*K.1^4,-1*K.1^16,K.1^26,-1*K.1^16,-1*K.1^20,K.1^22,-1*K.1^32,K.1^6,K.1^14,K.1^14,-1*K.1^20,K.1^2,-1*K.1^24,K.1^30,K.1^30,K.1^6,K.1^6,-1*K.1^24,-1*K.1^32,-1*K.1^28,K.1^14,K.1^18,K.1^6,-1*K.1^24,-1*K.1^24,-1*K.1^4,K.1^22,-1*K.1^8,-1*K.1^32,K.1^26,-1*K.1^28,K.1^2,K.1^26,-1*K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,K.1^12,K.1^28,K.1^16,-1*K.1^14,K.1^20,-1*K.1^2,K.1^8,-1*K.1^30,-1*K.1^18,K.1^4,-1*K.1^10,K.1^24,-1*K.1^6,-1*K.1^22,K.1^32,-1*K.1^26,-1*K.1^30,K.1^24,K.1^32,-1*K.1^6,K.1^24,-1*K.1^18,K.1^16,-1*K.1^26,-1*K.1^18,K.1^20,K.1^28,-1*K.1^2,K.1^20,-1*K.1^22,K.1^4,-1*K.1^30,-1*K.1^22,-1*K.1^26,-1*K.1^22,-1*K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^10,-1*K.1^6,-1*K.1^2,K.1^32,K.1^28,-1*K.1^18,-1*K.1^26,-1*K.1^30,K.1^8,K.1^4,K.1^8,K.1^12,K.1^16,K.1^12,-1*K.1^14,-1*K.1^10,-1*K.1^6,-1*K.1^14,K.1^4,K.1^8,K.1^12,K.1^16,K.1^20,K.1^24,K.1^28,K.1^32,-1*K.1^6,-1*K.1^18,-1*K.1^22,-1*K.1^2,-1*K.1^10,K.1^28,K.1^32,-1*K.1^30,K.1^12,K.1^4,-1*K.1^14,K.1^20,K.1^24,K.1^16,-1*K.1^26,K.1^8,-1*K.1^24,K.1^6,K.1^26,K.1^2,K.1^6,K.1^10,-1*K.1^20,K.1^18,K.1^10,K.1^26,K.1^2,-1*K.1^8,-1*K.1^32,-1*K.1^4,-1*K.1^24,-1*K.1^12,-1*K.1^16,K.1^22,-1*K.1^8,-1*K.1^8,K.1^26,-1*K.1^28,-1*K.1^12,-1*K.1^24,-1*K.1^32,K.1^2,K.1^30,-1*K.1^12,K.1^30,K.1^18,-1*K.1^20,K.1^18,K.1^26,-1*K.1^28,K.1^10,-1*K.1^32,-1*K.1^4,-1*K.1^16,K.1^22,K.1^10,K.1^6,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,K.1^30,-1*K.1^20,K.1^18,-1*K.1^28,-1*K.1^8,-1*K.1^20,-1*K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^32,K.1^14,-1*K.1^16,-1*K.1^28,K.1^22,-1*K.1^24,K.1^14,K.1^30,-1*K.1^26,-1*K.1^22,-1*K.1^18,K.1^16,K.1^20,K.1^24,-1*K.1^30,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,K.1^32,K.1^28,K.1^8,-1*K.1^18,K.1^16,-1*K.1^30,K.1^20,K.1^4,K.1^12,K.1^20,-1*K.1^18,-1*K.1^10,-1*K.1^22,K.1^8,K.1^16,-1*K.1^14,-1*K.1^6,K.1^28,K.1^28,K.1^8,-1*K.1^10,-1*K.1^26,K.1^24,-1*K.1^14,-1*K.1^2,-1*K.1^30,-1*K.1^26,-1*K.1^6,-1*K.1^2,K.1^4,K.1^24,K.1^32,-1*K.1^22,K.1^12,-1*K.1^14,-1*K.1^6,K.1^32,-1*K.1^27,K.1^19,K.1^19,K.1^23,K.1^23,K.1^3,K.1^3,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^21,-1*K.1^21,K.1^15,K.1^15,K.1^5,-1*K.1^7,K.1^21,K.1,-1*K.1^23,K.1^21,K.1,-1*K.1^23,K.1^25,-1*K.1^3,-1*K.1^19,K.1^25,-1*K.1^3,K.1^5,-1*K.1^7,-1*K.1^13,K.1^11,K.1^11,K.1^7,K.1^7,K.1^27,K.1^27,K.1^31,K.1^31,-1*K.1^29,-1*K.1^29,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,-1*K.1^13,-1*K.1^15,K.1^29,-1*K.1^27,-1*K.1^19,K.1^33,-1*K.1^11,K.1^13,K.1^33,-1*K.1^11,K.1^9,-1*K.1^31,-1*K.1^15,K.1^9,-1*K.1^31,K.1^29,-1*K.1^27,K.1^13,K.1^15,K.1^11,K.1^11,K.1^23,K.1^23,K.1^27,K.1^27,-1*K.1^33,-1*K.1^33,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,-1*K.1^9,-1*K.1^9,K.1^15,K.1^13,K.1^29,-1*K.1^7,-1*K.1^19,K.1,-1*K.1^11,K.1^13,K.1,-1*K.1^11,K.1^25,-1*K.1^31,-1*K.1^19,K.1^25,-1*K.1^31,K.1^29,-1*K.1^7,-1*K.1^13,K.1^19,K.1^19,K.1^7,K.1^7,K.1^3,K.1^3,K.1^31,K.1^31,-1*K.1,-1*K.1,-1*K.1^25,-1*K.1^25,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^15,K.1^5,-1*K.1^27,K.1^21,K.1^33,-1*K.1^23,K.1^21,K.1^33,-1*K.1^23,K.1^9,-1*K.1^3,-1*K.1^15,K.1^9,-1*K.1^3,K.1^5,-1*K.1^24,-1*K.1^16,K.1^26,-1*K.1^32,K.1^14,-1*K.1^24,K.1^30,K.1^26,-1*K.1^20,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^16,K.1^22,K.1^22,K.1^14,-1*K.1^4,K.1^26,-1*K.1^12,K.1^22,-1*K.1^16,K.1^6,-1*K.1^24,K.1^2,K.1^22,-1*K.1^8,-1*K.1^12,K.1^6,K.1^30,K.1^18,K.1^30,K.1^18,-1*K.1^8,K.1^18,K.1^14,-1*K.1^12,K.1^2,-1*K.1^28,-1*K.1^20,-1*K.1^20,K.1^14,-1*K.1^32,K.1^10,-1*K.1^4,-1*K.1^4,-1*K.1^28,-1*K.1^28,K.1^10,K.1^2,K.1^6,-1*K.1^20,-1*K.1^16,-1*K.1^28,K.1^10,K.1^10,K.1^30,-1*K.1^12,K.1^26,K.1^2,-1*K.1^8,K.1^6,-1*K.1^32,-1*K.1^8,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,K.1^12,K.1^28,K.1^16,-1*K.1^14,K.1^20,-1*K.1^2,K.1^8,-1*K.1^30,-1*K.1^18,K.1^4,-1*K.1^10,K.1^24,-1*K.1^6,-1*K.1^22,K.1^32,-1*K.1^26,-1*K.1^30,K.1^24,K.1^32,-1*K.1^6,K.1^24,-1*K.1^18,K.1^16,-1*K.1^26,-1*K.1^18,K.1^20,K.1^28,-1*K.1^2,K.1^20,-1*K.1^22,K.1^4,-1*K.1^30,-1*K.1^22,-1*K.1^26,-1*K.1^22,-1*K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^10,-1*K.1^6,-1*K.1^2,K.1^32,K.1^28,-1*K.1^18,-1*K.1^26,-1*K.1^30,K.1^8,K.1^4,K.1^8,K.1^12,K.1^16,K.1^12,-1*K.1^14,-1*K.1^10,-1*K.1^6,-1*K.1^14,K.1^4,K.1^8,K.1^12,K.1^16,K.1^20,K.1^24,K.1^28,K.1^32,-1*K.1^6,-1*K.1^18,-1*K.1^22,-1*K.1^2,-1*K.1^10,K.1^28,K.1^32,-1*K.1^30,K.1^12,K.1^4,-1*K.1^14,K.1^20,K.1^24,K.1^16,-1*K.1^26,K.1^8,-1*K.1^24,K.1^6,K.1^26,K.1^2,K.1^6,K.1^10,-1*K.1^20,K.1^18,K.1^10,K.1^26,K.1^2,-1*K.1^8,-1*K.1^32,-1*K.1^4,-1*K.1^24,-1*K.1^12,-1*K.1^16,K.1^22,-1*K.1^8,-1*K.1^8,K.1^26,-1*K.1^28,-1*K.1^12,-1*K.1^24,-1*K.1^32,K.1^2,K.1^30,-1*K.1^12,K.1^30,K.1^18,-1*K.1^20,K.1^18,K.1^26,-1*K.1^28,K.1^10,-1*K.1^32,-1*K.1^4,-1*K.1^16,K.1^22,K.1^10,K.1^6,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,K.1^30,-1*K.1^20,K.1^18,-1*K.1^28,-1*K.1^8,-1*K.1^20,-1*K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^32,K.1^14,-1*K.1^16,-1*K.1^28,K.1^22,-1*K.1^24,K.1^14,K.1^30,-1*K.1^26,-1*K.1^22,-1*K.1^18,K.1^16,K.1^20,K.1^24,-1*K.1^30,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,K.1^32,K.1^28,K.1^8,-1*K.1^18,K.1^16,-1*K.1^30,K.1^20,K.1^4,K.1^12,K.1^20,-1*K.1^18,-1*K.1^10,-1*K.1^22,K.1^8,K.1^16,-1*K.1^14,-1*K.1^6,K.1^28,K.1^28,K.1^8,-1*K.1^10,-1*K.1^26,K.1^24,-1*K.1^14,-1*K.1^2,-1*K.1^30,-1*K.1^26,-1*K.1^6,-1*K.1^2,K.1^4,K.1^24,K.1^32,-1*K.1^22,K.1^12,-1*K.1^14,-1*K.1^6,K.1^32,K.1^27,-1*K.1^19,-1*K.1^19,-1*K.1^23,-1*K.1^23,-1*K.1^3,-1*K.1^3,K.1^33,K.1^33,K.1,K.1,K.1^5,K.1^5,K.1^21,K.1^21,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^7,-1*K.1^21,-1*K.1,K.1^23,-1*K.1^21,-1*K.1,K.1^23,-1*K.1^25,K.1^3,K.1^19,-1*K.1^25,K.1^3,-1*K.1^5,K.1^7,K.1^13,-1*K.1^11,-1*K.1^11,-1*K.1^7,-1*K.1^7,-1*K.1^27,-1*K.1^27,-1*K.1^31,-1*K.1^31,K.1^29,K.1^29,K.1^25,K.1^25,K.1^9,K.1^9,K.1^13,K.1^15,-1*K.1^29,K.1^27,K.1^19,-1*K.1^33,K.1^11,-1*K.1^13,-1*K.1^33,K.1^11,-1*K.1^9,K.1^31,K.1^15,-1*K.1^9,K.1^31,-1*K.1^29,K.1^27,-1*K.1^13,-1*K.1^15,-1*K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^23,-1*K.1^27,-1*K.1^27,K.1^33,K.1^33,K.1^29,K.1^29,K.1^5,K.1^5,K.1^9,K.1^9,-1*K.1^15,-1*K.1^13,-1*K.1^29,K.1^7,K.1^19,-1*K.1,K.1^11,-1*K.1^13,-1*K.1,K.1^11,-1*K.1^25,K.1^31,K.1^19,-1*K.1^25,K.1^31,-1*K.1^29,K.1^7,K.1^13,-1*K.1^19,-1*K.1^19,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^31,-1*K.1^31,K.1,K.1,K.1^25,K.1^25,K.1^21,K.1^21,K.1^13,K.1^15,-1*K.1^5,K.1^27,-1*K.1^21,-1*K.1^33,K.1^23,-1*K.1^21,-1*K.1^33,K.1^23,-1*K.1^9,K.1^3,K.1^15,-1*K.1^9,K.1^3,-1*K.1^5,-1*K.1^24,-1*K.1^16,K.1^26,-1*K.1^32,K.1^14,-1*K.1^24,K.1^30,K.1^26,-1*K.1^20,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^16,K.1^22,K.1^22,K.1^14,-1*K.1^4,K.1^26,-1*K.1^12,K.1^22,-1*K.1^16,K.1^6,-1*K.1^24,K.1^2,K.1^22,-1*K.1^8,-1*K.1^12,K.1^6,K.1^30,K.1^18,K.1^30,K.1^18,-1*K.1^8,K.1^18,K.1^14,-1*K.1^12,K.1^2,-1*K.1^28,-1*K.1^20,-1*K.1^20,K.1^14,-1*K.1^32,K.1^10,-1*K.1^4,-1*K.1^4,-1*K.1^28,-1*K.1^28,K.1^10,K.1^2,K.1^6,-1*K.1^20,-1*K.1^16,-1*K.1^28,K.1^10,K.1^10,K.1^30,-1*K.1^12,K.1^26,K.1^2,-1*K.1^8,K.1^6,-1*K.1^32,-1*K.1^8,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,-1*K.1^22,-1*K.1^6,-1*K.1^18,K.1^20,-1*K.1^14,K.1^32,-1*K.1^26,K.1^4,K.1^16,-1*K.1^30,K.1^24,-1*K.1^10,K.1^28,K.1^12,-1*K.1^2,K.1^8,K.1^4,-1*K.1^10,-1*K.1^2,K.1^28,-1*K.1^10,K.1^16,-1*K.1^18,K.1^8,K.1^16,-1*K.1^14,-1*K.1^6,K.1^32,-1*K.1^14,K.1^12,-1*K.1^30,K.1^4,K.1^12,K.1^8,K.1^12,K.1^32,K.1^24,K.1^20,K.1^24,K.1^28,K.1^32,-1*K.1^2,-1*K.1^6,K.1^16,K.1^8,K.1^4,-1*K.1^26,-1*K.1^30,-1*K.1^26,-1*K.1^22,-1*K.1^18,-1*K.1^22,K.1^20,K.1^24,K.1^28,K.1^20,-1*K.1^30,-1*K.1^26,-1*K.1^22,-1*K.1^18,-1*K.1^14,-1*K.1^10,-1*K.1^6,-1*K.1^2,K.1^28,K.1^16,K.1^12,K.1^32,K.1^24,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^22,-1*K.1^30,K.1^20,-1*K.1^14,-1*K.1^10,-1*K.1^18,K.1^8,-1*K.1^26,K.1^10,-1*K.1^28,-1*K.1^8,-1*K.1^32,-1*K.1^28,-1*K.1^24,K.1^14,-1*K.1^16,-1*K.1^24,-1*K.1^8,-1*K.1^32,K.1^26,K.1^2,K.1^30,K.1^10,K.1^22,K.1^18,-1*K.1^12,K.1^26,K.1^26,-1*K.1^8,K.1^6,K.1^22,K.1^10,K.1^2,-1*K.1^32,-1*K.1^4,K.1^22,-1*K.1^4,-1*K.1^16,K.1^14,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^24,K.1^2,K.1^30,K.1^18,-1*K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^32,-1*K.1^20,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^4,K.1^14,-1*K.1^16,K.1^6,K.1^26,K.1^14,K.1^18,K.1^22,K.1^30,K.1^30,K.1^2,-1*K.1^20,K.1^18,K.1^6,-1*K.1^12,K.1^10,-1*K.1^20,-1*K.1^4,K.1^8,K.1^12,K.1^16,-1*K.1^18,-1*K.1^14,-1*K.1^10,K.1^4,-1*K.1^30,-1*K.1^22,K.1^24,K.1^32,-1*K.1^2,-1*K.1^6,-1*K.1^26,K.1^16,-1*K.1^18,K.1^4,-1*K.1^14,-1*K.1^30,-1*K.1^22,-1*K.1^14,K.1^16,K.1^24,K.1^12,-1*K.1^26,-1*K.1^18,K.1^20,K.1^28,-1*K.1^6,-1*K.1^6,-1*K.1^26,K.1^24,K.1^8,-1*K.1^10,K.1^20,K.1^32,K.1^4,K.1^8,K.1^28,K.1^32,-1*K.1^30,-1*K.1^10,-1*K.1^2,K.1^12,-1*K.1^22,K.1^20,K.1^28,-1*K.1^2,-1*K.1^7,K.1^15,K.1^15,K.1^11,K.1^11,K.1^31,K.1^31,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,-1*K.1^29,-1*K.1^29,-1*K.1^13,-1*K.1^13,K.1^19,K.1^19,K.1^29,-1*K.1^27,K.1^13,K.1^33,-1*K.1^11,K.1^13,K.1^33,-1*K.1^11,K.1^9,-1*K.1^31,-1*K.1^15,K.1^9,-1*K.1^31,K.1^29,-1*K.1^27,-1*K.1^21,K.1^23,K.1^23,K.1^27,K.1^27,K.1^7,K.1^7,K.1^3,K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,-1*K.1^21,-1*K.1^19,K.1^5,-1*K.1^7,-1*K.1^15,K.1,-1*K.1^23,K.1^21,K.1,-1*K.1^23,K.1^25,-1*K.1^3,-1*K.1^19,K.1^25,-1*K.1^3,K.1^5,-1*K.1^7,K.1^21,K.1^19,K.1^23,K.1^23,K.1^11,K.1^11,K.1^7,K.1^7,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,-1*K.1^25,-1*K.1^25,K.1^19,K.1^21,K.1^5,-1*K.1^27,-1*K.1^15,K.1^33,-1*K.1^23,K.1^21,K.1^33,-1*K.1^23,K.1^9,-1*K.1^3,-1*K.1^15,K.1^9,-1*K.1^3,K.1^5,-1*K.1^27,-1*K.1^21,K.1^15,K.1^15,K.1^27,K.1^27,K.1^31,K.1^31,K.1^3,K.1^3,-1*K.1^33,-1*K.1^33,-1*K.1^9,-1*K.1^9,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^19,K.1^29,-1*K.1^7,K.1^13,K.1,-1*K.1^11,K.1^13,K.1,-1*K.1^11,K.1^25,-1*K.1^31,-1*K.1^19,K.1^25,-1*K.1^31,K.1^29,K.1^10,K.1^18,-1*K.1^8,K.1^2,-1*K.1^20,K.1^10,-1*K.1^4,-1*K.1^8,K.1^14,K.1^30,K.1^2,K.1^10,K.1^18,-1*K.1^12,-1*K.1^12,-1*K.1^20,K.1^30,-1*K.1^8,K.1^22,-1*K.1^12,K.1^18,-1*K.1^28,K.1^10,-1*K.1^32,-1*K.1^12,K.1^26,K.1^22,-1*K.1^28,-1*K.1^4,-1*K.1^16,-1*K.1^4,-1*K.1^16,K.1^26,-1*K.1^16,-1*K.1^20,K.1^22,-1*K.1^32,K.1^6,K.1^14,K.1^14,-1*K.1^20,K.1^2,-1*K.1^24,K.1^30,K.1^30,K.1^6,K.1^6,-1*K.1^24,-1*K.1^32,-1*K.1^28,K.1^14,K.1^18,K.1^6,-1*K.1^24,-1*K.1^24,-1*K.1^4,K.1^22,-1*K.1^8,-1*K.1^32,K.1^26,-1*K.1^28,K.1^2,K.1^26,-1*K.1^16]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,-1*K.1^26,K.1^4,K.1^12,-1*K.1^2,K.1^32,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^22,K.1^20,K.1^16,-1*K.1^18,-1*K.1^30,K.1^8,K.1^24,K.1^28,-1*K.1^14,-1*K.1^18,K.1^24,-1*K.1^30,-1*K.1^18,-1*K.1^22,K.1^12,K.1^28,-1*K.1^22,K.1^32,K.1^4,-1*K.1^10,K.1^32,K.1^8,K.1^20,-1*K.1^14,K.1^8,K.1^28,K.1^8,-1*K.1^10,K.1^16,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^10,K.1^24,K.1^4,-1*K.1^22,K.1^28,-1*K.1^14,-1*K.1^6,K.1^20,-1*K.1^6,-1*K.1^26,K.1^12,-1*K.1^26,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^2,K.1^20,-1*K.1^6,-1*K.1^26,K.1^12,K.1^32,-1*K.1^18,K.1^4,K.1^24,-1*K.1^30,-1*K.1^22,K.1^8,-1*K.1^10,K.1^16,K.1^4,K.1^24,-1*K.1^14,-1*K.1^26,K.1^20,-1*K.1^2,K.1^32,-1*K.1^18,K.1^12,K.1^28,-1*K.1^6,K.1^18,K.1^30,-1*K.1^28,K.1^10,K.1^30,-1*K.1^16,-1*K.1^32,K.1^22,-1*K.1^16,-1*K.1^28,K.1^10,K.1^6,-1*K.1^24,-1*K.1^20,K.1^18,K.1^26,-1*K.1^12,-1*K.1^8,K.1^6,K.1^6,-1*K.1^28,-1*K.1^4,K.1^26,K.1^18,-1*K.1^24,K.1^10,K.1^14,K.1^26,K.1^14,K.1^22,-1*K.1^32,K.1^22,-1*K.1^28,-1*K.1^4,-1*K.1^16,-1*K.1^24,-1*K.1^20,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^30,K.1^10,K.1^2,K.1^2,-1*K.1^8,K.1^30,K.1^14,-1*K.1^32,K.1^22,-1*K.1^4,K.1^6,-1*K.1^32,-1*K.1^12,K.1^26,-1*K.1^20,-1*K.1^20,-1*K.1^24,K.1^2,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^18,K.1^2,K.1^14,K.1^28,K.1^8,-1*K.1^22,K.1^12,K.1^32,-1*K.1^18,-1*K.1^14,K.1^20,-1*K.1^26,K.1^16,-1*K.1^10,K.1^24,K.1^4,-1*K.1^6,-1*K.1^22,K.1^12,-1*K.1^14,K.1^32,K.1^20,-1*K.1^26,K.1^32,-1*K.1^22,K.1^16,K.1^8,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^30,K.1^4,K.1^4,-1*K.1^6,K.1^16,K.1^28,-1*K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^14,K.1^28,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^18,K.1^24,K.1^8,-1*K.1^26,-1*K.1^2,-1*K.1^30,K.1^24,-1*K.1^33,-1*K.1^27,-1*K.1^27,K.1^13,K.1^13,-1*K.1^15,-1*K.1^15,K.1^29,K.1^29,K.1^5,K.1^5,K.1^25,K.1^25,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^25,-1*K.1,K.1^3,-1*K.1^5,-1*K.1^13,K.1^3,-1*K.1^5,-1*K.1^13,K.1^23,K.1^15,K.1^27,K.1^23,K.1^15,-1*K.1^25,-1*K.1,-1*K.1^31,K.1^21,K.1^21,K.1,K.1,K.1^33,K.1^33,-1*K.1^19,-1*K.1^19,K.1^9,K.1^9,-1*K.1^23,-1*K.1^23,-1*K.1^11,-1*K.1^11,-1*K.1^31,K.1^7,-1*K.1^9,-1*K.1^33,K.1^27,-1*K.1^29,-1*K.1^21,K.1^31,-1*K.1^29,-1*K.1^21,K.1^11,K.1^19,K.1^7,K.1^11,K.1^19,-1*K.1^9,-1*K.1^33,K.1^31,-1*K.1^7,K.1^21,K.1^21,K.1^13,K.1^13,K.1^33,K.1^33,K.1^29,K.1^29,K.1^9,K.1^9,K.1^25,K.1^25,-1*K.1^11,-1*K.1^11,-1*K.1^7,K.1^31,-1*K.1^9,-1*K.1,K.1^27,-1*K.1^5,-1*K.1^21,K.1^31,-1*K.1^5,-1*K.1^21,K.1^23,K.1^19,K.1^27,K.1^23,K.1^19,-1*K.1^9,-1*K.1,-1*K.1^31,-1*K.1^27,-1*K.1^27,K.1,K.1,-1*K.1^15,-1*K.1^15,-1*K.1^19,-1*K.1^19,K.1^5,K.1^5,-1*K.1^23,-1*K.1^23,-1*K.1^3,-1*K.1^3,-1*K.1^31,K.1^7,-1*K.1^25,-1*K.1^33,K.1^3,-1*K.1^29,-1*K.1^13,K.1^3,-1*K.1^29,-1*K.1^13,K.1^11,K.1^15,K.1^7,K.1^11,K.1^15,-1*K.1^25,K.1^18,-1*K.1^12,-1*K.1^28,-1*K.1^24,K.1^2,K.1^18,K.1^14,-1*K.1^28,-1*K.1^32,-1*K.1^20,-1*K.1^24,K.1^18,-1*K.1^12,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^20,-1*K.1^28,K.1^26,-1*K.1^8,-1*K.1^12,K.1^30,K.1^18,K.1^10,-1*K.1^8,K.1^6,K.1^26,K.1^30,K.1^14,K.1^22,K.1^14,K.1^22,K.1^6,K.1^22,K.1^2,K.1^26,K.1^10,-1*K.1^4,-1*K.1^32,-1*K.1^32,K.1^2,-1*K.1^24,-1*K.1^16,-1*K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^10,K.1^30,-1*K.1^32,-1*K.1^12,-1*K.1^4,-1*K.1^16,-1*K.1^16,K.1^14,K.1^26,-1*K.1^28,K.1^10,K.1^6,K.1^30,-1*K.1^24,K.1^6,K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,K.1^8,-1*K.1^30,-1*K.1^22,K.1^32,-1*K.1^2,K.1^24,K.1^28,K.1^20,K.1^12,-1*K.1^14,-1*K.1^18,K.1^16,K.1^4,-1*K.1^26,-1*K.1^10,-1*K.1^6,K.1^20,K.1^16,-1*K.1^10,K.1^4,K.1^16,K.1^12,-1*K.1^22,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^30,K.1^24,-1*K.1^2,-1*K.1^26,-1*K.1^14,K.1^20,-1*K.1^26,-1*K.1^6,-1*K.1^26,K.1^24,-1*K.1^18,K.1^32,-1*K.1^18,K.1^4,K.1^24,-1*K.1^10,-1*K.1^30,K.1^12,-1*K.1^6,K.1^20,K.1^28,-1*K.1^14,K.1^28,K.1^8,-1*K.1^22,K.1^8,K.1^32,-1*K.1^18,K.1^4,K.1^32,-1*K.1^14,K.1^28,K.1^8,-1*K.1^22,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^10,K.1^4,K.1^12,-1*K.1^26,K.1^24,-1*K.1^18,-1*K.1^30,-1*K.1^10,K.1^20,K.1^8,-1*K.1^14,K.1^32,-1*K.1^2,K.1^16,-1*K.1^22,-1*K.1^6,K.1^28,-1*K.1^16,-1*K.1^4,K.1^6,-1*K.1^24,-1*K.1^4,K.1^18,K.1^2,-1*K.1^12,K.1^18,K.1^6,-1*K.1^24,-1*K.1^28,K.1^10,K.1^14,-1*K.1^16,-1*K.1^8,K.1^22,K.1^26,-1*K.1^28,-1*K.1^28,K.1^6,K.1^30,-1*K.1^8,-1*K.1^16,K.1^10,-1*K.1^24,-1*K.1^20,-1*K.1^8,-1*K.1^20,-1*K.1^12,K.1^2,-1*K.1^12,K.1^6,K.1^30,K.1^18,K.1^10,K.1^14,K.1^22,K.1^26,K.1^18,-1*K.1^4,-1*K.1^24,-1*K.1^32,-1*K.1^32,K.1^26,-1*K.1^4,-1*K.1^20,K.1^2,-1*K.1^12,K.1^30,-1*K.1^28,K.1^2,K.1^22,-1*K.1^8,K.1^14,K.1^14,K.1^10,-1*K.1^32,K.1^22,K.1^30,K.1^26,-1*K.1^16,-1*K.1^32,-1*K.1^20,-1*K.1^6,-1*K.1^26,K.1^12,-1*K.1^22,-1*K.1^2,K.1^16,K.1^20,-1*K.1^14,K.1^8,-1*K.1^18,K.1^24,-1*K.1^10,-1*K.1^30,K.1^28,K.1^12,-1*K.1^22,K.1^20,-1*K.1^2,-1*K.1^14,K.1^8,-1*K.1^2,K.1^12,-1*K.1^18,-1*K.1^26,K.1^28,-1*K.1^22,K.1^32,K.1^4,-1*K.1^30,-1*K.1^30,K.1^28,-1*K.1^18,-1*K.1^6,K.1^16,K.1^32,K.1^24,K.1^20,-1*K.1^6,K.1^4,K.1^24,-1*K.1^14,K.1^16,-1*K.1^10,-1*K.1^26,K.1^8,K.1^32,K.1^4,-1*K.1^10,K.1,K.1^7,K.1^7,-1*K.1^21,-1*K.1^21,K.1^19,K.1^19,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,-1*K.1^9,-1*K.1^9,K.1^31,K.1^31,K.1^27,K.1^27,K.1^9,K.1^33,-1*K.1^31,K.1^29,K.1^21,-1*K.1^31,K.1^29,K.1^21,-1*K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,-1*K.1^19,K.1^9,K.1^33,K.1^3,-1*K.1^13,-1*K.1^13,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,K.1^15,K.1^15,-1*K.1^25,-1*K.1^25,K.1^11,K.1^11,K.1^23,K.1^23,K.1^3,-1*K.1^27,K.1^25,K.1,-1*K.1^7,K.1^5,K.1^13,-1*K.1^3,K.1^5,K.1^13,-1*K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,-1*K.1^15,K.1^25,K.1,-1*K.1^3,K.1^27,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,K.1^23,K.1^23,K.1^27,-1*K.1^3,K.1^25,K.1^33,-1*K.1^7,K.1^29,K.1^13,-1*K.1^3,K.1^29,K.1^13,-1*K.1^11,-1*K.1^15,-1*K.1^7,-1*K.1^11,-1*K.1^15,K.1^25,K.1^33,K.1^3,K.1^7,K.1^7,-1*K.1^33,-1*K.1^33,K.1^19,K.1^19,K.1^15,K.1^15,-1*K.1^29,-1*K.1^29,K.1^11,K.1^11,K.1^31,K.1^31,K.1^3,-1*K.1^27,K.1^9,K.1,-1*K.1^31,K.1^5,K.1^21,-1*K.1^31,K.1^5,K.1^21,-1*K.1^23,-1*K.1^19,-1*K.1^27,-1*K.1^23,-1*K.1^19,K.1^9,-1*K.1^16,K.1^22,K.1^6,K.1^10,-1*K.1^32,-1*K.1^16,-1*K.1^20,K.1^6,K.1^2,K.1^14,K.1^10,-1*K.1^16,K.1^22,K.1^26,K.1^26,-1*K.1^32,K.1^14,K.1^6,-1*K.1^8,K.1^26,K.1^22,-1*K.1^4,-1*K.1^16,-1*K.1^24,K.1^26,-1*K.1^28,-1*K.1^8,-1*K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^32,-1*K.1^8,-1*K.1^24,K.1^30,K.1^2,K.1^2,-1*K.1^32,K.1^10,K.1^18,K.1^14,K.1^14,K.1^30,K.1^30,K.1^18,-1*K.1^24,-1*K.1^4,K.1^2,K.1^22,K.1^30,K.1^18,K.1^18,-1*K.1^20,-1*K.1^8,K.1^6,-1*K.1^24,-1*K.1^28,-1*K.1^4,K.1^10,-1*K.1^28,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,K.1^8,-1*K.1^30,-1*K.1^22,K.1^32,-1*K.1^2,K.1^24,K.1^28,K.1^20,K.1^12,-1*K.1^14,-1*K.1^18,K.1^16,K.1^4,-1*K.1^26,-1*K.1^10,-1*K.1^6,K.1^20,K.1^16,-1*K.1^10,K.1^4,K.1^16,K.1^12,-1*K.1^22,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^30,K.1^24,-1*K.1^2,-1*K.1^26,-1*K.1^14,K.1^20,-1*K.1^26,-1*K.1^6,-1*K.1^26,K.1^24,-1*K.1^18,K.1^32,-1*K.1^18,K.1^4,K.1^24,-1*K.1^10,-1*K.1^30,K.1^12,-1*K.1^6,K.1^20,K.1^28,-1*K.1^14,K.1^28,K.1^8,-1*K.1^22,K.1^8,K.1^32,-1*K.1^18,K.1^4,K.1^32,-1*K.1^14,K.1^28,K.1^8,-1*K.1^22,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^10,K.1^4,K.1^12,-1*K.1^26,K.1^24,-1*K.1^18,-1*K.1^30,-1*K.1^10,K.1^20,K.1^8,-1*K.1^14,K.1^32,-1*K.1^2,K.1^16,-1*K.1^22,-1*K.1^6,K.1^28,-1*K.1^16,-1*K.1^4,K.1^6,-1*K.1^24,-1*K.1^4,K.1^18,K.1^2,-1*K.1^12,K.1^18,K.1^6,-1*K.1^24,-1*K.1^28,K.1^10,K.1^14,-1*K.1^16,-1*K.1^8,K.1^22,K.1^26,-1*K.1^28,-1*K.1^28,K.1^6,K.1^30,-1*K.1^8,-1*K.1^16,K.1^10,-1*K.1^24,-1*K.1^20,-1*K.1^8,-1*K.1^20,-1*K.1^12,K.1^2,-1*K.1^12,K.1^6,K.1^30,K.1^18,K.1^10,K.1^14,K.1^22,K.1^26,K.1^18,-1*K.1^4,-1*K.1^24,-1*K.1^32,-1*K.1^32,K.1^26,-1*K.1^4,-1*K.1^20,K.1^2,-1*K.1^12,K.1^30,-1*K.1^28,K.1^2,K.1^22,-1*K.1^8,K.1^14,K.1^14,K.1^10,-1*K.1^32,K.1^22,K.1^30,K.1^26,-1*K.1^16,-1*K.1^32,-1*K.1^20,-1*K.1^6,-1*K.1^26,K.1^12,-1*K.1^22,-1*K.1^2,K.1^16,K.1^20,-1*K.1^14,K.1^8,-1*K.1^18,K.1^24,-1*K.1^10,-1*K.1^30,K.1^28,K.1^12,-1*K.1^22,K.1^20,-1*K.1^2,-1*K.1^14,K.1^8,-1*K.1^2,K.1^12,-1*K.1^18,-1*K.1^26,K.1^28,-1*K.1^22,K.1^32,K.1^4,-1*K.1^30,-1*K.1^30,K.1^28,-1*K.1^18,-1*K.1^6,K.1^16,K.1^32,K.1^24,K.1^20,-1*K.1^6,K.1^4,K.1^24,-1*K.1^14,K.1^16,-1*K.1^10,-1*K.1^26,K.1^8,K.1^32,K.1^4,-1*K.1^10,-1*K.1,-1*K.1^7,-1*K.1^7,K.1^21,K.1^21,-1*K.1^19,-1*K.1^19,K.1^5,K.1^5,K.1^29,K.1^29,K.1^9,K.1^9,-1*K.1^31,-1*K.1^31,-1*K.1^27,-1*K.1^27,-1*K.1^9,-1*K.1^33,K.1^31,-1*K.1^29,-1*K.1^21,K.1^31,-1*K.1^29,-1*K.1^21,K.1^11,K.1^19,K.1^7,K.1^11,K.1^19,-1*K.1^9,-1*K.1^33,-1*K.1^3,K.1^13,K.1^13,K.1^33,K.1^33,K.1,K.1,-1*K.1^15,-1*K.1^15,K.1^25,K.1^25,-1*K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^23,-1*K.1^3,K.1^27,-1*K.1^25,-1*K.1,K.1^7,-1*K.1^5,-1*K.1^13,K.1^3,-1*K.1^5,-1*K.1^13,K.1^23,K.1^15,K.1^27,K.1^23,K.1^15,-1*K.1^25,-1*K.1,K.1^3,-1*K.1^27,K.1^13,K.1^13,K.1^21,K.1^21,K.1,K.1,K.1^5,K.1^5,K.1^25,K.1^25,K.1^9,K.1^9,-1*K.1^23,-1*K.1^23,-1*K.1^27,K.1^3,-1*K.1^25,-1*K.1^33,K.1^7,-1*K.1^29,-1*K.1^13,K.1^3,-1*K.1^29,-1*K.1^13,K.1^11,K.1^15,K.1^7,K.1^11,K.1^15,-1*K.1^25,-1*K.1^33,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^33,K.1^33,-1*K.1^19,-1*K.1^19,-1*K.1^15,-1*K.1^15,K.1^29,K.1^29,-1*K.1^11,-1*K.1^11,-1*K.1^31,-1*K.1^31,-1*K.1^3,K.1^27,-1*K.1^9,-1*K.1,K.1^31,-1*K.1^5,-1*K.1^21,K.1^31,-1*K.1^5,-1*K.1^21,K.1^23,K.1^19,K.1^27,K.1^23,K.1^19,-1*K.1^9,-1*K.1^16,K.1^22,K.1^6,K.1^10,-1*K.1^32,-1*K.1^16,-1*K.1^20,K.1^6,K.1^2,K.1^14,K.1^10,-1*K.1^16,K.1^22,K.1^26,K.1^26,-1*K.1^32,K.1^14,K.1^6,-1*K.1^8,K.1^26,K.1^22,-1*K.1^4,-1*K.1^16,-1*K.1^24,K.1^26,-1*K.1^28,-1*K.1^8,-1*K.1^4,-1*K.1^20,-1*K.1^12,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^12,-1*K.1^32,-1*K.1^8,-1*K.1^24,K.1^30,K.1^2,K.1^2,-1*K.1^32,K.1^10,K.1^18,K.1^14,K.1^14,K.1^30,K.1^30,K.1^18,-1*K.1^24,-1*K.1^4,K.1^2,K.1^22,K.1^30,K.1^18,K.1^18,-1*K.1^20,-1*K.1^8,K.1^6,-1*K.1^24,-1*K.1^28,-1*K.1^4,K.1^10,-1*K.1^28,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,-1*K.1^26,K.1^4,K.1^12,-1*K.1^2,K.1^32,-1*K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^22,K.1^20,K.1^16,-1*K.1^18,-1*K.1^30,K.1^8,K.1^24,K.1^28,-1*K.1^14,-1*K.1^18,K.1^24,-1*K.1^30,-1*K.1^18,-1*K.1^22,K.1^12,K.1^28,-1*K.1^22,K.1^32,K.1^4,-1*K.1^10,K.1^32,K.1^8,K.1^20,-1*K.1^14,K.1^8,K.1^28,K.1^8,-1*K.1^10,K.1^16,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^10,K.1^24,K.1^4,-1*K.1^22,K.1^28,-1*K.1^14,-1*K.1^6,K.1^20,-1*K.1^6,-1*K.1^26,K.1^12,-1*K.1^26,-1*K.1^2,K.1^16,-1*K.1^30,-1*K.1^2,K.1^20,-1*K.1^6,-1*K.1^26,K.1^12,K.1^32,-1*K.1^18,K.1^4,K.1^24,-1*K.1^30,-1*K.1^22,K.1^8,-1*K.1^10,K.1^16,K.1^4,K.1^24,-1*K.1^14,-1*K.1^26,K.1^20,-1*K.1^2,K.1^32,-1*K.1^18,K.1^12,K.1^28,-1*K.1^6,K.1^18,K.1^30,-1*K.1^28,K.1^10,K.1^30,-1*K.1^16,-1*K.1^32,K.1^22,-1*K.1^16,-1*K.1^28,K.1^10,K.1^6,-1*K.1^24,-1*K.1^20,K.1^18,K.1^26,-1*K.1^12,-1*K.1^8,K.1^6,K.1^6,-1*K.1^28,-1*K.1^4,K.1^26,K.1^18,-1*K.1^24,K.1^10,K.1^14,K.1^26,K.1^14,K.1^22,-1*K.1^32,K.1^22,-1*K.1^28,-1*K.1^4,-1*K.1^16,-1*K.1^24,-1*K.1^20,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^30,K.1^10,K.1^2,K.1^2,-1*K.1^8,K.1^30,K.1^14,-1*K.1^32,K.1^22,-1*K.1^4,K.1^6,-1*K.1^32,-1*K.1^12,K.1^26,-1*K.1^20,-1*K.1^20,-1*K.1^24,K.1^2,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^18,K.1^2,K.1^14,K.1^28,K.1^8,-1*K.1^22,K.1^12,K.1^32,-1*K.1^18,-1*K.1^14,K.1^20,-1*K.1^26,K.1^16,-1*K.1^10,K.1^24,K.1^4,-1*K.1^6,-1*K.1^22,K.1^12,-1*K.1^14,K.1^32,K.1^20,-1*K.1^26,K.1^32,-1*K.1^22,K.1^16,K.1^8,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^30,K.1^4,K.1^4,-1*K.1^6,K.1^16,K.1^28,-1*K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^14,K.1^28,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^18,K.1^24,K.1^8,-1*K.1^26,-1*K.1^2,-1*K.1^30,K.1^24,K.1^33,K.1^27,K.1^27,-1*K.1^13,-1*K.1^13,K.1^15,K.1^15,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,-1*K.1^25,-1*K.1^25,K.1^3,K.1^3,K.1^7,K.1^7,K.1^25,K.1,-1*K.1^3,K.1^5,K.1^13,-1*K.1^3,K.1^5,K.1^13,-1*K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,-1*K.1^15,K.1^25,K.1,K.1^31,-1*K.1^21,-1*K.1^21,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,K.1^19,K.1^19,-1*K.1^9,-1*K.1^9,K.1^23,K.1^23,K.1^11,K.1^11,K.1^31,-1*K.1^7,K.1^9,K.1^33,-1*K.1^27,K.1^29,K.1^21,-1*K.1^31,K.1^29,K.1^21,-1*K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,-1*K.1^19,K.1^9,K.1^33,-1*K.1^31,K.1^7,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,-1*K.1^33,-1*K.1^33,-1*K.1^29,-1*K.1^29,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,K.1^11,K.1^11,K.1^7,-1*K.1^31,K.1^9,K.1,-1*K.1^27,K.1^5,K.1^21,-1*K.1^31,K.1^5,K.1^21,-1*K.1^23,-1*K.1^19,-1*K.1^27,-1*K.1^23,-1*K.1^19,K.1^9,K.1,K.1^31,K.1^27,K.1^27,-1*K.1,-1*K.1,K.1^15,K.1^15,K.1^19,K.1^19,-1*K.1^5,-1*K.1^5,K.1^23,K.1^23,K.1^3,K.1^3,K.1^31,-1*K.1^7,K.1^25,K.1^33,-1*K.1^3,K.1^29,K.1^13,-1*K.1^3,K.1^29,K.1^13,-1*K.1^11,-1*K.1^15,-1*K.1^7,-1*K.1^11,-1*K.1^15,K.1^25,K.1^18,-1*K.1^12,-1*K.1^28,-1*K.1^24,K.1^2,K.1^18,K.1^14,-1*K.1^28,-1*K.1^32,-1*K.1^20,-1*K.1^24,K.1^18,-1*K.1^12,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^20,-1*K.1^28,K.1^26,-1*K.1^8,-1*K.1^12,K.1^30,K.1^18,K.1^10,-1*K.1^8,K.1^6,K.1^26,K.1^30,K.1^14,K.1^22,K.1^14,K.1^22,K.1^6,K.1^22,K.1^2,K.1^26,K.1^10,-1*K.1^4,-1*K.1^32,-1*K.1^32,K.1^2,-1*K.1^24,-1*K.1^16,-1*K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^10,K.1^30,-1*K.1^32,-1*K.1^12,-1*K.1^4,-1*K.1^16,-1*K.1^16,K.1^14,K.1^26,-1*K.1^28,K.1^10,K.1^6,K.1^30,-1*K.1^24,K.1^6,K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,-1*K.1^30,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^16,-1*K.1^22,K.1^20,K.1^24,K.1^28,-1*K.1^10,K.1^8,-1*K.1^26,K.1^32,K.1^4,K.1^12,-1*K.1^14,K.1^24,-1*K.1^26,K.1^12,K.1^32,-1*K.1^26,K.1^28,-1*K.1^6,-1*K.1^14,K.1^28,K.1^16,-1*K.1^2,-1*K.1^22,K.1^16,K.1^4,-1*K.1^10,K.1^24,K.1^4,-1*K.1^14,K.1^4,-1*K.1^22,K.1^8,-1*K.1^18,K.1^8,K.1^32,-1*K.1^22,K.1^12,-1*K.1^2,K.1^28,-1*K.1^14,K.1^24,K.1^20,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^6,-1*K.1^30,-1*K.1^18,K.1^8,K.1^32,-1*K.1^18,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^6,K.1^16,-1*K.1^26,-1*K.1^2,K.1^12,K.1^32,K.1^28,K.1^4,-1*K.1^22,K.1^8,-1*K.1^2,K.1^12,K.1^24,-1*K.1^30,-1*K.1^10,-1*K.1^18,K.1^16,-1*K.1^26,-1*K.1^6,-1*K.1^14,K.1^20,K.1^26,-1*K.1^32,K.1^14,K.1^22,-1*K.1^32,-1*K.1^8,-1*K.1^16,-1*K.1^28,-1*K.1^8,K.1^14,K.1^22,-1*K.1^20,-1*K.1^12,K.1^10,K.1^26,K.1^30,K.1^6,-1*K.1^4,-1*K.1^20,-1*K.1^20,K.1^14,K.1^2,K.1^30,K.1^26,-1*K.1^12,K.1^22,-1*K.1^24,K.1^30,-1*K.1^24,-1*K.1^28,-1*K.1^16,-1*K.1^28,K.1^14,K.1^2,-1*K.1^8,-1*K.1^12,K.1^10,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^32,K.1^22,K.1^18,K.1^18,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^16,-1*K.1^28,K.1^2,-1*K.1^20,-1*K.1^16,K.1^6,K.1^30,K.1^10,K.1^10,-1*K.1^12,K.1^18,K.1^6,K.1^2,-1*K.1^4,K.1^26,K.1^18,-1*K.1^24,-1*K.1^14,K.1^4,K.1^28,-1*K.1^6,K.1^16,-1*K.1^26,K.1^24,-1*K.1^10,-1*K.1^30,K.1^8,-1*K.1^22,K.1^12,-1*K.1^2,K.1^20,K.1^28,-1*K.1^6,K.1^24,K.1^16,-1*K.1^10,-1*K.1^30,K.1^16,K.1^28,K.1^8,K.1^4,K.1^20,-1*K.1^6,-1*K.1^18,K.1^32,-1*K.1^2,-1*K.1^2,K.1^20,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^18,-1*K.1^22,K.1^24,-1*K.1^14,K.1^32,-1*K.1^22,-1*K.1^10,-1*K.1^26,K.1^12,K.1^4,-1*K.1^30,-1*K.1^18,K.1^32,K.1^12,-1*K.1^25,K.1^5,K.1^5,-1*K.1^15,-1*K.1^15,K.1^33,K.1^33,-1*K.1^23,-1*K.1^23,-1*K.1^11,-1*K.1^11,K.1^21,K.1^21,-1*K.1^27,-1*K.1^27,K.1^29,K.1^29,-1*K.1^21,-1*K.1^9,K.1^27,K.1^11,K.1^15,K.1^27,K.1^11,K.1^15,K.1^3,-1*K.1^33,-1*K.1^5,K.1^3,-1*K.1^33,-1*K.1^21,-1*K.1^9,-1*K.1^7,-1*K.1^19,-1*K.1^19,K.1^9,K.1^9,K.1^25,K.1^25,K.1,K.1,K.1^13,K.1^13,-1*K.1^3,-1*K.1^3,-1*K.1^31,-1*K.1^31,-1*K.1^7,-1*K.1^29,-1*K.1^13,-1*K.1^25,-1*K.1^5,K.1^23,K.1^19,K.1^7,K.1^23,K.1^19,K.1^31,-1*K.1,-1*K.1^29,K.1^31,-1*K.1,-1*K.1^13,-1*K.1^25,K.1^7,K.1^29,-1*K.1^19,-1*K.1^19,-1*K.1^15,-1*K.1^15,K.1^25,K.1^25,-1*K.1^23,-1*K.1^23,K.1^13,K.1^13,K.1^21,K.1^21,-1*K.1^31,-1*K.1^31,K.1^29,K.1^7,-1*K.1^13,-1*K.1^9,-1*K.1^5,K.1^11,K.1^19,K.1^7,K.1^11,K.1^19,K.1^3,-1*K.1,-1*K.1^5,K.1^3,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^7,K.1^5,K.1^5,K.1^9,K.1^9,K.1^33,K.1^33,K.1,K.1,-1*K.1^11,-1*K.1^11,-1*K.1^3,-1*K.1^3,-1*K.1^27,-1*K.1^27,-1*K.1^7,-1*K.1^29,-1*K.1^21,-1*K.1^25,K.1^27,K.1^23,K.1^15,K.1^27,K.1^23,K.1^15,K.1^31,-1*K.1^33,-1*K.1^29,K.1^31,-1*K.1^33,-1*K.1^21,K.1^26,K.1^6,K.1^14,-1*K.1^12,K.1^18,K.1^26,-1*K.1^24,K.1^14,-1*K.1^16,K.1^10,-1*K.1^12,K.1^26,K.1^6,-1*K.1^4,-1*K.1^4,K.1^18,K.1^10,K.1^14,K.1^30,-1*K.1^4,K.1^6,-1*K.1^32,K.1^26,K.1^22,-1*K.1^4,-1*K.1^20,K.1^30,-1*K.1^32,-1*K.1^24,-1*K.1^28,-1*K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^28,K.1^18,K.1^30,K.1^22,K.1^2,-1*K.1^16,-1*K.1^16,K.1^18,-1*K.1^12,-1*K.1^8,K.1^10,K.1^10,K.1^2,K.1^2,-1*K.1^8,K.1^22,-1*K.1^32,-1*K.1^16,K.1^6,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^30,K.1^14,K.1^22,-1*K.1^20,-1*K.1^32,-1*K.1^12,-1*K.1^20,-1*K.1^28]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,K.1^4,K.1^32,K.1^28,K.1^16,-1*K.1^18,K.1^12,-1*K.1^14,-1*K.1^10,-1*K.1^6,K.1^24,-1*K.1^26,K.1^8,-1*K.1^2,-1*K.1^30,-1*K.1^22,K.1^20,-1*K.1^10,K.1^8,-1*K.1^22,-1*K.1^2,K.1^8,-1*K.1^6,K.1^28,K.1^20,-1*K.1^6,-1*K.1^18,K.1^32,K.1^12,-1*K.1^18,-1*K.1^30,K.1^24,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^30,K.1^12,-1*K.1^26,K.1^16,-1*K.1^26,-1*K.1^2,K.1^12,-1*K.1^22,K.1^32,-1*K.1^6,K.1^20,-1*K.1^10,-1*K.1^14,K.1^24,-1*K.1^14,K.1^4,K.1^28,K.1^4,K.1^16,-1*K.1^26,-1*K.1^2,K.1^16,K.1^24,-1*K.1^14,K.1^4,K.1^28,-1*K.1^18,K.1^8,K.1^32,-1*K.1^22,-1*K.1^2,-1*K.1^6,-1*K.1^30,K.1^12,-1*K.1^26,K.1^32,-1*K.1^22,-1*K.1^10,K.1^4,K.1^24,K.1^16,-1*K.1^18,K.1^8,K.1^28,K.1^20,-1*K.1^14,-1*K.1^8,K.1^2,-1*K.1^20,-1*K.1^12,K.1^2,K.1^26,K.1^18,K.1^6,K.1^26,-1*K.1^20,-1*K.1^12,K.1^14,K.1^22,-1*K.1^24,-1*K.1^8,-1*K.1^4,-1*K.1^28,K.1^30,K.1^14,K.1^14,-1*K.1^20,-1*K.1^32,-1*K.1^4,-1*K.1^8,K.1^22,-1*K.1^12,K.1^10,-1*K.1^4,K.1^10,K.1^6,K.1^18,K.1^6,-1*K.1^20,-1*K.1^32,K.1^26,K.1^22,-1*K.1^24,-1*K.1^28,K.1^30,K.1^26,K.1^2,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^30,K.1^2,K.1^10,K.1^18,K.1^6,-1*K.1^32,K.1^14,K.1^18,-1*K.1^28,-1*K.1^4,-1*K.1^24,-1*K.1^24,K.1^22,-1*K.1^16,-1*K.1^28,-1*K.1^32,K.1^30,-1*K.1^8,-1*K.1^16,K.1^10,K.1^20,-1*K.1^30,-1*K.1^6,K.1^28,-1*K.1^18,K.1^8,-1*K.1^10,K.1^24,K.1^4,-1*K.1^26,K.1^12,-1*K.1^22,K.1^32,-1*K.1^14,-1*K.1^6,K.1^28,-1*K.1^10,-1*K.1^18,K.1^24,K.1^4,-1*K.1^18,-1*K.1^6,-1*K.1^26,-1*K.1^30,-1*K.1^14,K.1^28,K.1^16,-1*K.1^2,K.1^32,K.1^32,-1*K.1^14,-1*K.1^26,K.1^20,K.1^8,K.1^16,K.1^12,-1*K.1^10,K.1^20,-1*K.1^2,K.1^12,K.1^24,K.1^8,-1*K.1^22,-1*K.1^30,K.1^4,K.1^16,-1*K.1^2,-1*K.1^22,K.1^9,-1*K.1^29,-1*K.1^29,K.1^19,K.1^19,-1*K.1,-1*K.1,K.1^11,K.1^11,K.1^23,K.1^23,-1*K.1^13,-1*K.1^13,K.1^7,K.1^7,-1*K.1^5,-1*K.1^5,K.1^13,K.1^25,-1*K.1^7,-1*K.1^23,-1*K.1^19,-1*K.1^7,-1*K.1^23,-1*K.1^19,-1*K.1^31,K.1,K.1^29,-1*K.1^31,K.1,K.1^13,K.1^25,K.1^27,K.1^15,K.1^15,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,-1*K.1^33,-1*K.1^33,-1*K.1^21,-1*K.1^21,K.1^31,K.1^31,K.1^3,K.1^3,K.1^27,K.1^5,K.1^21,K.1^9,K.1^29,-1*K.1^11,-1*K.1^15,-1*K.1^27,-1*K.1^11,-1*K.1^15,-1*K.1^3,K.1^33,K.1^5,-1*K.1^3,K.1^33,K.1^21,K.1^9,-1*K.1^27,-1*K.1^5,K.1^15,K.1^15,K.1^19,K.1^19,-1*K.1^9,-1*K.1^9,K.1^11,K.1^11,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,K.1^3,K.1^3,-1*K.1^5,-1*K.1^27,K.1^21,K.1^25,K.1^29,-1*K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,-1*K.1^15,-1*K.1^31,K.1^33,K.1^29,-1*K.1^31,K.1^33,K.1^21,K.1^25,K.1^27,-1*K.1^29,-1*K.1^29,-1*K.1^25,-1*K.1^25,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,K.1^23,K.1^23,K.1^31,K.1^31,K.1^7,K.1^7,K.1^27,K.1^5,K.1^13,K.1^9,-1*K.1^7,-1*K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,-1*K.1^19,-1*K.1^3,K.1,K.1^5,-1*K.1^3,K.1,K.1^13,-1*K.1^8,-1*K.1^28,-1*K.1^20,K.1^22,-1*K.1^16,-1*K.1^8,K.1^10,-1*K.1^20,K.1^18,-1*K.1^24,K.1^22,-1*K.1^8,-1*K.1^28,K.1^30,K.1^30,-1*K.1^16,-1*K.1^24,-1*K.1^20,-1*K.1^4,K.1^30,-1*K.1^28,K.1^2,-1*K.1^8,-1*K.1^12,K.1^30,K.1^14,-1*K.1^4,K.1^2,K.1^10,K.1^6,K.1^10,K.1^6,K.1^14,K.1^6,-1*K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^32,K.1^18,K.1^18,-1*K.1^16,K.1^22,K.1^26,-1*K.1^24,-1*K.1^24,-1*K.1^32,-1*K.1^32,K.1^26,-1*K.1^12,K.1^2,K.1^18,-1*K.1^28,-1*K.1^32,K.1^26,K.1^26,K.1^10,-1*K.1^4,-1*K.1^20,-1*K.1^12,K.1^14,K.1^2,K.1^22,K.1^14,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1,-1,-1,-1,K.1^4,K.1^32,K.1^28,K.1^16,-1*K.1^18,K.1^12,-1*K.1^14,-1*K.1^10,-1*K.1^6,K.1^24,-1*K.1^26,K.1^8,-1*K.1^2,-1*K.1^30,-1*K.1^22,K.1^20,-1*K.1^10,K.1^8,-1*K.1^22,-1*K.1^2,K.1^8,-1*K.1^6,K.1^28,K.1^20,-1*K.1^6,-1*K.1^18,K.1^32,K.1^12,-1*K.1^18,-1*K.1^30,K.1^24,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^30,K.1^12,-1*K.1^26,K.1^16,-1*K.1^26,-1*K.1^2,K.1^12,-1*K.1^22,K.1^32,-1*K.1^6,K.1^20,-1*K.1^10,-1*K.1^14,K.1^24,-1*K.1^14,K.1^4,K.1^28,K.1^4,K.1^16,-1*K.1^26,-1*K.1^2,K.1^16,K.1^24,-1*K.1^14,K.1^4,K.1^28,-1*K.1^18,K.1^8,K.1^32,-1*K.1^22,-1*K.1^2,-1*K.1^6,-1*K.1^30,K.1^12,-1*K.1^26,K.1^32,-1*K.1^22,-1*K.1^10,K.1^4,K.1^24,K.1^16,-1*K.1^18,K.1^8,K.1^28,K.1^20,-1*K.1^14,-1*K.1^8,K.1^2,-1*K.1^20,-1*K.1^12,K.1^2,K.1^26,K.1^18,K.1^6,K.1^26,-1*K.1^20,-1*K.1^12,K.1^14,K.1^22,-1*K.1^24,-1*K.1^8,-1*K.1^4,-1*K.1^28,K.1^30,K.1^14,K.1^14,-1*K.1^20,-1*K.1^32,-1*K.1^4,-1*K.1^8,K.1^22,-1*K.1^12,K.1^10,-1*K.1^4,K.1^10,K.1^6,K.1^18,K.1^6,-1*K.1^20,-1*K.1^32,K.1^26,K.1^22,-1*K.1^24,-1*K.1^28,K.1^30,K.1^26,K.1^2,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^30,K.1^2,K.1^10,K.1^18,K.1^6,-1*K.1^32,K.1^14,K.1^18,-1*K.1^28,-1*K.1^4,-1*K.1^24,-1*K.1^24,K.1^22,-1*K.1^16,-1*K.1^28,-1*K.1^32,K.1^30,-1*K.1^8,-1*K.1^16,K.1^10,K.1^20,-1*K.1^30,-1*K.1^6,K.1^28,-1*K.1^18,K.1^8,-1*K.1^10,K.1^24,K.1^4,-1*K.1^26,K.1^12,-1*K.1^22,K.1^32,-1*K.1^14,-1*K.1^6,K.1^28,-1*K.1^10,-1*K.1^18,K.1^24,K.1^4,-1*K.1^18,-1*K.1^6,-1*K.1^26,-1*K.1^30,-1*K.1^14,K.1^28,K.1^16,-1*K.1^2,K.1^32,K.1^32,-1*K.1^14,-1*K.1^26,K.1^20,K.1^8,K.1^16,K.1^12,-1*K.1^10,K.1^20,-1*K.1^2,K.1^12,K.1^24,K.1^8,-1*K.1^22,-1*K.1^30,K.1^4,K.1^16,-1*K.1^2,-1*K.1^22,-1*K.1^9,K.1^29,K.1^29,-1*K.1^19,-1*K.1^19,K.1,K.1,-1*K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^23,K.1^13,K.1^13,-1*K.1^7,-1*K.1^7,K.1^5,K.1^5,-1*K.1^13,-1*K.1^25,K.1^7,K.1^23,K.1^19,K.1^7,K.1^23,K.1^19,K.1^31,-1*K.1,-1*K.1^29,K.1^31,-1*K.1,-1*K.1^13,-1*K.1^25,-1*K.1^27,-1*K.1^15,-1*K.1^15,K.1^25,K.1^25,K.1^9,K.1^9,K.1^33,K.1^33,K.1^21,K.1^21,-1*K.1^31,-1*K.1^31,-1*K.1^3,-1*K.1^3,-1*K.1^27,-1*K.1^5,-1*K.1^21,-1*K.1^9,-1*K.1^29,K.1^11,K.1^15,K.1^27,K.1^11,K.1^15,K.1^3,-1*K.1^33,-1*K.1^5,K.1^3,-1*K.1^33,-1*K.1^21,-1*K.1^9,K.1^27,K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^19,-1*K.1^19,K.1^9,K.1^9,-1*K.1^11,-1*K.1^11,K.1^21,K.1^21,K.1^13,K.1^13,-1*K.1^3,-1*K.1^3,K.1^5,K.1^27,-1*K.1^21,-1*K.1^25,-1*K.1^29,K.1^23,K.1^15,K.1^27,K.1^23,K.1^15,K.1^31,-1*K.1^33,-1*K.1^29,K.1^31,-1*K.1^33,-1*K.1^21,-1*K.1^25,-1*K.1^27,K.1^29,K.1^29,K.1^25,K.1^25,K.1,K.1,K.1^33,K.1^33,-1*K.1^23,-1*K.1^23,-1*K.1^31,-1*K.1^31,-1*K.1^7,-1*K.1^7,-1*K.1^27,-1*K.1^5,-1*K.1^13,-1*K.1^9,K.1^7,K.1^11,K.1^19,K.1^7,K.1^11,K.1^19,K.1^3,-1*K.1,-1*K.1^5,K.1^3,-1*K.1,-1*K.1^13,-1*K.1^8,-1*K.1^28,-1*K.1^20,K.1^22,-1*K.1^16,-1*K.1^8,K.1^10,-1*K.1^20,K.1^18,-1*K.1^24,K.1^22,-1*K.1^8,-1*K.1^28,K.1^30,K.1^30,-1*K.1^16,-1*K.1^24,-1*K.1^20,-1*K.1^4,K.1^30,-1*K.1^28,K.1^2,-1*K.1^8,-1*K.1^12,K.1^30,K.1^14,-1*K.1^4,K.1^2,K.1^10,K.1^6,K.1^10,K.1^6,K.1^14,K.1^6,-1*K.1^16,-1*K.1^4,-1*K.1^12,-1*K.1^32,K.1^18,K.1^18,-1*K.1^16,K.1^22,K.1^26,-1*K.1^24,-1*K.1^24,-1*K.1^32,-1*K.1^32,K.1^26,-1*K.1^12,K.1^2,K.1^18,-1*K.1^28,-1*K.1^32,K.1^26,K.1^26,K.1^10,-1*K.1^4,-1*K.1^20,-1*K.1^12,K.1^14,K.1^2,K.1^22,K.1^14,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,1,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-1,-1,-1,-1,-1*K.1^30,-1*K.1^2,-1*K.1^6,-1*K.1^18,K.1^16,-1*K.1^22,K.1^20,K.1^24,K.1^28,-1*K.1^10,K.1^8,-1*K.1^26,K.1^32,K.1^4,K.1^12,-1*K.1^14,K.1^24,-1*K.1^26,K.1^12,K.1^32,-1*K.1^26,K.1^28,-1*K.1^6,-1*K.1^14,K.1^28,K.1^16,-1*K.1^2,-1*K.1^22,K.1^16,K.1^4,-1*K.1^10,K.1^24,K.1^4,-1*K.1^14,K.1^4,-1*K.1^22,K.1^8,-1*K.1^18,K.1^8,K.1^32,-1*K.1^22,K.1^12,-1*K.1^2,K.1^28,-1*K.1^14,K.1^24,K.1^20,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^6,-1*K.1^30,-1*K.1^18,K.1^8,K.1^32,-1*K.1^18,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^6,K.1^16,-1*K.1^26,-1*K.1^2,K.1^12,K.1^32,K.1^28,K.1^4,-1*K.1^22,K.1^8,-1*K.1^2,K.1^12,K.1^24,-1*K.1^30,-1*K.1^10,-1*K.1^18,K.1^16,-1*K.1^26,-1*K.1^6,-1*K.1^14,K.1^20,K.1^26,-1*K.1^32,K.1^14,K.1^22,-1*K.1^32,-1*K.1^8,-1*K.1^16,-1*K.1^28,-1*K.1^8,K.1^14,K.1^22,-1*K.1^20,-1*K.1^12,K.1^10,K.1^26,K.1^30,K.1^6,-1*K.1^4,-1*K.1^20,-1*K.1^20,K.1^14,K.1^2,K.1^30,K.1^26,-1*K.1^12,K.1^22,-1*K.1^24,K.1^30,-1*K.1^24,-1*K.1^28,-1*K.1^16,-1*K.1^28,K.1^14,K.1^2,-1*K.1^8,-1*K.1^12,K.1^10,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^32,K.1^22,K.1^18,K.1^18,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^16,-1*K.1^28,K.1^2,-1*K.1^20,-1*K.1^16,K.1^6,K.1^30,K.1^10,K.1^10,-1*K.1^12,K.1^18,K.1^6,K.1^2,-1*K.1^4,K.1^26,K.1^18,-1*K.1^24,-1*K.1^14,K.1^4,K.1^28,-1*K.1^6,K.1^16,-1*K.1^26,K.1^24,-1*K.1^10,-1*K.1^30,K.1^8,-1*K.1^22,K.1^12,-1*K.1^2,K.1^20,K.1^28,-1*K.1^6,K.1^24,K.1^16,-1*K.1^10,-1*K.1^30,K.1^16,K.1^28,K.1^8,K.1^4,K.1^20,-1*K.1^6,-1*K.1^18,K.1^32,-1*K.1^2,-1*K.1^2,K.1^20,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^18,-1*K.1^22,K.1^24,-1*K.1^14,K.1^32,-1*K.1^22,-1*K.1^10,-1*K.1^26,K.1^12,K.1^4,-1*K.1^30,-1*K.1^18,K.1^32,K.1^12,K.1^25,-1*K.1^5,-1*K.1^5,K.1^15,K.1^15,-1*K.1^33,-1*K.1^33,K.1^23,K.1^23,K.1^11,K.1^11,-1*K.1^21,-1*K.1^21,K.1^27,K.1^27,-1*K.1^29,-1*K.1^29,K.1^21,K.1^9,-1*K.1^27,-1*K.1^11,-1*K.1^15,-1*K.1^27,-1*K.1^11,-1*K.1^15,-1*K.1^3,K.1^33,K.1^5,-1*K.1^3,K.1^33,K.1^21,K.1^9,K.1^7,K.1^19,K.1^19,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,-1*K.1,-1*K.1,-1*K.1^13,-1*K.1^13,K.1^3,K.1^3,K.1^31,K.1^31,K.1^7,K.1^29,K.1^13,K.1^25,K.1^5,-1*K.1^23,-1*K.1^19,-1*K.1^7,-1*K.1^23,-1*K.1^19,-1*K.1^31,K.1,K.1^29,-1*K.1^31,K.1,K.1^13,K.1^25,-1*K.1^7,-1*K.1^29,K.1^19,K.1^19,K.1^15,K.1^15,-1*K.1^25,-1*K.1^25,K.1^23,K.1^23,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,K.1^31,K.1^31,-1*K.1^29,-1*K.1^7,K.1^13,K.1^9,K.1^5,-1*K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,-1*K.1^19,-1*K.1^3,K.1,K.1^5,-1*K.1^3,K.1,K.1^13,K.1^9,K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1^9,-1*K.1^9,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,K.1^11,K.1^11,K.1^3,K.1^3,K.1^27,K.1^27,K.1^7,K.1^29,K.1^21,K.1^25,-1*K.1^27,-1*K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,-1*K.1^15,-1*K.1^31,K.1^33,K.1^29,-1*K.1^31,K.1^33,K.1^21,K.1^26,K.1^6,K.1^14,-1*K.1^12,K.1^18,K.1^26,-1*K.1^24,K.1^14,-1*K.1^16,K.1^10,-1*K.1^12,K.1^26,K.1^6,-1*K.1^4,-1*K.1^4,K.1^18,K.1^10,K.1^14,K.1^30,-1*K.1^4,K.1^6,-1*K.1^32,K.1^26,K.1^22,-1*K.1^4,-1*K.1^20,K.1^30,-1*K.1^32,-1*K.1^24,-1*K.1^28,-1*K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^28,K.1^18,K.1^30,K.1^22,K.1^2,-1*K.1^16,-1*K.1^16,K.1^18,-1*K.1^12,-1*K.1^8,K.1^10,K.1^10,K.1^2,K.1^2,-1*K.1^8,K.1^22,-1*K.1^32,-1*K.1^16,K.1^6,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^30,K.1^14,K.1^22,-1*K.1^20,-1*K.1^32,-1*K.1^12,-1*K.1^20,-1*K.1^28]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^4,K.1^32,-1*K.1^28,K.1^16,-1*K.1^52,-1*K.1^12,K.1^48,-1*K.1^44,K.1^40,K.1^24,-1*K.1^60,K.1^8,-1*K.1^36,K.1^64,K.1^56,-1*K.1^20,K.1^44,-1*K.1^8,-1*K.1^56,K.1^36,K.1^8,K.1^40,K.1^28,K.1^20,-1*K.1^40,K.1^52,-1*K.1^32,K.1^12,-1*K.1^52,K.1^64,-1*K.1^24,K.1^44,-1*K.1^64,K.1^20,-1*K.1^64,K.1^12,K.1^60,K.1^16,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^56,K.1^32,-1*K.1^40,-1*K.1^20,-1*K.1^44,-1*K.1^48,K.1^24,K.1^48,-1*K.1^4,-1*K.1^28,K.1^4,-1*K.1^16,K.1^60,K.1^36,-1*K.1^16,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,-1*K.1^36,K.1^40,K.1^64,-1*K.1^12,-1*K.1^60,K.1^32,K.1^56,-1*K.1^44,-1*K.1^4,K.1^24,K.1^16,-1*K.1^52,K.1^8,-1*K.1^28,-1*K.1^20,K.1^48,-1*K.1^42,-1*K.1^2,K.1^54,-1*K.1^46,-1*K.1^2,K.1^26,K.1^18,-1*K.1^6,K.1^26,-1*K.1^54,-1*K.1^46,K.1^14,-1*K.1^22,K.1^58,K.1^42,-1*K.1^38,-1*K.1^62,-1*K.1^30,-1*K.1^14,K.1^14,K.1^54,-1*K.1^66,K.1^38,K.1^42,K.1^22,K.1^46,K.1^10,K.1^38,-1*K.1^10,K.1^6,-1*K.1^18,K.1^6,-1*K.1^54,-1*K.1^66,-1*K.1^26,-1*K.1^22,-1*K.1^58,K.1^62,K.1^30,-1*K.1^26,K.1^2,K.1^46,K.1^50,K.1^50,-1*K.1^30,K.1^2,K.1^10,-1*K.1^18,-1*K.1^6,K.1^66,-1*K.1^14,K.1^18,-1*K.1^62,-1*K.1^38,-1*K.1^58,K.1^58,K.1^22,-1*K.1^50,K.1^62,K.1^66,K.1^30,-1*K.1^42,-1*K.1^50,-1*K.1^10,K.1^20,-1*K.1^64,-1*K.1^40,K.1^28,K.1^52,-1*K.1^8,K.1^44,-1*K.1^24,K.1^4,K.1^60,K.1^12,K.1^56,-1*K.1^32,-1*K.1^48,-1*K.1^40,K.1^28,-1*K.1^44,K.1^52,K.1^24,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^60,K.1^64,K.1^48,-1*K.1^28,K.1^16,-1*K.1^36,K.1^32,-1*K.1^32,-1*K.1^48,K.1^60,K.1^20,-1*K.1^8,-1*K.1^16,K.1^12,K.1^44,-1*K.1^20,K.1^36,-1*K.1^12,-1*K.1^24,K.1^8,-1*K.1^56,-1*K.1^64,K.1^4,-1*K.1^16,K.1^36,-1*K.1^56,K.1^43,-1*K.1^29,K.1^29,K.1^53,-1*K.1^53,K.1,-1*K.1,K.1^45,-1*K.1^45,K.1^57,-1*K.1^57,K.1^13,-1*K.1^13,K.1^41,-1*K.1^41,K.1^5,-1*K.1^5,K.1^47,K.1^59,-1*K.1^7,K.1^23,K.1^19,K.1^7,-1*K.1^23,-1*K.1^19,K.1^31,K.1^35,K.1^63,-1*K.1^31,-1*K.1^35,-1*K.1^47,-1*K.1^59,-1*K.1^61,K.1^49,-1*K.1^49,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,-1*K.1^33,K.1^33,-1*K.1^21,K.1^21,-1*K.1^65,K.1^65,-1*K.1^37,K.1^37,K.1^61,-1*K.1^39,K.1^55,K.1^43,K.1^63,-1*K.1^11,-1*K.1^15,-1*K.1^27,K.1^11,K.1^15,-1*K.1^3,K.1^67,K.1^39,K.1^3,-1*K.1^67,-1*K.1^55,-1*K.1^43,K.1^27,K.1^5,-1*K.1^49,K.1^49,-1*K.1^53,K.1^53,-1*K.1^9,K.1^9,-1*K.1^45,K.1^45,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,K.1^37,-1*K.1^37,-1*K.1^5,-1*K.1^27,-1*K.1^55,-1*K.1^59,-1*K.1^63,-1*K.1^23,K.1^15,K.1^27,K.1^23,-1*K.1^15,-1*K.1^31,-1*K.1^67,-1*K.1^63,K.1^31,K.1^67,K.1^55,K.1^59,K.1^61,K.1^29,-1*K.1^29,K.1^25,-1*K.1^25,-1*K.1,K.1,K.1^33,-1*K.1^33,-1*K.1^57,K.1^57,K.1^65,-1*K.1^65,-1*K.1^41,K.1^41,-1*K.1^61,K.1^39,-1*K.1^47,-1*K.1^43,K.1^7,K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,K.1^19,K.1^3,-1*K.1^35,-1*K.1^39,-1*K.1^3,K.1^35,K.1^47,-1*K.1^42,-1*K.1^62,K.1^54,K.1^22,K.1^50,-1*K.1^42,K.1^10,-1*K.1^54,K.1^18,-1*K.1^58,-1*K.1^22,K.1^42,K.1^62,K.1^30,-1*K.1^30,-1*K.1^50,-1*K.1^58,-1*K.1^54,-1*K.1^38,-1*K.1^30,K.1^62,-1*K.1^2,K.1^42,-1*K.1^46,K.1^30,-1*K.1^14,K.1^38,K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^6,K.1^14,K.1^6,K.1^50,K.1^38,K.1^46,K.1^66,K.1^18,-1*K.1^18,-1*K.1^50,K.1^22,-1*K.1^26,K.1^58,K.1^58,-1*K.1^66,-1*K.1^66,K.1^26,-1*K.1^46,-1*K.1^2,-1*K.1^18,-1*K.1^62,K.1^66,-1*K.1^26,K.1^26,K.1^10,-1*K.1^38,K.1^54,K.1^46,-1*K.1^14,K.1^2,-1*K.1^22,K.1^14,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^64,-1*K.1^36,K.1^40,-1*K.1^52,K.1^16,K.1^56,-1*K.1^20,K.1^24,-1*K.1^28,-1*K.1^44,K.1^8,-1*K.1^60,K.1^32,-1*K.1^4,-1*K.1^12,K.1^48,-1*K.1^24,K.1^60,K.1^12,-1*K.1^32,-1*K.1^60,-1*K.1^28,-1*K.1^40,-1*K.1^48,K.1^28,-1*K.1^16,K.1^36,-1*K.1^56,K.1^16,-1*K.1^4,K.1^44,-1*K.1^24,K.1^4,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^8,-1*K.1^52,K.1^8,K.1^32,K.1^56,-1*K.1^12,-1*K.1^36,K.1^28,K.1^48,K.1^24,K.1^20,-1*K.1^44,-1*K.1^20,K.1^64,K.1^40,-1*K.1^64,K.1^52,-1*K.1^8,-1*K.1^32,K.1^52,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^60,K.1^36,K.1^12,K.1^32,-1*K.1^28,-1*K.1^4,K.1^56,K.1^8,-1*K.1^36,-1*K.1^12,K.1^24,K.1^64,-1*K.1^44,-1*K.1^52,K.1^16,-1*K.1^60,K.1^40,K.1^48,-1*K.1^20,K.1^26,K.1^66,-1*K.1^14,K.1^22,K.1^66,-1*K.1^42,-1*K.1^50,K.1^62,-1*K.1^42,K.1^14,K.1^22,-1*K.1^54,K.1^46,-1*K.1^10,-1*K.1^26,K.1^30,K.1^6,K.1^38,K.1^54,-1*K.1^54,-1*K.1^14,K.1^2,-1*K.1^30,-1*K.1^26,-1*K.1^46,-1*K.1^22,-1*K.1^58,-1*K.1^30,K.1^58,-1*K.1^62,K.1^50,-1*K.1^62,K.1^14,K.1^2,K.1^42,K.1^46,K.1^10,-1*K.1^6,-1*K.1^38,K.1^42,-1*K.1^66,-1*K.1^22,-1*K.1^18,-1*K.1^18,K.1^38,-1*K.1^66,-1*K.1^58,K.1^50,K.1^62,-1*K.1^2,K.1^54,-1*K.1^50,K.1^6,K.1^30,K.1^10,-1*K.1^10,-1*K.1^46,K.1^18,-1*K.1^6,-1*K.1^2,-1*K.1^38,K.1^26,K.1^18,K.1^58,-1*K.1^48,K.1^4,K.1^28,-1*K.1^40,-1*K.1^16,K.1^60,-1*K.1^24,K.1^44,-1*K.1^64,-1*K.1^8,-1*K.1^56,-1*K.1^12,K.1^36,K.1^20,K.1^28,-1*K.1^40,K.1^24,-1*K.1^16,-1*K.1^44,K.1^64,K.1^16,-1*K.1^28,K.1^8,-1*K.1^4,-1*K.1^20,K.1^40,-1*K.1^52,K.1^32,-1*K.1^36,K.1^36,K.1^20,-1*K.1^8,-1*K.1^48,K.1^60,K.1^52,-1*K.1^56,-1*K.1^24,K.1^48,-1*K.1^32,K.1^56,K.1^44,-1*K.1^60,K.1^12,K.1^4,-1*K.1^64,K.1^52,-1*K.1^32,K.1^12,-1*K.1^25,K.1^39,-1*K.1^39,-1*K.1^15,K.1^15,-1*K.1^67,K.1^67,-1*K.1^23,K.1^23,-1*K.1^11,K.1^11,-1*K.1^55,K.1^55,-1*K.1^27,K.1^27,-1*K.1^63,K.1^63,-1*K.1^21,-1*K.1^9,K.1^61,-1*K.1^45,-1*K.1^49,-1*K.1^61,K.1^45,K.1^49,-1*K.1^37,-1*K.1^33,-1*K.1^5,K.1^37,K.1^33,K.1^21,K.1^9,K.1^7,-1*K.1^19,K.1^19,K.1^43,-1*K.1^43,-1*K.1^59,K.1^59,K.1^35,-1*K.1^35,K.1^47,-1*K.1^47,K.1^3,-1*K.1^3,K.1^31,-1*K.1^31,-1*K.1^7,K.1^29,-1*K.1^13,-1*K.1^25,-1*K.1^5,K.1^57,K.1^53,K.1^41,-1*K.1^57,-1*K.1^53,K.1^65,-1*K.1,-1*K.1^29,-1*K.1^65,K.1,K.1^13,K.1^25,-1*K.1^41,-1*K.1^63,K.1^19,-1*K.1^19,K.1^15,-1*K.1^15,K.1^59,-1*K.1^59,K.1^23,-1*K.1^23,-1*K.1^47,K.1^47,K.1^55,-1*K.1^55,-1*K.1^31,K.1^31,K.1^63,K.1^41,K.1^13,K.1^9,K.1^5,K.1^45,-1*K.1^53,-1*K.1^41,-1*K.1^45,K.1^53,K.1^37,K.1,K.1^5,-1*K.1^37,-1*K.1,-1*K.1^13,-1*K.1^9,-1*K.1^7,-1*K.1^39,K.1^39,-1*K.1^43,K.1^43,K.1^67,-1*K.1^67,-1*K.1^35,K.1^35,K.1^11,-1*K.1^11,-1*K.1^3,K.1^3,K.1^27,-1*K.1^27,K.1^7,-1*K.1^29,K.1^21,K.1^25,-1*K.1^61,-1*K.1^57,K.1^49,K.1^61,K.1^57,-1*K.1^49,-1*K.1^65,K.1^33,K.1^29,K.1^65,-1*K.1^33,-1*K.1^21,K.1^26,K.1^6,-1*K.1^14,-1*K.1^46,-1*K.1^18,K.1^26,-1*K.1^58,K.1^14,-1*K.1^50,K.1^10,K.1^46,-1*K.1^26,-1*K.1^6,-1*K.1^38,K.1^38,K.1^18,K.1^10,K.1^14,K.1^30,K.1^38,-1*K.1^6,K.1^66,-1*K.1^26,K.1^22,-1*K.1^38,K.1^54,-1*K.1^30,-1*K.1^66,K.1^58,K.1^62,K.1^58,-1*K.1^62,-1*K.1^54,-1*K.1^62,-1*K.1^18,-1*K.1^30,-1*K.1^22,-1*K.1^2,-1*K.1^50,K.1^50,K.1^18,-1*K.1^46,K.1^42,-1*K.1^10,-1*K.1^10,K.1^2,K.1^2,-1*K.1^42,K.1^22,K.1^66,K.1^50,K.1^6,-1*K.1^2,K.1^42,-1*K.1^42,-1*K.1^58,K.1^30,-1*K.1^14,-1*K.1^22,K.1^54,-1*K.1^66,K.1^46,-1*K.1^54,K.1^62]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^64,-1*K.1^36,K.1^40,-1*K.1^52,K.1^16,K.1^56,-1*K.1^20,K.1^24,-1*K.1^28,-1*K.1^44,K.1^8,-1*K.1^60,K.1^32,-1*K.1^4,-1*K.1^12,K.1^48,-1*K.1^24,K.1^60,K.1^12,-1*K.1^32,-1*K.1^60,-1*K.1^28,-1*K.1^40,-1*K.1^48,K.1^28,-1*K.1^16,K.1^36,-1*K.1^56,K.1^16,-1*K.1^4,K.1^44,-1*K.1^24,K.1^4,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^8,-1*K.1^52,K.1^8,K.1^32,K.1^56,-1*K.1^12,-1*K.1^36,K.1^28,K.1^48,K.1^24,K.1^20,-1*K.1^44,-1*K.1^20,K.1^64,K.1^40,-1*K.1^64,K.1^52,-1*K.1^8,-1*K.1^32,K.1^52,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^60,K.1^36,K.1^12,K.1^32,-1*K.1^28,-1*K.1^4,K.1^56,K.1^8,-1*K.1^36,-1*K.1^12,K.1^24,K.1^64,-1*K.1^44,-1*K.1^52,K.1^16,-1*K.1^60,K.1^40,K.1^48,-1*K.1^20,-1*K.1^26,-1*K.1^66,K.1^14,-1*K.1^22,-1*K.1^66,K.1^42,K.1^50,-1*K.1^62,K.1^42,-1*K.1^14,-1*K.1^22,K.1^54,-1*K.1^46,K.1^10,K.1^26,-1*K.1^30,-1*K.1^6,-1*K.1^38,-1*K.1^54,K.1^54,K.1^14,-1*K.1^2,K.1^30,K.1^26,K.1^46,K.1^22,K.1^58,K.1^30,-1*K.1^58,K.1^62,-1*K.1^50,K.1^62,-1*K.1^14,-1*K.1^2,-1*K.1^42,-1*K.1^46,-1*K.1^10,K.1^6,K.1^38,-1*K.1^42,K.1^66,K.1^22,K.1^18,K.1^18,-1*K.1^38,K.1^66,K.1^58,-1*K.1^50,-1*K.1^62,K.1^2,-1*K.1^54,K.1^50,-1*K.1^6,-1*K.1^30,-1*K.1^10,K.1^10,K.1^46,-1*K.1^18,K.1^6,K.1^2,K.1^38,-1*K.1^26,-1*K.1^18,-1*K.1^58,-1*K.1^48,K.1^4,K.1^28,-1*K.1^40,-1*K.1^16,K.1^60,-1*K.1^24,K.1^44,-1*K.1^64,-1*K.1^8,-1*K.1^56,-1*K.1^12,K.1^36,K.1^20,K.1^28,-1*K.1^40,K.1^24,-1*K.1^16,-1*K.1^44,K.1^64,K.1^16,-1*K.1^28,K.1^8,-1*K.1^4,-1*K.1^20,K.1^40,-1*K.1^52,K.1^32,-1*K.1^36,K.1^36,K.1^20,-1*K.1^8,-1*K.1^48,K.1^60,K.1^52,-1*K.1^56,-1*K.1^24,K.1^48,-1*K.1^32,K.1^56,K.1^44,-1*K.1^60,K.1^12,K.1^4,-1*K.1^64,K.1^52,-1*K.1^32,K.1^12,K.1^59,-1*K.1^5,K.1^5,-1*K.1^49,K.1^49,K.1^33,-1*K.1^33,-1*K.1^57,K.1^57,-1*K.1^45,K.1^45,K.1^21,-1*K.1^21,-1*K.1^61,K.1^61,K.1^29,-1*K.1^29,K.1^55,K.1^43,K.1^27,-1*K.1^11,-1*K.1^15,-1*K.1^27,K.1^11,K.1^15,-1*K.1^3,K.1^67,K.1^39,K.1^3,-1*K.1^67,-1*K.1^55,-1*K.1^43,K.1^41,-1*K.1^53,K.1^53,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,-1*K.1,K.1,-1*K.1^13,K.1^13,K.1^37,-1*K.1^37,K.1^65,-1*K.1^65,-1*K.1^41,-1*K.1^63,K.1^47,K.1^59,K.1^39,K.1^23,K.1^19,K.1^7,-1*K.1^23,-1*K.1^19,K.1^31,K.1^35,K.1^63,-1*K.1^31,-1*K.1^35,-1*K.1^47,-1*K.1^59,-1*K.1^7,K.1^29,K.1^53,-1*K.1^53,K.1^49,-1*K.1^49,-1*K.1^25,K.1^25,K.1^57,-1*K.1^57,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,-1*K.1^65,K.1^65,-1*K.1^29,K.1^7,-1*K.1^47,-1*K.1^43,-1*K.1^39,K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,K.1^19,K.1^3,-1*K.1^35,-1*K.1^39,-1*K.1^3,K.1^35,K.1^47,K.1^43,-1*K.1^41,K.1^5,-1*K.1^5,K.1^9,-1*K.1^9,-1*K.1^33,K.1^33,K.1,-1*K.1,K.1^45,-1*K.1^45,-1*K.1^37,K.1^37,K.1^61,-1*K.1^61,K.1^41,K.1^63,-1*K.1^55,-1*K.1^59,-1*K.1^27,-1*K.1^23,K.1^15,K.1^27,K.1^23,-1*K.1^15,-1*K.1^31,-1*K.1^67,-1*K.1^63,K.1^31,K.1^67,K.1^55,-1*K.1^26,-1*K.1^6,K.1^14,K.1^46,K.1^18,-1*K.1^26,K.1^58,-1*K.1^14,K.1^50,-1*K.1^10,-1*K.1^46,K.1^26,K.1^6,K.1^38,-1*K.1^38,-1*K.1^18,-1*K.1^10,-1*K.1^14,-1*K.1^30,-1*K.1^38,K.1^6,-1*K.1^66,K.1^26,-1*K.1^22,K.1^38,-1*K.1^54,K.1^30,K.1^66,-1*K.1^58,-1*K.1^62,-1*K.1^58,K.1^62,K.1^54,K.1^62,K.1^18,K.1^30,K.1^22,K.1^2,K.1^50,-1*K.1^50,-1*K.1^18,K.1^46,-1*K.1^42,K.1^10,K.1^10,-1*K.1^2,-1*K.1^2,K.1^42,-1*K.1^22,-1*K.1^66,-1*K.1^50,-1*K.1^6,K.1^2,-1*K.1^42,K.1^42,K.1^58,-1*K.1^30,K.1^14,K.1^22,-1*K.1^54,K.1^66,-1*K.1^46,K.1^54,-1*K.1^62]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^4,K.1^32,-1*K.1^28,K.1^16,-1*K.1^52,-1*K.1^12,K.1^48,-1*K.1^44,K.1^40,K.1^24,-1*K.1^60,K.1^8,-1*K.1^36,K.1^64,K.1^56,-1*K.1^20,K.1^44,-1*K.1^8,-1*K.1^56,K.1^36,K.1^8,K.1^40,K.1^28,K.1^20,-1*K.1^40,K.1^52,-1*K.1^32,K.1^12,-1*K.1^52,K.1^64,-1*K.1^24,K.1^44,-1*K.1^64,K.1^20,-1*K.1^64,K.1^12,K.1^60,K.1^16,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^56,K.1^32,-1*K.1^40,-1*K.1^20,-1*K.1^44,-1*K.1^48,K.1^24,K.1^48,-1*K.1^4,-1*K.1^28,K.1^4,-1*K.1^16,K.1^60,K.1^36,-1*K.1^16,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,-1*K.1^36,K.1^40,K.1^64,-1*K.1^12,-1*K.1^60,K.1^32,K.1^56,-1*K.1^44,-1*K.1^4,K.1^24,K.1^16,-1*K.1^52,K.1^8,-1*K.1^28,-1*K.1^20,K.1^48,K.1^42,K.1^2,-1*K.1^54,K.1^46,K.1^2,-1*K.1^26,-1*K.1^18,K.1^6,-1*K.1^26,K.1^54,K.1^46,-1*K.1^14,K.1^22,-1*K.1^58,-1*K.1^42,K.1^38,K.1^62,K.1^30,K.1^14,-1*K.1^14,-1*K.1^54,K.1^66,-1*K.1^38,-1*K.1^42,-1*K.1^22,-1*K.1^46,-1*K.1^10,-1*K.1^38,K.1^10,-1*K.1^6,K.1^18,-1*K.1^6,K.1^54,K.1^66,K.1^26,K.1^22,K.1^58,-1*K.1^62,-1*K.1^30,K.1^26,-1*K.1^2,-1*K.1^46,-1*K.1^50,-1*K.1^50,K.1^30,-1*K.1^2,-1*K.1^10,K.1^18,K.1^6,-1*K.1^66,K.1^14,-1*K.1^18,K.1^62,K.1^38,K.1^58,-1*K.1^58,-1*K.1^22,K.1^50,-1*K.1^62,-1*K.1^66,-1*K.1^30,K.1^42,K.1^50,K.1^10,K.1^20,-1*K.1^64,-1*K.1^40,K.1^28,K.1^52,-1*K.1^8,K.1^44,-1*K.1^24,K.1^4,K.1^60,K.1^12,K.1^56,-1*K.1^32,-1*K.1^48,-1*K.1^40,K.1^28,-1*K.1^44,K.1^52,K.1^24,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^60,K.1^64,K.1^48,-1*K.1^28,K.1^16,-1*K.1^36,K.1^32,-1*K.1^32,-1*K.1^48,K.1^60,K.1^20,-1*K.1^8,-1*K.1^16,K.1^12,K.1^44,-1*K.1^20,K.1^36,-1*K.1^12,-1*K.1^24,K.1^8,-1*K.1^56,-1*K.1^64,K.1^4,-1*K.1^16,K.1^36,-1*K.1^56,-1*K.1^9,K.1^63,-1*K.1^63,K.1^19,-1*K.1^19,-1*K.1^35,K.1^35,K.1^11,-1*K.1^11,K.1^23,-1*K.1^23,-1*K.1^47,K.1^47,K.1^7,-1*K.1^7,-1*K.1^39,K.1^39,-1*K.1^13,-1*K.1^25,-1*K.1^41,K.1^57,K.1^53,K.1^41,-1*K.1^57,-1*K.1^53,K.1^65,-1*K.1,-1*K.1^29,-1*K.1^65,K.1,K.1^13,K.1^25,-1*K.1^27,K.1^15,-1*K.1^15,K.1^59,-1*K.1^59,-1*K.1^43,K.1^43,K.1^67,-1*K.1^67,K.1^55,-1*K.1^55,-1*K.1^31,K.1^31,-1*K.1^3,K.1^3,K.1^27,K.1^5,-1*K.1^21,-1*K.1^9,-1*K.1^29,-1*K.1^45,-1*K.1^49,-1*K.1^61,K.1^45,K.1^49,-1*K.1^37,-1*K.1^33,-1*K.1^5,K.1^37,K.1^33,K.1^21,K.1^9,K.1^61,-1*K.1^39,-1*K.1^15,K.1^15,-1*K.1^19,K.1^19,K.1^43,-1*K.1^43,-1*K.1^11,K.1^11,-1*K.1^55,K.1^55,K.1^47,-1*K.1^47,K.1^3,-1*K.1^3,K.1^39,-1*K.1^61,K.1^21,K.1^25,K.1^29,-1*K.1^57,K.1^49,K.1^61,K.1^57,-1*K.1^49,-1*K.1^65,K.1^33,K.1^29,K.1^65,-1*K.1^33,-1*K.1^21,-1*K.1^25,K.1^27,-1*K.1^63,K.1^63,-1*K.1^59,K.1^59,K.1^35,-1*K.1^35,-1*K.1^67,K.1^67,-1*K.1^23,K.1^23,K.1^31,-1*K.1^31,-1*K.1^7,K.1^7,-1*K.1^27,-1*K.1^5,K.1^13,K.1^9,K.1^41,K.1^45,-1*K.1^53,-1*K.1^41,-1*K.1^45,K.1^53,K.1^37,K.1,K.1^5,-1*K.1^37,-1*K.1,-1*K.1^13,K.1^42,K.1^62,-1*K.1^54,-1*K.1^22,-1*K.1^50,K.1^42,-1*K.1^10,K.1^54,-1*K.1^18,K.1^58,K.1^22,-1*K.1^42,-1*K.1^62,-1*K.1^30,K.1^30,K.1^50,K.1^58,K.1^54,K.1^38,K.1^30,-1*K.1^62,K.1^2,-1*K.1^42,K.1^46,-1*K.1^30,K.1^14,-1*K.1^38,-1*K.1^2,K.1^10,K.1^6,K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^6,-1*K.1^50,-1*K.1^38,-1*K.1^46,-1*K.1^66,-1*K.1^18,K.1^18,K.1^50,-1*K.1^22,K.1^26,-1*K.1^58,-1*K.1^58,K.1^66,K.1^66,-1*K.1^26,K.1^46,K.1^2,K.1^18,K.1^62,-1*K.1^66,K.1^26,-1*K.1^26,-1*K.1^10,K.1^38,-1*K.1^54,-1*K.1^46,K.1^14,-1*K.1^2,K.1^22,-1*K.1^14,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^12,-1*K.1^28,K.1^16,K.1^48,-1*K.1^20,-1*K.1^36,K.1^8,K.1^64,-1*K.1^52,-1*K.1^4,-1*K.1^44,K.1^24,K.1^40,K.1^56,K.1^32,-1*K.1^60,-1*K.1^64,-1*K.1^24,-1*K.1^32,-1*K.1^40,K.1^24,-1*K.1^52,-1*K.1^16,K.1^60,K.1^52,K.1^20,K.1^28,K.1^36,-1*K.1^20,K.1^56,K.1^4,-1*K.1^64,-1*K.1^56,K.1^60,-1*K.1^56,K.1^36,K.1^44,K.1^48,-1*K.1^44,K.1^40,-1*K.1^36,K.1^32,-1*K.1^28,K.1^52,-1*K.1^60,K.1^64,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^12,K.1^16,K.1^12,-1*K.1^48,K.1^44,-1*K.1^40,-1*K.1^48,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^40,-1*K.1^52,K.1^56,-1*K.1^36,-1*K.1^44,-1*K.1^28,K.1^32,K.1^64,-1*K.1^12,-1*K.1^4,K.1^48,-1*K.1^20,K.1^24,K.1^16,-1*K.1^60,K.1^8,-1*K.1^58,K.1^6,-1*K.1^26,K.1^2,K.1^6,K.1^10,-1*K.1^54,K.1^18,K.1^10,K.1^26,K.1^2,-1*K.1^42,K.1^66,-1*K.1^38,K.1^58,-1*K.1^46,K.1^50,-1*K.1^22,K.1^42,-1*K.1^42,-1*K.1^26,K.1^62,K.1^46,K.1^58,-1*K.1^66,-1*K.1^2,-1*K.1^30,K.1^46,K.1^30,-1*K.1^18,K.1^54,-1*K.1^18,K.1^26,K.1^62,-1*K.1^10,K.1^66,K.1^38,-1*K.1^50,K.1^22,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^30,K.1^54,K.1^18,-1*K.1^62,K.1^42,-1*K.1^54,K.1^50,-1*K.1^46,K.1^38,-1*K.1^38,-1*K.1^66,K.1^14,-1*K.1^50,-1*K.1^62,K.1^22,-1*K.1^58,K.1^14,K.1^30,K.1^60,-1*K.1^56,K.1^52,-1*K.1^16,K.1^20,-1*K.1^24,-1*K.1^64,K.1^4,K.1^12,K.1^44,K.1^36,K.1^32,K.1^28,-1*K.1^8,K.1^52,-1*K.1^16,K.1^64,K.1^20,-1*K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^44,K.1^56,K.1^8,K.1^16,K.1^48,K.1^40,-1*K.1^28,K.1^28,-1*K.1^8,K.1^44,K.1^60,-1*K.1^24,-1*K.1^48,K.1^36,-1*K.1^64,-1*K.1^60,-1*K.1^40,-1*K.1^36,K.1^4,K.1^24,-1*K.1^32,-1*K.1^56,K.1^12,-1*K.1^48,-1*K.1^40,-1*K.1^32,K.1^27,-1*K.1^53,K.1^53,-1*K.1^57,K.1^57,-1*K.1^37,K.1^37,-1*K.1^33,K.1^33,K.1,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^21,K.1^21,-1*K.1^49,K.1^49,K.1^39,-1*K.1^7,-1*K.1^55,-1*K.1^35,-1*K.1^23,K.1^55,K.1^35,K.1^23,-1*K.1^59,K.1^3,-1*K.1^19,K.1^59,-1*K.1^3,-1*K.1^39,K.1^7,-1*K.1^13,-1*K.1^45,K.1^45,-1*K.1^41,K.1^41,-1*K.1^61,K.1^61,-1*K.1^65,K.1^65,-1*K.1^29,K.1^29,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,K.1^13,-1*K.1^15,K.1^63,K.1^27,-1*K.1^19,-1*K.1^67,K.1^11,K.1^47,K.1^67,-1*K.1^11,-1*K.1^43,-1*K.1^31,K.1^15,K.1^43,K.1^31,-1*K.1^63,-1*K.1^27,-1*K.1^47,-1*K.1^49,K.1^45,-1*K.1^45,K.1^57,-1*K.1^57,K.1^61,-1*K.1^61,K.1^33,-1*K.1^33,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,-1*K.1^9,K.1^9,K.1^49,K.1^47,-1*K.1^63,K.1^7,K.1^19,K.1^35,-1*K.1^11,-1*K.1^47,-1*K.1^35,K.1^11,K.1^59,K.1^31,K.1^19,-1*K.1^59,-1*K.1^31,K.1^63,-1*K.1^7,K.1^13,K.1^53,-1*K.1^53,K.1^41,-1*K.1^41,K.1^37,-1*K.1^37,K.1^65,-1*K.1^65,-1*K.1,K.1,K.1^25,-1*K.1^25,K.1^21,-1*K.1^21,-1*K.1^13,K.1^15,-1*K.1^39,-1*K.1^27,K.1^55,K.1^67,K.1^23,-1*K.1^55,-1*K.1^67,-1*K.1^23,K.1^43,-1*K.1^3,-1*K.1^15,-1*K.1^43,K.1^3,K.1^39,-1*K.1^58,K.1^50,-1*K.1^26,-1*K.1^66,-1*K.1^14,-1*K.1^58,-1*K.1^30,K.1^26,-1*K.1^54,K.1^38,K.1^66,K.1^58,-1*K.1^50,K.1^22,-1*K.1^22,K.1^14,K.1^38,K.1^26,-1*K.1^46,-1*K.1^22,-1*K.1^50,K.1^6,K.1^58,K.1^2,K.1^22,K.1^42,K.1^46,-1*K.1^6,K.1^30,K.1^18,K.1^30,-1*K.1^18,-1*K.1^42,-1*K.1^18,-1*K.1^14,K.1^46,-1*K.1^2,-1*K.1^62,-1*K.1^54,K.1^54,K.1^14,-1*K.1^66,-1*K.1^10,-1*K.1^38,-1*K.1^38,K.1^62,K.1^62,K.1^10,K.1^2,K.1^6,K.1^54,K.1^50,-1*K.1^62,-1*K.1^10,K.1^10,-1*K.1^30,-1*K.1^46,-1*K.1^26,-1*K.1^2,K.1^42,-1*K.1^6,K.1^66,-1*K.1^42,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^56,K.1^40,-1*K.1^52,-1*K.1^20,K.1^48,K.1^32,-1*K.1^60,-1*K.1^4,K.1^16,K.1^64,K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^12,-1*K.1^36,K.1^8,K.1^4,K.1^44,K.1^36,K.1^28,-1*K.1^44,K.1^16,K.1^52,-1*K.1^8,-1*K.1^16,-1*K.1^48,-1*K.1^40,-1*K.1^32,K.1^48,-1*K.1^12,-1*K.1^64,K.1^4,K.1^12,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^24,-1*K.1^20,K.1^24,-1*K.1^28,K.1^32,-1*K.1^36,K.1^40,-1*K.1^16,K.1^8,-1*K.1^4,K.1^60,K.1^64,-1*K.1^60,K.1^56,-1*K.1^52,-1*K.1^56,K.1^20,-1*K.1^24,K.1^28,K.1^20,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^28,K.1^16,-1*K.1^12,K.1^32,K.1^24,K.1^40,-1*K.1^36,-1*K.1^4,K.1^56,K.1^64,-1*K.1^20,K.1^48,-1*K.1^44,-1*K.1^52,K.1^8,-1*K.1^60,K.1^10,-1*K.1^62,K.1^42,-1*K.1^66,-1*K.1^62,-1*K.1^58,K.1^14,-1*K.1^50,-1*K.1^58,-1*K.1^42,-1*K.1^66,K.1^26,-1*K.1^2,K.1^30,-1*K.1^10,K.1^22,-1*K.1^18,K.1^46,-1*K.1^26,K.1^26,K.1^42,-1*K.1^6,-1*K.1^22,-1*K.1^10,K.1^2,K.1^66,K.1^38,-1*K.1^22,-1*K.1^38,K.1^50,-1*K.1^14,K.1^50,-1*K.1^42,-1*K.1^6,K.1^58,-1*K.1^2,-1*K.1^30,K.1^18,-1*K.1^46,K.1^58,K.1^62,K.1^66,K.1^54,K.1^54,K.1^46,K.1^62,K.1^38,-1*K.1^14,-1*K.1^50,K.1^6,-1*K.1^26,K.1^14,-1*K.1^18,K.1^22,-1*K.1^30,K.1^30,K.1^2,-1*K.1^54,K.1^18,K.1^6,-1*K.1^46,K.1^10,-1*K.1^54,-1*K.1^38,-1*K.1^8,K.1^12,-1*K.1^16,K.1^52,-1*K.1^48,K.1^44,K.1^4,-1*K.1^64,-1*K.1^56,-1*K.1^24,-1*K.1^32,-1*K.1^36,-1*K.1^40,K.1^60,-1*K.1^16,K.1^52,-1*K.1^4,-1*K.1^48,K.1^64,K.1^56,K.1^48,K.1^16,K.1^24,-1*K.1^12,-1*K.1^60,-1*K.1^52,-1*K.1^20,-1*K.1^28,K.1^40,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^8,K.1^44,K.1^20,-1*K.1^32,K.1^4,K.1^8,K.1^28,K.1^32,-1*K.1^64,-1*K.1^44,K.1^36,K.1^12,-1*K.1^56,K.1^20,K.1^28,K.1^36,-1*K.1^41,K.1^15,-1*K.1^15,K.1^11,-1*K.1^11,K.1^31,-1*K.1^31,K.1^35,-1*K.1^35,-1*K.1^67,K.1^67,-1*K.1^63,K.1^63,K.1^47,-1*K.1^47,K.1^19,-1*K.1^19,-1*K.1^29,K.1^61,K.1^13,K.1^33,K.1^45,-1*K.1^13,-1*K.1^33,-1*K.1^45,K.1^9,-1*K.1^65,K.1^49,-1*K.1^9,K.1^65,K.1^29,-1*K.1^61,K.1^55,K.1^23,-1*K.1^23,K.1^27,-1*K.1^27,K.1^7,-1*K.1^7,K.1^3,-1*K.1^3,K.1^39,-1*K.1^39,K.1^43,-1*K.1^43,-1*K.1^59,K.1^59,-1*K.1^55,K.1^53,-1*K.1^5,-1*K.1^41,K.1^49,K.1,-1*K.1^57,-1*K.1^21,-1*K.1,K.1^57,K.1^25,K.1^37,-1*K.1^53,-1*K.1^25,-1*K.1^37,K.1^5,K.1^41,K.1^21,K.1^19,-1*K.1^23,K.1^23,-1*K.1^11,K.1^11,-1*K.1^7,K.1^7,-1*K.1^35,K.1^35,-1*K.1^39,K.1^39,K.1^63,-1*K.1^63,K.1^59,-1*K.1^59,-1*K.1^19,-1*K.1^21,K.1^5,-1*K.1^61,-1*K.1^49,-1*K.1^33,K.1^57,K.1^21,K.1^33,-1*K.1^57,-1*K.1^9,-1*K.1^37,-1*K.1^49,K.1^9,K.1^37,-1*K.1^5,K.1^61,-1*K.1^55,-1*K.1^15,K.1^15,-1*K.1^27,K.1^27,-1*K.1^31,K.1^31,-1*K.1^3,K.1^3,K.1^67,-1*K.1^67,-1*K.1^43,K.1^43,-1*K.1^47,K.1^47,K.1^55,-1*K.1^53,K.1^29,K.1^41,-1*K.1^13,-1*K.1,-1*K.1^45,K.1^13,K.1,K.1^45,-1*K.1^25,K.1^65,K.1^53,K.1^25,-1*K.1^65,-1*K.1^29,K.1^10,-1*K.1^18,K.1^42,K.1^2,K.1^54,K.1^10,K.1^38,-1*K.1^42,K.1^14,-1*K.1^30,-1*K.1^2,-1*K.1^10,K.1^18,-1*K.1^46,K.1^46,-1*K.1^54,-1*K.1^30,-1*K.1^42,K.1^22,K.1^46,K.1^18,-1*K.1^62,-1*K.1^10,-1*K.1^66,-1*K.1^46,-1*K.1^26,-1*K.1^22,K.1^62,-1*K.1^38,-1*K.1^50,-1*K.1^38,K.1^50,K.1^26,K.1^50,K.1^54,-1*K.1^22,K.1^66,K.1^6,K.1^14,-1*K.1^14,-1*K.1^54,K.1^2,K.1^58,K.1^30,K.1^30,-1*K.1^6,-1*K.1^6,-1*K.1^58,-1*K.1^66,-1*K.1^62,-1*K.1^14,-1*K.1^18,K.1^6,K.1^58,-1*K.1^58,K.1^38,K.1^22,K.1^42,K.1^66,-1*K.1^26,K.1^62,-1*K.1^2,K.1^26,-1*K.1^50]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^56,K.1^40,-1*K.1^52,-1*K.1^20,K.1^48,K.1^32,-1*K.1^60,-1*K.1^4,K.1^16,K.1^64,K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^12,-1*K.1^36,K.1^8,K.1^4,K.1^44,K.1^36,K.1^28,-1*K.1^44,K.1^16,K.1^52,-1*K.1^8,-1*K.1^16,-1*K.1^48,-1*K.1^40,-1*K.1^32,K.1^48,-1*K.1^12,-1*K.1^64,K.1^4,K.1^12,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^24,-1*K.1^20,K.1^24,-1*K.1^28,K.1^32,-1*K.1^36,K.1^40,-1*K.1^16,K.1^8,-1*K.1^4,K.1^60,K.1^64,-1*K.1^60,K.1^56,-1*K.1^52,-1*K.1^56,K.1^20,-1*K.1^24,K.1^28,K.1^20,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^28,K.1^16,-1*K.1^12,K.1^32,K.1^24,K.1^40,-1*K.1^36,-1*K.1^4,K.1^56,K.1^64,-1*K.1^20,K.1^48,-1*K.1^44,-1*K.1^52,K.1^8,-1*K.1^60,-1*K.1^10,K.1^62,-1*K.1^42,K.1^66,K.1^62,K.1^58,-1*K.1^14,K.1^50,K.1^58,K.1^42,K.1^66,-1*K.1^26,K.1^2,-1*K.1^30,K.1^10,-1*K.1^22,K.1^18,-1*K.1^46,K.1^26,-1*K.1^26,-1*K.1^42,K.1^6,K.1^22,K.1^10,-1*K.1^2,-1*K.1^66,-1*K.1^38,K.1^22,K.1^38,-1*K.1^50,K.1^14,-1*K.1^50,K.1^42,K.1^6,-1*K.1^58,K.1^2,K.1^30,-1*K.1^18,K.1^46,-1*K.1^58,-1*K.1^62,-1*K.1^66,-1*K.1^54,-1*K.1^54,-1*K.1^46,-1*K.1^62,-1*K.1^38,K.1^14,K.1^50,-1*K.1^6,K.1^26,-1*K.1^14,K.1^18,-1*K.1^22,K.1^30,-1*K.1^30,-1*K.1^2,K.1^54,-1*K.1^18,-1*K.1^6,K.1^46,-1*K.1^10,K.1^54,K.1^38,-1*K.1^8,K.1^12,-1*K.1^16,K.1^52,-1*K.1^48,K.1^44,K.1^4,-1*K.1^64,-1*K.1^56,-1*K.1^24,-1*K.1^32,-1*K.1^36,-1*K.1^40,K.1^60,-1*K.1^16,K.1^52,-1*K.1^4,-1*K.1^48,K.1^64,K.1^56,K.1^48,K.1^16,K.1^24,-1*K.1^12,-1*K.1^60,-1*K.1^52,-1*K.1^20,-1*K.1^28,K.1^40,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^8,K.1^44,K.1^20,-1*K.1^32,K.1^4,K.1^8,K.1^28,K.1^32,-1*K.1^64,-1*K.1^44,K.1^36,K.1^12,-1*K.1^56,K.1^20,K.1^28,K.1^36,-1*K.1^7,K.1^49,-1*K.1^49,K.1^45,-1*K.1^45,K.1^65,-1*K.1^65,-1*K.1,K.1,K.1^33,-1*K.1^33,K.1^29,-1*K.1^29,-1*K.1^13,K.1^13,K.1^53,-1*K.1^53,K.1^63,K.1^27,-1*K.1^47,-1*K.1^67,K.1^11,K.1^47,K.1^67,-1*K.1^11,-1*K.1^43,-1*K.1^31,K.1^15,K.1^43,K.1^31,-1*K.1^63,-1*K.1^27,-1*K.1^21,K.1^57,-1*K.1^57,K.1^61,-1*K.1^61,K.1^41,-1*K.1^41,K.1^37,-1*K.1^37,-1*K.1^5,K.1^5,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,K.1^21,K.1^19,K.1^39,-1*K.1^7,K.1^15,-1*K.1^35,-1*K.1^23,K.1^55,K.1^35,K.1^23,-1*K.1^59,K.1^3,-1*K.1^19,K.1^59,-1*K.1^3,-1*K.1^39,K.1^7,-1*K.1^55,K.1^53,-1*K.1^57,K.1^57,-1*K.1^45,K.1^45,-1*K.1^41,K.1^41,K.1,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,-1*K.1^25,K.1^25,-1*K.1^53,K.1^55,-1*K.1^39,-1*K.1^27,-1*K.1^15,K.1^67,K.1^23,-1*K.1^55,-1*K.1^67,-1*K.1^23,K.1^43,-1*K.1^3,-1*K.1^15,-1*K.1^43,K.1^3,K.1^39,K.1^27,K.1^21,-1*K.1^49,K.1^49,-1*K.1^61,K.1^61,-1*K.1^65,K.1^65,-1*K.1^37,K.1^37,-1*K.1^33,K.1^33,K.1^9,-1*K.1^9,K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^19,-1*K.1^63,K.1^7,K.1^47,K.1^35,-1*K.1^11,-1*K.1^47,-1*K.1^35,K.1^11,K.1^59,K.1^31,K.1^19,-1*K.1^59,-1*K.1^31,K.1^63,-1*K.1^10,K.1^18,-1*K.1^42,-1*K.1^2,-1*K.1^54,-1*K.1^10,-1*K.1^38,K.1^42,-1*K.1^14,K.1^30,K.1^2,K.1^10,-1*K.1^18,K.1^46,-1*K.1^46,K.1^54,K.1^30,K.1^42,-1*K.1^22,-1*K.1^46,-1*K.1^18,K.1^62,K.1^10,K.1^66,K.1^46,K.1^26,K.1^22,-1*K.1^62,K.1^38,K.1^50,K.1^38,-1*K.1^50,-1*K.1^26,-1*K.1^50,-1*K.1^54,K.1^22,-1*K.1^66,-1*K.1^6,-1*K.1^14,K.1^14,K.1^54,-1*K.1^2,-1*K.1^58,-1*K.1^30,-1*K.1^30,K.1^6,K.1^6,K.1^58,K.1^66,K.1^62,K.1^14,K.1^18,-1*K.1^6,-1*K.1^58,K.1^58,-1*K.1^38,-1*K.1^22,-1*K.1^42,-1*K.1^66,K.1^26,-1*K.1^62,K.1^2,-1*K.1^26,K.1^50]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^12,-1*K.1^28,K.1^16,K.1^48,-1*K.1^20,-1*K.1^36,K.1^8,K.1^64,-1*K.1^52,-1*K.1^4,-1*K.1^44,K.1^24,K.1^40,K.1^56,K.1^32,-1*K.1^60,-1*K.1^64,-1*K.1^24,-1*K.1^32,-1*K.1^40,K.1^24,-1*K.1^52,-1*K.1^16,K.1^60,K.1^52,K.1^20,K.1^28,K.1^36,-1*K.1^20,K.1^56,K.1^4,-1*K.1^64,-1*K.1^56,K.1^60,-1*K.1^56,K.1^36,K.1^44,K.1^48,-1*K.1^44,K.1^40,-1*K.1^36,K.1^32,-1*K.1^28,K.1^52,-1*K.1^60,K.1^64,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^12,K.1^16,K.1^12,-1*K.1^48,K.1^44,-1*K.1^40,-1*K.1^48,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^40,-1*K.1^52,K.1^56,-1*K.1^36,-1*K.1^44,-1*K.1^28,K.1^32,K.1^64,-1*K.1^12,-1*K.1^4,K.1^48,-1*K.1^20,K.1^24,K.1^16,-1*K.1^60,K.1^8,K.1^58,-1*K.1^6,K.1^26,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^54,-1*K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^2,K.1^42,-1*K.1^66,K.1^38,-1*K.1^58,K.1^46,-1*K.1^50,K.1^22,-1*K.1^42,K.1^42,K.1^26,-1*K.1^62,-1*K.1^46,-1*K.1^58,K.1^66,K.1^2,K.1^30,-1*K.1^46,-1*K.1^30,K.1^18,-1*K.1^54,K.1^18,-1*K.1^26,-1*K.1^62,K.1^10,-1*K.1^66,-1*K.1^38,K.1^50,-1*K.1^22,K.1^10,K.1^6,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,K.1^30,-1*K.1^54,-1*K.1^18,K.1^62,-1*K.1^42,K.1^54,-1*K.1^50,K.1^46,-1*K.1^38,K.1^38,K.1^66,-1*K.1^14,K.1^50,K.1^62,-1*K.1^22,K.1^58,-1*K.1^14,-1*K.1^30,K.1^60,-1*K.1^56,K.1^52,-1*K.1^16,K.1^20,-1*K.1^24,-1*K.1^64,K.1^4,K.1^12,K.1^44,K.1^36,K.1^32,K.1^28,-1*K.1^8,K.1^52,-1*K.1^16,K.1^64,K.1^20,-1*K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^44,K.1^56,K.1^8,K.1^16,K.1^48,K.1^40,-1*K.1^28,K.1^28,-1*K.1^8,K.1^44,K.1^60,-1*K.1^24,-1*K.1^48,K.1^36,-1*K.1^64,-1*K.1^60,-1*K.1^40,-1*K.1^36,K.1^4,K.1^24,-1*K.1^32,-1*K.1^56,K.1^12,-1*K.1^48,-1*K.1^40,-1*K.1^32,K.1^61,-1*K.1^19,K.1^19,-1*K.1^23,K.1^23,-1*K.1^3,K.1^3,K.1^67,-1*K.1^67,-1*K.1^35,K.1^35,-1*K.1^39,K.1^39,K.1^55,-1*K.1^55,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^41,K.1^21,K.1,-1*K.1^57,-1*K.1^21,-1*K.1,K.1^57,K.1^25,K.1^37,-1*K.1^53,-1*K.1^25,-1*K.1^37,K.1^5,K.1^41,K.1^47,-1*K.1^11,K.1^11,-1*K.1^7,K.1^7,-1*K.1^27,K.1^27,-1*K.1^31,K.1^31,K.1^63,-1*K.1^63,K.1^59,-1*K.1^59,-1*K.1^43,K.1^43,-1*K.1^47,-1*K.1^49,-1*K.1^29,K.1^61,-1*K.1^53,K.1^33,K.1^45,-1*K.1^13,-1*K.1^33,-1*K.1^45,K.1^9,-1*K.1^65,K.1^49,-1*K.1^9,K.1^65,K.1^29,-1*K.1^61,K.1^13,-1*K.1^15,K.1^11,-1*K.1^11,K.1^23,-1*K.1^23,K.1^27,-1*K.1^27,-1*K.1^67,K.1^67,-1*K.1^63,K.1^63,K.1^39,-1*K.1^39,K.1^43,-1*K.1^43,K.1^15,-1*K.1^13,K.1^29,K.1^41,K.1^53,-1*K.1,-1*K.1^45,K.1^13,K.1,K.1^45,-1*K.1^25,K.1^65,K.1^53,K.1^25,-1*K.1^65,-1*K.1^29,-1*K.1^41,-1*K.1^47,K.1^19,-1*K.1^19,K.1^7,-1*K.1^7,K.1^3,-1*K.1^3,K.1^31,-1*K.1^31,K.1^35,-1*K.1^35,-1*K.1^59,K.1^59,-1*K.1^55,K.1^55,K.1^47,K.1^49,K.1^5,-1*K.1^61,-1*K.1^21,-1*K.1^33,K.1^57,K.1^21,K.1^33,-1*K.1^57,-1*K.1^9,-1*K.1^37,-1*K.1^49,K.1^9,K.1^37,-1*K.1^5,K.1^58,-1*K.1^50,K.1^26,K.1^66,K.1^14,K.1^58,K.1^30,-1*K.1^26,K.1^54,-1*K.1^38,-1*K.1^66,-1*K.1^58,K.1^50,-1*K.1^22,K.1^22,-1*K.1^14,-1*K.1^38,-1*K.1^26,K.1^46,K.1^22,K.1^50,-1*K.1^6,-1*K.1^58,-1*K.1^2,-1*K.1^22,-1*K.1^42,-1*K.1^46,K.1^6,-1*K.1^30,-1*K.1^18,-1*K.1^30,K.1^18,K.1^42,K.1^18,K.1^14,-1*K.1^46,K.1^2,K.1^62,K.1^54,-1*K.1^54,-1*K.1^14,K.1^66,K.1^10,K.1^38,K.1^38,-1*K.1^62,-1*K.1^62,-1*K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^54,-1*K.1^50,K.1^62,K.1^10,-1*K.1^10,K.1^30,K.1^46,K.1^26,K.1^2,-1*K.1^42,K.1^6,-1*K.1^66,K.1^42,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^20,K.1^24,-1*K.1^4,-1*K.1^12,K.1^56,-1*K.1^60,-1*K.1^36,K.1^16,K.1^64,-1*K.1^52,-1*K.1^28,K.1^40,-1*K.1^44,K.1^48,K.1^8,K.1^32,-1*K.1^16,-1*K.1^40,-1*K.1^8,K.1^44,K.1^40,K.1^64,K.1^4,-1*K.1^32,-1*K.1^64,-1*K.1^56,-1*K.1^24,K.1^60,K.1^56,K.1^48,K.1^52,-1*K.1^16,-1*K.1^48,-1*K.1^32,-1*K.1^48,K.1^60,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^44,-1*K.1^60,K.1^8,K.1^24,-1*K.1^64,K.1^32,K.1^16,K.1^36,-1*K.1^52,-1*K.1^36,-1*K.1^20,-1*K.1^4,K.1^20,K.1^12,K.1^28,K.1^44,K.1^12,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,-1*K.1^44,K.1^64,K.1^48,-1*K.1^60,-1*K.1^28,K.1^24,K.1^8,K.1^16,-1*K.1^20,-1*K.1^52,-1*K.1^12,K.1^56,K.1^40,-1*K.1^4,K.1^32,-1*K.1^36,K.1^6,-1*K.1^10,-1*K.1^66,K.1^26,-1*K.1^10,-1*K.1^62,-1*K.1^22,-1*K.1^30,-1*K.1^62,K.1^66,K.1^26,-1*K.1^2,K.1^42,K.1^18,-1*K.1^6,-1*K.1^54,-1*K.1^38,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^66,-1*K.1^58,K.1^54,-1*K.1^6,-1*K.1^42,-1*K.1^26,K.1^50,K.1^54,-1*K.1^50,K.1^30,K.1^22,K.1^30,K.1^66,-1*K.1^58,K.1^62,K.1^42,-1*K.1^18,K.1^38,K.1^14,K.1^62,K.1^10,-1*K.1^26,-1*K.1^46,-1*K.1^46,-1*K.1^14,K.1^10,K.1^50,K.1^22,-1*K.1^30,K.1^58,K.1^2,-1*K.1^22,-1*K.1^38,-1*K.1^54,-1*K.1^18,K.1^18,-1*K.1^42,K.1^46,K.1^38,K.1^58,K.1^14,K.1^6,K.1^46,-1*K.1^50,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^16,K.1^52,K.1^20,K.1^28,K.1^60,K.1^8,-1*K.1^24,K.1^36,-1*K.1^64,K.1^4,K.1^16,-1*K.1^56,-1*K.1^52,-1*K.1^20,K.1^56,K.1^64,-1*K.1^28,K.1^48,-1*K.1^36,-1*K.1^4,-1*K.1^12,-1*K.1^44,K.1^24,-1*K.1^24,K.1^36,K.1^28,-1*K.1^32,-1*K.1^40,K.1^12,K.1^60,-1*K.1^16,K.1^32,K.1^44,-1*K.1^60,K.1^52,K.1^40,-1*K.1^8,-1*K.1^48,K.1^20,K.1^12,K.1^44,-1*K.1^8,K.1^11,K.1^9,-1*K.1^9,K.1^61,-1*K.1^61,-1*K.1^5,K.1^5,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,-1*K.1^65,K.1^65,K.1,-1*K.1,-1*K.1^25,K.1^25,K.1^31,-1*K.1^23,K.1^35,K.1^47,K.1^27,-1*K.1^35,-1*K.1^47,-1*K.1^27,-1*K.1^19,-1*K.1^39,-1*K.1^43,K.1^19,K.1^39,-1*K.1^31,K.1^23,K.1^33,K.1^41,-1*K.1^41,-1*K.1^57,K.1^57,-1*K.1^45,K.1^45,K.1^29,-1*K.1^29,-1*K.1^37,K.1^37,K.1^53,-1*K.1^53,K.1^49,-1*K.1^49,-1*K.1^33,K.1^59,-1*K.1^3,K.1^11,-1*K.1^43,K.1^55,-1*K.1^7,-1*K.1^67,-1*K.1^55,K.1^7,K.1^15,-1*K.1^63,-1*K.1^59,-1*K.1^15,K.1^63,K.1^3,-1*K.1^11,K.1^67,-1*K.1^25,-1*K.1^41,K.1^41,-1*K.1^61,K.1^61,K.1^45,-1*K.1^45,-1*K.1^21,K.1^21,K.1^37,-1*K.1^37,K.1^65,-1*K.1^65,-1*K.1^49,K.1^49,K.1^25,-1*K.1^67,K.1^3,K.1^23,K.1^43,-1*K.1^47,K.1^7,K.1^67,K.1^47,-1*K.1^7,K.1^19,K.1^63,K.1^43,-1*K.1^19,-1*K.1^63,-1*K.1^3,-1*K.1^23,-1*K.1^33,-1*K.1^9,K.1^9,K.1^57,-1*K.1^57,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,K.1^13,-1*K.1^13,-1*K.1^53,K.1^53,-1*K.1,K.1,K.1^33,-1*K.1^59,-1*K.1^31,-1*K.1^11,-1*K.1^35,-1*K.1^55,-1*K.1^27,K.1^35,K.1^55,K.1^27,-1*K.1^15,K.1^39,K.1^59,K.1^15,-1*K.1^39,K.1^31,K.1^6,-1*K.1^38,-1*K.1^66,-1*K.1^42,-1*K.1^46,K.1^6,K.1^50,K.1^66,-1*K.1^22,-1*K.1^18,K.1^42,-1*K.1^6,K.1^38,K.1^14,-1*K.1^14,K.1^46,-1*K.1^18,K.1^66,-1*K.1^54,-1*K.1^14,K.1^38,-1*K.1^10,-1*K.1^6,K.1^26,K.1^14,K.1^2,K.1^54,K.1^10,-1*K.1^50,-1*K.1^30,-1*K.1^50,K.1^30,-1*K.1^2,K.1^30,-1*K.1^46,K.1^54,-1*K.1^26,K.1^58,-1*K.1^22,K.1^22,K.1^46,-1*K.1^42,K.1^62,K.1^18,K.1^18,-1*K.1^58,-1*K.1^58,-1*K.1^62,K.1^26,-1*K.1^10,K.1^22,-1*K.1^38,K.1^58,K.1^62,-1*K.1^62,K.1^50,-1*K.1^54,-1*K.1^66,-1*K.1^26,K.1^2,K.1^10,K.1^42,-1*K.1^2,-1*K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^48,-1*K.1^44,K.1^64,K.1^56,-1*K.1^12,K.1^8,K.1^32,-1*K.1^52,-1*K.1^4,K.1^16,K.1^40,-1*K.1^28,K.1^24,-1*K.1^20,-1*K.1^60,-1*K.1^36,K.1^52,K.1^28,K.1^60,-1*K.1^24,-1*K.1^28,-1*K.1^4,-1*K.1^64,K.1^36,K.1^4,K.1^12,K.1^44,-1*K.1^8,-1*K.1^12,-1*K.1^20,-1*K.1^16,K.1^52,K.1^20,K.1^36,K.1^20,-1*K.1^8,-1*K.1^40,K.1^56,K.1^40,K.1^24,K.1^8,-1*K.1^60,-1*K.1^44,K.1^4,-1*K.1^36,-1*K.1^52,-1*K.1^32,K.1^16,K.1^32,K.1^48,K.1^64,-1*K.1^48,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^56,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^12,K.1^28,K.1^44,K.1^60,K.1^24,-1*K.1^4,-1*K.1^20,K.1^8,K.1^40,-1*K.1^44,-1*K.1^60,-1*K.1^52,K.1^48,K.1^16,K.1^56,-1*K.1^12,-1*K.1^28,K.1^64,-1*K.1^36,K.1^32,-1*K.1^62,K.1^58,K.1^2,-1*K.1^42,K.1^58,K.1^6,K.1^46,K.1^38,K.1^6,-1*K.1^2,-1*K.1^42,K.1^66,-1*K.1^26,-1*K.1^50,K.1^62,K.1^14,K.1^30,K.1^54,-1*K.1^66,K.1^66,K.1^2,K.1^10,-1*K.1^14,K.1^62,K.1^26,K.1^42,-1*K.1^18,-1*K.1^14,K.1^18,-1*K.1^38,-1*K.1^46,-1*K.1^38,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^26,K.1^50,-1*K.1^30,-1*K.1^54,-1*K.1^6,-1*K.1^58,K.1^42,K.1^22,K.1^22,K.1^54,-1*K.1^58,-1*K.1^18,-1*K.1^46,K.1^38,-1*K.1^10,-1*K.1^66,K.1^46,K.1^30,K.1^14,K.1^50,-1*K.1^50,K.1^26,-1*K.1^22,-1*K.1^30,-1*K.1^10,-1*K.1^54,-1*K.1^62,-1*K.1^22,K.1^18,K.1^36,K.1^20,K.1^4,-1*K.1^64,K.1^12,K.1^28,K.1^52,-1*K.1^16,-1*K.1^48,-1*K.1^40,-1*K.1^8,-1*K.1^60,K.1^44,-1*K.1^32,K.1^4,-1*K.1^64,-1*K.1^52,K.1^12,K.1^16,K.1^48,-1*K.1^12,-1*K.1^4,K.1^40,-1*K.1^20,K.1^32,K.1^64,K.1^56,K.1^24,-1*K.1^44,K.1^44,-1*K.1^32,-1*K.1^40,K.1^36,K.1^28,-1*K.1^56,-1*K.1^8,K.1^52,-1*K.1^36,-1*K.1^24,K.1^8,-1*K.1^16,-1*K.1^28,K.1^60,K.1^20,-1*K.1^48,-1*K.1^56,-1*K.1^24,K.1^60,-1*K.1^57,-1*K.1^59,K.1^59,-1*K.1^7,K.1^7,K.1^63,-1*K.1^63,-1*K.1^47,K.1^47,K.1^55,-1*K.1^55,K.1^3,-1*K.1^3,-1*K.1^67,K.1^67,K.1^43,-1*K.1^43,-1*K.1^37,K.1^45,-1*K.1^33,-1*K.1^21,-1*K.1^41,K.1^33,K.1^21,K.1^41,K.1^49,K.1^29,K.1^25,-1*K.1^49,-1*K.1^29,K.1^37,-1*K.1^45,-1*K.1^35,-1*K.1^27,K.1^27,K.1^11,-1*K.1^11,K.1^23,-1*K.1^23,-1*K.1^39,K.1^39,K.1^31,-1*K.1^31,-1*K.1^15,K.1^15,-1*K.1^19,K.1^19,K.1^35,-1*K.1^9,K.1^65,-1*K.1^57,K.1^25,-1*K.1^13,K.1^61,K.1,K.1^13,-1*K.1^61,-1*K.1^53,K.1^5,K.1^9,K.1^53,-1*K.1^5,-1*K.1^65,K.1^57,-1*K.1,K.1^43,K.1^27,-1*K.1^27,K.1^7,-1*K.1^7,-1*K.1^23,K.1^23,K.1^47,-1*K.1^47,-1*K.1^31,K.1^31,-1*K.1^3,K.1^3,K.1^19,-1*K.1^19,-1*K.1^43,K.1,-1*K.1^65,-1*K.1^45,-1*K.1^25,K.1^21,-1*K.1^61,-1*K.1,-1*K.1^21,K.1^61,-1*K.1^49,-1*K.1^5,-1*K.1^25,K.1^49,K.1^5,K.1^65,K.1^45,K.1^35,K.1^59,-1*K.1^59,-1*K.1^11,K.1^11,-1*K.1^63,K.1^63,K.1^39,-1*K.1^39,-1*K.1^55,K.1^55,K.1^15,-1*K.1^15,K.1^67,-1*K.1^67,-1*K.1^35,K.1^9,K.1^37,K.1^57,K.1^33,K.1^13,K.1^41,-1*K.1^33,-1*K.1^13,-1*K.1^41,K.1^53,-1*K.1^29,-1*K.1^9,-1*K.1^53,K.1^29,-1*K.1^37,-1*K.1^62,K.1^30,K.1^2,K.1^26,K.1^22,-1*K.1^62,-1*K.1^18,-1*K.1^2,K.1^46,K.1^50,-1*K.1^26,K.1^62,-1*K.1^30,-1*K.1^54,K.1^54,-1*K.1^22,K.1^50,-1*K.1^2,K.1^14,K.1^54,-1*K.1^30,K.1^58,K.1^62,-1*K.1^42,-1*K.1^54,-1*K.1^66,-1*K.1^14,-1*K.1^58,K.1^18,K.1^38,K.1^18,-1*K.1^38,K.1^66,-1*K.1^38,K.1^22,-1*K.1^14,K.1^42,-1*K.1^10,K.1^46,-1*K.1^46,-1*K.1^22,K.1^26,-1*K.1^6,-1*K.1^50,-1*K.1^50,K.1^10,K.1^10,K.1^6,-1*K.1^42,K.1^58,-1*K.1^46,K.1^30,-1*K.1^10,-1*K.1^6,K.1^6,-1*K.1^18,K.1^14,K.1^2,K.1^42,-1*K.1^66,-1*K.1^58,-1*K.1^26,K.1^66,K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^48,-1*K.1^44,K.1^64,K.1^56,-1*K.1^12,K.1^8,K.1^32,-1*K.1^52,-1*K.1^4,K.1^16,K.1^40,-1*K.1^28,K.1^24,-1*K.1^20,-1*K.1^60,-1*K.1^36,K.1^52,K.1^28,K.1^60,-1*K.1^24,-1*K.1^28,-1*K.1^4,-1*K.1^64,K.1^36,K.1^4,K.1^12,K.1^44,-1*K.1^8,-1*K.1^12,-1*K.1^20,-1*K.1^16,K.1^52,K.1^20,K.1^36,K.1^20,-1*K.1^8,-1*K.1^40,K.1^56,K.1^40,K.1^24,K.1^8,-1*K.1^60,-1*K.1^44,K.1^4,-1*K.1^36,-1*K.1^52,-1*K.1^32,K.1^16,K.1^32,K.1^48,K.1^64,-1*K.1^48,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^56,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^12,K.1^28,K.1^44,K.1^60,K.1^24,-1*K.1^4,-1*K.1^20,K.1^8,K.1^40,-1*K.1^44,-1*K.1^60,-1*K.1^52,K.1^48,K.1^16,K.1^56,-1*K.1^12,-1*K.1^28,K.1^64,-1*K.1^36,K.1^32,K.1^62,-1*K.1^58,-1*K.1^2,K.1^42,-1*K.1^58,-1*K.1^6,-1*K.1^46,-1*K.1^38,-1*K.1^6,K.1^2,K.1^42,-1*K.1^66,K.1^26,K.1^50,-1*K.1^62,-1*K.1^14,-1*K.1^30,-1*K.1^54,K.1^66,-1*K.1^66,-1*K.1^2,-1*K.1^10,K.1^14,-1*K.1^62,-1*K.1^26,-1*K.1^42,K.1^18,K.1^14,-1*K.1^18,K.1^38,K.1^46,K.1^38,K.1^2,-1*K.1^10,K.1^6,K.1^26,-1*K.1^50,K.1^30,K.1^54,K.1^6,K.1^58,-1*K.1^42,-1*K.1^22,-1*K.1^22,-1*K.1^54,K.1^58,K.1^18,K.1^46,-1*K.1^38,K.1^10,K.1^66,-1*K.1^46,-1*K.1^30,-1*K.1^14,-1*K.1^50,K.1^50,-1*K.1^26,K.1^22,K.1^30,K.1^10,K.1^54,K.1^62,K.1^22,-1*K.1^18,K.1^36,K.1^20,K.1^4,-1*K.1^64,K.1^12,K.1^28,K.1^52,-1*K.1^16,-1*K.1^48,-1*K.1^40,-1*K.1^8,-1*K.1^60,K.1^44,-1*K.1^32,K.1^4,-1*K.1^64,-1*K.1^52,K.1^12,K.1^16,K.1^48,-1*K.1^12,-1*K.1^4,K.1^40,-1*K.1^20,K.1^32,K.1^64,K.1^56,K.1^24,-1*K.1^44,K.1^44,-1*K.1^32,-1*K.1^40,K.1^36,K.1^28,-1*K.1^56,-1*K.1^8,K.1^52,-1*K.1^36,-1*K.1^24,K.1^8,-1*K.1^16,-1*K.1^28,K.1^60,K.1^20,-1*K.1^48,-1*K.1^56,-1*K.1^24,K.1^60,-1*K.1^23,K.1^25,-1*K.1^25,-1*K.1^41,K.1^41,-1*K.1^29,K.1^29,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,K.1^37,-1*K.1^37,K.1^33,-1*K.1^33,-1*K.1^9,K.1^9,-1*K.1^3,K.1^11,K.1^67,K.1^55,-1*K.1^7,-1*K.1^67,-1*K.1^55,K.1^7,K.1^15,-1*K.1^63,-1*K.1^59,-1*K.1^15,K.1^63,K.1^3,-1*K.1^11,K.1,-1*K.1^61,K.1^61,K.1^45,-1*K.1^45,K.1^57,-1*K.1^57,K.1^5,-1*K.1^5,K.1^65,-1*K.1^65,-1*K.1^49,K.1^49,-1*K.1^53,K.1^53,-1*K.1,K.1^43,K.1^31,-1*K.1^23,-1*K.1^59,K.1^47,K.1^27,-1*K.1^35,-1*K.1^47,-1*K.1^27,-1*K.1^19,-1*K.1^39,-1*K.1^43,K.1^19,K.1^39,-1*K.1^31,K.1^23,K.1^35,-1*K.1^9,K.1^61,-1*K.1^61,K.1^41,-1*K.1^41,-1*K.1^57,K.1^57,-1*K.1^13,K.1^13,-1*K.1^65,K.1^65,-1*K.1^37,K.1^37,K.1^53,-1*K.1^53,K.1^9,-1*K.1^35,-1*K.1^31,-1*K.1^11,K.1^59,-1*K.1^55,-1*K.1^27,K.1^35,K.1^55,K.1^27,-1*K.1^15,K.1^39,K.1^59,K.1^15,-1*K.1^39,K.1^31,K.1^11,-1*K.1,-1*K.1^25,K.1^25,-1*K.1^45,K.1^45,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,K.1^21,-1*K.1^21,K.1^49,-1*K.1^49,-1*K.1^33,K.1^33,K.1,-1*K.1^43,K.1^3,K.1^23,-1*K.1^67,-1*K.1^47,K.1^7,K.1^67,K.1^47,-1*K.1^7,K.1^19,K.1^63,K.1^43,-1*K.1^19,-1*K.1^63,-1*K.1^3,K.1^62,-1*K.1^30,-1*K.1^2,-1*K.1^26,-1*K.1^22,K.1^62,K.1^18,K.1^2,-1*K.1^46,-1*K.1^50,K.1^26,-1*K.1^62,K.1^30,K.1^54,-1*K.1^54,K.1^22,-1*K.1^50,K.1^2,-1*K.1^14,-1*K.1^54,K.1^30,-1*K.1^58,-1*K.1^62,K.1^42,K.1^54,K.1^66,K.1^14,K.1^58,-1*K.1^18,-1*K.1^38,-1*K.1^18,K.1^38,-1*K.1^66,K.1^38,-1*K.1^22,K.1^14,-1*K.1^42,K.1^10,-1*K.1^46,K.1^46,K.1^22,-1*K.1^26,K.1^6,K.1^50,K.1^50,-1*K.1^10,-1*K.1^10,-1*K.1^6,K.1^42,-1*K.1^58,K.1^46,-1*K.1^30,K.1^10,K.1^6,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^42,K.1^66,K.1^58,K.1^26,-1*K.1^66,-1*K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^20,K.1^24,-1*K.1^4,-1*K.1^12,K.1^56,-1*K.1^60,-1*K.1^36,K.1^16,K.1^64,-1*K.1^52,-1*K.1^28,K.1^40,-1*K.1^44,K.1^48,K.1^8,K.1^32,-1*K.1^16,-1*K.1^40,-1*K.1^8,K.1^44,K.1^40,K.1^64,K.1^4,-1*K.1^32,-1*K.1^64,-1*K.1^56,-1*K.1^24,K.1^60,K.1^56,K.1^48,K.1^52,-1*K.1^16,-1*K.1^48,-1*K.1^32,-1*K.1^48,K.1^60,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^44,-1*K.1^60,K.1^8,K.1^24,-1*K.1^64,K.1^32,K.1^16,K.1^36,-1*K.1^52,-1*K.1^36,-1*K.1^20,-1*K.1^4,K.1^20,K.1^12,K.1^28,K.1^44,K.1^12,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,-1*K.1^44,K.1^64,K.1^48,-1*K.1^60,-1*K.1^28,K.1^24,K.1^8,K.1^16,-1*K.1^20,-1*K.1^52,-1*K.1^12,K.1^56,K.1^40,-1*K.1^4,K.1^32,-1*K.1^36,-1*K.1^6,K.1^10,K.1^66,-1*K.1^26,K.1^10,K.1^62,K.1^22,K.1^30,K.1^62,-1*K.1^66,-1*K.1^26,K.1^2,-1*K.1^42,-1*K.1^18,K.1^6,K.1^54,K.1^38,K.1^14,-1*K.1^2,K.1^2,K.1^66,K.1^58,-1*K.1^54,K.1^6,K.1^42,K.1^26,-1*K.1^50,-1*K.1^54,K.1^50,-1*K.1^30,-1*K.1^22,-1*K.1^30,-1*K.1^66,K.1^58,-1*K.1^62,-1*K.1^42,K.1^18,-1*K.1^38,-1*K.1^14,-1*K.1^62,-1*K.1^10,K.1^26,K.1^46,K.1^46,K.1^14,-1*K.1^10,-1*K.1^50,-1*K.1^22,K.1^30,-1*K.1^58,-1*K.1^2,K.1^22,K.1^38,K.1^54,K.1^18,-1*K.1^18,K.1^42,-1*K.1^46,-1*K.1^38,-1*K.1^58,-1*K.1^14,-1*K.1^6,-1*K.1^46,K.1^50,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^16,K.1^52,K.1^20,K.1^28,K.1^60,K.1^8,-1*K.1^24,K.1^36,-1*K.1^64,K.1^4,K.1^16,-1*K.1^56,-1*K.1^52,-1*K.1^20,K.1^56,K.1^64,-1*K.1^28,K.1^48,-1*K.1^36,-1*K.1^4,-1*K.1^12,-1*K.1^44,K.1^24,-1*K.1^24,K.1^36,K.1^28,-1*K.1^32,-1*K.1^40,K.1^12,K.1^60,-1*K.1^16,K.1^32,K.1^44,-1*K.1^60,K.1^52,K.1^40,-1*K.1^8,-1*K.1^48,K.1^20,K.1^12,K.1^44,-1*K.1^8,K.1^45,-1*K.1^43,K.1^43,K.1^27,-1*K.1^27,K.1^39,-1*K.1^39,-1*K.1^55,K.1^55,K.1^47,-1*K.1^47,-1*K.1^31,K.1^31,-1*K.1^35,K.1^35,K.1^59,-1*K.1^59,K.1^65,-1*K.1^57,-1*K.1,-1*K.1^13,K.1^61,K.1,K.1^13,-1*K.1^61,-1*K.1^53,K.1^5,K.1^9,K.1^53,-1*K.1^5,-1*K.1^65,K.1^57,-1*K.1^67,K.1^7,-1*K.1^7,-1*K.1^23,K.1^23,-1*K.1^11,K.1^11,-1*K.1^63,K.1^63,-1*K.1^3,K.1^3,K.1^19,-1*K.1^19,K.1^15,-1*K.1^15,K.1^67,-1*K.1^25,-1*K.1^37,K.1^45,K.1^9,-1*K.1^21,-1*K.1^41,K.1^33,K.1^21,K.1^41,K.1^49,K.1^29,K.1^25,-1*K.1^49,-1*K.1^29,K.1^37,-1*K.1^45,-1*K.1^33,K.1^59,-1*K.1^7,K.1^7,-1*K.1^27,K.1^27,K.1^11,-1*K.1^11,K.1^55,-1*K.1^55,K.1^3,-1*K.1^3,K.1^31,-1*K.1^31,-1*K.1^15,K.1^15,-1*K.1^59,K.1^33,K.1^37,K.1^57,-1*K.1^9,K.1^13,K.1^41,-1*K.1^33,-1*K.1^13,-1*K.1^41,K.1^53,-1*K.1^29,-1*K.1^9,-1*K.1^53,K.1^29,-1*K.1^37,-1*K.1^57,K.1^67,K.1^43,-1*K.1^43,K.1^23,-1*K.1^23,-1*K.1^39,K.1^39,K.1^63,-1*K.1^63,-1*K.1^47,K.1^47,-1*K.1^19,K.1^19,K.1^35,-1*K.1^35,-1*K.1^67,K.1^25,-1*K.1^65,-1*K.1^45,K.1,K.1^21,-1*K.1^61,-1*K.1,-1*K.1^21,K.1^61,-1*K.1^49,-1*K.1^5,-1*K.1^25,K.1^49,K.1^5,K.1^65,-1*K.1^6,K.1^38,K.1^66,K.1^42,K.1^46,-1*K.1^6,-1*K.1^50,-1*K.1^66,K.1^22,K.1^18,-1*K.1^42,K.1^6,-1*K.1^38,-1*K.1^14,K.1^14,-1*K.1^46,K.1^18,-1*K.1^66,K.1^54,K.1^14,-1*K.1^38,K.1^10,K.1^6,-1*K.1^26,-1*K.1^14,-1*K.1^2,-1*K.1^54,-1*K.1^10,K.1^50,K.1^30,K.1^50,-1*K.1^30,K.1^2,-1*K.1^30,K.1^46,-1*K.1^54,K.1^26,-1*K.1^58,K.1^22,-1*K.1^22,-1*K.1^46,K.1^42,-1*K.1^62,-1*K.1^18,-1*K.1^18,K.1^58,K.1^58,K.1^62,-1*K.1^26,K.1^10,-1*K.1^22,K.1^38,-1*K.1^58,-1*K.1^62,K.1^62,-1*K.1^50,K.1^54,K.1^66,K.1^26,-1*K.1^2,-1*K.1^10,-1*K.1^42,K.1^2,K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^28,-1*K.1^20,-1*K.1^60,-1*K.1^44,K.1^24,K.1^16,K.1^64,-1*K.1^36,K.1^8,K.1^32,-1*K.1^12,K.1^56,K.1^48,K.1^40,-1*K.1^52,-1*K.1^4,K.1^36,-1*K.1^56,K.1^52,-1*K.1^48,K.1^56,K.1^8,K.1^60,K.1^4,-1*K.1^8,-1*K.1^24,K.1^20,-1*K.1^16,K.1^24,K.1^40,-1*K.1^32,K.1^36,-1*K.1^40,K.1^4,-1*K.1^40,-1*K.1^16,K.1^12,-1*K.1^44,-1*K.1^12,K.1^48,K.1^16,-1*K.1^52,-1*K.1^20,-1*K.1^8,-1*K.1^4,-1*K.1^36,-1*K.1^64,K.1^32,K.1^64,-1*K.1^28,-1*K.1^60,K.1^28,K.1^44,K.1^12,-1*K.1^48,K.1^44,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,K.1^48,K.1^8,K.1^40,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^44,K.1^24,K.1^56,-1*K.1^60,-1*K.1^4,K.1^64,K.1^22,K.1^14,K.1^38,K.1^50,K.1^14,-1*K.1^46,K.1^58,K.1^42,-1*K.1^46,-1*K.1^38,K.1^50,K.1^30,K.1^18,K.1^66,-1*K.1^22,-1*K.1^62,K.1^26,-1*K.1^6,-1*K.1^30,K.1^30,K.1^38,K.1^54,K.1^62,-1*K.1^22,-1*K.1^18,-1*K.1^50,K.1^2,K.1^62,-1*K.1^2,-1*K.1^42,-1*K.1^58,-1*K.1^42,-1*K.1^38,K.1^54,K.1^46,K.1^18,-1*K.1^66,-1*K.1^26,K.1^6,K.1^46,-1*K.1^14,-1*K.1^50,K.1^10,K.1^10,-1*K.1^6,-1*K.1^14,K.1^2,-1*K.1^58,K.1^42,-1*K.1^54,-1*K.1^30,K.1^58,K.1^26,-1*K.1^62,-1*K.1^66,K.1^66,-1*K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^54,K.1^6,K.1^22,-1*K.1^10,-1*K.1^2,K.1^4,-1*K.1^40,-1*K.1^8,K.1^60,-1*K.1^24,-1*K.1^56,K.1^36,-1*K.1^32,K.1^28,K.1^12,-1*K.1^16,-1*K.1^52,K.1^20,-1*K.1^64,-1*K.1^8,K.1^60,-1*K.1^36,-1*K.1^24,K.1^32,-1*K.1^28,K.1^24,K.1^8,-1*K.1^12,K.1^40,K.1^64,-1*K.1^60,-1*K.1^44,K.1^48,-1*K.1^20,K.1^20,-1*K.1^64,K.1^12,K.1^4,-1*K.1^56,K.1^44,-1*K.1^16,K.1^36,-1*K.1^4,-1*K.1^48,K.1^16,-1*K.1^32,K.1^56,K.1^52,-1*K.1^40,K.1^28,K.1^44,-1*K.1^48,K.1^52,-1*K.1^63,K.1^33,-1*K.1^33,-1*K.1^65,K.1^65,K.1^41,-1*K.1^41,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,-1*K.1^57,K.1^57,K.1^49,-1*K.1^49,-1*K.1,K.1,K.1^23,-1*K.1^39,-1*K.1^15,-1*K.1^59,-1*K.1^31,K.1^15,K.1^59,K.1^31,K.1^47,-1*K.1^7,-1*K.1^67,-1*K.1^47,K.1^7,-1*K.1^23,K.1^39,-1*K.1^53,-1*K.1^37,K.1^37,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,K.1^61,-1*K.1^61,-1*K.1^45,K.1^45,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,K.1^53,K.1^35,-1*K.1^11,-1*K.1^63,-1*K.1^67,-1*K.1^43,K.1^3,-1*K.1^19,K.1^43,-1*K.1^3,K.1^55,K.1^27,-1*K.1^35,-1*K.1^55,-1*K.1^27,K.1^11,K.1^63,K.1^19,-1*K.1,K.1^37,-1*K.1^37,K.1^65,-1*K.1^65,K.1^29,-1*K.1^29,K.1^9,-1*K.1^9,K.1^45,-1*K.1^45,K.1^57,-1*K.1^57,K.1^21,-1*K.1^21,K.1,-1*K.1^19,K.1^11,K.1^39,K.1^67,K.1^59,-1*K.1^3,K.1^19,-1*K.1^59,K.1^3,-1*K.1^47,-1*K.1^27,K.1^67,K.1^47,K.1^27,-1*K.1^11,-1*K.1^39,K.1^53,-1*K.1^33,K.1^33,-1*K.1^5,K.1^5,-1*K.1^41,K.1^41,-1*K.1^61,K.1^61,-1*K.1^25,K.1^25,-1*K.1^13,K.1^13,-1*K.1^49,K.1^49,-1*K.1^53,-1*K.1^35,-1*K.1^23,K.1^63,K.1^15,K.1^43,K.1^31,-1*K.1^15,-1*K.1^43,-1*K.1^31,-1*K.1^55,K.1^7,K.1^35,K.1^55,-1*K.1^7,K.1^23,K.1^22,K.1^26,K.1^38,-1*K.1^18,K.1^10,K.1^22,K.1^2,-1*K.1^38,K.1^58,-1*K.1^66,K.1^18,-1*K.1^22,-1*K.1^26,K.1^6,-1*K.1^6,-1*K.1^10,-1*K.1^66,-1*K.1^38,-1*K.1^62,-1*K.1^6,-1*K.1^26,K.1^14,-1*K.1^22,K.1^50,K.1^6,-1*K.1^30,K.1^62,-1*K.1^14,-1*K.1^2,K.1^42,-1*K.1^2,-1*K.1^42,K.1^30,-1*K.1^42,K.1^10,K.1^62,-1*K.1^50,-1*K.1^54,K.1^58,-1*K.1^58,-1*K.1^10,-1*K.1^18,K.1^46,K.1^66,K.1^66,K.1^54,K.1^54,-1*K.1^46,K.1^50,K.1^14,-1*K.1^58,K.1^26,-1*K.1^54,K.1^46,-1*K.1^46,K.1^2,-1*K.1^62,K.1^38,-1*K.1^50,-1*K.1^30,-1*K.1^14,K.1^18,K.1^30,K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^40,K.1^48,K.1^8,K.1^24,-1*K.1^44,-1*K.1^52,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^16,K.1^64,-1*K.1^32,K.1^12,-1*K.1^16,K.1^20,-1*K.1^12,-1*K.1^60,-1*K.1^8,-1*K.1^64,K.1^60,K.1^44,-1*K.1^48,K.1^52,-1*K.1^44,-1*K.1^28,K.1^36,-1*K.1^32,K.1^28,-1*K.1^64,K.1^28,K.1^52,-1*K.1^56,K.1^24,K.1^56,-1*K.1^20,-1*K.1^52,K.1^16,K.1^48,K.1^60,K.1^64,K.1^32,K.1^4,-1*K.1^36,-1*K.1^4,K.1^40,K.1^8,-1*K.1^40,-1*K.1^24,-1*K.1^56,K.1^20,-1*K.1^24,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,-1*K.1^20,-1*K.1^60,-1*K.1^28,-1*K.1^52,K.1^56,K.1^48,K.1^16,K.1^32,K.1^40,-1*K.1^36,K.1^24,-1*K.1^44,-1*K.1^12,K.1^8,K.1^64,-1*K.1^4,-1*K.1^46,-1*K.1^54,-1*K.1^30,-1*K.1^18,-1*K.1^54,K.1^22,-1*K.1^10,-1*K.1^26,K.1^22,K.1^30,-1*K.1^18,-1*K.1^38,-1*K.1^50,-1*K.1^2,K.1^46,K.1^6,-1*K.1^42,K.1^62,K.1^38,-1*K.1^38,-1*K.1^30,-1*K.1^14,-1*K.1^6,K.1^46,K.1^50,K.1^18,-1*K.1^66,-1*K.1^6,K.1^66,K.1^26,K.1^10,K.1^26,K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^50,K.1^2,K.1^42,-1*K.1^62,-1*K.1^22,K.1^54,K.1^18,-1*K.1^58,-1*K.1^58,K.1^62,K.1^54,-1*K.1^66,K.1^10,-1*K.1^26,K.1^14,K.1^38,-1*K.1^10,-1*K.1^42,K.1^6,K.1^2,-1*K.1^2,K.1^50,K.1^58,K.1^42,K.1^14,-1*K.1^62,-1*K.1^46,K.1^58,K.1^66,-1*K.1^64,K.1^28,K.1^60,-1*K.1^8,K.1^44,K.1^12,-1*K.1^32,K.1^36,-1*K.1^40,-1*K.1^56,K.1^52,K.1^16,-1*K.1^48,K.1^4,K.1^60,-1*K.1^8,K.1^32,K.1^44,-1*K.1^36,K.1^40,-1*K.1^44,-1*K.1^60,K.1^56,-1*K.1^28,-1*K.1^4,K.1^8,K.1^24,-1*K.1^20,K.1^48,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^64,K.1^12,-1*K.1^24,K.1^52,-1*K.1^32,K.1^64,K.1^20,-1*K.1^52,K.1^36,-1*K.1^12,-1*K.1^16,K.1^28,-1*K.1^40,-1*K.1^24,K.1^20,-1*K.1^16,K.1^5,-1*K.1^35,K.1^35,K.1^3,-1*K.1^3,-1*K.1^27,K.1^27,K.1^59,-1*K.1^59,-1*K.1^43,K.1^43,K.1^11,-1*K.1^11,-1*K.1^19,K.1^19,K.1^67,-1*K.1^67,-1*K.1^45,K.1^29,K.1^53,K.1^9,K.1^37,-1*K.1^53,-1*K.1^9,-1*K.1^37,-1*K.1^21,K.1^61,K.1,K.1^21,-1*K.1^61,K.1^45,-1*K.1^29,K.1^15,K.1^31,-1*K.1^31,-1*K.1^63,K.1^63,K.1^39,-1*K.1^39,-1*K.1^7,K.1^7,K.1^23,-1*K.1^23,-1*K.1^55,K.1^55,K.1^47,-1*K.1^47,-1*K.1^15,-1*K.1^33,K.1^57,K.1^5,K.1,K.1^25,-1*K.1^65,K.1^49,-1*K.1^25,K.1^65,-1*K.1^13,-1*K.1^41,K.1^33,K.1^13,K.1^41,-1*K.1^57,-1*K.1^5,-1*K.1^49,K.1^67,-1*K.1^31,K.1^31,-1*K.1^3,K.1^3,-1*K.1^39,K.1^39,-1*K.1^59,K.1^59,-1*K.1^23,K.1^23,-1*K.1^11,K.1^11,-1*K.1^47,K.1^47,-1*K.1^67,K.1^49,-1*K.1^57,-1*K.1^29,-1*K.1,-1*K.1^9,K.1^65,-1*K.1^49,K.1^9,-1*K.1^65,K.1^21,K.1^41,-1*K.1,-1*K.1^21,-1*K.1^41,K.1^57,K.1^29,-1*K.1^15,K.1^35,-1*K.1^35,K.1^63,-1*K.1^63,K.1^27,-1*K.1^27,K.1^7,-1*K.1^7,K.1^43,-1*K.1^43,K.1^55,-1*K.1^55,K.1^19,-1*K.1^19,K.1^15,K.1^33,K.1^45,-1*K.1^5,-1*K.1^53,-1*K.1^25,-1*K.1^37,K.1^53,K.1^25,K.1^37,K.1^13,-1*K.1^61,-1*K.1^33,-1*K.1^13,K.1^61,-1*K.1^45,-1*K.1^46,-1*K.1^42,-1*K.1^30,K.1^50,-1*K.1^58,-1*K.1^46,-1*K.1^66,K.1^30,-1*K.1^10,K.1^2,-1*K.1^50,K.1^46,K.1^42,-1*K.1^62,K.1^62,K.1^58,K.1^2,K.1^30,K.1^6,K.1^62,K.1^42,-1*K.1^54,K.1^46,-1*K.1^18,-1*K.1^62,K.1^38,-1*K.1^6,K.1^54,K.1^66,-1*K.1^26,K.1^66,K.1^26,-1*K.1^38,K.1^26,-1*K.1^58,-1*K.1^6,K.1^18,K.1^14,-1*K.1^10,K.1^10,K.1^58,K.1^50,-1*K.1^22,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^14,K.1^22,-1*K.1^18,-1*K.1^54,K.1^10,-1*K.1^42,K.1^14,-1*K.1^22,K.1^22,-1*K.1^66,K.1^6,-1*K.1^30,K.1^18,K.1^38,K.1^54,-1*K.1^50,-1*K.1^38,-1*K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^40,K.1^48,K.1^8,K.1^24,-1*K.1^44,-1*K.1^52,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^16,K.1^64,-1*K.1^32,K.1^12,-1*K.1^16,K.1^20,-1*K.1^12,-1*K.1^60,-1*K.1^8,-1*K.1^64,K.1^60,K.1^44,-1*K.1^48,K.1^52,-1*K.1^44,-1*K.1^28,K.1^36,-1*K.1^32,K.1^28,-1*K.1^64,K.1^28,K.1^52,-1*K.1^56,K.1^24,K.1^56,-1*K.1^20,-1*K.1^52,K.1^16,K.1^48,K.1^60,K.1^64,K.1^32,K.1^4,-1*K.1^36,-1*K.1^4,K.1^40,K.1^8,-1*K.1^40,-1*K.1^24,-1*K.1^56,K.1^20,-1*K.1^24,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,-1*K.1^20,-1*K.1^60,-1*K.1^28,-1*K.1^52,K.1^56,K.1^48,K.1^16,K.1^32,K.1^40,-1*K.1^36,K.1^24,-1*K.1^44,-1*K.1^12,K.1^8,K.1^64,-1*K.1^4,K.1^46,K.1^54,K.1^30,K.1^18,K.1^54,-1*K.1^22,K.1^10,K.1^26,-1*K.1^22,-1*K.1^30,K.1^18,K.1^38,K.1^50,K.1^2,-1*K.1^46,-1*K.1^6,K.1^42,-1*K.1^62,-1*K.1^38,K.1^38,K.1^30,K.1^14,K.1^6,-1*K.1^46,-1*K.1^50,-1*K.1^18,K.1^66,K.1^6,-1*K.1^66,-1*K.1^26,-1*K.1^10,-1*K.1^26,-1*K.1^30,K.1^14,K.1^22,K.1^50,-1*K.1^2,-1*K.1^42,K.1^62,K.1^22,-1*K.1^54,-1*K.1^18,K.1^58,K.1^58,-1*K.1^62,-1*K.1^54,K.1^66,-1*K.1^10,K.1^26,-1*K.1^14,-1*K.1^38,K.1^10,K.1^42,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^50,-1*K.1^58,-1*K.1^42,-1*K.1^14,K.1^62,K.1^46,-1*K.1^58,-1*K.1^66,-1*K.1^64,K.1^28,K.1^60,-1*K.1^8,K.1^44,K.1^12,-1*K.1^32,K.1^36,-1*K.1^40,-1*K.1^56,K.1^52,K.1^16,-1*K.1^48,K.1^4,K.1^60,-1*K.1^8,K.1^32,K.1^44,-1*K.1^36,K.1^40,-1*K.1^44,-1*K.1^60,K.1^56,-1*K.1^28,-1*K.1^4,K.1^8,K.1^24,-1*K.1^20,K.1^48,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^64,K.1^12,-1*K.1^24,K.1^52,-1*K.1^32,K.1^64,K.1^20,-1*K.1^52,K.1^36,-1*K.1^12,-1*K.1^16,K.1^28,-1*K.1^40,-1*K.1^24,K.1^20,-1*K.1^16,-1*K.1^39,K.1,-1*K.1,K.1^37,-1*K.1^37,-1*K.1^61,K.1^61,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,K.1^45,-1*K.1^45,-1*K.1^53,K.1^53,-1*K.1^33,K.1^33,-1*K.1^11,-1*K.1^63,K.1^19,-1*K.1^43,K.1^3,-1*K.1^19,K.1^43,-1*K.1^3,K.1^55,K.1^27,-1*K.1^35,-1*K.1^55,-1*K.1^27,K.1^11,K.1^63,K.1^49,K.1^65,-1*K.1^65,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,-1*K.1^41,K.1^41,K.1^57,-1*K.1^57,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,-1*K.1^49,K.1^67,K.1^23,-1*K.1^39,-1*K.1^35,-1*K.1^59,-1*K.1^31,K.1^15,K.1^59,K.1^31,K.1^47,-1*K.1^7,-1*K.1^67,-1*K.1^47,K.1^7,-1*K.1^23,K.1^39,-1*K.1^15,-1*K.1^33,-1*K.1^65,K.1^65,-1*K.1^37,K.1^37,K.1^5,-1*K.1^5,K.1^25,-1*K.1^25,-1*K.1^57,K.1^57,-1*K.1^45,K.1^45,K.1^13,-1*K.1^13,K.1^33,K.1^15,-1*K.1^23,K.1^63,K.1^35,K.1^43,K.1^31,-1*K.1^15,-1*K.1^43,-1*K.1^31,-1*K.1^55,K.1^7,K.1^35,K.1^55,-1*K.1^7,K.1^23,-1*K.1^63,-1*K.1^49,-1*K.1,K.1,-1*K.1^29,K.1^29,K.1^61,-1*K.1^61,K.1^41,-1*K.1^41,-1*K.1^9,K.1^9,-1*K.1^21,K.1^21,K.1^53,-1*K.1^53,K.1^49,-1*K.1^67,K.1^11,K.1^39,-1*K.1^19,K.1^59,-1*K.1^3,K.1^19,-1*K.1^59,K.1^3,-1*K.1^47,-1*K.1^27,K.1^67,K.1^47,K.1^27,-1*K.1^11,K.1^46,K.1^42,K.1^30,-1*K.1^50,K.1^58,K.1^46,K.1^66,-1*K.1^30,K.1^10,-1*K.1^2,K.1^50,-1*K.1^46,-1*K.1^42,K.1^62,-1*K.1^62,-1*K.1^58,-1*K.1^2,-1*K.1^30,-1*K.1^6,-1*K.1^62,-1*K.1^42,K.1^54,-1*K.1^46,K.1^18,K.1^62,-1*K.1^38,K.1^6,-1*K.1^54,-1*K.1^66,K.1^26,-1*K.1^66,-1*K.1^26,K.1^38,-1*K.1^26,K.1^58,K.1^6,-1*K.1^18,-1*K.1^14,K.1^10,-1*K.1^10,-1*K.1^58,-1*K.1^50,K.1^22,K.1^2,K.1^2,K.1^14,K.1^14,-1*K.1^22,K.1^18,K.1^54,-1*K.1^10,K.1^42,-1*K.1^14,K.1^22,-1*K.1^22,K.1^66,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^38,-1*K.1^54,K.1^50,K.1^38,K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^28,-1*K.1^20,-1*K.1^60,-1*K.1^44,K.1^24,K.1^16,K.1^64,-1*K.1^36,K.1^8,K.1^32,-1*K.1^12,K.1^56,K.1^48,K.1^40,-1*K.1^52,-1*K.1^4,K.1^36,-1*K.1^56,K.1^52,-1*K.1^48,K.1^56,K.1^8,K.1^60,K.1^4,-1*K.1^8,-1*K.1^24,K.1^20,-1*K.1^16,K.1^24,K.1^40,-1*K.1^32,K.1^36,-1*K.1^40,K.1^4,-1*K.1^40,-1*K.1^16,K.1^12,-1*K.1^44,-1*K.1^12,K.1^48,K.1^16,-1*K.1^52,-1*K.1^20,-1*K.1^8,-1*K.1^4,-1*K.1^36,-1*K.1^64,K.1^32,K.1^64,-1*K.1^28,-1*K.1^60,K.1^28,K.1^44,K.1^12,-1*K.1^48,K.1^44,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,K.1^48,K.1^8,K.1^40,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^44,K.1^24,K.1^56,-1*K.1^60,-1*K.1^4,K.1^64,-1*K.1^22,-1*K.1^14,-1*K.1^38,-1*K.1^50,-1*K.1^14,K.1^46,-1*K.1^58,-1*K.1^42,K.1^46,K.1^38,-1*K.1^50,-1*K.1^30,-1*K.1^18,-1*K.1^66,K.1^22,K.1^62,-1*K.1^26,K.1^6,K.1^30,-1*K.1^30,-1*K.1^38,-1*K.1^54,-1*K.1^62,K.1^22,K.1^18,K.1^50,-1*K.1^2,-1*K.1^62,K.1^2,K.1^42,K.1^58,K.1^42,K.1^38,-1*K.1^54,-1*K.1^46,-1*K.1^18,K.1^66,K.1^26,-1*K.1^6,-1*K.1^46,K.1^14,K.1^50,-1*K.1^10,-1*K.1^10,K.1^6,K.1^14,-1*K.1^2,K.1^58,-1*K.1^42,K.1^54,K.1^30,-1*K.1^58,-1*K.1^26,K.1^62,K.1^66,-1*K.1^66,K.1^18,K.1^10,K.1^26,K.1^54,-1*K.1^6,-1*K.1^22,K.1^10,K.1^2,K.1^4,-1*K.1^40,-1*K.1^8,K.1^60,-1*K.1^24,-1*K.1^56,K.1^36,-1*K.1^32,K.1^28,K.1^12,-1*K.1^16,-1*K.1^52,K.1^20,-1*K.1^64,-1*K.1^8,K.1^60,-1*K.1^36,-1*K.1^24,K.1^32,-1*K.1^28,K.1^24,K.1^8,-1*K.1^12,K.1^40,K.1^64,-1*K.1^60,-1*K.1^44,K.1^48,-1*K.1^20,K.1^20,-1*K.1^64,K.1^12,K.1^4,-1*K.1^56,K.1^44,-1*K.1^16,K.1^36,-1*K.1^4,-1*K.1^48,K.1^16,-1*K.1^32,K.1^56,K.1^52,-1*K.1^40,K.1^28,K.1^44,-1*K.1^48,K.1^52,K.1^29,-1*K.1^67,K.1^67,-1*K.1^31,K.1^31,K.1^7,-1*K.1^7,K.1^43,-1*K.1^43,-1*K.1^59,K.1^59,-1*K.1^23,K.1^23,K.1^15,-1*K.1^15,K.1^35,-1*K.1^35,K.1^57,K.1^5,-1*K.1^49,K.1^25,-1*K.1^65,K.1^49,-1*K.1^25,K.1^65,-1*K.1^13,-1*K.1^41,K.1^33,K.1^13,K.1^41,-1*K.1^57,-1*K.1^5,-1*K.1^19,-1*K.1^3,K.1^3,-1*K.1^39,K.1^39,K.1^63,-1*K.1^63,K.1^27,-1*K.1^27,-1*K.1^11,K.1^11,-1*K.1^47,K.1^47,K.1^55,-1*K.1^55,K.1^19,-1*K.1,-1*K.1^45,K.1^29,K.1^33,K.1^9,K.1^37,-1*K.1^53,-1*K.1^9,-1*K.1^37,-1*K.1^21,K.1^61,K.1,K.1^21,-1*K.1^61,K.1^45,-1*K.1^29,K.1^53,K.1^35,K.1^3,-1*K.1^3,K.1^31,-1*K.1^31,-1*K.1^63,K.1^63,-1*K.1^43,K.1^43,K.1^11,-1*K.1^11,K.1^23,-1*K.1^23,-1*K.1^55,K.1^55,-1*K.1^35,-1*K.1^53,K.1^45,-1*K.1^5,-1*K.1^33,-1*K.1^25,-1*K.1^37,K.1^53,K.1^25,K.1^37,K.1^13,-1*K.1^61,-1*K.1^33,-1*K.1^13,K.1^61,-1*K.1^45,K.1^5,K.1^19,K.1^67,-1*K.1^67,K.1^39,-1*K.1^39,-1*K.1^7,K.1^7,-1*K.1^27,K.1^27,K.1^59,-1*K.1^59,K.1^47,-1*K.1^47,-1*K.1^15,K.1^15,-1*K.1^19,K.1,-1*K.1^57,-1*K.1^29,K.1^49,-1*K.1^9,K.1^65,-1*K.1^49,K.1^9,-1*K.1^65,K.1^21,K.1^41,-1*K.1,-1*K.1^21,-1*K.1^41,K.1^57,-1*K.1^22,-1*K.1^26,-1*K.1^38,K.1^18,-1*K.1^10,-1*K.1^22,-1*K.1^2,K.1^38,-1*K.1^58,K.1^66,-1*K.1^18,K.1^22,K.1^26,-1*K.1^6,K.1^6,K.1^10,K.1^66,K.1^38,K.1^62,K.1^6,K.1^26,-1*K.1^14,K.1^22,-1*K.1^50,-1*K.1^6,K.1^30,-1*K.1^62,K.1^14,K.1^2,-1*K.1^42,K.1^2,K.1^42,-1*K.1^30,K.1^42,-1*K.1^10,-1*K.1^62,K.1^50,K.1^54,-1*K.1^58,K.1^58,K.1^10,K.1^18,-1*K.1^46,-1*K.1^66,-1*K.1^66,-1*K.1^54,-1*K.1^54,K.1^46,-1*K.1^50,-1*K.1^14,K.1^58,-1*K.1^26,K.1^54,-1*K.1^46,K.1^46,-1*K.1^2,K.1^62,-1*K.1^38,K.1^50,K.1^30,K.1^14,-1*K.1^18,-1*K.1^30,-1*K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^36,K.1^16,K.1^48,K.1^8,-1*K.1^60,K.1^40,K.1^24,K.1^56,-1*K.1^20,-1*K.1^12,K.1^64,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^28,-1*K.1^44,-1*K.1^56,K.1^4,K.1^28,K.1^52,-1*K.1^4,-1*K.1^20,-1*K.1^48,K.1^44,K.1^20,K.1^60,-1*K.1^16,-1*K.1^40,-1*K.1^60,K.1^32,K.1^12,-1*K.1^56,-1*K.1^32,K.1^44,-1*K.1^32,-1*K.1^40,-1*K.1^64,K.1^8,K.1^64,-1*K.1^52,K.1^40,-1*K.1^28,K.1^16,K.1^20,-1*K.1^44,K.1^56,-1*K.1^24,-1*K.1^12,K.1^24,-1*K.1^36,K.1^48,K.1^36,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^8,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^52,-1*K.1^20,K.1^32,K.1^40,K.1^64,K.1^16,-1*K.1^28,K.1^56,-1*K.1^36,-1*K.1^12,K.1^8,-1*K.1^60,-1*K.1^4,K.1^48,-1*K.1^44,K.1^24,K.1^38,-1*K.1^18,-1*K.1^10,-1*K.1^6,-1*K.1^18,-1*K.1^30,K.1^26,-1*K.1^54,-1*K.1^30,K.1^10,-1*K.1^6,-1*K.1^58,-1*K.1^62,-1*K.1^46,-1*K.1^38,K.1^2,-1*K.1^14,K.1^66,K.1^58,-1*K.1^58,-1*K.1^10,-1*K.1^50,-1*K.1^2,-1*K.1^38,K.1^62,K.1^6,-1*K.1^22,-1*K.1^2,K.1^22,K.1^54,-1*K.1^26,K.1^54,K.1^10,-1*K.1^50,K.1^30,-1*K.1^62,K.1^46,K.1^14,-1*K.1^66,K.1^30,K.1^18,K.1^6,K.1^42,K.1^42,K.1^66,K.1^18,-1*K.1^22,-1*K.1^26,-1*K.1^54,K.1^50,K.1^58,K.1^26,-1*K.1^14,K.1^2,K.1^46,-1*K.1^46,K.1^62,-1*K.1^42,K.1^14,K.1^50,-1*K.1^66,K.1^38,-1*K.1^42,K.1^22,K.1^44,-1*K.1^32,K.1^20,-1*K.1^48,K.1^60,K.1^4,-1*K.1^56,K.1^12,K.1^36,-1*K.1^64,-1*K.1^40,-1*K.1^28,-1*K.1^16,-1*K.1^24,K.1^20,-1*K.1^48,K.1^56,K.1^60,-1*K.1^12,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^64,K.1^32,K.1^24,K.1^48,K.1^8,-1*K.1^52,K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^44,K.1^4,-1*K.1^8,-1*K.1^40,-1*K.1^56,-1*K.1^44,K.1^52,K.1^40,K.1^12,-1*K.1^4,K.1^28,-1*K.1^32,K.1^36,-1*K.1^8,K.1^52,K.1^28,-1*K.1^47,K.1^57,-1*K.1^57,-1*K.1,K.1,K.1^9,-1*K.1^9,-1*K.1^65,K.1^65,-1*K.1^37,K.1^37,-1*K.1^49,K.1^49,-1*K.1^29,K.1^29,K.1^45,-1*K.1^45,K.1^15,-1*K.1^55,-1*K.1^63,-1*K.1^3,K.1^35,K.1^63,K.1^3,-1*K.1^35,K.1^7,K.1^43,K.1^23,-1*K.1^7,-1*K.1^43,-1*K.1^15,K.1^55,-1*K.1^5,K.1^33,-1*K.1^33,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,-1*K.1^25,K.1^25,-1*K.1^53,K.1^53,-1*K.1^41,K.1^41,-1*K.1^61,K.1^61,K.1^5,K.1^11,-1*K.1^19,-1*K.1^47,K.1^23,K.1^31,K.1^67,K.1^39,-1*K.1^31,-1*K.1^67,-1*K.1^27,K.1^59,-1*K.1^11,K.1^27,-1*K.1^59,K.1^19,K.1^47,-1*K.1^39,K.1^45,-1*K.1^33,K.1^33,K.1,-1*K.1,K.1^13,-1*K.1^13,K.1^65,-1*K.1^65,K.1^53,-1*K.1^53,K.1^49,-1*K.1^49,K.1^61,-1*K.1^61,-1*K.1^45,K.1^39,K.1^19,K.1^55,-1*K.1^23,K.1^3,-1*K.1^67,-1*K.1^39,-1*K.1^3,K.1^67,-1*K.1^7,-1*K.1^59,-1*K.1^23,K.1^7,K.1^59,-1*K.1^19,-1*K.1^55,K.1^5,-1*K.1^57,K.1^57,-1*K.1^21,K.1^21,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,K.1^37,-1*K.1^37,K.1^41,-1*K.1^41,K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^11,-1*K.1^15,K.1^47,K.1^63,-1*K.1^31,-1*K.1^35,-1*K.1^63,K.1^31,K.1^35,K.1^27,-1*K.1^43,K.1^11,-1*K.1^27,K.1^43,K.1^15,K.1^38,-1*K.1^14,-1*K.1^10,K.1^62,K.1^42,K.1^38,-1*K.1^22,K.1^10,K.1^26,K.1^46,-1*K.1^62,-1*K.1^38,K.1^14,-1*K.1^66,K.1^66,-1*K.1^42,K.1^46,K.1^10,K.1^2,K.1^66,K.1^14,-1*K.1^18,-1*K.1^38,-1*K.1^6,-1*K.1^66,K.1^58,-1*K.1^2,K.1^18,K.1^22,-1*K.1^54,K.1^22,K.1^54,-1*K.1^58,K.1^54,K.1^42,-1*K.1^2,K.1^6,K.1^50,K.1^26,-1*K.1^26,-1*K.1^42,K.1^62,K.1^30,-1*K.1^46,-1*K.1^46,-1*K.1^50,-1*K.1^50,-1*K.1^30,-1*K.1^6,-1*K.1^18,-1*K.1^26,-1*K.1^14,K.1^50,K.1^30,-1*K.1^30,-1*K.1^22,K.1^2,-1*K.1^10,K.1^6,K.1^58,K.1^18,-1*K.1^62,-1*K.1^58,-1*K.1^54]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^32,-1*K.1^52,-1*K.1^20,-1*K.1^60,K.1^8,-1*K.1^28,-1*K.1^44,-1*K.1^12,K.1^48,K.1^56,-1*K.1^4,K.1^64,K.1^16,-1*K.1^36,K.1^40,K.1^24,K.1^12,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^64,K.1^48,K.1^20,-1*K.1^24,-1*K.1^48,-1*K.1^8,K.1^52,K.1^28,K.1^8,-1*K.1^36,-1*K.1^56,K.1^12,K.1^36,-1*K.1^24,K.1^36,K.1^28,K.1^4,-1*K.1^60,-1*K.1^4,K.1^16,-1*K.1^28,K.1^40,-1*K.1^52,-1*K.1^48,K.1^24,-1*K.1^12,K.1^44,K.1^56,-1*K.1^44,K.1^32,-1*K.1^20,-1*K.1^32,K.1^60,K.1^4,-1*K.1^16,K.1^60,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^16,K.1^48,-1*K.1^36,-1*K.1^28,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^12,K.1^32,K.1^56,-1*K.1^60,K.1^8,K.1^64,-1*K.1^20,K.1^24,-1*K.1^44,-1*K.1^30,K.1^50,K.1^58,K.1^62,K.1^50,K.1^38,-1*K.1^42,K.1^14,K.1^38,-1*K.1^58,K.1^62,K.1^10,K.1^6,K.1^22,K.1^30,-1*K.1^66,K.1^54,-1*K.1^2,-1*K.1^10,K.1^10,K.1^58,K.1^18,K.1^66,K.1^30,-1*K.1^6,-1*K.1^62,K.1^46,K.1^66,-1*K.1^46,-1*K.1^14,K.1^42,-1*K.1^14,-1*K.1^58,K.1^18,-1*K.1^38,K.1^6,-1*K.1^22,-1*K.1^54,K.1^2,-1*K.1^38,-1*K.1^50,-1*K.1^62,-1*K.1^26,-1*K.1^26,-1*K.1^2,-1*K.1^50,K.1^46,K.1^42,K.1^14,-1*K.1^18,-1*K.1^10,-1*K.1^42,K.1^54,-1*K.1^66,-1*K.1^22,K.1^22,-1*K.1^6,K.1^26,-1*K.1^54,-1*K.1^18,K.1^2,-1*K.1^30,K.1^26,-1*K.1^46,-1*K.1^24,K.1^36,-1*K.1^48,K.1^20,-1*K.1^8,-1*K.1^64,K.1^12,-1*K.1^56,-1*K.1^32,K.1^4,K.1^28,K.1^40,K.1^52,K.1^44,-1*K.1^48,K.1^20,-1*K.1^12,-1*K.1^8,K.1^56,K.1^32,K.1^8,K.1^48,-1*K.1^4,-1*K.1^36,-1*K.1^44,-1*K.1^20,-1*K.1^60,K.1^16,-1*K.1^52,K.1^52,K.1^44,K.1^4,-1*K.1^24,-1*K.1^64,K.1^60,K.1^28,K.1^12,K.1^24,-1*K.1^16,-1*K.1^28,-1*K.1^56,K.1^64,-1*K.1^40,K.1^36,-1*K.1^32,K.1^60,-1*K.1^16,-1*K.1^40,K.1^21,-1*K.1^11,K.1^11,K.1^67,-1*K.1^67,-1*K.1^59,K.1^59,K.1^3,-1*K.1^3,K.1^31,-1*K.1^31,K.1^19,-1*K.1^19,K.1^39,-1*K.1^39,-1*K.1^23,K.1^23,-1*K.1^53,K.1^13,K.1^5,K.1^65,-1*K.1^33,-1*K.1^5,-1*K.1^65,K.1^33,-1*K.1^61,-1*K.1^25,-1*K.1^45,K.1^61,K.1^25,K.1^53,-1*K.1^13,K.1^63,-1*K.1^35,K.1^35,-1*K.1^47,K.1^47,K.1^55,-1*K.1^55,K.1^43,-1*K.1^43,K.1^15,-1*K.1^15,K.1^27,-1*K.1^27,K.1^7,-1*K.1^7,-1*K.1^63,-1*K.1^57,K.1^49,K.1^21,-1*K.1^45,-1*K.1^37,-1*K.1,-1*K.1^29,K.1^37,K.1,K.1^41,-1*K.1^9,K.1^57,-1*K.1^41,K.1^9,-1*K.1^49,-1*K.1^21,K.1^29,-1*K.1^23,K.1^35,-1*K.1^35,-1*K.1^67,K.1^67,-1*K.1^55,K.1^55,-1*K.1^3,K.1^3,-1*K.1^15,K.1^15,-1*K.1^19,K.1^19,-1*K.1^7,K.1^7,K.1^23,-1*K.1^29,-1*K.1^49,-1*K.1^13,K.1^45,-1*K.1^65,K.1,K.1^29,K.1^65,-1*K.1,K.1^61,K.1^9,K.1^45,-1*K.1^61,-1*K.1^9,K.1^49,K.1^13,-1*K.1^63,K.1^11,-1*K.1^11,K.1^47,-1*K.1^47,K.1^59,-1*K.1^59,-1*K.1^43,K.1^43,-1*K.1^31,K.1^31,-1*K.1^27,K.1^27,-1*K.1^39,K.1^39,K.1^63,K.1^57,K.1^53,-1*K.1^21,-1*K.1^5,K.1^37,K.1^33,K.1^5,-1*K.1^37,-1*K.1^33,-1*K.1^41,K.1^25,-1*K.1^57,K.1^41,-1*K.1^25,-1*K.1^53,-1*K.1^30,K.1^54,K.1^58,-1*K.1^6,-1*K.1^26,-1*K.1^30,K.1^46,-1*K.1^58,-1*K.1^42,-1*K.1^22,K.1^6,K.1^30,-1*K.1^54,K.1^2,-1*K.1^2,K.1^26,-1*K.1^22,-1*K.1^58,-1*K.1^66,-1*K.1^2,-1*K.1^54,K.1^50,K.1^30,K.1^62,K.1^2,-1*K.1^10,K.1^66,-1*K.1^50,-1*K.1^46,K.1^14,-1*K.1^46,-1*K.1^14,K.1^10,-1*K.1^14,-1*K.1^26,K.1^66,-1*K.1^62,-1*K.1^18,-1*K.1^42,K.1^42,K.1^26,-1*K.1^6,-1*K.1^38,K.1^22,K.1^22,K.1^18,K.1^18,K.1^38,K.1^62,K.1^50,K.1^42,K.1^54,-1*K.1^18,-1*K.1^38,K.1^38,K.1^46,-1*K.1^66,K.1^58,-1*K.1^62,-1*K.1^10,-1*K.1^50,K.1^6,K.1^10,K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^32,-1*K.1^52,-1*K.1^20,-1*K.1^60,K.1^8,-1*K.1^28,-1*K.1^44,-1*K.1^12,K.1^48,K.1^56,-1*K.1^4,K.1^64,K.1^16,-1*K.1^36,K.1^40,K.1^24,K.1^12,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^64,K.1^48,K.1^20,-1*K.1^24,-1*K.1^48,-1*K.1^8,K.1^52,K.1^28,K.1^8,-1*K.1^36,-1*K.1^56,K.1^12,K.1^36,-1*K.1^24,K.1^36,K.1^28,K.1^4,-1*K.1^60,-1*K.1^4,K.1^16,-1*K.1^28,K.1^40,-1*K.1^52,-1*K.1^48,K.1^24,-1*K.1^12,K.1^44,K.1^56,-1*K.1^44,K.1^32,-1*K.1^20,-1*K.1^32,K.1^60,K.1^4,-1*K.1^16,K.1^60,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^16,K.1^48,-1*K.1^36,-1*K.1^28,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^12,K.1^32,K.1^56,-1*K.1^60,K.1^8,K.1^64,-1*K.1^20,K.1^24,-1*K.1^44,K.1^30,-1*K.1^50,-1*K.1^58,-1*K.1^62,-1*K.1^50,-1*K.1^38,K.1^42,-1*K.1^14,-1*K.1^38,K.1^58,-1*K.1^62,-1*K.1^10,-1*K.1^6,-1*K.1^22,-1*K.1^30,K.1^66,-1*K.1^54,K.1^2,K.1^10,-1*K.1^10,-1*K.1^58,-1*K.1^18,-1*K.1^66,-1*K.1^30,K.1^6,K.1^62,-1*K.1^46,-1*K.1^66,K.1^46,K.1^14,-1*K.1^42,K.1^14,K.1^58,-1*K.1^18,K.1^38,-1*K.1^6,K.1^22,K.1^54,-1*K.1^2,K.1^38,K.1^50,K.1^62,K.1^26,K.1^26,K.1^2,K.1^50,-1*K.1^46,-1*K.1^42,-1*K.1^14,K.1^18,K.1^10,K.1^42,-1*K.1^54,K.1^66,K.1^22,-1*K.1^22,K.1^6,-1*K.1^26,K.1^54,K.1^18,-1*K.1^2,K.1^30,-1*K.1^26,K.1^46,-1*K.1^24,K.1^36,-1*K.1^48,K.1^20,-1*K.1^8,-1*K.1^64,K.1^12,-1*K.1^56,-1*K.1^32,K.1^4,K.1^28,K.1^40,K.1^52,K.1^44,-1*K.1^48,K.1^20,-1*K.1^12,-1*K.1^8,K.1^56,K.1^32,K.1^8,K.1^48,-1*K.1^4,-1*K.1^36,-1*K.1^44,-1*K.1^20,-1*K.1^60,K.1^16,-1*K.1^52,K.1^52,K.1^44,K.1^4,-1*K.1^24,-1*K.1^64,K.1^60,K.1^28,K.1^12,K.1^24,-1*K.1^16,-1*K.1^28,-1*K.1^56,K.1^64,-1*K.1^40,K.1^36,-1*K.1^32,K.1^60,-1*K.1^16,-1*K.1^40,-1*K.1^55,-1*K.1^45,K.1^45,-1*K.1^33,K.1^33,K.1^25,-1*K.1^25,K.1^37,-1*K.1^37,K.1^65,-1*K.1^65,K.1^53,-1*K.1^53,-1*K.1^5,K.1^5,-1*K.1^57,K.1^57,-1*K.1^19,-1*K.1^47,-1*K.1^39,K.1^31,K.1^67,K.1^39,-1*K.1^31,-1*K.1^67,-1*K.1^27,K.1^59,-1*K.1^11,K.1^27,-1*K.1^59,K.1^19,K.1^47,-1*K.1^29,K.1,-1*K.1,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,-1*K.1^9,K.1^9,K.1^49,-1*K.1^49,K.1^61,-1*K.1^61,K.1^41,-1*K.1^41,K.1^29,-1*K.1^23,K.1^15,-1*K.1^55,-1*K.1^11,-1*K.1^3,K.1^35,K.1^63,K.1^3,-1*K.1^35,K.1^7,K.1^43,K.1^23,-1*K.1^7,-1*K.1^43,-1*K.1^15,K.1^55,-1*K.1^63,-1*K.1^57,-1*K.1,K.1,K.1^33,-1*K.1^33,K.1^21,-1*K.1^21,-1*K.1^37,K.1^37,-1*K.1^49,K.1^49,-1*K.1^53,K.1^53,-1*K.1^41,K.1^41,K.1^57,K.1^63,-1*K.1^15,K.1^47,K.1^11,-1*K.1^31,-1*K.1^35,-1*K.1^63,K.1^31,K.1^35,K.1^27,-1*K.1^43,K.1^11,-1*K.1^27,K.1^43,K.1^15,-1*K.1^47,K.1^29,K.1^45,-1*K.1^45,-1*K.1^13,K.1^13,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,-1*K.1^65,K.1^65,-1*K.1^61,K.1^61,K.1^5,-1*K.1^5,-1*K.1^29,K.1^23,K.1^19,K.1^55,K.1^39,K.1^3,-1*K.1^67,-1*K.1^39,-1*K.1^3,K.1^67,-1*K.1^7,-1*K.1^59,-1*K.1^23,K.1^7,K.1^59,-1*K.1^19,K.1^30,-1*K.1^54,-1*K.1^58,K.1^6,K.1^26,K.1^30,-1*K.1^46,K.1^58,K.1^42,K.1^22,-1*K.1^6,-1*K.1^30,K.1^54,-1*K.1^2,K.1^2,-1*K.1^26,K.1^22,K.1^58,K.1^66,K.1^2,K.1^54,-1*K.1^50,-1*K.1^30,-1*K.1^62,-1*K.1^2,K.1^10,-1*K.1^66,K.1^50,K.1^46,-1*K.1^14,K.1^46,K.1^14,-1*K.1^10,K.1^14,K.1^26,-1*K.1^66,K.1^62,K.1^18,K.1^42,-1*K.1^42,-1*K.1^26,K.1^6,K.1^38,-1*K.1^22,-1*K.1^22,-1*K.1^18,-1*K.1^18,-1*K.1^38,-1*K.1^62,-1*K.1^50,-1*K.1^42,-1*K.1^54,K.1^18,K.1^38,-1*K.1^38,-1*K.1^46,K.1^66,-1*K.1^58,K.1^62,K.1^10,K.1^50,-1*K.1^6,-1*K.1^10,-1*K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^36,K.1^16,K.1^48,K.1^8,-1*K.1^60,K.1^40,K.1^24,K.1^56,-1*K.1^20,-1*K.1^12,K.1^64,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^28,-1*K.1^44,-1*K.1^56,K.1^4,K.1^28,K.1^52,-1*K.1^4,-1*K.1^20,-1*K.1^48,K.1^44,K.1^20,K.1^60,-1*K.1^16,-1*K.1^40,-1*K.1^60,K.1^32,K.1^12,-1*K.1^56,-1*K.1^32,K.1^44,-1*K.1^32,-1*K.1^40,-1*K.1^64,K.1^8,K.1^64,-1*K.1^52,K.1^40,-1*K.1^28,K.1^16,K.1^20,-1*K.1^44,K.1^56,-1*K.1^24,-1*K.1^12,K.1^24,-1*K.1^36,K.1^48,K.1^36,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^8,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^52,-1*K.1^20,K.1^32,K.1^40,K.1^64,K.1^16,-1*K.1^28,K.1^56,-1*K.1^36,-1*K.1^12,K.1^8,-1*K.1^60,-1*K.1^4,K.1^48,-1*K.1^44,K.1^24,-1*K.1^38,K.1^18,K.1^10,K.1^6,K.1^18,K.1^30,-1*K.1^26,K.1^54,K.1^30,-1*K.1^10,K.1^6,K.1^58,K.1^62,K.1^46,K.1^38,-1*K.1^2,K.1^14,-1*K.1^66,-1*K.1^58,K.1^58,K.1^10,K.1^50,K.1^2,K.1^38,-1*K.1^62,-1*K.1^6,K.1^22,K.1^2,-1*K.1^22,-1*K.1^54,K.1^26,-1*K.1^54,-1*K.1^10,K.1^50,-1*K.1^30,K.1^62,-1*K.1^46,-1*K.1^14,K.1^66,-1*K.1^30,-1*K.1^18,-1*K.1^6,-1*K.1^42,-1*K.1^42,-1*K.1^66,-1*K.1^18,K.1^22,K.1^26,K.1^54,-1*K.1^50,-1*K.1^58,-1*K.1^26,K.1^14,-1*K.1^2,-1*K.1^46,K.1^46,-1*K.1^62,K.1^42,-1*K.1^14,-1*K.1^50,K.1^66,-1*K.1^38,K.1^42,-1*K.1^22,K.1^44,-1*K.1^32,K.1^20,-1*K.1^48,K.1^60,K.1^4,-1*K.1^56,K.1^12,K.1^36,-1*K.1^64,-1*K.1^40,-1*K.1^28,-1*K.1^16,-1*K.1^24,K.1^20,-1*K.1^48,K.1^56,K.1^60,-1*K.1^12,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^64,K.1^32,K.1^24,K.1^48,K.1^8,-1*K.1^52,K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^44,K.1^4,-1*K.1^8,-1*K.1^40,-1*K.1^56,-1*K.1^44,K.1^52,K.1^40,K.1^12,-1*K.1^4,K.1^28,-1*K.1^32,K.1^36,-1*K.1^8,K.1^52,K.1^28,K.1^13,K.1^23,-1*K.1^23,K.1^35,-1*K.1^35,-1*K.1^43,K.1^43,-1*K.1^31,K.1^31,-1*K.1^3,K.1^3,-1*K.1^15,K.1^15,K.1^63,-1*K.1^63,K.1^11,-1*K.1^11,K.1^49,K.1^21,K.1^29,-1*K.1^37,-1*K.1,-1*K.1^29,K.1^37,K.1,K.1^41,-1*K.1^9,K.1^57,-1*K.1^41,K.1^9,-1*K.1^49,-1*K.1^21,K.1^39,-1*K.1^67,K.1^67,-1*K.1^55,K.1^55,K.1^47,-1*K.1^47,K.1^59,-1*K.1^59,-1*K.1^19,K.1^19,-1*K.1^7,K.1^7,-1*K.1^27,K.1^27,-1*K.1^39,K.1^45,-1*K.1^53,K.1^13,K.1^57,K.1^65,-1*K.1^33,-1*K.1^5,-1*K.1^65,K.1^33,-1*K.1^61,-1*K.1^25,-1*K.1^45,K.1^61,K.1^25,K.1^53,-1*K.1^13,K.1^5,K.1^11,K.1^67,-1*K.1^67,-1*K.1^35,K.1^35,-1*K.1^47,K.1^47,K.1^31,-1*K.1^31,K.1^19,-1*K.1^19,K.1^15,-1*K.1^15,K.1^27,-1*K.1^27,-1*K.1^11,-1*K.1^5,K.1^53,-1*K.1^21,-1*K.1^57,K.1^37,K.1^33,K.1^5,-1*K.1^37,-1*K.1^33,-1*K.1^41,K.1^25,-1*K.1^57,K.1^41,-1*K.1^25,-1*K.1^53,K.1^21,-1*K.1^39,-1*K.1^23,K.1^23,K.1^55,-1*K.1^55,K.1^43,-1*K.1^43,-1*K.1^59,K.1^59,K.1^3,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1^63,K.1^63,K.1^39,-1*K.1^45,-1*K.1^49,-1*K.1^13,-1*K.1^29,-1*K.1^65,K.1,K.1^29,K.1^65,-1*K.1,K.1^61,K.1^9,K.1^45,-1*K.1^61,-1*K.1^9,K.1^49,-1*K.1^38,K.1^14,K.1^10,-1*K.1^62,-1*K.1^42,-1*K.1^38,K.1^22,-1*K.1^10,-1*K.1^26,-1*K.1^46,K.1^62,K.1^38,-1*K.1^14,K.1^66,-1*K.1^66,K.1^42,-1*K.1^46,-1*K.1^10,-1*K.1^2,-1*K.1^66,-1*K.1^14,K.1^18,K.1^38,K.1^6,K.1^66,-1*K.1^58,K.1^2,-1*K.1^18,-1*K.1^22,K.1^54,-1*K.1^22,-1*K.1^54,K.1^58,-1*K.1^54,-1*K.1^42,K.1^2,-1*K.1^6,-1*K.1^50,-1*K.1^26,K.1^26,K.1^42,-1*K.1^62,-1*K.1^30,K.1^46,K.1^46,K.1^50,K.1^50,K.1^30,K.1^6,K.1^18,K.1^26,K.1^14,-1*K.1^50,-1*K.1^30,K.1^30,K.1^22,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^58,-1*K.1^18,K.1^62,K.1^58,K.1^54]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^44,-1*K.1^12,-1*K.1^36,K.1^40,-1*K.1^28,K.1^64,-1*K.1^52,K.1^8,K.1^32,-1*K.1^60,K.1^48,-1*K.1^20,K.1^56,K.1^24,-1*K.1^4,K.1^16,-1*K.1^8,K.1^20,K.1^4,-1*K.1^56,-1*K.1^20,K.1^32,K.1^36,-1*K.1^16,-1*K.1^32,K.1^28,K.1^12,-1*K.1^64,-1*K.1^28,K.1^24,K.1^60,-1*K.1^8,-1*K.1^24,-1*K.1^16,-1*K.1^24,-1*K.1^64,-1*K.1^48,K.1^40,K.1^48,K.1^56,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^32,K.1^16,K.1^8,K.1^52,-1*K.1^60,-1*K.1^52,-1*K.1^44,-1*K.1^36,K.1^44,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^40,K.1^60,K.1^52,K.1^44,K.1^36,K.1^28,K.1^20,K.1^12,K.1^4,K.1^56,K.1^32,K.1^24,K.1^64,K.1^48,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^44,-1*K.1^60,K.1^40,-1*K.1^28,-1*K.1^20,-1*K.1^36,K.1^16,-1*K.1^52,K.1^54,K.1^22,-1*K.1^50,-1*K.1^30,K.1^22,-1*K.1^14,-1*K.1^62,K.1^66,-1*K.1^14,K.1^50,-1*K.1^30,-1*K.1^18,-1*K.1^38,K.1^26,-1*K.1^54,K.1^10,K.1^2,K.1^58,K.1^18,-1*K.1^18,-1*K.1^50,K.1^46,-1*K.1^10,-1*K.1^54,K.1^38,K.1^30,K.1^42,-1*K.1^10,-1*K.1^42,-1*K.1^66,K.1^62,-1*K.1^66,K.1^50,K.1^46,K.1^14,-1*K.1^38,-1*K.1^26,-1*K.1^2,-1*K.1^58,K.1^14,-1*K.1^22,K.1^30,-1*K.1^6,-1*K.1^6,K.1^58,-1*K.1^22,K.1^42,K.1^62,K.1^66,-1*K.1^46,K.1^18,-1*K.1^62,K.1^2,K.1^10,-1*K.1^26,K.1^26,K.1^38,K.1^6,-1*K.1^2,-1*K.1^46,-1*K.1^58,K.1^54,K.1^6,-1*K.1^42,-1*K.1^16,-1*K.1^24,-1*K.1^32,K.1^36,K.1^28,K.1^20,-1*K.1^8,K.1^60,K.1^44,-1*K.1^48,-1*K.1^64,-1*K.1^4,K.1^12,K.1^52,-1*K.1^32,K.1^36,K.1^8,K.1^28,-1*K.1^60,-1*K.1^44,-1*K.1^28,K.1^32,K.1^48,K.1^24,-1*K.1^52,-1*K.1^36,K.1^40,K.1^56,-1*K.1^12,K.1^12,K.1^52,-1*K.1^48,-1*K.1^16,K.1^20,-1*K.1^40,-1*K.1^64,-1*K.1^8,K.1^16,-1*K.1^56,K.1^64,K.1^60,-1*K.1^20,K.1^4,-1*K.1^24,K.1^44,-1*K.1^40,-1*K.1^56,K.1^4,-1*K.1^31,-1*K.1^13,K.1^13,K.1^5,-1*K.1^5,-1*K.1^45,K.1^45,K.1^53,-1*K.1^53,K.1^49,-1*K.1^49,-1*K.1^41,K.1^41,K.1^9,-1*K.1^9,K.1^21,-1*K.1^21,K.1^7,K.1^3,K.1^43,K.1^15,-1*K.1^39,-1*K.1^43,-1*K.1^15,K.1^39,-1*K.1^35,K.1^11,K.1^47,K.1^35,-1*K.1^11,-1*K.1^7,-1*K.1^3,K.1^25,-1*K.1^29,K.1^29,K.1^37,-1*K.1^37,K.1^65,-1*K.1^65,-1*K.1^57,K.1^57,-1*K.1^61,K.1^61,-1*K.1,K.1,K.1^33,-1*K.1^33,-1*K.1^25,-1*K.1^55,-1*K.1^27,-1*K.1^31,K.1^47,-1*K.1^19,-1*K.1^63,-1*K.1^59,K.1^19,K.1^63,-1*K.1^67,-1*K.1^23,K.1^55,K.1^67,K.1^23,K.1^27,K.1^31,K.1^59,K.1^21,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,-1*K.1^65,K.1^65,-1*K.1^53,K.1^53,K.1^61,-1*K.1^61,K.1^41,-1*K.1^41,-1*K.1^33,K.1^33,-1*K.1^21,-1*K.1^59,K.1^27,-1*K.1^3,-1*K.1^47,-1*K.1^15,K.1^63,K.1^59,K.1^15,-1*K.1^63,K.1^35,K.1^23,-1*K.1^47,-1*K.1^35,-1*K.1^23,-1*K.1^27,K.1^3,-1*K.1^25,K.1^13,-1*K.1^13,-1*K.1^37,K.1^37,K.1^45,-1*K.1^45,K.1^57,-1*K.1^57,-1*K.1^49,K.1^49,K.1,-1*K.1,-1*K.1^9,K.1^9,K.1^25,K.1^55,-1*K.1^7,K.1^31,-1*K.1^43,K.1^19,K.1^39,K.1^43,-1*K.1^19,-1*K.1^39,K.1^67,-1*K.1^11,-1*K.1^55,-1*K.1^67,K.1^11,K.1^7,K.1^54,K.1^2,-1*K.1^50,K.1^38,-1*K.1^6,K.1^54,K.1^42,K.1^50,-1*K.1^62,-1*K.1^26,-1*K.1^38,-1*K.1^54,-1*K.1^2,-1*K.1^58,K.1^58,K.1^6,-1*K.1^26,K.1^50,K.1^10,K.1^58,-1*K.1^2,K.1^22,-1*K.1^54,-1*K.1^30,-1*K.1^58,K.1^18,-1*K.1^10,-1*K.1^22,-1*K.1^42,K.1^66,-1*K.1^42,-1*K.1^66,-1*K.1^18,-1*K.1^66,-1*K.1^6,-1*K.1^10,K.1^30,-1*K.1^46,-1*K.1^62,K.1^62,K.1^6,K.1^38,K.1^14,K.1^26,K.1^26,K.1^46,K.1^46,-1*K.1^14,-1*K.1^30,K.1^22,K.1^62,K.1^2,-1*K.1^46,K.1^14,-1*K.1^14,K.1^42,K.1^10,-1*K.1^50,K.1^30,K.1^18,-1*K.1^22,-1*K.1^38,-1*K.1^18,K.1^66]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^24,K.1^56,K.1^32,-1*K.1^28,K.1^40,-1*K.1^4,K.1^16,-1*K.1^60,-1*K.1^36,K.1^8,-1*K.1^20,K.1^48,-1*K.1^12,-1*K.1^44,K.1^64,-1*K.1^52,K.1^60,-1*K.1^48,-1*K.1^64,K.1^12,K.1^48,-1*K.1^36,-1*K.1^32,K.1^52,K.1^36,-1*K.1^40,-1*K.1^56,K.1^4,K.1^40,-1*K.1^44,-1*K.1^8,K.1^60,K.1^44,K.1^52,K.1^44,K.1^4,K.1^20,-1*K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^4,K.1^64,K.1^56,K.1^36,-1*K.1^52,-1*K.1^60,-1*K.1^16,K.1^8,K.1^16,K.1^24,K.1^32,-1*K.1^24,K.1^28,K.1^20,K.1^12,K.1^28,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,-1*K.1^12,-1*K.1^36,-1*K.1^44,-1*K.1^4,-1*K.1^20,K.1^56,K.1^64,-1*K.1^60,K.1^24,K.1^8,-1*K.1^28,K.1^40,K.1^48,K.1^32,-1*K.1^52,K.1^16,-1*K.1^14,-1*K.1^46,K.1^18,K.1^38,-1*K.1^46,K.1^54,K.1^6,-1*K.1^2,K.1^54,-1*K.1^18,K.1^38,K.1^50,K.1^30,-1*K.1^42,K.1^14,-1*K.1^58,-1*K.1^66,-1*K.1^10,-1*K.1^50,K.1^50,K.1^18,-1*K.1^22,K.1^58,K.1^14,-1*K.1^30,-1*K.1^38,-1*K.1^26,K.1^58,K.1^26,K.1^2,-1*K.1^6,K.1^2,-1*K.1^18,-1*K.1^22,-1*K.1^54,K.1^30,K.1^42,K.1^66,K.1^10,-1*K.1^54,K.1^46,-1*K.1^38,K.1^62,K.1^62,-1*K.1^10,K.1^46,-1*K.1^26,-1*K.1^6,-1*K.1^2,K.1^22,-1*K.1^50,K.1^6,-1*K.1^66,-1*K.1^58,K.1^42,-1*K.1^42,-1*K.1^30,-1*K.1^62,K.1^66,K.1^22,K.1^10,-1*K.1^14,-1*K.1^62,K.1^26,K.1^52,K.1^44,K.1^36,-1*K.1^32,-1*K.1^40,-1*K.1^48,K.1^60,-1*K.1^8,-1*K.1^24,K.1^20,K.1^4,K.1^64,-1*K.1^56,-1*K.1^16,K.1^36,-1*K.1^32,-1*K.1^60,-1*K.1^40,K.1^8,K.1^24,K.1^40,-1*K.1^36,-1*K.1^20,-1*K.1^44,K.1^16,K.1^32,-1*K.1^28,-1*K.1^12,K.1^56,-1*K.1^56,-1*K.1^16,K.1^20,K.1^52,-1*K.1^48,K.1^28,K.1^4,K.1^60,-1*K.1^52,K.1^12,-1*K.1^4,-1*K.1^8,K.1^48,-1*K.1^64,K.1^44,-1*K.1^24,K.1^28,K.1^12,-1*K.1^64,K.1^37,K.1^55,-1*K.1^55,-1*K.1^63,K.1^63,K.1^23,-1*K.1^23,-1*K.1^15,K.1^15,-1*K.1^19,K.1^19,K.1^27,-1*K.1^27,-1*K.1^59,K.1^59,-1*K.1^47,K.1^47,-1*K.1^61,-1*K.1^65,-1*K.1^25,-1*K.1^53,K.1^29,K.1^25,K.1^53,-1*K.1^29,K.1^33,-1*K.1^57,-1*K.1^21,-1*K.1^33,K.1^57,K.1^61,K.1^65,-1*K.1^43,K.1^39,-1*K.1^39,-1*K.1^31,K.1^31,-1*K.1^3,K.1^3,K.1^11,-1*K.1^11,K.1^7,-1*K.1^7,K.1^67,-1*K.1^67,-1*K.1^35,K.1^35,K.1^43,K.1^13,K.1^41,K.1^37,-1*K.1^21,K.1^49,K.1^5,K.1^9,-1*K.1^49,-1*K.1^5,K.1,K.1^45,-1*K.1^13,-1*K.1,-1*K.1^45,-1*K.1^41,-1*K.1^37,-1*K.1^9,-1*K.1^47,-1*K.1^39,K.1^39,K.1^63,-1*K.1^63,K.1^3,-1*K.1^3,K.1^15,-1*K.1^15,-1*K.1^7,K.1^7,-1*K.1^27,K.1^27,K.1^35,-1*K.1^35,K.1^47,K.1^9,-1*K.1^41,K.1^65,K.1^21,K.1^53,-1*K.1^5,-1*K.1^9,-1*K.1^53,K.1^5,-1*K.1^33,-1*K.1^45,K.1^21,K.1^33,K.1^45,K.1^41,-1*K.1^65,K.1^43,-1*K.1^55,K.1^55,K.1^31,-1*K.1^31,-1*K.1^23,K.1^23,-1*K.1^11,K.1^11,K.1^19,-1*K.1^19,-1*K.1^67,K.1^67,K.1^59,-1*K.1^59,-1*K.1^43,-1*K.1^13,K.1^61,-1*K.1^37,K.1^25,-1*K.1^49,-1*K.1^29,-1*K.1^25,K.1^49,K.1^29,-1*K.1,K.1^57,K.1^13,K.1,-1*K.1^57,-1*K.1^61,-1*K.1^14,-1*K.1^66,K.1^18,-1*K.1^30,K.1^62,-1*K.1^14,-1*K.1^26,-1*K.1^18,K.1^6,K.1^42,K.1^30,K.1^14,K.1^66,K.1^10,-1*K.1^10,-1*K.1^62,K.1^42,-1*K.1^18,-1*K.1^58,-1*K.1^10,K.1^66,-1*K.1^46,K.1^14,K.1^38,K.1^10,-1*K.1^50,K.1^58,K.1^46,K.1^26,-1*K.1^2,K.1^26,K.1^2,K.1^50,K.1^2,K.1^62,K.1^58,-1*K.1^38,K.1^22,K.1^6,-1*K.1^6,-1*K.1^62,-1*K.1^30,-1*K.1^54,-1*K.1^42,-1*K.1^42,-1*K.1^22,-1*K.1^22,K.1^54,K.1^38,-1*K.1^46,-1*K.1^6,-1*K.1^66,K.1^22,-1*K.1^54,K.1^54,-1*K.1^26,-1*K.1^58,K.1^18,-1*K.1^38,-1*K.1^50,K.1^46,K.1^30,K.1^50,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^24,K.1^56,K.1^32,-1*K.1^28,K.1^40,-1*K.1^4,K.1^16,-1*K.1^60,-1*K.1^36,K.1^8,-1*K.1^20,K.1^48,-1*K.1^12,-1*K.1^44,K.1^64,-1*K.1^52,K.1^60,-1*K.1^48,-1*K.1^64,K.1^12,K.1^48,-1*K.1^36,-1*K.1^32,K.1^52,K.1^36,-1*K.1^40,-1*K.1^56,K.1^4,K.1^40,-1*K.1^44,-1*K.1^8,K.1^60,K.1^44,K.1^52,K.1^44,K.1^4,K.1^20,-1*K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^4,K.1^64,K.1^56,K.1^36,-1*K.1^52,-1*K.1^60,-1*K.1^16,K.1^8,K.1^16,K.1^24,K.1^32,-1*K.1^24,K.1^28,K.1^20,K.1^12,K.1^28,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,-1*K.1^12,-1*K.1^36,-1*K.1^44,-1*K.1^4,-1*K.1^20,K.1^56,K.1^64,-1*K.1^60,K.1^24,K.1^8,-1*K.1^28,K.1^40,K.1^48,K.1^32,-1*K.1^52,K.1^16,K.1^14,K.1^46,-1*K.1^18,-1*K.1^38,K.1^46,-1*K.1^54,-1*K.1^6,K.1^2,-1*K.1^54,K.1^18,-1*K.1^38,-1*K.1^50,-1*K.1^30,K.1^42,-1*K.1^14,K.1^58,K.1^66,K.1^10,K.1^50,-1*K.1^50,-1*K.1^18,K.1^22,-1*K.1^58,-1*K.1^14,K.1^30,K.1^38,K.1^26,-1*K.1^58,-1*K.1^26,-1*K.1^2,K.1^6,-1*K.1^2,K.1^18,K.1^22,K.1^54,-1*K.1^30,-1*K.1^42,-1*K.1^66,-1*K.1^10,K.1^54,-1*K.1^46,K.1^38,-1*K.1^62,-1*K.1^62,K.1^10,-1*K.1^46,K.1^26,K.1^6,K.1^2,-1*K.1^22,K.1^50,-1*K.1^6,K.1^66,K.1^58,-1*K.1^42,K.1^42,K.1^30,K.1^62,-1*K.1^66,-1*K.1^22,-1*K.1^10,K.1^14,K.1^62,-1*K.1^26,K.1^52,K.1^44,K.1^36,-1*K.1^32,-1*K.1^40,-1*K.1^48,K.1^60,-1*K.1^8,-1*K.1^24,K.1^20,K.1^4,K.1^64,-1*K.1^56,-1*K.1^16,K.1^36,-1*K.1^32,-1*K.1^60,-1*K.1^40,K.1^8,K.1^24,K.1^40,-1*K.1^36,-1*K.1^20,-1*K.1^44,K.1^16,K.1^32,-1*K.1^28,-1*K.1^12,K.1^56,-1*K.1^56,-1*K.1^16,K.1^20,K.1^52,-1*K.1^48,K.1^28,K.1^4,K.1^60,-1*K.1^52,K.1^12,-1*K.1^4,-1*K.1^8,K.1^48,-1*K.1^64,K.1^44,-1*K.1^24,K.1^28,K.1^12,-1*K.1^64,K.1^3,-1*K.1^21,K.1^21,K.1^29,-1*K.1^29,K.1^57,-1*K.1^57,-1*K.1^49,K.1^49,-1*K.1^53,K.1^53,K.1^61,-1*K.1^61,K.1^25,-1*K.1^25,K.1^13,-1*K.1^13,-1*K.1^27,-1*K.1^31,K.1^59,-1*K.1^19,-1*K.1^63,-1*K.1^59,K.1^19,K.1^63,-1*K.1^67,-1*K.1^23,K.1^55,K.1^67,K.1^23,K.1^27,K.1^31,K.1^9,-1*K.1^5,K.1^5,-1*K.1^65,K.1^65,-1*K.1^37,K.1^37,K.1^45,-1*K.1^45,K.1^41,-1*K.1^41,-1*K.1^33,K.1^33,K.1,-1*K.1,-1*K.1^9,-1*K.1^47,K.1^7,K.1^3,K.1^55,K.1^15,-1*K.1^39,-1*K.1^43,-1*K.1^15,K.1^39,-1*K.1^35,K.1^11,K.1^47,K.1^35,-1*K.1^11,-1*K.1^7,-1*K.1^3,K.1^43,K.1^13,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,K.1^37,-1*K.1^37,K.1^49,-1*K.1^49,-1*K.1^41,K.1^41,-1*K.1^61,K.1^61,-1*K.1,K.1,-1*K.1^13,-1*K.1^43,-1*K.1^7,K.1^31,-1*K.1^55,K.1^19,K.1^39,K.1^43,-1*K.1^19,-1*K.1^39,K.1^67,-1*K.1^11,-1*K.1^55,-1*K.1^67,K.1^11,K.1^7,-1*K.1^31,-1*K.1^9,K.1^21,-1*K.1^21,K.1^65,-1*K.1^65,-1*K.1^57,K.1^57,-1*K.1^45,K.1^45,K.1^53,-1*K.1^53,K.1^33,-1*K.1^33,-1*K.1^25,K.1^25,K.1^9,K.1^47,K.1^27,-1*K.1^3,-1*K.1^59,-1*K.1^15,K.1^63,K.1^59,K.1^15,-1*K.1^63,K.1^35,K.1^23,-1*K.1^47,-1*K.1^35,-1*K.1^23,-1*K.1^27,K.1^14,K.1^66,-1*K.1^18,K.1^30,-1*K.1^62,K.1^14,K.1^26,K.1^18,-1*K.1^6,-1*K.1^42,-1*K.1^30,-1*K.1^14,-1*K.1^66,-1*K.1^10,K.1^10,K.1^62,-1*K.1^42,K.1^18,K.1^58,K.1^10,-1*K.1^66,K.1^46,-1*K.1^14,-1*K.1^38,-1*K.1^10,K.1^50,-1*K.1^58,-1*K.1^46,-1*K.1^26,K.1^2,-1*K.1^26,-1*K.1^2,-1*K.1^50,-1*K.1^2,-1*K.1^62,-1*K.1^58,K.1^38,-1*K.1^22,-1*K.1^6,K.1^6,K.1^62,K.1^30,K.1^54,K.1^42,K.1^42,K.1^22,K.1^22,-1*K.1^54,-1*K.1^38,K.1^46,K.1^6,K.1^66,-1*K.1^22,K.1^54,-1*K.1^54,K.1^26,K.1^58,-1*K.1^18,K.1^38,K.1^50,-1*K.1^46,-1*K.1^30,-1*K.1^50,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^44,-1*K.1^12,-1*K.1^36,K.1^40,-1*K.1^28,K.1^64,-1*K.1^52,K.1^8,K.1^32,-1*K.1^60,K.1^48,-1*K.1^20,K.1^56,K.1^24,-1*K.1^4,K.1^16,-1*K.1^8,K.1^20,K.1^4,-1*K.1^56,-1*K.1^20,K.1^32,K.1^36,-1*K.1^16,-1*K.1^32,K.1^28,K.1^12,-1*K.1^64,-1*K.1^28,K.1^24,K.1^60,-1*K.1^8,-1*K.1^24,-1*K.1^16,-1*K.1^24,-1*K.1^64,-1*K.1^48,K.1^40,K.1^48,K.1^56,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^32,K.1^16,K.1^8,K.1^52,-1*K.1^60,-1*K.1^52,-1*K.1^44,-1*K.1^36,K.1^44,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^40,K.1^60,K.1^52,K.1^44,K.1^36,K.1^28,K.1^20,K.1^12,K.1^4,K.1^56,K.1^32,K.1^24,K.1^64,K.1^48,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^44,-1*K.1^60,K.1^40,-1*K.1^28,-1*K.1^20,-1*K.1^36,K.1^16,-1*K.1^52,-1*K.1^54,-1*K.1^22,K.1^50,K.1^30,-1*K.1^22,K.1^14,K.1^62,-1*K.1^66,K.1^14,-1*K.1^50,K.1^30,K.1^18,K.1^38,-1*K.1^26,K.1^54,-1*K.1^10,-1*K.1^2,-1*K.1^58,-1*K.1^18,K.1^18,K.1^50,-1*K.1^46,K.1^10,K.1^54,-1*K.1^38,-1*K.1^30,-1*K.1^42,K.1^10,K.1^42,K.1^66,-1*K.1^62,K.1^66,-1*K.1^50,-1*K.1^46,-1*K.1^14,K.1^38,K.1^26,K.1^2,K.1^58,-1*K.1^14,K.1^22,-1*K.1^30,K.1^6,K.1^6,-1*K.1^58,K.1^22,-1*K.1^42,-1*K.1^62,-1*K.1^66,K.1^46,-1*K.1^18,K.1^62,-1*K.1^2,-1*K.1^10,K.1^26,-1*K.1^26,-1*K.1^38,-1*K.1^6,K.1^2,K.1^46,K.1^58,-1*K.1^54,-1*K.1^6,K.1^42,-1*K.1^16,-1*K.1^24,-1*K.1^32,K.1^36,K.1^28,K.1^20,-1*K.1^8,K.1^60,K.1^44,-1*K.1^48,-1*K.1^64,-1*K.1^4,K.1^12,K.1^52,-1*K.1^32,K.1^36,K.1^8,K.1^28,-1*K.1^60,-1*K.1^44,-1*K.1^28,K.1^32,K.1^48,K.1^24,-1*K.1^52,-1*K.1^36,K.1^40,K.1^56,-1*K.1^12,K.1^12,K.1^52,-1*K.1^48,-1*K.1^16,K.1^20,-1*K.1^40,-1*K.1^64,-1*K.1^8,K.1^16,-1*K.1^56,K.1^64,K.1^60,-1*K.1^20,K.1^4,-1*K.1^24,K.1^44,-1*K.1^40,-1*K.1^56,K.1^4,-1*K.1^65,K.1^47,-1*K.1^47,-1*K.1^39,K.1^39,-1*K.1^11,K.1^11,K.1^19,-1*K.1^19,K.1^15,-1*K.1^15,-1*K.1^7,K.1^7,-1*K.1^43,K.1^43,-1*K.1^55,K.1^55,K.1^41,K.1^37,-1*K.1^9,K.1^49,K.1^5,K.1^9,-1*K.1^49,-1*K.1^5,K.1,K.1^45,-1*K.1^13,-1*K.1,-1*K.1^45,-1*K.1^41,-1*K.1^37,-1*K.1^59,K.1^63,-1*K.1^63,K.1^3,-1*K.1^3,K.1^31,-1*K.1^31,-1*K.1^23,K.1^23,-1*K.1^27,K.1^27,K.1^35,-1*K.1^35,-1*K.1^67,K.1^67,K.1^59,K.1^21,-1*K.1^61,-1*K.1^65,-1*K.1^13,-1*K.1^53,K.1^29,K.1^25,K.1^53,-1*K.1^29,K.1^33,-1*K.1^57,-1*K.1^21,-1*K.1^33,K.1^57,K.1^61,K.1^65,-1*K.1^25,-1*K.1^55,-1*K.1^63,K.1^63,K.1^39,-1*K.1^39,-1*K.1^31,K.1^31,-1*K.1^19,K.1^19,K.1^27,-1*K.1^27,K.1^7,-1*K.1^7,K.1^67,-1*K.1^67,K.1^55,K.1^25,K.1^61,-1*K.1^37,K.1^13,-1*K.1^49,-1*K.1^29,-1*K.1^25,K.1^49,K.1^29,-1*K.1,K.1^57,K.1^13,K.1,-1*K.1^57,-1*K.1^61,K.1^37,K.1^59,-1*K.1^47,K.1^47,-1*K.1^3,K.1^3,K.1^11,-1*K.1^11,K.1^23,-1*K.1^23,-1*K.1^15,K.1^15,-1*K.1^35,K.1^35,K.1^43,-1*K.1^43,-1*K.1^59,-1*K.1^21,-1*K.1^41,K.1^65,K.1^9,K.1^53,-1*K.1^5,-1*K.1^9,-1*K.1^53,K.1^5,-1*K.1^33,-1*K.1^45,K.1^21,K.1^33,K.1^45,K.1^41,-1*K.1^54,-1*K.1^2,K.1^50,-1*K.1^38,K.1^6,-1*K.1^54,-1*K.1^42,-1*K.1^50,K.1^62,K.1^26,K.1^38,K.1^54,K.1^2,K.1^58,-1*K.1^58,-1*K.1^6,K.1^26,-1*K.1^50,-1*K.1^10,-1*K.1^58,K.1^2,-1*K.1^22,K.1^54,K.1^30,K.1^58,-1*K.1^18,K.1^10,K.1^22,K.1^42,-1*K.1^66,K.1^42,K.1^66,K.1^18,K.1^66,K.1^6,K.1^10,-1*K.1^30,K.1^46,K.1^62,-1*K.1^62,-1*K.1^6,-1*K.1^38,-1*K.1^14,-1*K.1^26,-1*K.1^26,-1*K.1^46,-1*K.1^46,K.1^14,K.1^30,-1*K.1^22,-1*K.1^62,-1*K.1^2,K.1^46,-1*K.1^14,K.1^14,-1*K.1^42,-1*K.1^10,K.1^50,-1*K.1^30,-1*K.1^18,K.1^22,K.1^38,K.1^18,-1*K.1^66]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^52,K.1^8,K.1^24,-1*K.1^4,K.1^64,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^44,K.1^40,K.1^32,-1*K.1^36,-1*K.1^60,K.1^16,K.1^48,K.1^56,K.1^28,K.1^36,-1*K.1^48,K.1^60,-1*K.1^36,-1*K.1^44,-1*K.1^24,-1*K.1^56,K.1^44,-1*K.1^64,-1*K.1^8,K.1^20,K.1^64,K.1^16,-1*K.1^40,K.1^28,-1*K.1^16,-1*K.1^56,-1*K.1^16,K.1^20,-1*K.1^32,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^20,K.1^48,K.1^8,K.1^44,K.1^56,-1*K.1^28,K.1^12,K.1^40,-1*K.1^12,-1*K.1^52,K.1^24,K.1^52,K.1^4,-1*K.1^32,K.1^60,K.1^4,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,-1*K.1^60,-1*K.1^44,K.1^16,-1*K.1^20,K.1^32,K.1^8,K.1^48,-1*K.1^28,-1*K.1^52,K.1^40,-1*K.1^4,K.1^64,-1*K.1^36,K.1^24,K.1^56,-1*K.1^12,-1*K.1^2,-1*K.1^26,K.1^22,-1*K.1^54,-1*K.1^26,K.1^66,-1*K.1^30,K.1^10,K.1^66,-1*K.1^22,-1*K.1^54,K.1^46,-1*K.1^14,-1*K.1^6,K.1^2,K.1^18,K.1^58,K.1^50,-1*K.1^46,K.1^46,K.1^22,-1*K.1^42,-1*K.1^18,K.1^2,K.1^14,K.1^54,-1*K.1^62,-1*K.1^18,K.1^62,-1*K.1^10,K.1^30,-1*K.1^10,-1*K.1^22,-1*K.1^42,-1*K.1^66,-1*K.1^14,K.1^6,-1*K.1^58,-1*K.1^50,-1*K.1^66,K.1^26,K.1^54,-1*K.1^38,-1*K.1^38,K.1^50,K.1^26,-1*K.1^62,K.1^30,K.1^10,K.1^42,-1*K.1^46,-1*K.1^30,K.1^58,K.1^18,K.1^6,-1*K.1^6,K.1^14,K.1^38,-1*K.1^58,K.1^42,-1*K.1^50,-1*K.1^2,K.1^38,K.1^62,-1*K.1^56,-1*K.1^16,K.1^44,-1*K.1^24,-1*K.1^64,K.1^36,K.1^28,-1*K.1^40,K.1^52,-1*K.1^32,K.1^20,K.1^48,-1*K.1^8,K.1^12,K.1^44,-1*K.1^24,-1*K.1^28,-1*K.1^64,K.1^40,-1*K.1^52,K.1^64,-1*K.1^44,K.1^32,K.1^16,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^60,K.1^8,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^56,K.1^36,K.1^4,K.1^20,K.1^28,K.1^56,K.1^60,-1*K.1^20,-1*K.1^40,-1*K.1^36,-1*K.1^48,-1*K.1^16,K.1^52,K.1^4,K.1^60,-1*K.1^48,-1*K.1^15,-1*K.1^37,K.1^37,-1*K.1^9,K.1^9,-1*K.1^13,K.1^13,-1*K.1^41,K.1^41,-1*K.1^61,K.1^61,-1*K.1^33,K.1^33,K.1^57,-1*K.1^57,-1*K.1^65,K.1^65,-1*K.1^67,K.1^19,-1*K.1^23,-1*K.1^27,K.1^43,K.1^23,K.1^27,-1*K.1^43,K.1^63,-1*K.1^47,-1*K.1^3,-1*K.1^63,K.1^47,K.1^67,-1*K.1^19,-1*K.1^45,K.1^25,-1*K.1^25,K.1^53,-1*K.1^53,K.1^49,-1*K.1^49,K.1^21,-1*K.1^21,K.1,-1*K.1,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,K.1^45,-1*K.1^31,-1*K.1^35,-1*K.1^15,-1*K.1^3,K.1^7,K.1^59,-1*K.1^11,-1*K.1^7,-1*K.1^59,K.1^39,-1*K.1^55,K.1^31,-1*K.1^39,K.1^55,K.1^35,K.1^15,K.1^11,-1*K.1^65,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,-1*K.1^49,K.1^49,K.1^41,-1*K.1^41,-1*K.1,K.1,K.1^33,-1*K.1^33,K.1^5,-1*K.1^5,K.1^65,-1*K.1^11,K.1^35,-1*K.1^19,K.1^3,K.1^27,-1*K.1^59,K.1^11,-1*K.1^27,K.1^59,-1*K.1^63,K.1^55,K.1^3,K.1^63,-1*K.1^55,-1*K.1^35,K.1^19,K.1^45,K.1^37,-1*K.1^37,-1*K.1^53,K.1^53,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,K.1^61,-1*K.1^61,-1*K.1^29,K.1^29,-1*K.1^57,K.1^57,-1*K.1^45,K.1^31,K.1^67,K.1^15,K.1^23,-1*K.1^7,-1*K.1^43,-1*K.1^23,K.1^7,K.1^43,-1*K.1^39,K.1^47,-1*K.1^31,K.1^39,-1*K.1^47,-1*K.1^67,-1*K.1^2,K.1^58,K.1^22,K.1^14,-1*K.1^38,-1*K.1^2,-1*K.1^62,-1*K.1^22,-1*K.1^30,K.1^6,-1*K.1^14,K.1^2,-1*K.1^58,-1*K.1^50,K.1^50,K.1^38,K.1^6,-1*K.1^22,K.1^18,K.1^50,-1*K.1^58,-1*K.1^26,K.1^2,-1*K.1^54,-1*K.1^50,-1*K.1^46,-1*K.1^18,K.1^26,K.1^62,K.1^10,K.1^62,-1*K.1^10,K.1^46,-1*K.1^10,-1*K.1^38,-1*K.1^18,K.1^54,K.1^42,-1*K.1^30,K.1^30,K.1^38,K.1^14,-1*K.1^66,-1*K.1^6,-1*K.1^6,-1*K.1^42,-1*K.1^42,K.1^66,-1*K.1^54,-1*K.1^26,K.1^30,K.1^58,K.1^42,-1*K.1^66,K.1^66,-1*K.1^62,K.1^18,K.1^22,K.1^54,-1*K.1^46,K.1^26,-1*K.1^14,K.1^46,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^16,-1*K.1^60,-1*K.1^44,K.1^64,-1*K.1^4,K.1^48,K.1^56,K.1^40,K.1^24,-1*K.1^28,-1*K.1^36,K.1^32,K.1^8,-1*K.1^52,-1*K.1^20,-1*K.1^12,-1*K.1^40,-1*K.1^32,K.1^20,-1*K.1^8,K.1^32,K.1^24,K.1^44,K.1^12,-1*K.1^24,K.1^4,K.1^60,-1*K.1^48,-1*K.1^4,-1*K.1^52,K.1^28,-1*K.1^40,K.1^52,K.1^12,K.1^52,-1*K.1^48,K.1^36,K.1^64,-1*K.1^36,K.1^8,K.1^48,-1*K.1^20,-1*K.1^60,-1*K.1^24,-1*K.1^12,K.1^40,-1*K.1^56,-1*K.1^28,K.1^56,K.1^16,-1*K.1^44,-1*K.1^16,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^64,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^4,-1*K.1^32,K.1^60,K.1^20,K.1^8,K.1^24,-1*K.1^52,K.1^48,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^40,K.1^16,-1*K.1^28,K.1^64,-1*K.1^4,K.1^32,-1*K.1^44,-1*K.1^12,K.1^56,K.1^66,K.1^42,-1*K.1^46,K.1^14,K.1^42,-1*K.1^2,K.1^38,-1*K.1^58,-1*K.1^2,K.1^46,K.1^14,-1*K.1^22,K.1^54,K.1^62,-1*K.1^66,-1*K.1^50,-1*K.1^10,-1*K.1^18,K.1^22,-1*K.1^22,-1*K.1^46,K.1^26,K.1^50,-1*K.1^66,-1*K.1^54,-1*K.1^14,K.1^6,K.1^50,-1*K.1^6,K.1^58,-1*K.1^38,K.1^58,K.1^46,K.1^26,K.1^2,K.1^54,-1*K.1^62,K.1^10,K.1^18,K.1^2,-1*K.1^42,-1*K.1^14,K.1^30,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^38,-1*K.1^58,-1*K.1^26,K.1^22,K.1^38,-1*K.1^10,-1*K.1^50,-1*K.1^62,K.1^62,-1*K.1^54,-1*K.1^30,K.1^10,-1*K.1^26,K.1^18,K.1^66,-1*K.1^30,-1*K.1^6,K.1^12,K.1^52,-1*K.1^24,K.1^44,K.1^4,-1*K.1^32,-1*K.1^40,K.1^28,-1*K.1^16,K.1^36,-1*K.1^48,-1*K.1^20,K.1^60,-1*K.1^56,-1*K.1^24,K.1^44,K.1^40,K.1^4,-1*K.1^28,K.1^16,-1*K.1^4,K.1^24,-1*K.1^36,-1*K.1^52,K.1^56,-1*K.1^44,K.1^64,K.1^8,-1*K.1^60,K.1^60,-1*K.1^56,K.1^36,K.1^12,-1*K.1^32,-1*K.1^64,-1*K.1^48,-1*K.1^40,-1*K.1^12,-1*K.1^8,K.1^48,K.1^28,K.1^32,K.1^20,K.1^52,-1*K.1^16,-1*K.1^64,-1*K.1^8,K.1^20,K.1^53,K.1^31,-1*K.1^31,K.1^59,-1*K.1^59,K.1^55,-1*K.1^55,K.1^27,-1*K.1^27,K.1^7,-1*K.1^7,K.1^35,-1*K.1^35,-1*K.1^11,K.1^11,K.1^3,-1*K.1^3,K.1,-1*K.1^49,K.1^45,K.1^41,-1*K.1^25,-1*K.1^45,-1*K.1^41,K.1^25,-1*K.1^5,K.1^21,K.1^65,K.1^5,-1*K.1^21,-1*K.1,K.1^49,K.1^23,-1*K.1^43,K.1^43,-1*K.1^15,K.1^15,-1*K.1^19,K.1^19,-1*K.1^47,K.1^47,-1*K.1^67,K.1^67,-1*K.1^39,K.1^39,K.1^63,-1*K.1^63,-1*K.1^23,K.1^37,K.1^33,K.1^53,K.1^65,-1*K.1^61,-1*K.1^9,K.1^57,K.1^61,K.1^9,-1*K.1^29,K.1^13,-1*K.1^37,K.1^29,-1*K.1^13,-1*K.1^33,-1*K.1^53,-1*K.1^57,K.1^3,K.1^43,-1*K.1^43,-1*K.1^59,K.1^59,K.1^19,-1*K.1^19,-1*K.1^27,K.1^27,K.1^67,-1*K.1^67,-1*K.1^35,K.1^35,-1*K.1^63,K.1^63,-1*K.1^3,K.1^57,-1*K.1^33,K.1^49,-1*K.1^65,-1*K.1^41,K.1^9,-1*K.1^57,K.1^41,-1*K.1^9,K.1^5,-1*K.1^13,-1*K.1^65,-1*K.1^5,K.1^13,K.1^33,-1*K.1^49,-1*K.1^23,-1*K.1^31,K.1^31,K.1^15,-1*K.1^15,-1*K.1^55,K.1^55,K.1^47,-1*K.1^47,-1*K.1^7,K.1^7,K.1^39,-1*K.1^39,K.1^11,-1*K.1^11,K.1^23,-1*K.1^37,-1*K.1,-1*K.1^53,-1*K.1^45,K.1^61,K.1^25,K.1^45,-1*K.1^61,-1*K.1^25,K.1^29,-1*K.1^21,K.1^37,-1*K.1^29,K.1^21,K.1,K.1^66,-1*K.1^10,-1*K.1^46,-1*K.1^54,K.1^30,K.1^66,K.1^6,K.1^46,K.1^38,-1*K.1^62,K.1^54,-1*K.1^66,K.1^10,K.1^18,-1*K.1^18,-1*K.1^30,-1*K.1^62,K.1^46,-1*K.1^50,-1*K.1^18,K.1^10,K.1^42,-1*K.1^66,K.1^14,K.1^18,K.1^22,K.1^50,-1*K.1^42,-1*K.1^6,-1*K.1^58,-1*K.1^6,K.1^58,-1*K.1^22,K.1^58,K.1^30,K.1^50,-1*K.1^14,-1*K.1^26,K.1^38,-1*K.1^38,-1*K.1^30,-1*K.1^54,K.1^2,K.1^62,K.1^62,K.1^26,K.1^26,-1*K.1^2,K.1^14,K.1^42,-1*K.1^38,-1*K.1^10,-1*K.1^26,K.1^2,-1*K.1^2,K.1^6,-1*K.1^50,-1*K.1^46,-1*K.1^14,K.1^22,-1*K.1^42,K.1^54,-1*K.1^22,-1*K.1^58]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^16,-1*K.1^60,-1*K.1^44,K.1^64,-1*K.1^4,K.1^48,K.1^56,K.1^40,K.1^24,-1*K.1^28,-1*K.1^36,K.1^32,K.1^8,-1*K.1^52,-1*K.1^20,-1*K.1^12,-1*K.1^40,-1*K.1^32,K.1^20,-1*K.1^8,K.1^32,K.1^24,K.1^44,K.1^12,-1*K.1^24,K.1^4,K.1^60,-1*K.1^48,-1*K.1^4,-1*K.1^52,K.1^28,-1*K.1^40,K.1^52,K.1^12,K.1^52,-1*K.1^48,K.1^36,K.1^64,-1*K.1^36,K.1^8,K.1^48,-1*K.1^20,-1*K.1^60,-1*K.1^24,-1*K.1^12,K.1^40,-1*K.1^56,-1*K.1^28,K.1^56,K.1^16,-1*K.1^44,-1*K.1^16,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^64,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^4,-1*K.1^32,K.1^60,K.1^20,K.1^8,K.1^24,-1*K.1^52,K.1^48,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^40,K.1^16,-1*K.1^28,K.1^64,-1*K.1^4,K.1^32,-1*K.1^44,-1*K.1^12,K.1^56,-1*K.1^66,-1*K.1^42,K.1^46,-1*K.1^14,-1*K.1^42,K.1^2,-1*K.1^38,K.1^58,K.1^2,-1*K.1^46,-1*K.1^14,K.1^22,-1*K.1^54,-1*K.1^62,K.1^66,K.1^50,K.1^10,K.1^18,-1*K.1^22,K.1^22,K.1^46,-1*K.1^26,-1*K.1^50,K.1^66,K.1^54,K.1^14,-1*K.1^6,-1*K.1^50,K.1^6,-1*K.1^58,K.1^38,-1*K.1^58,-1*K.1^46,-1*K.1^26,-1*K.1^2,-1*K.1^54,K.1^62,-1*K.1^10,-1*K.1^18,-1*K.1^2,K.1^42,K.1^14,-1*K.1^30,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^38,K.1^58,K.1^26,-1*K.1^22,-1*K.1^38,K.1^10,K.1^50,K.1^62,-1*K.1^62,K.1^54,K.1^30,-1*K.1^10,K.1^26,-1*K.1^18,-1*K.1^66,K.1^30,K.1^6,K.1^12,K.1^52,-1*K.1^24,K.1^44,K.1^4,-1*K.1^32,-1*K.1^40,K.1^28,-1*K.1^16,K.1^36,-1*K.1^48,-1*K.1^20,K.1^60,-1*K.1^56,-1*K.1^24,K.1^44,K.1^40,K.1^4,-1*K.1^28,K.1^16,-1*K.1^4,K.1^24,-1*K.1^36,-1*K.1^52,K.1^56,-1*K.1^44,K.1^64,K.1^8,-1*K.1^60,K.1^60,-1*K.1^56,K.1^36,K.1^12,-1*K.1^32,-1*K.1^64,-1*K.1^48,-1*K.1^40,-1*K.1^12,-1*K.1^8,K.1^48,K.1^28,K.1^32,K.1^20,K.1^52,-1*K.1^16,-1*K.1^64,-1*K.1^8,K.1^20,K.1^19,K.1^65,-1*K.1^65,-1*K.1^25,K.1^25,-1*K.1^21,K.1^21,K.1^61,-1*K.1^61,K.1^41,-1*K.1^41,-1*K.1,K.1,-1*K.1^45,K.1^45,K.1^37,-1*K.1^37,-1*K.1^35,-1*K.1^15,K.1^11,K.1^7,K.1^59,-1*K.1^11,-1*K.1^7,-1*K.1^59,K.1^39,-1*K.1^55,K.1^31,-1*K.1^39,K.1^55,K.1^35,K.1^15,K.1^57,K.1^9,-1*K.1^9,-1*K.1^49,K.1^49,-1*K.1^53,K.1^53,K.1^13,-1*K.1^13,K.1^33,-1*K.1^33,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,-1*K.1^57,K.1^3,-1*K.1^67,K.1^19,K.1^31,-1*K.1^27,K.1^43,K.1^23,K.1^27,-1*K.1^43,K.1^63,-1*K.1^47,-1*K.1^3,-1*K.1^63,K.1^47,K.1^67,-1*K.1^19,-1*K.1^23,K.1^37,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,K.1^53,-1*K.1^53,-1*K.1^61,K.1^61,-1*K.1^33,K.1^33,K.1,-1*K.1,K.1^29,-1*K.1^29,-1*K.1^37,K.1^23,K.1^67,K.1^15,-1*K.1^31,-1*K.1^7,-1*K.1^43,-1*K.1^23,K.1^7,K.1^43,-1*K.1^39,K.1^47,-1*K.1^31,K.1^39,-1*K.1^47,-1*K.1^67,-1*K.1^15,-1*K.1^57,-1*K.1^65,K.1^65,K.1^49,-1*K.1^49,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,-1*K.1^41,K.1^41,-1*K.1^5,K.1^5,K.1^45,-1*K.1^45,K.1^57,-1*K.1^3,K.1^35,-1*K.1^19,-1*K.1^11,K.1^27,-1*K.1^59,K.1^11,-1*K.1^27,K.1^59,-1*K.1^63,K.1^55,K.1^3,K.1^63,-1*K.1^55,-1*K.1^35,-1*K.1^66,K.1^10,K.1^46,K.1^54,-1*K.1^30,-1*K.1^66,-1*K.1^6,-1*K.1^46,-1*K.1^38,K.1^62,-1*K.1^54,K.1^66,-1*K.1^10,-1*K.1^18,K.1^18,K.1^30,K.1^62,-1*K.1^46,K.1^50,K.1^18,-1*K.1^10,-1*K.1^42,K.1^66,-1*K.1^14,-1*K.1^18,-1*K.1^22,-1*K.1^50,K.1^42,K.1^6,K.1^58,K.1^6,-1*K.1^58,K.1^22,-1*K.1^58,-1*K.1^30,-1*K.1^50,K.1^14,K.1^26,-1*K.1^38,K.1^38,K.1^30,K.1^54,-1*K.1^2,-1*K.1^62,-1*K.1^62,-1*K.1^26,-1*K.1^26,K.1^2,-1*K.1^14,-1*K.1^42,K.1^38,K.1^10,K.1^26,-1*K.1^2,K.1^2,-1*K.1^6,K.1^50,K.1^46,K.1^14,-1*K.1^22,K.1^42,-1*K.1^54,K.1^22,K.1^58]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^52,K.1^8,K.1^24,-1*K.1^4,K.1^64,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^44,K.1^40,K.1^32,-1*K.1^36,-1*K.1^60,K.1^16,K.1^48,K.1^56,K.1^28,K.1^36,-1*K.1^48,K.1^60,-1*K.1^36,-1*K.1^44,-1*K.1^24,-1*K.1^56,K.1^44,-1*K.1^64,-1*K.1^8,K.1^20,K.1^64,K.1^16,-1*K.1^40,K.1^28,-1*K.1^16,-1*K.1^56,-1*K.1^16,K.1^20,-1*K.1^32,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^20,K.1^48,K.1^8,K.1^44,K.1^56,-1*K.1^28,K.1^12,K.1^40,-1*K.1^12,-1*K.1^52,K.1^24,K.1^52,K.1^4,-1*K.1^32,K.1^60,K.1^4,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,-1*K.1^60,-1*K.1^44,K.1^16,-1*K.1^20,K.1^32,K.1^8,K.1^48,-1*K.1^28,-1*K.1^52,K.1^40,-1*K.1^4,K.1^64,-1*K.1^36,K.1^24,K.1^56,-1*K.1^12,K.1^2,K.1^26,-1*K.1^22,K.1^54,K.1^26,-1*K.1^66,K.1^30,-1*K.1^10,-1*K.1^66,K.1^22,K.1^54,-1*K.1^46,K.1^14,K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^58,-1*K.1^50,K.1^46,-1*K.1^46,-1*K.1^22,K.1^42,K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^54,K.1^62,K.1^18,-1*K.1^62,K.1^10,-1*K.1^30,K.1^10,K.1^22,K.1^42,K.1^66,K.1^14,-1*K.1^6,K.1^58,K.1^50,K.1^66,-1*K.1^26,-1*K.1^54,K.1^38,K.1^38,-1*K.1^50,-1*K.1^26,K.1^62,-1*K.1^30,-1*K.1^10,-1*K.1^42,K.1^46,K.1^30,-1*K.1^58,-1*K.1^18,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^38,K.1^58,-1*K.1^42,K.1^50,K.1^2,-1*K.1^38,-1*K.1^62,-1*K.1^56,-1*K.1^16,K.1^44,-1*K.1^24,-1*K.1^64,K.1^36,K.1^28,-1*K.1^40,K.1^52,-1*K.1^32,K.1^20,K.1^48,-1*K.1^8,K.1^12,K.1^44,-1*K.1^24,-1*K.1^28,-1*K.1^64,K.1^40,-1*K.1^52,K.1^64,-1*K.1^44,K.1^32,K.1^16,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^60,K.1^8,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^56,K.1^36,K.1^4,K.1^20,K.1^28,K.1^56,K.1^60,-1*K.1^20,-1*K.1^40,-1*K.1^36,-1*K.1^48,-1*K.1^16,K.1^52,K.1^4,K.1^60,-1*K.1^48,-1*K.1^49,-1*K.1^3,K.1^3,K.1^43,-1*K.1^43,K.1^47,-1*K.1^47,-1*K.1^7,K.1^7,-1*K.1^27,K.1^27,K.1^67,-1*K.1^67,K.1^23,-1*K.1^23,-1*K.1^31,K.1^31,K.1^33,K.1^53,-1*K.1^57,-1*K.1^61,-1*K.1^9,K.1^57,K.1^61,K.1^9,-1*K.1^29,K.1^13,-1*K.1^37,K.1^29,-1*K.1^13,-1*K.1^33,-1*K.1^53,-1*K.1^11,-1*K.1^59,K.1^59,K.1^19,-1*K.1^19,K.1^15,-1*K.1^15,-1*K.1^55,K.1^55,-1*K.1^35,K.1^35,-1*K.1^63,K.1^63,K.1^39,-1*K.1^39,K.1^11,-1*K.1^65,K.1,-1*K.1^49,-1*K.1^37,K.1^41,-1*K.1^25,-1*K.1^45,-1*K.1^41,K.1^25,-1*K.1^5,K.1^21,K.1^65,K.1^5,-1*K.1^21,-1*K.1,K.1^49,K.1^45,-1*K.1^31,K.1^59,-1*K.1^59,-1*K.1^43,K.1^43,-1*K.1^15,K.1^15,K.1^7,-1*K.1^7,K.1^35,-1*K.1^35,-1*K.1^67,K.1^67,-1*K.1^39,K.1^39,K.1^31,-1*K.1^45,-1*K.1,-1*K.1^53,K.1^37,K.1^61,K.1^25,K.1^45,-1*K.1^61,-1*K.1^25,K.1^29,-1*K.1^21,K.1^37,-1*K.1^29,K.1^21,K.1,K.1^53,K.1^11,K.1^3,-1*K.1^3,-1*K.1^19,K.1^19,-1*K.1^47,K.1^47,K.1^55,-1*K.1^55,K.1^27,-1*K.1^27,K.1^63,-1*K.1^63,-1*K.1^23,K.1^23,-1*K.1^11,K.1^65,-1*K.1^33,K.1^49,K.1^57,-1*K.1^41,K.1^9,-1*K.1^57,K.1^41,-1*K.1^9,K.1^5,-1*K.1^13,-1*K.1^65,-1*K.1^5,K.1^13,K.1^33,K.1^2,-1*K.1^58,-1*K.1^22,-1*K.1^14,K.1^38,K.1^2,K.1^62,K.1^22,K.1^30,-1*K.1^6,K.1^14,-1*K.1^2,K.1^58,K.1^50,-1*K.1^50,-1*K.1^38,-1*K.1^6,K.1^22,-1*K.1^18,-1*K.1^50,K.1^58,K.1^26,-1*K.1^2,K.1^54,K.1^50,K.1^46,K.1^18,-1*K.1^26,-1*K.1^62,-1*K.1^10,-1*K.1^62,K.1^10,-1*K.1^46,K.1^10,K.1^38,K.1^18,-1*K.1^54,-1*K.1^42,K.1^30,-1*K.1^30,-1*K.1^38,-1*K.1^14,K.1^66,K.1^6,K.1^6,K.1^42,K.1^42,-1*K.1^66,K.1^54,K.1^26,-1*K.1^30,-1*K.1^58,-1*K.1^42,K.1^66,-1*K.1^66,K.1^62,-1*K.1^18,-1*K.1^22,-1*K.1^54,K.1^46,-1*K.1^26,K.1^14,-1*K.1^46,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^60,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^32,-1*K.1^44,K.1^40,K.1^48,K.1^56,-1*K.1^20,K.1^16,-1*K.1^52,K.1^64,K.1^8,K.1^24,-1*K.1^28,-1*K.1^48,K.1^52,-1*K.1^24,-1*K.1^64,-1*K.1^52,K.1^56,K.1^12,K.1^28,-1*K.1^56,-1*K.1^32,K.1^4,K.1^44,K.1^32,K.1^8,K.1^20,-1*K.1^48,-1*K.1^8,K.1^28,-1*K.1^8,K.1^44,-1*K.1^16,-1*K.1^36,K.1^16,K.1^64,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^56,-1*K.1^28,K.1^48,-1*K.1^40,-1*K.1^20,K.1^40,-1*K.1^60,-1*K.1^12,K.1^60,K.1^36,-1*K.1^16,-1*K.1^64,K.1^36,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^64,K.1^56,K.1^8,-1*K.1^44,K.1^16,-1*K.1^4,K.1^24,K.1^48,-1*K.1^60,-1*K.1^20,-1*K.1^36,K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^28,K.1^40,-1*K.1^18,K.1^30,K.1^62,K.1^10,K.1^30,K.1^50,K.1^66,-1*K.1^22,K.1^50,-1*K.1^62,K.1^10,K.1^6,K.1^58,-1*K.1^54,K.1^18,K.1^26,-1*K.1^46,K.1^42,-1*K.1^6,K.1^6,K.1^62,K.1^38,-1*K.1^26,K.1^18,-1*K.1^58,-1*K.1^10,-1*K.1^14,-1*K.1^26,K.1^14,K.1^22,-1*K.1^66,K.1^22,-1*K.1^62,K.1^38,-1*K.1^50,K.1^58,K.1^54,K.1^46,-1*K.1^42,-1*K.1^50,-1*K.1^30,-1*K.1^10,K.1^2,K.1^2,K.1^42,-1*K.1^30,-1*K.1^14,-1*K.1^66,-1*K.1^22,-1*K.1^38,-1*K.1^6,K.1^66,-1*K.1^46,K.1^26,K.1^54,-1*K.1^54,-1*K.1^58,-1*K.1^2,K.1^46,-1*K.1^38,-1*K.1^42,-1*K.1^18,-1*K.1^2,K.1^14,K.1^28,-1*K.1^8,-1*K.1^56,K.1^12,-1*K.1^32,K.1^52,-1*K.1^48,K.1^20,K.1^60,-1*K.1^16,K.1^44,K.1^24,K.1^4,-1*K.1^40,-1*K.1^56,K.1^12,K.1^48,-1*K.1^32,-1*K.1^20,-1*K.1^60,K.1^32,K.1^56,K.1^16,K.1^8,K.1^40,-1*K.1^12,-1*K.1^36,K.1^64,-1*K.1^4,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,K.1^52,K.1^36,K.1^44,-1*K.1^48,-1*K.1^28,-1*K.1^64,-1*K.1^44,K.1^20,-1*K.1^52,-1*K.1^24,-1*K.1^8,K.1^60,K.1^36,-1*K.1^64,-1*K.1^24,K.1^67,-1*K.1^61,K.1^61,K.1^13,-1*K.1^13,K.1^49,-1*K.1^49,K.1^29,-1*K.1^29,-1*K.1^5,K.1^5,-1*K.1^25,K.1^25,-1*K.1^37,K.1^37,-1*K.1^41,K.1^41,-1*K.1^59,K.1^35,K.1^3,K.1^39,-1*K.1^47,-1*K.1^3,-1*K.1^39,K.1^47,K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,K.1^15,K.1^59,-1*K.1^35,K.1^65,-1*K.1^21,K.1^21,-1*K.1,K.1,K.1^33,-1*K.1^33,K.1^53,-1*K.1^53,K.1^9,-1*K.1^9,-1*K.1^57,K.1^57,-1*K.1^45,K.1^45,-1*K.1^65,-1*K.1^7,-1*K.1^43,K.1^67,-1*K.1^27,K.1^63,-1*K.1^55,K.1^31,-1*K.1^63,K.1^55,-1*K.1^11,K.1^19,K.1^7,K.1^11,-1*K.1^19,K.1^43,-1*K.1^67,-1*K.1^31,-1*K.1^41,K.1^21,-1*K.1^21,-1*K.1^13,K.1^13,-1*K.1^33,K.1^33,-1*K.1^29,K.1^29,-1*K.1^9,K.1^9,K.1^25,-1*K.1^25,K.1^45,-1*K.1^45,K.1^41,K.1^31,K.1^43,-1*K.1^35,K.1^27,-1*K.1^39,K.1^55,-1*K.1^31,K.1^39,-1*K.1^55,-1*K.1^23,-1*K.1^19,K.1^27,K.1^23,K.1^19,-1*K.1^43,K.1^35,-1*K.1^65,K.1^61,-1*K.1^61,K.1,-1*K.1,-1*K.1^49,K.1^49,-1*K.1^53,K.1^53,K.1^5,-1*K.1^5,K.1^57,-1*K.1^57,K.1^37,-1*K.1^37,K.1^65,K.1^7,K.1^59,-1*K.1^67,-1*K.1^3,-1*K.1^63,K.1^47,K.1^3,K.1^63,-1*K.1^47,K.1^11,K.1^15,-1*K.1^7,-1*K.1^11,-1*K.1^15,-1*K.1^59,-1*K.1^18,-1*K.1^46,K.1^62,-1*K.1^58,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^62,K.1^66,K.1^54,K.1^58,K.1^18,K.1^46,-1*K.1^42,K.1^42,-1*K.1^2,K.1^54,-1*K.1^62,K.1^26,K.1^42,K.1^46,K.1^30,K.1^18,K.1^10,-1*K.1^42,-1*K.1^6,-1*K.1^26,-1*K.1^30,K.1^14,-1*K.1^22,K.1^14,K.1^22,K.1^6,K.1^22,K.1^2,-1*K.1^26,-1*K.1^10,-1*K.1^38,K.1^66,-1*K.1^66,-1*K.1^2,-1*K.1^58,-1*K.1^50,-1*K.1^54,-1*K.1^54,K.1^38,K.1^38,K.1^50,K.1^10,K.1^30,-1*K.1^66,-1*K.1^46,-1*K.1^38,-1*K.1^50,K.1^50,-1*K.1^14,K.1^26,K.1^62,-1*K.1^10,-1*K.1^6,-1*K.1^30,K.1^58,K.1^6,-1*K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^8,K.1^64,K.1^56,K.1^32,-1*K.1^36,K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^12,K.1^48,-1*K.1^52,K.1^16,-1*K.1^4,-1*K.1^60,-1*K.1^44,K.1^40,K.1^20,-1*K.1^16,K.1^44,K.1^4,K.1^16,-1*K.1^12,-1*K.1^56,-1*K.1^40,K.1^12,K.1^36,-1*K.1^64,-1*K.1^24,-1*K.1^36,-1*K.1^60,-1*K.1^48,K.1^20,K.1^60,-1*K.1^40,K.1^60,-1*K.1^24,K.1^52,K.1^32,-1*K.1^52,-1*K.1^4,K.1^24,-1*K.1^44,K.1^64,K.1^12,K.1^40,-1*K.1^20,K.1^28,K.1^48,-1*K.1^28,K.1^8,K.1^56,-1*K.1^8,-1*K.1^32,K.1^52,K.1^4,-1*K.1^32,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^4,-1*K.1^12,-1*K.1^60,K.1^24,-1*K.1^52,K.1^64,-1*K.1^44,-1*K.1^20,K.1^8,K.1^48,K.1^32,-1*K.1^36,K.1^16,K.1^56,K.1^40,-1*K.1^28,K.1^50,-1*K.1^38,-1*K.1^6,-1*K.1^58,-1*K.1^38,-1*K.1^18,-1*K.1^2,K.1^46,-1*K.1^18,K.1^6,-1*K.1^58,-1*K.1^62,-1*K.1^10,K.1^14,-1*K.1^50,-1*K.1^42,K.1^22,-1*K.1^26,K.1^62,-1*K.1^62,-1*K.1^6,-1*K.1^30,K.1^42,-1*K.1^50,K.1^10,K.1^58,K.1^54,K.1^42,-1*K.1^54,-1*K.1^46,K.1^2,-1*K.1^46,K.1^6,-1*K.1^30,K.1^18,-1*K.1^10,-1*K.1^14,-1*K.1^22,K.1^26,K.1^18,K.1^38,K.1^58,-1*K.1^66,-1*K.1^66,-1*K.1^26,K.1^38,K.1^54,K.1^2,K.1^46,K.1^30,K.1^62,-1*K.1^2,K.1^22,-1*K.1^42,-1*K.1^14,K.1^14,K.1^10,K.1^66,-1*K.1^22,K.1^30,K.1^26,K.1^50,K.1^66,-1*K.1^54,-1*K.1^40,K.1^60,K.1^12,-1*K.1^56,K.1^36,-1*K.1^16,K.1^20,-1*K.1^48,-1*K.1^8,K.1^52,-1*K.1^24,-1*K.1^44,-1*K.1^64,K.1^28,K.1^12,-1*K.1^56,-1*K.1^20,K.1^36,K.1^48,K.1^8,-1*K.1^36,-1*K.1^12,-1*K.1^52,-1*K.1^60,-1*K.1^28,K.1^56,K.1^32,-1*K.1^4,K.1^64,-1*K.1^64,K.1^28,K.1^52,-1*K.1^40,-1*K.1^16,-1*K.1^32,-1*K.1^24,K.1^20,K.1^40,K.1^4,K.1^24,-1*K.1^48,K.1^16,K.1^44,K.1^60,-1*K.1^8,-1*K.1^32,K.1^4,K.1^44,-1*K.1,K.1^7,-1*K.1^7,-1*K.1^55,K.1^55,-1*K.1^19,K.1^19,-1*K.1^39,K.1^39,K.1^63,-1*K.1^63,K.1^43,-1*K.1^43,K.1^31,-1*K.1^31,K.1^27,-1*K.1^27,K.1^9,-1*K.1^33,-1*K.1^65,-1*K.1^29,K.1^21,K.1^65,K.1^29,-1*K.1^21,-1*K.1^45,K.1^53,K.1^41,K.1^45,-1*K.1^53,-1*K.1^9,K.1^33,-1*K.1^3,K.1^47,-1*K.1^47,K.1^67,-1*K.1^67,-1*K.1^35,K.1^35,-1*K.1^15,K.1^15,-1*K.1^59,K.1^59,K.1^11,-1*K.1^11,K.1^23,-1*K.1^23,K.1^3,K.1^61,K.1^25,-1*K.1,K.1^41,-1*K.1^5,K.1^13,-1*K.1^37,K.1^5,-1*K.1^13,K.1^57,-1*K.1^49,-1*K.1^61,-1*K.1^57,K.1^49,-1*K.1^25,K.1,K.1^37,K.1^27,-1*K.1^47,K.1^47,K.1^55,-1*K.1^55,K.1^35,-1*K.1^35,K.1^39,-1*K.1^39,K.1^59,-1*K.1^59,-1*K.1^43,K.1^43,-1*K.1^23,K.1^23,-1*K.1^27,-1*K.1^37,-1*K.1^25,K.1^33,-1*K.1^41,K.1^29,-1*K.1^13,K.1^37,-1*K.1^29,K.1^13,K.1^45,K.1^49,-1*K.1^41,-1*K.1^45,-1*K.1^49,K.1^25,-1*K.1^33,K.1^3,-1*K.1^7,K.1^7,-1*K.1^67,K.1^67,K.1^19,-1*K.1^19,K.1^15,-1*K.1^15,-1*K.1^63,K.1^63,-1*K.1^11,K.1^11,-1*K.1^31,K.1^31,-1*K.1^3,-1*K.1^61,-1*K.1^9,K.1,K.1^65,K.1^5,-1*K.1^21,-1*K.1^65,-1*K.1^5,K.1^21,-1*K.1^57,-1*K.1^53,K.1^61,K.1^57,K.1^53,K.1^9,K.1^50,K.1^22,-1*K.1^6,K.1^10,-1*K.1^66,K.1^50,K.1^54,K.1^6,-1*K.1^2,-1*K.1^14,-1*K.1^10,-1*K.1^50,-1*K.1^22,K.1^26,-1*K.1^26,K.1^66,-1*K.1^14,K.1^6,-1*K.1^42,-1*K.1^26,-1*K.1^22,-1*K.1^38,-1*K.1^50,-1*K.1^58,K.1^26,K.1^62,K.1^42,K.1^38,-1*K.1^54,K.1^46,-1*K.1^54,-1*K.1^46,-1*K.1^62,-1*K.1^46,-1*K.1^66,K.1^42,K.1^58,K.1^30,-1*K.1^2,K.1^2,K.1^66,K.1^10,K.1^18,K.1^14,K.1^14,-1*K.1^30,-1*K.1^30,-1*K.1^18,-1*K.1^58,-1*K.1^38,K.1^2,K.1^22,K.1^30,K.1^18,-1*K.1^18,K.1^54,-1*K.1^42,-1*K.1^6,K.1^58,K.1^62,K.1^38,-1*K.1^10,-1*K.1^62,K.1^46]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,K.1^51,K.1^51,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^8,K.1^64,K.1^56,K.1^32,-1*K.1^36,K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^12,K.1^48,-1*K.1^52,K.1^16,-1*K.1^4,-1*K.1^60,-1*K.1^44,K.1^40,K.1^20,-1*K.1^16,K.1^44,K.1^4,K.1^16,-1*K.1^12,-1*K.1^56,-1*K.1^40,K.1^12,K.1^36,-1*K.1^64,-1*K.1^24,-1*K.1^36,-1*K.1^60,-1*K.1^48,K.1^20,K.1^60,-1*K.1^40,K.1^60,-1*K.1^24,K.1^52,K.1^32,-1*K.1^52,-1*K.1^4,K.1^24,-1*K.1^44,K.1^64,K.1^12,K.1^40,-1*K.1^20,K.1^28,K.1^48,-1*K.1^28,K.1^8,K.1^56,-1*K.1^8,-1*K.1^32,K.1^52,K.1^4,-1*K.1^32,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^4,-1*K.1^12,-1*K.1^60,K.1^24,-1*K.1^52,K.1^64,-1*K.1^44,-1*K.1^20,K.1^8,K.1^48,K.1^32,-1*K.1^36,K.1^16,K.1^56,K.1^40,-1*K.1^28,-1*K.1^50,K.1^38,K.1^6,K.1^58,K.1^38,K.1^18,K.1^2,-1*K.1^46,K.1^18,-1*K.1^6,K.1^58,K.1^62,K.1^10,-1*K.1^14,K.1^50,K.1^42,-1*K.1^22,K.1^26,-1*K.1^62,K.1^62,K.1^6,K.1^30,-1*K.1^42,K.1^50,-1*K.1^10,-1*K.1^58,-1*K.1^54,-1*K.1^42,K.1^54,K.1^46,-1*K.1^2,K.1^46,-1*K.1^6,K.1^30,-1*K.1^18,K.1^10,K.1^14,K.1^22,-1*K.1^26,-1*K.1^18,-1*K.1^38,-1*K.1^58,K.1^66,K.1^66,K.1^26,-1*K.1^38,-1*K.1^54,-1*K.1^2,-1*K.1^46,-1*K.1^30,-1*K.1^62,K.1^2,-1*K.1^22,K.1^42,K.1^14,-1*K.1^14,-1*K.1^10,-1*K.1^66,K.1^22,-1*K.1^30,-1*K.1^26,-1*K.1^50,-1*K.1^66,K.1^54,-1*K.1^40,K.1^60,K.1^12,-1*K.1^56,K.1^36,-1*K.1^16,K.1^20,-1*K.1^48,-1*K.1^8,K.1^52,-1*K.1^24,-1*K.1^44,-1*K.1^64,K.1^28,K.1^12,-1*K.1^56,-1*K.1^20,K.1^36,K.1^48,K.1^8,-1*K.1^36,-1*K.1^12,-1*K.1^52,-1*K.1^60,-1*K.1^28,K.1^56,K.1^32,-1*K.1^4,K.1^64,-1*K.1^64,K.1^28,K.1^52,-1*K.1^40,-1*K.1^16,-1*K.1^32,-1*K.1^24,K.1^20,K.1^40,K.1^4,K.1^24,-1*K.1^48,K.1^16,K.1^44,K.1^60,-1*K.1^8,-1*K.1^32,K.1^4,K.1^44,K.1^35,K.1^41,-1*K.1^41,K.1^21,-1*K.1^21,-1*K.1^53,K.1^53,K.1^5,-1*K.1^5,-1*K.1^29,K.1^29,-1*K.1^9,K.1^9,K.1^65,-1*K.1^65,K.1^61,-1*K.1^61,-1*K.1^43,K.1^67,-1*K.1^31,K.1^63,-1*K.1^55,K.1^31,-1*K.1^63,K.1^55,-1*K.1^11,K.1^19,K.1^7,K.1^11,-1*K.1^19,K.1^43,-1*K.1^67,-1*K.1^37,-1*K.1^13,K.1^13,-1*K.1^33,K.1^33,K.1,-1*K.1,-1*K.1^49,K.1^49,K.1^25,-1*K.1^25,K.1^45,-1*K.1^45,K.1^57,-1*K.1^57,K.1^37,K.1^27,-1*K.1^59,K.1^35,K.1^7,K.1^39,-1*K.1^47,-1*K.1^3,-1*K.1^39,K.1^47,K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,K.1^15,K.1^59,-1*K.1^35,K.1^3,K.1^61,K.1^13,-1*K.1^13,-1*K.1^21,K.1^21,-1*K.1,K.1,-1*K.1^5,K.1^5,-1*K.1^25,K.1^25,K.1^9,-1*K.1^9,-1*K.1^57,K.1^57,-1*K.1^61,-1*K.1^3,K.1^59,-1*K.1^67,-1*K.1^7,-1*K.1^63,K.1^47,K.1^3,K.1^63,-1*K.1^47,K.1^11,K.1^15,-1*K.1^7,-1*K.1^11,-1*K.1^15,-1*K.1^59,K.1^67,K.1^37,-1*K.1^41,K.1^41,K.1^33,-1*K.1^33,K.1^53,-1*K.1^53,K.1^49,-1*K.1^49,K.1^29,-1*K.1^29,-1*K.1^45,K.1^45,-1*K.1^65,K.1^65,-1*K.1^37,-1*K.1^27,K.1^43,-1*K.1^35,K.1^31,-1*K.1^39,K.1^55,-1*K.1^31,K.1^39,-1*K.1^55,-1*K.1^23,-1*K.1^19,K.1^27,K.1^23,K.1^19,-1*K.1^43,-1*K.1^50,-1*K.1^22,K.1^6,-1*K.1^10,K.1^66,-1*K.1^50,-1*K.1^54,-1*K.1^6,K.1^2,K.1^14,K.1^10,K.1^50,K.1^22,-1*K.1^26,K.1^26,-1*K.1^66,K.1^14,-1*K.1^6,K.1^42,K.1^26,K.1^22,K.1^38,K.1^50,K.1^58,-1*K.1^26,-1*K.1^62,-1*K.1^42,-1*K.1^38,K.1^54,-1*K.1^46,K.1^54,K.1^46,K.1^62,K.1^46,K.1^66,-1*K.1^42,-1*K.1^58,-1*K.1^30,K.1^2,-1*K.1^2,-1*K.1^66,-1*K.1^10,-1*K.1^18,-1*K.1^14,-1*K.1^14,K.1^30,K.1^30,K.1^18,K.1^58,K.1^38,-1*K.1^2,-1*K.1^22,-1*K.1^30,-1*K.1^18,K.1^18,-1*K.1^54,K.1^42,K.1^6,-1*K.1^58,-1*K.1^62,-1*K.1^38,K.1^10,K.1^62,-1*K.1^46]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^60,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^32,-1*K.1^44,K.1^40,K.1^48,K.1^56,-1*K.1^20,K.1^16,-1*K.1^52,K.1^64,K.1^8,K.1^24,-1*K.1^28,-1*K.1^48,K.1^52,-1*K.1^24,-1*K.1^64,-1*K.1^52,K.1^56,K.1^12,K.1^28,-1*K.1^56,-1*K.1^32,K.1^4,K.1^44,K.1^32,K.1^8,K.1^20,-1*K.1^48,-1*K.1^8,K.1^28,-1*K.1^8,K.1^44,-1*K.1^16,-1*K.1^36,K.1^16,K.1^64,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^56,-1*K.1^28,K.1^48,-1*K.1^40,-1*K.1^20,K.1^40,-1*K.1^60,-1*K.1^12,K.1^60,K.1^36,-1*K.1^16,-1*K.1^64,K.1^36,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^64,K.1^56,K.1^8,-1*K.1^44,K.1^16,-1*K.1^4,K.1^24,K.1^48,-1*K.1^60,-1*K.1^20,-1*K.1^36,K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^28,K.1^40,K.1^18,-1*K.1^30,-1*K.1^62,-1*K.1^10,-1*K.1^30,-1*K.1^50,-1*K.1^66,K.1^22,-1*K.1^50,K.1^62,-1*K.1^10,-1*K.1^6,-1*K.1^58,K.1^54,-1*K.1^18,-1*K.1^26,K.1^46,-1*K.1^42,K.1^6,-1*K.1^6,-1*K.1^62,-1*K.1^38,K.1^26,-1*K.1^18,K.1^58,K.1^10,K.1^14,K.1^26,-1*K.1^14,-1*K.1^22,K.1^66,-1*K.1^22,K.1^62,-1*K.1^38,K.1^50,-1*K.1^58,-1*K.1^54,-1*K.1^46,K.1^42,K.1^50,K.1^30,K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^42,K.1^30,K.1^14,K.1^66,K.1^22,K.1^38,K.1^6,-1*K.1^66,K.1^46,-1*K.1^26,-1*K.1^54,K.1^54,K.1^58,K.1^2,-1*K.1^46,K.1^38,K.1^42,K.1^18,K.1^2,-1*K.1^14,K.1^28,-1*K.1^8,-1*K.1^56,K.1^12,-1*K.1^32,K.1^52,-1*K.1^48,K.1^20,K.1^60,-1*K.1^16,K.1^44,K.1^24,K.1^4,-1*K.1^40,-1*K.1^56,K.1^12,K.1^48,-1*K.1^32,-1*K.1^20,-1*K.1^60,K.1^32,K.1^56,K.1^16,K.1^8,K.1^40,-1*K.1^12,-1*K.1^36,K.1^64,-1*K.1^4,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,K.1^52,K.1^36,K.1^44,-1*K.1^48,-1*K.1^28,-1*K.1^64,-1*K.1^44,K.1^20,-1*K.1^52,-1*K.1^24,-1*K.1^8,K.1^60,K.1^36,-1*K.1^64,-1*K.1^24,-1*K.1^33,-1*K.1^27,K.1^27,-1*K.1^47,K.1^47,K.1^15,-1*K.1^15,-1*K.1^63,K.1^63,K.1^39,-1*K.1^39,K.1^59,-1*K.1^59,-1*K.1^3,K.1^3,-1*K.1^7,K.1^7,K.1^25,-1*K.1,K.1^37,-1*K.1^5,K.1^13,-1*K.1^37,K.1^5,-1*K.1^13,K.1^57,-1*K.1^49,-1*K.1^61,-1*K.1^57,K.1^49,-1*K.1^25,K.1,K.1^31,K.1^55,-1*K.1^55,K.1^35,-1*K.1^35,-1*K.1^67,K.1^67,K.1^19,-1*K.1^19,-1*K.1^43,K.1^43,-1*K.1^23,K.1^23,-1*K.1^11,K.1^11,-1*K.1^31,-1*K.1^41,K.1^9,-1*K.1^33,-1*K.1^61,-1*K.1^29,K.1^21,K.1^65,K.1^29,-1*K.1^21,-1*K.1^45,K.1^53,K.1^41,K.1^45,-1*K.1^53,-1*K.1^9,K.1^33,-1*K.1^65,-1*K.1^7,-1*K.1^55,K.1^55,K.1^47,-1*K.1^47,K.1^67,-1*K.1^67,K.1^63,-1*K.1^63,K.1^43,-1*K.1^43,-1*K.1^59,K.1^59,K.1^11,-1*K.1^11,K.1^7,K.1^65,-1*K.1^9,K.1,K.1^61,K.1^5,-1*K.1^21,-1*K.1^65,-1*K.1^5,K.1^21,-1*K.1^57,-1*K.1^53,K.1^61,K.1^57,K.1^53,K.1^9,-1*K.1,-1*K.1^31,K.1^27,-1*K.1^27,-1*K.1^35,K.1^35,-1*K.1^15,K.1^15,-1*K.1^19,K.1^19,-1*K.1^39,K.1^39,K.1^23,-1*K.1^23,K.1^3,-1*K.1^3,K.1^31,K.1^41,-1*K.1^25,K.1^33,-1*K.1^37,K.1^29,-1*K.1^13,K.1^37,-1*K.1^29,K.1^13,K.1^45,K.1^49,-1*K.1^41,-1*K.1^45,-1*K.1^49,K.1^25,K.1^18,K.1^46,-1*K.1^62,K.1^58,-1*K.1^2,K.1^18,K.1^14,K.1^62,-1*K.1^66,-1*K.1^54,-1*K.1^58,-1*K.1^18,-1*K.1^46,K.1^42,-1*K.1^42,K.1^2,-1*K.1^54,K.1^62,-1*K.1^26,-1*K.1^42,-1*K.1^46,-1*K.1^30,-1*K.1^18,-1*K.1^10,K.1^42,K.1^6,K.1^26,K.1^30,-1*K.1^14,K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^22,-1*K.1^2,K.1^26,K.1^10,K.1^38,-1*K.1^66,K.1^66,K.1^2,K.1^58,K.1^50,K.1^54,K.1^54,-1*K.1^38,-1*K.1^38,-1*K.1^50,-1*K.1^10,-1*K.1^30,K.1^66,K.1^46,K.1^38,K.1^50,-1*K.1^50,K.1^14,-1*K.1^26,-1*K.1^62,K.1^10,K.1^6,K.1^30,-1*K.1^58,-1*K.1^6,K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^4,K.1^32,-1*K.1^28,K.1^16,-1*K.1^52,-1*K.1^12,K.1^48,-1*K.1^44,K.1^40,K.1^24,-1*K.1^60,K.1^8,-1*K.1^36,K.1^64,K.1^56,-1*K.1^20,K.1^44,-1*K.1^8,-1*K.1^56,K.1^36,K.1^8,K.1^40,K.1^28,K.1^20,-1*K.1^40,K.1^52,-1*K.1^32,K.1^12,-1*K.1^52,K.1^64,-1*K.1^24,K.1^44,-1*K.1^64,K.1^20,-1*K.1^64,K.1^12,K.1^60,K.1^16,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^56,K.1^32,-1*K.1^40,-1*K.1^20,-1*K.1^44,-1*K.1^48,K.1^24,K.1^48,-1*K.1^4,-1*K.1^28,K.1^4,-1*K.1^16,K.1^60,K.1^36,-1*K.1^16,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,-1*K.1^36,K.1^40,K.1^64,-1*K.1^12,-1*K.1^60,K.1^32,K.1^56,-1*K.1^44,-1*K.1^4,K.1^24,K.1^16,-1*K.1^52,K.1^8,-1*K.1^28,-1*K.1^20,K.1^48,-1*K.1^42,-1*K.1^2,K.1^54,-1*K.1^46,-1*K.1^2,K.1^26,K.1^18,-1*K.1^6,K.1^26,-1*K.1^54,-1*K.1^46,K.1^14,-1*K.1^22,K.1^58,K.1^42,-1*K.1^38,-1*K.1^62,-1*K.1^30,-1*K.1^14,K.1^14,K.1^54,-1*K.1^66,K.1^38,K.1^42,K.1^22,K.1^46,K.1^10,K.1^38,-1*K.1^10,K.1^6,-1*K.1^18,K.1^6,-1*K.1^54,-1*K.1^66,-1*K.1^26,-1*K.1^22,-1*K.1^58,K.1^62,K.1^30,-1*K.1^26,K.1^2,K.1^46,K.1^50,K.1^50,-1*K.1^30,K.1^2,K.1^10,-1*K.1^18,-1*K.1^6,K.1^66,-1*K.1^14,K.1^18,-1*K.1^62,-1*K.1^38,-1*K.1^58,K.1^58,K.1^22,-1*K.1^50,K.1^62,K.1^66,K.1^30,-1*K.1^42,-1*K.1^50,-1*K.1^10,K.1^20,-1*K.1^64,-1*K.1^40,K.1^28,K.1^52,-1*K.1^8,K.1^44,-1*K.1^24,K.1^4,K.1^60,K.1^12,K.1^56,-1*K.1^32,-1*K.1^48,-1*K.1^40,K.1^28,-1*K.1^44,K.1^52,K.1^24,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^60,K.1^64,K.1^48,-1*K.1^28,K.1^16,-1*K.1^36,K.1^32,-1*K.1^32,-1*K.1^48,K.1^60,K.1^20,-1*K.1^8,-1*K.1^16,K.1^12,K.1^44,-1*K.1^20,K.1^36,-1*K.1^12,-1*K.1^24,K.1^8,-1*K.1^56,-1*K.1^64,K.1^4,-1*K.1^16,K.1^36,-1*K.1^56,-1*K.1^43,K.1^29,-1*K.1^29,-1*K.1^53,K.1^53,-1*K.1,K.1,-1*K.1^45,K.1^45,-1*K.1^57,K.1^57,-1*K.1^13,K.1^13,-1*K.1^41,K.1^41,-1*K.1^5,K.1^5,-1*K.1^47,-1*K.1^59,K.1^7,-1*K.1^23,-1*K.1^19,-1*K.1^7,K.1^23,K.1^19,-1*K.1^31,-1*K.1^35,-1*K.1^63,K.1^31,K.1^35,K.1^47,K.1^59,K.1^61,-1*K.1^49,K.1^49,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,K.1^33,-1*K.1^33,K.1^21,-1*K.1^21,K.1^65,-1*K.1^65,K.1^37,-1*K.1^37,-1*K.1^61,K.1^39,-1*K.1^55,-1*K.1^43,-1*K.1^63,K.1^11,K.1^15,K.1^27,-1*K.1^11,-1*K.1^15,K.1^3,-1*K.1^67,-1*K.1^39,-1*K.1^3,K.1^67,K.1^55,K.1^43,-1*K.1^27,-1*K.1^5,K.1^49,-1*K.1^49,K.1^53,-1*K.1^53,K.1^9,-1*K.1^9,K.1^45,-1*K.1^45,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,-1*K.1^37,K.1^37,K.1^5,K.1^27,K.1^55,K.1^59,K.1^63,K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,K.1^15,K.1^31,K.1^67,K.1^63,-1*K.1^31,-1*K.1^67,-1*K.1^55,-1*K.1^59,-1*K.1^61,-1*K.1^29,K.1^29,-1*K.1^25,K.1^25,K.1,-1*K.1,-1*K.1^33,K.1^33,K.1^57,-1*K.1^57,-1*K.1^65,K.1^65,K.1^41,-1*K.1^41,K.1^61,-1*K.1^39,K.1^47,K.1^43,-1*K.1^7,-1*K.1^11,K.1^19,K.1^7,K.1^11,-1*K.1^19,-1*K.1^3,K.1^35,K.1^39,K.1^3,-1*K.1^35,-1*K.1^47,-1*K.1^42,-1*K.1^62,K.1^54,K.1^22,K.1^50,-1*K.1^42,K.1^10,-1*K.1^54,K.1^18,-1*K.1^58,-1*K.1^22,K.1^42,K.1^62,K.1^30,-1*K.1^30,-1*K.1^50,-1*K.1^58,-1*K.1^54,-1*K.1^38,-1*K.1^30,K.1^62,-1*K.1^2,K.1^42,-1*K.1^46,K.1^30,-1*K.1^14,K.1^38,K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^6,K.1^14,K.1^6,K.1^50,K.1^38,K.1^46,K.1^66,K.1^18,-1*K.1^18,-1*K.1^50,K.1^22,-1*K.1^26,K.1^58,K.1^58,-1*K.1^66,-1*K.1^66,K.1^26,-1*K.1^46,-1*K.1^2,-1*K.1^18,-1*K.1^62,K.1^66,-1*K.1^26,K.1^26,K.1^10,-1*K.1^38,K.1^54,K.1^46,-1*K.1^14,K.1^2,-1*K.1^22,K.1^14,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^64,-1*K.1^36,K.1^40,-1*K.1^52,K.1^16,K.1^56,-1*K.1^20,K.1^24,-1*K.1^28,-1*K.1^44,K.1^8,-1*K.1^60,K.1^32,-1*K.1^4,-1*K.1^12,K.1^48,-1*K.1^24,K.1^60,K.1^12,-1*K.1^32,-1*K.1^60,-1*K.1^28,-1*K.1^40,-1*K.1^48,K.1^28,-1*K.1^16,K.1^36,-1*K.1^56,K.1^16,-1*K.1^4,K.1^44,-1*K.1^24,K.1^4,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^8,-1*K.1^52,K.1^8,K.1^32,K.1^56,-1*K.1^12,-1*K.1^36,K.1^28,K.1^48,K.1^24,K.1^20,-1*K.1^44,-1*K.1^20,K.1^64,K.1^40,-1*K.1^64,K.1^52,-1*K.1^8,-1*K.1^32,K.1^52,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^60,K.1^36,K.1^12,K.1^32,-1*K.1^28,-1*K.1^4,K.1^56,K.1^8,-1*K.1^36,-1*K.1^12,K.1^24,K.1^64,-1*K.1^44,-1*K.1^52,K.1^16,-1*K.1^60,K.1^40,K.1^48,-1*K.1^20,K.1^26,K.1^66,-1*K.1^14,K.1^22,K.1^66,-1*K.1^42,-1*K.1^50,K.1^62,-1*K.1^42,K.1^14,K.1^22,-1*K.1^54,K.1^46,-1*K.1^10,-1*K.1^26,K.1^30,K.1^6,K.1^38,K.1^54,-1*K.1^54,-1*K.1^14,K.1^2,-1*K.1^30,-1*K.1^26,-1*K.1^46,-1*K.1^22,-1*K.1^58,-1*K.1^30,K.1^58,-1*K.1^62,K.1^50,-1*K.1^62,K.1^14,K.1^2,K.1^42,K.1^46,K.1^10,-1*K.1^6,-1*K.1^38,K.1^42,-1*K.1^66,-1*K.1^22,-1*K.1^18,-1*K.1^18,K.1^38,-1*K.1^66,-1*K.1^58,K.1^50,K.1^62,-1*K.1^2,K.1^54,-1*K.1^50,K.1^6,K.1^30,K.1^10,-1*K.1^10,-1*K.1^46,K.1^18,-1*K.1^6,-1*K.1^2,-1*K.1^38,K.1^26,K.1^18,K.1^58,-1*K.1^48,K.1^4,K.1^28,-1*K.1^40,-1*K.1^16,K.1^60,-1*K.1^24,K.1^44,-1*K.1^64,-1*K.1^8,-1*K.1^56,-1*K.1^12,K.1^36,K.1^20,K.1^28,-1*K.1^40,K.1^24,-1*K.1^16,-1*K.1^44,K.1^64,K.1^16,-1*K.1^28,K.1^8,-1*K.1^4,-1*K.1^20,K.1^40,-1*K.1^52,K.1^32,-1*K.1^36,K.1^36,K.1^20,-1*K.1^8,-1*K.1^48,K.1^60,K.1^52,-1*K.1^56,-1*K.1^24,K.1^48,-1*K.1^32,K.1^56,K.1^44,-1*K.1^60,K.1^12,K.1^4,-1*K.1^64,K.1^52,-1*K.1^32,K.1^12,K.1^25,-1*K.1^39,K.1^39,K.1^15,-1*K.1^15,K.1^67,-1*K.1^67,K.1^23,-1*K.1^23,K.1^11,-1*K.1^11,K.1^55,-1*K.1^55,K.1^27,-1*K.1^27,K.1^63,-1*K.1^63,K.1^21,K.1^9,-1*K.1^61,K.1^45,K.1^49,K.1^61,-1*K.1^45,-1*K.1^49,K.1^37,K.1^33,K.1^5,-1*K.1^37,-1*K.1^33,-1*K.1^21,-1*K.1^9,-1*K.1^7,K.1^19,-1*K.1^19,-1*K.1^43,K.1^43,K.1^59,-1*K.1^59,-1*K.1^35,K.1^35,-1*K.1^47,K.1^47,-1*K.1^3,K.1^3,-1*K.1^31,K.1^31,K.1^7,-1*K.1^29,K.1^13,K.1^25,K.1^5,-1*K.1^57,-1*K.1^53,-1*K.1^41,K.1^57,K.1^53,-1*K.1^65,K.1,K.1^29,K.1^65,-1*K.1,-1*K.1^13,-1*K.1^25,K.1^41,K.1^63,-1*K.1^19,K.1^19,-1*K.1^15,K.1^15,-1*K.1^59,K.1^59,-1*K.1^23,K.1^23,K.1^47,-1*K.1^47,-1*K.1^55,K.1^55,K.1^31,-1*K.1^31,-1*K.1^63,-1*K.1^41,-1*K.1^13,-1*K.1^9,-1*K.1^5,-1*K.1^45,K.1^53,K.1^41,K.1^45,-1*K.1^53,-1*K.1^37,-1*K.1,-1*K.1^5,K.1^37,K.1,K.1^13,K.1^9,K.1^7,K.1^39,-1*K.1^39,K.1^43,-1*K.1^43,-1*K.1^67,K.1^67,K.1^35,-1*K.1^35,-1*K.1^11,K.1^11,K.1^3,-1*K.1^3,-1*K.1^27,K.1^27,-1*K.1^7,K.1^29,-1*K.1^21,-1*K.1^25,K.1^61,K.1^57,-1*K.1^49,-1*K.1^61,-1*K.1^57,K.1^49,K.1^65,-1*K.1^33,-1*K.1^29,-1*K.1^65,K.1^33,K.1^21,K.1^26,K.1^6,-1*K.1^14,-1*K.1^46,-1*K.1^18,K.1^26,-1*K.1^58,K.1^14,-1*K.1^50,K.1^10,K.1^46,-1*K.1^26,-1*K.1^6,-1*K.1^38,K.1^38,K.1^18,K.1^10,K.1^14,K.1^30,K.1^38,-1*K.1^6,K.1^66,-1*K.1^26,K.1^22,-1*K.1^38,K.1^54,-1*K.1^30,-1*K.1^66,K.1^58,K.1^62,K.1^58,-1*K.1^62,-1*K.1^54,-1*K.1^62,-1*K.1^18,-1*K.1^30,-1*K.1^22,-1*K.1^2,-1*K.1^50,K.1^50,K.1^18,-1*K.1^46,K.1^42,-1*K.1^10,-1*K.1^10,K.1^2,K.1^2,-1*K.1^42,K.1^22,K.1^66,K.1^50,K.1^6,-1*K.1^2,K.1^42,-1*K.1^42,-1*K.1^58,K.1^30,-1*K.1^14,-1*K.1^22,K.1^54,-1*K.1^66,K.1^46,-1*K.1^54,K.1^62]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^64,-1*K.1^36,K.1^40,-1*K.1^52,K.1^16,K.1^56,-1*K.1^20,K.1^24,-1*K.1^28,-1*K.1^44,K.1^8,-1*K.1^60,K.1^32,-1*K.1^4,-1*K.1^12,K.1^48,-1*K.1^24,K.1^60,K.1^12,-1*K.1^32,-1*K.1^60,-1*K.1^28,-1*K.1^40,-1*K.1^48,K.1^28,-1*K.1^16,K.1^36,-1*K.1^56,K.1^16,-1*K.1^4,K.1^44,-1*K.1^24,K.1^4,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^8,-1*K.1^52,K.1^8,K.1^32,K.1^56,-1*K.1^12,-1*K.1^36,K.1^28,K.1^48,K.1^24,K.1^20,-1*K.1^44,-1*K.1^20,K.1^64,K.1^40,-1*K.1^64,K.1^52,-1*K.1^8,-1*K.1^32,K.1^52,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^60,K.1^36,K.1^12,K.1^32,-1*K.1^28,-1*K.1^4,K.1^56,K.1^8,-1*K.1^36,-1*K.1^12,K.1^24,K.1^64,-1*K.1^44,-1*K.1^52,K.1^16,-1*K.1^60,K.1^40,K.1^48,-1*K.1^20,-1*K.1^26,-1*K.1^66,K.1^14,-1*K.1^22,-1*K.1^66,K.1^42,K.1^50,-1*K.1^62,K.1^42,-1*K.1^14,-1*K.1^22,K.1^54,-1*K.1^46,K.1^10,K.1^26,-1*K.1^30,-1*K.1^6,-1*K.1^38,-1*K.1^54,K.1^54,K.1^14,-1*K.1^2,K.1^30,K.1^26,K.1^46,K.1^22,K.1^58,K.1^30,-1*K.1^58,K.1^62,-1*K.1^50,K.1^62,-1*K.1^14,-1*K.1^2,-1*K.1^42,-1*K.1^46,-1*K.1^10,K.1^6,K.1^38,-1*K.1^42,K.1^66,K.1^22,K.1^18,K.1^18,-1*K.1^38,K.1^66,K.1^58,-1*K.1^50,-1*K.1^62,K.1^2,-1*K.1^54,K.1^50,-1*K.1^6,-1*K.1^30,-1*K.1^10,K.1^10,K.1^46,-1*K.1^18,K.1^6,K.1^2,K.1^38,-1*K.1^26,-1*K.1^18,-1*K.1^58,-1*K.1^48,K.1^4,K.1^28,-1*K.1^40,-1*K.1^16,K.1^60,-1*K.1^24,K.1^44,-1*K.1^64,-1*K.1^8,-1*K.1^56,-1*K.1^12,K.1^36,K.1^20,K.1^28,-1*K.1^40,K.1^24,-1*K.1^16,-1*K.1^44,K.1^64,K.1^16,-1*K.1^28,K.1^8,-1*K.1^4,-1*K.1^20,K.1^40,-1*K.1^52,K.1^32,-1*K.1^36,K.1^36,K.1^20,-1*K.1^8,-1*K.1^48,K.1^60,K.1^52,-1*K.1^56,-1*K.1^24,K.1^48,-1*K.1^32,K.1^56,K.1^44,-1*K.1^60,K.1^12,K.1^4,-1*K.1^64,K.1^52,-1*K.1^32,K.1^12,-1*K.1^59,K.1^5,-1*K.1^5,K.1^49,-1*K.1^49,-1*K.1^33,K.1^33,K.1^57,-1*K.1^57,K.1^45,-1*K.1^45,-1*K.1^21,K.1^21,K.1^61,-1*K.1^61,-1*K.1^29,K.1^29,-1*K.1^55,-1*K.1^43,-1*K.1^27,K.1^11,K.1^15,K.1^27,-1*K.1^11,-1*K.1^15,K.1^3,-1*K.1^67,-1*K.1^39,-1*K.1^3,K.1^67,K.1^55,K.1^43,-1*K.1^41,K.1^53,-1*K.1^53,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,K.1,-1*K.1,K.1^13,-1*K.1^13,-1*K.1^37,K.1^37,-1*K.1^65,K.1^65,K.1^41,K.1^63,-1*K.1^47,-1*K.1^59,-1*K.1^39,-1*K.1^23,-1*K.1^19,-1*K.1^7,K.1^23,K.1^19,-1*K.1^31,-1*K.1^35,-1*K.1^63,K.1^31,K.1^35,K.1^47,K.1^59,K.1^7,-1*K.1^29,-1*K.1^53,K.1^53,-1*K.1^49,K.1^49,K.1^25,-1*K.1^25,-1*K.1^57,K.1^57,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,K.1^65,-1*K.1^65,K.1^29,-1*K.1^7,K.1^47,K.1^43,K.1^39,-1*K.1^11,K.1^19,K.1^7,K.1^11,-1*K.1^19,-1*K.1^3,K.1^35,K.1^39,K.1^3,-1*K.1^35,-1*K.1^47,-1*K.1^43,K.1^41,-1*K.1^5,K.1^5,-1*K.1^9,K.1^9,K.1^33,-1*K.1^33,-1*K.1,K.1,-1*K.1^45,K.1^45,K.1^37,-1*K.1^37,-1*K.1^61,K.1^61,-1*K.1^41,-1*K.1^63,K.1^55,K.1^59,K.1^27,K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,K.1^15,K.1^31,K.1^67,K.1^63,-1*K.1^31,-1*K.1^67,-1*K.1^55,-1*K.1^26,-1*K.1^6,K.1^14,K.1^46,K.1^18,-1*K.1^26,K.1^58,-1*K.1^14,K.1^50,-1*K.1^10,-1*K.1^46,K.1^26,K.1^6,K.1^38,-1*K.1^38,-1*K.1^18,-1*K.1^10,-1*K.1^14,-1*K.1^30,-1*K.1^38,K.1^6,-1*K.1^66,K.1^26,-1*K.1^22,K.1^38,-1*K.1^54,K.1^30,K.1^66,-1*K.1^58,-1*K.1^62,-1*K.1^58,K.1^62,K.1^54,K.1^62,K.1^18,K.1^30,K.1^22,K.1^2,K.1^50,-1*K.1^50,-1*K.1^18,K.1^46,-1*K.1^42,K.1^10,K.1^10,-1*K.1^2,-1*K.1^2,K.1^42,-1*K.1^22,-1*K.1^66,-1*K.1^50,-1*K.1^6,K.1^2,-1*K.1^42,K.1^42,K.1^58,-1*K.1^30,K.1^14,K.1^22,-1*K.1^54,K.1^66,-1*K.1^46,K.1^54,-1*K.1^62]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^4,K.1^32,-1*K.1^28,K.1^16,-1*K.1^52,-1*K.1^12,K.1^48,-1*K.1^44,K.1^40,K.1^24,-1*K.1^60,K.1^8,-1*K.1^36,K.1^64,K.1^56,-1*K.1^20,K.1^44,-1*K.1^8,-1*K.1^56,K.1^36,K.1^8,K.1^40,K.1^28,K.1^20,-1*K.1^40,K.1^52,-1*K.1^32,K.1^12,-1*K.1^52,K.1^64,-1*K.1^24,K.1^44,-1*K.1^64,K.1^20,-1*K.1^64,K.1^12,K.1^60,K.1^16,-1*K.1^60,-1*K.1^36,-1*K.1^12,K.1^56,K.1^32,-1*K.1^40,-1*K.1^20,-1*K.1^44,-1*K.1^48,K.1^24,K.1^48,-1*K.1^4,-1*K.1^28,K.1^4,-1*K.1^16,K.1^60,K.1^36,-1*K.1^16,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,-1*K.1^36,K.1^40,K.1^64,-1*K.1^12,-1*K.1^60,K.1^32,K.1^56,-1*K.1^44,-1*K.1^4,K.1^24,K.1^16,-1*K.1^52,K.1^8,-1*K.1^28,-1*K.1^20,K.1^48,K.1^42,K.1^2,-1*K.1^54,K.1^46,K.1^2,-1*K.1^26,-1*K.1^18,K.1^6,-1*K.1^26,K.1^54,K.1^46,-1*K.1^14,K.1^22,-1*K.1^58,-1*K.1^42,K.1^38,K.1^62,K.1^30,K.1^14,-1*K.1^14,-1*K.1^54,K.1^66,-1*K.1^38,-1*K.1^42,-1*K.1^22,-1*K.1^46,-1*K.1^10,-1*K.1^38,K.1^10,-1*K.1^6,K.1^18,-1*K.1^6,K.1^54,K.1^66,K.1^26,K.1^22,K.1^58,-1*K.1^62,-1*K.1^30,K.1^26,-1*K.1^2,-1*K.1^46,-1*K.1^50,-1*K.1^50,K.1^30,-1*K.1^2,-1*K.1^10,K.1^18,K.1^6,-1*K.1^66,K.1^14,-1*K.1^18,K.1^62,K.1^38,K.1^58,-1*K.1^58,-1*K.1^22,K.1^50,-1*K.1^62,-1*K.1^66,-1*K.1^30,K.1^42,K.1^50,K.1^10,K.1^20,-1*K.1^64,-1*K.1^40,K.1^28,K.1^52,-1*K.1^8,K.1^44,-1*K.1^24,K.1^4,K.1^60,K.1^12,K.1^56,-1*K.1^32,-1*K.1^48,-1*K.1^40,K.1^28,-1*K.1^44,K.1^52,K.1^24,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^60,K.1^64,K.1^48,-1*K.1^28,K.1^16,-1*K.1^36,K.1^32,-1*K.1^32,-1*K.1^48,K.1^60,K.1^20,-1*K.1^8,-1*K.1^16,K.1^12,K.1^44,-1*K.1^20,K.1^36,-1*K.1^12,-1*K.1^24,K.1^8,-1*K.1^56,-1*K.1^64,K.1^4,-1*K.1^16,K.1^36,-1*K.1^56,K.1^9,-1*K.1^63,K.1^63,-1*K.1^19,K.1^19,K.1^35,-1*K.1^35,-1*K.1^11,K.1^11,-1*K.1^23,K.1^23,K.1^47,-1*K.1^47,-1*K.1^7,K.1^7,K.1^39,-1*K.1^39,K.1^13,K.1^25,K.1^41,-1*K.1^57,-1*K.1^53,-1*K.1^41,K.1^57,K.1^53,-1*K.1^65,K.1,K.1^29,K.1^65,-1*K.1,-1*K.1^13,-1*K.1^25,K.1^27,-1*K.1^15,K.1^15,-1*K.1^59,K.1^59,K.1^43,-1*K.1^43,-1*K.1^67,K.1^67,-1*K.1^55,K.1^55,K.1^31,-1*K.1^31,K.1^3,-1*K.1^3,-1*K.1^27,-1*K.1^5,K.1^21,K.1^9,K.1^29,K.1^45,K.1^49,K.1^61,-1*K.1^45,-1*K.1^49,K.1^37,K.1^33,K.1^5,-1*K.1^37,-1*K.1^33,-1*K.1^21,-1*K.1^9,-1*K.1^61,K.1^39,K.1^15,-1*K.1^15,K.1^19,-1*K.1^19,-1*K.1^43,K.1^43,K.1^11,-1*K.1^11,K.1^55,-1*K.1^55,-1*K.1^47,K.1^47,-1*K.1^3,K.1^3,-1*K.1^39,K.1^61,-1*K.1^21,-1*K.1^25,-1*K.1^29,K.1^57,-1*K.1^49,-1*K.1^61,-1*K.1^57,K.1^49,K.1^65,-1*K.1^33,-1*K.1^29,-1*K.1^65,K.1^33,K.1^21,K.1^25,-1*K.1^27,K.1^63,-1*K.1^63,K.1^59,-1*K.1^59,-1*K.1^35,K.1^35,K.1^67,-1*K.1^67,K.1^23,-1*K.1^23,-1*K.1^31,K.1^31,K.1^7,-1*K.1^7,K.1^27,K.1^5,-1*K.1^13,-1*K.1^9,-1*K.1^41,-1*K.1^45,K.1^53,K.1^41,K.1^45,-1*K.1^53,-1*K.1^37,-1*K.1,-1*K.1^5,K.1^37,K.1,K.1^13,K.1^42,K.1^62,-1*K.1^54,-1*K.1^22,-1*K.1^50,K.1^42,-1*K.1^10,K.1^54,-1*K.1^18,K.1^58,K.1^22,-1*K.1^42,-1*K.1^62,-1*K.1^30,K.1^30,K.1^50,K.1^58,K.1^54,K.1^38,K.1^30,-1*K.1^62,K.1^2,-1*K.1^42,K.1^46,-1*K.1^30,K.1^14,-1*K.1^38,-1*K.1^2,K.1^10,K.1^6,K.1^10,-1*K.1^6,-1*K.1^14,-1*K.1^6,-1*K.1^50,-1*K.1^38,-1*K.1^46,-1*K.1^66,-1*K.1^18,K.1^18,K.1^50,-1*K.1^22,K.1^26,-1*K.1^58,-1*K.1^58,K.1^66,K.1^66,-1*K.1^26,K.1^46,K.1^2,K.1^18,K.1^62,-1*K.1^66,K.1^26,-1*K.1^26,-1*K.1^10,K.1^38,-1*K.1^54,-1*K.1^46,K.1^14,-1*K.1^2,K.1^22,-1*K.1^14,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^12,-1*K.1^28,K.1^16,K.1^48,-1*K.1^20,-1*K.1^36,K.1^8,K.1^64,-1*K.1^52,-1*K.1^4,-1*K.1^44,K.1^24,K.1^40,K.1^56,K.1^32,-1*K.1^60,-1*K.1^64,-1*K.1^24,-1*K.1^32,-1*K.1^40,K.1^24,-1*K.1^52,-1*K.1^16,K.1^60,K.1^52,K.1^20,K.1^28,K.1^36,-1*K.1^20,K.1^56,K.1^4,-1*K.1^64,-1*K.1^56,K.1^60,-1*K.1^56,K.1^36,K.1^44,K.1^48,-1*K.1^44,K.1^40,-1*K.1^36,K.1^32,-1*K.1^28,K.1^52,-1*K.1^60,K.1^64,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^12,K.1^16,K.1^12,-1*K.1^48,K.1^44,-1*K.1^40,-1*K.1^48,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^40,-1*K.1^52,K.1^56,-1*K.1^36,-1*K.1^44,-1*K.1^28,K.1^32,K.1^64,-1*K.1^12,-1*K.1^4,K.1^48,-1*K.1^20,K.1^24,K.1^16,-1*K.1^60,K.1^8,-1*K.1^58,K.1^6,-1*K.1^26,K.1^2,K.1^6,K.1^10,-1*K.1^54,K.1^18,K.1^10,K.1^26,K.1^2,-1*K.1^42,K.1^66,-1*K.1^38,K.1^58,-1*K.1^46,K.1^50,-1*K.1^22,K.1^42,-1*K.1^42,-1*K.1^26,K.1^62,K.1^46,K.1^58,-1*K.1^66,-1*K.1^2,-1*K.1^30,K.1^46,K.1^30,-1*K.1^18,K.1^54,-1*K.1^18,K.1^26,K.1^62,-1*K.1^10,K.1^66,K.1^38,-1*K.1^50,K.1^22,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^30,K.1^54,K.1^18,-1*K.1^62,K.1^42,-1*K.1^54,K.1^50,-1*K.1^46,K.1^38,-1*K.1^38,-1*K.1^66,K.1^14,-1*K.1^50,-1*K.1^62,K.1^22,-1*K.1^58,K.1^14,K.1^30,K.1^60,-1*K.1^56,K.1^52,-1*K.1^16,K.1^20,-1*K.1^24,-1*K.1^64,K.1^4,K.1^12,K.1^44,K.1^36,K.1^32,K.1^28,-1*K.1^8,K.1^52,-1*K.1^16,K.1^64,K.1^20,-1*K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^44,K.1^56,K.1^8,K.1^16,K.1^48,K.1^40,-1*K.1^28,K.1^28,-1*K.1^8,K.1^44,K.1^60,-1*K.1^24,-1*K.1^48,K.1^36,-1*K.1^64,-1*K.1^60,-1*K.1^40,-1*K.1^36,K.1^4,K.1^24,-1*K.1^32,-1*K.1^56,K.1^12,-1*K.1^48,-1*K.1^40,-1*K.1^32,-1*K.1^27,K.1^53,-1*K.1^53,K.1^57,-1*K.1^57,K.1^37,-1*K.1^37,K.1^33,-1*K.1^33,-1*K.1,K.1,-1*K.1^5,K.1^5,K.1^21,-1*K.1^21,K.1^49,-1*K.1^49,-1*K.1^39,K.1^7,K.1^55,K.1^35,K.1^23,-1*K.1^55,-1*K.1^35,-1*K.1^23,K.1^59,-1*K.1^3,K.1^19,-1*K.1^59,K.1^3,K.1^39,-1*K.1^7,K.1^13,K.1^45,-1*K.1^45,K.1^41,-1*K.1^41,K.1^61,-1*K.1^61,K.1^65,-1*K.1^65,K.1^29,-1*K.1^29,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,-1*K.1^13,K.1^15,-1*K.1^63,-1*K.1^27,K.1^19,K.1^67,-1*K.1^11,-1*K.1^47,-1*K.1^67,K.1^11,K.1^43,K.1^31,-1*K.1^15,-1*K.1^43,-1*K.1^31,K.1^63,K.1^27,K.1^47,K.1^49,-1*K.1^45,K.1^45,-1*K.1^57,K.1^57,-1*K.1^61,K.1^61,-1*K.1^33,K.1^33,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,K.1^9,-1*K.1^9,-1*K.1^49,-1*K.1^47,K.1^63,-1*K.1^7,-1*K.1^19,-1*K.1^35,K.1^11,K.1^47,K.1^35,-1*K.1^11,-1*K.1^59,-1*K.1^31,-1*K.1^19,K.1^59,K.1^31,-1*K.1^63,K.1^7,-1*K.1^13,-1*K.1^53,K.1^53,-1*K.1^41,K.1^41,-1*K.1^37,K.1^37,-1*K.1^65,K.1^65,K.1,-1*K.1,-1*K.1^25,K.1^25,-1*K.1^21,K.1^21,K.1^13,-1*K.1^15,K.1^39,K.1^27,-1*K.1^55,-1*K.1^67,-1*K.1^23,K.1^55,K.1^67,K.1^23,-1*K.1^43,K.1^3,K.1^15,K.1^43,-1*K.1^3,-1*K.1^39,-1*K.1^58,K.1^50,-1*K.1^26,-1*K.1^66,-1*K.1^14,-1*K.1^58,-1*K.1^30,K.1^26,-1*K.1^54,K.1^38,K.1^66,K.1^58,-1*K.1^50,K.1^22,-1*K.1^22,K.1^14,K.1^38,K.1^26,-1*K.1^46,-1*K.1^22,-1*K.1^50,K.1^6,K.1^58,K.1^2,K.1^22,K.1^42,K.1^46,-1*K.1^6,K.1^30,K.1^18,K.1^30,-1*K.1^18,-1*K.1^42,-1*K.1^18,-1*K.1^14,K.1^46,-1*K.1^2,-1*K.1^62,-1*K.1^54,K.1^54,K.1^14,-1*K.1^66,-1*K.1^10,-1*K.1^38,-1*K.1^38,K.1^62,K.1^62,K.1^10,K.1^2,K.1^6,K.1^54,K.1^50,-1*K.1^62,-1*K.1^10,K.1^10,-1*K.1^30,-1*K.1^46,-1*K.1^26,-1*K.1^2,K.1^42,-1*K.1^6,K.1^66,-1*K.1^42,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^56,K.1^40,-1*K.1^52,-1*K.1^20,K.1^48,K.1^32,-1*K.1^60,-1*K.1^4,K.1^16,K.1^64,K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^12,-1*K.1^36,K.1^8,K.1^4,K.1^44,K.1^36,K.1^28,-1*K.1^44,K.1^16,K.1^52,-1*K.1^8,-1*K.1^16,-1*K.1^48,-1*K.1^40,-1*K.1^32,K.1^48,-1*K.1^12,-1*K.1^64,K.1^4,K.1^12,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^24,-1*K.1^20,K.1^24,-1*K.1^28,K.1^32,-1*K.1^36,K.1^40,-1*K.1^16,K.1^8,-1*K.1^4,K.1^60,K.1^64,-1*K.1^60,K.1^56,-1*K.1^52,-1*K.1^56,K.1^20,-1*K.1^24,K.1^28,K.1^20,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^28,K.1^16,-1*K.1^12,K.1^32,K.1^24,K.1^40,-1*K.1^36,-1*K.1^4,K.1^56,K.1^64,-1*K.1^20,K.1^48,-1*K.1^44,-1*K.1^52,K.1^8,-1*K.1^60,K.1^10,-1*K.1^62,K.1^42,-1*K.1^66,-1*K.1^62,-1*K.1^58,K.1^14,-1*K.1^50,-1*K.1^58,-1*K.1^42,-1*K.1^66,K.1^26,-1*K.1^2,K.1^30,-1*K.1^10,K.1^22,-1*K.1^18,K.1^46,-1*K.1^26,K.1^26,K.1^42,-1*K.1^6,-1*K.1^22,-1*K.1^10,K.1^2,K.1^66,K.1^38,-1*K.1^22,-1*K.1^38,K.1^50,-1*K.1^14,K.1^50,-1*K.1^42,-1*K.1^6,K.1^58,-1*K.1^2,-1*K.1^30,K.1^18,-1*K.1^46,K.1^58,K.1^62,K.1^66,K.1^54,K.1^54,K.1^46,K.1^62,K.1^38,-1*K.1^14,-1*K.1^50,K.1^6,-1*K.1^26,K.1^14,-1*K.1^18,K.1^22,-1*K.1^30,K.1^30,K.1^2,-1*K.1^54,K.1^18,K.1^6,-1*K.1^46,K.1^10,-1*K.1^54,-1*K.1^38,-1*K.1^8,K.1^12,-1*K.1^16,K.1^52,-1*K.1^48,K.1^44,K.1^4,-1*K.1^64,-1*K.1^56,-1*K.1^24,-1*K.1^32,-1*K.1^36,-1*K.1^40,K.1^60,-1*K.1^16,K.1^52,-1*K.1^4,-1*K.1^48,K.1^64,K.1^56,K.1^48,K.1^16,K.1^24,-1*K.1^12,-1*K.1^60,-1*K.1^52,-1*K.1^20,-1*K.1^28,K.1^40,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^8,K.1^44,K.1^20,-1*K.1^32,K.1^4,K.1^8,K.1^28,K.1^32,-1*K.1^64,-1*K.1^44,K.1^36,K.1^12,-1*K.1^56,K.1^20,K.1^28,K.1^36,K.1^41,-1*K.1^15,K.1^15,-1*K.1^11,K.1^11,-1*K.1^31,K.1^31,-1*K.1^35,K.1^35,K.1^67,-1*K.1^67,K.1^63,-1*K.1^63,-1*K.1^47,K.1^47,-1*K.1^19,K.1^19,K.1^29,-1*K.1^61,-1*K.1^13,-1*K.1^33,-1*K.1^45,K.1^13,K.1^33,K.1^45,-1*K.1^9,K.1^65,-1*K.1^49,K.1^9,-1*K.1^65,-1*K.1^29,K.1^61,-1*K.1^55,-1*K.1^23,K.1^23,-1*K.1^27,K.1^27,-1*K.1^7,K.1^7,-1*K.1^3,K.1^3,-1*K.1^39,K.1^39,-1*K.1^43,K.1^43,K.1^59,-1*K.1^59,K.1^55,-1*K.1^53,K.1^5,K.1^41,-1*K.1^49,-1*K.1,K.1^57,K.1^21,K.1,-1*K.1^57,-1*K.1^25,-1*K.1^37,K.1^53,K.1^25,K.1^37,-1*K.1^5,-1*K.1^41,-1*K.1^21,-1*K.1^19,K.1^23,-1*K.1^23,K.1^11,-1*K.1^11,K.1^7,-1*K.1^7,K.1^35,-1*K.1^35,K.1^39,-1*K.1^39,-1*K.1^63,K.1^63,-1*K.1^59,K.1^59,K.1^19,K.1^21,-1*K.1^5,K.1^61,K.1^49,K.1^33,-1*K.1^57,-1*K.1^21,-1*K.1^33,K.1^57,K.1^9,K.1^37,K.1^49,-1*K.1^9,-1*K.1^37,K.1^5,-1*K.1^61,K.1^55,K.1^15,-1*K.1^15,K.1^27,-1*K.1^27,K.1^31,-1*K.1^31,K.1^3,-1*K.1^3,-1*K.1^67,K.1^67,K.1^43,-1*K.1^43,K.1^47,-1*K.1^47,-1*K.1^55,K.1^53,-1*K.1^29,-1*K.1^41,K.1^13,K.1,K.1^45,-1*K.1^13,-1*K.1,-1*K.1^45,K.1^25,-1*K.1^65,-1*K.1^53,-1*K.1^25,K.1^65,K.1^29,K.1^10,-1*K.1^18,K.1^42,K.1^2,K.1^54,K.1^10,K.1^38,-1*K.1^42,K.1^14,-1*K.1^30,-1*K.1^2,-1*K.1^10,K.1^18,-1*K.1^46,K.1^46,-1*K.1^54,-1*K.1^30,-1*K.1^42,K.1^22,K.1^46,K.1^18,-1*K.1^62,-1*K.1^10,-1*K.1^66,-1*K.1^46,-1*K.1^26,-1*K.1^22,K.1^62,-1*K.1^38,-1*K.1^50,-1*K.1^38,K.1^50,K.1^26,K.1^50,K.1^54,-1*K.1^22,K.1^66,K.1^6,K.1^14,-1*K.1^14,-1*K.1^54,K.1^2,K.1^58,K.1^30,K.1^30,-1*K.1^6,-1*K.1^6,-1*K.1^58,-1*K.1^66,-1*K.1^62,-1*K.1^14,-1*K.1^18,K.1^6,K.1^58,-1*K.1^58,K.1^38,K.1^22,K.1^42,K.1^66,-1*K.1^26,K.1^62,-1*K.1^2,K.1^26,-1*K.1^50]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^56,K.1^40,-1*K.1^52,-1*K.1^20,K.1^48,K.1^32,-1*K.1^60,-1*K.1^4,K.1^16,K.1^64,K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^12,-1*K.1^36,K.1^8,K.1^4,K.1^44,K.1^36,K.1^28,-1*K.1^44,K.1^16,K.1^52,-1*K.1^8,-1*K.1^16,-1*K.1^48,-1*K.1^40,-1*K.1^32,K.1^48,-1*K.1^12,-1*K.1^64,K.1^4,K.1^12,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^24,-1*K.1^20,K.1^24,-1*K.1^28,K.1^32,-1*K.1^36,K.1^40,-1*K.1^16,K.1^8,-1*K.1^4,K.1^60,K.1^64,-1*K.1^60,K.1^56,-1*K.1^52,-1*K.1^56,K.1^20,-1*K.1^24,K.1^28,K.1^20,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^28,K.1^16,-1*K.1^12,K.1^32,K.1^24,K.1^40,-1*K.1^36,-1*K.1^4,K.1^56,K.1^64,-1*K.1^20,K.1^48,-1*K.1^44,-1*K.1^52,K.1^8,-1*K.1^60,-1*K.1^10,K.1^62,-1*K.1^42,K.1^66,K.1^62,K.1^58,-1*K.1^14,K.1^50,K.1^58,K.1^42,K.1^66,-1*K.1^26,K.1^2,-1*K.1^30,K.1^10,-1*K.1^22,K.1^18,-1*K.1^46,K.1^26,-1*K.1^26,-1*K.1^42,K.1^6,K.1^22,K.1^10,-1*K.1^2,-1*K.1^66,-1*K.1^38,K.1^22,K.1^38,-1*K.1^50,K.1^14,-1*K.1^50,K.1^42,K.1^6,-1*K.1^58,K.1^2,K.1^30,-1*K.1^18,K.1^46,-1*K.1^58,-1*K.1^62,-1*K.1^66,-1*K.1^54,-1*K.1^54,-1*K.1^46,-1*K.1^62,-1*K.1^38,K.1^14,K.1^50,-1*K.1^6,K.1^26,-1*K.1^14,K.1^18,-1*K.1^22,K.1^30,-1*K.1^30,-1*K.1^2,K.1^54,-1*K.1^18,-1*K.1^6,K.1^46,-1*K.1^10,K.1^54,K.1^38,-1*K.1^8,K.1^12,-1*K.1^16,K.1^52,-1*K.1^48,K.1^44,K.1^4,-1*K.1^64,-1*K.1^56,-1*K.1^24,-1*K.1^32,-1*K.1^36,-1*K.1^40,K.1^60,-1*K.1^16,K.1^52,-1*K.1^4,-1*K.1^48,K.1^64,K.1^56,K.1^48,K.1^16,K.1^24,-1*K.1^12,-1*K.1^60,-1*K.1^52,-1*K.1^20,-1*K.1^28,K.1^40,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^8,K.1^44,K.1^20,-1*K.1^32,K.1^4,K.1^8,K.1^28,K.1^32,-1*K.1^64,-1*K.1^44,K.1^36,K.1^12,-1*K.1^56,K.1^20,K.1^28,K.1^36,K.1^7,-1*K.1^49,K.1^49,-1*K.1^45,K.1^45,-1*K.1^65,K.1^65,K.1,-1*K.1,-1*K.1^33,K.1^33,-1*K.1^29,K.1^29,K.1^13,-1*K.1^13,-1*K.1^53,K.1^53,-1*K.1^63,-1*K.1^27,K.1^47,K.1^67,-1*K.1^11,-1*K.1^47,-1*K.1^67,K.1^11,K.1^43,K.1^31,-1*K.1^15,-1*K.1^43,-1*K.1^31,K.1^63,K.1^27,K.1^21,-1*K.1^57,K.1^57,-1*K.1^61,K.1^61,-1*K.1^41,K.1^41,-1*K.1^37,K.1^37,K.1^5,-1*K.1^5,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,-1*K.1^21,-1*K.1^19,-1*K.1^39,K.1^7,-1*K.1^15,K.1^35,K.1^23,-1*K.1^55,-1*K.1^35,-1*K.1^23,K.1^59,-1*K.1^3,K.1^19,-1*K.1^59,K.1^3,K.1^39,-1*K.1^7,K.1^55,-1*K.1^53,K.1^57,-1*K.1^57,K.1^45,-1*K.1^45,K.1^41,-1*K.1^41,-1*K.1,K.1,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,K.1^25,-1*K.1^25,K.1^53,-1*K.1^55,K.1^39,K.1^27,K.1^15,-1*K.1^67,-1*K.1^23,K.1^55,K.1^67,K.1^23,-1*K.1^43,K.1^3,K.1^15,K.1^43,-1*K.1^3,-1*K.1^39,-1*K.1^27,-1*K.1^21,K.1^49,-1*K.1^49,K.1^61,-1*K.1^61,K.1^65,-1*K.1^65,K.1^37,-1*K.1^37,K.1^33,-1*K.1^33,-1*K.1^9,K.1^9,-1*K.1^13,K.1^13,K.1^21,K.1^19,K.1^63,-1*K.1^7,-1*K.1^47,-1*K.1^35,K.1^11,K.1^47,K.1^35,-1*K.1^11,-1*K.1^59,-1*K.1^31,-1*K.1^19,K.1^59,K.1^31,-1*K.1^63,-1*K.1^10,K.1^18,-1*K.1^42,-1*K.1^2,-1*K.1^54,-1*K.1^10,-1*K.1^38,K.1^42,-1*K.1^14,K.1^30,K.1^2,K.1^10,-1*K.1^18,K.1^46,-1*K.1^46,K.1^54,K.1^30,K.1^42,-1*K.1^22,-1*K.1^46,-1*K.1^18,K.1^62,K.1^10,K.1^66,K.1^46,K.1^26,K.1^22,-1*K.1^62,K.1^38,K.1^50,K.1^38,-1*K.1^50,-1*K.1^26,-1*K.1^50,-1*K.1^54,K.1^22,-1*K.1^66,-1*K.1^6,-1*K.1^14,K.1^14,K.1^54,-1*K.1^2,-1*K.1^58,-1*K.1^30,-1*K.1^30,K.1^6,K.1^6,K.1^58,K.1^66,K.1^62,K.1^14,K.1^18,-1*K.1^6,-1*K.1^58,K.1^58,-1*K.1^38,-1*K.1^22,-1*K.1^42,-1*K.1^66,K.1^26,-1*K.1^62,K.1^2,-1*K.1^26,K.1^50]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^12,-1*K.1^28,K.1^16,K.1^48,-1*K.1^20,-1*K.1^36,K.1^8,K.1^64,-1*K.1^52,-1*K.1^4,-1*K.1^44,K.1^24,K.1^40,K.1^56,K.1^32,-1*K.1^60,-1*K.1^64,-1*K.1^24,-1*K.1^32,-1*K.1^40,K.1^24,-1*K.1^52,-1*K.1^16,K.1^60,K.1^52,K.1^20,K.1^28,K.1^36,-1*K.1^20,K.1^56,K.1^4,-1*K.1^64,-1*K.1^56,K.1^60,-1*K.1^56,K.1^36,K.1^44,K.1^48,-1*K.1^44,K.1^40,-1*K.1^36,K.1^32,-1*K.1^28,K.1^52,-1*K.1^60,K.1^64,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^12,K.1^16,K.1^12,-1*K.1^48,K.1^44,-1*K.1^40,-1*K.1^48,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^40,-1*K.1^52,K.1^56,-1*K.1^36,-1*K.1^44,-1*K.1^28,K.1^32,K.1^64,-1*K.1^12,-1*K.1^4,K.1^48,-1*K.1^20,K.1^24,K.1^16,-1*K.1^60,K.1^8,K.1^58,-1*K.1^6,K.1^26,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^54,-1*K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^2,K.1^42,-1*K.1^66,K.1^38,-1*K.1^58,K.1^46,-1*K.1^50,K.1^22,-1*K.1^42,K.1^42,K.1^26,-1*K.1^62,-1*K.1^46,-1*K.1^58,K.1^66,K.1^2,K.1^30,-1*K.1^46,-1*K.1^30,K.1^18,-1*K.1^54,K.1^18,-1*K.1^26,-1*K.1^62,K.1^10,-1*K.1^66,-1*K.1^38,K.1^50,-1*K.1^22,K.1^10,K.1^6,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,K.1^30,-1*K.1^54,-1*K.1^18,K.1^62,-1*K.1^42,K.1^54,-1*K.1^50,K.1^46,-1*K.1^38,K.1^38,K.1^66,-1*K.1^14,K.1^50,K.1^62,-1*K.1^22,K.1^58,-1*K.1^14,-1*K.1^30,K.1^60,-1*K.1^56,K.1^52,-1*K.1^16,K.1^20,-1*K.1^24,-1*K.1^64,K.1^4,K.1^12,K.1^44,K.1^36,K.1^32,K.1^28,-1*K.1^8,K.1^52,-1*K.1^16,K.1^64,K.1^20,-1*K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^44,K.1^56,K.1^8,K.1^16,K.1^48,K.1^40,-1*K.1^28,K.1^28,-1*K.1^8,K.1^44,K.1^60,-1*K.1^24,-1*K.1^48,K.1^36,-1*K.1^64,-1*K.1^60,-1*K.1^40,-1*K.1^36,K.1^4,K.1^24,-1*K.1^32,-1*K.1^56,K.1^12,-1*K.1^48,-1*K.1^40,-1*K.1^32,-1*K.1^61,K.1^19,-1*K.1^19,K.1^23,-1*K.1^23,K.1^3,-1*K.1^3,-1*K.1^67,K.1^67,K.1^35,-1*K.1^35,K.1^39,-1*K.1^39,-1*K.1^55,K.1^55,K.1^15,-1*K.1^15,K.1^5,K.1^41,-1*K.1^21,-1*K.1,K.1^57,K.1^21,K.1,-1*K.1^57,-1*K.1^25,-1*K.1^37,K.1^53,K.1^25,K.1^37,-1*K.1^5,-1*K.1^41,-1*K.1^47,K.1^11,-1*K.1^11,K.1^7,-1*K.1^7,K.1^27,-1*K.1^27,K.1^31,-1*K.1^31,-1*K.1^63,K.1^63,-1*K.1^59,K.1^59,K.1^43,-1*K.1^43,K.1^47,K.1^49,K.1^29,-1*K.1^61,K.1^53,-1*K.1^33,-1*K.1^45,K.1^13,K.1^33,K.1^45,-1*K.1^9,K.1^65,-1*K.1^49,K.1^9,-1*K.1^65,-1*K.1^29,K.1^61,-1*K.1^13,K.1^15,-1*K.1^11,K.1^11,-1*K.1^23,K.1^23,-1*K.1^27,K.1^27,K.1^67,-1*K.1^67,K.1^63,-1*K.1^63,-1*K.1^39,K.1^39,-1*K.1^43,K.1^43,-1*K.1^15,K.1^13,-1*K.1^29,-1*K.1^41,-1*K.1^53,K.1,K.1^45,-1*K.1^13,-1*K.1,-1*K.1^45,K.1^25,-1*K.1^65,-1*K.1^53,-1*K.1^25,K.1^65,K.1^29,K.1^41,K.1^47,-1*K.1^19,K.1^19,-1*K.1^7,K.1^7,-1*K.1^3,K.1^3,-1*K.1^31,K.1^31,-1*K.1^35,K.1^35,K.1^59,-1*K.1^59,K.1^55,-1*K.1^55,-1*K.1^47,-1*K.1^49,-1*K.1^5,K.1^61,K.1^21,K.1^33,-1*K.1^57,-1*K.1^21,-1*K.1^33,K.1^57,K.1^9,K.1^37,K.1^49,-1*K.1^9,-1*K.1^37,K.1^5,K.1^58,-1*K.1^50,K.1^26,K.1^66,K.1^14,K.1^58,K.1^30,-1*K.1^26,K.1^54,-1*K.1^38,-1*K.1^66,-1*K.1^58,K.1^50,-1*K.1^22,K.1^22,-1*K.1^14,-1*K.1^38,-1*K.1^26,K.1^46,K.1^22,K.1^50,-1*K.1^6,-1*K.1^58,-1*K.1^2,-1*K.1^22,-1*K.1^42,-1*K.1^46,K.1^6,-1*K.1^30,-1*K.1^18,-1*K.1^30,K.1^18,K.1^42,K.1^18,K.1^14,-1*K.1^46,K.1^2,K.1^62,K.1^54,-1*K.1^54,-1*K.1^14,K.1^66,K.1^10,K.1^38,K.1^38,-1*K.1^62,-1*K.1^62,-1*K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^54,-1*K.1^50,K.1^62,K.1^10,-1*K.1^10,K.1^30,K.1^46,K.1^26,K.1^2,-1*K.1^42,K.1^6,-1*K.1^66,K.1^42,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^20,K.1^24,-1*K.1^4,-1*K.1^12,K.1^56,-1*K.1^60,-1*K.1^36,K.1^16,K.1^64,-1*K.1^52,-1*K.1^28,K.1^40,-1*K.1^44,K.1^48,K.1^8,K.1^32,-1*K.1^16,-1*K.1^40,-1*K.1^8,K.1^44,K.1^40,K.1^64,K.1^4,-1*K.1^32,-1*K.1^64,-1*K.1^56,-1*K.1^24,K.1^60,K.1^56,K.1^48,K.1^52,-1*K.1^16,-1*K.1^48,-1*K.1^32,-1*K.1^48,K.1^60,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^44,-1*K.1^60,K.1^8,K.1^24,-1*K.1^64,K.1^32,K.1^16,K.1^36,-1*K.1^52,-1*K.1^36,-1*K.1^20,-1*K.1^4,K.1^20,K.1^12,K.1^28,K.1^44,K.1^12,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,-1*K.1^44,K.1^64,K.1^48,-1*K.1^60,-1*K.1^28,K.1^24,K.1^8,K.1^16,-1*K.1^20,-1*K.1^52,-1*K.1^12,K.1^56,K.1^40,-1*K.1^4,K.1^32,-1*K.1^36,K.1^6,-1*K.1^10,-1*K.1^66,K.1^26,-1*K.1^10,-1*K.1^62,-1*K.1^22,-1*K.1^30,-1*K.1^62,K.1^66,K.1^26,-1*K.1^2,K.1^42,K.1^18,-1*K.1^6,-1*K.1^54,-1*K.1^38,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^66,-1*K.1^58,K.1^54,-1*K.1^6,-1*K.1^42,-1*K.1^26,K.1^50,K.1^54,-1*K.1^50,K.1^30,K.1^22,K.1^30,K.1^66,-1*K.1^58,K.1^62,K.1^42,-1*K.1^18,K.1^38,K.1^14,K.1^62,K.1^10,-1*K.1^26,-1*K.1^46,-1*K.1^46,-1*K.1^14,K.1^10,K.1^50,K.1^22,-1*K.1^30,K.1^58,K.1^2,-1*K.1^22,-1*K.1^38,-1*K.1^54,-1*K.1^18,K.1^18,-1*K.1^42,K.1^46,K.1^38,K.1^58,K.1^14,K.1^6,K.1^46,-1*K.1^50,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^16,K.1^52,K.1^20,K.1^28,K.1^60,K.1^8,-1*K.1^24,K.1^36,-1*K.1^64,K.1^4,K.1^16,-1*K.1^56,-1*K.1^52,-1*K.1^20,K.1^56,K.1^64,-1*K.1^28,K.1^48,-1*K.1^36,-1*K.1^4,-1*K.1^12,-1*K.1^44,K.1^24,-1*K.1^24,K.1^36,K.1^28,-1*K.1^32,-1*K.1^40,K.1^12,K.1^60,-1*K.1^16,K.1^32,K.1^44,-1*K.1^60,K.1^52,K.1^40,-1*K.1^8,-1*K.1^48,K.1^20,K.1^12,K.1^44,-1*K.1^8,-1*K.1^11,-1*K.1^9,K.1^9,-1*K.1^61,K.1^61,K.1^5,-1*K.1^5,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,K.1^65,-1*K.1^65,-1*K.1,K.1,K.1^25,-1*K.1^25,-1*K.1^31,K.1^23,-1*K.1^35,-1*K.1^47,-1*K.1^27,K.1^35,K.1^47,K.1^27,K.1^19,K.1^39,K.1^43,-1*K.1^19,-1*K.1^39,K.1^31,-1*K.1^23,-1*K.1^33,-1*K.1^41,K.1^41,K.1^57,-1*K.1^57,K.1^45,-1*K.1^45,-1*K.1^29,K.1^29,K.1^37,-1*K.1^37,-1*K.1^53,K.1^53,-1*K.1^49,K.1^49,K.1^33,-1*K.1^59,K.1^3,-1*K.1^11,K.1^43,-1*K.1^55,K.1^7,K.1^67,K.1^55,-1*K.1^7,-1*K.1^15,K.1^63,K.1^59,K.1^15,-1*K.1^63,-1*K.1^3,K.1^11,-1*K.1^67,K.1^25,K.1^41,-1*K.1^41,K.1^61,-1*K.1^61,-1*K.1^45,K.1^45,K.1^21,-1*K.1^21,-1*K.1^37,K.1^37,-1*K.1^65,K.1^65,K.1^49,-1*K.1^49,-1*K.1^25,K.1^67,-1*K.1^3,-1*K.1^23,-1*K.1^43,K.1^47,-1*K.1^7,-1*K.1^67,-1*K.1^47,K.1^7,-1*K.1^19,-1*K.1^63,-1*K.1^43,K.1^19,K.1^63,K.1^3,K.1^23,K.1^33,K.1^9,-1*K.1^9,-1*K.1^57,K.1^57,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,-1*K.1^13,K.1^13,K.1^53,-1*K.1^53,K.1,-1*K.1,-1*K.1^33,K.1^59,K.1^31,K.1^11,K.1^35,K.1^55,K.1^27,-1*K.1^35,-1*K.1^55,-1*K.1^27,K.1^15,-1*K.1^39,-1*K.1^59,-1*K.1^15,K.1^39,-1*K.1^31,K.1^6,-1*K.1^38,-1*K.1^66,-1*K.1^42,-1*K.1^46,K.1^6,K.1^50,K.1^66,-1*K.1^22,-1*K.1^18,K.1^42,-1*K.1^6,K.1^38,K.1^14,-1*K.1^14,K.1^46,-1*K.1^18,K.1^66,-1*K.1^54,-1*K.1^14,K.1^38,-1*K.1^10,-1*K.1^6,K.1^26,K.1^14,K.1^2,K.1^54,K.1^10,-1*K.1^50,-1*K.1^30,-1*K.1^50,K.1^30,-1*K.1^2,K.1^30,-1*K.1^46,K.1^54,-1*K.1^26,K.1^58,-1*K.1^22,K.1^22,K.1^46,-1*K.1^42,K.1^62,K.1^18,K.1^18,-1*K.1^58,-1*K.1^58,-1*K.1^62,K.1^26,-1*K.1^10,K.1^22,-1*K.1^38,K.1^58,K.1^62,-1*K.1^62,K.1^50,-1*K.1^54,-1*K.1^66,-1*K.1^26,K.1^2,K.1^10,K.1^42,-1*K.1^2,-1*K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^48,-1*K.1^44,K.1^64,K.1^56,-1*K.1^12,K.1^8,K.1^32,-1*K.1^52,-1*K.1^4,K.1^16,K.1^40,-1*K.1^28,K.1^24,-1*K.1^20,-1*K.1^60,-1*K.1^36,K.1^52,K.1^28,K.1^60,-1*K.1^24,-1*K.1^28,-1*K.1^4,-1*K.1^64,K.1^36,K.1^4,K.1^12,K.1^44,-1*K.1^8,-1*K.1^12,-1*K.1^20,-1*K.1^16,K.1^52,K.1^20,K.1^36,K.1^20,-1*K.1^8,-1*K.1^40,K.1^56,K.1^40,K.1^24,K.1^8,-1*K.1^60,-1*K.1^44,K.1^4,-1*K.1^36,-1*K.1^52,-1*K.1^32,K.1^16,K.1^32,K.1^48,K.1^64,-1*K.1^48,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^56,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^12,K.1^28,K.1^44,K.1^60,K.1^24,-1*K.1^4,-1*K.1^20,K.1^8,K.1^40,-1*K.1^44,-1*K.1^60,-1*K.1^52,K.1^48,K.1^16,K.1^56,-1*K.1^12,-1*K.1^28,K.1^64,-1*K.1^36,K.1^32,-1*K.1^62,K.1^58,K.1^2,-1*K.1^42,K.1^58,K.1^6,K.1^46,K.1^38,K.1^6,-1*K.1^2,-1*K.1^42,K.1^66,-1*K.1^26,-1*K.1^50,K.1^62,K.1^14,K.1^30,K.1^54,-1*K.1^66,K.1^66,K.1^2,K.1^10,-1*K.1^14,K.1^62,K.1^26,K.1^42,-1*K.1^18,-1*K.1^14,K.1^18,-1*K.1^38,-1*K.1^46,-1*K.1^38,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^26,K.1^50,-1*K.1^30,-1*K.1^54,-1*K.1^6,-1*K.1^58,K.1^42,K.1^22,K.1^22,K.1^54,-1*K.1^58,-1*K.1^18,-1*K.1^46,K.1^38,-1*K.1^10,-1*K.1^66,K.1^46,K.1^30,K.1^14,K.1^50,-1*K.1^50,K.1^26,-1*K.1^22,-1*K.1^30,-1*K.1^10,-1*K.1^54,-1*K.1^62,-1*K.1^22,K.1^18,K.1^36,K.1^20,K.1^4,-1*K.1^64,K.1^12,K.1^28,K.1^52,-1*K.1^16,-1*K.1^48,-1*K.1^40,-1*K.1^8,-1*K.1^60,K.1^44,-1*K.1^32,K.1^4,-1*K.1^64,-1*K.1^52,K.1^12,K.1^16,K.1^48,-1*K.1^12,-1*K.1^4,K.1^40,-1*K.1^20,K.1^32,K.1^64,K.1^56,K.1^24,-1*K.1^44,K.1^44,-1*K.1^32,-1*K.1^40,K.1^36,K.1^28,-1*K.1^56,-1*K.1^8,K.1^52,-1*K.1^36,-1*K.1^24,K.1^8,-1*K.1^16,-1*K.1^28,K.1^60,K.1^20,-1*K.1^48,-1*K.1^56,-1*K.1^24,K.1^60,K.1^57,K.1^59,-1*K.1^59,K.1^7,-1*K.1^7,-1*K.1^63,K.1^63,K.1^47,-1*K.1^47,-1*K.1^55,K.1^55,-1*K.1^3,K.1^3,K.1^67,-1*K.1^67,-1*K.1^43,K.1^43,K.1^37,-1*K.1^45,K.1^33,K.1^21,K.1^41,-1*K.1^33,-1*K.1^21,-1*K.1^41,-1*K.1^49,-1*K.1^29,-1*K.1^25,K.1^49,K.1^29,-1*K.1^37,K.1^45,K.1^35,K.1^27,-1*K.1^27,-1*K.1^11,K.1^11,-1*K.1^23,K.1^23,K.1^39,-1*K.1^39,-1*K.1^31,K.1^31,K.1^15,-1*K.1^15,K.1^19,-1*K.1^19,-1*K.1^35,K.1^9,-1*K.1^65,K.1^57,-1*K.1^25,K.1^13,-1*K.1^61,-1*K.1,-1*K.1^13,K.1^61,K.1^53,-1*K.1^5,-1*K.1^9,-1*K.1^53,K.1^5,K.1^65,-1*K.1^57,K.1,-1*K.1^43,-1*K.1^27,K.1^27,-1*K.1^7,K.1^7,K.1^23,-1*K.1^23,-1*K.1^47,K.1^47,K.1^31,-1*K.1^31,K.1^3,-1*K.1^3,-1*K.1^19,K.1^19,K.1^43,-1*K.1,K.1^65,K.1^45,K.1^25,-1*K.1^21,K.1^61,K.1,K.1^21,-1*K.1^61,K.1^49,K.1^5,K.1^25,-1*K.1^49,-1*K.1^5,-1*K.1^65,-1*K.1^45,-1*K.1^35,-1*K.1^59,K.1^59,K.1^11,-1*K.1^11,K.1^63,-1*K.1^63,-1*K.1^39,K.1^39,K.1^55,-1*K.1^55,-1*K.1^15,K.1^15,-1*K.1^67,K.1^67,K.1^35,-1*K.1^9,-1*K.1^37,-1*K.1^57,-1*K.1^33,-1*K.1^13,-1*K.1^41,K.1^33,K.1^13,K.1^41,-1*K.1^53,K.1^29,K.1^9,K.1^53,-1*K.1^29,K.1^37,-1*K.1^62,K.1^30,K.1^2,K.1^26,K.1^22,-1*K.1^62,-1*K.1^18,-1*K.1^2,K.1^46,K.1^50,-1*K.1^26,K.1^62,-1*K.1^30,-1*K.1^54,K.1^54,-1*K.1^22,K.1^50,-1*K.1^2,K.1^14,K.1^54,-1*K.1^30,K.1^58,K.1^62,-1*K.1^42,-1*K.1^54,-1*K.1^66,-1*K.1^14,-1*K.1^58,K.1^18,K.1^38,K.1^18,-1*K.1^38,K.1^66,-1*K.1^38,K.1^22,-1*K.1^14,K.1^42,-1*K.1^10,K.1^46,-1*K.1^46,-1*K.1^22,K.1^26,-1*K.1^6,-1*K.1^50,-1*K.1^50,K.1^10,K.1^10,K.1^6,-1*K.1^42,K.1^58,-1*K.1^46,K.1^30,-1*K.1^10,-1*K.1^6,K.1^6,-1*K.1^18,K.1^14,K.1^2,K.1^42,-1*K.1^66,-1*K.1^58,-1*K.1^26,K.1^66,K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^48,-1*K.1^44,K.1^64,K.1^56,-1*K.1^12,K.1^8,K.1^32,-1*K.1^52,-1*K.1^4,K.1^16,K.1^40,-1*K.1^28,K.1^24,-1*K.1^20,-1*K.1^60,-1*K.1^36,K.1^52,K.1^28,K.1^60,-1*K.1^24,-1*K.1^28,-1*K.1^4,-1*K.1^64,K.1^36,K.1^4,K.1^12,K.1^44,-1*K.1^8,-1*K.1^12,-1*K.1^20,-1*K.1^16,K.1^52,K.1^20,K.1^36,K.1^20,-1*K.1^8,-1*K.1^40,K.1^56,K.1^40,K.1^24,K.1^8,-1*K.1^60,-1*K.1^44,K.1^4,-1*K.1^36,-1*K.1^52,-1*K.1^32,K.1^16,K.1^32,K.1^48,K.1^64,-1*K.1^48,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^56,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^12,K.1^28,K.1^44,K.1^60,K.1^24,-1*K.1^4,-1*K.1^20,K.1^8,K.1^40,-1*K.1^44,-1*K.1^60,-1*K.1^52,K.1^48,K.1^16,K.1^56,-1*K.1^12,-1*K.1^28,K.1^64,-1*K.1^36,K.1^32,K.1^62,-1*K.1^58,-1*K.1^2,K.1^42,-1*K.1^58,-1*K.1^6,-1*K.1^46,-1*K.1^38,-1*K.1^6,K.1^2,K.1^42,-1*K.1^66,K.1^26,K.1^50,-1*K.1^62,-1*K.1^14,-1*K.1^30,-1*K.1^54,K.1^66,-1*K.1^66,-1*K.1^2,-1*K.1^10,K.1^14,-1*K.1^62,-1*K.1^26,-1*K.1^42,K.1^18,K.1^14,-1*K.1^18,K.1^38,K.1^46,K.1^38,K.1^2,-1*K.1^10,K.1^6,K.1^26,-1*K.1^50,K.1^30,K.1^54,K.1^6,K.1^58,-1*K.1^42,-1*K.1^22,-1*K.1^22,-1*K.1^54,K.1^58,K.1^18,K.1^46,-1*K.1^38,K.1^10,K.1^66,-1*K.1^46,-1*K.1^30,-1*K.1^14,-1*K.1^50,K.1^50,-1*K.1^26,K.1^22,K.1^30,K.1^10,K.1^54,K.1^62,K.1^22,-1*K.1^18,K.1^36,K.1^20,K.1^4,-1*K.1^64,K.1^12,K.1^28,K.1^52,-1*K.1^16,-1*K.1^48,-1*K.1^40,-1*K.1^8,-1*K.1^60,K.1^44,-1*K.1^32,K.1^4,-1*K.1^64,-1*K.1^52,K.1^12,K.1^16,K.1^48,-1*K.1^12,-1*K.1^4,K.1^40,-1*K.1^20,K.1^32,K.1^64,K.1^56,K.1^24,-1*K.1^44,K.1^44,-1*K.1^32,-1*K.1^40,K.1^36,K.1^28,-1*K.1^56,-1*K.1^8,K.1^52,-1*K.1^36,-1*K.1^24,K.1^8,-1*K.1^16,-1*K.1^28,K.1^60,K.1^20,-1*K.1^48,-1*K.1^56,-1*K.1^24,K.1^60,K.1^23,-1*K.1^25,K.1^25,K.1^41,-1*K.1^41,K.1^29,-1*K.1^29,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,-1*K.1^37,K.1^37,-1*K.1^33,K.1^33,K.1^9,-1*K.1^9,K.1^3,-1*K.1^11,-1*K.1^67,-1*K.1^55,K.1^7,K.1^67,K.1^55,-1*K.1^7,-1*K.1^15,K.1^63,K.1^59,K.1^15,-1*K.1^63,-1*K.1^3,K.1^11,-1*K.1,K.1^61,-1*K.1^61,-1*K.1^45,K.1^45,-1*K.1^57,K.1^57,-1*K.1^5,K.1^5,-1*K.1^65,K.1^65,K.1^49,-1*K.1^49,K.1^53,-1*K.1^53,K.1,-1*K.1^43,-1*K.1^31,K.1^23,K.1^59,-1*K.1^47,-1*K.1^27,K.1^35,K.1^47,K.1^27,K.1^19,K.1^39,K.1^43,-1*K.1^19,-1*K.1^39,K.1^31,-1*K.1^23,-1*K.1^35,K.1^9,-1*K.1^61,K.1^61,-1*K.1^41,K.1^41,K.1^57,-1*K.1^57,K.1^13,-1*K.1^13,K.1^65,-1*K.1^65,K.1^37,-1*K.1^37,-1*K.1^53,K.1^53,-1*K.1^9,K.1^35,K.1^31,K.1^11,-1*K.1^59,K.1^55,K.1^27,-1*K.1^35,-1*K.1^55,-1*K.1^27,K.1^15,-1*K.1^39,-1*K.1^59,-1*K.1^15,K.1^39,-1*K.1^31,-1*K.1^11,K.1,K.1^25,-1*K.1^25,K.1^45,-1*K.1^45,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,-1*K.1^21,K.1^21,-1*K.1^49,K.1^49,K.1^33,-1*K.1^33,-1*K.1,K.1^43,-1*K.1^3,-1*K.1^23,K.1^67,K.1^47,-1*K.1^7,-1*K.1^67,-1*K.1^47,K.1^7,-1*K.1^19,-1*K.1^63,-1*K.1^43,K.1^19,K.1^63,K.1^3,K.1^62,-1*K.1^30,-1*K.1^2,-1*K.1^26,-1*K.1^22,K.1^62,K.1^18,K.1^2,-1*K.1^46,-1*K.1^50,K.1^26,-1*K.1^62,K.1^30,K.1^54,-1*K.1^54,K.1^22,-1*K.1^50,K.1^2,-1*K.1^14,-1*K.1^54,K.1^30,-1*K.1^58,-1*K.1^62,K.1^42,K.1^54,K.1^66,K.1^14,K.1^58,-1*K.1^18,-1*K.1^38,-1*K.1^18,K.1^38,-1*K.1^66,K.1^38,-1*K.1^22,K.1^14,-1*K.1^42,K.1^10,-1*K.1^46,K.1^46,K.1^22,-1*K.1^26,K.1^6,K.1^50,K.1^50,-1*K.1^10,-1*K.1^10,-1*K.1^6,K.1^42,-1*K.1^58,K.1^46,-1*K.1^30,K.1^10,K.1^6,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^2,-1*K.1^42,K.1^66,K.1^58,K.1^26,-1*K.1^66,-1*K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^20,K.1^24,-1*K.1^4,-1*K.1^12,K.1^56,-1*K.1^60,-1*K.1^36,K.1^16,K.1^64,-1*K.1^52,-1*K.1^28,K.1^40,-1*K.1^44,K.1^48,K.1^8,K.1^32,-1*K.1^16,-1*K.1^40,-1*K.1^8,K.1^44,K.1^40,K.1^64,K.1^4,-1*K.1^32,-1*K.1^64,-1*K.1^56,-1*K.1^24,K.1^60,K.1^56,K.1^48,K.1^52,-1*K.1^16,-1*K.1^48,-1*K.1^32,-1*K.1^48,K.1^60,K.1^28,-1*K.1^12,-1*K.1^28,-1*K.1^44,-1*K.1^60,K.1^8,K.1^24,-1*K.1^64,K.1^32,K.1^16,K.1^36,-1*K.1^52,-1*K.1^36,-1*K.1^20,-1*K.1^4,K.1^20,K.1^12,K.1^28,K.1^44,K.1^12,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,-1*K.1^44,K.1^64,K.1^48,-1*K.1^60,-1*K.1^28,K.1^24,K.1^8,K.1^16,-1*K.1^20,-1*K.1^52,-1*K.1^12,K.1^56,K.1^40,-1*K.1^4,K.1^32,-1*K.1^36,-1*K.1^6,K.1^10,K.1^66,-1*K.1^26,K.1^10,K.1^62,K.1^22,K.1^30,K.1^62,-1*K.1^66,-1*K.1^26,K.1^2,-1*K.1^42,-1*K.1^18,K.1^6,K.1^54,K.1^38,K.1^14,-1*K.1^2,K.1^2,K.1^66,K.1^58,-1*K.1^54,K.1^6,K.1^42,K.1^26,-1*K.1^50,-1*K.1^54,K.1^50,-1*K.1^30,-1*K.1^22,-1*K.1^30,-1*K.1^66,K.1^58,-1*K.1^62,-1*K.1^42,K.1^18,-1*K.1^38,-1*K.1^14,-1*K.1^62,-1*K.1^10,K.1^26,K.1^46,K.1^46,K.1^14,-1*K.1^10,-1*K.1^50,-1*K.1^22,K.1^30,-1*K.1^58,-1*K.1^2,K.1^22,K.1^38,K.1^54,K.1^18,-1*K.1^18,K.1^42,-1*K.1^46,-1*K.1^38,-1*K.1^58,-1*K.1^14,-1*K.1^6,-1*K.1^46,K.1^50,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^16,K.1^52,K.1^20,K.1^28,K.1^60,K.1^8,-1*K.1^24,K.1^36,-1*K.1^64,K.1^4,K.1^16,-1*K.1^56,-1*K.1^52,-1*K.1^20,K.1^56,K.1^64,-1*K.1^28,K.1^48,-1*K.1^36,-1*K.1^4,-1*K.1^12,-1*K.1^44,K.1^24,-1*K.1^24,K.1^36,K.1^28,-1*K.1^32,-1*K.1^40,K.1^12,K.1^60,-1*K.1^16,K.1^32,K.1^44,-1*K.1^60,K.1^52,K.1^40,-1*K.1^8,-1*K.1^48,K.1^20,K.1^12,K.1^44,-1*K.1^8,-1*K.1^45,K.1^43,-1*K.1^43,-1*K.1^27,K.1^27,-1*K.1^39,K.1^39,K.1^55,-1*K.1^55,-1*K.1^47,K.1^47,K.1^31,-1*K.1^31,K.1^35,-1*K.1^35,-1*K.1^59,K.1^59,-1*K.1^65,K.1^57,K.1,K.1^13,-1*K.1^61,-1*K.1,-1*K.1^13,K.1^61,K.1^53,-1*K.1^5,-1*K.1^9,-1*K.1^53,K.1^5,K.1^65,-1*K.1^57,K.1^67,-1*K.1^7,K.1^7,K.1^23,-1*K.1^23,K.1^11,-1*K.1^11,K.1^63,-1*K.1^63,K.1^3,-1*K.1^3,-1*K.1^19,K.1^19,-1*K.1^15,K.1^15,-1*K.1^67,K.1^25,K.1^37,-1*K.1^45,-1*K.1^9,K.1^21,K.1^41,-1*K.1^33,-1*K.1^21,-1*K.1^41,-1*K.1^49,-1*K.1^29,-1*K.1^25,K.1^49,K.1^29,-1*K.1^37,K.1^45,K.1^33,-1*K.1^59,K.1^7,-1*K.1^7,K.1^27,-1*K.1^27,-1*K.1^11,K.1^11,-1*K.1^55,K.1^55,-1*K.1^3,K.1^3,-1*K.1^31,K.1^31,K.1^15,-1*K.1^15,K.1^59,-1*K.1^33,-1*K.1^37,-1*K.1^57,K.1^9,-1*K.1^13,-1*K.1^41,K.1^33,K.1^13,K.1^41,-1*K.1^53,K.1^29,K.1^9,K.1^53,-1*K.1^29,K.1^37,K.1^57,-1*K.1^67,-1*K.1^43,K.1^43,-1*K.1^23,K.1^23,K.1^39,-1*K.1^39,-1*K.1^63,K.1^63,K.1^47,-1*K.1^47,K.1^19,-1*K.1^19,-1*K.1^35,K.1^35,K.1^67,-1*K.1^25,K.1^65,K.1^45,-1*K.1,-1*K.1^21,K.1^61,K.1,K.1^21,-1*K.1^61,K.1^49,K.1^5,K.1^25,-1*K.1^49,-1*K.1^5,-1*K.1^65,-1*K.1^6,K.1^38,K.1^66,K.1^42,K.1^46,-1*K.1^6,-1*K.1^50,-1*K.1^66,K.1^22,K.1^18,-1*K.1^42,K.1^6,-1*K.1^38,-1*K.1^14,K.1^14,-1*K.1^46,K.1^18,-1*K.1^66,K.1^54,K.1^14,-1*K.1^38,K.1^10,K.1^6,-1*K.1^26,-1*K.1^14,-1*K.1^2,-1*K.1^54,-1*K.1^10,K.1^50,K.1^30,K.1^50,-1*K.1^30,K.1^2,-1*K.1^30,K.1^46,-1*K.1^54,K.1^26,-1*K.1^58,K.1^22,-1*K.1^22,-1*K.1^46,K.1^42,-1*K.1^62,-1*K.1^18,-1*K.1^18,K.1^58,K.1^58,K.1^62,-1*K.1^26,K.1^10,-1*K.1^22,K.1^38,-1*K.1^58,-1*K.1^62,K.1^62,-1*K.1^50,K.1^54,K.1^66,K.1^26,-1*K.1^2,-1*K.1^10,-1*K.1^42,K.1^2,K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^28,-1*K.1^20,-1*K.1^60,-1*K.1^44,K.1^24,K.1^16,K.1^64,-1*K.1^36,K.1^8,K.1^32,-1*K.1^12,K.1^56,K.1^48,K.1^40,-1*K.1^52,-1*K.1^4,K.1^36,-1*K.1^56,K.1^52,-1*K.1^48,K.1^56,K.1^8,K.1^60,K.1^4,-1*K.1^8,-1*K.1^24,K.1^20,-1*K.1^16,K.1^24,K.1^40,-1*K.1^32,K.1^36,-1*K.1^40,K.1^4,-1*K.1^40,-1*K.1^16,K.1^12,-1*K.1^44,-1*K.1^12,K.1^48,K.1^16,-1*K.1^52,-1*K.1^20,-1*K.1^8,-1*K.1^4,-1*K.1^36,-1*K.1^64,K.1^32,K.1^64,-1*K.1^28,-1*K.1^60,K.1^28,K.1^44,K.1^12,-1*K.1^48,K.1^44,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,K.1^48,K.1^8,K.1^40,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^44,K.1^24,K.1^56,-1*K.1^60,-1*K.1^4,K.1^64,K.1^22,K.1^14,K.1^38,K.1^50,K.1^14,-1*K.1^46,K.1^58,K.1^42,-1*K.1^46,-1*K.1^38,K.1^50,K.1^30,K.1^18,K.1^66,-1*K.1^22,-1*K.1^62,K.1^26,-1*K.1^6,-1*K.1^30,K.1^30,K.1^38,K.1^54,K.1^62,-1*K.1^22,-1*K.1^18,-1*K.1^50,K.1^2,K.1^62,-1*K.1^2,-1*K.1^42,-1*K.1^58,-1*K.1^42,-1*K.1^38,K.1^54,K.1^46,K.1^18,-1*K.1^66,-1*K.1^26,K.1^6,K.1^46,-1*K.1^14,-1*K.1^50,K.1^10,K.1^10,-1*K.1^6,-1*K.1^14,K.1^2,-1*K.1^58,K.1^42,-1*K.1^54,-1*K.1^30,K.1^58,K.1^26,-1*K.1^62,-1*K.1^66,K.1^66,-1*K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^54,K.1^6,K.1^22,-1*K.1^10,-1*K.1^2,K.1^4,-1*K.1^40,-1*K.1^8,K.1^60,-1*K.1^24,-1*K.1^56,K.1^36,-1*K.1^32,K.1^28,K.1^12,-1*K.1^16,-1*K.1^52,K.1^20,-1*K.1^64,-1*K.1^8,K.1^60,-1*K.1^36,-1*K.1^24,K.1^32,-1*K.1^28,K.1^24,K.1^8,-1*K.1^12,K.1^40,K.1^64,-1*K.1^60,-1*K.1^44,K.1^48,-1*K.1^20,K.1^20,-1*K.1^64,K.1^12,K.1^4,-1*K.1^56,K.1^44,-1*K.1^16,K.1^36,-1*K.1^4,-1*K.1^48,K.1^16,-1*K.1^32,K.1^56,K.1^52,-1*K.1^40,K.1^28,K.1^44,-1*K.1^48,K.1^52,K.1^63,-1*K.1^33,K.1^33,K.1^65,-1*K.1^65,-1*K.1^41,K.1^41,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,K.1^57,-1*K.1^57,-1*K.1^49,K.1^49,K.1,-1*K.1,-1*K.1^23,K.1^39,K.1^15,K.1^59,K.1^31,-1*K.1^15,-1*K.1^59,-1*K.1^31,-1*K.1^47,K.1^7,K.1^67,K.1^47,-1*K.1^7,K.1^23,-1*K.1^39,K.1^53,K.1^37,-1*K.1^37,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,-1*K.1^61,K.1^61,K.1^45,-1*K.1^45,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,-1*K.1^53,-1*K.1^35,K.1^11,K.1^63,K.1^67,K.1^43,-1*K.1^3,K.1^19,-1*K.1^43,K.1^3,-1*K.1^55,-1*K.1^27,K.1^35,K.1^55,K.1^27,-1*K.1^11,-1*K.1^63,-1*K.1^19,K.1,-1*K.1^37,K.1^37,-1*K.1^65,K.1^65,-1*K.1^29,K.1^29,-1*K.1^9,K.1^9,-1*K.1^45,K.1^45,-1*K.1^57,K.1^57,-1*K.1^21,K.1^21,-1*K.1,K.1^19,-1*K.1^11,-1*K.1^39,-1*K.1^67,-1*K.1^59,K.1^3,-1*K.1^19,K.1^59,-1*K.1^3,K.1^47,K.1^27,-1*K.1^67,-1*K.1^47,-1*K.1^27,K.1^11,K.1^39,-1*K.1^53,K.1^33,-1*K.1^33,K.1^5,-1*K.1^5,K.1^41,-1*K.1^41,K.1^61,-1*K.1^61,K.1^25,-1*K.1^25,K.1^13,-1*K.1^13,K.1^49,-1*K.1^49,K.1^53,K.1^35,K.1^23,-1*K.1^63,-1*K.1^15,-1*K.1^43,-1*K.1^31,K.1^15,K.1^43,K.1^31,K.1^55,-1*K.1^7,-1*K.1^35,-1*K.1^55,K.1^7,-1*K.1^23,K.1^22,K.1^26,K.1^38,-1*K.1^18,K.1^10,K.1^22,K.1^2,-1*K.1^38,K.1^58,-1*K.1^66,K.1^18,-1*K.1^22,-1*K.1^26,K.1^6,-1*K.1^6,-1*K.1^10,-1*K.1^66,-1*K.1^38,-1*K.1^62,-1*K.1^6,-1*K.1^26,K.1^14,-1*K.1^22,K.1^50,K.1^6,-1*K.1^30,K.1^62,-1*K.1^14,-1*K.1^2,K.1^42,-1*K.1^2,-1*K.1^42,K.1^30,-1*K.1^42,K.1^10,K.1^62,-1*K.1^50,-1*K.1^54,K.1^58,-1*K.1^58,-1*K.1^10,-1*K.1^18,K.1^46,K.1^66,K.1^66,K.1^54,K.1^54,-1*K.1^46,K.1^50,K.1^14,-1*K.1^58,K.1^26,-1*K.1^54,K.1^46,-1*K.1^46,K.1^2,-1*K.1^62,K.1^38,-1*K.1^50,-1*K.1^30,-1*K.1^14,K.1^18,K.1^30,K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^40,K.1^48,K.1^8,K.1^24,-1*K.1^44,-1*K.1^52,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^16,K.1^64,-1*K.1^32,K.1^12,-1*K.1^16,K.1^20,-1*K.1^12,-1*K.1^60,-1*K.1^8,-1*K.1^64,K.1^60,K.1^44,-1*K.1^48,K.1^52,-1*K.1^44,-1*K.1^28,K.1^36,-1*K.1^32,K.1^28,-1*K.1^64,K.1^28,K.1^52,-1*K.1^56,K.1^24,K.1^56,-1*K.1^20,-1*K.1^52,K.1^16,K.1^48,K.1^60,K.1^64,K.1^32,K.1^4,-1*K.1^36,-1*K.1^4,K.1^40,K.1^8,-1*K.1^40,-1*K.1^24,-1*K.1^56,K.1^20,-1*K.1^24,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,-1*K.1^20,-1*K.1^60,-1*K.1^28,-1*K.1^52,K.1^56,K.1^48,K.1^16,K.1^32,K.1^40,-1*K.1^36,K.1^24,-1*K.1^44,-1*K.1^12,K.1^8,K.1^64,-1*K.1^4,-1*K.1^46,-1*K.1^54,-1*K.1^30,-1*K.1^18,-1*K.1^54,K.1^22,-1*K.1^10,-1*K.1^26,K.1^22,K.1^30,-1*K.1^18,-1*K.1^38,-1*K.1^50,-1*K.1^2,K.1^46,K.1^6,-1*K.1^42,K.1^62,K.1^38,-1*K.1^38,-1*K.1^30,-1*K.1^14,-1*K.1^6,K.1^46,K.1^50,K.1^18,-1*K.1^66,-1*K.1^6,K.1^66,K.1^26,K.1^10,K.1^26,K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^50,K.1^2,K.1^42,-1*K.1^62,-1*K.1^22,K.1^54,K.1^18,-1*K.1^58,-1*K.1^58,K.1^62,K.1^54,-1*K.1^66,K.1^10,-1*K.1^26,K.1^14,K.1^38,-1*K.1^10,-1*K.1^42,K.1^6,K.1^2,-1*K.1^2,K.1^50,K.1^58,K.1^42,K.1^14,-1*K.1^62,-1*K.1^46,K.1^58,K.1^66,-1*K.1^64,K.1^28,K.1^60,-1*K.1^8,K.1^44,K.1^12,-1*K.1^32,K.1^36,-1*K.1^40,-1*K.1^56,K.1^52,K.1^16,-1*K.1^48,K.1^4,K.1^60,-1*K.1^8,K.1^32,K.1^44,-1*K.1^36,K.1^40,-1*K.1^44,-1*K.1^60,K.1^56,-1*K.1^28,-1*K.1^4,K.1^8,K.1^24,-1*K.1^20,K.1^48,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^64,K.1^12,-1*K.1^24,K.1^52,-1*K.1^32,K.1^64,K.1^20,-1*K.1^52,K.1^36,-1*K.1^12,-1*K.1^16,K.1^28,-1*K.1^40,-1*K.1^24,K.1^20,-1*K.1^16,-1*K.1^5,K.1^35,-1*K.1^35,-1*K.1^3,K.1^3,K.1^27,-1*K.1^27,-1*K.1^59,K.1^59,K.1^43,-1*K.1^43,-1*K.1^11,K.1^11,K.1^19,-1*K.1^19,-1*K.1^67,K.1^67,K.1^45,-1*K.1^29,-1*K.1^53,-1*K.1^9,-1*K.1^37,K.1^53,K.1^9,K.1^37,K.1^21,-1*K.1^61,-1*K.1,-1*K.1^21,K.1^61,-1*K.1^45,K.1^29,-1*K.1^15,-1*K.1^31,K.1^31,K.1^63,-1*K.1^63,-1*K.1^39,K.1^39,K.1^7,-1*K.1^7,-1*K.1^23,K.1^23,K.1^55,-1*K.1^55,-1*K.1^47,K.1^47,K.1^15,K.1^33,-1*K.1^57,-1*K.1^5,-1*K.1,-1*K.1^25,K.1^65,-1*K.1^49,K.1^25,-1*K.1^65,K.1^13,K.1^41,-1*K.1^33,-1*K.1^13,-1*K.1^41,K.1^57,K.1^5,K.1^49,-1*K.1^67,K.1^31,-1*K.1^31,K.1^3,-1*K.1^3,K.1^39,-1*K.1^39,K.1^59,-1*K.1^59,K.1^23,-1*K.1^23,K.1^11,-1*K.1^11,K.1^47,-1*K.1^47,K.1^67,-1*K.1^49,K.1^57,K.1^29,K.1,K.1^9,-1*K.1^65,K.1^49,-1*K.1^9,K.1^65,-1*K.1^21,-1*K.1^41,K.1,K.1^21,K.1^41,-1*K.1^57,-1*K.1^29,K.1^15,-1*K.1^35,K.1^35,-1*K.1^63,K.1^63,-1*K.1^27,K.1^27,-1*K.1^7,K.1^7,-1*K.1^43,K.1^43,-1*K.1^55,K.1^55,-1*K.1^19,K.1^19,-1*K.1^15,-1*K.1^33,-1*K.1^45,K.1^5,K.1^53,K.1^25,K.1^37,-1*K.1^53,-1*K.1^25,-1*K.1^37,-1*K.1^13,K.1^61,K.1^33,K.1^13,-1*K.1^61,K.1^45,-1*K.1^46,-1*K.1^42,-1*K.1^30,K.1^50,-1*K.1^58,-1*K.1^46,-1*K.1^66,K.1^30,-1*K.1^10,K.1^2,-1*K.1^50,K.1^46,K.1^42,-1*K.1^62,K.1^62,K.1^58,K.1^2,K.1^30,K.1^6,K.1^62,K.1^42,-1*K.1^54,K.1^46,-1*K.1^18,-1*K.1^62,K.1^38,-1*K.1^6,K.1^54,K.1^66,-1*K.1^26,K.1^66,K.1^26,-1*K.1^38,K.1^26,-1*K.1^58,-1*K.1^6,K.1^18,K.1^14,-1*K.1^10,K.1^10,K.1^58,K.1^50,-1*K.1^22,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^14,K.1^22,-1*K.1^18,-1*K.1^54,K.1^10,-1*K.1^42,K.1^14,-1*K.1^22,K.1^22,-1*K.1^66,K.1^6,-1*K.1^30,K.1^18,K.1^38,K.1^54,-1*K.1^50,-1*K.1^38,-1*K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^40,K.1^48,K.1^8,K.1^24,-1*K.1^44,-1*K.1^52,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^16,K.1^64,-1*K.1^32,K.1^12,-1*K.1^16,K.1^20,-1*K.1^12,-1*K.1^60,-1*K.1^8,-1*K.1^64,K.1^60,K.1^44,-1*K.1^48,K.1^52,-1*K.1^44,-1*K.1^28,K.1^36,-1*K.1^32,K.1^28,-1*K.1^64,K.1^28,K.1^52,-1*K.1^56,K.1^24,K.1^56,-1*K.1^20,-1*K.1^52,K.1^16,K.1^48,K.1^60,K.1^64,K.1^32,K.1^4,-1*K.1^36,-1*K.1^4,K.1^40,K.1^8,-1*K.1^40,-1*K.1^24,-1*K.1^56,K.1^20,-1*K.1^24,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,-1*K.1^20,-1*K.1^60,-1*K.1^28,-1*K.1^52,K.1^56,K.1^48,K.1^16,K.1^32,K.1^40,-1*K.1^36,K.1^24,-1*K.1^44,-1*K.1^12,K.1^8,K.1^64,-1*K.1^4,K.1^46,K.1^54,K.1^30,K.1^18,K.1^54,-1*K.1^22,K.1^10,K.1^26,-1*K.1^22,-1*K.1^30,K.1^18,K.1^38,K.1^50,K.1^2,-1*K.1^46,-1*K.1^6,K.1^42,-1*K.1^62,-1*K.1^38,K.1^38,K.1^30,K.1^14,K.1^6,-1*K.1^46,-1*K.1^50,-1*K.1^18,K.1^66,K.1^6,-1*K.1^66,-1*K.1^26,-1*K.1^10,-1*K.1^26,-1*K.1^30,K.1^14,K.1^22,K.1^50,-1*K.1^2,-1*K.1^42,K.1^62,K.1^22,-1*K.1^54,-1*K.1^18,K.1^58,K.1^58,-1*K.1^62,-1*K.1^54,K.1^66,-1*K.1^10,K.1^26,-1*K.1^14,-1*K.1^38,K.1^10,K.1^42,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^50,-1*K.1^58,-1*K.1^42,-1*K.1^14,K.1^62,K.1^46,-1*K.1^58,-1*K.1^66,-1*K.1^64,K.1^28,K.1^60,-1*K.1^8,K.1^44,K.1^12,-1*K.1^32,K.1^36,-1*K.1^40,-1*K.1^56,K.1^52,K.1^16,-1*K.1^48,K.1^4,K.1^60,-1*K.1^8,K.1^32,K.1^44,-1*K.1^36,K.1^40,-1*K.1^44,-1*K.1^60,K.1^56,-1*K.1^28,-1*K.1^4,K.1^8,K.1^24,-1*K.1^20,K.1^48,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^64,K.1^12,-1*K.1^24,K.1^52,-1*K.1^32,K.1^64,K.1^20,-1*K.1^52,K.1^36,-1*K.1^12,-1*K.1^16,K.1^28,-1*K.1^40,-1*K.1^24,K.1^20,-1*K.1^16,K.1^39,-1*K.1,K.1,-1*K.1^37,K.1^37,K.1^61,-1*K.1^61,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,-1*K.1^45,K.1^45,K.1^53,-1*K.1^53,K.1^33,-1*K.1^33,K.1^11,K.1^63,-1*K.1^19,K.1^43,-1*K.1^3,K.1^19,-1*K.1^43,K.1^3,-1*K.1^55,-1*K.1^27,K.1^35,K.1^55,K.1^27,-1*K.1^11,-1*K.1^63,-1*K.1^49,-1*K.1^65,K.1^65,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,K.1^41,-1*K.1^41,-1*K.1^57,K.1^57,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,K.1^49,-1*K.1^67,-1*K.1^23,K.1^39,K.1^35,K.1^59,K.1^31,-1*K.1^15,-1*K.1^59,-1*K.1^31,-1*K.1^47,K.1^7,K.1^67,K.1^47,-1*K.1^7,K.1^23,-1*K.1^39,K.1^15,K.1^33,K.1^65,-1*K.1^65,K.1^37,-1*K.1^37,-1*K.1^5,K.1^5,-1*K.1^25,K.1^25,K.1^57,-1*K.1^57,K.1^45,-1*K.1^45,-1*K.1^13,K.1^13,-1*K.1^33,-1*K.1^15,K.1^23,-1*K.1^63,-1*K.1^35,-1*K.1^43,-1*K.1^31,K.1^15,K.1^43,K.1^31,K.1^55,-1*K.1^7,-1*K.1^35,-1*K.1^55,K.1^7,-1*K.1^23,K.1^63,K.1^49,K.1,-1*K.1,K.1^29,-1*K.1^29,-1*K.1^61,K.1^61,-1*K.1^41,K.1^41,K.1^9,-1*K.1^9,K.1^21,-1*K.1^21,-1*K.1^53,K.1^53,-1*K.1^49,K.1^67,-1*K.1^11,-1*K.1^39,K.1^19,-1*K.1^59,K.1^3,-1*K.1^19,K.1^59,-1*K.1^3,K.1^47,K.1^27,-1*K.1^67,-1*K.1^47,-1*K.1^27,K.1^11,K.1^46,K.1^42,K.1^30,-1*K.1^50,K.1^58,K.1^46,K.1^66,-1*K.1^30,K.1^10,-1*K.1^2,K.1^50,-1*K.1^46,-1*K.1^42,K.1^62,-1*K.1^62,-1*K.1^58,-1*K.1^2,-1*K.1^30,-1*K.1^6,-1*K.1^62,-1*K.1^42,K.1^54,-1*K.1^46,K.1^18,K.1^62,-1*K.1^38,K.1^6,-1*K.1^54,-1*K.1^66,K.1^26,-1*K.1^66,-1*K.1^26,K.1^38,-1*K.1^26,K.1^58,K.1^6,-1*K.1^18,-1*K.1^14,K.1^10,-1*K.1^10,-1*K.1^58,-1*K.1^50,K.1^22,K.1^2,K.1^2,K.1^14,K.1^14,-1*K.1^22,K.1^18,K.1^54,-1*K.1^10,K.1^42,-1*K.1^14,K.1^22,-1*K.1^22,K.1^66,-1*K.1^6,K.1^30,-1*K.1^18,-1*K.1^38,-1*K.1^54,K.1^50,K.1^38,K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^28,-1*K.1^20,-1*K.1^60,-1*K.1^44,K.1^24,K.1^16,K.1^64,-1*K.1^36,K.1^8,K.1^32,-1*K.1^12,K.1^56,K.1^48,K.1^40,-1*K.1^52,-1*K.1^4,K.1^36,-1*K.1^56,K.1^52,-1*K.1^48,K.1^56,K.1^8,K.1^60,K.1^4,-1*K.1^8,-1*K.1^24,K.1^20,-1*K.1^16,K.1^24,K.1^40,-1*K.1^32,K.1^36,-1*K.1^40,K.1^4,-1*K.1^40,-1*K.1^16,K.1^12,-1*K.1^44,-1*K.1^12,K.1^48,K.1^16,-1*K.1^52,-1*K.1^20,-1*K.1^8,-1*K.1^4,-1*K.1^36,-1*K.1^64,K.1^32,K.1^64,-1*K.1^28,-1*K.1^60,K.1^28,K.1^44,K.1^12,-1*K.1^48,K.1^44,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,K.1^48,K.1^8,K.1^40,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^44,K.1^24,K.1^56,-1*K.1^60,-1*K.1^4,K.1^64,-1*K.1^22,-1*K.1^14,-1*K.1^38,-1*K.1^50,-1*K.1^14,K.1^46,-1*K.1^58,-1*K.1^42,K.1^46,K.1^38,-1*K.1^50,-1*K.1^30,-1*K.1^18,-1*K.1^66,K.1^22,K.1^62,-1*K.1^26,K.1^6,K.1^30,-1*K.1^30,-1*K.1^38,-1*K.1^54,-1*K.1^62,K.1^22,K.1^18,K.1^50,-1*K.1^2,-1*K.1^62,K.1^2,K.1^42,K.1^58,K.1^42,K.1^38,-1*K.1^54,-1*K.1^46,-1*K.1^18,K.1^66,K.1^26,-1*K.1^6,-1*K.1^46,K.1^14,K.1^50,-1*K.1^10,-1*K.1^10,K.1^6,K.1^14,-1*K.1^2,K.1^58,-1*K.1^42,K.1^54,K.1^30,-1*K.1^58,-1*K.1^26,K.1^62,K.1^66,-1*K.1^66,K.1^18,K.1^10,K.1^26,K.1^54,-1*K.1^6,-1*K.1^22,K.1^10,K.1^2,K.1^4,-1*K.1^40,-1*K.1^8,K.1^60,-1*K.1^24,-1*K.1^56,K.1^36,-1*K.1^32,K.1^28,K.1^12,-1*K.1^16,-1*K.1^52,K.1^20,-1*K.1^64,-1*K.1^8,K.1^60,-1*K.1^36,-1*K.1^24,K.1^32,-1*K.1^28,K.1^24,K.1^8,-1*K.1^12,K.1^40,K.1^64,-1*K.1^60,-1*K.1^44,K.1^48,-1*K.1^20,K.1^20,-1*K.1^64,K.1^12,K.1^4,-1*K.1^56,K.1^44,-1*K.1^16,K.1^36,-1*K.1^4,-1*K.1^48,K.1^16,-1*K.1^32,K.1^56,K.1^52,-1*K.1^40,K.1^28,K.1^44,-1*K.1^48,K.1^52,-1*K.1^29,K.1^67,-1*K.1^67,K.1^31,-1*K.1^31,-1*K.1^7,K.1^7,-1*K.1^43,K.1^43,K.1^59,-1*K.1^59,K.1^23,-1*K.1^23,-1*K.1^15,K.1^15,-1*K.1^35,K.1^35,-1*K.1^57,-1*K.1^5,K.1^49,-1*K.1^25,K.1^65,-1*K.1^49,K.1^25,-1*K.1^65,K.1^13,K.1^41,-1*K.1^33,-1*K.1^13,-1*K.1^41,K.1^57,K.1^5,K.1^19,K.1^3,-1*K.1^3,K.1^39,-1*K.1^39,-1*K.1^63,K.1^63,-1*K.1^27,K.1^27,K.1^11,-1*K.1^11,K.1^47,-1*K.1^47,-1*K.1^55,K.1^55,-1*K.1^19,K.1,K.1^45,-1*K.1^29,-1*K.1^33,-1*K.1^9,-1*K.1^37,K.1^53,K.1^9,K.1^37,K.1^21,-1*K.1^61,-1*K.1,-1*K.1^21,K.1^61,-1*K.1^45,K.1^29,-1*K.1^53,-1*K.1^35,-1*K.1^3,K.1^3,-1*K.1^31,K.1^31,K.1^63,-1*K.1^63,K.1^43,-1*K.1^43,-1*K.1^11,K.1^11,-1*K.1^23,K.1^23,K.1^55,-1*K.1^55,K.1^35,K.1^53,-1*K.1^45,K.1^5,K.1^33,K.1^25,K.1^37,-1*K.1^53,-1*K.1^25,-1*K.1^37,-1*K.1^13,K.1^61,K.1^33,K.1^13,-1*K.1^61,K.1^45,-1*K.1^5,-1*K.1^19,-1*K.1^67,K.1^67,-1*K.1^39,K.1^39,K.1^7,-1*K.1^7,K.1^27,-1*K.1^27,-1*K.1^59,K.1^59,-1*K.1^47,K.1^47,K.1^15,-1*K.1^15,K.1^19,-1*K.1,K.1^57,K.1^29,-1*K.1^49,K.1^9,-1*K.1^65,K.1^49,-1*K.1^9,K.1^65,-1*K.1^21,-1*K.1^41,K.1,K.1^21,K.1^41,-1*K.1^57,-1*K.1^22,-1*K.1^26,-1*K.1^38,K.1^18,-1*K.1^10,-1*K.1^22,-1*K.1^2,K.1^38,-1*K.1^58,K.1^66,-1*K.1^18,K.1^22,K.1^26,-1*K.1^6,K.1^6,K.1^10,K.1^66,K.1^38,K.1^62,K.1^6,K.1^26,-1*K.1^14,K.1^22,-1*K.1^50,-1*K.1^6,K.1^30,-1*K.1^62,K.1^14,K.1^2,-1*K.1^42,K.1^2,K.1^42,-1*K.1^30,K.1^42,-1*K.1^10,-1*K.1^62,K.1^50,K.1^54,-1*K.1^58,K.1^58,K.1^10,K.1^18,-1*K.1^46,-1*K.1^66,-1*K.1^66,-1*K.1^54,-1*K.1^54,K.1^46,-1*K.1^50,-1*K.1^14,K.1^58,-1*K.1^26,K.1^54,-1*K.1^46,K.1^46,-1*K.1^2,K.1^62,-1*K.1^38,K.1^50,K.1^30,K.1^14,-1*K.1^18,-1*K.1^30,-1*K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^36,K.1^16,K.1^48,K.1^8,-1*K.1^60,K.1^40,K.1^24,K.1^56,-1*K.1^20,-1*K.1^12,K.1^64,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^28,-1*K.1^44,-1*K.1^56,K.1^4,K.1^28,K.1^52,-1*K.1^4,-1*K.1^20,-1*K.1^48,K.1^44,K.1^20,K.1^60,-1*K.1^16,-1*K.1^40,-1*K.1^60,K.1^32,K.1^12,-1*K.1^56,-1*K.1^32,K.1^44,-1*K.1^32,-1*K.1^40,-1*K.1^64,K.1^8,K.1^64,-1*K.1^52,K.1^40,-1*K.1^28,K.1^16,K.1^20,-1*K.1^44,K.1^56,-1*K.1^24,-1*K.1^12,K.1^24,-1*K.1^36,K.1^48,K.1^36,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^8,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^52,-1*K.1^20,K.1^32,K.1^40,K.1^64,K.1^16,-1*K.1^28,K.1^56,-1*K.1^36,-1*K.1^12,K.1^8,-1*K.1^60,-1*K.1^4,K.1^48,-1*K.1^44,K.1^24,K.1^38,-1*K.1^18,-1*K.1^10,-1*K.1^6,-1*K.1^18,-1*K.1^30,K.1^26,-1*K.1^54,-1*K.1^30,K.1^10,-1*K.1^6,-1*K.1^58,-1*K.1^62,-1*K.1^46,-1*K.1^38,K.1^2,-1*K.1^14,K.1^66,K.1^58,-1*K.1^58,-1*K.1^10,-1*K.1^50,-1*K.1^2,-1*K.1^38,K.1^62,K.1^6,-1*K.1^22,-1*K.1^2,K.1^22,K.1^54,-1*K.1^26,K.1^54,K.1^10,-1*K.1^50,K.1^30,-1*K.1^62,K.1^46,K.1^14,-1*K.1^66,K.1^30,K.1^18,K.1^6,K.1^42,K.1^42,K.1^66,K.1^18,-1*K.1^22,-1*K.1^26,-1*K.1^54,K.1^50,K.1^58,K.1^26,-1*K.1^14,K.1^2,K.1^46,-1*K.1^46,K.1^62,-1*K.1^42,K.1^14,K.1^50,-1*K.1^66,K.1^38,-1*K.1^42,K.1^22,K.1^44,-1*K.1^32,K.1^20,-1*K.1^48,K.1^60,K.1^4,-1*K.1^56,K.1^12,K.1^36,-1*K.1^64,-1*K.1^40,-1*K.1^28,-1*K.1^16,-1*K.1^24,K.1^20,-1*K.1^48,K.1^56,K.1^60,-1*K.1^12,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^64,K.1^32,K.1^24,K.1^48,K.1^8,-1*K.1^52,K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^44,K.1^4,-1*K.1^8,-1*K.1^40,-1*K.1^56,-1*K.1^44,K.1^52,K.1^40,K.1^12,-1*K.1^4,K.1^28,-1*K.1^32,K.1^36,-1*K.1^8,K.1^52,K.1^28,K.1^47,-1*K.1^57,K.1^57,K.1,-1*K.1,-1*K.1^9,K.1^9,K.1^65,-1*K.1^65,K.1^37,-1*K.1^37,K.1^49,-1*K.1^49,K.1^29,-1*K.1^29,-1*K.1^45,K.1^45,-1*K.1^15,K.1^55,K.1^63,K.1^3,-1*K.1^35,-1*K.1^63,-1*K.1^3,K.1^35,-1*K.1^7,-1*K.1^43,-1*K.1^23,K.1^7,K.1^43,K.1^15,-1*K.1^55,K.1^5,-1*K.1^33,K.1^33,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,K.1^25,-1*K.1^25,K.1^53,-1*K.1^53,K.1^41,-1*K.1^41,K.1^61,-1*K.1^61,-1*K.1^5,-1*K.1^11,K.1^19,K.1^47,-1*K.1^23,-1*K.1^31,-1*K.1^67,-1*K.1^39,K.1^31,K.1^67,K.1^27,-1*K.1^59,K.1^11,-1*K.1^27,K.1^59,-1*K.1^19,-1*K.1^47,K.1^39,-1*K.1^45,K.1^33,-1*K.1^33,-1*K.1,K.1,-1*K.1^13,K.1^13,-1*K.1^65,K.1^65,-1*K.1^53,K.1^53,-1*K.1^49,K.1^49,-1*K.1^61,K.1^61,K.1^45,-1*K.1^39,-1*K.1^19,-1*K.1^55,K.1^23,-1*K.1^3,K.1^67,K.1^39,K.1^3,-1*K.1^67,K.1^7,K.1^59,K.1^23,-1*K.1^7,-1*K.1^59,K.1^19,K.1^55,-1*K.1^5,K.1^57,-1*K.1^57,K.1^21,-1*K.1^21,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,-1*K.1^37,K.1^37,-1*K.1^41,K.1^41,-1*K.1^29,K.1^29,K.1^5,K.1^11,K.1^15,-1*K.1^47,-1*K.1^63,K.1^31,K.1^35,K.1^63,-1*K.1^31,-1*K.1^35,-1*K.1^27,K.1^43,-1*K.1^11,K.1^27,-1*K.1^43,-1*K.1^15,K.1^38,-1*K.1^14,-1*K.1^10,K.1^62,K.1^42,K.1^38,-1*K.1^22,K.1^10,K.1^26,K.1^46,-1*K.1^62,-1*K.1^38,K.1^14,-1*K.1^66,K.1^66,-1*K.1^42,K.1^46,K.1^10,K.1^2,K.1^66,K.1^14,-1*K.1^18,-1*K.1^38,-1*K.1^6,-1*K.1^66,K.1^58,-1*K.1^2,K.1^18,K.1^22,-1*K.1^54,K.1^22,K.1^54,-1*K.1^58,K.1^54,K.1^42,-1*K.1^2,K.1^6,K.1^50,K.1^26,-1*K.1^26,-1*K.1^42,K.1^62,K.1^30,-1*K.1^46,-1*K.1^46,-1*K.1^50,-1*K.1^50,-1*K.1^30,-1*K.1^6,-1*K.1^18,-1*K.1^26,-1*K.1^14,K.1^50,K.1^30,-1*K.1^30,-1*K.1^22,K.1^2,-1*K.1^10,K.1^6,K.1^58,K.1^18,-1*K.1^62,-1*K.1^58,-1*K.1^54]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^32,-1*K.1^52,-1*K.1^20,-1*K.1^60,K.1^8,-1*K.1^28,-1*K.1^44,-1*K.1^12,K.1^48,K.1^56,-1*K.1^4,K.1^64,K.1^16,-1*K.1^36,K.1^40,K.1^24,K.1^12,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^64,K.1^48,K.1^20,-1*K.1^24,-1*K.1^48,-1*K.1^8,K.1^52,K.1^28,K.1^8,-1*K.1^36,-1*K.1^56,K.1^12,K.1^36,-1*K.1^24,K.1^36,K.1^28,K.1^4,-1*K.1^60,-1*K.1^4,K.1^16,-1*K.1^28,K.1^40,-1*K.1^52,-1*K.1^48,K.1^24,-1*K.1^12,K.1^44,K.1^56,-1*K.1^44,K.1^32,-1*K.1^20,-1*K.1^32,K.1^60,K.1^4,-1*K.1^16,K.1^60,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^16,K.1^48,-1*K.1^36,-1*K.1^28,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^12,K.1^32,K.1^56,-1*K.1^60,K.1^8,K.1^64,-1*K.1^20,K.1^24,-1*K.1^44,-1*K.1^30,K.1^50,K.1^58,K.1^62,K.1^50,K.1^38,-1*K.1^42,K.1^14,K.1^38,-1*K.1^58,K.1^62,K.1^10,K.1^6,K.1^22,K.1^30,-1*K.1^66,K.1^54,-1*K.1^2,-1*K.1^10,K.1^10,K.1^58,K.1^18,K.1^66,K.1^30,-1*K.1^6,-1*K.1^62,K.1^46,K.1^66,-1*K.1^46,-1*K.1^14,K.1^42,-1*K.1^14,-1*K.1^58,K.1^18,-1*K.1^38,K.1^6,-1*K.1^22,-1*K.1^54,K.1^2,-1*K.1^38,-1*K.1^50,-1*K.1^62,-1*K.1^26,-1*K.1^26,-1*K.1^2,-1*K.1^50,K.1^46,K.1^42,K.1^14,-1*K.1^18,-1*K.1^10,-1*K.1^42,K.1^54,-1*K.1^66,-1*K.1^22,K.1^22,-1*K.1^6,K.1^26,-1*K.1^54,-1*K.1^18,K.1^2,-1*K.1^30,K.1^26,-1*K.1^46,-1*K.1^24,K.1^36,-1*K.1^48,K.1^20,-1*K.1^8,-1*K.1^64,K.1^12,-1*K.1^56,-1*K.1^32,K.1^4,K.1^28,K.1^40,K.1^52,K.1^44,-1*K.1^48,K.1^20,-1*K.1^12,-1*K.1^8,K.1^56,K.1^32,K.1^8,K.1^48,-1*K.1^4,-1*K.1^36,-1*K.1^44,-1*K.1^20,-1*K.1^60,K.1^16,-1*K.1^52,K.1^52,K.1^44,K.1^4,-1*K.1^24,-1*K.1^64,K.1^60,K.1^28,K.1^12,K.1^24,-1*K.1^16,-1*K.1^28,-1*K.1^56,K.1^64,-1*K.1^40,K.1^36,-1*K.1^32,K.1^60,-1*K.1^16,-1*K.1^40,-1*K.1^21,K.1^11,-1*K.1^11,-1*K.1^67,K.1^67,K.1^59,-1*K.1^59,-1*K.1^3,K.1^3,-1*K.1^31,K.1^31,-1*K.1^19,K.1^19,-1*K.1^39,K.1^39,K.1^23,-1*K.1^23,K.1^53,-1*K.1^13,-1*K.1^5,-1*K.1^65,K.1^33,K.1^5,K.1^65,-1*K.1^33,K.1^61,K.1^25,K.1^45,-1*K.1^61,-1*K.1^25,-1*K.1^53,K.1^13,-1*K.1^63,K.1^35,-1*K.1^35,K.1^47,-1*K.1^47,-1*K.1^55,K.1^55,-1*K.1^43,K.1^43,-1*K.1^15,K.1^15,-1*K.1^27,K.1^27,-1*K.1^7,K.1^7,K.1^63,K.1^57,-1*K.1^49,-1*K.1^21,K.1^45,K.1^37,K.1,K.1^29,-1*K.1^37,-1*K.1,-1*K.1^41,K.1^9,-1*K.1^57,K.1^41,-1*K.1^9,K.1^49,K.1^21,-1*K.1^29,K.1^23,-1*K.1^35,K.1^35,K.1^67,-1*K.1^67,K.1^55,-1*K.1^55,K.1^3,-1*K.1^3,K.1^15,-1*K.1^15,K.1^19,-1*K.1^19,K.1^7,-1*K.1^7,-1*K.1^23,K.1^29,K.1^49,K.1^13,-1*K.1^45,K.1^65,-1*K.1,-1*K.1^29,-1*K.1^65,K.1,-1*K.1^61,-1*K.1^9,-1*K.1^45,K.1^61,K.1^9,-1*K.1^49,-1*K.1^13,K.1^63,-1*K.1^11,K.1^11,-1*K.1^47,K.1^47,-1*K.1^59,K.1^59,K.1^43,-1*K.1^43,K.1^31,-1*K.1^31,K.1^27,-1*K.1^27,K.1^39,-1*K.1^39,-1*K.1^63,-1*K.1^57,-1*K.1^53,K.1^21,K.1^5,-1*K.1^37,-1*K.1^33,-1*K.1^5,K.1^37,K.1^33,K.1^41,-1*K.1^25,K.1^57,-1*K.1^41,K.1^25,K.1^53,-1*K.1^30,K.1^54,K.1^58,-1*K.1^6,-1*K.1^26,-1*K.1^30,K.1^46,-1*K.1^58,-1*K.1^42,-1*K.1^22,K.1^6,K.1^30,-1*K.1^54,K.1^2,-1*K.1^2,K.1^26,-1*K.1^22,-1*K.1^58,-1*K.1^66,-1*K.1^2,-1*K.1^54,K.1^50,K.1^30,K.1^62,K.1^2,-1*K.1^10,K.1^66,-1*K.1^50,-1*K.1^46,K.1^14,-1*K.1^46,-1*K.1^14,K.1^10,-1*K.1^14,-1*K.1^26,K.1^66,-1*K.1^62,-1*K.1^18,-1*K.1^42,K.1^42,K.1^26,-1*K.1^6,-1*K.1^38,K.1^22,K.1^22,K.1^18,K.1^18,K.1^38,K.1^62,K.1^50,K.1^42,K.1^54,-1*K.1^18,-1*K.1^38,K.1^38,K.1^46,-1*K.1^66,K.1^58,-1*K.1^62,-1*K.1^10,-1*K.1^50,K.1^6,K.1^10,K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^32,-1*K.1^52,-1*K.1^20,-1*K.1^60,K.1^8,-1*K.1^28,-1*K.1^44,-1*K.1^12,K.1^48,K.1^56,-1*K.1^4,K.1^64,K.1^16,-1*K.1^36,K.1^40,K.1^24,K.1^12,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^64,K.1^48,K.1^20,-1*K.1^24,-1*K.1^48,-1*K.1^8,K.1^52,K.1^28,K.1^8,-1*K.1^36,-1*K.1^56,K.1^12,K.1^36,-1*K.1^24,K.1^36,K.1^28,K.1^4,-1*K.1^60,-1*K.1^4,K.1^16,-1*K.1^28,K.1^40,-1*K.1^52,-1*K.1^48,K.1^24,-1*K.1^12,K.1^44,K.1^56,-1*K.1^44,K.1^32,-1*K.1^20,-1*K.1^32,K.1^60,K.1^4,-1*K.1^16,K.1^60,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^16,K.1^48,-1*K.1^36,-1*K.1^28,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^12,K.1^32,K.1^56,-1*K.1^60,K.1^8,K.1^64,-1*K.1^20,K.1^24,-1*K.1^44,K.1^30,-1*K.1^50,-1*K.1^58,-1*K.1^62,-1*K.1^50,-1*K.1^38,K.1^42,-1*K.1^14,-1*K.1^38,K.1^58,-1*K.1^62,-1*K.1^10,-1*K.1^6,-1*K.1^22,-1*K.1^30,K.1^66,-1*K.1^54,K.1^2,K.1^10,-1*K.1^10,-1*K.1^58,-1*K.1^18,-1*K.1^66,-1*K.1^30,K.1^6,K.1^62,-1*K.1^46,-1*K.1^66,K.1^46,K.1^14,-1*K.1^42,K.1^14,K.1^58,-1*K.1^18,K.1^38,-1*K.1^6,K.1^22,K.1^54,-1*K.1^2,K.1^38,K.1^50,K.1^62,K.1^26,K.1^26,K.1^2,K.1^50,-1*K.1^46,-1*K.1^42,-1*K.1^14,K.1^18,K.1^10,K.1^42,-1*K.1^54,K.1^66,K.1^22,-1*K.1^22,K.1^6,-1*K.1^26,K.1^54,K.1^18,-1*K.1^2,K.1^30,-1*K.1^26,K.1^46,-1*K.1^24,K.1^36,-1*K.1^48,K.1^20,-1*K.1^8,-1*K.1^64,K.1^12,-1*K.1^56,-1*K.1^32,K.1^4,K.1^28,K.1^40,K.1^52,K.1^44,-1*K.1^48,K.1^20,-1*K.1^12,-1*K.1^8,K.1^56,K.1^32,K.1^8,K.1^48,-1*K.1^4,-1*K.1^36,-1*K.1^44,-1*K.1^20,-1*K.1^60,K.1^16,-1*K.1^52,K.1^52,K.1^44,K.1^4,-1*K.1^24,-1*K.1^64,K.1^60,K.1^28,K.1^12,K.1^24,-1*K.1^16,-1*K.1^28,-1*K.1^56,K.1^64,-1*K.1^40,K.1^36,-1*K.1^32,K.1^60,-1*K.1^16,-1*K.1^40,K.1^55,K.1^45,-1*K.1^45,K.1^33,-1*K.1^33,-1*K.1^25,K.1^25,-1*K.1^37,K.1^37,-1*K.1^65,K.1^65,-1*K.1^53,K.1^53,K.1^5,-1*K.1^5,K.1^57,-1*K.1^57,K.1^19,K.1^47,K.1^39,-1*K.1^31,-1*K.1^67,-1*K.1^39,K.1^31,K.1^67,K.1^27,-1*K.1^59,K.1^11,-1*K.1^27,K.1^59,-1*K.1^19,-1*K.1^47,K.1^29,-1*K.1,K.1,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,K.1^9,-1*K.1^9,-1*K.1^49,K.1^49,-1*K.1^61,K.1^61,-1*K.1^41,K.1^41,-1*K.1^29,K.1^23,-1*K.1^15,K.1^55,K.1^11,K.1^3,-1*K.1^35,-1*K.1^63,-1*K.1^3,K.1^35,-1*K.1^7,-1*K.1^43,-1*K.1^23,K.1^7,K.1^43,K.1^15,-1*K.1^55,K.1^63,K.1^57,K.1,-1*K.1,-1*K.1^33,K.1^33,-1*K.1^21,K.1^21,K.1^37,-1*K.1^37,K.1^49,-1*K.1^49,K.1^53,-1*K.1^53,K.1^41,-1*K.1^41,-1*K.1^57,-1*K.1^63,K.1^15,-1*K.1^47,-1*K.1^11,K.1^31,K.1^35,K.1^63,-1*K.1^31,-1*K.1^35,-1*K.1^27,K.1^43,-1*K.1^11,K.1^27,-1*K.1^43,-1*K.1^15,K.1^47,-1*K.1^29,-1*K.1^45,K.1^45,K.1^13,-1*K.1^13,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,K.1^65,-1*K.1^65,K.1^61,-1*K.1^61,-1*K.1^5,K.1^5,K.1^29,-1*K.1^23,-1*K.1^19,-1*K.1^55,-1*K.1^39,-1*K.1^3,K.1^67,K.1^39,K.1^3,-1*K.1^67,K.1^7,K.1^59,K.1^23,-1*K.1^7,-1*K.1^59,K.1^19,K.1^30,-1*K.1^54,-1*K.1^58,K.1^6,K.1^26,K.1^30,-1*K.1^46,K.1^58,K.1^42,K.1^22,-1*K.1^6,-1*K.1^30,K.1^54,-1*K.1^2,K.1^2,-1*K.1^26,K.1^22,K.1^58,K.1^66,K.1^2,K.1^54,-1*K.1^50,-1*K.1^30,-1*K.1^62,-1*K.1^2,K.1^10,-1*K.1^66,K.1^50,K.1^46,-1*K.1^14,K.1^46,K.1^14,-1*K.1^10,K.1^14,K.1^26,-1*K.1^66,K.1^62,K.1^18,K.1^42,-1*K.1^42,-1*K.1^26,K.1^6,K.1^38,-1*K.1^22,-1*K.1^22,-1*K.1^18,-1*K.1^18,-1*K.1^38,-1*K.1^62,-1*K.1^50,-1*K.1^42,-1*K.1^54,K.1^18,K.1^38,-1*K.1^38,-1*K.1^46,K.1^66,-1*K.1^58,K.1^62,K.1^10,K.1^50,-1*K.1^6,-1*K.1^10,-1*K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^36,K.1^16,K.1^48,K.1^8,-1*K.1^60,K.1^40,K.1^24,K.1^56,-1*K.1^20,-1*K.1^12,K.1^64,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^28,-1*K.1^44,-1*K.1^56,K.1^4,K.1^28,K.1^52,-1*K.1^4,-1*K.1^20,-1*K.1^48,K.1^44,K.1^20,K.1^60,-1*K.1^16,-1*K.1^40,-1*K.1^60,K.1^32,K.1^12,-1*K.1^56,-1*K.1^32,K.1^44,-1*K.1^32,-1*K.1^40,-1*K.1^64,K.1^8,K.1^64,-1*K.1^52,K.1^40,-1*K.1^28,K.1^16,K.1^20,-1*K.1^44,K.1^56,-1*K.1^24,-1*K.1^12,K.1^24,-1*K.1^36,K.1^48,K.1^36,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^8,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^52,-1*K.1^20,K.1^32,K.1^40,K.1^64,K.1^16,-1*K.1^28,K.1^56,-1*K.1^36,-1*K.1^12,K.1^8,-1*K.1^60,-1*K.1^4,K.1^48,-1*K.1^44,K.1^24,-1*K.1^38,K.1^18,K.1^10,K.1^6,K.1^18,K.1^30,-1*K.1^26,K.1^54,K.1^30,-1*K.1^10,K.1^6,K.1^58,K.1^62,K.1^46,K.1^38,-1*K.1^2,K.1^14,-1*K.1^66,-1*K.1^58,K.1^58,K.1^10,K.1^50,K.1^2,K.1^38,-1*K.1^62,-1*K.1^6,K.1^22,K.1^2,-1*K.1^22,-1*K.1^54,K.1^26,-1*K.1^54,-1*K.1^10,K.1^50,-1*K.1^30,K.1^62,-1*K.1^46,-1*K.1^14,K.1^66,-1*K.1^30,-1*K.1^18,-1*K.1^6,-1*K.1^42,-1*K.1^42,-1*K.1^66,-1*K.1^18,K.1^22,K.1^26,K.1^54,-1*K.1^50,-1*K.1^58,-1*K.1^26,K.1^14,-1*K.1^2,-1*K.1^46,K.1^46,-1*K.1^62,K.1^42,-1*K.1^14,-1*K.1^50,K.1^66,-1*K.1^38,K.1^42,-1*K.1^22,K.1^44,-1*K.1^32,K.1^20,-1*K.1^48,K.1^60,K.1^4,-1*K.1^56,K.1^12,K.1^36,-1*K.1^64,-1*K.1^40,-1*K.1^28,-1*K.1^16,-1*K.1^24,K.1^20,-1*K.1^48,K.1^56,K.1^60,-1*K.1^12,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^64,K.1^32,K.1^24,K.1^48,K.1^8,-1*K.1^52,K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^44,K.1^4,-1*K.1^8,-1*K.1^40,-1*K.1^56,-1*K.1^44,K.1^52,K.1^40,K.1^12,-1*K.1^4,K.1^28,-1*K.1^32,K.1^36,-1*K.1^8,K.1^52,K.1^28,-1*K.1^13,-1*K.1^23,K.1^23,-1*K.1^35,K.1^35,K.1^43,-1*K.1^43,K.1^31,-1*K.1^31,K.1^3,-1*K.1^3,K.1^15,-1*K.1^15,-1*K.1^63,K.1^63,-1*K.1^11,K.1^11,-1*K.1^49,-1*K.1^21,-1*K.1^29,K.1^37,K.1,K.1^29,-1*K.1^37,-1*K.1,-1*K.1^41,K.1^9,-1*K.1^57,K.1^41,-1*K.1^9,K.1^49,K.1^21,-1*K.1^39,K.1^67,-1*K.1^67,K.1^55,-1*K.1^55,-1*K.1^47,K.1^47,-1*K.1^59,K.1^59,K.1^19,-1*K.1^19,K.1^7,-1*K.1^7,K.1^27,-1*K.1^27,K.1^39,-1*K.1^45,K.1^53,-1*K.1^13,-1*K.1^57,-1*K.1^65,K.1^33,K.1^5,K.1^65,-1*K.1^33,K.1^61,K.1^25,K.1^45,-1*K.1^61,-1*K.1^25,-1*K.1^53,K.1^13,-1*K.1^5,-1*K.1^11,-1*K.1^67,K.1^67,K.1^35,-1*K.1^35,K.1^47,-1*K.1^47,-1*K.1^31,K.1^31,-1*K.1^19,K.1^19,-1*K.1^15,K.1^15,-1*K.1^27,K.1^27,K.1^11,K.1^5,-1*K.1^53,K.1^21,K.1^57,-1*K.1^37,-1*K.1^33,-1*K.1^5,K.1^37,K.1^33,K.1^41,-1*K.1^25,K.1^57,-1*K.1^41,K.1^25,K.1^53,-1*K.1^21,K.1^39,K.1^23,-1*K.1^23,-1*K.1^55,K.1^55,-1*K.1^43,K.1^43,K.1^59,-1*K.1^59,-1*K.1^3,K.1^3,-1*K.1^7,K.1^7,K.1^63,-1*K.1^63,-1*K.1^39,K.1^45,K.1^49,K.1^13,K.1^29,K.1^65,-1*K.1,-1*K.1^29,-1*K.1^65,K.1,-1*K.1^61,-1*K.1^9,-1*K.1^45,K.1^61,K.1^9,-1*K.1^49,-1*K.1^38,K.1^14,K.1^10,-1*K.1^62,-1*K.1^42,-1*K.1^38,K.1^22,-1*K.1^10,-1*K.1^26,-1*K.1^46,K.1^62,K.1^38,-1*K.1^14,K.1^66,-1*K.1^66,K.1^42,-1*K.1^46,-1*K.1^10,-1*K.1^2,-1*K.1^66,-1*K.1^14,K.1^18,K.1^38,K.1^6,K.1^66,-1*K.1^58,K.1^2,-1*K.1^18,-1*K.1^22,K.1^54,-1*K.1^22,-1*K.1^54,K.1^58,-1*K.1^54,-1*K.1^42,K.1^2,-1*K.1^6,-1*K.1^50,-1*K.1^26,K.1^26,K.1^42,-1*K.1^62,-1*K.1^30,K.1^46,K.1^46,K.1^50,K.1^50,K.1^30,K.1^6,K.1^18,K.1^26,K.1^14,-1*K.1^50,-1*K.1^30,K.1^30,K.1^22,-1*K.1^2,K.1^10,-1*K.1^6,-1*K.1^58,-1*K.1^18,K.1^62,K.1^58,K.1^54]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^44,-1*K.1^12,-1*K.1^36,K.1^40,-1*K.1^28,K.1^64,-1*K.1^52,K.1^8,K.1^32,-1*K.1^60,K.1^48,-1*K.1^20,K.1^56,K.1^24,-1*K.1^4,K.1^16,-1*K.1^8,K.1^20,K.1^4,-1*K.1^56,-1*K.1^20,K.1^32,K.1^36,-1*K.1^16,-1*K.1^32,K.1^28,K.1^12,-1*K.1^64,-1*K.1^28,K.1^24,K.1^60,-1*K.1^8,-1*K.1^24,-1*K.1^16,-1*K.1^24,-1*K.1^64,-1*K.1^48,K.1^40,K.1^48,K.1^56,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^32,K.1^16,K.1^8,K.1^52,-1*K.1^60,-1*K.1^52,-1*K.1^44,-1*K.1^36,K.1^44,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^40,K.1^60,K.1^52,K.1^44,K.1^36,K.1^28,K.1^20,K.1^12,K.1^4,K.1^56,K.1^32,K.1^24,K.1^64,K.1^48,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^44,-1*K.1^60,K.1^40,-1*K.1^28,-1*K.1^20,-1*K.1^36,K.1^16,-1*K.1^52,K.1^54,K.1^22,-1*K.1^50,-1*K.1^30,K.1^22,-1*K.1^14,-1*K.1^62,K.1^66,-1*K.1^14,K.1^50,-1*K.1^30,-1*K.1^18,-1*K.1^38,K.1^26,-1*K.1^54,K.1^10,K.1^2,K.1^58,K.1^18,-1*K.1^18,-1*K.1^50,K.1^46,-1*K.1^10,-1*K.1^54,K.1^38,K.1^30,K.1^42,-1*K.1^10,-1*K.1^42,-1*K.1^66,K.1^62,-1*K.1^66,K.1^50,K.1^46,K.1^14,-1*K.1^38,-1*K.1^26,-1*K.1^2,-1*K.1^58,K.1^14,-1*K.1^22,K.1^30,-1*K.1^6,-1*K.1^6,K.1^58,-1*K.1^22,K.1^42,K.1^62,K.1^66,-1*K.1^46,K.1^18,-1*K.1^62,K.1^2,K.1^10,-1*K.1^26,K.1^26,K.1^38,K.1^6,-1*K.1^2,-1*K.1^46,-1*K.1^58,K.1^54,K.1^6,-1*K.1^42,-1*K.1^16,-1*K.1^24,-1*K.1^32,K.1^36,K.1^28,K.1^20,-1*K.1^8,K.1^60,K.1^44,-1*K.1^48,-1*K.1^64,-1*K.1^4,K.1^12,K.1^52,-1*K.1^32,K.1^36,K.1^8,K.1^28,-1*K.1^60,-1*K.1^44,-1*K.1^28,K.1^32,K.1^48,K.1^24,-1*K.1^52,-1*K.1^36,K.1^40,K.1^56,-1*K.1^12,K.1^12,K.1^52,-1*K.1^48,-1*K.1^16,K.1^20,-1*K.1^40,-1*K.1^64,-1*K.1^8,K.1^16,-1*K.1^56,K.1^64,K.1^60,-1*K.1^20,K.1^4,-1*K.1^24,K.1^44,-1*K.1^40,-1*K.1^56,K.1^4,K.1^31,K.1^13,-1*K.1^13,-1*K.1^5,K.1^5,K.1^45,-1*K.1^45,-1*K.1^53,K.1^53,-1*K.1^49,K.1^49,K.1^41,-1*K.1^41,-1*K.1^9,K.1^9,-1*K.1^21,K.1^21,-1*K.1^7,-1*K.1^3,-1*K.1^43,-1*K.1^15,K.1^39,K.1^43,K.1^15,-1*K.1^39,K.1^35,-1*K.1^11,-1*K.1^47,-1*K.1^35,K.1^11,K.1^7,K.1^3,-1*K.1^25,K.1^29,-1*K.1^29,-1*K.1^37,K.1^37,-1*K.1^65,K.1^65,K.1^57,-1*K.1^57,K.1^61,-1*K.1^61,K.1,-1*K.1,-1*K.1^33,K.1^33,K.1^25,K.1^55,K.1^27,K.1^31,-1*K.1^47,K.1^19,K.1^63,K.1^59,-1*K.1^19,-1*K.1^63,K.1^67,K.1^23,-1*K.1^55,-1*K.1^67,-1*K.1^23,-1*K.1^27,-1*K.1^31,-1*K.1^59,-1*K.1^21,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,K.1^65,-1*K.1^65,K.1^53,-1*K.1^53,-1*K.1^61,K.1^61,-1*K.1^41,K.1^41,K.1^33,-1*K.1^33,K.1^21,K.1^59,-1*K.1^27,K.1^3,K.1^47,K.1^15,-1*K.1^63,-1*K.1^59,-1*K.1^15,K.1^63,-1*K.1^35,-1*K.1^23,K.1^47,K.1^35,K.1^23,K.1^27,-1*K.1^3,K.1^25,-1*K.1^13,K.1^13,K.1^37,-1*K.1^37,-1*K.1^45,K.1^45,-1*K.1^57,K.1^57,K.1^49,-1*K.1^49,-1*K.1,K.1,K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^55,K.1^7,-1*K.1^31,K.1^43,-1*K.1^19,-1*K.1^39,-1*K.1^43,K.1^19,K.1^39,-1*K.1^67,K.1^11,K.1^55,K.1^67,-1*K.1^11,-1*K.1^7,K.1^54,K.1^2,-1*K.1^50,K.1^38,-1*K.1^6,K.1^54,K.1^42,K.1^50,-1*K.1^62,-1*K.1^26,-1*K.1^38,-1*K.1^54,-1*K.1^2,-1*K.1^58,K.1^58,K.1^6,-1*K.1^26,K.1^50,K.1^10,K.1^58,-1*K.1^2,K.1^22,-1*K.1^54,-1*K.1^30,-1*K.1^58,K.1^18,-1*K.1^10,-1*K.1^22,-1*K.1^42,K.1^66,-1*K.1^42,-1*K.1^66,-1*K.1^18,-1*K.1^66,-1*K.1^6,-1*K.1^10,K.1^30,-1*K.1^46,-1*K.1^62,K.1^62,K.1^6,K.1^38,K.1^14,K.1^26,K.1^26,K.1^46,K.1^46,-1*K.1^14,-1*K.1^30,K.1^22,K.1^62,K.1^2,-1*K.1^46,K.1^14,-1*K.1^14,K.1^42,K.1^10,-1*K.1^50,K.1^30,K.1^18,-1*K.1^22,-1*K.1^38,-1*K.1^18,K.1^66]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^24,K.1^56,K.1^32,-1*K.1^28,K.1^40,-1*K.1^4,K.1^16,-1*K.1^60,-1*K.1^36,K.1^8,-1*K.1^20,K.1^48,-1*K.1^12,-1*K.1^44,K.1^64,-1*K.1^52,K.1^60,-1*K.1^48,-1*K.1^64,K.1^12,K.1^48,-1*K.1^36,-1*K.1^32,K.1^52,K.1^36,-1*K.1^40,-1*K.1^56,K.1^4,K.1^40,-1*K.1^44,-1*K.1^8,K.1^60,K.1^44,K.1^52,K.1^44,K.1^4,K.1^20,-1*K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^4,K.1^64,K.1^56,K.1^36,-1*K.1^52,-1*K.1^60,-1*K.1^16,K.1^8,K.1^16,K.1^24,K.1^32,-1*K.1^24,K.1^28,K.1^20,K.1^12,K.1^28,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,-1*K.1^12,-1*K.1^36,-1*K.1^44,-1*K.1^4,-1*K.1^20,K.1^56,K.1^64,-1*K.1^60,K.1^24,K.1^8,-1*K.1^28,K.1^40,K.1^48,K.1^32,-1*K.1^52,K.1^16,-1*K.1^14,-1*K.1^46,K.1^18,K.1^38,-1*K.1^46,K.1^54,K.1^6,-1*K.1^2,K.1^54,-1*K.1^18,K.1^38,K.1^50,K.1^30,-1*K.1^42,K.1^14,-1*K.1^58,-1*K.1^66,-1*K.1^10,-1*K.1^50,K.1^50,K.1^18,-1*K.1^22,K.1^58,K.1^14,-1*K.1^30,-1*K.1^38,-1*K.1^26,K.1^58,K.1^26,K.1^2,-1*K.1^6,K.1^2,-1*K.1^18,-1*K.1^22,-1*K.1^54,K.1^30,K.1^42,K.1^66,K.1^10,-1*K.1^54,K.1^46,-1*K.1^38,K.1^62,K.1^62,-1*K.1^10,K.1^46,-1*K.1^26,-1*K.1^6,-1*K.1^2,K.1^22,-1*K.1^50,K.1^6,-1*K.1^66,-1*K.1^58,K.1^42,-1*K.1^42,-1*K.1^30,-1*K.1^62,K.1^66,K.1^22,K.1^10,-1*K.1^14,-1*K.1^62,K.1^26,K.1^52,K.1^44,K.1^36,-1*K.1^32,-1*K.1^40,-1*K.1^48,K.1^60,-1*K.1^8,-1*K.1^24,K.1^20,K.1^4,K.1^64,-1*K.1^56,-1*K.1^16,K.1^36,-1*K.1^32,-1*K.1^60,-1*K.1^40,K.1^8,K.1^24,K.1^40,-1*K.1^36,-1*K.1^20,-1*K.1^44,K.1^16,K.1^32,-1*K.1^28,-1*K.1^12,K.1^56,-1*K.1^56,-1*K.1^16,K.1^20,K.1^52,-1*K.1^48,K.1^28,K.1^4,K.1^60,-1*K.1^52,K.1^12,-1*K.1^4,-1*K.1^8,K.1^48,-1*K.1^64,K.1^44,-1*K.1^24,K.1^28,K.1^12,-1*K.1^64,-1*K.1^37,-1*K.1^55,K.1^55,K.1^63,-1*K.1^63,-1*K.1^23,K.1^23,K.1^15,-1*K.1^15,K.1^19,-1*K.1^19,-1*K.1^27,K.1^27,K.1^59,-1*K.1^59,K.1^47,-1*K.1^47,K.1^61,K.1^65,K.1^25,K.1^53,-1*K.1^29,-1*K.1^25,-1*K.1^53,K.1^29,-1*K.1^33,K.1^57,K.1^21,K.1^33,-1*K.1^57,-1*K.1^61,-1*K.1^65,K.1^43,-1*K.1^39,K.1^39,K.1^31,-1*K.1^31,K.1^3,-1*K.1^3,-1*K.1^11,K.1^11,-1*K.1^7,K.1^7,-1*K.1^67,K.1^67,K.1^35,-1*K.1^35,-1*K.1^43,-1*K.1^13,-1*K.1^41,-1*K.1^37,K.1^21,-1*K.1^49,-1*K.1^5,-1*K.1^9,K.1^49,K.1^5,-1*K.1,-1*K.1^45,K.1^13,K.1,K.1^45,K.1^41,K.1^37,K.1^9,K.1^47,K.1^39,-1*K.1^39,-1*K.1^63,K.1^63,-1*K.1^3,K.1^3,-1*K.1^15,K.1^15,K.1^7,-1*K.1^7,K.1^27,-1*K.1^27,-1*K.1^35,K.1^35,-1*K.1^47,-1*K.1^9,K.1^41,-1*K.1^65,-1*K.1^21,-1*K.1^53,K.1^5,K.1^9,K.1^53,-1*K.1^5,K.1^33,K.1^45,-1*K.1^21,-1*K.1^33,-1*K.1^45,-1*K.1^41,K.1^65,-1*K.1^43,K.1^55,-1*K.1^55,-1*K.1^31,K.1^31,K.1^23,-1*K.1^23,K.1^11,-1*K.1^11,-1*K.1^19,K.1^19,K.1^67,-1*K.1^67,-1*K.1^59,K.1^59,K.1^43,K.1^13,-1*K.1^61,K.1^37,-1*K.1^25,K.1^49,K.1^29,K.1^25,-1*K.1^49,-1*K.1^29,K.1,-1*K.1^57,-1*K.1^13,-1*K.1,K.1^57,K.1^61,-1*K.1^14,-1*K.1^66,K.1^18,-1*K.1^30,K.1^62,-1*K.1^14,-1*K.1^26,-1*K.1^18,K.1^6,K.1^42,K.1^30,K.1^14,K.1^66,K.1^10,-1*K.1^10,-1*K.1^62,K.1^42,-1*K.1^18,-1*K.1^58,-1*K.1^10,K.1^66,-1*K.1^46,K.1^14,K.1^38,K.1^10,-1*K.1^50,K.1^58,K.1^46,K.1^26,-1*K.1^2,K.1^26,K.1^2,K.1^50,K.1^2,K.1^62,K.1^58,-1*K.1^38,K.1^22,K.1^6,-1*K.1^6,-1*K.1^62,-1*K.1^30,-1*K.1^54,-1*K.1^42,-1*K.1^42,-1*K.1^22,-1*K.1^22,K.1^54,K.1^38,-1*K.1^46,-1*K.1^6,-1*K.1^66,K.1^22,-1*K.1^54,K.1^54,-1*K.1^26,-1*K.1^58,K.1^18,-1*K.1^38,-1*K.1^50,K.1^46,K.1^30,K.1^50,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^24,K.1^56,K.1^32,-1*K.1^28,K.1^40,-1*K.1^4,K.1^16,-1*K.1^60,-1*K.1^36,K.1^8,-1*K.1^20,K.1^48,-1*K.1^12,-1*K.1^44,K.1^64,-1*K.1^52,K.1^60,-1*K.1^48,-1*K.1^64,K.1^12,K.1^48,-1*K.1^36,-1*K.1^32,K.1^52,K.1^36,-1*K.1^40,-1*K.1^56,K.1^4,K.1^40,-1*K.1^44,-1*K.1^8,K.1^60,K.1^44,K.1^52,K.1^44,K.1^4,K.1^20,-1*K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^4,K.1^64,K.1^56,K.1^36,-1*K.1^52,-1*K.1^60,-1*K.1^16,K.1^8,K.1^16,K.1^24,K.1^32,-1*K.1^24,K.1^28,K.1^20,K.1^12,K.1^28,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,-1*K.1^12,-1*K.1^36,-1*K.1^44,-1*K.1^4,-1*K.1^20,K.1^56,K.1^64,-1*K.1^60,K.1^24,K.1^8,-1*K.1^28,K.1^40,K.1^48,K.1^32,-1*K.1^52,K.1^16,K.1^14,K.1^46,-1*K.1^18,-1*K.1^38,K.1^46,-1*K.1^54,-1*K.1^6,K.1^2,-1*K.1^54,K.1^18,-1*K.1^38,-1*K.1^50,-1*K.1^30,K.1^42,-1*K.1^14,K.1^58,K.1^66,K.1^10,K.1^50,-1*K.1^50,-1*K.1^18,K.1^22,-1*K.1^58,-1*K.1^14,K.1^30,K.1^38,K.1^26,-1*K.1^58,-1*K.1^26,-1*K.1^2,K.1^6,-1*K.1^2,K.1^18,K.1^22,K.1^54,-1*K.1^30,-1*K.1^42,-1*K.1^66,-1*K.1^10,K.1^54,-1*K.1^46,K.1^38,-1*K.1^62,-1*K.1^62,K.1^10,-1*K.1^46,K.1^26,K.1^6,K.1^2,-1*K.1^22,K.1^50,-1*K.1^6,K.1^66,K.1^58,-1*K.1^42,K.1^42,K.1^30,K.1^62,-1*K.1^66,-1*K.1^22,-1*K.1^10,K.1^14,K.1^62,-1*K.1^26,K.1^52,K.1^44,K.1^36,-1*K.1^32,-1*K.1^40,-1*K.1^48,K.1^60,-1*K.1^8,-1*K.1^24,K.1^20,K.1^4,K.1^64,-1*K.1^56,-1*K.1^16,K.1^36,-1*K.1^32,-1*K.1^60,-1*K.1^40,K.1^8,K.1^24,K.1^40,-1*K.1^36,-1*K.1^20,-1*K.1^44,K.1^16,K.1^32,-1*K.1^28,-1*K.1^12,K.1^56,-1*K.1^56,-1*K.1^16,K.1^20,K.1^52,-1*K.1^48,K.1^28,K.1^4,K.1^60,-1*K.1^52,K.1^12,-1*K.1^4,-1*K.1^8,K.1^48,-1*K.1^64,K.1^44,-1*K.1^24,K.1^28,K.1^12,-1*K.1^64,-1*K.1^3,K.1^21,-1*K.1^21,-1*K.1^29,K.1^29,-1*K.1^57,K.1^57,K.1^49,-1*K.1^49,K.1^53,-1*K.1^53,-1*K.1^61,K.1^61,-1*K.1^25,K.1^25,-1*K.1^13,K.1^13,K.1^27,K.1^31,-1*K.1^59,K.1^19,K.1^63,K.1^59,-1*K.1^19,-1*K.1^63,K.1^67,K.1^23,-1*K.1^55,-1*K.1^67,-1*K.1^23,-1*K.1^27,-1*K.1^31,-1*K.1^9,K.1^5,-1*K.1^5,K.1^65,-1*K.1^65,K.1^37,-1*K.1^37,-1*K.1^45,K.1^45,-1*K.1^41,K.1^41,K.1^33,-1*K.1^33,-1*K.1,K.1,K.1^9,K.1^47,-1*K.1^7,-1*K.1^3,-1*K.1^55,-1*K.1^15,K.1^39,K.1^43,K.1^15,-1*K.1^39,K.1^35,-1*K.1^11,-1*K.1^47,-1*K.1^35,K.1^11,K.1^7,K.1^3,-1*K.1^43,-1*K.1^13,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,-1*K.1^37,K.1^37,-1*K.1^49,K.1^49,K.1^41,-1*K.1^41,K.1^61,-1*K.1^61,K.1,-1*K.1,K.1^13,K.1^43,K.1^7,-1*K.1^31,K.1^55,-1*K.1^19,-1*K.1^39,-1*K.1^43,K.1^19,K.1^39,-1*K.1^67,K.1^11,K.1^55,K.1^67,-1*K.1^11,-1*K.1^7,K.1^31,K.1^9,-1*K.1^21,K.1^21,-1*K.1^65,K.1^65,K.1^57,-1*K.1^57,K.1^45,-1*K.1^45,-1*K.1^53,K.1^53,-1*K.1^33,K.1^33,K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^47,-1*K.1^27,K.1^3,K.1^59,K.1^15,-1*K.1^63,-1*K.1^59,-1*K.1^15,K.1^63,-1*K.1^35,-1*K.1^23,K.1^47,K.1^35,K.1^23,K.1^27,K.1^14,K.1^66,-1*K.1^18,K.1^30,-1*K.1^62,K.1^14,K.1^26,K.1^18,-1*K.1^6,-1*K.1^42,-1*K.1^30,-1*K.1^14,-1*K.1^66,-1*K.1^10,K.1^10,K.1^62,-1*K.1^42,K.1^18,K.1^58,K.1^10,-1*K.1^66,K.1^46,-1*K.1^14,-1*K.1^38,-1*K.1^10,K.1^50,-1*K.1^58,-1*K.1^46,-1*K.1^26,K.1^2,-1*K.1^26,-1*K.1^2,-1*K.1^50,-1*K.1^2,-1*K.1^62,-1*K.1^58,K.1^38,-1*K.1^22,-1*K.1^6,K.1^6,K.1^62,K.1^30,K.1^54,K.1^42,K.1^42,K.1^22,K.1^22,-1*K.1^54,-1*K.1^38,K.1^46,K.1^6,K.1^66,-1*K.1^22,K.1^54,-1*K.1^54,K.1^26,K.1^58,-1*K.1^18,K.1^38,K.1^50,-1*K.1^46,-1*K.1^30,-1*K.1^50,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^44,-1*K.1^12,-1*K.1^36,K.1^40,-1*K.1^28,K.1^64,-1*K.1^52,K.1^8,K.1^32,-1*K.1^60,K.1^48,-1*K.1^20,K.1^56,K.1^24,-1*K.1^4,K.1^16,-1*K.1^8,K.1^20,K.1^4,-1*K.1^56,-1*K.1^20,K.1^32,K.1^36,-1*K.1^16,-1*K.1^32,K.1^28,K.1^12,-1*K.1^64,-1*K.1^28,K.1^24,K.1^60,-1*K.1^8,-1*K.1^24,-1*K.1^16,-1*K.1^24,-1*K.1^64,-1*K.1^48,K.1^40,K.1^48,K.1^56,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^32,K.1^16,K.1^8,K.1^52,-1*K.1^60,-1*K.1^52,-1*K.1^44,-1*K.1^36,K.1^44,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^40,K.1^60,K.1^52,K.1^44,K.1^36,K.1^28,K.1^20,K.1^12,K.1^4,K.1^56,K.1^32,K.1^24,K.1^64,K.1^48,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^44,-1*K.1^60,K.1^40,-1*K.1^28,-1*K.1^20,-1*K.1^36,K.1^16,-1*K.1^52,-1*K.1^54,-1*K.1^22,K.1^50,K.1^30,-1*K.1^22,K.1^14,K.1^62,-1*K.1^66,K.1^14,-1*K.1^50,K.1^30,K.1^18,K.1^38,-1*K.1^26,K.1^54,-1*K.1^10,-1*K.1^2,-1*K.1^58,-1*K.1^18,K.1^18,K.1^50,-1*K.1^46,K.1^10,K.1^54,-1*K.1^38,-1*K.1^30,-1*K.1^42,K.1^10,K.1^42,K.1^66,-1*K.1^62,K.1^66,-1*K.1^50,-1*K.1^46,-1*K.1^14,K.1^38,K.1^26,K.1^2,K.1^58,-1*K.1^14,K.1^22,-1*K.1^30,K.1^6,K.1^6,-1*K.1^58,K.1^22,-1*K.1^42,-1*K.1^62,-1*K.1^66,K.1^46,-1*K.1^18,K.1^62,-1*K.1^2,-1*K.1^10,K.1^26,-1*K.1^26,-1*K.1^38,-1*K.1^6,K.1^2,K.1^46,K.1^58,-1*K.1^54,-1*K.1^6,K.1^42,-1*K.1^16,-1*K.1^24,-1*K.1^32,K.1^36,K.1^28,K.1^20,-1*K.1^8,K.1^60,K.1^44,-1*K.1^48,-1*K.1^64,-1*K.1^4,K.1^12,K.1^52,-1*K.1^32,K.1^36,K.1^8,K.1^28,-1*K.1^60,-1*K.1^44,-1*K.1^28,K.1^32,K.1^48,K.1^24,-1*K.1^52,-1*K.1^36,K.1^40,K.1^56,-1*K.1^12,K.1^12,K.1^52,-1*K.1^48,-1*K.1^16,K.1^20,-1*K.1^40,-1*K.1^64,-1*K.1^8,K.1^16,-1*K.1^56,K.1^64,K.1^60,-1*K.1^20,K.1^4,-1*K.1^24,K.1^44,-1*K.1^40,-1*K.1^56,K.1^4,K.1^65,-1*K.1^47,K.1^47,K.1^39,-1*K.1^39,K.1^11,-1*K.1^11,-1*K.1^19,K.1^19,-1*K.1^15,K.1^15,K.1^7,-1*K.1^7,K.1^43,-1*K.1^43,K.1^55,-1*K.1^55,-1*K.1^41,-1*K.1^37,K.1^9,-1*K.1^49,-1*K.1^5,-1*K.1^9,K.1^49,K.1^5,-1*K.1,-1*K.1^45,K.1^13,K.1,K.1^45,K.1^41,K.1^37,K.1^59,-1*K.1^63,K.1^63,-1*K.1^3,K.1^3,-1*K.1^31,K.1^31,K.1^23,-1*K.1^23,K.1^27,-1*K.1^27,-1*K.1^35,K.1^35,K.1^67,-1*K.1^67,-1*K.1^59,-1*K.1^21,K.1^61,K.1^65,K.1^13,K.1^53,-1*K.1^29,-1*K.1^25,-1*K.1^53,K.1^29,-1*K.1^33,K.1^57,K.1^21,K.1^33,-1*K.1^57,-1*K.1^61,-1*K.1^65,K.1^25,K.1^55,K.1^63,-1*K.1^63,-1*K.1^39,K.1^39,K.1^31,-1*K.1^31,K.1^19,-1*K.1^19,-1*K.1^27,K.1^27,-1*K.1^7,K.1^7,-1*K.1^67,K.1^67,-1*K.1^55,-1*K.1^25,-1*K.1^61,K.1^37,-1*K.1^13,K.1^49,K.1^29,K.1^25,-1*K.1^49,-1*K.1^29,K.1,-1*K.1^57,-1*K.1^13,-1*K.1,K.1^57,K.1^61,-1*K.1^37,-1*K.1^59,K.1^47,-1*K.1^47,K.1^3,-1*K.1^3,-1*K.1^11,K.1^11,-1*K.1^23,K.1^23,K.1^15,-1*K.1^15,K.1^35,-1*K.1^35,-1*K.1^43,K.1^43,K.1^59,K.1^21,K.1^41,-1*K.1^65,-1*K.1^9,-1*K.1^53,K.1^5,K.1^9,K.1^53,-1*K.1^5,K.1^33,K.1^45,-1*K.1^21,-1*K.1^33,-1*K.1^45,-1*K.1^41,-1*K.1^54,-1*K.1^2,K.1^50,-1*K.1^38,K.1^6,-1*K.1^54,-1*K.1^42,-1*K.1^50,K.1^62,K.1^26,K.1^38,K.1^54,K.1^2,K.1^58,-1*K.1^58,-1*K.1^6,K.1^26,-1*K.1^50,-1*K.1^10,-1*K.1^58,K.1^2,-1*K.1^22,K.1^54,K.1^30,K.1^58,-1*K.1^18,K.1^10,K.1^22,K.1^42,-1*K.1^66,K.1^42,K.1^66,K.1^18,K.1^66,K.1^6,K.1^10,-1*K.1^30,K.1^46,K.1^62,-1*K.1^62,-1*K.1^6,-1*K.1^38,-1*K.1^14,-1*K.1^26,-1*K.1^26,-1*K.1^46,-1*K.1^46,K.1^14,K.1^30,-1*K.1^22,-1*K.1^62,-1*K.1^2,K.1^46,-1*K.1^14,K.1^14,-1*K.1^42,-1*K.1^10,K.1^50,-1*K.1^30,-1*K.1^18,K.1^22,K.1^38,K.1^18,-1*K.1^66]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^52,K.1^8,K.1^24,-1*K.1^4,K.1^64,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^44,K.1^40,K.1^32,-1*K.1^36,-1*K.1^60,K.1^16,K.1^48,K.1^56,K.1^28,K.1^36,-1*K.1^48,K.1^60,-1*K.1^36,-1*K.1^44,-1*K.1^24,-1*K.1^56,K.1^44,-1*K.1^64,-1*K.1^8,K.1^20,K.1^64,K.1^16,-1*K.1^40,K.1^28,-1*K.1^16,-1*K.1^56,-1*K.1^16,K.1^20,-1*K.1^32,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^20,K.1^48,K.1^8,K.1^44,K.1^56,-1*K.1^28,K.1^12,K.1^40,-1*K.1^12,-1*K.1^52,K.1^24,K.1^52,K.1^4,-1*K.1^32,K.1^60,K.1^4,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,-1*K.1^60,-1*K.1^44,K.1^16,-1*K.1^20,K.1^32,K.1^8,K.1^48,-1*K.1^28,-1*K.1^52,K.1^40,-1*K.1^4,K.1^64,-1*K.1^36,K.1^24,K.1^56,-1*K.1^12,-1*K.1^2,-1*K.1^26,K.1^22,-1*K.1^54,-1*K.1^26,K.1^66,-1*K.1^30,K.1^10,K.1^66,-1*K.1^22,-1*K.1^54,K.1^46,-1*K.1^14,-1*K.1^6,K.1^2,K.1^18,K.1^58,K.1^50,-1*K.1^46,K.1^46,K.1^22,-1*K.1^42,-1*K.1^18,K.1^2,K.1^14,K.1^54,-1*K.1^62,-1*K.1^18,K.1^62,-1*K.1^10,K.1^30,-1*K.1^10,-1*K.1^22,-1*K.1^42,-1*K.1^66,-1*K.1^14,K.1^6,-1*K.1^58,-1*K.1^50,-1*K.1^66,K.1^26,K.1^54,-1*K.1^38,-1*K.1^38,K.1^50,K.1^26,-1*K.1^62,K.1^30,K.1^10,K.1^42,-1*K.1^46,-1*K.1^30,K.1^58,K.1^18,K.1^6,-1*K.1^6,K.1^14,K.1^38,-1*K.1^58,K.1^42,-1*K.1^50,-1*K.1^2,K.1^38,K.1^62,-1*K.1^56,-1*K.1^16,K.1^44,-1*K.1^24,-1*K.1^64,K.1^36,K.1^28,-1*K.1^40,K.1^52,-1*K.1^32,K.1^20,K.1^48,-1*K.1^8,K.1^12,K.1^44,-1*K.1^24,-1*K.1^28,-1*K.1^64,K.1^40,-1*K.1^52,K.1^64,-1*K.1^44,K.1^32,K.1^16,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^60,K.1^8,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^56,K.1^36,K.1^4,K.1^20,K.1^28,K.1^56,K.1^60,-1*K.1^20,-1*K.1^40,-1*K.1^36,-1*K.1^48,-1*K.1^16,K.1^52,K.1^4,K.1^60,-1*K.1^48,K.1^15,K.1^37,-1*K.1^37,K.1^9,-1*K.1^9,K.1^13,-1*K.1^13,K.1^41,-1*K.1^41,K.1^61,-1*K.1^61,K.1^33,-1*K.1^33,-1*K.1^57,K.1^57,K.1^65,-1*K.1^65,K.1^67,-1*K.1^19,K.1^23,K.1^27,-1*K.1^43,-1*K.1^23,-1*K.1^27,K.1^43,-1*K.1^63,K.1^47,K.1^3,K.1^63,-1*K.1^47,-1*K.1^67,K.1^19,K.1^45,-1*K.1^25,K.1^25,-1*K.1^53,K.1^53,-1*K.1^49,K.1^49,-1*K.1^21,K.1^21,-1*K.1,K.1,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,-1*K.1^45,K.1^31,K.1^35,K.1^15,K.1^3,-1*K.1^7,-1*K.1^59,K.1^11,K.1^7,K.1^59,-1*K.1^39,K.1^55,-1*K.1^31,K.1^39,-1*K.1^55,-1*K.1^35,-1*K.1^15,-1*K.1^11,K.1^65,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,K.1^49,-1*K.1^49,-1*K.1^41,K.1^41,K.1,-1*K.1,-1*K.1^33,K.1^33,-1*K.1^5,K.1^5,-1*K.1^65,K.1^11,-1*K.1^35,K.1^19,-1*K.1^3,-1*K.1^27,K.1^59,-1*K.1^11,K.1^27,-1*K.1^59,K.1^63,-1*K.1^55,-1*K.1^3,-1*K.1^63,K.1^55,K.1^35,-1*K.1^19,-1*K.1^45,-1*K.1^37,K.1^37,K.1^53,-1*K.1^53,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,-1*K.1^61,K.1^61,K.1^29,-1*K.1^29,K.1^57,-1*K.1^57,K.1^45,-1*K.1^31,-1*K.1^67,-1*K.1^15,-1*K.1^23,K.1^7,K.1^43,K.1^23,-1*K.1^7,-1*K.1^43,K.1^39,-1*K.1^47,K.1^31,-1*K.1^39,K.1^47,K.1^67,-1*K.1^2,K.1^58,K.1^22,K.1^14,-1*K.1^38,-1*K.1^2,-1*K.1^62,-1*K.1^22,-1*K.1^30,K.1^6,-1*K.1^14,K.1^2,-1*K.1^58,-1*K.1^50,K.1^50,K.1^38,K.1^6,-1*K.1^22,K.1^18,K.1^50,-1*K.1^58,-1*K.1^26,K.1^2,-1*K.1^54,-1*K.1^50,-1*K.1^46,-1*K.1^18,K.1^26,K.1^62,K.1^10,K.1^62,-1*K.1^10,K.1^46,-1*K.1^10,-1*K.1^38,-1*K.1^18,K.1^54,K.1^42,-1*K.1^30,K.1^30,K.1^38,K.1^14,-1*K.1^66,-1*K.1^6,-1*K.1^6,-1*K.1^42,-1*K.1^42,K.1^66,-1*K.1^54,-1*K.1^26,K.1^30,K.1^58,K.1^42,-1*K.1^66,K.1^66,-1*K.1^62,K.1^18,K.1^22,K.1^54,-1*K.1^46,K.1^26,-1*K.1^14,K.1^46,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^16,-1*K.1^60,-1*K.1^44,K.1^64,-1*K.1^4,K.1^48,K.1^56,K.1^40,K.1^24,-1*K.1^28,-1*K.1^36,K.1^32,K.1^8,-1*K.1^52,-1*K.1^20,-1*K.1^12,-1*K.1^40,-1*K.1^32,K.1^20,-1*K.1^8,K.1^32,K.1^24,K.1^44,K.1^12,-1*K.1^24,K.1^4,K.1^60,-1*K.1^48,-1*K.1^4,-1*K.1^52,K.1^28,-1*K.1^40,K.1^52,K.1^12,K.1^52,-1*K.1^48,K.1^36,K.1^64,-1*K.1^36,K.1^8,K.1^48,-1*K.1^20,-1*K.1^60,-1*K.1^24,-1*K.1^12,K.1^40,-1*K.1^56,-1*K.1^28,K.1^56,K.1^16,-1*K.1^44,-1*K.1^16,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^64,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^4,-1*K.1^32,K.1^60,K.1^20,K.1^8,K.1^24,-1*K.1^52,K.1^48,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^40,K.1^16,-1*K.1^28,K.1^64,-1*K.1^4,K.1^32,-1*K.1^44,-1*K.1^12,K.1^56,K.1^66,K.1^42,-1*K.1^46,K.1^14,K.1^42,-1*K.1^2,K.1^38,-1*K.1^58,-1*K.1^2,K.1^46,K.1^14,-1*K.1^22,K.1^54,K.1^62,-1*K.1^66,-1*K.1^50,-1*K.1^10,-1*K.1^18,K.1^22,-1*K.1^22,-1*K.1^46,K.1^26,K.1^50,-1*K.1^66,-1*K.1^54,-1*K.1^14,K.1^6,K.1^50,-1*K.1^6,K.1^58,-1*K.1^38,K.1^58,K.1^46,K.1^26,K.1^2,K.1^54,-1*K.1^62,K.1^10,K.1^18,K.1^2,-1*K.1^42,-1*K.1^14,K.1^30,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^38,-1*K.1^58,-1*K.1^26,K.1^22,K.1^38,-1*K.1^10,-1*K.1^50,-1*K.1^62,K.1^62,-1*K.1^54,-1*K.1^30,K.1^10,-1*K.1^26,K.1^18,K.1^66,-1*K.1^30,-1*K.1^6,K.1^12,K.1^52,-1*K.1^24,K.1^44,K.1^4,-1*K.1^32,-1*K.1^40,K.1^28,-1*K.1^16,K.1^36,-1*K.1^48,-1*K.1^20,K.1^60,-1*K.1^56,-1*K.1^24,K.1^44,K.1^40,K.1^4,-1*K.1^28,K.1^16,-1*K.1^4,K.1^24,-1*K.1^36,-1*K.1^52,K.1^56,-1*K.1^44,K.1^64,K.1^8,-1*K.1^60,K.1^60,-1*K.1^56,K.1^36,K.1^12,-1*K.1^32,-1*K.1^64,-1*K.1^48,-1*K.1^40,-1*K.1^12,-1*K.1^8,K.1^48,K.1^28,K.1^32,K.1^20,K.1^52,-1*K.1^16,-1*K.1^64,-1*K.1^8,K.1^20,-1*K.1^53,-1*K.1^31,K.1^31,-1*K.1^59,K.1^59,-1*K.1^55,K.1^55,-1*K.1^27,K.1^27,-1*K.1^7,K.1^7,-1*K.1^35,K.1^35,K.1^11,-1*K.1^11,-1*K.1^3,K.1^3,-1*K.1,K.1^49,-1*K.1^45,-1*K.1^41,K.1^25,K.1^45,K.1^41,-1*K.1^25,K.1^5,-1*K.1^21,-1*K.1^65,-1*K.1^5,K.1^21,K.1,-1*K.1^49,-1*K.1^23,K.1^43,-1*K.1^43,K.1^15,-1*K.1^15,K.1^19,-1*K.1^19,K.1^47,-1*K.1^47,K.1^67,-1*K.1^67,K.1^39,-1*K.1^39,-1*K.1^63,K.1^63,K.1^23,-1*K.1^37,-1*K.1^33,-1*K.1^53,-1*K.1^65,K.1^61,K.1^9,-1*K.1^57,-1*K.1^61,-1*K.1^9,K.1^29,-1*K.1^13,K.1^37,-1*K.1^29,K.1^13,K.1^33,K.1^53,K.1^57,-1*K.1^3,-1*K.1^43,K.1^43,K.1^59,-1*K.1^59,-1*K.1^19,K.1^19,K.1^27,-1*K.1^27,-1*K.1^67,K.1^67,K.1^35,-1*K.1^35,K.1^63,-1*K.1^63,K.1^3,-1*K.1^57,K.1^33,-1*K.1^49,K.1^65,K.1^41,-1*K.1^9,K.1^57,-1*K.1^41,K.1^9,-1*K.1^5,K.1^13,K.1^65,K.1^5,-1*K.1^13,-1*K.1^33,K.1^49,K.1^23,K.1^31,-1*K.1^31,-1*K.1^15,K.1^15,K.1^55,-1*K.1^55,-1*K.1^47,K.1^47,K.1^7,-1*K.1^7,-1*K.1^39,K.1^39,-1*K.1^11,K.1^11,-1*K.1^23,K.1^37,K.1,K.1^53,K.1^45,-1*K.1^61,-1*K.1^25,-1*K.1^45,K.1^61,K.1^25,-1*K.1^29,K.1^21,-1*K.1^37,K.1^29,-1*K.1^21,-1*K.1,K.1^66,-1*K.1^10,-1*K.1^46,-1*K.1^54,K.1^30,K.1^66,K.1^6,K.1^46,K.1^38,-1*K.1^62,K.1^54,-1*K.1^66,K.1^10,K.1^18,-1*K.1^18,-1*K.1^30,-1*K.1^62,K.1^46,-1*K.1^50,-1*K.1^18,K.1^10,K.1^42,-1*K.1^66,K.1^14,K.1^18,K.1^22,K.1^50,-1*K.1^42,-1*K.1^6,-1*K.1^58,-1*K.1^6,K.1^58,-1*K.1^22,K.1^58,K.1^30,K.1^50,-1*K.1^14,-1*K.1^26,K.1^38,-1*K.1^38,-1*K.1^30,-1*K.1^54,K.1^2,K.1^62,K.1^62,K.1^26,K.1^26,-1*K.1^2,K.1^14,K.1^42,-1*K.1^38,-1*K.1^10,-1*K.1^26,K.1^2,-1*K.1^2,K.1^6,-1*K.1^50,-1*K.1^46,-1*K.1^14,K.1^22,-1*K.1^42,K.1^54,-1*K.1^22,-1*K.1^58]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^16,-1*K.1^60,-1*K.1^44,K.1^64,-1*K.1^4,K.1^48,K.1^56,K.1^40,K.1^24,-1*K.1^28,-1*K.1^36,K.1^32,K.1^8,-1*K.1^52,-1*K.1^20,-1*K.1^12,-1*K.1^40,-1*K.1^32,K.1^20,-1*K.1^8,K.1^32,K.1^24,K.1^44,K.1^12,-1*K.1^24,K.1^4,K.1^60,-1*K.1^48,-1*K.1^4,-1*K.1^52,K.1^28,-1*K.1^40,K.1^52,K.1^12,K.1^52,-1*K.1^48,K.1^36,K.1^64,-1*K.1^36,K.1^8,K.1^48,-1*K.1^20,-1*K.1^60,-1*K.1^24,-1*K.1^12,K.1^40,-1*K.1^56,-1*K.1^28,K.1^56,K.1^16,-1*K.1^44,-1*K.1^16,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^64,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^4,-1*K.1^32,K.1^60,K.1^20,K.1^8,K.1^24,-1*K.1^52,K.1^48,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^40,K.1^16,-1*K.1^28,K.1^64,-1*K.1^4,K.1^32,-1*K.1^44,-1*K.1^12,K.1^56,-1*K.1^66,-1*K.1^42,K.1^46,-1*K.1^14,-1*K.1^42,K.1^2,-1*K.1^38,K.1^58,K.1^2,-1*K.1^46,-1*K.1^14,K.1^22,-1*K.1^54,-1*K.1^62,K.1^66,K.1^50,K.1^10,K.1^18,-1*K.1^22,K.1^22,K.1^46,-1*K.1^26,-1*K.1^50,K.1^66,K.1^54,K.1^14,-1*K.1^6,-1*K.1^50,K.1^6,-1*K.1^58,K.1^38,-1*K.1^58,-1*K.1^46,-1*K.1^26,-1*K.1^2,-1*K.1^54,K.1^62,-1*K.1^10,-1*K.1^18,-1*K.1^2,K.1^42,K.1^14,-1*K.1^30,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^38,K.1^58,K.1^26,-1*K.1^22,-1*K.1^38,K.1^10,K.1^50,K.1^62,-1*K.1^62,K.1^54,K.1^30,-1*K.1^10,K.1^26,-1*K.1^18,-1*K.1^66,K.1^30,K.1^6,K.1^12,K.1^52,-1*K.1^24,K.1^44,K.1^4,-1*K.1^32,-1*K.1^40,K.1^28,-1*K.1^16,K.1^36,-1*K.1^48,-1*K.1^20,K.1^60,-1*K.1^56,-1*K.1^24,K.1^44,K.1^40,K.1^4,-1*K.1^28,K.1^16,-1*K.1^4,K.1^24,-1*K.1^36,-1*K.1^52,K.1^56,-1*K.1^44,K.1^64,K.1^8,-1*K.1^60,K.1^60,-1*K.1^56,K.1^36,K.1^12,-1*K.1^32,-1*K.1^64,-1*K.1^48,-1*K.1^40,-1*K.1^12,-1*K.1^8,K.1^48,K.1^28,K.1^32,K.1^20,K.1^52,-1*K.1^16,-1*K.1^64,-1*K.1^8,K.1^20,-1*K.1^19,-1*K.1^65,K.1^65,K.1^25,-1*K.1^25,K.1^21,-1*K.1^21,-1*K.1^61,K.1^61,-1*K.1^41,K.1^41,K.1,-1*K.1,K.1^45,-1*K.1^45,-1*K.1^37,K.1^37,K.1^35,K.1^15,-1*K.1^11,-1*K.1^7,-1*K.1^59,K.1^11,K.1^7,K.1^59,-1*K.1^39,K.1^55,-1*K.1^31,K.1^39,-1*K.1^55,-1*K.1^35,-1*K.1^15,-1*K.1^57,-1*K.1^9,K.1^9,K.1^49,-1*K.1^49,K.1^53,-1*K.1^53,-1*K.1^13,K.1^13,-1*K.1^33,K.1^33,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,K.1^57,-1*K.1^3,K.1^67,-1*K.1^19,-1*K.1^31,K.1^27,-1*K.1^43,-1*K.1^23,-1*K.1^27,K.1^43,-1*K.1^63,K.1^47,K.1^3,K.1^63,-1*K.1^47,-1*K.1^67,K.1^19,K.1^23,-1*K.1^37,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,-1*K.1^53,K.1^53,K.1^61,-1*K.1^61,K.1^33,-1*K.1^33,-1*K.1,K.1,-1*K.1^29,K.1^29,K.1^37,-1*K.1^23,-1*K.1^67,-1*K.1^15,K.1^31,K.1^7,K.1^43,K.1^23,-1*K.1^7,-1*K.1^43,K.1^39,-1*K.1^47,K.1^31,-1*K.1^39,K.1^47,K.1^67,K.1^15,K.1^57,K.1^65,-1*K.1^65,-1*K.1^49,K.1^49,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,K.1^41,-1*K.1^41,K.1^5,-1*K.1^5,-1*K.1^45,K.1^45,-1*K.1^57,K.1^3,-1*K.1^35,K.1^19,K.1^11,-1*K.1^27,K.1^59,-1*K.1^11,K.1^27,-1*K.1^59,K.1^63,-1*K.1^55,-1*K.1^3,-1*K.1^63,K.1^55,K.1^35,-1*K.1^66,K.1^10,K.1^46,K.1^54,-1*K.1^30,-1*K.1^66,-1*K.1^6,-1*K.1^46,-1*K.1^38,K.1^62,-1*K.1^54,K.1^66,-1*K.1^10,-1*K.1^18,K.1^18,K.1^30,K.1^62,-1*K.1^46,K.1^50,K.1^18,-1*K.1^10,-1*K.1^42,K.1^66,-1*K.1^14,-1*K.1^18,-1*K.1^22,-1*K.1^50,K.1^42,K.1^6,K.1^58,K.1^6,-1*K.1^58,K.1^22,-1*K.1^58,-1*K.1^30,-1*K.1^50,K.1^14,K.1^26,-1*K.1^38,K.1^38,K.1^30,K.1^54,-1*K.1^2,-1*K.1^62,-1*K.1^62,-1*K.1^26,-1*K.1^26,K.1^2,-1*K.1^14,-1*K.1^42,K.1^38,K.1^10,K.1^26,-1*K.1^2,K.1^2,-1*K.1^6,K.1^50,K.1^46,K.1^14,-1*K.1^22,K.1^42,-1*K.1^54,K.1^22,K.1^58]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^52,K.1^8,K.1^24,-1*K.1^4,K.1^64,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^44,K.1^40,K.1^32,-1*K.1^36,-1*K.1^60,K.1^16,K.1^48,K.1^56,K.1^28,K.1^36,-1*K.1^48,K.1^60,-1*K.1^36,-1*K.1^44,-1*K.1^24,-1*K.1^56,K.1^44,-1*K.1^64,-1*K.1^8,K.1^20,K.1^64,K.1^16,-1*K.1^40,K.1^28,-1*K.1^16,-1*K.1^56,-1*K.1^16,K.1^20,-1*K.1^32,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^20,K.1^48,K.1^8,K.1^44,K.1^56,-1*K.1^28,K.1^12,K.1^40,-1*K.1^12,-1*K.1^52,K.1^24,K.1^52,K.1^4,-1*K.1^32,K.1^60,K.1^4,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,-1*K.1^60,-1*K.1^44,K.1^16,-1*K.1^20,K.1^32,K.1^8,K.1^48,-1*K.1^28,-1*K.1^52,K.1^40,-1*K.1^4,K.1^64,-1*K.1^36,K.1^24,K.1^56,-1*K.1^12,K.1^2,K.1^26,-1*K.1^22,K.1^54,K.1^26,-1*K.1^66,K.1^30,-1*K.1^10,-1*K.1^66,K.1^22,K.1^54,-1*K.1^46,K.1^14,K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^58,-1*K.1^50,K.1^46,-1*K.1^46,-1*K.1^22,K.1^42,K.1^18,-1*K.1^2,-1*K.1^14,-1*K.1^54,K.1^62,K.1^18,-1*K.1^62,K.1^10,-1*K.1^30,K.1^10,K.1^22,K.1^42,K.1^66,K.1^14,-1*K.1^6,K.1^58,K.1^50,K.1^66,-1*K.1^26,-1*K.1^54,K.1^38,K.1^38,-1*K.1^50,-1*K.1^26,K.1^62,-1*K.1^30,-1*K.1^10,-1*K.1^42,K.1^46,K.1^30,-1*K.1^58,-1*K.1^18,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^38,K.1^58,-1*K.1^42,K.1^50,K.1^2,-1*K.1^38,-1*K.1^62,-1*K.1^56,-1*K.1^16,K.1^44,-1*K.1^24,-1*K.1^64,K.1^36,K.1^28,-1*K.1^40,K.1^52,-1*K.1^32,K.1^20,K.1^48,-1*K.1^8,K.1^12,K.1^44,-1*K.1^24,-1*K.1^28,-1*K.1^64,K.1^40,-1*K.1^52,K.1^64,-1*K.1^44,K.1^32,K.1^16,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^60,K.1^8,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^56,K.1^36,K.1^4,K.1^20,K.1^28,K.1^56,K.1^60,-1*K.1^20,-1*K.1^40,-1*K.1^36,-1*K.1^48,-1*K.1^16,K.1^52,K.1^4,K.1^60,-1*K.1^48,K.1^49,K.1^3,-1*K.1^3,-1*K.1^43,K.1^43,-1*K.1^47,K.1^47,K.1^7,-1*K.1^7,K.1^27,-1*K.1^27,-1*K.1^67,K.1^67,-1*K.1^23,K.1^23,K.1^31,-1*K.1^31,-1*K.1^33,-1*K.1^53,K.1^57,K.1^61,K.1^9,-1*K.1^57,-1*K.1^61,-1*K.1^9,K.1^29,-1*K.1^13,K.1^37,-1*K.1^29,K.1^13,K.1^33,K.1^53,K.1^11,K.1^59,-1*K.1^59,-1*K.1^19,K.1^19,-1*K.1^15,K.1^15,K.1^55,-1*K.1^55,K.1^35,-1*K.1^35,K.1^63,-1*K.1^63,-1*K.1^39,K.1^39,-1*K.1^11,K.1^65,-1*K.1,K.1^49,K.1^37,-1*K.1^41,K.1^25,K.1^45,K.1^41,-1*K.1^25,K.1^5,-1*K.1^21,-1*K.1^65,-1*K.1^5,K.1^21,K.1,-1*K.1^49,-1*K.1^45,K.1^31,-1*K.1^59,K.1^59,K.1^43,-1*K.1^43,K.1^15,-1*K.1^15,-1*K.1^7,K.1^7,-1*K.1^35,K.1^35,K.1^67,-1*K.1^67,K.1^39,-1*K.1^39,-1*K.1^31,K.1^45,K.1,K.1^53,-1*K.1^37,-1*K.1^61,-1*K.1^25,-1*K.1^45,K.1^61,K.1^25,-1*K.1^29,K.1^21,-1*K.1^37,K.1^29,-1*K.1^21,-1*K.1,-1*K.1^53,-1*K.1^11,-1*K.1^3,K.1^3,K.1^19,-1*K.1^19,K.1^47,-1*K.1^47,-1*K.1^55,K.1^55,-1*K.1^27,K.1^27,-1*K.1^63,K.1^63,K.1^23,-1*K.1^23,K.1^11,-1*K.1^65,K.1^33,-1*K.1^49,-1*K.1^57,K.1^41,-1*K.1^9,K.1^57,-1*K.1^41,K.1^9,-1*K.1^5,K.1^13,K.1^65,K.1^5,-1*K.1^13,-1*K.1^33,K.1^2,-1*K.1^58,-1*K.1^22,-1*K.1^14,K.1^38,K.1^2,K.1^62,K.1^22,K.1^30,-1*K.1^6,K.1^14,-1*K.1^2,K.1^58,K.1^50,-1*K.1^50,-1*K.1^38,-1*K.1^6,K.1^22,-1*K.1^18,-1*K.1^50,K.1^58,K.1^26,-1*K.1^2,K.1^54,K.1^50,K.1^46,K.1^18,-1*K.1^26,-1*K.1^62,-1*K.1^10,-1*K.1^62,K.1^10,-1*K.1^46,K.1^10,K.1^38,K.1^18,-1*K.1^54,-1*K.1^42,K.1^30,-1*K.1^30,-1*K.1^38,-1*K.1^14,K.1^66,K.1^6,K.1^6,K.1^42,K.1^42,-1*K.1^66,K.1^54,K.1^26,-1*K.1^30,-1*K.1^58,-1*K.1^42,K.1^66,-1*K.1^66,K.1^62,-1*K.1^18,-1*K.1^22,-1*K.1^54,K.1^46,-1*K.1^26,K.1^14,-1*K.1^46,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1*K.1^60,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^32,-1*K.1^44,K.1^40,K.1^48,K.1^56,-1*K.1^20,K.1^16,-1*K.1^52,K.1^64,K.1^8,K.1^24,-1*K.1^28,-1*K.1^48,K.1^52,-1*K.1^24,-1*K.1^64,-1*K.1^52,K.1^56,K.1^12,K.1^28,-1*K.1^56,-1*K.1^32,K.1^4,K.1^44,K.1^32,K.1^8,K.1^20,-1*K.1^48,-1*K.1^8,K.1^28,-1*K.1^8,K.1^44,-1*K.1^16,-1*K.1^36,K.1^16,K.1^64,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^56,-1*K.1^28,K.1^48,-1*K.1^40,-1*K.1^20,K.1^40,-1*K.1^60,-1*K.1^12,K.1^60,K.1^36,-1*K.1^16,-1*K.1^64,K.1^36,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^64,K.1^56,K.1^8,-1*K.1^44,K.1^16,-1*K.1^4,K.1^24,K.1^48,-1*K.1^60,-1*K.1^20,-1*K.1^36,K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^28,K.1^40,-1*K.1^18,K.1^30,K.1^62,K.1^10,K.1^30,K.1^50,K.1^66,-1*K.1^22,K.1^50,-1*K.1^62,K.1^10,K.1^6,K.1^58,-1*K.1^54,K.1^18,K.1^26,-1*K.1^46,K.1^42,-1*K.1^6,K.1^6,K.1^62,K.1^38,-1*K.1^26,K.1^18,-1*K.1^58,-1*K.1^10,-1*K.1^14,-1*K.1^26,K.1^14,K.1^22,-1*K.1^66,K.1^22,-1*K.1^62,K.1^38,-1*K.1^50,K.1^58,K.1^54,K.1^46,-1*K.1^42,-1*K.1^50,-1*K.1^30,-1*K.1^10,K.1^2,K.1^2,K.1^42,-1*K.1^30,-1*K.1^14,-1*K.1^66,-1*K.1^22,-1*K.1^38,-1*K.1^6,K.1^66,-1*K.1^46,K.1^26,K.1^54,-1*K.1^54,-1*K.1^58,-1*K.1^2,K.1^46,-1*K.1^38,-1*K.1^42,-1*K.1^18,-1*K.1^2,K.1^14,K.1^28,-1*K.1^8,-1*K.1^56,K.1^12,-1*K.1^32,K.1^52,-1*K.1^48,K.1^20,K.1^60,-1*K.1^16,K.1^44,K.1^24,K.1^4,-1*K.1^40,-1*K.1^56,K.1^12,K.1^48,-1*K.1^32,-1*K.1^20,-1*K.1^60,K.1^32,K.1^56,K.1^16,K.1^8,K.1^40,-1*K.1^12,-1*K.1^36,K.1^64,-1*K.1^4,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,K.1^52,K.1^36,K.1^44,-1*K.1^48,-1*K.1^28,-1*K.1^64,-1*K.1^44,K.1^20,-1*K.1^52,-1*K.1^24,-1*K.1^8,K.1^60,K.1^36,-1*K.1^64,-1*K.1^24,-1*K.1^67,K.1^61,-1*K.1^61,-1*K.1^13,K.1^13,-1*K.1^49,K.1^49,-1*K.1^29,K.1^29,K.1^5,-1*K.1^5,K.1^25,-1*K.1^25,K.1^37,-1*K.1^37,K.1^41,-1*K.1^41,K.1^59,-1*K.1^35,-1*K.1^3,-1*K.1^39,K.1^47,K.1^3,K.1^39,-1*K.1^47,-1*K.1^23,K.1^15,K.1^27,K.1^23,-1*K.1^15,-1*K.1^59,K.1^35,-1*K.1^65,K.1^21,-1*K.1^21,K.1,-1*K.1,-1*K.1^33,K.1^33,-1*K.1^53,K.1^53,-1*K.1^9,K.1^9,K.1^57,-1*K.1^57,K.1^45,-1*K.1^45,K.1^65,K.1^7,K.1^43,-1*K.1^67,K.1^27,-1*K.1^63,K.1^55,-1*K.1^31,K.1^63,-1*K.1^55,K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,K.1^19,-1*K.1^43,K.1^67,K.1^31,K.1^41,-1*K.1^21,K.1^21,K.1^13,-1*K.1^13,K.1^33,-1*K.1^33,K.1^29,-1*K.1^29,K.1^9,-1*K.1^9,-1*K.1^25,K.1^25,-1*K.1^45,K.1^45,-1*K.1^41,-1*K.1^31,-1*K.1^43,K.1^35,-1*K.1^27,K.1^39,-1*K.1^55,K.1^31,-1*K.1^39,K.1^55,K.1^23,K.1^19,-1*K.1^27,-1*K.1^23,-1*K.1^19,K.1^43,-1*K.1^35,K.1^65,-1*K.1^61,K.1^61,-1*K.1,K.1,K.1^49,-1*K.1^49,K.1^53,-1*K.1^53,-1*K.1^5,K.1^5,-1*K.1^57,K.1^57,-1*K.1^37,K.1^37,-1*K.1^65,-1*K.1^7,-1*K.1^59,K.1^67,K.1^3,K.1^63,-1*K.1^47,-1*K.1^3,-1*K.1^63,K.1^47,-1*K.1^11,-1*K.1^15,K.1^7,K.1^11,K.1^15,K.1^59,-1*K.1^18,-1*K.1^46,K.1^62,-1*K.1^58,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^62,K.1^66,K.1^54,K.1^58,K.1^18,K.1^46,-1*K.1^42,K.1^42,-1*K.1^2,K.1^54,-1*K.1^62,K.1^26,K.1^42,K.1^46,K.1^30,K.1^18,K.1^10,-1*K.1^42,-1*K.1^6,-1*K.1^26,-1*K.1^30,K.1^14,-1*K.1^22,K.1^14,K.1^22,K.1^6,K.1^22,K.1^2,-1*K.1^26,-1*K.1^10,-1*K.1^38,K.1^66,-1*K.1^66,-1*K.1^2,-1*K.1^58,-1*K.1^50,-1*K.1^54,-1*K.1^54,K.1^38,K.1^38,K.1^50,K.1^10,K.1^30,-1*K.1^66,-1*K.1^46,-1*K.1^38,-1*K.1^50,K.1^50,-1*K.1^14,K.1^26,K.1^62,-1*K.1^10,-1*K.1^6,-1*K.1^30,K.1^58,K.1^6,-1*K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,K.1^8,K.1^64,K.1^56,K.1^32,-1*K.1^36,K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^12,K.1^48,-1*K.1^52,K.1^16,-1*K.1^4,-1*K.1^60,-1*K.1^44,K.1^40,K.1^20,-1*K.1^16,K.1^44,K.1^4,K.1^16,-1*K.1^12,-1*K.1^56,-1*K.1^40,K.1^12,K.1^36,-1*K.1^64,-1*K.1^24,-1*K.1^36,-1*K.1^60,-1*K.1^48,K.1^20,K.1^60,-1*K.1^40,K.1^60,-1*K.1^24,K.1^52,K.1^32,-1*K.1^52,-1*K.1^4,K.1^24,-1*K.1^44,K.1^64,K.1^12,K.1^40,-1*K.1^20,K.1^28,K.1^48,-1*K.1^28,K.1^8,K.1^56,-1*K.1^8,-1*K.1^32,K.1^52,K.1^4,-1*K.1^32,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^4,-1*K.1^12,-1*K.1^60,K.1^24,-1*K.1^52,K.1^64,-1*K.1^44,-1*K.1^20,K.1^8,K.1^48,K.1^32,-1*K.1^36,K.1^16,K.1^56,K.1^40,-1*K.1^28,K.1^50,-1*K.1^38,-1*K.1^6,-1*K.1^58,-1*K.1^38,-1*K.1^18,-1*K.1^2,K.1^46,-1*K.1^18,K.1^6,-1*K.1^58,-1*K.1^62,-1*K.1^10,K.1^14,-1*K.1^50,-1*K.1^42,K.1^22,-1*K.1^26,K.1^62,-1*K.1^62,-1*K.1^6,-1*K.1^30,K.1^42,-1*K.1^50,K.1^10,K.1^58,K.1^54,K.1^42,-1*K.1^54,-1*K.1^46,K.1^2,-1*K.1^46,K.1^6,-1*K.1^30,K.1^18,-1*K.1^10,-1*K.1^14,-1*K.1^22,K.1^26,K.1^18,K.1^38,K.1^58,-1*K.1^66,-1*K.1^66,-1*K.1^26,K.1^38,K.1^54,K.1^2,K.1^46,K.1^30,K.1^62,-1*K.1^2,K.1^22,-1*K.1^42,-1*K.1^14,K.1^14,K.1^10,K.1^66,-1*K.1^22,K.1^30,K.1^26,K.1^50,K.1^66,-1*K.1^54,-1*K.1^40,K.1^60,K.1^12,-1*K.1^56,K.1^36,-1*K.1^16,K.1^20,-1*K.1^48,-1*K.1^8,K.1^52,-1*K.1^24,-1*K.1^44,-1*K.1^64,K.1^28,K.1^12,-1*K.1^56,-1*K.1^20,K.1^36,K.1^48,K.1^8,-1*K.1^36,-1*K.1^12,-1*K.1^52,-1*K.1^60,-1*K.1^28,K.1^56,K.1^32,-1*K.1^4,K.1^64,-1*K.1^64,K.1^28,K.1^52,-1*K.1^40,-1*K.1^16,-1*K.1^32,-1*K.1^24,K.1^20,K.1^40,K.1^4,K.1^24,-1*K.1^48,K.1^16,K.1^44,K.1^60,-1*K.1^8,-1*K.1^32,K.1^4,K.1^44,K.1,-1*K.1^7,K.1^7,K.1^55,-1*K.1^55,K.1^19,-1*K.1^19,K.1^39,-1*K.1^39,-1*K.1^63,K.1^63,-1*K.1^43,K.1^43,-1*K.1^31,K.1^31,-1*K.1^27,K.1^27,-1*K.1^9,K.1^33,K.1^65,K.1^29,-1*K.1^21,-1*K.1^65,-1*K.1^29,K.1^21,K.1^45,-1*K.1^53,-1*K.1^41,-1*K.1^45,K.1^53,K.1^9,-1*K.1^33,K.1^3,-1*K.1^47,K.1^47,-1*K.1^67,K.1^67,K.1^35,-1*K.1^35,K.1^15,-1*K.1^15,K.1^59,-1*K.1^59,-1*K.1^11,K.1^11,-1*K.1^23,K.1^23,-1*K.1^3,-1*K.1^61,-1*K.1^25,K.1,-1*K.1^41,K.1^5,-1*K.1^13,K.1^37,-1*K.1^5,K.1^13,-1*K.1^57,K.1^49,K.1^61,K.1^57,-1*K.1^49,K.1^25,-1*K.1,-1*K.1^37,-1*K.1^27,K.1^47,-1*K.1^47,-1*K.1^55,K.1^55,-1*K.1^35,K.1^35,-1*K.1^39,K.1^39,-1*K.1^59,K.1^59,K.1^43,-1*K.1^43,K.1^23,-1*K.1^23,K.1^27,K.1^37,K.1^25,-1*K.1^33,K.1^41,-1*K.1^29,K.1^13,-1*K.1^37,K.1^29,-1*K.1^13,-1*K.1^45,-1*K.1^49,K.1^41,K.1^45,K.1^49,-1*K.1^25,K.1^33,-1*K.1^3,K.1^7,-1*K.1^7,K.1^67,-1*K.1^67,-1*K.1^19,K.1^19,-1*K.1^15,K.1^15,K.1^63,-1*K.1^63,K.1^11,-1*K.1^11,K.1^31,-1*K.1^31,K.1^3,K.1^61,K.1^9,-1*K.1,-1*K.1^65,-1*K.1^5,K.1^21,K.1^65,K.1^5,-1*K.1^21,K.1^57,K.1^53,-1*K.1^61,-1*K.1^57,-1*K.1^53,-1*K.1^9,K.1^50,K.1^22,-1*K.1^6,K.1^10,-1*K.1^66,K.1^50,K.1^54,K.1^6,-1*K.1^2,-1*K.1^14,-1*K.1^10,-1*K.1^50,-1*K.1^22,K.1^26,-1*K.1^26,K.1^66,-1*K.1^14,K.1^6,-1*K.1^42,-1*K.1^26,-1*K.1^22,-1*K.1^38,-1*K.1^50,-1*K.1^58,K.1^26,K.1^62,K.1^42,K.1^38,-1*K.1^54,K.1^46,-1*K.1^54,-1*K.1^46,-1*K.1^62,-1*K.1^46,-1*K.1^66,K.1^42,K.1^58,K.1^30,-1*K.1^2,K.1^2,K.1^66,K.1^10,K.1^18,K.1^14,K.1^14,-1*K.1^30,-1*K.1^30,-1*K.1^18,-1*K.1^58,-1*K.1^38,K.1^2,K.1^22,K.1^30,K.1^18,-1*K.1^18,K.1^54,-1*K.1^42,-1*K.1^6,K.1^58,K.1^62,K.1^38,-1*K.1^10,-1*K.1^62,K.1^46]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,-1,1,-1,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^17,K.1^51,K.1^17,K.1^51,-1*K.1^17,-1*K.1^34,K.1^34,-1*K.1^34,K.1^34,K.1^8,K.1^64,K.1^56,K.1^32,-1*K.1^36,K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^12,K.1^48,-1*K.1^52,K.1^16,-1*K.1^4,-1*K.1^60,-1*K.1^44,K.1^40,K.1^20,-1*K.1^16,K.1^44,K.1^4,K.1^16,-1*K.1^12,-1*K.1^56,-1*K.1^40,K.1^12,K.1^36,-1*K.1^64,-1*K.1^24,-1*K.1^36,-1*K.1^60,-1*K.1^48,K.1^20,K.1^60,-1*K.1^40,K.1^60,-1*K.1^24,K.1^52,K.1^32,-1*K.1^52,-1*K.1^4,K.1^24,-1*K.1^44,K.1^64,K.1^12,K.1^40,-1*K.1^20,K.1^28,K.1^48,-1*K.1^28,K.1^8,K.1^56,-1*K.1^8,-1*K.1^32,K.1^52,K.1^4,-1*K.1^32,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^4,-1*K.1^12,-1*K.1^60,K.1^24,-1*K.1^52,K.1^64,-1*K.1^44,-1*K.1^20,K.1^8,K.1^48,K.1^32,-1*K.1^36,K.1^16,K.1^56,K.1^40,-1*K.1^28,-1*K.1^50,K.1^38,K.1^6,K.1^58,K.1^38,K.1^18,K.1^2,-1*K.1^46,K.1^18,-1*K.1^6,K.1^58,K.1^62,K.1^10,-1*K.1^14,K.1^50,K.1^42,-1*K.1^22,K.1^26,-1*K.1^62,K.1^62,K.1^6,K.1^30,-1*K.1^42,K.1^50,-1*K.1^10,-1*K.1^58,-1*K.1^54,-1*K.1^42,K.1^54,K.1^46,-1*K.1^2,K.1^46,-1*K.1^6,K.1^30,-1*K.1^18,K.1^10,K.1^14,K.1^22,-1*K.1^26,-1*K.1^18,-1*K.1^38,-1*K.1^58,K.1^66,K.1^66,K.1^26,-1*K.1^38,-1*K.1^54,-1*K.1^2,-1*K.1^46,-1*K.1^30,-1*K.1^62,K.1^2,-1*K.1^22,K.1^42,K.1^14,-1*K.1^14,-1*K.1^10,-1*K.1^66,K.1^22,-1*K.1^30,-1*K.1^26,-1*K.1^50,-1*K.1^66,K.1^54,-1*K.1^40,K.1^60,K.1^12,-1*K.1^56,K.1^36,-1*K.1^16,K.1^20,-1*K.1^48,-1*K.1^8,K.1^52,-1*K.1^24,-1*K.1^44,-1*K.1^64,K.1^28,K.1^12,-1*K.1^56,-1*K.1^20,K.1^36,K.1^48,K.1^8,-1*K.1^36,-1*K.1^12,-1*K.1^52,-1*K.1^60,-1*K.1^28,K.1^56,K.1^32,-1*K.1^4,K.1^64,-1*K.1^64,K.1^28,K.1^52,-1*K.1^40,-1*K.1^16,-1*K.1^32,-1*K.1^24,K.1^20,K.1^40,K.1^4,K.1^24,-1*K.1^48,K.1^16,K.1^44,K.1^60,-1*K.1^8,-1*K.1^32,K.1^4,K.1^44,-1*K.1^35,-1*K.1^41,K.1^41,-1*K.1^21,K.1^21,K.1^53,-1*K.1^53,-1*K.1^5,K.1^5,K.1^29,-1*K.1^29,K.1^9,-1*K.1^9,-1*K.1^65,K.1^65,-1*K.1^61,K.1^61,K.1^43,-1*K.1^67,K.1^31,-1*K.1^63,K.1^55,-1*K.1^31,K.1^63,-1*K.1^55,K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,K.1^19,-1*K.1^43,K.1^67,K.1^37,K.1^13,-1*K.1^13,K.1^33,-1*K.1^33,-1*K.1,K.1,K.1^49,-1*K.1^49,-1*K.1^25,K.1^25,-1*K.1^45,K.1^45,-1*K.1^57,K.1^57,-1*K.1^37,-1*K.1^27,K.1^59,-1*K.1^35,-1*K.1^7,-1*K.1^39,K.1^47,K.1^3,K.1^39,-1*K.1^47,-1*K.1^23,K.1^15,K.1^27,K.1^23,-1*K.1^15,-1*K.1^59,K.1^35,-1*K.1^3,-1*K.1^61,-1*K.1^13,K.1^13,K.1^21,-1*K.1^21,K.1,-1*K.1,K.1^5,-1*K.1^5,K.1^25,-1*K.1^25,-1*K.1^9,K.1^9,K.1^57,-1*K.1^57,K.1^61,K.1^3,-1*K.1^59,K.1^67,K.1^7,K.1^63,-1*K.1^47,-1*K.1^3,-1*K.1^63,K.1^47,-1*K.1^11,-1*K.1^15,K.1^7,K.1^11,K.1^15,K.1^59,-1*K.1^67,-1*K.1^37,K.1^41,-1*K.1^41,-1*K.1^33,K.1^33,-1*K.1^53,K.1^53,-1*K.1^49,K.1^49,-1*K.1^29,K.1^29,K.1^45,-1*K.1^45,K.1^65,-1*K.1^65,K.1^37,K.1^27,-1*K.1^43,K.1^35,-1*K.1^31,K.1^39,-1*K.1^55,K.1^31,-1*K.1^39,K.1^55,K.1^23,K.1^19,-1*K.1^27,-1*K.1^23,-1*K.1^19,K.1^43,-1*K.1^50,-1*K.1^22,K.1^6,-1*K.1^10,K.1^66,-1*K.1^50,-1*K.1^54,-1*K.1^6,K.1^2,K.1^14,K.1^10,K.1^50,K.1^22,-1*K.1^26,K.1^26,-1*K.1^66,K.1^14,-1*K.1^6,K.1^42,K.1^26,K.1^22,K.1^38,K.1^50,K.1^58,-1*K.1^26,-1*K.1^62,-1*K.1^42,-1*K.1^38,K.1^54,-1*K.1^46,K.1^54,K.1^46,K.1^62,K.1^46,K.1^66,-1*K.1^42,-1*K.1^58,-1*K.1^30,K.1^2,-1*K.1^2,-1*K.1^66,-1*K.1^10,-1*K.1^18,-1*K.1^14,-1*K.1^14,K.1^30,K.1^30,K.1^18,K.1^58,K.1^38,-1*K.1^2,-1*K.1^22,-1*K.1^30,-1*K.1^18,K.1^18,-1*K.1^54,K.1^42,K.1^6,-1*K.1^58,-1*K.1^62,-1*K.1^38,K.1^10,K.1^62,-1*K.1^46]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1,1,-1,K.1^17,K.1^17,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,K.1^51,K.1^34,-1*K.1^34,K.1^34,-1*K.1^34,-1*K.1^60,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^32,-1*K.1^44,K.1^40,K.1^48,K.1^56,-1*K.1^20,K.1^16,-1*K.1^52,K.1^64,K.1^8,K.1^24,-1*K.1^28,-1*K.1^48,K.1^52,-1*K.1^24,-1*K.1^64,-1*K.1^52,K.1^56,K.1^12,K.1^28,-1*K.1^56,-1*K.1^32,K.1^4,K.1^44,K.1^32,K.1^8,K.1^20,-1*K.1^48,-1*K.1^8,K.1^28,-1*K.1^8,K.1^44,-1*K.1^16,-1*K.1^36,K.1^16,K.1^64,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^56,-1*K.1^28,K.1^48,-1*K.1^40,-1*K.1^20,K.1^40,-1*K.1^60,-1*K.1^12,K.1^60,K.1^36,-1*K.1^16,-1*K.1^64,K.1^36,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^64,K.1^56,K.1^8,-1*K.1^44,K.1^16,-1*K.1^4,K.1^24,K.1^48,-1*K.1^60,-1*K.1^20,-1*K.1^36,K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^28,K.1^40,K.1^18,-1*K.1^30,-1*K.1^62,-1*K.1^10,-1*K.1^30,-1*K.1^50,-1*K.1^66,K.1^22,-1*K.1^50,K.1^62,-1*K.1^10,-1*K.1^6,-1*K.1^58,K.1^54,-1*K.1^18,-1*K.1^26,K.1^46,-1*K.1^42,K.1^6,-1*K.1^6,-1*K.1^62,-1*K.1^38,K.1^26,-1*K.1^18,K.1^58,K.1^10,K.1^14,K.1^26,-1*K.1^14,-1*K.1^22,K.1^66,-1*K.1^22,K.1^62,-1*K.1^38,K.1^50,-1*K.1^58,-1*K.1^54,-1*K.1^46,K.1^42,K.1^50,K.1^30,K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^42,K.1^30,K.1^14,K.1^66,K.1^22,K.1^38,K.1^6,-1*K.1^66,K.1^46,-1*K.1^26,-1*K.1^54,K.1^54,K.1^58,K.1^2,-1*K.1^46,K.1^38,K.1^42,K.1^18,K.1^2,-1*K.1^14,K.1^28,-1*K.1^8,-1*K.1^56,K.1^12,-1*K.1^32,K.1^52,-1*K.1^48,K.1^20,K.1^60,-1*K.1^16,K.1^44,K.1^24,K.1^4,-1*K.1^40,-1*K.1^56,K.1^12,K.1^48,-1*K.1^32,-1*K.1^20,-1*K.1^60,K.1^32,K.1^56,K.1^16,K.1^8,K.1^40,-1*K.1^12,-1*K.1^36,K.1^64,-1*K.1^4,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,K.1^52,K.1^36,K.1^44,-1*K.1^48,-1*K.1^28,-1*K.1^64,-1*K.1^44,K.1^20,-1*K.1^52,-1*K.1^24,-1*K.1^8,K.1^60,K.1^36,-1*K.1^64,-1*K.1^24,K.1^33,K.1^27,-1*K.1^27,K.1^47,-1*K.1^47,-1*K.1^15,K.1^15,K.1^63,-1*K.1^63,-1*K.1^39,K.1^39,-1*K.1^59,K.1^59,K.1^3,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1^25,K.1,-1*K.1^37,K.1^5,-1*K.1^13,K.1^37,-1*K.1^5,K.1^13,-1*K.1^57,K.1^49,K.1^61,K.1^57,-1*K.1^49,K.1^25,-1*K.1,-1*K.1^31,-1*K.1^55,K.1^55,-1*K.1^35,K.1^35,K.1^67,-1*K.1^67,-1*K.1^19,K.1^19,K.1^43,-1*K.1^43,K.1^23,-1*K.1^23,K.1^11,-1*K.1^11,K.1^31,K.1^41,-1*K.1^9,K.1^33,K.1^61,K.1^29,-1*K.1^21,-1*K.1^65,-1*K.1^29,K.1^21,K.1^45,-1*K.1^53,-1*K.1^41,-1*K.1^45,K.1^53,K.1^9,-1*K.1^33,K.1^65,K.1^7,K.1^55,-1*K.1^55,-1*K.1^47,K.1^47,-1*K.1^67,K.1^67,-1*K.1^63,K.1^63,-1*K.1^43,K.1^43,K.1^59,-1*K.1^59,-1*K.1^11,K.1^11,-1*K.1^7,-1*K.1^65,K.1^9,-1*K.1,-1*K.1^61,-1*K.1^5,K.1^21,K.1^65,K.1^5,-1*K.1^21,K.1^57,K.1^53,-1*K.1^61,-1*K.1^57,-1*K.1^53,-1*K.1^9,K.1,K.1^31,-1*K.1^27,K.1^27,K.1^35,-1*K.1^35,K.1^15,-1*K.1^15,K.1^19,-1*K.1^19,K.1^39,-1*K.1^39,-1*K.1^23,K.1^23,-1*K.1^3,K.1^3,-1*K.1^31,-1*K.1^41,K.1^25,-1*K.1^33,K.1^37,-1*K.1^29,K.1^13,-1*K.1^37,K.1^29,-1*K.1^13,-1*K.1^45,-1*K.1^49,K.1^41,K.1^45,K.1^49,-1*K.1^25,K.1^18,K.1^46,-1*K.1^62,K.1^58,-1*K.1^2,K.1^18,K.1^14,K.1^62,-1*K.1^66,-1*K.1^54,-1*K.1^58,-1*K.1^18,-1*K.1^46,K.1^42,-1*K.1^42,K.1^2,-1*K.1^54,K.1^62,-1*K.1^26,-1*K.1^42,-1*K.1^46,-1*K.1^30,-1*K.1^18,-1*K.1^10,K.1^42,K.1^6,K.1^26,K.1^30,-1*K.1^14,K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^22,-1*K.1^2,K.1^26,K.1^10,K.1^38,-1*K.1^66,K.1^66,K.1^2,K.1^58,K.1^50,K.1^54,K.1^54,-1*K.1^38,-1*K.1^38,-1*K.1^50,-1*K.1^10,-1*K.1^30,K.1^66,K.1^46,K.1^38,K.1^50,-1*K.1^50,K.1^14,-1*K.1^26,-1*K.1^62,K.1^10,K.1^6,K.1^30,-1*K.1^58,-1*K.1^6,K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^4,K.1^32,-1*K.1^28,K.1^16,-1*K.1^52,-1*K.1^12,K.1^48,-1*K.1^44,K.1^40,K.1^24,-1*K.1^60,K.1^8,-1*K.1^36,K.1^64,K.1^56,-1*K.1^20,K.1^44,K.1^8,K.1^56,-1*K.1^36,-1*K.1^8,-1*K.1^40,-1*K.1^28,-1*K.1^20,K.1^40,-1*K.1^52,K.1^32,-1*K.1^12,K.1^52,-1*K.1^64,K.1^24,-1*K.1^44,K.1^64,K.1^20,-1*K.1^64,K.1^12,-1*K.1^60,-1*K.1^16,K.1^60,K.1^36,K.1^12,-1*K.1^56,-1*K.1^32,-1*K.1^40,K.1^20,K.1^44,K.1^48,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,-1*K.1^4,-1*K.1^16,K.1^60,K.1^36,K.1^16,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,-1*K.1^36,K.1^40,K.1^64,-1*K.1^12,-1*K.1^60,K.1^32,K.1^56,-1*K.1^44,-1*K.1^4,K.1^24,K.1^16,-1*K.1^52,K.1^8,-1*K.1^28,-1*K.1^20,K.1^48,-1*K.1^42,-1*K.1^2,-1*K.1^54,K.1^46,K.1^2,-1*K.1^26,-1*K.1^18,-1*K.1^6,K.1^26,-1*K.1^54,-1*K.1^46,K.1^14,-1*K.1^22,K.1^58,K.1^42,-1*K.1^38,K.1^62,K.1^30,K.1^14,-1*K.1^14,K.1^54,K.1^66,-1*K.1^38,-1*K.1^42,-1*K.1^22,K.1^46,-1*K.1^10,K.1^38,-1*K.1^10,K.1^6,K.1^18,-1*K.1^6,K.1^54,-1*K.1^66,-1*K.1^26,K.1^22,-1*K.1^58,-1*K.1^62,-1*K.1^30,K.1^26,-1*K.1^2,-1*K.1^46,-1*K.1^50,K.1^50,-1*K.1^30,K.1^2,K.1^10,-1*K.1^18,K.1^6,K.1^66,-1*K.1^14,K.1^18,-1*K.1^62,K.1^38,K.1^58,-1*K.1^58,K.1^22,-1*K.1^50,K.1^62,-1*K.1^66,K.1^30,K.1^42,K.1^50,K.1^10,-1*K.1^20,-1*K.1^64,-1*K.1^40,K.1^28,K.1^52,K.1^8,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^60,-1*K.1^12,-1*K.1^56,K.1^32,K.1^48,K.1^40,-1*K.1^28,K.1^44,-1*K.1^52,-1*K.1^24,K.1^4,K.1^52,-1*K.1^40,K.1^60,-1*K.1^64,-1*K.1^48,K.1^28,-1*K.1^16,K.1^36,-1*K.1^32,-1*K.1^32,-1*K.1^48,K.1^60,K.1^20,-1*K.1^8,-1*K.1^16,K.1^12,K.1^44,K.1^20,K.1^36,K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^56,K.1^64,K.1^4,K.1^16,-1*K.1^36,K.1^56,K.1^9,K.1^63,K.1^63,K.1^19,K.1^19,K.1^35,K.1^35,-1*K.1^11,-1*K.1^11,K.1^23,K.1^23,-1*K.1^47,-1*K.1^47,-1*K.1^7,-1*K.1^7,K.1^39,K.1^39,-1*K.1^13,K.1^25,-1*K.1^41,-1*K.1^57,-1*K.1^53,-1*K.1^41,-1*K.1^57,-1*K.1^53,K.1^65,-1*K.1,K.1^29,K.1^65,-1*K.1,-1*K.1^13,K.1^25,K.1^27,-1*K.1^15,-1*K.1^15,-1*K.1^59,-1*K.1^59,-1*K.1^43,-1*K.1^43,K.1^67,K.1^67,-1*K.1^55,-1*K.1^55,K.1^31,K.1^31,-1*K.1^3,-1*K.1^3,K.1^27,-1*K.1^5,K.1^21,-1*K.1^9,-1*K.1^29,-1*K.1^45,-1*K.1^49,-1*K.1^61,-1*K.1^45,-1*K.1^49,K.1^37,K.1^33,-1*K.1^5,K.1^37,K.1^33,K.1^21,-1*K.1^9,-1*K.1^61,-1*K.1^39,K.1^15,K.1^15,-1*K.1^19,-1*K.1^19,K.1^43,K.1^43,K.1^11,K.1^11,K.1^55,K.1^55,K.1^47,K.1^47,K.1^3,K.1^3,-1*K.1^39,K.1^61,-1*K.1^21,-1*K.1^25,K.1^29,K.1^57,K.1^49,K.1^61,K.1^57,K.1^49,-1*K.1^65,-1*K.1^33,-1*K.1^29,-1*K.1^65,-1*K.1^33,-1*K.1^21,-1*K.1^25,-1*K.1^27,-1*K.1^63,-1*K.1^63,K.1^59,K.1^59,-1*K.1^35,-1*K.1^35,-1*K.1^67,-1*K.1^67,-1*K.1^23,-1*K.1^23,-1*K.1^31,-1*K.1^31,K.1^7,K.1^7,-1*K.1^27,K.1^5,K.1^13,K.1^9,K.1^41,K.1^45,K.1^53,K.1^41,K.1^45,K.1^53,-1*K.1^37,K.1,K.1^5,-1*K.1^37,K.1,K.1^13,K.1^42,-1*K.1^62,K.1^54,-1*K.1^22,K.1^50,-1*K.1^42,K.1^10,-1*K.1^54,K.1^18,K.1^58,K.1^22,-1*K.1^42,K.1^62,-1*K.1^30,K.1^30,K.1^50,-1*K.1^58,K.1^54,K.1^38,-1*K.1^30,-1*K.1^62,-1*K.1^2,K.1^42,K.1^46,K.1^30,K.1^14,K.1^38,-1*K.1^2,-1*K.1^10,K.1^6,K.1^10,K.1^6,K.1^14,-1*K.1^6,-1*K.1^50,-1*K.1^38,K.1^46,-1*K.1^66,-1*K.1^18,K.1^18,-1*K.1^50,K.1^22,K.1^26,K.1^58,-1*K.1^58,-1*K.1^66,K.1^66,K.1^26,-1*K.1^46,K.1^2,-1*K.1^18,K.1^62,K.1^66,-1*K.1^26,-1*K.1^26,-1*K.1^10,-1*K.1^38,-1*K.1^54,-1*K.1^46,-1*K.1^14,K.1^2,-1*K.1^22,-1*K.1^14,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^64,-1*K.1^36,K.1^40,-1*K.1^52,K.1^16,K.1^56,-1*K.1^20,K.1^24,-1*K.1^28,-1*K.1^44,K.1^8,-1*K.1^60,K.1^32,-1*K.1^4,-1*K.1^12,K.1^48,-1*K.1^24,-1*K.1^60,-1*K.1^12,K.1^32,K.1^60,K.1^28,K.1^40,K.1^48,-1*K.1^28,K.1^16,-1*K.1^36,K.1^56,-1*K.1^16,K.1^4,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^48,K.1^4,-1*K.1^56,K.1^8,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,K.1^12,K.1^36,K.1^28,-1*K.1^48,-1*K.1^24,-1*K.1^20,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,K.1^64,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^52,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^60,K.1^36,K.1^12,K.1^32,-1*K.1^28,-1*K.1^4,K.1^56,K.1^8,-1*K.1^36,-1*K.1^12,K.1^24,K.1^64,-1*K.1^44,-1*K.1^52,K.1^16,-1*K.1^60,K.1^40,K.1^48,-1*K.1^20,K.1^26,K.1^66,K.1^14,-1*K.1^22,-1*K.1^66,K.1^42,K.1^50,K.1^62,-1*K.1^42,K.1^14,K.1^22,-1*K.1^54,K.1^46,-1*K.1^10,-1*K.1^26,K.1^30,-1*K.1^6,-1*K.1^38,-1*K.1^54,K.1^54,-1*K.1^14,-1*K.1^2,K.1^30,K.1^26,K.1^46,-1*K.1^22,K.1^58,-1*K.1^30,K.1^58,-1*K.1^62,-1*K.1^50,K.1^62,-1*K.1^14,K.1^2,K.1^42,-1*K.1^46,K.1^10,K.1^6,K.1^38,-1*K.1^42,K.1^66,K.1^22,K.1^18,-1*K.1^18,K.1^38,-1*K.1^66,-1*K.1^58,K.1^50,-1*K.1^62,-1*K.1^2,K.1^54,-1*K.1^50,K.1^6,-1*K.1^30,-1*K.1^10,K.1^10,-1*K.1^46,K.1^18,-1*K.1^6,K.1^2,-1*K.1^38,-1*K.1^26,-1*K.1^18,-1*K.1^58,K.1^48,K.1^4,K.1^28,-1*K.1^40,-1*K.1^16,-1*K.1^60,K.1^24,-1*K.1^44,K.1^64,K.1^8,K.1^56,K.1^12,-1*K.1^36,-1*K.1^20,-1*K.1^28,K.1^40,-1*K.1^24,K.1^16,K.1^44,-1*K.1^64,-1*K.1^16,K.1^28,-1*K.1^8,K.1^4,K.1^20,-1*K.1^40,K.1^52,-1*K.1^32,K.1^36,K.1^36,K.1^20,-1*K.1^8,-1*K.1^48,K.1^60,K.1^52,-1*K.1^56,-1*K.1^24,-1*K.1^48,-1*K.1^32,-1*K.1^56,K.1^44,K.1^60,K.1^12,-1*K.1^4,-1*K.1^64,-1*K.1^52,K.1^32,-1*K.1^12,-1*K.1^59,-1*K.1^5,-1*K.1^5,-1*K.1^49,-1*K.1^49,-1*K.1^33,-1*K.1^33,K.1^57,K.1^57,-1*K.1^45,-1*K.1^45,K.1^21,K.1^21,K.1^61,K.1^61,-1*K.1^29,-1*K.1^29,K.1^55,-1*K.1^43,K.1^27,K.1^11,K.1^15,K.1^27,K.1^11,K.1^15,-1*K.1^3,K.1^67,-1*K.1^39,-1*K.1^3,K.1^67,K.1^55,-1*K.1^43,-1*K.1^41,K.1^53,K.1^53,K.1^9,K.1^9,K.1^25,K.1^25,-1*K.1,-1*K.1,K.1^13,K.1^13,-1*K.1^37,-1*K.1^37,K.1^65,K.1^65,-1*K.1^41,K.1^63,-1*K.1^47,K.1^59,K.1^39,K.1^23,K.1^19,K.1^7,K.1^23,K.1^19,-1*K.1^31,-1*K.1^35,K.1^63,-1*K.1^31,-1*K.1^35,-1*K.1^47,K.1^59,K.1^7,K.1^29,-1*K.1^53,-1*K.1^53,K.1^49,K.1^49,-1*K.1^25,-1*K.1^25,-1*K.1^57,-1*K.1^57,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,-1*K.1^65,-1*K.1^65,K.1^29,-1*K.1^7,K.1^47,K.1^43,-1*K.1^39,-1*K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,-1*K.1^19,K.1^3,K.1^35,K.1^39,K.1^3,K.1^35,K.1^47,K.1^43,K.1^41,K.1^5,K.1^5,-1*K.1^9,-1*K.1^9,K.1^33,K.1^33,K.1,K.1,K.1^45,K.1^45,K.1^37,K.1^37,-1*K.1^61,-1*K.1^61,K.1^41,-1*K.1^63,-1*K.1^55,-1*K.1^59,-1*K.1^27,-1*K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,-1*K.1^15,K.1^31,-1*K.1^67,-1*K.1^63,K.1^31,-1*K.1^67,-1*K.1^55,-1*K.1^26,K.1^6,-1*K.1^14,K.1^46,-1*K.1^18,K.1^26,-1*K.1^58,K.1^14,-1*K.1^50,-1*K.1^10,-1*K.1^46,K.1^26,-1*K.1^6,K.1^38,-1*K.1^38,-1*K.1^18,K.1^10,-1*K.1^14,-1*K.1^30,K.1^38,K.1^6,K.1^66,-1*K.1^26,-1*K.1^22,-1*K.1^38,-1*K.1^54,-1*K.1^30,K.1^66,K.1^58,-1*K.1^62,-1*K.1^58,-1*K.1^62,-1*K.1^54,K.1^62,K.1^18,K.1^30,-1*K.1^22,K.1^2,K.1^50,-1*K.1^50,K.1^18,-1*K.1^46,-1*K.1^42,-1*K.1^10,K.1^10,K.1^2,-1*K.1^2,-1*K.1^42,K.1^22,-1*K.1^66,K.1^50,-1*K.1^6,-1*K.1^2,K.1^42,K.1^42,K.1^58,K.1^30,K.1^14,K.1^22,K.1^54,-1*K.1^66,K.1^46,K.1^54,K.1^62]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^64,-1*K.1^36,K.1^40,-1*K.1^52,K.1^16,K.1^56,-1*K.1^20,K.1^24,-1*K.1^28,-1*K.1^44,K.1^8,-1*K.1^60,K.1^32,-1*K.1^4,-1*K.1^12,K.1^48,-1*K.1^24,-1*K.1^60,-1*K.1^12,K.1^32,K.1^60,K.1^28,K.1^40,K.1^48,-1*K.1^28,K.1^16,-1*K.1^36,K.1^56,-1*K.1^16,K.1^4,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^48,K.1^4,-1*K.1^56,K.1^8,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,K.1^12,K.1^36,K.1^28,-1*K.1^48,-1*K.1^24,-1*K.1^20,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,K.1^64,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^52,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^60,K.1^36,K.1^12,K.1^32,-1*K.1^28,-1*K.1^4,K.1^56,K.1^8,-1*K.1^36,-1*K.1^12,K.1^24,K.1^64,-1*K.1^44,-1*K.1^52,K.1^16,-1*K.1^60,K.1^40,K.1^48,-1*K.1^20,-1*K.1^26,-1*K.1^66,-1*K.1^14,K.1^22,K.1^66,-1*K.1^42,-1*K.1^50,-1*K.1^62,K.1^42,-1*K.1^14,-1*K.1^22,K.1^54,-1*K.1^46,K.1^10,K.1^26,-1*K.1^30,K.1^6,K.1^38,K.1^54,-1*K.1^54,K.1^14,K.1^2,-1*K.1^30,-1*K.1^26,-1*K.1^46,K.1^22,-1*K.1^58,K.1^30,-1*K.1^58,K.1^62,K.1^50,-1*K.1^62,K.1^14,-1*K.1^2,-1*K.1^42,K.1^46,-1*K.1^10,-1*K.1^6,-1*K.1^38,K.1^42,-1*K.1^66,-1*K.1^22,-1*K.1^18,K.1^18,-1*K.1^38,K.1^66,K.1^58,-1*K.1^50,K.1^62,K.1^2,-1*K.1^54,K.1^50,-1*K.1^6,K.1^30,K.1^10,-1*K.1^10,K.1^46,-1*K.1^18,K.1^6,-1*K.1^2,K.1^38,K.1^26,K.1^18,K.1^58,K.1^48,K.1^4,K.1^28,-1*K.1^40,-1*K.1^16,-1*K.1^60,K.1^24,-1*K.1^44,K.1^64,K.1^8,K.1^56,K.1^12,-1*K.1^36,-1*K.1^20,-1*K.1^28,K.1^40,-1*K.1^24,K.1^16,K.1^44,-1*K.1^64,-1*K.1^16,K.1^28,-1*K.1^8,K.1^4,K.1^20,-1*K.1^40,K.1^52,-1*K.1^32,K.1^36,K.1^36,K.1^20,-1*K.1^8,-1*K.1^48,K.1^60,K.1^52,-1*K.1^56,-1*K.1^24,-1*K.1^48,-1*K.1^32,-1*K.1^56,K.1^44,K.1^60,K.1^12,-1*K.1^4,-1*K.1^64,-1*K.1^52,K.1^32,-1*K.1^12,K.1^25,K.1^39,K.1^39,-1*K.1^15,-1*K.1^15,K.1^67,K.1^67,K.1^23,K.1^23,-1*K.1^11,-1*K.1^11,-1*K.1^55,-1*K.1^55,K.1^27,K.1^27,K.1^63,K.1^63,-1*K.1^21,K.1^9,K.1^61,K.1^45,K.1^49,K.1^61,K.1^45,K.1^49,-1*K.1^37,-1*K.1^33,K.1^5,-1*K.1^37,-1*K.1^33,-1*K.1^21,K.1^9,-1*K.1^7,K.1^19,K.1^19,-1*K.1^43,-1*K.1^43,-1*K.1^59,-1*K.1^59,K.1^35,K.1^35,-1*K.1^47,-1*K.1^47,-1*K.1^3,-1*K.1^3,K.1^31,K.1^31,-1*K.1^7,-1*K.1^29,K.1^13,-1*K.1^25,-1*K.1^5,K.1^57,K.1^53,K.1^41,K.1^57,K.1^53,-1*K.1^65,K.1,-1*K.1^29,-1*K.1^65,K.1,K.1^13,-1*K.1^25,K.1^41,-1*K.1^63,-1*K.1^19,-1*K.1^19,K.1^15,K.1^15,K.1^59,K.1^59,-1*K.1^23,-1*K.1^23,K.1^47,K.1^47,K.1^55,K.1^55,-1*K.1^31,-1*K.1^31,-1*K.1^63,-1*K.1^41,-1*K.1^13,-1*K.1^9,K.1^5,-1*K.1^45,-1*K.1^53,-1*K.1^41,-1*K.1^45,-1*K.1^53,K.1^37,-1*K.1,-1*K.1^5,K.1^37,-1*K.1,-1*K.1^13,-1*K.1^9,K.1^7,-1*K.1^39,-1*K.1^39,K.1^43,K.1^43,-1*K.1^67,-1*K.1^67,-1*K.1^35,-1*K.1^35,K.1^11,K.1^11,K.1^3,K.1^3,-1*K.1^27,-1*K.1^27,K.1^7,K.1^29,K.1^21,K.1^25,-1*K.1^61,-1*K.1^57,-1*K.1^49,-1*K.1^61,-1*K.1^57,-1*K.1^49,K.1^65,K.1^33,K.1^29,K.1^65,K.1^33,K.1^21,K.1^26,-1*K.1^6,K.1^14,-1*K.1^46,K.1^18,-1*K.1^26,K.1^58,-1*K.1^14,K.1^50,K.1^10,K.1^46,-1*K.1^26,K.1^6,-1*K.1^38,K.1^38,K.1^18,-1*K.1^10,K.1^14,K.1^30,-1*K.1^38,-1*K.1^6,-1*K.1^66,K.1^26,K.1^22,K.1^38,K.1^54,K.1^30,-1*K.1^66,-1*K.1^58,K.1^62,K.1^58,K.1^62,K.1^54,-1*K.1^62,-1*K.1^18,-1*K.1^30,K.1^22,-1*K.1^2,-1*K.1^50,K.1^50,-1*K.1^18,K.1^46,K.1^42,K.1^10,-1*K.1^10,-1*K.1^2,K.1^2,K.1^42,-1*K.1^22,K.1^66,-1*K.1^50,K.1^6,K.1^2,-1*K.1^42,-1*K.1^42,-1*K.1^58,-1*K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^54,K.1^66,-1*K.1^46,-1*K.1^54,-1*K.1^62]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^4,K.1^32,-1*K.1^28,K.1^16,-1*K.1^52,-1*K.1^12,K.1^48,-1*K.1^44,K.1^40,K.1^24,-1*K.1^60,K.1^8,-1*K.1^36,K.1^64,K.1^56,-1*K.1^20,K.1^44,K.1^8,K.1^56,-1*K.1^36,-1*K.1^8,-1*K.1^40,-1*K.1^28,-1*K.1^20,K.1^40,-1*K.1^52,K.1^32,-1*K.1^12,K.1^52,-1*K.1^64,K.1^24,-1*K.1^44,K.1^64,K.1^20,-1*K.1^64,K.1^12,-1*K.1^60,-1*K.1^16,K.1^60,K.1^36,K.1^12,-1*K.1^56,-1*K.1^32,-1*K.1^40,K.1^20,K.1^44,K.1^48,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,-1*K.1^4,-1*K.1^16,K.1^60,K.1^36,K.1^16,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,-1*K.1^36,K.1^40,K.1^64,-1*K.1^12,-1*K.1^60,K.1^32,K.1^56,-1*K.1^44,-1*K.1^4,K.1^24,K.1^16,-1*K.1^52,K.1^8,-1*K.1^28,-1*K.1^20,K.1^48,K.1^42,K.1^2,K.1^54,-1*K.1^46,-1*K.1^2,K.1^26,K.1^18,K.1^6,-1*K.1^26,K.1^54,K.1^46,-1*K.1^14,K.1^22,-1*K.1^58,-1*K.1^42,K.1^38,-1*K.1^62,-1*K.1^30,-1*K.1^14,K.1^14,-1*K.1^54,-1*K.1^66,K.1^38,K.1^42,K.1^22,-1*K.1^46,K.1^10,-1*K.1^38,K.1^10,-1*K.1^6,-1*K.1^18,K.1^6,-1*K.1^54,K.1^66,K.1^26,-1*K.1^22,K.1^58,K.1^62,K.1^30,-1*K.1^26,K.1^2,K.1^46,K.1^50,-1*K.1^50,K.1^30,-1*K.1^2,-1*K.1^10,K.1^18,-1*K.1^6,-1*K.1^66,K.1^14,-1*K.1^18,K.1^62,-1*K.1^38,-1*K.1^58,K.1^58,-1*K.1^22,K.1^50,-1*K.1^62,K.1^66,-1*K.1^30,-1*K.1^42,-1*K.1^50,-1*K.1^10,-1*K.1^20,-1*K.1^64,-1*K.1^40,K.1^28,K.1^52,K.1^8,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^60,-1*K.1^12,-1*K.1^56,K.1^32,K.1^48,K.1^40,-1*K.1^28,K.1^44,-1*K.1^52,-1*K.1^24,K.1^4,K.1^52,-1*K.1^40,K.1^60,-1*K.1^64,-1*K.1^48,K.1^28,-1*K.1^16,K.1^36,-1*K.1^32,-1*K.1^32,-1*K.1^48,K.1^60,K.1^20,-1*K.1^8,-1*K.1^16,K.1^12,K.1^44,K.1^20,K.1^36,K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^56,K.1^64,K.1^4,K.1^16,-1*K.1^36,K.1^56,-1*K.1^43,-1*K.1^29,-1*K.1^29,K.1^53,K.1^53,-1*K.1,-1*K.1,-1*K.1^45,-1*K.1^45,K.1^57,K.1^57,K.1^13,K.1^13,-1*K.1^41,-1*K.1^41,-1*K.1^5,-1*K.1^5,K.1^47,-1*K.1^59,-1*K.1^7,-1*K.1^23,-1*K.1^19,-1*K.1^7,-1*K.1^23,-1*K.1^19,K.1^31,K.1^35,-1*K.1^63,K.1^31,K.1^35,K.1^47,-1*K.1^59,K.1^61,-1*K.1^49,-1*K.1^49,K.1^25,K.1^25,K.1^9,K.1^9,-1*K.1^33,-1*K.1^33,K.1^21,K.1^21,K.1^65,K.1^65,-1*K.1^37,-1*K.1^37,K.1^61,K.1^39,-1*K.1^55,K.1^43,K.1^63,-1*K.1^11,-1*K.1^15,-1*K.1^27,-1*K.1^11,-1*K.1^15,K.1^3,-1*K.1^67,K.1^39,K.1^3,-1*K.1^67,-1*K.1^55,K.1^43,-1*K.1^27,K.1^5,K.1^49,K.1^49,-1*K.1^53,-1*K.1^53,-1*K.1^9,-1*K.1^9,K.1^45,K.1^45,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,K.1^37,K.1^37,K.1^5,K.1^27,K.1^55,K.1^59,-1*K.1^63,K.1^23,K.1^15,K.1^27,K.1^23,K.1^15,-1*K.1^31,K.1^67,K.1^63,-1*K.1^31,K.1^67,K.1^55,K.1^59,-1*K.1^61,K.1^29,K.1^29,-1*K.1^25,-1*K.1^25,K.1,K.1,K.1^33,K.1^33,-1*K.1^57,-1*K.1^57,-1*K.1^65,-1*K.1^65,K.1^41,K.1^41,-1*K.1^61,-1*K.1^39,-1*K.1^47,-1*K.1^43,K.1^7,K.1^11,K.1^19,K.1^7,K.1^11,K.1^19,-1*K.1^3,-1*K.1^35,-1*K.1^39,-1*K.1^3,-1*K.1^35,-1*K.1^47,-1*K.1^42,K.1^62,-1*K.1^54,K.1^22,-1*K.1^50,K.1^42,-1*K.1^10,K.1^54,-1*K.1^18,-1*K.1^58,-1*K.1^22,K.1^42,-1*K.1^62,K.1^30,-1*K.1^30,-1*K.1^50,K.1^58,-1*K.1^54,-1*K.1^38,K.1^30,K.1^62,K.1^2,-1*K.1^42,-1*K.1^46,-1*K.1^30,-1*K.1^14,-1*K.1^38,K.1^2,K.1^10,-1*K.1^6,-1*K.1^10,-1*K.1^6,-1*K.1^14,K.1^6,K.1^50,K.1^38,-1*K.1^46,K.1^66,K.1^18,-1*K.1^18,K.1^50,-1*K.1^22,-1*K.1^26,-1*K.1^58,K.1^58,K.1^66,-1*K.1^66,-1*K.1^26,K.1^46,-1*K.1^2,K.1^18,-1*K.1^62,-1*K.1^66,K.1^26,K.1^26,K.1^10,K.1^38,K.1^54,K.1^46,K.1^14,-1*K.1^2,K.1^22,K.1^14,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^12,-1*K.1^28,K.1^16,K.1^48,-1*K.1^20,-1*K.1^36,K.1^8,K.1^64,-1*K.1^52,-1*K.1^4,-1*K.1^44,K.1^24,K.1^40,K.1^56,K.1^32,-1*K.1^60,-1*K.1^64,K.1^24,K.1^32,K.1^40,-1*K.1^24,K.1^52,K.1^16,-1*K.1^60,-1*K.1^52,-1*K.1^20,-1*K.1^28,-1*K.1^36,K.1^20,-1*K.1^56,-1*K.1^4,K.1^64,K.1^56,K.1^60,-1*K.1^56,K.1^36,-1*K.1^44,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^32,K.1^28,K.1^52,K.1^60,-1*K.1^64,K.1^8,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^48,K.1^44,-1*K.1^40,K.1^48,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^40,-1*K.1^52,K.1^56,-1*K.1^36,-1*K.1^44,-1*K.1^28,K.1^32,K.1^64,-1*K.1^12,-1*K.1^4,K.1^48,-1*K.1^20,K.1^24,K.1^16,-1*K.1^60,K.1^8,-1*K.1^58,K.1^6,K.1^26,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^54,K.1^18,K.1^10,K.1^26,K.1^2,-1*K.1^42,K.1^66,-1*K.1^38,K.1^58,-1*K.1^46,-1*K.1^50,K.1^22,-1*K.1^42,K.1^42,-1*K.1^26,-1*K.1^62,-1*K.1^46,-1*K.1^58,K.1^66,-1*K.1^2,K.1^30,K.1^46,K.1^30,-1*K.1^18,-1*K.1^54,K.1^18,-1*K.1^26,K.1^62,-1*K.1^10,-1*K.1^66,K.1^38,K.1^50,-1*K.1^22,K.1^10,K.1^6,K.1^2,K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^30,K.1^54,-1*K.1^18,-1*K.1^62,K.1^42,-1*K.1^54,K.1^50,K.1^46,-1*K.1^38,K.1^38,-1*K.1^66,K.1^14,-1*K.1^50,K.1^62,K.1^22,K.1^58,-1*K.1^14,-1*K.1^30,-1*K.1^60,-1*K.1^56,K.1^52,-1*K.1^16,K.1^20,K.1^24,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^44,-1*K.1^36,-1*K.1^32,-1*K.1^28,K.1^8,-1*K.1^52,K.1^16,-1*K.1^64,-1*K.1^20,K.1^4,K.1^12,K.1^20,K.1^52,K.1^44,-1*K.1^56,-1*K.1^8,-1*K.1^16,-1*K.1^48,-1*K.1^40,K.1^28,K.1^28,-1*K.1^8,K.1^44,K.1^60,-1*K.1^24,-1*K.1^48,K.1^36,-1*K.1^64,K.1^60,-1*K.1^40,K.1^36,K.1^4,-1*K.1^24,-1*K.1^32,K.1^56,K.1^12,K.1^48,K.1^40,K.1^32,-1*K.1^61,-1*K.1^19,-1*K.1^19,-1*K.1^23,-1*K.1^23,K.1^3,K.1^3,-1*K.1^67,-1*K.1^67,-1*K.1^35,-1*K.1^35,-1*K.1^39,-1*K.1^39,-1*K.1^55,-1*K.1^55,K.1^15,K.1^15,-1*K.1^5,K.1^41,K.1^21,-1*K.1,K.1^57,K.1^21,-1*K.1,K.1^57,K.1^25,K.1^37,K.1^53,K.1^25,K.1^37,-1*K.1^5,K.1^41,-1*K.1^47,K.1^11,K.1^11,K.1^7,K.1^7,-1*K.1^27,-1*K.1^27,-1*K.1^31,-1*K.1^31,-1*K.1^63,-1*K.1^63,-1*K.1^59,-1*K.1^59,-1*K.1^43,-1*K.1^43,-1*K.1^47,K.1^49,K.1^29,K.1^61,-1*K.1^53,K.1^33,K.1^45,-1*K.1^13,K.1^33,K.1^45,-1*K.1^9,K.1^65,K.1^49,-1*K.1^9,K.1^65,K.1^29,K.1^61,-1*K.1^13,-1*K.1^15,-1*K.1^11,-1*K.1^11,K.1^23,K.1^23,K.1^27,K.1^27,K.1^67,K.1^67,K.1^63,K.1^63,K.1^39,K.1^39,K.1^43,K.1^43,-1*K.1^15,K.1^13,-1*K.1^29,-1*K.1^41,K.1^53,K.1,-1*K.1^45,K.1^13,K.1,-1*K.1^45,-1*K.1^25,-1*K.1^65,-1*K.1^53,-1*K.1^25,-1*K.1^65,-1*K.1^29,-1*K.1^41,K.1^47,K.1^19,K.1^19,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^3,K.1^31,K.1^31,K.1^35,K.1^35,K.1^59,K.1^59,K.1^55,K.1^55,K.1^47,-1*K.1^49,K.1^5,-1*K.1^61,-1*K.1^21,-1*K.1^33,-1*K.1^57,-1*K.1^21,-1*K.1^33,-1*K.1^57,K.1^9,-1*K.1^37,-1*K.1^49,K.1^9,-1*K.1^37,K.1^5,K.1^58,K.1^50,-1*K.1^26,K.1^66,-1*K.1^14,-1*K.1^58,-1*K.1^30,K.1^26,-1*K.1^54,-1*K.1^38,-1*K.1^66,-1*K.1^58,-1*K.1^50,-1*K.1^22,K.1^22,-1*K.1^14,K.1^38,-1*K.1^26,K.1^46,-1*K.1^22,K.1^50,K.1^6,K.1^58,-1*K.1^2,K.1^22,-1*K.1^42,K.1^46,K.1^6,K.1^30,-1*K.1^18,-1*K.1^30,-1*K.1^18,-1*K.1^42,K.1^18,K.1^14,-1*K.1^46,-1*K.1^2,K.1^62,K.1^54,-1*K.1^54,K.1^14,-1*K.1^66,K.1^10,-1*K.1^38,K.1^38,K.1^62,-1*K.1^62,K.1^10,K.1^2,-1*K.1^6,K.1^54,-1*K.1^50,-1*K.1^62,-1*K.1^10,-1*K.1^10,K.1^30,-1*K.1^46,K.1^26,K.1^2,K.1^42,-1*K.1^6,K.1^66,K.1^42,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^56,K.1^40,-1*K.1^52,-1*K.1^20,K.1^48,K.1^32,-1*K.1^60,-1*K.1^4,K.1^16,K.1^64,K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^12,-1*K.1^36,K.1^8,K.1^4,-1*K.1^44,-1*K.1^36,-1*K.1^28,K.1^44,-1*K.1^16,-1*K.1^52,K.1^8,K.1^16,K.1^48,K.1^40,K.1^32,-1*K.1^48,K.1^12,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,-1*K.1^32,K.1^24,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^36,-1*K.1^40,-1*K.1^16,-1*K.1^8,K.1^4,-1*K.1^60,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,K.1^56,K.1^20,-1*K.1^24,K.1^28,-1*K.1^20,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^28,K.1^16,-1*K.1^12,K.1^32,K.1^24,K.1^40,-1*K.1^36,-1*K.1^4,K.1^56,K.1^64,-1*K.1^20,K.1^48,-1*K.1^44,-1*K.1^52,K.1^8,-1*K.1^60,K.1^10,-1*K.1^62,-1*K.1^42,K.1^66,K.1^62,K.1^58,-1*K.1^14,-1*K.1^50,-1*K.1^58,-1*K.1^42,-1*K.1^66,K.1^26,-1*K.1^2,K.1^30,-1*K.1^10,K.1^22,K.1^18,-1*K.1^46,K.1^26,-1*K.1^26,K.1^42,K.1^6,K.1^22,K.1^10,-1*K.1^2,K.1^66,-1*K.1^38,-1*K.1^22,-1*K.1^38,K.1^50,K.1^14,-1*K.1^50,K.1^42,-1*K.1^6,K.1^58,K.1^2,-1*K.1^30,-1*K.1^18,K.1^46,-1*K.1^58,-1*K.1^62,-1*K.1^66,-1*K.1^54,K.1^54,K.1^46,K.1^62,K.1^38,-1*K.1^14,K.1^50,K.1^6,-1*K.1^26,K.1^14,-1*K.1^18,-1*K.1^22,K.1^30,-1*K.1^30,K.1^2,-1*K.1^54,K.1^18,-1*K.1^6,-1*K.1^46,-1*K.1^10,K.1^54,K.1^38,K.1^8,K.1^12,-1*K.1^16,K.1^52,-1*K.1^48,-1*K.1^44,-1*K.1^4,K.1^64,K.1^56,K.1^24,K.1^32,K.1^36,K.1^40,-1*K.1^60,K.1^16,-1*K.1^52,K.1^4,K.1^48,-1*K.1^64,-1*K.1^56,-1*K.1^48,-1*K.1^16,-1*K.1^24,K.1^12,K.1^60,K.1^52,K.1^20,K.1^28,-1*K.1^40,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^8,K.1^44,K.1^20,-1*K.1^32,K.1^4,-1*K.1^8,K.1^28,-1*K.1^32,-1*K.1^64,K.1^44,K.1^36,-1*K.1^12,-1*K.1^56,-1*K.1^20,-1*K.1^28,-1*K.1^36,K.1^7,K.1^49,K.1^49,K.1^45,K.1^45,-1*K.1^65,-1*K.1^65,K.1,K.1,K.1^33,K.1^33,K.1^29,K.1^29,K.1^13,K.1^13,-1*K.1^53,-1*K.1^53,K.1^63,-1*K.1^27,-1*K.1^47,K.1^67,-1*K.1^11,-1*K.1^47,K.1^67,-1*K.1^11,-1*K.1^43,-1*K.1^31,-1*K.1^15,-1*K.1^43,-1*K.1^31,K.1^63,-1*K.1^27,K.1^21,-1*K.1^57,-1*K.1^57,-1*K.1^61,-1*K.1^61,K.1^41,K.1^41,K.1^37,K.1^37,K.1^5,K.1^5,K.1^9,K.1^9,K.1^25,K.1^25,K.1^21,-1*K.1^19,-1*K.1^39,-1*K.1^7,K.1^15,-1*K.1^35,-1*K.1^23,K.1^55,-1*K.1^35,-1*K.1^23,K.1^59,-1*K.1^3,-1*K.1^19,K.1^59,-1*K.1^3,-1*K.1^39,-1*K.1^7,K.1^55,K.1^53,K.1^57,K.1^57,-1*K.1^45,-1*K.1^45,-1*K.1^41,-1*K.1^41,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,-1*K.1^25,-1*K.1^25,K.1^53,-1*K.1^55,K.1^39,K.1^27,-1*K.1^15,-1*K.1^67,K.1^23,-1*K.1^55,-1*K.1^67,K.1^23,K.1^43,K.1^3,K.1^15,K.1^43,K.1^3,K.1^39,K.1^27,-1*K.1^21,-1*K.1^49,-1*K.1^49,K.1^61,K.1^61,K.1^65,K.1^65,-1*K.1^37,-1*K.1^37,-1*K.1^33,-1*K.1^33,-1*K.1^9,-1*K.1^9,-1*K.1^13,-1*K.1^13,-1*K.1^21,K.1^19,-1*K.1^63,K.1^7,K.1^47,K.1^35,K.1^11,K.1^47,K.1^35,K.1^11,-1*K.1^59,K.1^31,K.1^19,-1*K.1^59,K.1^31,-1*K.1^63,-1*K.1^10,-1*K.1^18,K.1^42,-1*K.1^2,K.1^54,K.1^10,K.1^38,-1*K.1^42,K.1^14,K.1^30,K.1^2,K.1^10,K.1^18,K.1^46,-1*K.1^46,K.1^54,-1*K.1^30,K.1^42,-1*K.1^22,K.1^46,-1*K.1^18,-1*K.1^62,-1*K.1^10,K.1^66,-1*K.1^46,K.1^26,-1*K.1^22,-1*K.1^62,-1*K.1^38,K.1^50,K.1^38,K.1^50,K.1^26,-1*K.1^50,-1*K.1^54,K.1^22,K.1^66,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^54,K.1^2,-1*K.1^58,K.1^30,-1*K.1^30,-1*K.1^6,K.1^6,-1*K.1^58,-1*K.1^66,K.1^62,-1*K.1^14,K.1^18,K.1^6,K.1^58,K.1^58,-1*K.1^38,K.1^22,-1*K.1^42,-1*K.1^66,-1*K.1^26,K.1^62,-1*K.1^2,-1*K.1^26,-1*K.1^50]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^56,K.1^40,-1*K.1^52,-1*K.1^20,K.1^48,K.1^32,-1*K.1^60,-1*K.1^4,K.1^16,K.1^64,K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^12,-1*K.1^36,K.1^8,K.1^4,-1*K.1^44,-1*K.1^36,-1*K.1^28,K.1^44,-1*K.1^16,-1*K.1^52,K.1^8,K.1^16,K.1^48,K.1^40,K.1^32,-1*K.1^48,K.1^12,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,-1*K.1^32,K.1^24,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^36,-1*K.1^40,-1*K.1^16,-1*K.1^8,K.1^4,-1*K.1^60,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,K.1^56,K.1^20,-1*K.1^24,K.1^28,-1*K.1^20,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^28,K.1^16,-1*K.1^12,K.1^32,K.1^24,K.1^40,-1*K.1^36,-1*K.1^4,K.1^56,K.1^64,-1*K.1^20,K.1^48,-1*K.1^44,-1*K.1^52,K.1^8,-1*K.1^60,-1*K.1^10,K.1^62,K.1^42,-1*K.1^66,-1*K.1^62,-1*K.1^58,K.1^14,K.1^50,K.1^58,K.1^42,K.1^66,-1*K.1^26,K.1^2,-1*K.1^30,K.1^10,-1*K.1^22,-1*K.1^18,K.1^46,-1*K.1^26,K.1^26,-1*K.1^42,-1*K.1^6,-1*K.1^22,-1*K.1^10,K.1^2,-1*K.1^66,K.1^38,K.1^22,K.1^38,-1*K.1^50,-1*K.1^14,K.1^50,-1*K.1^42,K.1^6,-1*K.1^58,-1*K.1^2,K.1^30,K.1^18,-1*K.1^46,K.1^58,K.1^62,K.1^66,K.1^54,-1*K.1^54,-1*K.1^46,-1*K.1^62,-1*K.1^38,K.1^14,-1*K.1^50,-1*K.1^6,K.1^26,-1*K.1^14,K.1^18,K.1^22,-1*K.1^30,K.1^30,-1*K.1^2,K.1^54,-1*K.1^18,K.1^6,K.1^46,K.1^10,-1*K.1^54,-1*K.1^38,K.1^8,K.1^12,-1*K.1^16,K.1^52,-1*K.1^48,-1*K.1^44,-1*K.1^4,K.1^64,K.1^56,K.1^24,K.1^32,K.1^36,K.1^40,-1*K.1^60,K.1^16,-1*K.1^52,K.1^4,K.1^48,-1*K.1^64,-1*K.1^56,-1*K.1^48,-1*K.1^16,-1*K.1^24,K.1^12,K.1^60,K.1^52,K.1^20,K.1^28,-1*K.1^40,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^8,K.1^44,K.1^20,-1*K.1^32,K.1^4,-1*K.1^8,K.1^28,-1*K.1^32,-1*K.1^64,K.1^44,K.1^36,-1*K.1^12,-1*K.1^56,-1*K.1^20,-1*K.1^28,-1*K.1^36,K.1^41,K.1^15,K.1^15,K.1^11,K.1^11,-1*K.1^31,-1*K.1^31,-1*K.1^35,-1*K.1^35,-1*K.1^67,-1*K.1^67,-1*K.1^63,-1*K.1^63,-1*K.1^47,-1*K.1^47,-1*K.1^19,-1*K.1^19,-1*K.1^29,-1*K.1^61,K.1^13,-1*K.1^33,-1*K.1^45,K.1^13,-1*K.1^33,-1*K.1^45,K.1^9,-1*K.1^65,-1*K.1^49,K.1^9,-1*K.1^65,-1*K.1^29,-1*K.1^61,-1*K.1^55,-1*K.1^23,-1*K.1^23,-1*K.1^27,-1*K.1^27,K.1^7,K.1^7,K.1^3,K.1^3,-1*K.1^39,-1*K.1^39,-1*K.1^43,-1*K.1^43,-1*K.1^59,-1*K.1^59,-1*K.1^55,-1*K.1^53,K.1^5,-1*K.1^41,K.1^49,K.1,-1*K.1^57,-1*K.1^21,K.1,-1*K.1^57,-1*K.1^25,-1*K.1^37,-1*K.1^53,-1*K.1^25,-1*K.1^37,K.1^5,-1*K.1^41,-1*K.1^21,K.1^19,K.1^23,K.1^23,-1*K.1^11,-1*K.1^11,-1*K.1^7,-1*K.1^7,K.1^35,K.1^35,K.1^39,K.1^39,K.1^63,K.1^63,K.1^59,K.1^59,K.1^19,K.1^21,-1*K.1^5,K.1^61,-1*K.1^49,K.1^33,K.1^57,K.1^21,K.1^33,K.1^57,-1*K.1^9,K.1^37,K.1^49,-1*K.1^9,K.1^37,-1*K.1^5,K.1^61,K.1^55,-1*K.1^15,-1*K.1^15,K.1^27,K.1^27,K.1^31,K.1^31,-1*K.1^3,-1*K.1^3,K.1^67,K.1^67,K.1^43,K.1^43,K.1^47,K.1^47,K.1^55,K.1^53,K.1^29,K.1^41,-1*K.1^13,-1*K.1,K.1^45,-1*K.1^13,-1*K.1,K.1^45,K.1^25,K.1^65,K.1^53,K.1^25,K.1^65,K.1^29,K.1^10,K.1^18,-1*K.1^42,K.1^2,-1*K.1^54,-1*K.1^10,-1*K.1^38,K.1^42,-1*K.1^14,-1*K.1^30,-1*K.1^2,-1*K.1^10,-1*K.1^18,-1*K.1^46,K.1^46,-1*K.1^54,K.1^30,-1*K.1^42,K.1^22,-1*K.1^46,K.1^18,K.1^62,K.1^10,-1*K.1^66,K.1^46,-1*K.1^26,K.1^22,K.1^62,K.1^38,-1*K.1^50,-1*K.1^38,-1*K.1^50,-1*K.1^26,K.1^50,K.1^54,-1*K.1^22,-1*K.1^66,K.1^6,K.1^14,-1*K.1^14,K.1^54,-1*K.1^2,K.1^58,-1*K.1^30,K.1^30,K.1^6,-1*K.1^6,K.1^58,K.1^66,-1*K.1^62,K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^58,-1*K.1^58,K.1^38,-1*K.1^22,K.1^42,K.1^66,K.1^26,-1*K.1^62,K.1^2,K.1^26,K.1^50]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^12,-1*K.1^28,K.1^16,K.1^48,-1*K.1^20,-1*K.1^36,K.1^8,K.1^64,-1*K.1^52,-1*K.1^4,-1*K.1^44,K.1^24,K.1^40,K.1^56,K.1^32,-1*K.1^60,-1*K.1^64,K.1^24,K.1^32,K.1^40,-1*K.1^24,K.1^52,K.1^16,-1*K.1^60,-1*K.1^52,-1*K.1^20,-1*K.1^28,-1*K.1^36,K.1^20,-1*K.1^56,-1*K.1^4,K.1^64,K.1^56,K.1^60,-1*K.1^56,K.1^36,-1*K.1^44,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^32,K.1^28,K.1^52,K.1^60,-1*K.1^64,K.1^8,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^48,K.1^44,-1*K.1^40,K.1^48,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^40,-1*K.1^52,K.1^56,-1*K.1^36,-1*K.1^44,-1*K.1^28,K.1^32,K.1^64,-1*K.1^12,-1*K.1^4,K.1^48,-1*K.1^20,K.1^24,K.1^16,-1*K.1^60,K.1^8,K.1^58,-1*K.1^6,-1*K.1^26,K.1^2,K.1^6,K.1^10,-1*K.1^54,-1*K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^2,K.1^42,-1*K.1^66,K.1^38,-1*K.1^58,K.1^46,K.1^50,-1*K.1^22,K.1^42,-1*K.1^42,K.1^26,K.1^62,K.1^46,K.1^58,-1*K.1^66,K.1^2,-1*K.1^30,-1*K.1^46,-1*K.1^30,K.1^18,K.1^54,-1*K.1^18,K.1^26,-1*K.1^62,K.1^10,K.1^66,-1*K.1^38,-1*K.1^50,K.1^22,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^14,K.1^14,K.1^22,K.1^6,K.1^30,-1*K.1^54,K.1^18,K.1^62,-1*K.1^42,K.1^54,-1*K.1^50,-1*K.1^46,K.1^38,-1*K.1^38,K.1^66,-1*K.1^14,K.1^50,-1*K.1^62,-1*K.1^22,-1*K.1^58,K.1^14,K.1^30,-1*K.1^60,-1*K.1^56,K.1^52,-1*K.1^16,K.1^20,K.1^24,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^44,-1*K.1^36,-1*K.1^32,-1*K.1^28,K.1^8,-1*K.1^52,K.1^16,-1*K.1^64,-1*K.1^20,K.1^4,K.1^12,K.1^20,K.1^52,K.1^44,-1*K.1^56,-1*K.1^8,-1*K.1^16,-1*K.1^48,-1*K.1^40,K.1^28,K.1^28,-1*K.1^8,K.1^44,K.1^60,-1*K.1^24,-1*K.1^48,K.1^36,-1*K.1^64,K.1^60,-1*K.1^40,K.1^36,K.1^4,-1*K.1^24,-1*K.1^32,K.1^56,K.1^12,K.1^48,K.1^40,K.1^32,-1*K.1^27,-1*K.1^53,-1*K.1^53,-1*K.1^57,-1*K.1^57,K.1^37,K.1^37,K.1^33,K.1^33,K.1,K.1,K.1^5,K.1^5,K.1^21,K.1^21,K.1^49,K.1^49,K.1^39,K.1^7,-1*K.1^55,K.1^35,K.1^23,-1*K.1^55,K.1^35,K.1^23,-1*K.1^59,K.1^3,K.1^19,-1*K.1^59,K.1^3,K.1^39,K.1^7,K.1^13,K.1^45,K.1^45,K.1^41,K.1^41,-1*K.1^61,-1*K.1^61,-1*K.1^65,-1*K.1^65,K.1^29,K.1^29,K.1^25,K.1^25,K.1^9,K.1^9,K.1^13,K.1^15,-1*K.1^63,K.1^27,-1*K.1^19,-1*K.1^67,K.1^11,K.1^47,-1*K.1^67,K.1^11,K.1^43,K.1^31,K.1^15,K.1^43,K.1^31,-1*K.1^63,K.1^27,K.1^47,-1*K.1^49,-1*K.1^45,-1*K.1^45,K.1^57,K.1^57,K.1^61,K.1^61,-1*K.1^33,-1*K.1^33,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,-1*K.1^9,-1*K.1^9,-1*K.1^49,-1*K.1^47,K.1^63,-1*K.1^7,K.1^19,-1*K.1^35,-1*K.1^11,-1*K.1^47,-1*K.1^35,-1*K.1^11,K.1^59,-1*K.1^31,-1*K.1^19,K.1^59,-1*K.1^31,K.1^63,-1*K.1^7,-1*K.1^13,K.1^53,K.1^53,-1*K.1^41,-1*K.1^41,-1*K.1^37,-1*K.1^37,K.1^65,K.1^65,-1*K.1,-1*K.1,-1*K.1^25,-1*K.1^25,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^15,-1*K.1^39,-1*K.1^27,K.1^55,K.1^67,-1*K.1^23,K.1^55,K.1^67,-1*K.1^23,-1*K.1^43,-1*K.1^3,-1*K.1^15,-1*K.1^43,-1*K.1^3,-1*K.1^39,-1*K.1^58,-1*K.1^50,K.1^26,-1*K.1^66,K.1^14,K.1^58,K.1^30,-1*K.1^26,K.1^54,K.1^38,K.1^66,K.1^58,K.1^50,K.1^22,-1*K.1^22,K.1^14,-1*K.1^38,K.1^26,-1*K.1^46,K.1^22,-1*K.1^50,-1*K.1^6,-1*K.1^58,K.1^2,-1*K.1^22,K.1^42,-1*K.1^46,-1*K.1^6,-1*K.1^30,K.1^18,K.1^30,K.1^18,K.1^42,-1*K.1^18,-1*K.1^14,K.1^46,K.1^2,-1*K.1^62,-1*K.1^54,K.1^54,-1*K.1^14,K.1^66,-1*K.1^10,K.1^38,-1*K.1^38,-1*K.1^62,K.1^62,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^54,K.1^50,K.1^62,K.1^10,K.1^10,-1*K.1^30,K.1^46,-1*K.1^26,-1*K.1^2,-1*K.1^42,K.1^6,-1*K.1^66,-1*K.1^42,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^20,K.1^24,-1*K.1^4,-1*K.1^12,K.1^56,-1*K.1^60,-1*K.1^36,K.1^16,K.1^64,-1*K.1^52,-1*K.1^28,K.1^40,-1*K.1^44,K.1^48,K.1^8,K.1^32,-1*K.1^16,K.1^40,K.1^8,-1*K.1^44,-1*K.1^40,-1*K.1^64,-1*K.1^4,K.1^32,K.1^64,K.1^56,K.1^24,-1*K.1^60,-1*K.1^56,-1*K.1^48,-1*K.1^52,K.1^16,K.1^48,-1*K.1^32,-1*K.1^48,K.1^60,-1*K.1^28,K.1^12,K.1^28,K.1^44,K.1^60,-1*K.1^8,-1*K.1^24,-1*K.1^64,-1*K.1^32,-1*K.1^16,-1*K.1^36,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^20,K.1^12,K.1^28,K.1^44,-1*K.1^12,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,-1*K.1^44,K.1^64,K.1^48,-1*K.1^60,-1*K.1^28,K.1^24,K.1^8,K.1^16,-1*K.1^20,-1*K.1^52,-1*K.1^12,K.1^56,K.1^40,-1*K.1^4,K.1^32,-1*K.1^36,K.1^6,-1*K.1^10,K.1^66,-1*K.1^26,K.1^10,K.1^62,K.1^22,-1*K.1^30,-1*K.1^62,K.1^66,K.1^26,-1*K.1^2,K.1^42,K.1^18,-1*K.1^6,-1*K.1^54,K.1^38,K.1^14,-1*K.1^2,K.1^2,-1*K.1^66,K.1^58,-1*K.1^54,K.1^6,K.1^42,-1*K.1^26,-1*K.1^50,K.1^54,-1*K.1^50,K.1^30,-1*K.1^22,-1*K.1^30,-1*K.1^66,-1*K.1^58,K.1^62,-1*K.1^42,-1*K.1^18,-1*K.1^38,-1*K.1^14,-1*K.1^62,-1*K.1^10,K.1^26,K.1^46,-1*K.1^46,-1*K.1^14,K.1^10,K.1^50,K.1^22,K.1^30,K.1^58,K.1^2,-1*K.1^22,-1*K.1^38,K.1^54,K.1^18,-1*K.1^18,-1*K.1^42,K.1^46,K.1^38,-1*K.1^58,K.1^14,-1*K.1^6,-1*K.1^46,K.1^50,K.1^32,-1*K.1^48,-1*K.1^64,K.1^4,-1*K.1^56,K.1^40,K.1^16,-1*K.1^52,-1*K.1^20,-1*K.1^28,-1*K.1^60,-1*K.1^8,K.1^24,-1*K.1^36,K.1^64,-1*K.1^4,-1*K.1^16,K.1^56,K.1^52,K.1^20,-1*K.1^56,-1*K.1^64,K.1^28,-1*K.1^48,K.1^36,K.1^4,K.1^12,K.1^44,-1*K.1^24,-1*K.1^24,K.1^36,K.1^28,-1*K.1^32,-1*K.1^40,K.1^12,K.1^60,-1*K.1^16,-1*K.1^32,K.1^44,K.1^60,K.1^52,-1*K.1^40,-1*K.1^8,K.1^48,K.1^20,-1*K.1^12,-1*K.1^44,K.1^8,-1*K.1^45,-1*K.1^43,-1*K.1^43,K.1^27,K.1^27,-1*K.1^39,-1*K.1^39,K.1^55,K.1^55,K.1^47,K.1^47,-1*K.1^31,-1*K.1^31,K.1^35,K.1^35,-1*K.1^59,-1*K.1^59,K.1^65,K.1^57,-1*K.1,K.1^13,-1*K.1^61,-1*K.1,K.1^13,-1*K.1^61,-1*K.1^53,K.1^5,-1*K.1^9,-1*K.1^53,K.1^5,K.1^65,K.1^57,K.1^67,-1*K.1^7,-1*K.1^7,K.1^23,K.1^23,-1*K.1^11,-1*K.1^11,-1*K.1^63,-1*K.1^63,K.1^3,K.1^3,-1*K.1^19,-1*K.1^19,K.1^15,K.1^15,K.1^67,K.1^25,K.1^37,K.1^45,K.1^9,-1*K.1^21,-1*K.1^41,K.1^33,-1*K.1^21,-1*K.1^41,-1*K.1^49,-1*K.1^29,K.1^25,-1*K.1^49,-1*K.1^29,K.1^37,K.1^45,K.1^33,K.1^59,K.1^7,K.1^7,-1*K.1^27,-1*K.1^27,K.1^11,K.1^11,-1*K.1^55,-1*K.1^55,-1*K.1^3,-1*K.1^3,K.1^31,K.1^31,-1*K.1^15,-1*K.1^15,K.1^59,-1*K.1^33,-1*K.1^37,-1*K.1^57,-1*K.1^9,-1*K.1^13,K.1^41,-1*K.1^33,-1*K.1^13,K.1^41,K.1^53,K.1^29,K.1^9,K.1^53,K.1^29,-1*K.1^37,-1*K.1^57,-1*K.1^67,K.1^43,K.1^43,-1*K.1^23,-1*K.1^23,K.1^39,K.1^39,K.1^63,K.1^63,-1*K.1^47,-1*K.1^47,K.1^19,K.1^19,-1*K.1^35,-1*K.1^35,-1*K.1^67,-1*K.1^25,-1*K.1^65,-1*K.1^45,K.1,K.1^21,K.1^61,K.1,K.1^21,K.1^61,K.1^49,-1*K.1^5,-1*K.1^25,K.1^49,-1*K.1^5,-1*K.1^65,-1*K.1^6,-1*K.1^38,-1*K.1^66,K.1^42,-1*K.1^46,K.1^6,K.1^50,K.1^66,-1*K.1^22,K.1^18,-1*K.1^42,K.1^6,K.1^38,-1*K.1^14,K.1^14,-1*K.1^46,-1*K.1^18,-1*K.1^66,K.1^54,-1*K.1^14,-1*K.1^38,-1*K.1^10,-1*K.1^6,-1*K.1^26,K.1^14,-1*K.1^2,K.1^54,-1*K.1^10,-1*K.1^50,K.1^30,K.1^50,K.1^30,-1*K.1^2,-1*K.1^30,K.1^46,-1*K.1^54,-1*K.1^26,-1*K.1^58,K.1^22,-1*K.1^22,K.1^46,-1*K.1^42,-1*K.1^62,K.1^18,-1*K.1^18,-1*K.1^58,K.1^58,-1*K.1^62,K.1^26,K.1^10,K.1^22,K.1^38,K.1^58,K.1^62,K.1^62,-1*K.1^50,-1*K.1^54,K.1^66,K.1^26,K.1^2,K.1^10,K.1^42,K.1^2,-1*K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^48,-1*K.1^44,K.1^64,K.1^56,-1*K.1^12,K.1^8,K.1^32,-1*K.1^52,-1*K.1^4,K.1^16,K.1^40,-1*K.1^28,K.1^24,-1*K.1^20,-1*K.1^60,-1*K.1^36,K.1^52,-1*K.1^28,-1*K.1^60,K.1^24,K.1^28,K.1^4,K.1^64,-1*K.1^36,-1*K.1^4,-1*K.1^12,-1*K.1^44,K.1^8,K.1^12,K.1^20,K.1^16,-1*K.1^52,-1*K.1^20,K.1^36,K.1^20,-1*K.1^8,K.1^40,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,K.1^60,K.1^44,K.1^4,K.1^36,K.1^52,K.1^32,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^48,-1*K.1^56,-1*K.1^40,-1*K.1^24,K.1^56,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^12,K.1^28,K.1^44,K.1^60,K.1^24,-1*K.1^4,-1*K.1^20,K.1^8,K.1^40,-1*K.1^44,-1*K.1^60,-1*K.1^52,K.1^48,K.1^16,K.1^56,-1*K.1^12,-1*K.1^28,K.1^64,-1*K.1^36,K.1^32,-1*K.1^62,K.1^58,-1*K.1^2,K.1^42,-1*K.1^58,-1*K.1^6,-1*K.1^46,K.1^38,K.1^6,-1*K.1^2,-1*K.1^42,K.1^66,-1*K.1^26,-1*K.1^50,K.1^62,K.1^14,-1*K.1^30,-1*K.1^54,K.1^66,-1*K.1^66,K.1^2,-1*K.1^10,K.1^14,-1*K.1^62,-1*K.1^26,K.1^42,K.1^18,-1*K.1^14,K.1^18,-1*K.1^38,K.1^46,K.1^38,K.1^2,K.1^10,-1*K.1^6,K.1^26,K.1^50,K.1^30,K.1^54,K.1^6,K.1^58,-1*K.1^42,-1*K.1^22,K.1^22,K.1^54,-1*K.1^58,-1*K.1^18,-1*K.1^46,-1*K.1^38,-1*K.1^10,-1*K.1^66,K.1^46,K.1^30,-1*K.1^14,-1*K.1^50,K.1^50,K.1^26,-1*K.1^22,-1*K.1^30,K.1^10,-1*K.1^54,K.1^62,K.1^22,-1*K.1^18,-1*K.1^36,K.1^20,K.1^4,-1*K.1^64,K.1^12,-1*K.1^28,-1*K.1^52,K.1^16,K.1^48,K.1^40,K.1^8,K.1^60,-1*K.1^44,K.1^32,-1*K.1^4,K.1^64,K.1^52,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^12,K.1^4,-1*K.1^40,K.1^20,-1*K.1^32,-1*K.1^64,-1*K.1^56,-1*K.1^24,K.1^44,K.1^44,-1*K.1^32,-1*K.1^40,K.1^36,K.1^28,-1*K.1^56,-1*K.1^8,K.1^52,K.1^36,-1*K.1^24,-1*K.1^8,-1*K.1^16,K.1^28,K.1^60,-1*K.1^20,-1*K.1^48,K.1^56,K.1^24,-1*K.1^60,K.1^23,K.1^25,K.1^25,-1*K.1^41,-1*K.1^41,K.1^29,K.1^29,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,K.1^37,K.1^37,-1*K.1^33,-1*K.1^33,K.1^9,K.1^9,-1*K.1^3,-1*K.1^11,K.1^67,-1*K.1^55,K.1^7,K.1^67,-1*K.1^55,K.1^7,K.1^15,-1*K.1^63,K.1^59,K.1^15,-1*K.1^63,-1*K.1^3,-1*K.1^11,-1*K.1,K.1^61,K.1^61,-1*K.1^45,-1*K.1^45,K.1^57,K.1^57,K.1^5,K.1^5,-1*K.1^65,-1*K.1^65,K.1^49,K.1^49,-1*K.1^53,-1*K.1^53,-1*K.1,-1*K.1^43,-1*K.1^31,-1*K.1^23,-1*K.1^59,K.1^47,K.1^27,-1*K.1^35,K.1^47,K.1^27,K.1^19,K.1^39,-1*K.1^43,K.1^19,K.1^39,-1*K.1^31,-1*K.1^23,-1*K.1^35,-1*K.1^9,-1*K.1^61,-1*K.1^61,K.1^41,K.1^41,-1*K.1^57,-1*K.1^57,K.1^13,K.1^13,K.1^65,K.1^65,-1*K.1^37,-1*K.1^37,K.1^53,K.1^53,-1*K.1^9,K.1^35,K.1^31,K.1^11,K.1^59,K.1^55,-1*K.1^27,K.1^35,K.1^55,-1*K.1^27,-1*K.1^15,-1*K.1^39,-1*K.1^59,-1*K.1^15,-1*K.1^39,K.1^31,K.1^11,K.1,-1*K.1^25,-1*K.1^25,K.1^45,K.1^45,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,K.1^21,K.1^21,-1*K.1^49,-1*K.1^49,K.1^33,K.1^33,K.1,K.1^43,K.1^3,K.1^23,-1*K.1^67,-1*K.1^47,-1*K.1^7,-1*K.1^67,-1*K.1^47,-1*K.1^7,-1*K.1^19,K.1^63,K.1^43,-1*K.1^19,K.1^63,K.1^3,K.1^62,K.1^30,K.1^2,-1*K.1^26,K.1^22,-1*K.1^62,-1*K.1^18,-1*K.1^2,K.1^46,-1*K.1^50,K.1^26,-1*K.1^62,-1*K.1^30,K.1^54,-1*K.1^54,K.1^22,K.1^50,K.1^2,-1*K.1^14,K.1^54,K.1^30,K.1^58,K.1^62,K.1^42,-1*K.1^54,K.1^66,-1*K.1^14,K.1^58,K.1^18,-1*K.1^38,-1*K.1^18,-1*K.1^38,K.1^66,K.1^38,-1*K.1^22,K.1^14,K.1^42,K.1^10,-1*K.1^46,K.1^46,-1*K.1^22,K.1^26,K.1^6,-1*K.1^50,K.1^50,K.1^10,-1*K.1^10,K.1^6,-1*K.1^42,-1*K.1^58,-1*K.1^46,-1*K.1^30,-1*K.1^10,-1*K.1^6,-1*K.1^6,K.1^18,K.1^14,-1*K.1^2,-1*K.1^42,-1*K.1^66,-1*K.1^58,-1*K.1^26,-1*K.1^66,K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^48,-1*K.1^44,K.1^64,K.1^56,-1*K.1^12,K.1^8,K.1^32,-1*K.1^52,-1*K.1^4,K.1^16,K.1^40,-1*K.1^28,K.1^24,-1*K.1^20,-1*K.1^60,-1*K.1^36,K.1^52,-1*K.1^28,-1*K.1^60,K.1^24,K.1^28,K.1^4,K.1^64,-1*K.1^36,-1*K.1^4,-1*K.1^12,-1*K.1^44,K.1^8,K.1^12,K.1^20,K.1^16,-1*K.1^52,-1*K.1^20,K.1^36,K.1^20,-1*K.1^8,K.1^40,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,K.1^60,K.1^44,K.1^4,K.1^36,K.1^52,K.1^32,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^48,-1*K.1^56,-1*K.1^40,-1*K.1^24,K.1^56,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^12,K.1^28,K.1^44,K.1^60,K.1^24,-1*K.1^4,-1*K.1^20,K.1^8,K.1^40,-1*K.1^44,-1*K.1^60,-1*K.1^52,K.1^48,K.1^16,K.1^56,-1*K.1^12,-1*K.1^28,K.1^64,-1*K.1^36,K.1^32,K.1^62,-1*K.1^58,K.1^2,-1*K.1^42,K.1^58,K.1^6,K.1^46,-1*K.1^38,-1*K.1^6,K.1^2,K.1^42,-1*K.1^66,K.1^26,K.1^50,-1*K.1^62,-1*K.1^14,K.1^30,K.1^54,-1*K.1^66,K.1^66,-1*K.1^2,K.1^10,-1*K.1^14,K.1^62,K.1^26,-1*K.1^42,-1*K.1^18,K.1^14,-1*K.1^18,K.1^38,-1*K.1^46,-1*K.1^38,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^26,-1*K.1^50,-1*K.1^30,-1*K.1^54,-1*K.1^6,-1*K.1^58,K.1^42,K.1^22,-1*K.1^22,-1*K.1^54,K.1^58,K.1^18,K.1^46,K.1^38,K.1^10,K.1^66,-1*K.1^46,-1*K.1^30,K.1^14,K.1^50,-1*K.1^50,-1*K.1^26,K.1^22,K.1^30,-1*K.1^10,K.1^54,-1*K.1^62,-1*K.1^22,K.1^18,-1*K.1^36,K.1^20,K.1^4,-1*K.1^64,K.1^12,-1*K.1^28,-1*K.1^52,K.1^16,K.1^48,K.1^40,K.1^8,K.1^60,-1*K.1^44,K.1^32,-1*K.1^4,K.1^64,K.1^52,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^12,K.1^4,-1*K.1^40,K.1^20,-1*K.1^32,-1*K.1^64,-1*K.1^56,-1*K.1^24,K.1^44,K.1^44,-1*K.1^32,-1*K.1^40,K.1^36,K.1^28,-1*K.1^56,-1*K.1^8,K.1^52,K.1^36,-1*K.1^24,-1*K.1^8,-1*K.1^16,K.1^28,K.1^60,-1*K.1^20,-1*K.1^48,K.1^56,K.1^24,-1*K.1^60,K.1^57,-1*K.1^59,-1*K.1^59,-1*K.1^7,-1*K.1^7,-1*K.1^63,-1*K.1^63,K.1^47,K.1^47,K.1^55,K.1^55,K.1^3,K.1^3,K.1^67,K.1^67,-1*K.1^43,-1*K.1^43,-1*K.1^37,-1*K.1^45,-1*K.1^33,K.1^21,K.1^41,-1*K.1^33,K.1^21,K.1^41,K.1^49,K.1^29,-1*K.1^25,K.1^49,K.1^29,-1*K.1^37,-1*K.1^45,K.1^35,K.1^27,K.1^27,-1*K.1^11,-1*K.1^11,K.1^23,K.1^23,-1*K.1^39,-1*K.1^39,-1*K.1^31,-1*K.1^31,K.1^15,K.1^15,-1*K.1^19,-1*K.1^19,K.1^35,K.1^9,-1*K.1^65,-1*K.1^57,K.1^25,-1*K.1^13,K.1^61,K.1,-1*K.1^13,K.1^61,K.1^53,-1*K.1^5,K.1^9,K.1^53,-1*K.1^5,-1*K.1^65,-1*K.1^57,K.1,K.1^43,-1*K.1^27,-1*K.1^27,K.1^7,K.1^7,-1*K.1^23,-1*K.1^23,-1*K.1^47,-1*K.1^47,K.1^31,K.1^31,-1*K.1^3,-1*K.1^3,K.1^19,K.1^19,K.1^43,-1*K.1,K.1^65,K.1^45,-1*K.1^25,-1*K.1^21,-1*K.1^61,-1*K.1,-1*K.1^21,-1*K.1^61,-1*K.1^49,K.1^5,K.1^25,-1*K.1^49,K.1^5,K.1^65,K.1^45,-1*K.1^35,K.1^59,K.1^59,K.1^11,K.1^11,K.1^63,K.1^63,K.1^39,K.1^39,-1*K.1^55,-1*K.1^55,-1*K.1^15,-1*K.1^15,-1*K.1^67,-1*K.1^67,-1*K.1^35,-1*K.1^9,K.1^37,K.1^57,K.1^33,K.1^13,-1*K.1^41,K.1^33,K.1^13,-1*K.1^41,-1*K.1^53,-1*K.1^29,-1*K.1^9,-1*K.1^53,-1*K.1^29,K.1^37,-1*K.1^62,-1*K.1^30,-1*K.1^2,K.1^26,-1*K.1^22,K.1^62,K.1^18,K.1^2,-1*K.1^46,K.1^50,-1*K.1^26,K.1^62,K.1^30,-1*K.1^54,K.1^54,-1*K.1^22,-1*K.1^50,-1*K.1^2,K.1^14,-1*K.1^54,-1*K.1^30,-1*K.1^58,-1*K.1^62,-1*K.1^42,K.1^54,-1*K.1^66,K.1^14,-1*K.1^58,-1*K.1^18,K.1^38,K.1^18,K.1^38,-1*K.1^66,-1*K.1^38,K.1^22,-1*K.1^14,-1*K.1^42,-1*K.1^10,K.1^46,-1*K.1^46,K.1^22,-1*K.1^26,-1*K.1^6,K.1^50,-1*K.1^50,-1*K.1^10,K.1^10,-1*K.1^6,K.1^42,K.1^58,K.1^46,K.1^30,K.1^10,K.1^6,K.1^6,-1*K.1^18,-1*K.1^14,K.1^2,K.1^42,K.1^66,K.1^58,K.1^26,K.1^66,-1*K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^20,K.1^24,-1*K.1^4,-1*K.1^12,K.1^56,-1*K.1^60,-1*K.1^36,K.1^16,K.1^64,-1*K.1^52,-1*K.1^28,K.1^40,-1*K.1^44,K.1^48,K.1^8,K.1^32,-1*K.1^16,K.1^40,K.1^8,-1*K.1^44,-1*K.1^40,-1*K.1^64,-1*K.1^4,K.1^32,K.1^64,K.1^56,K.1^24,-1*K.1^60,-1*K.1^56,-1*K.1^48,-1*K.1^52,K.1^16,K.1^48,-1*K.1^32,-1*K.1^48,K.1^60,-1*K.1^28,K.1^12,K.1^28,K.1^44,K.1^60,-1*K.1^8,-1*K.1^24,-1*K.1^64,-1*K.1^32,-1*K.1^16,-1*K.1^36,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^20,K.1^12,K.1^28,K.1^44,-1*K.1^12,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,-1*K.1^44,K.1^64,K.1^48,-1*K.1^60,-1*K.1^28,K.1^24,K.1^8,K.1^16,-1*K.1^20,-1*K.1^52,-1*K.1^12,K.1^56,K.1^40,-1*K.1^4,K.1^32,-1*K.1^36,-1*K.1^6,K.1^10,-1*K.1^66,K.1^26,-1*K.1^10,-1*K.1^62,-1*K.1^22,K.1^30,K.1^62,-1*K.1^66,-1*K.1^26,K.1^2,-1*K.1^42,-1*K.1^18,K.1^6,K.1^54,-1*K.1^38,-1*K.1^14,K.1^2,-1*K.1^2,K.1^66,-1*K.1^58,K.1^54,-1*K.1^6,-1*K.1^42,K.1^26,K.1^50,-1*K.1^54,K.1^50,-1*K.1^30,K.1^22,K.1^30,K.1^66,K.1^58,-1*K.1^62,K.1^42,K.1^18,K.1^38,K.1^14,K.1^62,K.1^10,-1*K.1^26,-1*K.1^46,K.1^46,K.1^14,-1*K.1^10,-1*K.1^50,-1*K.1^22,-1*K.1^30,-1*K.1^58,-1*K.1^2,K.1^22,K.1^38,-1*K.1^54,-1*K.1^18,K.1^18,K.1^42,-1*K.1^46,-1*K.1^38,K.1^58,-1*K.1^14,K.1^6,K.1^46,-1*K.1^50,K.1^32,-1*K.1^48,-1*K.1^64,K.1^4,-1*K.1^56,K.1^40,K.1^16,-1*K.1^52,-1*K.1^20,-1*K.1^28,-1*K.1^60,-1*K.1^8,K.1^24,-1*K.1^36,K.1^64,-1*K.1^4,-1*K.1^16,K.1^56,K.1^52,K.1^20,-1*K.1^56,-1*K.1^64,K.1^28,-1*K.1^48,K.1^36,K.1^4,K.1^12,K.1^44,-1*K.1^24,-1*K.1^24,K.1^36,K.1^28,-1*K.1^32,-1*K.1^40,K.1^12,K.1^60,-1*K.1^16,-1*K.1^32,K.1^44,K.1^60,K.1^52,-1*K.1^40,-1*K.1^8,K.1^48,K.1^20,-1*K.1^12,-1*K.1^44,K.1^8,-1*K.1^11,K.1^9,K.1^9,K.1^61,K.1^61,K.1^5,K.1^5,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,-1*K.1^65,-1*K.1^65,-1*K.1,-1*K.1,K.1^25,K.1^25,K.1^31,K.1^23,K.1^35,-1*K.1^47,-1*K.1^27,K.1^35,-1*K.1^47,-1*K.1^27,-1*K.1^19,-1*K.1^39,K.1^43,-1*K.1^19,-1*K.1^39,K.1^31,K.1^23,-1*K.1^33,-1*K.1^41,-1*K.1^41,K.1^57,K.1^57,-1*K.1^45,-1*K.1^45,K.1^29,K.1^29,K.1^37,K.1^37,-1*K.1^53,-1*K.1^53,K.1^49,K.1^49,-1*K.1^33,-1*K.1^59,K.1^3,K.1^11,-1*K.1^43,K.1^55,-1*K.1^7,-1*K.1^67,K.1^55,-1*K.1^7,-1*K.1^15,K.1^63,-1*K.1^59,-1*K.1^15,K.1^63,K.1^3,K.1^11,-1*K.1^67,-1*K.1^25,K.1^41,K.1^41,-1*K.1^61,-1*K.1^61,K.1^45,K.1^45,K.1^21,K.1^21,-1*K.1^37,-1*K.1^37,K.1^65,K.1^65,-1*K.1^49,-1*K.1^49,-1*K.1^25,K.1^67,-1*K.1^3,-1*K.1^23,K.1^43,K.1^47,K.1^7,K.1^67,K.1^47,K.1^7,K.1^19,-1*K.1^63,-1*K.1^43,K.1^19,-1*K.1^63,-1*K.1^3,-1*K.1^23,K.1^33,-1*K.1^9,-1*K.1^9,-1*K.1^57,-1*K.1^57,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,K.1^13,K.1^13,K.1^53,K.1^53,K.1,K.1,K.1^33,K.1^59,-1*K.1^31,-1*K.1^11,-1*K.1^35,-1*K.1^55,K.1^27,-1*K.1^35,-1*K.1^55,K.1^27,K.1^15,K.1^39,K.1^59,K.1^15,K.1^39,-1*K.1^31,K.1^6,K.1^38,K.1^66,-1*K.1^42,K.1^46,-1*K.1^6,-1*K.1^50,-1*K.1^66,K.1^22,-1*K.1^18,K.1^42,-1*K.1^6,-1*K.1^38,K.1^14,-1*K.1^14,K.1^46,K.1^18,K.1^66,-1*K.1^54,K.1^14,K.1^38,K.1^10,K.1^6,K.1^26,-1*K.1^14,K.1^2,-1*K.1^54,K.1^10,K.1^50,-1*K.1^30,-1*K.1^50,-1*K.1^30,K.1^2,K.1^30,-1*K.1^46,K.1^54,K.1^26,K.1^58,-1*K.1^22,K.1^22,-1*K.1^46,K.1^42,K.1^62,-1*K.1^18,K.1^18,K.1^58,-1*K.1^58,K.1^62,-1*K.1^26,-1*K.1^10,-1*K.1^22,-1*K.1^38,-1*K.1^58,-1*K.1^62,-1*K.1^62,K.1^50,K.1^54,-1*K.1^66,-1*K.1^26,-1*K.1^2,-1*K.1^10,-1*K.1^42,-1*K.1^2,K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^28,-1*K.1^20,-1*K.1^60,-1*K.1^44,K.1^24,K.1^16,K.1^64,-1*K.1^36,K.1^8,K.1^32,-1*K.1^12,K.1^56,K.1^48,K.1^40,-1*K.1^52,-1*K.1^4,K.1^36,K.1^56,-1*K.1^52,K.1^48,-1*K.1^56,-1*K.1^8,-1*K.1^60,-1*K.1^4,K.1^8,K.1^24,-1*K.1^20,K.1^16,-1*K.1^24,-1*K.1^40,K.1^32,-1*K.1^36,K.1^40,K.1^4,-1*K.1^40,-1*K.1^16,-1*K.1^12,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,K.1^52,K.1^20,-1*K.1^8,K.1^4,K.1^36,K.1^64,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^28,K.1^44,K.1^12,-1*K.1^48,-1*K.1^44,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,K.1^48,K.1^8,K.1^40,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^44,K.1^24,K.1^56,-1*K.1^60,-1*K.1^4,K.1^64,K.1^22,K.1^14,-1*K.1^38,-1*K.1^50,-1*K.1^14,K.1^46,-1*K.1^58,K.1^42,-1*K.1^46,-1*K.1^38,K.1^50,K.1^30,K.1^18,K.1^66,-1*K.1^22,-1*K.1^62,-1*K.1^26,K.1^6,K.1^30,-1*K.1^30,K.1^38,-1*K.1^54,-1*K.1^62,K.1^22,K.1^18,-1*K.1^50,-1*K.1^2,K.1^62,-1*K.1^2,-1*K.1^42,K.1^58,K.1^42,K.1^38,K.1^54,K.1^46,-1*K.1^18,-1*K.1^66,K.1^26,-1*K.1^6,-1*K.1^46,K.1^14,K.1^50,-1*K.1^10,K.1^10,-1*K.1^6,-1*K.1^14,K.1^2,-1*K.1^58,-1*K.1^42,-1*K.1^54,-1*K.1^30,K.1^58,K.1^26,K.1^62,K.1^66,-1*K.1^66,-1*K.1^18,-1*K.1^10,-1*K.1^26,K.1^54,K.1^6,-1*K.1^22,K.1^10,K.1^2,-1*K.1^4,-1*K.1^40,-1*K.1^8,K.1^60,-1*K.1^24,K.1^56,-1*K.1^36,K.1^32,-1*K.1^28,-1*K.1^12,K.1^16,K.1^52,-1*K.1^20,K.1^64,K.1^8,-1*K.1^60,K.1^36,K.1^24,-1*K.1^32,K.1^28,-1*K.1^24,-1*K.1^8,K.1^12,-1*K.1^40,-1*K.1^64,K.1^60,K.1^44,-1*K.1^48,K.1^20,K.1^20,-1*K.1^64,K.1^12,K.1^4,-1*K.1^56,K.1^44,-1*K.1^16,K.1^36,K.1^4,-1*K.1^48,-1*K.1^16,-1*K.1^32,-1*K.1^56,K.1^52,K.1^40,K.1^28,-1*K.1^44,K.1^48,-1*K.1^52,-1*K.1^29,-1*K.1^67,-1*K.1^67,-1*K.1^31,-1*K.1^31,-1*K.1^7,-1*K.1^7,-1*K.1^43,-1*K.1^43,-1*K.1^59,-1*K.1^59,-1*K.1^23,-1*K.1^23,-1*K.1^15,-1*K.1^15,-1*K.1^35,-1*K.1^35,K.1^57,-1*K.1^5,-1*K.1^49,-1*K.1^25,K.1^65,-1*K.1^49,-1*K.1^25,K.1^65,-1*K.1^13,-1*K.1^41,-1*K.1^33,-1*K.1^13,-1*K.1^41,K.1^57,-1*K.1^5,K.1^19,K.1^3,K.1^3,K.1^39,K.1^39,K.1^63,K.1^63,K.1^27,K.1^27,K.1^11,K.1^11,K.1^47,K.1^47,K.1^55,K.1^55,K.1^19,K.1,K.1^45,K.1^29,K.1^33,K.1^9,K.1^37,-1*K.1^53,K.1^9,K.1^37,K.1^21,-1*K.1^61,K.1,K.1^21,-1*K.1^61,K.1^45,K.1^29,-1*K.1^53,K.1^35,-1*K.1^3,-1*K.1^3,K.1^31,K.1^31,-1*K.1^63,-1*K.1^63,K.1^43,K.1^43,-1*K.1^11,-1*K.1^11,K.1^23,K.1^23,-1*K.1^55,-1*K.1^55,K.1^35,K.1^53,-1*K.1^45,K.1^5,-1*K.1^33,K.1^25,-1*K.1^37,K.1^53,K.1^25,-1*K.1^37,K.1^13,K.1^61,K.1^33,K.1^13,K.1^61,-1*K.1^45,K.1^5,-1*K.1^19,K.1^67,K.1^67,-1*K.1^39,-1*K.1^39,K.1^7,K.1^7,-1*K.1^27,-1*K.1^27,K.1^59,K.1^59,-1*K.1^47,-1*K.1^47,K.1^15,K.1^15,-1*K.1^19,-1*K.1,-1*K.1^57,-1*K.1^29,K.1^49,-1*K.1^9,-1*K.1^65,K.1^49,-1*K.1^9,-1*K.1^65,-1*K.1^21,K.1^41,-1*K.1,-1*K.1^21,K.1^41,-1*K.1^57,-1*K.1^22,K.1^26,K.1^38,K.1^18,K.1^10,K.1^22,K.1^2,-1*K.1^38,K.1^58,K.1^66,-1*K.1^18,K.1^22,-1*K.1^26,-1*K.1^6,K.1^6,K.1^10,-1*K.1^66,K.1^38,K.1^62,-1*K.1^6,K.1^26,K.1^14,-1*K.1^22,-1*K.1^50,K.1^6,K.1^30,K.1^62,K.1^14,-1*K.1^2,-1*K.1^42,K.1^2,-1*K.1^42,K.1^30,K.1^42,-1*K.1^10,-1*K.1^62,-1*K.1^50,K.1^54,-1*K.1^58,K.1^58,-1*K.1^10,-1*K.1^18,-1*K.1^46,K.1^66,-1*K.1^66,K.1^54,-1*K.1^54,-1*K.1^46,K.1^50,-1*K.1^14,-1*K.1^58,-1*K.1^26,-1*K.1^54,K.1^46,K.1^46,-1*K.1^2,-1*K.1^62,-1*K.1^38,K.1^50,-1*K.1^30,-1*K.1^14,K.1^18,-1*K.1^30,K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^40,K.1^48,K.1^8,K.1^24,-1*K.1^44,-1*K.1^52,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^16,K.1^64,-1*K.1^32,-1*K.1^12,K.1^16,-1*K.1^20,K.1^12,K.1^60,K.1^8,K.1^64,-1*K.1^60,-1*K.1^44,K.1^48,-1*K.1^52,K.1^44,K.1^28,-1*K.1^36,K.1^32,-1*K.1^28,-1*K.1^64,K.1^28,K.1^52,K.1^56,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,-1*K.1^16,-1*K.1^48,K.1^60,-1*K.1^64,-1*K.1^32,-1*K.1^4,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^40,-1*K.1^24,-1*K.1^56,K.1^20,K.1^24,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,-1*K.1^20,-1*K.1^60,-1*K.1^28,-1*K.1^52,K.1^56,K.1^48,K.1^16,K.1^32,K.1^40,-1*K.1^36,K.1^24,-1*K.1^44,-1*K.1^12,K.1^8,K.1^64,-1*K.1^4,-1*K.1^46,-1*K.1^54,K.1^30,K.1^18,K.1^54,-1*K.1^22,K.1^10,-1*K.1^26,K.1^22,K.1^30,-1*K.1^18,-1*K.1^38,-1*K.1^50,-1*K.1^2,K.1^46,K.1^6,K.1^42,-1*K.1^62,-1*K.1^38,K.1^38,-1*K.1^30,K.1^14,K.1^6,-1*K.1^46,-1*K.1^50,K.1^18,K.1^66,-1*K.1^6,K.1^66,K.1^26,-1*K.1^10,-1*K.1^26,-1*K.1^30,-1*K.1^14,-1*K.1^22,K.1^50,K.1^2,-1*K.1^42,K.1^62,K.1^22,-1*K.1^54,-1*K.1^18,K.1^58,-1*K.1^58,K.1^62,K.1^54,-1*K.1^66,K.1^10,K.1^26,K.1^14,K.1^38,-1*K.1^10,-1*K.1^42,-1*K.1^6,-1*K.1^2,K.1^2,K.1^50,K.1^58,K.1^42,-1*K.1^14,-1*K.1^62,K.1^46,-1*K.1^58,-1*K.1^66,K.1^64,K.1^28,K.1^60,-1*K.1^8,K.1^44,-1*K.1^12,K.1^32,-1*K.1^36,K.1^40,K.1^56,-1*K.1^52,-1*K.1^16,K.1^48,-1*K.1^4,-1*K.1^60,K.1^8,-1*K.1^32,-1*K.1^44,K.1^36,-1*K.1^40,K.1^44,K.1^60,-1*K.1^56,K.1^28,K.1^4,-1*K.1^8,-1*K.1^24,K.1^20,-1*K.1^48,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^64,K.1^12,-1*K.1^24,K.1^52,-1*K.1^32,-1*K.1^64,K.1^20,K.1^52,K.1^36,K.1^12,-1*K.1^16,-1*K.1^28,-1*K.1^40,K.1^24,-1*K.1^20,K.1^16,K.1^39,K.1,K.1,K.1^37,K.1^37,K.1^61,K.1^61,K.1^25,K.1^25,K.1^9,K.1^9,K.1^45,K.1^45,K.1^53,K.1^53,K.1^33,K.1^33,-1*K.1^11,K.1^63,K.1^19,K.1^43,-1*K.1^3,K.1^19,K.1^43,-1*K.1^3,K.1^55,K.1^27,K.1^35,K.1^55,K.1^27,-1*K.1^11,K.1^63,-1*K.1^49,-1*K.1^65,-1*K.1^65,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,-1*K.1^41,-1*K.1^41,-1*K.1^57,-1*K.1^57,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,-1*K.1^49,-1*K.1^67,-1*K.1^23,-1*K.1^39,-1*K.1^35,-1*K.1^59,-1*K.1^31,K.1^15,-1*K.1^59,-1*K.1^31,-1*K.1^47,K.1^7,-1*K.1^67,-1*K.1^47,K.1^7,-1*K.1^23,-1*K.1^39,K.1^15,-1*K.1^33,K.1^65,K.1^65,-1*K.1^37,-1*K.1^37,K.1^5,K.1^5,-1*K.1^25,-1*K.1^25,K.1^57,K.1^57,-1*K.1^45,-1*K.1^45,K.1^13,K.1^13,-1*K.1^33,-1*K.1^15,K.1^23,-1*K.1^63,K.1^35,-1*K.1^43,K.1^31,-1*K.1^15,-1*K.1^43,K.1^31,-1*K.1^55,-1*K.1^7,-1*K.1^35,-1*K.1^55,-1*K.1^7,K.1^23,-1*K.1^63,K.1^49,-1*K.1,-1*K.1,K.1^29,K.1^29,-1*K.1^61,-1*K.1^61,K.1^41,K.1^41,-1*K.1^9,-1*K.1^9,K.1^21,K.1^21,-1*K.1^53,-1*K.1^53,K.1^49,K.1^67,K.1^11,K.1^39,-1*K.1^19,K.1^59,K.1^3,-1*K.1^19,K.1^59,K.1^3,K.1^47,-1*K.1^27,K.1^67,K.1^47,-1*K.1^27,K.1^11,K.1^46,-1*K.1^42,-1*K.1^30,-1*K.1^50,-1*K.1^58,-1*K.1^46,-1*K.1^66,K.1^30,-1*K.1^10,-1*K.1^2,K.1^50,-1*K.1^46,K.1^42,K.1^62,-1*K.1^62,-1*K.1^58,K.1^2,-1*K.1^30,-1*K.1^6,K.1^62,-1*K.1^42,-1*K.1^54,K.1^46,K.1^18,-1*K.1^62,-1*K.1^38,-1*K.1^6,-1*K.1^54,K.1^66,K.1^26,-1*K.1^66,K.1^26,-1*K.1^38,-1*K.1^26,K.1^58,K.1^6,K.1^18,-1*K.1^14,K.1^10,-1*K.1^10,K.1^58,K.1^50,K.1^22,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,K.1^22,-1*K.1^18,K.1^54,K.1^10,K.1^42,K.1^14,-1*K.1^22,-1*K.1^22,K.1^66,K.1^6,K.1^30,-1*K.1^18,K.1^38,K.1^54,-1*K.1^50,K.1^38,-1*K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^40,K.1^48,K.1^8,K.1^24,-1*K.1^44,-1*K.1^52,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^16,K.1^64,-1*K.1^32,-1*K.1^12,K.1^16,-1*K.1^20,K.1^12,K.1^60,K.1^8,K.1^64,-1*K.1^60,-1*K.1^44,K.1^48,-1*K.1^52,K.1^44,K.1^28,-1*K.1^36,K.1^32,-1*K.1^28,-1*K.1^64,K.1^28,K.1^52,K.1^56,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,-1*K.1^16,-1*K.1^48,K.1^60,-1*K.1^64,-1*K.1^32,-1*K.1^4,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^40,-1*K.1^24,-1*K.1^56,K.1^20,K.1^24,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,-1*K.1^20,-1*K.1^60,-1*K.1^28,-1*K.1^52,K.1^56,K.1^48,K.1^16,K.1^32,K.1^40,-1*K.1^36,K.1^24,-1*K.1^44,-1*K.1^12,K.1^8,K.1^64,-1*K.1^4,K.1^46,K.1^54,-1*K.1^30,-1*K.1^18,-1*K.1^54,K.1^22,-1*K.1^10,K.1^26,-1*K.1^22,-1*K.1^30,K.1^18,K.1^38,K.1^50,K.1^2,-1*K.1^46,-1*K.1^6,-1*K.1^42,K.1^62,K.1^38,-1*K.1^38,K.1^30,-1*K.1^14,-1*K.1^6,K.1^46,K.1^50,-1*K.1^18,-1*K.1^66,K.1^6,-1*K.1^66,-1*K.1^26,K.1^10,K.1^26,K.1^30,K.1^14,K.1^22,-1*K.1^50,-1*K.1^2,K.1^42,-1*K.1^62,-1*K.1^22,K.1^54,K.1^18,-1*K.1^58,K.1^58,-1*K.1^62,-1*K.1^54,K.1^66,-1*K.1^10,-1*K.1^26,-1*K.1^14,-1*K.1^38,K.1^10,K.1^42,K.1^6,K.1^2,-1*K.1^2,-1*K.1^50,-1*K.1^58,-1*K.1^42,K.1^14,K.1^62,-1*K.1^46,K.1^58,K.1^66,K.1^64,K.1^28,K.1^60,-1*K.1^8,K.1^44,-1*K.1^12,K.1^32,-1*K.1^36,K.1^40,K.1^56,-1*K.1^52,-1*K.1^16,K.1^48,-1*K.1^4,-1*K.1^60,K.1^8,-1*K.1^32,-1*K.1^44,K.1^36,-1*K.1^40,K.1^44,K.1^60,-1*K.1^56,K.1^28,K.1^4,-1*K.1^8,-1*K.1^24,K.1^20,-1*K.1^48,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^64,K.1^12,-1*K.1^24,K.1^52,-1*K.1^32,-1*K.1^64,K.1^20,K.1^52,K.1^36,K.1^12,-1*K.1^16,-1*K.1^28,-1*K.1^40,K.1^24,-1*K.1^20,K.1^16,-1*K.1^5,-1*K.1^35,-1*K.1^35,K.1^3,K.1^3,K.1^27,K.1^27,-1*K.1^59,-1*K.1^59,-1*K.1^43,-1*K.1^43,K.1^11,K.1^11,K.1^19,K.1^19,-1*K.1^67,-1*K.1^67,-1*K.1^45,-1*K.1^29,K.1^53,-1*K.1^9,-1*K.1^37,K.1^53,-1*K.1^9,-1*K.1^37,-1*K.1^21,K.1^61,-1*K.1,-1*K.1^21,K.1^61,-1*K.1^45,-1*K.1^29,-1*K.1^15,-1*K.1^31,-1*K.1^31,K.1^63,K.1^63,K.1^39,K.1^39,-1*K.1^7,-1*K.1^7,-1*K.1^23,-1*K.1^23,K.1^55,K.1^55,K.1^47,K.1^47,-1*K.1^15,K.1^33,-1*K.1^57,K.1^5,K.1,K.1^25,-1*K.1^65,K.1^49,K.1^25,-1*K.1^65,K.1^13,K.1^41,K.1^33,K.1^13,K.1^41,-1*K.1^57,K.1^5,K.1^49,K.1^67,K.1^31,K.1^31,-1*K.1^3,-1*K.1^3,-1*K.1^39,-1*K.1^39,K.1^59,K.1^59,K.1^23,K.1^23,-1*K.1^11,-1*K.1^11,-1*K.1^47,-1*K.1^47,K.1^67,-1*K.1^49,K.1^57,K.1^29,-1*K.1,K.1^9,K.1^65,-1*K.1^49,K.1^9,K.1^65,K.1^21,-1*K.1^41,K.1,K.1^21,-1*K.1^41,K.1^57,K.1^29,K.1^15,K.1^35,K.1^35,-1*K.1^63,-1*K.1^63,-1*K.1^27,-1*K.1^27,K.1^7,K.1^7,K.1^43,K.1^43,-1*K.1^55,-1*K.1^55,-1*K.1^19,-1*K.1^19,K.1^15,-1*K.1^33,K.1^45,-1*K.1^5,-1*K.1^53,-1*K.1^25,K.1^37,-1*K.1^53,-1*K.1^25,K.1^37,-1*K.1^13,-1*K.1^61,-1*K.1^33,-1*K.1^13,-1*K.1^61,K.1^45,-1*K.1^46,K.1^42,K.1^30,K.1^50,K.1^58,K.1^46,K.1^66,-1*K.1^30,K.1^10,K.1^2,-1*K.1^50,K.1^46,-1*K.1^42,-1*K.1^62,K.1^62,K.1^58,-1*K.1^2,K.1^30,K.1^6,-1*K.1^62,K.1^42,K.1^54,-1*K.1^46,-1*K.1^18,K.1^62,K.1^38,K.1^6,K.1^54,-1*K.1^66,-1*K.1^26,K.1^66,-1*K.1^26,K.1^38,K.1^26,-1*K.1^58,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^10,K.1^10,-1*K.1^58,-1*K.1^50,-1*K.1^22,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^22,K.1^18,-1*K.1^54,-1*K.1^10,-1*K.1^42,-1*K.1^14,K.1^22,K.1^22,-1*K.1^66,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^38,-1*K.1^54,K.1^50,-1*K.1^38,K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^28,-1*K.1^20,-1*K.1^60,-1*K.1^44,K.1^24,K.1^16,K.1^64,-1*K.1^36,K.1^8,K.1^32,-1*K.1^12,K.1^56,K.1^48,K.1^40,-1*K.1^52,-1*K.1^4,K.1^36,K.1^56,-1*K.1^52,K.1^48,-1*K.1^56,-1*K.1^8,-1*K.1^60,-1*K.1^4,K.1^8,K.1^24,-1*K.1^20,K.1^16,-1*K.1^24,-1*K.1^40,K.1^32,-1*K.1^36,K.1^40,K.1^4,-1*K.1^40,-1*K.1^16,-1*K.1^12,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,K.1^52,K.1^20,-1*K.1^8,K.1^4,K.1^36,K.1^64,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^28,K.1^44,K.1^12,-1*K.1^48,-1*K.1^44,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,K.1^48,K.1^8,K.1^40,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^44,K.1^24,K.1^56,-1*K.1^60,-1*K.1^4,K.1^64,-1*K.1^22,-1*K.1^14,K.1^38,K.1^50,K.1^14,-1*K.1^46,K.1^58,-1*K.1^42,K.1^46,K.1^38,-1*K.1^50,-1*K.1^30,-1*K.1^18,-1*K.1^66,K.1^22,K.1^62,K.1^26,-1*K.1^6,-1*K.1^30,K.1^30,-1*K.1^38,K.1^54,K.1^62,-1*K.1^22,-1*K.1^18,K.1^50,K.1^2,-1*K.1^62,K.1^2,K.1^42,-1*K.1^58,-1*K.1^42,-1*K.1^38,-1*K.1^54,-1*K.1^46,K.1^18,K.1^66,-1*K.1^26,K.1^6,K.1^46,-1*K.1^14,-1*K.1^50,K.1^10,-1*K.1^10,K.1^6,K.1^14,-1*K.1^2,K.1^58,K.1^42,K.1^54,K.1^30,-1*K.1^58,-1*K.1^26,-1*K.1^62,-1*K.1^66,K.1^66,K.1^18,K.1^10,K.1^26,-1*K.1^54,-1*K.1^6,K.1^22,-1*K.1^10,-1*K.1^2,-1*K.1^4,-1*K.1^40,-1*K.1^8,K.1^60,-1*K.1^24,K.1^56,-1*K.1^36,K.1^32,-1*K.1^28,-1*K.1^12,K.1^16,K.1^52,-1*K.1^20,K.1^64,K.1^8,-1*K.1^60,K.1^36,K.1^24,-1*K.1^32,K.1^28,-1*K.1^24,-1*K.1^8,K.1^12,-1*K.1^40,-1*K.1^64,K.1^60,K.1^44,-1*K.1^48,K.1^20,K.1^20,-1*K.1^64,K.1^12,K.1^4,-1*K.1^56,K.1^44,-1*K.1^16,K.1^36,K.1^4,-1*K.1^48,-1*K.1^16,-1*K.1^32,-1*K.1^56,K.1^52,K.1^40,K.1^28,-1*K.1^44,K.1^48,-1*K.1^52,K.1^63,K.1^33,K.1^33,-1*K.1^65,-1*K.1^65,-1*K.1^41,-1*K.1^41,K.1^9,K.1^9,K.1^25,K.1^25,-1*K.1^57,-1*K.1^57,-1*K.1^49,-1*K.1^49,K.1,K.1,K.1^23,K.1^39,-1*K.1^15,K.1^59,K.1^31,-1*K.1^15,K.1^59,K.1^31,K.1^47,-1*K.1^7,K.1^67,K.1^47,-1*K.1^7,K.1^23,K.1^39,K.1^53,K.1^37,K.1^37,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,K.1^61,K.1^61,K.1^45,K.1^45,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,K.1^53,-1*K.1^35,K.1^11,-1*K.1^63,-1*K.1^67,-1*K.1^43,K.1^3,-1*K.1^19,-1*K.1^43,K.1^3,-1*K.1^55,-1*K.1^27,-1*K.1^35,-1*K.1^55,-1*K.1^27,K.1^11,-1*K.1^63,-1*K.1^19,-1*K.1,-1*K.1^37,-1*K.1^37,K.1^65,K.1^65,K.1^29,K.1^29,-1*K.1^9,-1*K.1^9,-1*K.1^45,-1*K.1^45,K.1^57,K.1^57,K.1^21,K.1^21,-1*K.1,K.1^19,-1*K.1^11,-1*K.1^39,K.1^67,-1*K.1^59,-1*K.1^3,K.1^19,-1*K.1^59,-1*K.1^3,-1*K.1^47,K.1^27,-1*K.1^67,-1*K.1^47,K.1^27,-1*K.1^11,-1*K.1^39,-1*K.1^53,-1*K.1^33,-1*K.1^33,K.1^5,K.1^5,K.1^41,K.1^41,-1*K.1^61,-1*K.1^61,-1*K.1^25,-1*K.1^25,K.1^13,K.1^13,K.1^49,K.1^49,-1*K.1^53,K.1^35,-1*K.1^23,K.1^63,K.1^15,K.1^43,-1*K.1^31,K.1^15,K.1^43,-1*K.1^31,K.1^55,K.1^7,K.1^35,K.1^55,K.1^7,-1*K.1^23,K.1^22,-1*K.1^26,-1*K.1^38,-1*K.1^18,-1*K.1^10,-1*K.1^22,-1*K.1^2,K.1^38,-1*K.1^58,-1*K.1^66,K.1^18,-1*K.1^22,K.1^26,K.1^6,-1*K.1^6,-1*K.1^10,K.1^66,-1*K.1^38,-1*K.1^62,K.1^6,-1*K.1^26,-1*K.1^14,K.1^22,K.1^50,-1*K.1^6,-1*K.1^30,-1*K.1^62,-1*K.1^14,K.1^2,K.1^42,-1*K.1^2,K.1^42,-1*K.1^30,-1*K.1^42,K.1^10,K.1^62,K.1^50,-1*K.1^54,K.1^58,-1*K.1^58,K.1^10,K.1^18,K.1^46,-1*K.1^66,K.1^66,-1*K.1^54,K.1^54,K.1^46,-1*K.1^50,K.1^14,K.1^58,K.1^26,K.1^54,-1*K.1^46,-1*K.1^46,K.1^2,K.1^62,K.1^38,-1*K.1^50,K.1^30,K.1^14,-1*K.1^18,K.1^30,-1*K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^36,K.1^16,K.1^48,K.1^8,-1*K.1^60,K.1^40,K.1^24,K.1^56,-1*K.1^20,-1*K.1^12,K.1^64,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^28,-1*K.1^44,-1*K.1^56,-1*K.1^4,-1*K.1^28,-1*K.1^52,K.1^4,K.1^20,K.1^48,-1*K.1^44,-1*K.1^20,-1*K.1^60,K.1^16,K.1^40,K.1^60,-1*K.1^32,-1*K.1^12,K.1^56,K.1^32,K.1^44,-1*K.1^32,-1*K.1^40,K.1^64,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^28,-1*K.1^16,K.1^20,K.1^44,-1*K.1^56,K.1^24,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,-1*K.1^36,-1*K.1^8,-1*K.1^64,K.1^52,K.1^8,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^52,-1*K.1^20,K.1^32,K.1^40,K.1^64,K.1^16,-1*K.1^28,K.1^56,-1*K.1^36,-1*K.1^12,K.1^8,-1*K.1^60,-1*K.1^4,K.1^48,-1*K.1^44,K.1^24,K.1^38,-1*K.1^18,K.1^10,K.1^6,K.1^18,K.1^30,-1*K.1^26,-1*K.1^54,-1*K.1^30,K.1^10,-1*K.1^6,-1*K.1^58,-1*K.1^62,-1*K.1^46,-1*K.1^38,K.1^2,K.1^14,-1*K.1^66,-1*K.1^58,K.1^58,-1*K.1^10,K.1^50,K.1^2,K.1^38,-1*K.1^62,K.1^6,K.1^22,-1*K.1^2,K.1^22,K.1^54,K.1^26,-1*K.1^54,-1*K.1^10,-1*K.1^50,K.1^30,K.1^62,K.1^46,-1*K.1^14,K.1^66,-1*K.1^30,-1*K.1^18,-1*K.1^6,-1*K.1^42,K.1^42,K.1^66,K.1^18,-1*K.1^22,-1*K.1^26,K.1^54,K.1^50,K.1^58,K.1^26,-1*K.1^14,-1*K.1^2,-1*K.1^46,K.1^46,K.1^62,-1*K.1^42,K.1^14,-1*K.1^50,-1*K.1^66,-1*K.1^38,K.1^42,-1*K.1^22,-1*K.1^44,-1*K.1^32,K.1^20,-1*K.1^48,K.1^60,-1*K.1^4,K.1^56,-1*K.1^12,-1*K.1^36,K.1^64,K.1^40,K.1^28,K.1^16,K.1^24,-1*K.1^20,K.1^48,-1*K.1^56,-1*K.1^60,K.1^12,K.1^36,K.1^60,K.1^20,-1*K.1^64,-1*K.1^32,-1*K.1^24,-1*K.1^48,-1*K.1^8,K.1^52,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^44,K.1^4,-1*K.1^8,-1*K.1^40,-1*K.1^56,K.1^44,K.1^52,-1*K.1^40,K.1^12,K.1^4,K.1^28,K.1^32,K.1^36,K.1^8,-1*K.1^52,-1*K.1^28,-1*K.1^13,K.1^23,K.1^23,K.1^35,K.1^35,K.1^43,K.1^43,K.1^31,K.1^31,-1*K.1^3,-1*K.1^3,-1*K.1^15,-1*K.1^15,-1*K.1^63,-1*K.1^63,-1*K.1^11,-1*K.1^11,K.1^49,-1*K.1^21,K.1^29,K.1^37,K.1,K.1^29,K.1^37,K.1,K.1^41,-1*K.1^9,-1*K.1^57,K.1^41,-1*K.1^9,K.1^49,-1*K.1^21,-1*K.1^39,K.1^67,K.1^67,K.1^55,K.1^55,K.1^47,K.1^47,K.1^59,K.1^59,K.1^19,K.1^19,K.1^7,K.1^7,-1*K.1^27,-1*K.1^27,-1*K.1^39,-1*K.1^45,K.1^53,K.1^13,K.1^57,K.1^65,-1*K.1^33,-1*K.1^5,K.1^65,-1*K.1^33,K.1^61,K.1^25,-1*K.1^45,K.1^61,K.1^25,K.1^53,K.1^13,-1*K.1^5,K.1^11,-1*K.1^67,-1*K.1^67,-1*K.1^35,-1*K.1^35,-1*K.1^47,-1*K.1^47,-1*K.1^31,-1*K.1^31,-1*K.1^19,-1*K.1^19,K.1^15,K.1^15,K.1^27,K.1^27,K.1^11,K.1^5,-1*K.1^53,K.1^21,-1*K.1^57,-1*K.1^37,K.1^33,K.1^5,-1*K.1^37,K.1^33,-1*K.1^41,-1*K.1^25,K.1^57,-1*K.1^41,-1*K.1^25,-1*K.1^53,K.1^21,K.1^39,-1*K.1^23,-1*K.1^23,-1*K.1^55,-1*K.1^55,-1*K.1^43,-1*K.1^43,-1*K.1^59,-1*K.1^59,K.1^3,K.1^3,-1*K.1^7,-1*K.1^7,K.1^63,K.1^63,K.1^39,K.1^45,-1*K.1^49,-1*K.1^13,-1*K.1^29,-1*K.1^65,-1*K.1,-1*K.1^29,-1*K.1^65,-1*K.1,-1*K.1^61,K.1^9,K.1^45,-1*K.1^61,K.1^9,-1*K.1^49,-1*K.1^38,-1*K.1^14,-1*K.1^10,-1*K.1^62,K.1^42,K.1^38,-1*K.1^22,K.1^10,K.1^26,-1*K.1^46,K.1^62,K.1^38,K.1^14,K.1^66,-1*K.1^66,K.1^42,K.1^46,-1*K.1^10,-1*K.1^2,K.1^66,-1*K.1^14,-1*K.1^18,-1*K.1^38,K.1^6,-1*K.1^66,-1*K.1^58,-1*K.1^2,-1*K.1^18,K.1^22,K.1^54,-1*K.1^22,K.1^54,-1*K.1^58,-1*K.1^54,-1*K.1^42,K.1^2,K.1^6,-1*K.1^50,-1*K.1^26,K.1^26,-1*K.1^42,K.1^62,-1*K.1^30,-1*K.1^46,K.1^46,-1*K.1^50,K.1^50,-1*K.1^30,-1*K.1^6,K.1^18,-1*K.1^26,K.1^14,K.1^50,K.1^30,K.1^30,K.1^22,K.1^2,K.1^10,-1*K.1^6,K.1^58,K.1^18,-1*K.1^62,K.1^58,-1*K.1^54]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^32,-1*K.1^52,-1*K.1^20,-1*K.1^60,K.1^8,-1*K.1^28,-1*K.1^44,-1*K.1^12,K.1^48,K.1^56,-1*K.1^4,K.1^64,K.1^16,-1*K.1^36,K.1^40,K.1^24,K.1^12,K.1^64,K.1^40,K.1^16,-1*K.1^64,-1*K.1^48,-1*K.1^20,K.1^24,K.1^48,K.1^8,-1*K.1^52,-1*K.1^28,-1*K.1^8,K.1^36,K.1^56,-1*K.1^12,-1*K.1^36,-1*K.1^24,K.1^36,K.1^28,-1*K.1^4,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^40,K.1^52,-1*K.1^48,-1*K.1^24,K.1^12,-1*K.1^44,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,K.1^32,K.1^60,K.1^4,-1*K.1^16,-1*K.1^60,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^16,K.1^48,-1*K.1^36,-1*K.1^28,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^12,K.1^32,K.1^56,-1*K.1^60,K.1^8,K.1^64,-1*K.1^20,K.1^24,-1*K.1^44,-1*K.1^30,K.1^50,-1*K.1^58,-1*K.1^62,-1*K.1^50,-1*K.1^38,K.1^42,K.1^14,K.1^38,-1*K.1^58,K.1^62,K.1^10,K.1^6,K.1^22,K.1^30,-1*K.1^66,-1*K.1^54,K.1^2,K.1^10,-1*K.1^10,K.1^58,-1*K.1^18,-1*K.1^66,-1*K.1^30,K.1^6,-1*K.1^62,-1*K.1^46,K.1^66,-1*K.1^46,-1*K.1^14,-1*K.1^42,K.1^14,K.1^58,K.1^18,-1*K.1^38,-1*K.1^6,-1*K.1^22,K.1^54,-1*K.1^2,K.1^38,K.1^50,K.1^62,K.1^26,-1*K.1^26,-1*K.1^2,-1*K.1^50,K.1^46,K.1^42,-1*K.1^14,-1*K.1^18,-1*K.1^10,-1*K.1^42,K.1^54,K.1^66,K.1^22,-1*K.1^22,-1*K.1^6,K.1^26,-1*K.1^54,K.1^18,K.1^2,K.1^30,-1*K.1^26,K.1^46,K.1^24,K.1^36,-1*K.1^48,K.1^20,-1*K.1^8,K.1^64,-1*K.1^12,K.1^56,K.1^32,-1*K.1^4,-1*K.1^28,-1*K.1^40,-1*K.1^52,-1*K.1^44,K.1^48,-1*K.1^20,K.1^12,K.1^8,-1*K.1^56,-1*K.1^32,-1*K.1^8,-1*K.1^48,K.1^4,K.1^36,K.1^44,K.1^20,K.1^60,-1*K.1^16,K.1^52,K.1^52,K.1^44,K.1^4,-1*K.1^24,-1*K.1^64,K.1^60,K.1^28,K.1^12,-1*K.1^24,-1*K.1^16,K.1^28,-1*K.1^56,-1*K.1^64,-1*K.1^40,-1*K.1^36,-1*K.1^32,-1*K.1^60,K.1^16,K.1^40,K.1^55,-1*K.1^45,-1*K.1^45,-1*K.1^33,-1*K.1^33,-1*K.1^25,-1*K.1^25,-1*K.1^37,-1*K.1^37,K.1^65,K.1^65,K.1^53,K.1^53,K.1^5,K.1^5,K.1^57,K.1^57,-1*K.1^19,K.1^47,-1*K.1^39,-1*K.1^31,-1*K.1^67,-1*K.1^39,-1*K.1^31,-1*K.1^67,-1*K.1^27,K.1^59,K.1^11,-1*K.1^27,K.1^59,-1*K.1^19,K.1^47,K.1^29,-1*K.1,-1*K.1,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,-1*K.1^9,-1*K.1^9,-1*K.1^49,-1*K.1^49,-1*K.1^61,-1*K.1^61,K.1^41,K.1^41,K.1^29,K.1^23,-1*K.1^15,-1*K.1^55,-1*K.1^11,-1*K.1^3,K.1^35,K.1^63,-1*K.1^3,K.1^35,-1*K.1^7,-1*K.1^43,K.1^23,-1*K.1^7,-1*K.1^43,-1*K.1^15,-1*K.1^55,K.1^63,-1*K.1^57,K.1,K.1,K.1^33,K.1^33,K.1^21,K.1^21,K.1^37,K.1^37,K.1^49,K.1^49,-1*K.1^53,-1*K.1^53,-1*K.1^41,-1*K.1^41,-1*K.1^57,-1*K.1^63,K.1^15,-1*K.1^47,K.1^11,K.1^31,-1*K.1^35,-1*K.1^63,K.1^31,-1*K.1^35,K.1^27,K.1^43,-1*K.1^11,K.1^27,K.1^43,K.1^15,-1*K.1^47,-1*K.1^29,K.1^45,K.1^45,K.1^13,K.1^13,K.1^25,K.1^25,K.1^9,K.1^9,-1*K.1^65,-1*K.1^65,K.1^61,K.1^61,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^23,K.1^19,K.1^55,K.1^39,K.1^3,K.1^67,K.1^39,K.1^3,K.1^67,K.1^7,-1*K.1^59,-1*K.1^23,K.1^7,-1*K.1^59,K.1^19,K.1^30,K.1^54,K.1^58,K.1^6,-1*K.1^26,-1*K.1^30,K.1^46,-1*K.1^58,-1*K.1^42,K.1^22,-1*K.1^6,-1*K.1^30,-1*K.1^54,-1*K.1^2,K.1^2,-1*K.1^26,-1*K.1^22,K.1^58,K.1^66,-1*K.1^2,K.1^54,K.1^50,K.1^30,-1*K.1^62,K.1^2,K.1^10,K.1^66,K.1^50,-1*K.1^46,-1*K.1^14,K.1^46,-1*K.1^14,K.1^10,K.1^14,K.1^26,-1*K.1^66,-1*K.1^62,K.1^18,K.1^42,-1*K.1^42,K.1^26,-1*K.1^6,K.1^38,K.1^22,-1*K.1^22,K.1^18,-1*K.1^18,K.1^38,K.1^62,-1*K.1^50,K.1^42,-1*K.1^54,-1*K.1^18,-1*K.1^38,-1*K.1^38,-1*K.1^46,-1*K.1^66,-1*K.1^58,K.1^62,-1*K.1^10,-1*K.1^50,K.1^6,-1*K.1^10,K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^32,-1*K.1^52,-1*K.1^20,-1*K.1^60,K.1^8,-1*K.1^28,-1*K.1^44,-1*K.1^12,K.1^48,K.1^56,-1*K.1^4,K.1^64,K.1^16,-1*K.1^36,K.1^40,K.1^24,K.1^12,K.1^64,K.1^40,K.1^16,-1*K.1^64,-1*K.1^48,-1*K.1^20,K.1^24,K.1^48,K.1^8,-1*K.1^52,-1*K.1^28,-1*K.1^8,K.1^36,K.1^56,-1*K.1^12,-1*K.1^36,-1*K.1^24,K.1^36,K.1^28,-1*K.1^4,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^40,K.1^52,-1*K.1^48,-1*K.1^24,K.1^12,-1*K.1^44,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,K.1^32,K.1^60,K.1^4,-1*K.1^16,-1*K.1^60,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^16,K.1^48,-1*K.1^36,-1*K.1^28,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^12,K.1^32,K.1^56,-1*K.1^60,K.1^8,K.1^64,-1*K.1^20,K.1^24,-1*K.1^44,K.1^30,-1*K.1^50,K.1^58,K.1^62,K.1^50,K.1^38,-1*K.1^42,-1*K.1^14,-1*K.1^38,K.1^58,-1*K.1^62,-1*K.1^10,-1*K.1^6,-1*K.1^22,-1*K.1^30,K.1^66,K.1^54,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^58,K.1^18,K.1^66,K.1^30,-1*K.1^6,K.1^62,K.1^46,-1*K.1^66,K.1^46,K.1^14,K.1^42,-1*K.1^14,-1*K.1^58,-1*K.1^18,K.1^38,K.1^6,K.1^22,-1*K.1^54,K.1^2,-1*K.1^38,-1*K.1^50,-1*K.1^62,-1*K.1^26,K.1^26,K.1^2,K.1^50,-1*K.1^46,-1*K.1^42,K.1^14,K.1^18,K.1^10,K.1^42,-1*K.1^54,-1*K.1^66,-1*K.1^22,K.1^22,K.1^6,-1*K.1^26,K.1^54,-1*K.1^18,-1*K.1^2,-1*K.1^30,K.1^26,-1*K.1^46,K.1^24,K.1^36,-1*K.1^48,K.1^20,-1*K.1^8,K.1^64,-1*K.1^12,K.1^56,K.1^32,-1*K.1^4,-1*K.1^28,-1*K.1^40,-1*K.1^52,-1*K.1^44,K.1^48,-1*K.1^20,K.1^12,K.1^8,-1*K.1^56,-1*K.1^32,-1*K.1^8,-1*K.1^48,K.1^4,K.1^36,K.1^44,K.1^20,K.1^60,-1*K.1^16,K.1^52,K.1^52,K.1^44,K.1^4,-1*K.1^24,-1*K.1^64,K.1^60,K.1^28,K.1^12,-1*K.1^24,-1*K.1^16,K.1^28,-1*K.1^56,-1*K.1^64,-1*K.1^40,-1*K.1^36,-1*K.1^32,-1*K.1^60,K.1^16,K.1^40,-1*K.1^21,-1*K.1^11,-1*K.1^11,K.1^67,K.1^67,K.1^59,K.1^59,-1*K.1^3,-1*K.1^3,K.1^31,K.1^31,K.1^19,K.1^19,-1*K.1^39,-1*K.1^39,K.1^23,K.1^23,-1*K.1^53,-1*K.1^13,K.1^5,-1*K.1^65,K.1^33,K.1^5,-1*K.1^65,K.1^33,-1*K.1^61,-1*K.1^25,K.1^45,-1*K.1^61,-1*K.1^25,-1*K.1^53,-1*K.1^13,-1*K.1^63,K.1^35,K.1^35,K.1^47,K.1^47,K.1^55,K.1^55,K.1^43,K.1^43,-1*K.1^15,-1*K.1^15,-1*K.1^27,-1*K.1^27,K.1^7,K.1^7,-1*K.1^63,K.1^57,-1*K.1^49,K.1^21,-1*K.1^45,-1*K.1^37,-1*K.1,-1*K.1^29,-1*K.1^37,-1*K.1,-1*K.1^41,K.1^9,K.1^57,-1*K.1^41,K.1^9,-1*K.1^49,K.1^21,-1*K.1^29,-1*K.1^23,-1*K.1^35,-1*K.1^35,-1*K.1^67,-1*K.1^67,-1*K.1^55,-1*K.1^55,K.1^3,K.1^3,K.1^15,K.1^15,-1*K.1^19,-1*K.1^19,-1*K.1^7,-1*K.1^7,-1*K.1^23,K.1^29,K.1^49,K.1^13,K.1^45,K.1^65,K.1,K.1^29,K.1^65,K.1,K.1^61,-1*K.1^9,-1*K.1^45,K.1^61,-1*K.1^9,K.1^49,K.1^13,K.1^63,K.1^11,K.1^11,-1*K.1^47,-1*K.1^47,-1*K.1^59,-1*K.1^59,-1*K.1^43,-1*K.1^43,-1*K.1^31,-1*K.1^31,K.1^27,K.1^27,K.1^39,K.1^39,K.1^63,-1*K.1^57,K.1^53,-1*K.1^21,-1*K.1^5,K.1^37,-1*K.1^33,-1*K.1^5,K.1^37,-1*K.1^33,K.1^41,K.1^25,-1*K.1^57,K.1^41,K.1^25,K.1^53,-1*K.1^30,-1*K.1^54,-1*K.1^58,-1*K.1^6,K.1^26,K.1^30,-1*K.1^46,K.1^58,K.1^42,-1*K.1^22,K.1^6,K.1^30,K.1^54,K.1^2,-1*K.1^2,K.1^26,K.1^22,-1*K.1^58,-1*K.1^66,K.1^2,-1*K.1^54,-1*K.1^50,-1*K.1^30,K.1^62,-1*K.1^2,-1*K.1^10,-1*K.1^66,-1*K.1^50,K.1^46,K.1^14,-1*K.1^46,K.1^14,-1*K.1^10,-1*K.1^14,-1*K.1^26,K.1^66,K.1^62,-1*K.1^18,-1*K.1^42,K.1^42,-1*K.1^26,K.1^6,-1*K.1^38,-1*K.1^22,K.1^22,-1*K.1^18,K.1^18,-1*K.1^38,-1*K.1^62,K.1^50,-1*K.1^42,K.1^54,K.1^18,K.1^38,K.1^38,K.1^46,K.1^66,K.1^58,-1*K.1^62,K.1^10,K.1^50,-1*K.1^6,K.1^10,-1*K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^36,K.1^16,K.1^48,K.1^8,-1*K.1^60,K.1^40,K.1^24,K.1^56,-1*K.1^20,-1*K.1^12,K.1^64,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^28,-1*K.1^44,-1*K.1^56,-1*K.1^4,-1*K.1^28,-1*K.1^52,K.1^4,K.1^20,K.1^48,-1*K.1^44,-1*K.1^20,-1*K.1^60,K.1^16,K.1^40,K.1^60,-1*K.1^32,-1*K.1^12,K.1^56,K.1^32,K.1^44,-1*K.1^32,-1*K.1^40,K.1^64,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^28,-1*K.1^16,K.1^20,K.1^44,-1*K.1^56,K.1^24,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,-1*K.1^36,-1*K.1^8,-1*K.1^64,K.1^52,K.1^8,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^52,-1*K.1^20,K.1^32,K.1^40,K.1^64,K.1^16,-1*K.1^28,K.1^56,-1*K.1^36,-1*K.1^12,K.1^8,-1*K.1^60,-1*K.1^4,K.1^48,-1*K.1^44,K.1^24,-1*K.1^38,K.1^18,-1*K.1^10,-1*K.1^6,-1*K.1^18,-1*K.1^30,K.1^26,K.1^54,K.1^30,-1*K.1^10,K.1^6,K.1^58,K.1^62,K.1^46,K.1^38,-1*K.1^2,-1*K.1^14,K.1^66,K.1^58,-1*K.1^58,K.1^10,-1*K.1^50,-1*K.1^2,-1*K.1^38,K.1^62,-1*K.1^6,-1*K.1^22,K.1^2,-1*K.1^22,-1*K.1^54,-1*K.1^26,K.1^54,K.1^10,K.1^50,-1*K.1^30,-1*K.1^62,-1*K.1^46,K.1^14,-1*K.1^66,K.1^30,K.1^18,K.1^6,K.1^42,-1*K.1^42,-1*K.1^66,-1*K.1^18,K.1^22,K.1^26,-1*K.1^54,-1*K.1^50,-1*K.1^58,-1*K.1^26,K.1^14,K.1^2,K.1^46,-1*K.1^46,-1*K.1^62,K.1^42,-1*K.1^14,K.1^50,K.1^66,K.1^38,-1*K.1^42,K.1^22,-1*K.1^44,-1*K.1^32,K.1^20,-1*K.1^48,K.1^60,-1*K.1^4,K.1^56,-1*K.1^12,-1*K.1^36,K.1^64,K.1^40,K.1^28,K.1^16,K.1^24,-1*K.1^20,K.1^48,-1*K.1^56,-1*K.1^60,K.1^12,K.1^36,K.1^60,K.1^20,-1*K.1^64,-1*K.1^32,-1*K.1^24,-1*K.1^48,-1*K.1^8,K.1^52,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^44,K.1^4,-1*K.1^8,-1*K.1^40,-1*K.1^56,K.1^44,K.1^52,-1*K.1^40,K.1^12,K.1^4,K.1^28,K.1^32,K.1^36,K.1^8,-1*K.1^52,-1*K.1^28,K.1^47,K.1^57,K.1^57,-1*K.1,-1*K.1,-1*K.1^9,-1*K.1^9,K.1^65,K.1^65,-1*K.1^37,-1*K.1^37,-1*K.1^49,-1*K.1^49,K.1^29,K.1^29,-1*K.1^45,-1*K.1^45,K.1^15,K.1^55,-1*K.1^63,K.1^3,-1*K.1^35,-1*K.1^63,K.1^3,-1*K.1^35,K.1^7,K.1^43,-1*K.1^23,K.1^7,K.1^43,K.1^15,K.1^55,K.1^5,-1*K.1^33,-1*K.1^33,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,-1*K.1^25,-1*K.1^25,K.1^53,K.1^53,K.1^41,K.1^41,-1*K.1^61,-1*K.1^61,K.1^5,-1*K.1^11,K.1^19,-1*K.1^47,K.1^23,K.1^31,K.1^67,K.1^39,K.1^31,K.1^67,K.1^27,-1*K.1^59,-1*K.1^11,K.1^27,-1*K.1^59,K.1^19,-1*K.1^47,K.1^39,K.1^45,K.1^33,K.1^33,K.1,K.1,K.1^13,K.1^13,-1*K.1^65,-1*K.1^65,-1*K.1^53,-1*K.1^53,K.1^49,K.1^49,K.1^61,K.1^61,K.1^45,-1*K.1^39,-1*K.1^19,-1*K.1^55,-1*K.1^23,-1*K.1^3,-1*K.1^67,-1*K.1^39,-1*K.1^3,-1*K.1^67,-1*K.1^7,K.1^59,K.1^23,-1*K.1^7,K.1^59,-1*K.1^19,-1*K.1^55,-1*K.1^5,-1*K.1^57,-1*K.1^57,K.1^21,K.1^21,K.1^9,K.1^9,K.1^25,K.1^25,K.1^37,K.1^37,-1*K.1^41,-1*K.1^41,-1*K.1^29,-1*K.1^29,-1*K.1^5,K.1^11,-1*K.1^15,K.1^47,K.1^63,-1*K.1^31,K.1^35,K.1^63,-1*K.1^31,K.1^35,-1*K.1^27,-1*K.1^43,K.1^11,-1*K.1^27,-1*K.1^43,-1*K.1^15,K.1^38,K.1^14,K.1^10,K.1^62,-1*K.1^42,-1*K.1^38,K.1^22,-1*K.1^10,-1*K.1^26,K.1^46,-1*K.1^62,-1*K.1^38,-1*K.1^14,-1*K.1^66,K.1^66,-1*K.1^42,-1*K.1^46,K.1^10,K.1^2,-1*K.1^66,K.1^14,K.1^18,K.1^38,-1*K.1^6,K.1^66,K.1^58,K.1^2,K.1^18,-1*K.1^22,-1*K.1^54,K.1^22,-1*K.1^54,K.1^58,K.1^54,K.1^42,-1*K.1^2,-1*K.1^6,K.1^50,K.1^26,-1*K.1^26,K.1^42,-1*K.1^62,K.1^30,K.1^46,-1*K.1^46,K.1^50,-1*K.1^50,K.1^30,K.1^6,-1*K.1^18,K.1^26,-1*K.1^14,-1*K.1^50,-1*K.1^30,-1*K.1^30,-1*K.1^22,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^58,-1*K.1^18,K.1^62,-1*K.1^58,K.1^54]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^44,-1*K.1^12,-1*K.1^36,K.1^40,-1*K.1^28,K.1^64,-1*K.1^52,K.1^8,K.1^32,-1*K.1^60,K.1^48,-1*K.1^20,K.1^56,K.1^24,-1*K.1^4,K.1^16,-1*K.1^8,-1*K.1^20,-1*K.1^4,K.1^56,K.1^20,-1*K.1^32,-1*K.1^36,K.1^16,K.1^32,-1*K.1^28,-1*K.1^12,K.1^64,K.1^28,-1*K.1^24,-1*K.1^60,K.1^8,K.1^24,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^48,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,K.1^4,K.1^12,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^52,K.1^60,K.1^52,K.1^44,K.1^36,-1*K.1^44,-1*K.1^40,-1*K.1^48,-1*K.1^56,K.1^40,K.1^60,K.1^52,K.1^44,K.1^36,K.1^28,K.1^20,K.1^12,K.1^4,K.1^56,K.1^32,K.1^24,K.1^64,K.1^48,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^44,-1*K.1^60,K.1^40,-1*K.1^28,-1*K.1^20,-1*K.1^36,K.1^16,-1*K.1^52,K.1^54,K.1^22,K.1^50,K.1^30,-1*K.1^22,K.1^14,K.1^62,K.1^66,-1*K.1^14,K.1^50,-1*K.1^30,-1*K.1^18,-1*K.1^38,K.1^26,-1*K.1^54,K.1^10,-1*K.1^2,-1*K.1^58,-1*K.1^18,K.1^18,-1*K.1^50,-1*K.1^46,K.1^10,K.1^54,-1*K.1^38,K.1^30,-1*K.1^42,-1*K.1^10,-1*K.1^42,-1*K.1^66,-1*K.1^62,K.1^66,-1*K.1^50,K.1^46,K.1^14,K.1^38,-1*K.1^26,K.1^2,K.1^58,-1*K.1^14,K.1^22,-1*K.1^30,K.1^6,-1*K.1^6,K.1^58,-1*K.1^22,K.1^42,K.1^62,-1*K.1^66,-1*K.1^46,K.1^18,-1*K.1^62,K.1^2,-1*K.1^10,K.1^26,-1*K.1^26,K.1^38,K.1^6,-1*K.1^2,K.1^46,-1*K.1^58,-1*K.1^54,-1*K.1^6,K.1^42,K.1^16,-1*K.1^24,-1*K.1^32,K.1^36,K.1^28,-1*K.1^20,K.1^8,-1*K.1^60,-1*K.1^44,K.1^48,K.1^64,K.1^4,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^36,-1*K.1^8,-1*K.1^28,K.1^60,K.1^44,K.1^28,-1*K.1^32,-1*K.1^48,-1*K.1^24,K.1^52,K.1^36,-1*K.1^40,-1*K.1^56,K.1^12,K.1^12,K.1^52,-1*K.1^48,-1*K.1^16,K.1^20,-1*K.1^40,-1*K.1^64,-1*K.1^8,-1*K.1^16,-1*K.1^56,-1*K.1^64,K.1^60,K.1^20,K.1^4,K.1^24,K.1^44,K.1^40,K.1^56,-1*K.1^4,K.1^65,K.1^47,K.1^47,-1*K.1^39,-1*K.1^39,K.1^11,K.1^11,-1*K.1^19,-1*K.1^19,K.1^15,K.1^15,-1*K.1^7,-1*K.1^7,K.1^43,K.1^43,K.1^55,K.1^55,K.1^41,-1*K.1^37,-1*K.1^9,-1*K.1^49,-1*K.1^5,-1*K.1^9,-1*K.1^49,-1*K.1^5,K.1,K.1^45,K.1^13,K.1,K.1^45,K.1^41,-1*K.1^37,K.1^59,-1*K.1^63,-1*K.1^63,-1*K.1^3,-1*K.1^3,K.1^31,K.1^31,-1*K.1^23,-1*K.1^23,K.1^27,K.1^27,-1*K.1^35,-1*K.1^35,-1*K.1^67,-1*K.1^67,K.1^59,-1*K.1^21,K.1^61,-1*K.1^65,-1*K.1^13,-1*K.1^53,K.1^29,K.1^25,-1*K.1^53,K.1^29,-1*K.1^33,K.1^57,-1*K.1^21,-1*K.1^33,K.1^57,K.1^61,-1*K.1^65,K.1^25,-1*K.1^55,K.1^63,K.1^63,K.1^39,K.1^39,-1*K.1^31,-1*K.1^31,K.1^19,K.1^19,-1*K.1^27,-1*K.1^27,K.1^7,K.1^7,K.1^67,K.1^67,-1*K.1^55,-1*K.1^25,-1*K.1^61,K.1^37,K.1^13,K.1^49,-1*K.1^29,-1*K.1^25,K.1^49,-1*K.1^29,-1*K.1,-1*K.1^57,-1*K.1^13,-1*K.1,-1*K.1^57,-1*K.1^61,K.1^37,-1*K.1^59,-1*K.1^47,-1*K.1^47,K.1^3,K.1^3,-1*K.1^11,-1*K.1^11,K.1^23,K.1^23,-1*K.1^15,-1*K.1^15,K.1^35,K.1^35,-1*K.1^43,-1*K.1^43,-1*K.1^59,K.1^21,-1*K.1^41,K.1^65,K.1^9,K.1^53,K.1^5,K.1^9,K.1^53,K.1^5,K.1^33,-1*K.1^45,K.1^21,K.1^33,-1*K.1^45,-1*K.1^41,-1*K.1^54,K.1^2,-1*K.1^50,-1*K.1^38,-1*K.1^6,K.1^54,K.1^42,K.1^50,-1*K.1^62,K.1^26,K.1^38,K.1^54,-1*K.1^2,K.1^58,-1*K.1^58,-1*K.1^6,-1*K.1^26,-1*K.1^50,-1*K.1^10,K.1^58,K.1^2,K.1^22,-1*K.1^54,K.1^30,-1*K.1^58,-1*K.1^18,-1*K.1^10,K.1^22,-1*K.1^42,-1*K.1^66,K.1^42,-1*K.1^66,-1*K.1^18,K.1^66,K.1^6,K.1^10,K.1^30,K.1^46,K.1^62,-1*K.1^62,K.1^6,K.1^38,-1*K.1^14,K.1^26,-1*K.1^26,K.1^46,-1*K.1^46,-1*K.1^14,-1*K.1^30,-1*K.1^22,K.1^62,-1*K.1^2,-1*K.1^46,K.1^14,K.1^14,-1*K.1^42,K.1^10,K.1^50,-1*K.1^30,K.1^18,-1*K.1^22,-1*K.1^38,K.1^18,K.1^66]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^24,K.1^56,K.1^32,-1*K.1^28,K.1^40,-1*K.1^4,K.1^16,-1*K.1^60,-1*K.1^36,K.1^8,-1*K.1^20,K.1^48,-1*K.1^12,-1*K.1^44,K.1^64,-1*K.1^52,K.1^60,K.1^48,K.1^64,-1*K.1^12,-1*K.1^48,K.1^36,K.1^32,-1*K.1^52,-1*K.1^36,K.1^40,K.1^56,-1*K.1^4,-1*K.1^40,K.1^44,K.1^8,-1*K.1^60,-1*K.1^44,K.1^52,K.1^44,K.1^4,-1*K.1^20,K.1^28,K.1^20,K.1^12,K.1^4,-1*K.1^64,-1*K.1^56,K.1^36,K.1^52,K.1^60,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,K.1^24,K.1^28,K.1^20,K.1^12,-1*K.1^28,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,-1*K.1^12,-1*K.1^36,-1*K.1^44,-1*K.1^4,-1*K.1^20,K.1^56,K.1^64,-1*K.1^60,K.1^24,K.1^8,-1*K.1^28,K.1^40,K.1^48,K.1^32,-1*K.1^52,K.1^16,-1*K.1^14,-1*K.1^46,-1*K.1^18,-1*K.1^38,K.1^46,-1*K.1^54,-1*K.1^6,-1*K.1^2,K.1^54,-1*K.1^18,K.1^38,K.1^50,K.1^30,-1*K.1^42,K.1^14,-1*K.1^58,K.1^66,K.1^10,K.1^50,-1*K.1^50,K.1^18,K.1^22,-1*K.1^58,-1*K.1^14,K.1^30,-1*K.1^38,K.1^26,K.1^58,K.1^26,K.1^2,K.1^6,-1*K.1^2,K.1^18,-1*K.1^22,-1*K.1^54,-1*K.1^30,K.1^42,-1*K.1^66,-1*K.1^10,K.1^54,-1*K.1^46,K.1^38,-1*K.1^62,K.1^62,-1*K.1^10,K.1^46,-1*K.1^26,-1*K.1^6,K.1^2,K.1^22,-1*K.1^50,K.1^6,-1*K.1^66,K.1^58,-1*K.1^42,K.1^42,-1*K.1^30,-1*K.1^62,K.1^66,-1*K.1^22,K.1^10,K.1^14,K.1^62,-1*K.1^26,-1*K.1^52,K.1^44,K.1^36,-1*K.1^32,-1*K.1^40,K.1^48,-1*K.1^60,K.1^8,K.1^24,-1*K.1^20,-1*K.1^4,-1*K.1^64,K.1^56,K.1^16,-1*K.1^36,K.1^32,K.1^60,K.1^40,-1*K.1^8,-1*K.1^24,-1*K.1^40,K.1^36,K.1^20,K.1^44,-1*K.1^16,-1*K.1^32,K.1^28,K.1^12,-1*K.1^56,-1*K.1^56,-1*K.1^16,K.1^20,K.1^52,-1*K.1^48,K.1^28,K.1^4,K.1^60,K.1^52,K.1^12,K.1^4,-1*K.1^8,-1*K.1^48,-1*K.1^64,-1*K.1^44,-1*K.1^24,-1*K.1^28,-1*K.1^12,K.1^64,-1*K.1^3,-1*K.1^21,-1*K.1^21,K.1^29,K.1^29,-1*K.1^57,-1*K.1^57,K.1^49,K.1^49,-1*K.1^53,-1*K.1^53,K.1^61,K.1^61,-1*K.1^25,-1*K.1^25,-1*K.1^13,-1*K.1^13,-1*K.1^27,K.1^31,K.1^59,K.1^19,K.1^63,K.1^59,K.1^19,K.1^63,-1*K.1^67,-1*K.1^23,-1*K.1^55,-1*K.1^67,-1*K.1^23,-1*K.1^27,K.1^31,-1*K.1^9,K.1^5,K.1^5,K.1^65,K.1^65,-1*K.1^37,-1*K.1^37,K.1^45,K.1^45,-1*K.1^41,-1*K.1^41,K.1^33,K.1^33,K.1,K.1,-1*K.1^9,K.1^47,-1*K.1^7,K.1^3,K.1^55,K.1^15,-1*K.1^39,-1*K.1^43,K.1^15,-1*K.1^39,K.1^35,-1*K.1^11,K.1^47,K.1^35,-1*K.1^11,-1*K.1^7,K.1^3,-1*K.1^43,K.1^13,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,K.1^37,K.1^37,-1*K.1^49,-1*K.1^49,K.1^41,K.1^41,-1*K.1^61,-1*K.1^61,-1*K.1,-1*K.1,K.1^13,K.1^43,K.1^7,-1*K.1^31,-1*K.1^55,-1*K.1^19,K.1^39,K.1^43,-1*K.1^19,K.1^39,K.1^67,K.1^11,K.1^55,K.1^67,K.1^11,K.1^7,-1*K.1^31,K.1^9,K.1^21,K.1^21,-1*K.1^65,-1*K.1^65,K.1^57,K.1^57,-1*K.1^45,-1*K.1^45,K.1^53,K.1^53,-1*K.1^33,-1*K.1^33,K.1^25,K.1^25,K.1^9,-1*K.1^47,K.1^27,-1*K.1^3,-1*K.1^59,-1*K.1^15,-1*K.1^63,-1*K.1^59,-1*K.1^15,-1*K.1^63,-1*K.1^35,K.1^23,-1*K.1^47,-1*K.1^35,K.1^23,K.1^27,K.1^14,-1*K.1^66,K.1^18,K.1^30,K.1^62,-1*K.1^14,-1*K.1^26,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^30,-1*K.1^14,K.1^66,-1*K.1^10,K.1^10,K.1^62,K.1^42,K.1^18,K.1^58,-1*K.1^10,-1*K.1^66,-1*K.1^46,K.1^14,-1*K.1^38,K.1^10,K.1^50,K.1^58,-1*K.1^46,K.1^26,K.1^2,-1*K.1^26,K.1^2,K.1^50,-1*K.1^2,-1*K.1^62,-1*K.1^58,-1*K.1^38,-1*K.1^22,-1*K.1^6,K.1^6,-1*K.1^62,-1*K.1^30,K.1^54,-1*K.1^42,K.1^42,-1*K.1^22,K.1^22,K.1^54,K.1^38,K.1^46,-1*K.1^6,K.1^66,K.1^22,-1*K.1^54,-1*K.1^54,K.1^26,-1*K.1^58,-1*K.1^18,K.1^38,-1*K.1^50,K.1^46,K.1^30,-1*K.1^50,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^24,K.1^56,K.1^32,-1*K.1^28,K.1^40,-1*K.1^4,K.1^16,-1*K.1^60,-1*K.1^36,K.1^8,-1*K.1^20,K.1^48,-1*K.1^12,-1*K.1^44,K.1^64,-1*K.1^52,K.1^60,K.1^48,K.1^64,-1*K.1^12,-1*K.1^48,K.1^36,K.1^32,-1*K.1^52,-1*K.1^36,K.1^40,K.1^56,-1*K.1^4,-1*K.1^40,K.1^44,K.1^8,-1*K.1^60,-1*K.1^44,K.1^52,K.1^44,K.1^4,-1*K.1^20,K.1^28,K.1^20,K.1^12,K.1^4,-1*K.1^64,-1*K.1^56,K.1^36,K.1^52,K.1^60,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,K.1^24,K.1^28,K.1^20,K.1^12,-1*K.1^28,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,-1*K.1^12,-1*K.1^36,-1*K.1^44,-1*K.1^4,-1*K.1^20,K.1^56,K.1^64,-1*K.1^60,K.1^24,K.1^8,-1*K.1^28,K.1^40,K.1^48,K.1^32,-1*K.1^52,K.1^16,K.1^14,K.1^46,K.1^18,K.1^38,-1*K.1^46,K.1^54,K.1^6,K.1^2,-1*K.1^54,K.1^18,-1*K.1^38,-1*K.1^50,-1*K.1^30,K.1^42,-1*K.1^14,K.1^58,-1*K.1^66,-1*K.1^10,-1*K.1^50,K.1^50,-1*K.1^18,-1*K.1^22,K.1^58,K.1^14,-1*K.1^30,K.1^38,-1*K.1^26,-1*K.1^58,-1*K.1^26,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^18,K.1^22,K.1^54,K.1^30,-1*K.1^42,K.1^66,K.1^10,-1*K.1^54,K.1^46,-1*K.1^38,K.1^62,-1*K.1^62,K.1^10,-1*K.1^46,K.1^26,K.1^6,-1*K.1^2,-1*K.1^22,K.1^50,-1*K.1^6,K.1^66,-1*K.1^58,K.1^42,-1*K.1^42,K.1^30,K.1^62,-1*K.1^66,K.1^22,-1*K.1^10,-1*K.1^14,-1*K.1^62,K.1^26,-1*K.1^52,K.1^44,K.1^36,-1*K.1^32,-1*K.1^40,K.1^48,-1*K.1^60,K.1^8,K.1^24,-1*K.1^20,-1*K.1^4,-1*K.1^64,K.1^56,K.1^16,-1*K.1^36,K.1^32,K.1^60,K.1^40,-1*K.1^8,-1*K.1^24,-1*K.1^40,K.1^36,K.1^20,K.1^44,-1*K.1^16,-1*K.1^32,K.1^28,K.1^12,-1*K.1^56,-1*K.1^56,-1*K.1^16,K.1^20,K.1^52,-1*K.1^48,K.1^28,K.1^4,K.1^60,K.1^52,K.1^12,K.1^4,-1*K.1^8,-1*K.1^48,-1*K.1^64,-1*K.1^44,-1*K.1^24,-1*K.1^28,-1*K.1^12,K.1^64,-1*K.1^37,K.1^55,K.1^55,-1*K.1^63,-1*K.1^63,-1*K.1^23,-1*K.1^23,K.1^15,K.1^15,-1*K.1^19,-1*K.1^19,K.1^27,K.1^27,K.1^59,K.1^59,K.1^47,K.1^47,-1*K.1^61,K.1^65,-1*K.1^25,K.1^53,-1*K.1^29,-1*K.1^25,K.1^53,-1*K.1^29,K.1^33,-1*K.1^57,K.1^21,K.1^33,-1*K.1^57,-1*K.1^61,K.1^65,K.1^43,-1*K.1^39,-1*K.1^39,K.1^31,K.1^31,-1*K.1^3,-1*K.1^3,K.1^11,K.1^11,-1*K.1^7,-1*K.1^7,-1*K.1^67,-1*K.1^67,-1*K.1^35,-1*K.1^35,K.1^43,-1*K.1^13,-1*K.1^41,K.1^37,-1*K.1^21,K.1^49,K.1^5,K.1^9,K.1^49,K.1^5,-1*K.1,-1*K.1^45,-1*K.1^13,-1*K.1,-1*K.1^45,-1*K.1^41,K.1^37,K.1^9,-1*K.1^47,K.1^39,K.1^39,K.1^63,K.1^63,K.1^3,K.1^3,-1*K.1^15,-1*K.1^15,K.1^7,K.1^7,-1*K.1^27,-1*K.1^27,K.1^35,K.1^35,-1*K.1^47,-1*K.1^9,K.1^41,-1*K.1^65,K.1^21,-1*K.1^53,-1*K.1^5,-1*K.1^9,-1*K.1^53,-1*K.1^5,-1*K.1^33,K.1^45,-1*K.1^21,-1*K.1^33,K.1^45,K.1^41,-1*K.1^65,-1*K.1^43,-1*K.1^55,-1*K.1^55,-1*K.1^31,-1*K.1^31,K.1^23,K.1^23,-1*K.1^11,-1*K.1^11,K.1^19,K.1^19,K.1^67,K.1^67,-1*K.1^59,-1*K.1^59,-1*K.1^43,K.1^13,K.1^61,-1*K.1^37,K.1^25,-1*K.1^49,K.1^29,K.1^25,-1*K.1^49,K.1^29,K.1,K.1^57,K.1^13,K.1,K.1^57,K.1^61,-1*K.1^14,K.1^66,-1*K.1^18,-1*K.1^30,-1*K.1^62,K.1^14,K.1^26,K.1^18,-1*K.1^6,K.1^42,K.1^30,K.1^14,-1*K.1^66,K.1^10,-1*K.1^10,-1*K.1^62,-1*K.1^42,-1*K.1^18,-1*K.1^58,K.1^10,K.1^66,K.1^46,-1*K.1^14,K.1^38,-1*K.1^10,-1*K.1^50,-1*K.1^58,K.1^46,-1*K.1^26,-1*K.1^2,K.1^26,-1*K.1^2,-1*K.1^50,K.1^2,K.1^62,K.1^58,K.1^38,K.1^22,K.1^6,-1*K.1^6,K.1^62,K.1^30,-1*K.1^54,K.1^42,-1*K.1^42,K.1^22,-1*K.1^22,-1*K.1^54,-1*K.1^38,-1*K.1^46,K.1^6,-1*K.1^66,-1*K.1^22,K.1^54,K.1^54,-1*K.1^26,K.1^58,K.1^18,-1*K.1^38,K.1^50,-1*K.1^46,-1*K.1^30,K.1^50,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^44,-1*K.1^12,-1*K.1^36,K.1^40,-1*K.1^28,K.1^64,-1*K.1^52,K.1^8,K.1^32,-1*K.1^60,K.1^48,-1*K.1^20,K.1^56,K.1^24,-1*K.1^4,K.1^16,-1*K.1^8,-1*K.1^20,-1*K.1^4,K.1^56,K.1^20,-1*K.1^32,-1*K.1^36,K.1^16,K.1^32,-1*K.1^28,-1*K.1^12,K.1^64,K.1^28,-1*K.1^24,-1*K.1^60,K.1^8,K.1^24,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^48,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,K.1^4,K.1^12,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^52,K.1^60,K.1^52,K.1^44,K.1^36,-1*K.1^44,-1*K.1^40,-1*K.1^48,-1*K.1^56,K.1^40,K.1^60,K.1^52,K.1^44,K.1^36,K.1^28,K.1^20,K.1^12,K.1^4,K.1^56,K.1^32,K.1^24,K.1^64,K.1^48,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^44,-1*K.1^60,K.1^40,-1*K.1^28,-1*K.1^20,-1*K.1^36,K.1^16,-1*K.1^52,-1*K.1^54,-1*K.1^22,-1*K.1^50,-1*K.1^30,K.1^22,-1*K.1^14,-1*K.1^62,-1*K.1^66,K.1^14,-1*K.1^50,K.1^30,K.1^18,K.1^38,-1*K.1^26,K.1^54,-1*K.1^10,K.1^2,K.1^58,K.1^18,-1*K.1^18,K.1^50,K.1^46,-1*K.1^10,-1*K.1^54,K.1^38,-1*K.1^30,K.1^42,K.1^10,K.1^42,K.1^66,K.1^62,-1*K.1^66,K.1^50,-1*K.1^46,-1*K.1^14,-1*K.1^38,K.1^26,-1*K.1^2,-1*K.1^58,K.1^14,-1*K.1^22,K.1^30,-1*K.1^6,K.1^6,-1*K.1^58,K.1^22,-1*K.1^42,-1*K.1^62,K.1^66,K.1^46,-1*K.1^18,K.1^62,-1*K.1^2,K.1^10,-1*K.1^26,K.1^26,-1*K.1^38,-1*K.1^6,K.1^2,-1*K.1^46,K.1^58,K.1^54,K.1^6,-1*K.1^42,K.1^16,-1*K.1^24,-1*K.1^32,K.1^36,K.1^28,-1*K.1^20,K.1^8,-1*K.1^60,-1*K.1^44,K.1^48,K.1^64,K.1^4,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^36,-1*K.1^8,-1*K.1^28,K.1^60,K.1^44,K.1^28,-1*K.1^32,-1*K.1^48,-1*K.1^24,K.1^52,K.1^36,-1*K.1^40,-1*K.1^56,K.1^12,K.1^12,K.1^52,-1*K.1^48,-1*K.1^16,K.1^20,-1*K.1^40,-1*K.1^64,-1*K.1^8,-1*K.1^16,-1*K.1^56,-1*K.1^64,K.1^60,K.1^20,K.1^4,K.1^24,K.1^44,K.1^40,K.1^56,-1*K.1^4,K.1^31,-1*K.1^13,-1*K.1^13,K.1^5,K.1^5,K.1^45,K.1^45,-1*K.1^53,-1*K.1^53,K.1^49,K.1^49,-1*K.1^41,-1*K.1^41,-1*K.1^9,-1*K.1^9,-1*K.1^21,-1*K.1^21,K.1^7,-1*K.1^3,K.1^43,-1*K.1^15,K.1^39,K.1^43,-1*K.1^15,K.1^39,-1*K.1^35,K.1^11,-1*K.1^47,-1*K.1^35,K.1^11,K.1^7,-1*K.1^3,-1*K.1^25,K.1^29,K.1^29,-1*K.1^37,-1*K.1^37,K.1^65,K.1^65,-1*K.1^57,-1*K.1^57,K.1^61,K.1^61,K.1,K.1,K.1^33,K.1^33,-1*K.1^25,K.1^55,K.1^27,-1*K.1^31,K.1^47,-1*K.1^19,-1*K.1^63,-1*K.1^59,-1*K.1^19,-1*K.1^63,K.1^67,K.1^23,K.1^55,K.1^67,K.1^23,K.1^27,-1*K.1^31,-1*K.1^59,K.1^21,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,-1*K.1^65,-1*K.1^65,K.1^53,K.1^53,-1*K.1^61,-1*K.1^61,K.1^41,K.1^41,-1*K.1^33,-1*K.1^33,K.1^21,K.1^59,-1*K.1^27,K.1^3,-1*K.1^47,K.1^15,K.1^63,K.1^59,K.1^15,K.1^63,K.1^35,-1*K.1^23,K.1^47,K.1^35,-1*K.1^23,-1*K.1^27,K.1^3,K.1^25,K.1^13,K.1^13,K.1^37,K.1^37,-1*K.1^45,-1*K.1^45,K.1^57,K.1^57,-1*K.1^49,-1*K.1^49,-1*K.1,-1*K.1,K.1^9,K.1^9,K.1^25,-1*K.1^55,-1*K.1^7,K.1^31,-1*K.1^43,K.1^19,-1*K.1^39,-1*K.1^43,K.1^19,-1*K.1^39,-1*K.1^67,-1*K.1^11,-1*K.1^55,-1*K.1^67,-1*K.1^11,-1*K.1^7,K.1^54,-1*K.1^2,K.1^50,K.1^38,K.1^6,-1*K.1^54,-1*K.1^42,-1*K.1^50,K.1^62,-1*K.1^26,-1*K.1^38,-1*K.1^54,K.1^2,-1*K.1^58,K.1^58,K.1^6,K.1^26,K.1^50,K.1^10,-1*K.1^58,-1*K.1^2,-1*K.1^22,K.1^54,-1*K.1^30,K.1^58,K.1^18,K.1^10,-1*K.1^22,K.1^42,K.1^66,-1*K.1^42,K.1^66,K.1^18,-1*K.1^66,-1*K.1^6,-1*K.1^10,-1*K.1^30,-1*K.1^46,-1*K.1^62,K.1^62,-1*K.1^6,-1*K.1^38,K.1^14,-1*K.1^26,K.1^26,-1*K.1^46,K.1^46,K.1^14,K.1^30,K.1^22,-1*K.1^62,K.1^2,K.1^46,-1*K.1^14,-1*K.1^14,K.1^42,-1*K.1^10,-1*K.1^50,K.1^30,-1*K.1^18,K.1^22,K.1^38,-1*K.1^18,-1*K.1^66]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^52,K.1^8,K.1^24,-1*K.1^4,K.1^64,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^44,K.1^40,K.1^32,-1*K.1^36,-1*K.1^60,K.1^16,K.1^48,K.1^56,K.1^28,-1*K.1^36,K.1^48,-1*K.1^60,K.1^36,K.1^44,K.1^24,K.1^56,-1*K.1^44,K.1^64,K.1^8,-1*K.1^20,-1*K.1^64,-1*K.1^16,K.1^40,-1*K.1^28,K.1^16,-1*K.1^56,-1*K.1^16,K.1^20,K.1^32,K.1^4,-1*K.1^32,K.1^60,K.1^20,-1*K.1^48,-1*K.1^8,K.1^44,-1*K.1^56,K.1^28,-1*K.1^12,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^52,K.1^4,-1*K.1^32,K.1^60,-1*K.1^4,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,-1*K.1^60,-1*K.1^44,K.1^16,-1*K.1^20,K.1^32,K.1^8,K.1^48,-1*K.1^28,-1*K.1^52,K.1^40,-1*K.1^4,K.1^64,-1*K.1^36,K.1^24,K.1^56,-1*K.1^12,-1*K.1^2,-1*K.1^26,-1*K.1^22,K.1^54,K.1^26,-1*K.1^66,K.1^30,K.1^10,K.1^66,-1*K.1^22,-1*K.1^54,K.1^46,-1*K.1^14,-1*K.1^6,K.1^2,K.1^18,-1*K.1^58,-1*K.1^50,K.1^46,-1*K.1^46,K.1^22,K.1^42,K.1^18,-1*K.1^2,-1*K.1^14,K.1^54,K.1^62,-1*K.1^18,K.1^62,-1*K.1^10,-1*K.1^30,K.1^10,K.1^22,-1*K.1^42,-1*K.1^66,K.1^14,K.1^6,K.1^58,K.1^50,K.1^66,-1*K.1^26,-1*K.1^54,K.1^38,-1*K.1^38,K.1^50,K.1^26,-1*K.1^62,K.1^30,-1*K.1^10,K.1^42,-1*K.1^46,-1*K.1^30,K.1^58,-1*K.1^18,-1*K.1^6,K.1^6,K.1^14,K.1^38,-1*K.1^58,-1*K.1^42,-1*K.1^50,K.1^2,-1*K.1^38,-1*K.1^62,K.1^56,-1*K.1^16,K.1^44,-1*K.1^24,-1*K.1^64,-1*K.1^36,-1*K.1^28,K.1^40,-1*K.1^52,K.1^32,-1*K.1^20,-1*K.1^48,K.1^8,-1*K.1^12,-1*K.1^44,K.1^24,K.1^28,K.1^64,-1*K.1^40,K.1^52,-1*K.1^64,K.1^44,-1*K.1^32,-1*K.1^16,K.1^12,-1*K.1^24,K.1^4,K.1^60,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^56,K.1^36,K.1^4,K.1^20,K.1^28,-1*K.1^56,K.1^60,K.1^20,-1*K.1^40,K.1^36,-1*K.1^48,K.1^16,K.1^52,-1*K.1^4,-1*K.1^60,K.1^48,K.1^49,-1*K.1^3,-1*K.1^3,K.1^43,K.1^43,-1*K.1^47,-1*K.1^47,K.1^7,K.1^7,-1*K.1^27,-1*K.1^27,K.1^67,K.1^67,-1*K.1^23,-1*K.1^23,K.1^31,K.1^31,K.1^33,-1*K.1^53,-1*K.1^57,K.1^61,K.1^9,-1*K.1^57,K.1^61,K.1^9,-1*K.1^29,K.1^13,K.1^37,-1*K.1^29,K.1^13,K.1^33,-1*K.1^53,K.1^11,K.1^59,K.1^59,-1*K.1^19,-1*K.1^19,K.1^15,K.1^15,-1*K.1^55,-1*K.1^55,K.1^35,K.1^35,K.1^63,K.1^63,K.1^39,K.1^39,K.1^11,K.1^65,-1*K.1,-1*K.1^49,-1*K.1^37,K.1^41,-1*K.1^25,-1*K.1^45,K.1^41,-1*K.1^25,K.1^5,-1*K.1^21,K.1^65,K.1^5,-1*K.1^21,-1*K.1,-1*K.1^49,-1*K.1^45,-1*K.1^31,-1*K.1^59,-1*K.1^59,-1*K.1^43,-1*K.1^43,-1*K.1^15,-1*K.1^15,-1*K.1^7,-1*K.1^7,-1*K.1^35,-1*K.1^35,-1*K.1^67,-1*K.1^67,-1*K.1^39,-1*K.1^39,-1*K.1^31,K.1^45,K.1,K.1^53,K.1^37,-1*K.1^61,K.1^25,K.1^45,-1*K.1^61,K.1^25,K.1^29,K.1^21,-1*K.1^37,K.1^29,K.1^21,K.1,K.1^53,-1*K.1^11,K.1^3,K.1^3,K.1^19,K.1^19,K.1^47,K.1^47,K.1^55,K.1^55,K.1^27,K.1^27,-1*K.1^63,-1*K.1^63,K.1^23,K.1^23,-1*K.1^11,-1*K.1^65,-1*K.1^33,K.1^49,K.1^57,-1*K.1^41,-1*K.1^9,K.1^57,-1*K.1^41,-1*K.1^9,-1*K.1^5,-1*K.1^13,-1*K.1^65,-1*K.1^5,-1*K.1^13,-1*K.1^33,K.1^2,K.1^58,K.1^22,-1*K.1^14,-1*K.1^38,-1*K.1^2,-1*K.1^62,-1*K.1^22,-1*K.1^30,-1*K.1^6,K.1^14,-1*K.1^2,-1*K.1^58,K.1^50,-1*K.1^50,-1*K.1^38,K.1^6,K.1^22,-1*K.1^18,K.1^50,K.1^58,-1*K.1^26,K.1^2,K.1^54,-1*K.1^50,K.1^46,-1*K.1^18,-1*K.1^26,K.1^62,-1*K.1^10,-1*K.1^62,-1*K.1^10,K.1^46,K.1^10,K.1^38,K.1^18,K.1^54,-1*K.1^42,K.1^30,-1*K.1^30,K.1^38,K.1^14,K.1^66,-1*K.1^6,K.1^6,-1*K.1^42,K.1^42,K.1^66,-1*K.1^54,K.1^26,K.1^30,-1*K.1^58,K.1^42,-1*K.1^66,-1*K.1^66,K.1^62,K.1^18,-1*K.1^22,-1*K.1^54,-1*K.1^46,K.1^26,-1*K.1^14,-1*K.1^46,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^16,-1*K.1^60,-1*K.1^44,K.1^64,-1*K.1^4,K.1^48,K.1^56,K.1^40,K.1^24,-1*K.1^28,-1*K.1^36,K.1^32,K.1^8,-1*K.1^52,-1*K.1^20,-1*K.1^12,-1*K.1^40,K.1^32,-1*K.1^20,K.1^8,-1*K.1^32,-1*K.1^24,-1*K.1^44,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^60,K.1^48,K.1^4,K.1^52,-1*K.1^28,K.1^40,-1*K.1^52,K.1^12,K.1^52,-1*K.1^48,-1*K.1^36,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,K.1^20,K.1^60,-1*K.1^24,K.1^12,-1*K.1^40,K.1^56,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^16,-1*K.1^64,K.1^36,-1*K.1^8,K.1^64,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^4,-1*K.1^32,K.1^60,K.1^20,K.1^8,K.1^24,-1*K.1^52,K.1^48,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^40,K.1^16,-1*K.1^28,K.1^64,-1*K.1^4,K.1^32,-1*K.1^44,-1*K.1^12,K.1^56,K.1^66,K.1^42,K.1^46,-1*K.1^14,-1*K.1^42,K.1^2,-1*K.1^38,-1*K.1^58,-1*K.1^2,K.1^46,K.1^14,-1*K.1^22,K.1^54,K.1^62,-1*K.1^66,-1*K.1^50,K.1^10,K.1^18,-1*K.1^22,K.1^22,-1*K.1^46,-1*K.1^26,-1*K.1^50,K.1^66,K.1^54,-1*K.1^14,-1*K.1^6,K.1^50,-1*K.1^6,K.1^58,K.1^38,-1*K.1^58,-1*K.1^46,K.1^26,K.1^2,-1*K.1^54,-1*K.1^62,-1*K.1^10,-1*K.1^18,-1*K.1^2,K.1^42,K.1^14,-1*K.1^30,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^38,K.1^58,-1*K.1^26,K.1^22,K.1^38,-1*K.1^10,K.1^50,K.1^62,-1*K.1^62,-1*K.1^54,-1*K.1^30,K.1^10,K.1^26,K.1^18,-1*K.1^66,K.1^30,K.1^6,-1*K.1^12,K.1^52,-1*K.1^24,K.1^44,K.1^4,K.1^32,K.1^40,-1*K.1^28,K.1^16,-1*K.1^36,K.1^48,K.1^20,-1*K.1^60,K.1^56,K.1^24,-1*K.1^44,-1*K.1^40,-1*K.1^4,K.1^28,-1*K.1^16,K.1^4,-1*K.1^24,K.1^36,K.1^52,-1*K.1^56,K.1^44,-1*K.1^64,-1*K.1^8,K.1^60,K.1^60,-1*K.1^56,K.1^36,K.1^12,-1*K.1^32,-1*K.1^64,-1*K.1^48,-1*K.1^40,K.1^12,-1*K.1^8,-1*K.1^48,K.1^28,-1*K.1^32,K.1^20,-1*K.1^52,-1*K.1^16,K.1^64,K.1^8,-1*K.1^20,-1*K.1^19,K.1^65,K.1^65,-1*K.1^25,-1*K.1^25,K.1^21,K.1^21,-1*K.1^61,-1*K.1^61,K.1^41,K.1^41,-1*K.1,-1*K.1,K.1^45,K.1^45,-1*K.1^37,-1*K.1^37,-1*K.1^35,K.1^15,K.1^11,-1*K.1^7,-1*K.1^59,K.1^11,-1*K.1^7,-1*K.1^59,K.1^39,-1*K.1^55,-1*K.1^31,K.1^39,-1*K.1^55,-1*K.1^35,K.1^15,-1*K.1^57,-1*K.1^9,-1*K.1^9,K.1^49,K.1^49,-1*K.1^53,-1*K.1^53,K.1^13,K.1^13,-1*K.1^33,-1*K.1^33,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,-1*K.1^57,-1*K.1^3,K.1^67,K.1^19,K.1^31,-1*K.1^27,K.1^43,K.1^23,-1*K.1^27,K.1^43,-1*K.1^63,K.1^47,-1*K.1^3,-1*K.1^63,K.1^47,K.1^67,K.1^19,K.1^23,K.1^37,K.1^9,K.1^9,K.1^25,K.1^25,K.1^53,K.1^53,K.1^61,K.1^61,K.1^33,K.1^33,K.1,K.1,K.1^29,K.1^29,K.1^37,-1*K.1^23,-1*K.1^67,-1*K.1^15,-1*K.1^31,K.1^7,-1*K.1^43,-1*K.1^23,K.1^7,-1*K.1^43,-1*K.1^39,-1*K.1^47,K.1^31,-1*K.1^39,-1*K.1^47,-1*K.1^67,-1*K.1^15,K.1^57,-1*K.1^65,-1*K.1^65,-1*K.1^49,-1*K.1^49,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,-1*K.1^41,-1*K.1^41,K.1^5,K.1^5,-1*K.1^45,-1*K.1^45,K.1^57,K.1^3,K.1^35,-1*K.1^19,-1*K.1^11,K.1^27,K.1^59,-1*K.1^11,K.1^27,K.1^59,K.1^63,K.1^55,K.1^3,K.1^63,K.1^55,K.1^35,-1*K.1^66,-1*K.1^10,-1*K.1^46,K.1^54,K.1^30,K.1^66,K.1^6,K.1^46,K.1^38,K.1^62,-1*K.1^54,K.1^66,K.1^10,-1*K.1^18,K.1^18,K.1^30,-1*K.1^62,-1*K.1^46,K.1^50,-1*K.1^18,-1*K.1^10,K.1^42,-1*K.1^66,-1*K.1^14,K.1^18,-1*K.1^22,K.1^50,K.1^42,-1*K.1^6,K.1^58,K.1^6,K.1^58,-1*K.1^22,-1*K.1^58,-1*K.1^30,-1*K.1^50,-1*K.1^14,K.1^26,-1*K.1^38,K.1^38,-1*K.1^30,-1*K.1^54,-1*K.1^2,K.1^62,-1*K.1^62,K.1^26,-1*K.1^26,-1*K.1^2,K.1^14,-1*K.1^42,-1*K.1^38,K.1^10,-1*K.1^26,K.1^2,K.1^2,-1*K.1^6,-1*K.1^50,K.1^46,K.1^14,K.1^22,-1*K.1^42,K.1^54,K.1^22,-1*K.1^58]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^16,-1*K.1^60,-1*K.1^44,K.1^64,-1*K.1^4,K.1^48,K.1^56,K.1^40,K.1^24,-1*K.1^28,-1*K.1^36,K.1^32,K.1^8,-1*K.1^52,-1*K.1^20,-1*K.1^12,-1*K.1^40,K.1^32,-1*K.1^20,K.1^8,-1*K.1^32,-1*K.1^24,-1*K.1^44,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^60,K.1^48,K.1^4,K.1^52,-1*K.1^28,K.1^40,-1*K.1^52,K.1^12,K.1^52,-1*K.1^48,-1*K.1^36,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,K.1^20,K.1^60,-1*K.1^24,K.1^12,-1*K.1^40,K.1^56,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^16,-1*K.1^64,K.1^36,-1*K.1^8,K.1^64,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^4,-1*K.1^32,K.1^60,K.1^20,K.1^8,K.1^24,-1*K.1^52,K.1^48,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^40,K.1^16,-1*K.1^28,K.1^64,-1*K.1^4,K.1^32,-1*K.1^44,-1*K.1^12,K.1^56,-1*K.1^66,-1*K.1^42,-1*K.1^46,K.1^14,K.1^42,-1*K.1^2,K.1^38,K.1^58,K.1^2,-1*K.1^46,-1*K.1^14,K.1^22,-1*K.1^54,-1*K.1^62,K.1^66,K.1^50,-1*K.1^10,-1*K.1^18,K.1^22,-1*K.1^22,K.1^46,K.1^26,K.1^50,-1*K.1^66,-1*K.1^54,K.1^14,K.1^6,-1*K.1^50,K.1^6,-1*K.1^58,-1*K.1^38,K.1^58,K.1^46,-1*K.1^26,-1*K.1^2,K.1^54,K.1^62,K.1^10,K.1^18,K.1^2,-1*K.1^42,-1*K.1^14,K.1^30,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^38,-1*K.1^58,K.1^26,-1*K.1^22,-1*K.1^38,K.1^10,-1*K.1^50,-1*K.1^62,K.1^62,K.1^54,K.1^30,-1*K.1^10,-1*K.1^26,-1*K.1^18,K.1^66,-1*K.1^30,-1*K.1^6,-1*K.1^12,K.1^52,-1*K.1^24,K.1^44,K.1^4,K.1^32,K.1^40,-1*K.1^28,K.1^16,-1*K.1^36,K.1^48,K.1^20,-1*K.1^60,K.1^56,K.1^24,-1*K.1^44,-1*K.1^40,-1*K.1^4,K.1^28,-1*K.1^16,K.1^4,-1*K.1^24,K.1^36,K.1^52,-1*K.1^56,K.1^44,-1*K.1^64,-1*K.1^8,K.1^60,K.1^60,-1*K.1^56,K.1^36,K.1^12,-1*K.1^32,-1*K.1^64,-1*K.1^48,-1*K.1^40,K.1^12,-1*K.1^8,-1*K.1^48,K.1^28,-1*K.1^32,K.1^20,-1*K.1^52,-1*K.1^16,K.1^64,K.1^8,-1*K.1^20,-1*K.1^53,K.1^31,K.1^31,K.1^59,K.1^59,-1*K.1^55,-1*K.1^55,-1*K.1^27,-1*K.1^27,K.1^7,K.1^7,K.1^35,K.1^35,K.1^11,K.1^11,-1*K.1^3,-1*K.1^3,K.1,K.1^49,K.1^45,-1*K.1^41,K.1^25,K.1^45,-1*K.1^41,K.1^25,-1*K.1^5,K.1^21,-1*K.1^65,-1*K.1^5,K.1^21,K.1,K.1^49,-1*K.1^23,K.1^43,K.1^43,K.1^15,K.1^15,-1*K.1^19,-1*K.1^19,-1*K.1^47,-1*K.1^47,K.1^67,K.1^67,K.1^39,K.1^39,K.1^63,K.1^63,-1*K.1^23,-1*K.1^37,-1*K.1^33,K.1^53,K.1^65,-1*K.1^61,-1*K.1^9,K.1^57,-1*K.1^61,-1*K.1^9,K.1^29,-1*K.1^13,-1*K.1^37,K.1^29,-1*K.1^13,-1*K.1^33,K.1^53,K.1^57,K.1^3,-1*K.1^43,-1*K.1^43,-1*K.1^59,-1*K.1^59,K.1^19,K.1^19,K.1^27,K.1^27,-1*K.1^67,-1*K.1^67,-1*K.1^35,-1*K.1^35,-1*K.1^63,-1*K.1^63,K.1^3,-1*K.1^57,K.1^33,-1*K.1^49,-1*K.1^65,K.1^41,K.1^9,-1*K.1^57,K.1^41,K.1^9,K.1^5,K.1^13,K.1^65,K.1^5,K.1^13,K.1^33,-1*K.1^49,K.1^23,-1*K.1^31,-1*K.1^31,-1*K.1^15,-1*K.1^15,K.1^55,K.1^55,K.1^47,K.1^47,-1*K.1^7,-1*K.1^7,-1*K.1^39,-1*K.1^39,-1*K.1^11,-1*K.1^11,K.1^23,K.1^37,-1*K.1,-1*K.1^53,-1*K.1^45,K.1^61,-1*K.1^25,-1*K.1^45,K.1^61,-1*K.1^25,-1*K.1^29,-1*K.1^21,K.1^37,-1*K.1^29,-1*K.1^21,-1*K.1,K.1^66,K.1^10,K.1^46,-1*K.1^54,-1*K.1^30,-1*K.1^66,-1*K.1^6,-1*K.1^46,-1*K.1^38,-1*K.1^62,K.1^54,-1*K.1^66,-1*K.1^10,K.1^18,-1*K.1^18,-1*K.1^30,K.1^62,K.1^46,-1*K.1^50,K.1^18,K.1^10,-1*K.1^42,K.1^66,K.1^14,-1*K.1^18,K.1^22,-1*K.1^50,-1*K.1^42,K.1^6,-1*K.1^58,-1*K.1^6,-1*K.1^58,K.1^22,K.1^58,K.1^30,K.1^50,K.1^14,-1*K.1^26,K.1^38,-1*K.1^38,K.1^30,K.1^54,K.1^2,-1*K.1^62,K.1^62,-1*K.1^26,K.1^26,K.1^2,-1*K.1^14,K.1^42,K.1^38,-1*K.1^10,K.1^26,-1*K.1^2,-1*K.1^2,K.1^6,K.1^50,-1*K.1^46,-1*K.1^14,-1*K.1^22,K.1^42,-1*K.1^54,-1*K.1^22,K.1^58]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^52,K.1^8,K.1^24,-1*K.1^4,K.1^64,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^44,K.1^40,K.1^32,-1*K.1^36,-1*K.1^60,K.1^16,K.1^48,K.1^56,K.1^28,-1*K.1^36,K.1^48,-1*K.1^60,K.1^36,K.1^44,K.1^24,K.1^56,-1*K.1^44,K.1^64,K.1^8,-1*K.1^20,-1*K.1^64,-1*K.1^16,K.1^40,-1*K.1^28,K.1^16,-1*K.1^56,-1*K.1^16,K.1^20,K.1^32,K.1^4,-1*K.1^32,K.1^60,K.1^20,-1*K.1^48,-1*K.1^8,K.1^44,-1*K.1^56,K.1^28,-1*K.1^12,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^52,K.1^4,-1*K.1^32,K.1^60,-1*K.1^4,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,-1*K.1^60,-1*K.1^44,K.1^16,-1*K.1^20,K.1^32,K.1^8,K.1^48,-1*K.1^28,-1*K.1^52,K.1^40,-1*K.1^4,K.1^64,-1*K.1^36,K.1^24,K.1^56,-1*K.1^12,K.1^2,K.1^26,K.1^22,-1*K.1^54,-1*K.1^26,K.1^66,-1*K.1^30,-1*K.1^10,-1*K.1^66,K.1^22,K.1^54,-1*K.1^46,K.1^14,K.1^6,-1*K.1^2,-1*K.1^18,K.1^58,K.1^50,-1*K.1^46,K.1^46,-1*K.1^22,-1*K.1^42,-1*K.1^18,K.1^2,K.1^14,-1*K.1^54,-1*K.1^62,K.1^18,-1*K.1^62,K.1^10,K.1^30,-1*K.1^10,-1*K.1^22,K.1^42,K.1^66,-1*K.1^14,-1*K.1^6,-1*K.1^58,-1*K.1^50,-1*K.1^66,K.1^26,K.1^54,-1*K.1^38,K.1^38,-1*K.1^50,-1*K.1^26,K.1^62,-1*K.1^30,K.1^10,-1*K.1^42,K.1^46,K.1^30,-1*K.1^58,K.1^18,K.1^6,-1*K.1^6,-1*K.1^14,-1*K.1^38,K.1^58,K.1^42,K.1^50,-1*K.1^2,K.1^38,K.1^62,K.1^56,-1*K.1^16,K.1^44,-1*K.1^24,-1*K.1^64,-1*K.1^36,-1*K.1^28,K.1^40,-1*K.1^52,K.1^32,-1*K.1^20,-1*K.1^48,K.1^8,-1*K.1^12,-1*K.1^44,K.1^24,K.1^28,K.1^64,-1*K.1^40,K.1^52,-1*K.1^64,K.1^44,-1*K.1^32,-1*K.1^16,K.1^12,-1*K.1^24,K.1^4,K.1^60,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^56,K.1^36,K.1^4,K.1^20,K.1^28,-1*K.1^56,K.1^60,K.1^20,-1*K.1^40,K.1^36,-1*K.1^48,K.1^16,K.1^52,-1*K.1^4,-1*K.1^60,K.1^48,K.1^15,-1*K.1^37,-1*K.1^37,-1*K.1^9,-1*K.1^9,K.1^13,K.1^13,K.1^41,K.1^41,-1*K.1^61,-1*K.1^61,-1*K.1^33,-1*K.1^33,-1*K.1^57,-1*K.1^57,K.1^65,K.1^65,-1*K.1^67,-1*K.1^19,-1*K.1^23,K.1^27,-1*K.1^43,-1*K.1^23,K.1^27,-1*K.1^43,K.1^63,-1*K.1^47,K.1^3,K.1^63,-1*K.1^47,-1*K.1^67,-1*K.1^19,K.1^45,-1*K.1^25,-1*K.1^25,-1*K.1^53,-1*K.1^53,K.1^49,K.1^49,K.1^21,K.1^21,-1*K.1,-1*K.1,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,K.1^45,K.1^31,K.1^35,-1*K.1^15,-1*K.1^3,K.1^7,K.1^59,-1*K.1^11,K.1^7,K.1^59,-1*K.1^39,K.1^55,K.1^31,-1*K.1^39,K.1^55,K.1^35,-1*K.1^15,-1*K.1^11,-1*K.1^65,K.1^25,K.1^25,K.1^9,K.1^9,-1*K.1^49,-1*K.1^49,-1*K.1^41,-1*K.1^41,K.1,K.1,K.1^33,K.1^33,K.1^5,K.1^5,-1*K.1^65,K.1^11,-1*K.1^35,K.1^19,K.1^3,-1*K.1^27,-1*K.1^59,K.1^11,-1*K.1^27,-1*K.1^59,-1*K.1^63,-1*K.1^55,-1*K.1^3,-1*K.1^63,-1*K.1^55,-1*K.1^35,K.1^19,-1*K.1^45,K.1^37,K.1^37,K.1^53,K.1^53,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,K.1^61,K.1^61,K.1^29,K.1^29,K.1^57,K.1^57,-1*K.1^45,-1*K.1^31,K.1^67,K.1^15,K.1^23,-1*K.1^7,K.1^43,K.1^23,-1*K.1^7,K.1^43,K.1^39,K.1^47,-1*K.1^31,K.1^39,K.1^47,K.1^67,-1*K.1^2,-1*K.1^58,-1*K.1^22,K.1^14,K.1^38,K.1^2,K.1^62,K.1^22,K.1^30,K.1^6,-1*K.1^14,K.1^2,K.1^58,-1*K.1^50,K.1^50,K.1^38,-1*K.1^6,-1*K.1^22,K.1^18,-1*K.1^50,-1*K.1^58,K.1^26,-1*K.1^2,-1*K.1^54,K.1^50,-1*K.1^46,K.1^18,K.1^26,-1*K.1^62,K.1^10,K.1^62,K.1^10,-1*K.1^46,-1*K.1^10,-1*K.1^38,-1*K.1^18,-1*K.1^54,K.1^42,-1*K.1^30,K.1^30,-1*K.1^38,-1*K.1^14,-1*K.1^66,K.1^6,-1*K.1^6,K.1^42,-1*K.1^42,-1*K.1^66,K.1^54,-1*K.1^26,-1*K.1^30,K.1^58,-1*K.1^42,K.1^66,K.1^66,-1*K.1^62,-1*K.1^18,K.1^22,K.1^54,K.1^46,-1*K.1^26,K.1^14,K.1^46,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^60,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^32,-1*K.1^44,K.1^40,K.1^48,K.1^56,-1*K.1^20,K.1^16,-1*K.1^52,K.1^64,K.1^8,K.1^24,-1*K.1^28,-1*K.1^48,-1*K.1^52,K.1^24,K.1^64,K.1^52,-1*K.1^56,-1*K.1^12,-1*K.1^28,K.1^56,K.1^32,-1*K.1^4,-1*K.1^44,-1*K.1^32,-1*K.1^8,-1*K.1^20,K.1^48,K.1^8,K.1^28,-1*K.1^8,K.1^44,K.1^16,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^24,K.1^4,-1*K.1^56,K.1^28,-1*K.1^48,K.1^40,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^60,K.1^36,-1*K.1^16,-1*K.1^64,-1*K.1^36,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^64,K.1^56,K.1^8,-1*K.1^44,K.1^16,-1*K.1^4,K.1^24,K.1^48,-1*K.1^60,-1*K.1^20,-1*K.1^36,K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^28,K.1^40,-1*K.1^18,K.1^30,-1*K.1^62,-1*K.1^10,-1*K.1^30,-1*K.1^50,-1*K.1^66,-1*K.1^22,K.1^50,-1*K.1^62,K.1^10,K.1^6,K.1^58,-1*K.1^54,K.1^18,K.1^26,K.1^46,-1*K.1^42,K.1^6,-1*K.1^6,K.1^62,-1*K.1^38,K.1^26,-1*K.1^18,K.1^58,-1*K.1^10,K.1^14,-1*K.1^26,K.1^14,K.1^22,K.1^66,-1*K.1^22,K.1^62,K.1^38,-1*K.1^50,-1*K.1^58,K.1^54,-1*K.1^46,K.1^42,K.1^50,K.1^30,K.1^10,-1*K.1^2,K.1^2,K.1^42,-1*K.1^30,-1*K.1^14,-1*K.1^66,K.1^22,-1*K.1^38,-1*K.1^6,K.1^66,-1*K.1^46,-1*K.1^26,-1*K.1^54,K.1^54,-1*K.1^58,-1*K.1^2,K.1^46,K.1^38,-1*K.1^42,K.1^18,K.1^2,-1*K.1^14,-1*K.1^28,-1*K.1^8,-1*K.1^56,K.1^12,-1*K.1^32,-1*K.1^52,K.1^48,-1*K.1^20,-1*K.1^60,K.1^16,-1*K.1^44,-1*K.1^24,-1*K.1^4,K.1^40,K.1^56,-1*K.1^12,-1*K.1^48,K.1^32,K.1^20,K.1^60,-1*K.1^32,-1*K.1^56,-1*K.1^16,-1*K.1^8,-1*K.1^40,K.1^12,K.1^36,-1*K.1^64,K.1^4,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,K.1^52,K.1^36,K.1^44,-1*K.1^48,K.1^28,-1*K.1^64,K.1^44,K.1^20,K.1^52,-1*K.1^24,K.1^8,K.1^60,-1*K.1^36,K.1^64,K.1^24,K.1^33,-1*K.1^27,-1*K.1^27,-1*K.1^47,-1*K.1^47,-1*K.1^15,-1*K.1^15,K.1^63,K.1^63,K.1^39,K.1^39,K.1^59,K.1^59,K.1^3,K.1^3,K.1^7,K.1^7,K.1^25,K.1,K.1^37,K.1^5,-1*K.1^13,K.1^37,K.1^5,-1*K.1^13,K.1^57,-1*K.1^49,K.1^61,K.1^57,-1*K.1^49,K.1^25,K.1,-1*K.1^31,-1*K.1^55,-1*K.1^55,-1*K.1^35,-1*K.1^35,-1*K.1^67,-1*K.1^67,K.1^19,K.1^19,K.1^43,K.1^43,K.1^23,K.1^23,-1*K.1^11,-1*K.1^11,-1*K.1^31,K.1^41,-1*K.1^9,-1*K.1^33,-1*K.1^61,-1*K.1^29,K.1^21,K.1^65,-1*K.1^29,K.1^21,K.1^45,-1*K.1^53,K.1^41,K.1^45,-1*K.1^53,-1*K.1^9,-1*K.1^33,K.1^65,-1*K.1^7,K.1^55,K.1^55,K.1^47,K.1^47,K.1^67,K.1^67,-1*K.1^63,-1*K.1^63,-1*K.1^43,-1*K.1^43,-1*K.1^59,-1*K.1^59,K.1^11,K.1^11,-1*K.1^7,-1*K.1^65,K.1^9,-1*K.1,K.1^61,-1*K.1^5,-1*K.1^21,-1*K.1^65,-1*K.1^5,-1*K.1^21,-1*K.1^57,K.1^53,-1*K.1^61,-1*K.1^57,K.1^53,K.1^9,-1*K.1,K.1^31,K.1^27,K.1^27,K.1^35,K.1^35,K.1^15,K.1^15,-1*K.1^19,-1*K.1^19,-1*K.1^39,-1*K.1^39,-1*K.1^23,-1*K.1^23,-1*K.1^3,-1*K.1^3,K.1^31,-1*K.1^41,-1*K.1^25,K.1^33,-1*K.1^37,K.1^29,K.1^13,-1*K.1^37,K.1^29,K.1^13,-1*K.1^45,K.1^49,-1*K.1^41,-1*K.1^45,K.1^49,-1*K.1^25,K.1^18,-1*K.1^46,K.1^62,K.1^58,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^62,K.1^66,-1*K.1^54,-1*K.1^58,-1*K.1^18,K.1^46,K.1^42,-1*K.1^42,K.1^2,K.1^54,K.1^62,-1*K.1^26,K.1^42,-1*K.1^46,K.1^30,K.1^18,-1*K.1^10,-1*K.1^42,K.1^6,-1*K.1^26,K.1^30,K.1^14,K.1^22,-1*K.1^14,K.1^22,K.1^6,-1*K.1^22,-1*K.1^2,K.1^26,-1*K.1^10,K.1^38,-1*K.1^66,K.1^66,-1*K.1^2,-1*K.1^58,K.1^50,-1*K.1^54,K.1^54,K.1^38,-1*K.1^38,K.1^50,K.1^10,-1*K.1^30,-1*K.1^66,K.1^46,-1*K.1^38,-1*K.1^50,-1*K.1^50,K.1^14,K.1^26,-1*K.1^62,K.1^10,-1*K.1^6,-1*K.1^30,K.1^58,-1*K.1^6,-1*K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^8,K.1^64,K.1^56,K.1^32,-1*K.1^36,K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^12,K.1^48,-1*K.1^52,K.1^16,-1*K.1^4,-1*K.1^60,-1*K.1^44,K.1^40,K.1^20,K.1^16,-1*K.1^44,-1*K.1^4,-1*K.1^16,K.1^12,K.1^56,K.1^40,-1*K.1^12,-1*K.1^36,K.1^64,K.1^24,K.1^36,K.1^60,K.1^48,-1*K.1^20,-1*K.1^60,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^52,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^44,-1*K.1^64,K.1^12,-1*K.1^40,K.1^20,-1*K.1^28,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^8,-1*K.1^32,K.1^52,K.1^4,K.1^32,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^4,-1*K.1^12,-1*K.1^60,K.1^24,-1*K.1^52,K.1^64,-1*K.1^44,-1*K.1^20,K.1^8,K.1^48,K.1^32,-1*K.1^36,K.1^16,K.1^56,K.1^40,-1*K.1^28,K.1^50,-1*K.1^38,K.1^6,K.1^58,K.1^38,K.1^18,K.1^2,K.1^46,-1*K.1^18,K.1^6,-1*K.1^58,-1*K.1^62,-1*K.1^10,K.1^14,-1*K.1^50,-1*K.1^42,-1*K.1^22,K.1^26,-1*K.1^62,K.1^62,-1*K.1^6,K.1^30,-1*K.1^42,K.1^50,-1*K.1^10,K.1^58,-1*K.1^54,K.1^42,-1*K.1^54,-1*K.1^46,-1*K.1^2,K.1^46,-1*K.1^6,-1*K.1^30,K.1^18,K.1^10,-1*K.1^14,K.1^22,-1*K.1^26,-1*K.1^18,-1*K.1^38,-1*K.1^58,K.1^66,-1*K.1^66,-1*K.1^26,K.1^38,K.1^54,K.1^2,-1*K.1^46,K.1^30,K.1^62,-1*K.1^2,K.1^22,K.1^42,K.1^14,-1*K.1^14,K.1^10,K.1^66,-1*K.1^22,-1*K.1^30,K.1^26,-1*K.1^50,-1*K.1^66,K.1^54,K.1^40,K.1^60,K.1^12,-1*K.1^56,K.1^36,K.1^16,-1*K.1^20,K.1^48,K.1^8,-1*K.1^52,K.1^24,K.1^44,K.1^64,-1*K.1^28,-1*K.1^12,K.1^56,K.1^20,-1*K.1^36,-1*K.1^48,-1*K.1^8,K.1^36,K.1^12,K.1^52,K.1^60,K.1^28,-1*K.1^56,-1*K.1^32,K.1^4,-1*K.1^64,-1*K.1^64,K.1^28,K.1^52,-1*K.1^40,-1*K.1^16,-1*K.1^32,-1*K.1^24,K.1^20,-1*K.1^40,K.1^4,-1*K.1^24,-1*K.1^48,-1*K.1^16,K.1^44,-1*K.1^60,-1*K.1^8,K.1^32,-1*K.1^4,-1*K.1^44,-1*K.1^35,K.1^41,K.1^41,K.1^21,K.1^21,K.1^53,K.1^53,-1*K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^29,-1*K.1^9,-1*K.1^9,-1*K.1^65,-1*K.1^65,-1*K.1^61,-1*K.1^61,-1*K.1^43,-1*K.1^67,-1*K.1^31,-1*K.1^63,K.1^55,-1*K.1^31,-1*K.1^63,K.1^55,-1*K.1^11,K.1^19,-1*K.1^7,-1*K.1^11,K.1^19,-1*K.1^43,-1*K.1^67,K.1^37,K.1^13,K.1^13,K.1^33,K.1^33,K.1,K.1,-1*K.1^49,-1*K.1^49,-1*K.1^25,-1*K.1^25,-1*K.1^45,-1*K.1^45,K.1^57,K.1^57,K.1^37,-1*K.1^27,K.1^59,K.1^35,K.1^7,K.1^39,-1*K.1^47,-1*K.1^3,K.1^39,-1*K.1^47,-1*K.1^23,K.1^15,-1*K.1^27,-1*K.1^23,K.1^15,K.1^59,K.1^35,-1*K.1^3,K.1^61,-1*K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^21,-1*K.1,-1*K.1,K.1^5,K.1^5,K.1^25,K.1^25,K.1^9,K.1^9,-1*K.1^57,-1*K.1^57,K.1^61,K.1^3,-1*K.1^59,K.1^67,-1*K.1^7,K.1^63,K.1^47,K.1^3,K.1^63,K.1^47,K.1^11,-1*K.1^15,K.1^7,K.1^11,-1*K.1^15,-1*K.1^59,K.1^67,-1*K.1^37,-1*K.1^41,-1*K.1^41,-1*K.1^33,-1*K.1^33,-1*K.1^53,-1*K.1^53,K.1^49,K.1^49,K.1^29,K.1^29,K.1^45,K.1^45,K.1^65,K.1^65,-1*K.1^37,K.1^27,K.1^43,-1*K.1^35,K.1^31,-1*K.1^39,-1*K.1^55,K.1^31,-1*K.1^39,-1*K.1^55,K.1^23,-1*K.1^19,K.1^27,K.1^23,-1*K.1^19,K.1^43,-1*K.1^50,K.1^22,-1*K.1^6,-1*K.1^10,-1*K.1^66,K.1^50,K.1^54,K.1^6,-1*K.1^2,K.1^14,K.1^10,K.1^50,-1*K.1^22,-1*K.1^26,K.1^26,-1*K.1^66,-1*K.1^14,-1*K.1^6,K.1^42,-1*K.1^26,K.1^22,-1*K.1^38,-1*K.1^50,K.1^58,K.1^26,-1*K.1^62,K.1^42,-1*K.1^38,-1*K.1^54,-1*K.1^46,K.1^54,-1*K.1^46,-1*K.1^62,K.1^46,K.1^66,-1*K.1^42,K.1^58,-1*K.1^30,K.1^2,-1*K.1^2,K.1^66,K.1^10,-1*K.1^18,K.1^14,-1*K.1^14,-1*K.1^30,K.1^30,-1*K.1^18,-1*K.1^58,K.1^38,K.1^2,-1*K.1^22,K.1^30,K.1^18,K.1^18,-1*K.1^54,-1*K.1^42,K.1^6,-1*K.1^58,K.1^62,K.1^38,-1*K.1^10,K.1^62,K.1^46]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,-1*K.1^17,K.1^17,K.1^51,K.1^51,K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^8,K.1^64,K.1^56,K.1^32,-1*K.1^36,K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^12,K.1^48,-1*K.1^52,K.1^16,-1*K.1^4,-1*K.1^60,-1*K.1^44,K.1^40,K.1^20,K.1^16,-1*K.1^44,-1*K.1^4,-1*K.1^16,K.1^12,K.1^56,K.1^40,-1*K.1^12,-1*K.1^36,K.1^64,K.1^24,K.1^36,K.1^60,K.1^48,-1*K.1^20,-1*K.1^60,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^52,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^44,-1*K.1^64,K.1^12,-1*K.1^40,K.1^20,-1*K.1^28,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^8,-1*K.1^32,K.1^52,K.1^4,K.1^32,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^4,-1*K.1^12,-1*K.1^60,K.1^24,-1*K.1^52,K.1^64,-1*K.1^44,-1*K.1^20,K.1^8,K.1^48,K.1^32,-1*K.1^36,K.1^16,K.1^56,K.1^40,-1*K.1^28,-1*K.1^50,K.1^38,-1*K.1^6,-1*K.1^58,-1*K.1^38,-1*K.1^18,-1*K.1^2,-1*K.1^46,K.1^18,-1*K.1^6,K.1^58,K.1^62,K.1^10,-1*K.1^14,K.1^50,K.1^42,K.1^22,-1*K.1^26,K.1^62,-1*K.1^62,K.1^6,-1*K.1^30,K.1^42,-1*K.1^50,K.1^10,-1*K.1^58,K.1^54,-1*K.1^42,K.1^54,K.1^46,K.1^2,-1*K.1^46,K.1^6,K.1^30,-1*K.1^18,-1*K.1^10,K.1^14,-1*K.1^22,K.1^26,K.1^18,K.1^38,K.1^58,-1*K.1^66,K.1^66,K.1^26,-1*K.1^38,-1*K.1^54,-1*K.1^2,K.1^46,-1*K.1^30,-1*K.1^62,K.1^2,-1*K.1^22,-1*K.1^42,-1*K.1^14,K.1^14,-1*K.1^10,-1*K.1^66,K.1^22,K.1^30,-1*K.1^26,K.1^50,K.1^66,-1*K.1^54,K.1^40,K.1^60,K.1^12,-1*K.1^56,K.1^36,K.1^16,-1*K.1^20,K.1^48,K.1^8,-1*K.1^52,K.1^24,K.1^44,K.1^64,-1*K.1^28,-1*K.1^12,K.1^56,K.1^20,-1*K.1^36,-1*K.1^48,-1*K.1^8,K.1^36,K.1^12,K.1^52,K.1^60,K.1^28,-1*K.1^56,-1*K.1^32,K.1^4,-1*K.1^64,-1*K.1^64,K.1^28,K.1^52,-1*K.1^40,-1*K.1^16,-1*K.1^32,-1*K.1^24,K.1^20,-1*K.1^40,K.1^4,-1*K.1^24,-1*K.1^48,-1*K.1^16,K.1^44,-1*K.1^60,-1*K.1^8,K.1^32,-1*K.1^4,-1*K.1^44,K.1,K.1^7,K.1^7,-1*K.1^55,-1*K.1^55,K.1^19,K.1^19,K.1^39,K.1^39,K.1^63,K.1^63,K.1^43,K.1^43,-1*K.1^31,-1*K.1^31,-1*K.1^27,-1*K.1^27,K.1^9,K.1^33,-1*K.1^65,K.1^29,-1*K.1^21,-1*K.1^65,K.1^29,-1*K.1^21,-1*K.1^45,K.1^53,-1*K.1^41,-1*K.1^45,K.1^53,K.1^9,K.1^33,K.1^3,-1*K.1^47,-1*K.1^47,-1*K.1^67,-1*K.1^67,-1*K.1^35,-1*K.1^35,-1*K.1^15,-1*K.1^15,K.1^59,K.1^59,-1*K.1^11,-1*K.1^11,K.1^23,K.1^23,K.1^3,-1*K.1^61,-1*K.1^25,-1*K.1,K.1^41,-1*K.1^5,K.1^13,-1*K.1^37,-1*K.1^5,K.1^13,-1*K.1^57,K.1^49,-1*K.1^61,-1*K.1^57,K.1^49,-1*K.1^25,-1*K.1,-1*K.1^37,K.1^27,K.1^47,K.1^47,K.1^55,K.1^55,K.1^35,K.1^35,-1*K.1^39,-1*K.1^39,-1*K.1^59,-1*K.1^59,-1*K.1^43,-1*K.1^43,-1*K.1^23,-1*K.1^23,K.1^27,K.1^37,K.1^25,-1*K.1^33,-1*K.1^41,-1*K.1^29,-1*K.1^13,K.1^37,-1*K.1^29,-1*K.1^13,K.1^45,-1*K.1^49,K.1^41,K.1^45,-1*K.1^49,K.1^25,-1*K.1^33,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^67,K.1^67,-1*K.1^19,-1*K.1^19,K.1^15,K.1^15,-1*K.1^63,-1*K.1^63,K.1^11,K.1^11,K.1^31,K.1^31,-1*K.1^3,K.1^61,-1*K.1^9,K.1,K.1^65,K.1^5,K.1^21,K.1^65,K.1^5,K.1^21,K.1^57,-1*K.1^53,K.1^61,K.1^57,-1*K.1^53,-1*K.1^9,K.1^50,-1*K.1^22,K.1^6,K.1^10,K.1^66,-1*K.1^50,-1*K.1^54,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^10,-1*K.1^50,K.1^22,K.1^26,-1*K.1^26,K.1^66,K.1^14,K.1^6,-1*K.1^42,K.1^26,-1*K.1^22,K.1^38,K.1^50,-1*K.1^58,-1*K.1^26,K.1^62,-1*K.1^42,K.1^38,K.1^54,K.1^46,-1*K.1^54,K.1^46,K.1^62,-1*K.1^46,-1*K.1^66,K.1^42,-1*K.1^58,K.1^30,-1*K.1^2,K.1^2,-1*K.1^66,-1*K.1^10,K.1^18,-1*K.1^14,K.1^14,K.1^30,-1*K.1^30,K.1^18,K.1^58,-1*K.1^38,-1*K.1^2,K.1^22,-1*K.1^30,-1*K.1^18,-1*K.1^18,K.1^54,K.1^42,-1*K.1^6,K.1^58,-1*K.1^62,-1*K.1^38,K.1^10,-1*K.1^62,-1*K.1^46]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,K.1^51,-1*K.1^51,-1*K.1^17,-1*K.1^17,-1*K.1^51,K.1^17,K.1^51,K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^60,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^32,-1*K.1^44,K.1^40,K.1^48,K.1^56,-1*K.1^20,K.1^16,-1*K.1^52,K.1^64,K.1^8,K.1^24,-1*K.1^28,-1*K.1^48,-1*K.1^52,K.1^24,K.1^64,K.1^52,-1*K.1^56,-1*K.1^12,-1*K.1^28,K.1^56,K.1^32,-1*K.1^4,-1*K.1^44,-1*K.1^32,-1*K.1^8,-1*K.1^20,K.1^48,K.1^8,K.1^28,-1*K.1^8,K.1^44,K.1^16,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^24,K.1^4,-1*K.1^56,K.1^28,-1*K.1^48,K.1^40,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^60,K.1^36,-1*K.1^16,-1*K.1^64,-1*K.1^36,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^64,K.1^56,K.1^8,-1*K.1^44,K.1^16,-1*K.1^4,K.1^24,K.1^48,-1*K.1^60,-1*K.1^20,-1*K.1^36,K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^28,K.1^40,K.1^18,-1*K.1^30,K.1^62,K.1^10,K.1^30,K.1^50,K.1^66,K.1^22,-1*K.1^50,K.1^62,-1*K.1^10,-1*K.1^6,-1*K.1^58,K.1^54,-1*K.1^18,-1*K.1^26,-1*K.1^46,K.1^42,-1*K.1^6,K.1^6,-1*K.1^62,K.1^38,-1*K.1^26,K.1^18,-1*K.1^58,K.1^10,-1*K.1^14,K.1^26,-1*K.1^14,-1*K.1^22,-1*K.1^66,K.1^22,-1*K.1^62,-1*K.1^38,K.1^50,K.1^58,-1*K.1^54,K.1^46,-1*K.1^42,-1*K.1^50,-1*K.1^30,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^42,K.1^30,K.1^14,K.1^66,-1*K.1^22,K.1^38,K.1^6,-1*K.1^66,K.1^46,K.1^26,K.1^54,-1*K.1^54,K.1^58,K.1^2,-1*K.1^46,-1*K.1^38,K.1^42,-1*K.1^18,-1*K.1^2,K.1^14,-1*K.1^28,-1*K.1^8,-1*K.1^56,K.1^12,-1*K.1^32,-1*K.1^52,K.1^48,-1*K.1^20,-1*K.1^60,K.1^16,-1*K.1^44,-1*K.1^24,-1*K.1^4,K.1^40,K.1^56,-1*K.1^12,-1*K.1^48,K.1^32,K.1^20,K.1^60,-1*K.1^32,-1*K.1^56,-1*K.1^16,-1*K.1^8,-1*K.1^40,K.1^12,K.1^36,-1*K.1^64,K.1^4,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,K.1^52,K.1^36,K.1^44,-1*K.1^48,K.1^28,-1*K.1^64,K.1^44,K.1^20,K.1^52,-1*K.1^24,K.1^8,K.1^60,-1*K.1^36,K.1^64,K.1^24,-1*K.1^67,-1*K.1^61,-1*K.1^61,K.1^13,K.1^13,-1*K.1^49,-1*K.1^49,-1*K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^5,-1*K.1^25,-1*K.1^25,K.1^37,K.1^37,K.1^41,K.1^41,-1*K.1^59,-1*K.1^35,K.1^3,-1*K.1^39,K.1^47,K.1^3,-1*K.1^39,K.1^47,K.1^23,-1*K.1^15,K.1^27,K.1^23,-1*K.1^15,-1*K.1^59,-1*K.1^35,-1*K.1^65,K.1^21,K.1^21,K.1,K.1,K.1^33,K.1^33,K.1^53,K.1^53,-1*K.1^9,-1*K.1^9,K.1^57,K.1^57,-1*K.1^45,-1*K.1^45,-1*K.1^65,K.1^7,K.1^43,K.1^67,-1*K.1^27,K.1^63,-1*K.1^55,K.1^31,K.1^63,-1*K.1^55,K.1^11,-1*K.1^19,K.1^7,K.1^11,-1*K.1^19,K.1^43,K.1^67,K.1^31,-1*K.1^41,-1*K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^13,-1*K.1^33,-1*K.1^33,K.1^29,K.1^29,K.1^9,K.1^9,K.1^25,K.1^25,K.1^45,K.1^45,-1*K.1^41,-1*K.1^31,-1*K.1^43,K.1^35,K.1^27,K.1^39,K.1^55,-1*K.1^31,K.1^39,K.1^55,-1*K.1^23,K.1^19,-1*K.1^27,-1*K.1^23,K.1^19,-1*K.1^43,K.1^35,K.1^65,K.1^61,K.1^61,-1*K.1,-1*K.1,K.1^49,K.1^49,-1*K.1^53,-1*K.1^53,K.1^5,K.1^5,-1*K.1^57,-1*K.1^57,-1*K.1^37,-1*K.1^37,K.1^65,-1*K.1^7,K.1^59,-1*K.1^67,-1*K.1^3,-1*K.1^63,-1*K.1^47,-1*K.1^3,-1*K.1^63,-1*K.1^47,-1*K.1^11,K.1^15,-1*K.1^7,-1*K.1^11,K.1^15,K.1^59,-1*K.1^18,K.1^46,-1*K.1^62,-1*K.1^58,-1*K.1^2,K.1^18,K.1^14,K.1^62,-1*K.1^66,K.1^54,K.1^58,K.1^18,-1*K.1^46,-1*K.1^42,K.1^42,-1*K.1^2,-1*K.1^54,-1*K.1^62,K.1^26,-1*K.1^42,K.1^46,-1*K.1^30,-1*K.1^18,K.1^10,K.1^42,-1*K.1^6,K.1^26,-1*K.1^30,-1*K.1^14,-1*K.1^22,K.1^14,-1*K.1^22,-1*K.1^6,K.1^22,K.1^2,-1*K.1^26,K.1^10,-1*K.1^38,K.1^66,-1*K.1^66,K.1^2,K.1^58,-1*K.1^50,K.1^54,-1*K.1^54,-1*K.1^38,K.1^38,-1*K.1^50,-1*K.1^10,K.1^30,K.1^66,-1*K.1^46,K.1^38,K.1^50,K.1^50,-1*K.1^14,-1*K.1^26,K.1^62,-1*K.1^10,K.1^6,K.1^30,-1*K.1^58,K.1^6,K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^4,K.1^32,-1*K.1^28,K.1^16,-1*K.1^52,-1*K.1^12,K.1^48,-1*K.1^44,K.1^40,K.1^24,-1*K.1^60,K.1^8,-1*K.1^36,K.1^64,K.1^56,-1*K.1^20,K.1^44,K.1^8,K.1^56,-1*K.1^36,-1*K.1^8,-1*K.1^40,-1*K.1^28,-1*K.1^20,K.1^40,-1*K.1^52,K.1^32,-1*K.1^12,K.1^52,-1*K.1^64,K.1^24,-1*K.1^44,K.1^64,K.1^20,-1*K.1^64,K.1^12,-1*K.1^60,-1*K.1^16,K.1^60,K.1^36,K.1^12,-1*K.1^56,-1*K.1^32,-1*K.1^40,K.1^20,K.1^44,K.1^48,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,-1*K.1^4,-1*K.1^16,K.1^60,K.1^36,K.1^16,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,-1*K.1^36,K.1^40,K.1^64,-1*K.1^12,-1*K.1^60,K.1^32,K.1^56,-1*K.1^44,-1*K.1^4,K.1^24,K.1^16,-1*K.1^52,K.1^8,-1*K.1^28,-1*K.1^20,K.1^48,-1*K.1^42,-1*K.1^2,-1*K.1^54,K.1^46,K.1^2,-1*K.1^26,-1*K.1^18,-1*K.1^6,K.1^26,-1*K.1^54,-1*K.1^46,K.1^14,-1*K.1^22,K.1^58,K.1^42,-1*K.1^38,K.1^62,K.1^30,K.1^14,-1*K.1^14,K.1^54,K.1^66,-1*K.1^38,-1*K.1^42,-1*K.1^22,K.1^46,-1*K.1^10,K.1^38,-1*K.1^10,K.1^6,K.1^18,-1*K.1^6,K.1^54,-1*K.1^66,-1*K.1^26,K.1^22,-1*K.1^58,-1*K.1^62,-1*K.1^30,K.1^26,-1*K.1^2,-1*K.1^46,-1*K.1^50,K.1^50,-1*K.1^30,K.1^2,K.1^10,-1*K.1^18,K.1^6,K.1^66,-1*K.1^14,K.1^18,-1*K.1^62,K.1^38,K.1^58,-1*K.1^58,K.1^22,-1*K.1^50,K.1^62,-1*K.1^66,K.1^30,K.1^42,K.1^50,K.1^10,-1*K.1^20,-1*K.1^64,-1*K.1^40,K.1^28,K.1^52,K.1^8,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^60,-1*K.1^12,-1*K.1^56,K.1^32,K.1^48,K.1^40,-1*K.1^28,K.1^44,-1*K.1^52,-1*K.1^24,K.1^4,K.1^52,-1*K.1^40,K.1^60,-1*K.1^64,-1*K.1^48,K.1^28,-1*K.1^16,K.1^36,-1*K.1^32,-1*K.1^32,-1*K.1^48,K.1^60,K.1^20,-1*K.1^8,-1*K.1^16,K.1^12,K.1^44,K.1^20,K.1^36,K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^56,K.1^64,K.1^4,K.1^16,-1*K.1^36,K.1^56,-1*K.1^9,-1*K.1^63,-1*K.1^63,-1*K.1^19,-1*K.1^19,-1*K.1^35,-1*K.1^35,K.1^11,K.1^11,-1*K.1^23,-1*K.1^23,K.1^47,K.1^47,K.1^7,K.1^7,-1*K.1^39,-1*K.1^39,K.1^13,-1*K.1^25,K.1^41,K.1^57,K.1^53,K.1^41,K.1^57,K.1^53,-1*K.1^65,K.1,-1*K.1^29,-1*K.1^65,K.1,K.1^13,-1*K.1^25,-1*K.1^27,K.1^15,K.1^15,K.1^59,K.1^59,K.1^43,K.1^43,-1*K.1^67,-1*K.1^67,K.1^55,K.1^55,-1*K.1^31,-1*K.1^31,K.1^3,K.1^3,-1*K.1^27,K.1^5,-1*K.1^21,K.1^9,K.1^29,K.1^45,K.1^49,K.1^61,K.1^45,K.1^49,-1*K.1^37,-1*K.1^33,K.1^5,-1*K.1^37,-1*K.1^33,-1*K.1^21,K.1^9,K.1^61,K.1^39,-1*K.1^15,-1*K.1^15,K.1^19,K.1^19,-1*K.1^43,-1*K.1^43,-1*K.1^11,-1*K.1^11,-1*K.1^55,-1*K.1^55,-1*K.1^47,-1*K.1^47,-1*K.1^3,-1*K.1^3,K.1^39,-1*K.1^61,K.1^21,K.1^25,-1*K.1^29,-1*K.1^57,-1*K.1^49,-1*K.1^61,-1*K.1^57,-1*K.1^49,K.1^65,K.1^33,K.1^29,K.1^65,K.1^33,K.1^21,K.1^25,K.1^27,K.1^63,K.1^63,-1*K.1^59,-1*K.1^59,K.1^35,K.1^35,K.1^67,K.1^67,K.1^23,K.1^23,K.1^31,K.1^31,-1*K.1^7,-1*K.1^7,K.1^27,-1*K.1^5,-1*K.1^13,-1*K.1^9,-1*K.1^41,-1*K.1^45,-1*K.1^53,-1*K.1^41,-1*K.1^45,-1*K.1^53,K.1^37,-1*K.1,-1*K.1^5,K.1^37,-1*K.1,-1*K.1^13,K.1^42,-1*K.1^62,K.1^54,-1*K.1^22,K.1^50,-1*K.1^42,K.1^10,-1*K.1^54,K.1^18,K.1^58,K.1^22,-1*K.1^42,K.1^62,-1*K.1^30,K.1^30,K.1^50,-1*K.1^58,K.1^54,K.1^38,-1*K.1^30,-1*K.1^62,-1*K.1^2,K.1^42,K.1^46,K.1^30,K.1^14,K.1^38,-1*K.1^2,-1*K.1^10,K.1^6,K.1^10,K.1^6,K.1^14,-1*K.1^6,-1*K.1^50,-1*K.1^38,K.1^46,-1*K.1^66,-1*K.1^18,K.1^18,-1*K.1^50,K.1^22,K.1^26,K.1^58,-1*K.1^58,-1*K.1^66,K.1^66,K.1^26,-1*K.1^46,K.1^2,-1*K.1^18,K.1^62,K.1^66,-1*K.1^26,-1*K.1^26,-1*K.1^10,-1*K.1^38,-1*K.1^54,-1*K.1^46,-1*K.1^14,K.1^2,-1*K.1^22,-1*K.1^14,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^64,-1*K.1^36,K.1^40,-1*K.1^52,K.1^16,K.1^56,-1*K.1^20,K.1^24,-1*K.1^28,-1*K.1^44,K.1^8,-1*K.1^60,K.1^32,-1*K.1^4,-1*K.1^12,K.1^48,-1*K.1^24,-1*K.1^60,-1*K.1^12,K.1^32,K.1^60,K.1^28,K.1^40,K.1^48,-1*K.1^28,K.1^16,-1*K.1^36,K.1^56,-1*K.1^16,K.1^4,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^48,K.1^4,-1*K.1^56,K.1^8,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,K.1^12,K.1^36,K.1^28,-1*K.1^48,-1*K.1^24,-1*K.1^20,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,K.1^64,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^52,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^60,K.1^36,K.1^12,K.1^32,-1*K.1^28,-1*K.1^4,K.1^56,K.1^8,-1*K.1^36,-1*K.1^12,K.1^24,K.1^64,-1*K.1^44,-1*K.1^52,K.1^16,-1*K.1^60,K.1^40,K.1^48,-1*K.1^20,K.1^26,K.1^66,K.1^14,-1*K.1^22,-1*K.1^66,K.1^42,K.1^50,K.1^62,-1*K.1^42,K.1^14,K.1^22,-1*K.1^54,K.1^46,-1*K.1^10,-1*K.1^26,K.1^30,-1*K.1^6,-1*K.1^38,-1*K.1^54,K.1^54,-1*K.1^14,-1*K.1^2,K.1^30,K.1^26,K.1^46,-1*K.1^22,K.1^58,-1*K.1^30,K.1^58,-1*K.1^62,-1*K.1^50,K.1^62,-1*K.1^14,K.1^2,K.1^42,-1*K.1^46,K.1^10,K.1^6,K.1^38,-1*K.1^42,K.1^66,K.1^22,K.1^18,-1*K.1^18,K.1^38,-1*K.1^66,-1*K.1^58,K.1^50,-1*K.1^62,-1*K.1^2,K.1^54,-1*K.1^50,K.1^6,-1*K.1^30,-1*K.1^10,K.1^10,-1*K.1^46,K.1^18,-1*K.1^6,K.1^2,-1*K.1^38,-1*K.1^26,-1*K.1^18,-1*K.1^58,K.1^48,K.1^4,K.1^28,-1*K.1^40,-1*K.1^16,-1*K.1^60,K.1^24,-1*K.1^44,K.1^64,K.1^8,K.1^56,K.1^12,-1*K.1^36,-1*K.1^20,-1*K.1^28,K.1^40,-1*K.1^24,K.1^16,K.1^44,-1*K.1^64,-1*K.1^16,K.1^28,-1*K.1^8,K.1^4,K.1^20,-1*K.1^40,K.1^52,-1*K.1^32,K.1^36,K.1^36,K.1^20,-1*K.1^8,-1*K.1^48,K.1^60,K.1^52,-1*K.1^56,-1*K.1^24,-1*K.1^48,-1*K.1^32,-1*K.1^56,K.1^44,K.1^60,K.1^12,-1*K.1^4,-1*K.1^64,-1*K.1^52,K.1^32,-1*K.1^12,K.1^59,K.1^5,K.1^5,K.1^49,K.1^49,K.1^33,K.1^33,-1*K.1^57,-1*K.1^57,K.1^45,K.1^45,-1*K.1^21,-1*K.1^21,-1*K.1^61,-1*K.1^61,K.1^29,K.1^29,-1*K.1^55,K.1^43,-1*K.1^27,-1*K.1^11,-1*K.1^15,-1*K.1^27,-1*K.1^11,-1*K.1^15,K.1^3,-1*K.1^67,K.1^39,K.1^3,-1*K.1^67,-1*K.1^55,K.1^43,K.1^41,-1*K.1^53,-1*K.1^53,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,K.1,K.1,-1*K.1^13,-1*K.1^13,K.1^37,K.1^37,-1*K.1^65,-1*K.1^65,K.1^41,-1*K.1^63,K.1^47,-1*K.1^59,-1*K.1^39,-1*K.1^23,-1*K.1^19,-1*K.1^7,-1*K.1^23,-1*K.1^19,K.1^31,K.1^35,-1*K.1^63,K.1^31,K.1^35,K.1^47,-1*K.1^59,-1*K.1^7,-1*K.1^29,K.1^53,K.1^53,-1*K.1^49,-1*K.1^49,K.1^25,K.1^25,K.1^57,K.1^57,K.1^13,K.1^13,K.1^21,K.1^21,K.1^65,K.1^65,-1*K.1^29,K.1^7,-1*K.1^47,-1*K.1^43,K.1^39,K.1^11,K.1^19,K.1^7,K.1^11,K.1^19,-1*K.1^3,-1*K.1^35,-1*K.1^39,-1*K.1^3,-1*K.1^35,-1*K.1^47,-1*K.1^43,-1*K.1^41,-1*K.1^5,-1*K.1^5,K.1^9,K.1^9,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,-1*K.1^45,-1*K.1^45,-1*K.1^37,-1*K.1^37,K.1^61,K.1^61,-1*K.1^41,K.1^63,K.1^55,K.1^59,K.1^27,K.1^23,K.1^15,K.1^27,K.1^23,K.1^15,-1*K.1^31,K.1^67,K.1^63,-1*K.1^31,K.1^67,K.1^55,-1*K.1^26,K.1^6,-1*K.1^14,K.1^46,-1*K.1^18,K.1^26,-1*K.1^58,K.1^14,-1*K.1^50,-1*K.1^10,-1*K.1^46,K.1^26,-1*K.1^6,K.1^38,-1*K.1^38,-1*K.1^18,K.1^10,-1*K.1^14,-1*K.1^30,K.1^38,K.1^6,K.1^66,-1*K.1^26,-1*K.1^22,-1*K.1^38,-1*K.1^54,-1*K.1^30,K.1^66,K.1^58,-1*K.1^62,-1*K.1^58,-1*K.1^62,-1*K.1^54,K.1^62,K.1^18,K.1^30,-1*K.1^22,K.1^2,K.1^50,-1*K.1^50,K.1^18,-1*K.1^46,-1*K.1^42,-1*K.1^10,K.1^10,K.1^2,-1*K.1^2,-1*K.1^42,K.1^22,-1*K.1^66,K.1^50,-1*K.1^6,-1*K.1^2,K.1^42,K.1^42,K.1^58,K.1^30,K.1^14,K.1^22,K.1^54,-1*K.1^66,K.1^46,K.1^54,K.1^62]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^64,-1*K.1^36,K.1^40,-1*K.1^52,K.1^16,K.1^56,-1*K.1^20,K.1^24,-1*K.1^28,-1*K.1^44,K.1^8,-1*K.1^60,K.1^32,-1*K.1^4,-1*K.1^12,K.1^48,-1*K.1^24,-1*K.1^60,-1*K.1^12,K.1^32,K.1^60,K.1^28,K.1^40,K.1^48,-1*K.1^28,K.1^16,-1*K.1^36,K.1^56,-1*K.1^16,K.1^4,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^48,K.1^4,-1*K.1^56,K.1^8,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,K.1^12,K.1^36,K.1^28,-1*K.1^48,-1*K.1^24,-1*K.1^20,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,K.1^64,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^52,K.1^44,K.1^20,-1*K.1^64,-1*K.1^40,-1*K.1^16,K.1^60,K.1^36,K.1^12,K.1^32,-1*K.1^28,-1*K.1^4,K.1^56,K.1^8,-1*K.1^36,-1*K.1^12,K.1^24,K.1^64,-1*K.1^44,-1*K.1^52,K.1^16,-1*K.1^60,K.1^40,K.1^48,-1*K.1^20,-1*K.1^26,-1*K.1^66,-1*K.1^14,K.1^22,K.1^66,-1*K.1^42,-1*K.1^50,-1*K.1^62,K.1^42,-1*K.1^14,-1*K.1^22,K.1^54,-1*K.1^46,K.1^10,K.1^26,-1*K.1^30,K.1^6,K.1^38,K.1^54,-1*K.1^54,K.1^14,K.1^2,-1*K.1^30,-1*K.1^26,-1*K.1^46,K.1^22,-1*K.1^58,K.1^30,-1*K.1^58,K.1^62,K.1^50,-1*K.1^62,K.1^14,-1*K.1^2,-1*K.1^42,K.1^46,-1*K.1^10,-1*K.1^6,-1*K.1^38,K.1^42,-1*K.1^66,-1*K.1^22,-1*K.1^18,K.1^18,-1*K.1^38,K.1^66,K.1^58,-1*K.1^50,K.1^62,K.1^2,-1*K.1^54,K.1^50,-1*K.1^6,K.1^30,K.1^10,-1*K.1^10,K.1^46,-1*K.1^18,K.1^6,-1*K.1^2,K.1^38,K.1^26,K.1^18,K.1^58,K.1^48,K.1^4,K.1^28,-1*K.1^40,-1*K.1^16,-1*K.1^60,K.1^24,-1*K.1^44,K.1^64,K.1^8,K.1^56,K.1^12,-1*K.1^36,-1*K.1^20,-1*K.1^28,K.1^40,-1*K.1^24,K.1^16,K.1^44,-1*K.1^64,-1*K.1^16,K.1^28,-1*K.1^8,K.1^4,K.1^20,-1*K.1^40,K.1^52,-1*K.1^32,K.1^36,K.1^36,K.1^20,-1*K.1^8,-1*K.1^48,K.1^60,K.1^52,-1*K.1^56,-1*K.1^24,-1*K.1^48,-1*K.1^32,-1*K.1^56,K.1^44,K.1^60,K.1^12,-1*K.1^4,-1*K.1^64,-1*K.1^52,K.1^32,-1*K.1^12,-1*K.1^25,-1*K.1^39,-1*K.1^39,K.1^15,K.1^15,-1*K.1^67,-1*K.1^67,-1*K.1^23,-1*K.1^23,K.1^11,K.1^11,K.1^55,K.1^55,-1*K.1^27,-1*K.1^27,-1*K.1^63,-1*K.1^63,K.1^21,-1*K.1^9,-1*K.1^61,-1*K.1^45,-1*K.1^49,-1*K.1^61,-1*K.1^45,-1*K.1^49,K.1^37,K.1^33,-1*K.1^5,K.1^37,K.1^33,K.1^21,-1*K.1^9,K.1^7,-1*K.1^19,-1*K.1^19,K.1^43,K.1^43,K.1^59,K.1^59,-1*K.1^35,-1*K.1^35,K.1^47,K.1^47,K.1^3,K.1^3,-1*K.1^31,-1*K.1^31,K.1^7,K.1^29,-1*K.1^13,K.1^25,K.1^5,-1*K.1^57,-1*K.1^53,-1*K.1^41,-1*K.1^57,-1*K.1^53,K.1^65,-1*K.1,K.1^29,K.1^65,-1*K.1,-1*K.1^13,K.1^25,-1*K.1^41,K.1^63,K.1^19,K.1^19,-1*K.1^15,-1*K.1^15,-1*K.1^59,-1*K.1^59,K.1^23,K.1^23,-1*K.1^47,-1*K.1^47,-1*K.1^55,-1*K.1^55,K.1^31,K.1^31,K.1^63,K.1^41,K.1^13,K.1^9,-1*K.1^5,K.1^45,K.1^53,K.1^41,K.1^45,K.1^53,-1*K.1^37,K.1,K.1^5,-1*K.1^37,K.1,K.1^13,K.1^9,-1*K.1^7,K.1^39,K.1^39,-1*K.1^43,-1*K.1^43,K.1^67,K.1^67,K.1^35,K.1^35,-1*K.1^11,-1*K.1^11,-1*K.1^3,-1*K.1^3,K.1^27,K.1^27,-1*K.1^7,-1*K.1^29,-1*K.1^21,-1*K.1^25,K.1^61,K.1^57,K.1^49,K.1^61,K.1^57,K.1^49,-1*K.1^65,-1*K.1^33,-1*K.1^29,-1*K.1^65,-1*K.1^33,-1*K.1^21,K.1^26,-1*K.1^6,K.1^14,-1*K.1^46,K.1^18,-1*K.1^26,K.1^58,-1*K.1^14,K.1^50,K.1^10,K.1^46,-1*K.1^26,K.1^6,-1*K.1^38,K.1^38,K.1^18,-1*K.1^10,K.1^14,K.1^30,-1*K.1^38,-1*K.1^6,-1*K.1^66,K.1^26,K.1^22,K.1^38,K.1^54,K.1^30,-1*K.1^66,-1*K.1^58,K.1^62,K.1^58,K.1^62,K.1^54,-1*K.1^62,-1*K.1^18,-1*K.1^30,K.1^22,-1*K.1^2,-1*K.1^50,K.1^50,-1*K.1^18,K.1^46,K.1^42,K.1^10,-1*K.1^10,-1*K.1^2,K.1^2,K.1^42,-1*K.1^22,K.1^66,-1*K.1^50,K.1^6,K.1^2,-1*K.1^42,-1*K.1^42,-1*K.1^58,-1*K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^54,K.1^66,-1*K.1^46,-1*K.1^54,-1*K.1^62]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^4,K.1^32,-1*K.1^28,K.1^16,-1*K.1^52,-1*K.1^12,K.1^48,-1*K.1^44,K.1^40,K.1^24,-1*K.1^60,K.1^8,-1*K.1^36,K.1^64,K.1^56,-1*K.1^20,K.1^44,K.1^8,K.1^56,-1*K.1^36,-1*K.1^8,-1*K.1^40,-1*K.1^28,-1*K.1^20,K.1^40,-1*K.1^52,K.1^32,-1*K.1^12,K.1^52,-1*K.1^64,K.1^24,-1*K.1^44,K.1^64,K.1^20,-1*K.1^64,K.1^12,-1*K.1^60,-1*K.1^16,K.1^60,K.1^36,K.1^12,-1*K.1^56,-1*K.1^32,-1*K.1^40,K.1^20,K.1^44,K.1^48,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,-1*K.1^4,-1*K.1^16,K.1^60,K.1^36,K.1^16,-1*K.1^24,-1*K.1^48,K.1^4,K.1^28,K.1^52,-1*K.1^8,-1*K.1^32,-1*K.1^56,-1*K.1^36,K.1^40,K.1^64,-1*K.1^12,-1*K.1^60,K.1^32,K.1^56,-1*K.1^44,-1*K.1^4,K.1^24,K.1^16,-1*K.1^52,K.1^8,-1*K.1^28,-1*K.1^20,K.1^48,K.1^42,K.1^2,K.1^54,-1*K.1^46,-1*K.1^2,K.1^26,K.1^18,K.1^6,-1*K.1^26,K.1^54,K.1^46,-1*K.1^14,K.1^22,-1*K.1^58,-1*K.1^42,K.1^38,-1*K.1^62,-1*K.1^30,-1*K.1^14,K.1^14,-1*K.1^54,-1*K.1^66,K.1^38,K.1^42,K.1^22,-1*K.1^46,K.1^10,-1*K.1^38,K.1^10,-1*K.1^6,-1*K.1^18,K.1^6,-1*K.1^54,K.1^66,K.1^26,-1*K.1^22,K.1^58,K.1^62,K.1^30,-1*K.1^26,K.1^2,K.1^46,K.1^50,-1*K.1^50,K.1^30,-1*K.1^2,-1*K.1^10,K.1^18,-1*K.1^6,-1*K.1^66,K.1^14,-1*K.1^18,K.1^62,-1*K.1^38,-1*K.1^58,K.1^58,-1*K.1^22,K.1^50,-1*K.1^62,K.1^66,-1*K.1^30,-1*K.1^42,-1*K.1^50,-1*K.1^10,-1*K.1^20,-1*K.1^64,-1*K.1^40,K.1^28,K.1^52,K.1^8,-1*K.1^44,K.1^24,-1*K.1^4,-1*K.1^60,-1*K.1^12,-1*K.1^56,K.1^32,K.1^48,K.1^40,-1*K.1^28,K.1^44,-1*K.1^52,-1*K.1^24,K.1^4,K.1^52,-1*K.1^40,K.1^60,-1*K.1^64,-1*K.1^48,K.1^28,-1*K.1^16,K.1^36,-1*K.1^32,-1*K.1^32,-1*K.1^48,K.1^60,K.1^20,-1*K.1^8,-1*K.1^16,K.1^12,K.1^44,K.1^20,K.1^36,K.1^12,-1*K.1^24,-1*K.1^8,-1*K.1^56,K.1^64,K.1^4,K.1^16,-1*K.1^36,K.1^56,K.1^43,K.1^29,K.1^29,-1*K.1^53,-1*K.1^53,K.1,K.1,K.1^45,K.1^45,-1*K.1^57,-1*K.1^57,-1*K.1^13,-1*K.1^13,K.1^41,K.1^41,K.1^5,K.1^5,-1*K.1^47,K.1^59,K.1^7,K.1^23,K.1^19,K.1^7,K.1^23,K.1^19,-1*K.1^31,-1*K.1^35,K.1^63,-1*K.1^31,-1*K.1^35,-1*K.1^47,K.1^59,-1*K.1^61,K.1^49,K.1^49,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,K.1^33,K.1^33,-1*K.1^21,-1*K.1^21,-1*K.1^65,-1*K.1^65,K.1^37,K.1^37,-1*K.1^61,-1*K.1^39,K.1^55,-1*K.1^43,-1*K.1^63,K.1^11,K.1^15,K.1^27,K.1^11,K.1^15,-1*K.1^3,K.1^67,-1*K.1^39,-1*K.1^3,K.1^67,K.1^55,-1*K.1^43,K.1^27,-1*K.1^5,-1*K.1^49,-1*K.1^49,K.1^53,K.1^53,K.1^9,K.1^9,-1*K.1^45,-1*K.1^45,K.1^21,K.1^21,K.1^13,K.1^13,-1*K.1^37,-1*K.1^37,-1*K.1^5,-1*K.1^27,-1*K.1^55,-1*K.1^59,K.1^63,-1*K.1^23,-1*K.1^15,-1*K.1^27,-1*K.1^23,-1*K.1^15,K.1^31,-1*K.1^67,-1*K.1^63,K.1^31,-1*K.1^67,-1*K.1^55,-1*K.1^59,K.1^61,-1*K.1^29,-1*K.1^29,K.1^25,K.1^25,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,K.1^57,K.1^57,K.1^65,K.1^65,-1*K.1^41,-1*K.1^41,K.1^61,K.1^39,K.1^47,K.1^43,-1*K.1^7,-1*K.1^11,-1*K.1^19,-1*K.1^7,-1*K.1^11,-1*K.1^19,K.1^3,K.1^35,K.1^39,K.1^3,K.1^35,K.1^47,-1*K.1^42,K.1^62,-1*K.1^54,K.1^22,-1*K.1^50,K.1^42,-1*K.1^10,K.1^54,-1*K.1^18,-1*K.1^58,-1*K.1^22,K.1^42,-1*K.1^62,K.1^30,-1*K.1^30,-1*K.1^50,K.1^58,-1*K.1^54,-1*K.1^38,K.1^30,K.1^62,K.1^2,-1*K.1^42,-1*K.1^46,-1*K.1^30,-1*K.1^14,-1*K.1^38,K.1^2,K.1^10,-1*K.1^6,-1*K.1^10,-1*K.1^6,-1*K.1^14,K.1^6,K.1^50,K.1^38,-1*K.1^46,K.1^66,K.1^18,-1*K.1^18,K.1^50,-1*K.1^22,-1*K.1^26,-1*K.1^58,K.1^58,K.1^66,-1*K.1^66,-1*K.1^26,K.1^46,-1*K.1^2,K.1^18,-1*K.1^62,-1*K.1^66,K.1^26,K.1^26,K.1^10,K.1^38,K.1^54,K.1^46,K.1^14,-1*K.1^2,K.1^22,K.1^14,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^12,-1*K.1^28,K.1^16,K.1^48,-1*K.1^20,-1*K.1^36,K.1^8,K.1^64,-1*K.1^52,-1*K.1^4,-1*K.1^44,K.1^24,K.1^40,K.1^56,K.1^32,-1*K.1^60,-1*K.1^64,K.1^24,K.1^32,K.1^40,-1*K.1^24,K.1^52,K.1^16,-1*K.1^60,-1*K.1^52,-1*K.1^20,-1*K.1^28,-1*K.1^36,K.1^20,-1*K.1^56,-1*K.1^4,K.1^64,K.1^56,K.1^60,-1*K.1^56,K.1^36,-1*K.1^44,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^32,K.1^28,K.1^52,K.1^60,-1*K.1^64,K.1^8,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^48,K.1^44,-1*K.1^40,K.1^48,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^40,-1*K.1^52,K.1^56,-1*K.1^36,-1*K.1^44,-1*K.1^28,K.1^32,K.1^64,-1*K.1^12,-1*K.1^4,K.1^48,-1*K.1^20,K.1^24,K.1^16,-1*K.1^60,K.1^8,-1*K.1^58,K.1^6,K.1^26,-1*K.1^2,-1*K.1^6,-1*K.1^10,K.1^54,K.1^18,K.1^10,K.1^26,K.1^2,-1*K.1^42,K.1^66,-1*K.1^38,K.1^58,-1*K.1^46,-1*K.1^50,K.1^22,-1*K.1^42,K.1^42,-1*K.1^26,-1*K.1^62,-1*K.1^46,-1*K.1^58,K.1^66,-1*K.1^2,K.1^30,K.1^46,K.1^30,-1*K.1^18,-1*K.1^54,K.1^18,-1*K.1^26,K.1^62,-1*K.1^10,-1*K.1^66,K.1^38,K.1^50,-1*K.1^22,K.1^10,K.1^6,K.1^2,K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^30,K.1^54,-1*K.1^18,-1*K.1^62,K.1^42,-1*K.1^54,K.1^50,K.1^46,-1*K.1^38,K.1^38,-1*K.1^66,K.1^14,-1*K.1^50,K.1^62,K.1^22,K.1^58,-1*K.1^14,-1*K.1^30,-1*K.1^60,-1*K.1^56,K.1^52,-1*K.1^16,K.1^20,K.1^24,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^44,-1*K.1^36,-1*K.1^32,-1*K.1^28,K.1^8,-1*K.1^52,K.1^16,-1*K.1^64,-1*K.1^20,K.1^4,K.1^12,K.1^20,K.1^52,K.1^44,-1*K.1^56,-1*K.1^8,-1*K.1^16,-1*K.1^48,-1*K.1^40,K.1^28,K.1^28,-1*K.1^8,K.1^44,K.1^60,-1*K.1^24,-1*K.1^48,K.1^36,-1*K.1^64,K.1^60,-1*K.1^40,K.1^36,K.1^4,-1*K.1^24,-1*K.1^32,K.1^56,K.1^12,K.1^48,K.1^40,K.1^32,K.1^61,K.1^19,K.1^19,K.1^23,K.1^23,-1*K.1^3,-1*K.1^3,K.1^67,K.1^67,K.1^35,K.1^35,K.1^39,K.1^39,K.1^55,K.1^55,-1*K.1^15,-1*K.1^15,K.1^5,-1*K.1^41,-1*K.1^21,K.1,-1*K.1^57,-1*K.1^21,K.1,-1*K.1^57,-1*K.1^25,-1*K.1^37,-1*K.1^53,-1*K.1^25,-1*K.1^37,K.1^5,-1*K.1^41,K.1^47,-1*K.1^11,-1*K.1^11,-1*K.1^7,-1*K.1^7,K.1^27,K.1^27,K.1^31,K.1^31,K.1^63,K.1^63,K.1^59,K.1^59,K.1^43,K.1^43,K.1^47,-1*K.1^49,-1*K.1^29,-1*K.1^61,K.1^53,-1*K.1^33,-1*K.1^45,K.1^13,-1*K.1^33,-1*K.1^45,K.1^9,-1*K.1^65,-1*K.1^49,K.1^9,-1*K.1^65,-1*K.1^29,-1*K.1^61,K.1^13,K.1^15,K.1^11,K.1^11,-1*K.1^23,-1*K.1^23,-1*K.1^27,-1*K.1^27,-1*K.1^67,-1*K.1^67,-1*K.1^63,-1*K.1^63,-1*K.1^39,-1*K.1^39,-1*K.1^43,-1*K.1^43,K.1^15,-1*K.1^13,K.1^29,K.1^41,-1*K.1^53,-1*K.1,K.1^45,-1*K.1^13,-1*K.1,K.1^45,K.1^25,K.1^65,K.1^53,K.1^25,K.1^65,K.1^29,K.1^41,-1*K.1^47,-1*K.1^19,-1*K.1^19,K.1^7,K.1^7,K.1^3,K.1^3,-1*K.1^31,-1*K.1^31,-1*K.1^35,-1*K.1^35,-1*K.1^59,-1*K.1^59,-1*K.1^55,-1*K.1^55,-1*K.1^47,K.1^49,-1*K.1^5,K.1^61,K.1^21,K.1^33,K.1^57,K.1^21,K.1^33,K.1^57,-1*K.1^9,K.1^37,K.1^49,-1*K.1^9,K.1^37,-1*K.1^5,K.1^58,K.1^50,-1*K.1^26,K.1^66,-1*K.1^14,-1*K.1^58,-1*K.1^30,K.1^26,-1*K.1^54,-1*K.1^38,-1*K.1^66,-1*K.1^58,-1*K.1^50,-1*K.1^22,K.1^22,-1*K.1^14,K.1^38,-1*K.1^26,K.1^46,-1*K.1^22,K.1^50,K.1^6,K.1^58,-1*K.1^2,K.1^22,-1*K.1^42,K.1^46,K.1^6,K.1^30,-1*K.1^18,-1*K.1^30,-1*K.1^18,-1*K.1^42,K.1^18,K.1^14,-1*K.1^46,-1*K.1^2,K.1^62,K.1^54,-1*K.1^54,K.1^14,-1*K.1^66,K.1^10,-1*K.1^38,K.1^38,K.1^62,-1*K.1^62,K.1^10,K.1^2,-1*K.1^6,K.1^54,-1*K.1^50,-1*K.1^62,-1*K.1^10,-1*K.1^10,K.1^30,-1*K.1^46,K.1^26,K.1^2,K.1^42,-1*K.1^6,K.1^66,K.1^42,K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^56,K.1^40,-1*K.1^52,-1*K.1^20,K.1^48,K.1^32,-1*K.1^60,-1*K.1^4,K.1^16,K.1^64,K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^12,-1*K.1^36,K.1^8,K.1^4,-1*K.1^44,-1*K.1^36,-1*K.1^28,K.1^44,-1*K.1^16,-1*K.1^52,K.1^8,K.1^16,K.1^48,K.1^40,K.1^32,-1*K.1^48,K.1^12,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,-1*K.1^32,K.1^24,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^36,-1*K.1^40,-1*K.1^16,-1*K.1^8,K.1^4,-1*K.1^60,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,K.1^56,K.1^20,-1*K.1^24,K.1^28,-1*K.1^20,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^28,K.1^16,-1*K.1^12,K.1^32,K.1^24,K.1^40,-1*K.1^36,-1*K.1^4,K.1^56,K.1^64,-1*K.1^20,K.1^48,-1*K.1^44,-1*K.1^52,K.1^8,-1*K.1^60,K.1^10,-1*K.1^62,-1*K.1^42,K.1^66,K.1^62,K.1^58,-1*K.1^14,-1*K.1^50,-1*K.1^58,-1*K.1^42,-1*K.1^66,K.1^26,-1*K.1^2,K.1^30,-1*K.1^10,K.1^22,K.1^18,-1*K.1^46,K.1^26,-1*K.1^26,K.1^42,K.1^6,K.1^22,K.1^10,-1*K.1^2,K.1^66,-1*K.1^38,-1*K.1^22,-1*K.1^38,K.1^50,K.1^14,-1*K.1^50,K.1^42,-1*K.1^6,K.1^58,K.1^2,-1*K.1^30,-1*K.1^18,K.1^46,-1*K.1^58,-1*K.1^62,-1*K.1^66,-1*K.1^54,K.1^54,K.1^46,K.1^62,K.1^38,-1*K.1^14,K.1^50,K.1^6,-1*K.1^26,K.1^14,-1*K.1^18,-1*K.1^22,K.1^30,-1*K.1^30,K.1^2,-1*K.1^54,K.1^18,-1*K.1^6,-1*K.1^46,-1*K.1^10,K.1^54,K.1^38,K.1^8,K.1^12,-1*K.1^16,K.1^52,-1*K.1^48,-1*K.1^44,-1*K.1^4,K.1^64,K.1^56,K.1^24,K.1^32,K.1^36,K.1^40,-1*K.1^60,K.1^16,-1*K.1^52,K.1^4,K.1^48,-1*K.1^64,-1*K.1^56,-1*K.1^48,-1*K.1^16,-1*K.1^24,K.1^12,K.1^60,K.1^52,K.1^20,K.1^28,-1*K.1^40,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^8,K.1^44,K.1^20,-1*K.1^32,K.1^4,-1*K.1^8,K.1^28,-1*K.1^32,-1*K.1^64,K.1^44,K.1^36,-1*K.1^12,-1*K.1^56,-1*K.1^20,-1*K.1^28,-1*K.1^36,-1*K.1^7,-1*K.1^49,-1*K.1^49,-1*K.1^45,-1*K.1^45,K.1^65,K.1^65,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,-1*K.1^29,-1*K.1^29,-1*K.1^13,-1*K.1^13,K.1^53,K.1^53,-1*K.1^63,K.1^27,K.1^47,-1*K.1^67,K.1^11,K.1^47,-1*K.1^67,K.1^11,K.1^43,K.1^31,K.1^15,K.1^43,K.1^31,-1*K.1^63,K.1^27,-1*K.1^21,K.1^57,K.1^57,K.1^61,K.1^61,-1*K.1^41,-1*K.1^41,-1*K.1^37,-1*K.1^37,-1*K.1^5,-1*K.1^5,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,-1*K.1^21,K.1^19,K.1^39,K.1^7,-1*K.1^15,K.1^35,K.1^23,-1*K.1^55,K.1^35,K.1^23,-1*K.1^59,K.1^3,K.1^19,-1*K.1^59,K.1^3,K.1^39,K.1^7,-1*K.1^55,-1*K.1^53,-1*K.1^57,-1*K.1^57,K.1^45,K.1^45,K.1^41,K.1^41,K.1,K.1,K.1^5,K.1^5,K.1^29,K.1^29,K.1^25,K.1^25,-1*K.1^53,K.1^55,-1*K.1^39,-1*K.1^27,K.1^15,K.1^67,-1*K.1^23,K.1^55,K.1^67,-1*K.1^23,-1*K.1^43,-1*K.1^3,-1*K.1^15,-1*K.1^43,-1*K.1^3,-1*K.1^39,-1*K.1^27,K.1^21,K.1^49,K.1^49,-1*K.1^61,-1*K.1^61,-1*K.1^65,-1*K.1^65,K.1^37,K.1^37,K.1^33,K.1^33,K.1^9,K.1^9,K.1^13,K.1^13,K.1^21,-1*K.1^19,K.1^63,-1*K.1^7,-1*K.1^47,-1*K.1^35,-1*K.1^11,-1*K.1^47,-1*K.1^35,-1*K.1^11,K.1^59,-1*K.1^31,-1*K.1^19,K.1^59,-1*K.1^31,K.1^63,-1*K.1^10,-1*K.1^18,K.1^42,-1*K.1^2,K.1^54,K.1^10,K.1^38,-1*K.1^42,K.1^14,K.1^30,K.1^2,K.1^10,K.1^18,K.1^46,-1*K.1^46,K.1^54,-1*K.1^30,K.1^42,-1*K.1^22,K.1^46,-1*K.1^18,-1*K.1^62,-1*K.1^10,K.1^66,-1*K.1^46,K.1^26,-1*K.1^22,-1*K.1^62,-1*K.1^38,K.1^50,K.1^38,K.1^50,K.1^26,-1*K.1^50,-1*K.1^54,K.1^22,K.1^66,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^54,K.1^2,-1*K.1^58,K.1^30,-1*K.1^30,-1*K.1^6,K.1^6,-1*K.1^58,-1*K.1^66,K.1^62,-1*K.1^14,K.1^18,K.1^6,K.1^58,K.1^58,-1*K.1^38,K.1^22,-1*K.1^42,-1*K.1^66,-1*K.1^26,K.1^62,-1*K.1^2,-1*K.1^26,-1*K.1^50]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^56,K.1^40,-1*K.1^52,-1*K.1^20,K.1^48,K.1^32,-1*K.1^60,-1*K.1^4,K.1^16,K.1^64,K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^12,-1*K.1^36,K.1^8,K.1^4,-1*K.1^44,-1*K.1^36,-1*K.1^28,K.1^44,-1*K.1^16,-1*K.1^52,K.1^8,K.1^16,K.1^48,K.1^40,K.1^32,-1*K.1^48,K.1^12,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,-1*K.1^32,K.1^24,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^36,-1*K.1^40,-1*K.1^16,-1*K.1^8,K.1^4,-1*K.1^60,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,K.1^56,K.1^20,-1*K.1^24,K.1^28,-1*K.1^20,-1*K.1^64,K.1^60,-1*K.1^56,K.1^52,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^28,K.1^16,-1*K.1^12,K.1^32,K.1^24,K.1^40,-1*K.1^36,-1*K.1^4,K.1^56,K.1^64,-1*K.1^20,K.1^48,-1*K.1^44,-1*K.1^52,K.1^8,-1*K.1^60,-1*K.1^10,K.1^62,K.1^42,-1*K.1^66,-1*K.1^62,-1*K.1^58,K.1^14,K.1^50,K.1^58,K.1^42,K.1^66,-1*K.1^26,K.1^2,-1*K.1^30,K.1^10,-1*K.1^22,-1*K.1^18,K.1^46,-1*K.1^26,K.1^26,-1*K.1^42,-1*K.1^6,-1*K.1^22,-1*K.1^10,K.1^2,-1*K.1^66,K.1^38,K.1^22,K.1^38,-1*K.1^50,-1*K.1^14,K.1^50,-1*K.1^42,K.1^6,-1*K.1^58,-1*K.1^2,K.1^30,K.1^18,-1*K.1^46,K.1^58,K.1^62,K.1^66,K.1^54,-1*K.1^54,-1*K.1^46,-1*K.1^62,-1*K.1^38,K.1^14,-1*K.1^50,-1*K.1^6,K.1^26,-1*K.1^14,K.1^18,K.1^22,-1*K.1^30,K.1^30,-1*K.1^2,K.1^54,-1*K.1^18,K.1^6,K.1^46,K.1^10,-1*K.1^54,-1*K.1^38,K.1^8,K.1^12,-1*K.1^16,K.1^52,-1*K.1^48,-1*K.1^44,-1*K.1^4,K.1^64,K.1^56,K.1^24,K.1^32,K.1^36,K.1^40,-1*K.1^60,K.1^16,-1*K.1^52,K.1^4,K.1^48,-1*K.1^64,-1*K.1^56,-1*K.1^48,-1*K.1^16,-1*K.1^24,K.1^12,K.1^60,K.1^52,K.1^20,K.1^28,-1*K.1^40,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^8,K.1^44,K.1^20,-1*K.1^32,K.1^4,-1*K.1^8,K.1^28,-1*K.1^32,-1*K.1^64,K.1^44,K.1^36,-1*K.1^12,-1*K.1^56,-1*K.1^20,-1*K.1^28,-1*K.1^36,-1*K.1^41,-1*K.1^15,-1*K.1^15,-1*K.1^11,-1*K.1^11,K.1^31,K.1^31,K.1^35,K.1^35,K.1^67,K.1^67,K.1^63,K.1^63,K.1^47,K.1^47,K.1^19,K.1^19,K.1^29,K.1^61,-1*K.1^13,K.1^33,K.1^45,-1*K.1^13,K.1^33,K.1^45,-1*K.1^9,K.1^65,K.1^49,-1*K.1^9,K.1^65,K.1^29,K.1^61,K.1^55,K.1^23,K.1^23,K.1^27,K.1^27,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^3,K.1^39,K.1^39,K.1^43,K.1^43,K.1^59,K.1^59,K.1^55,K.1^53,-1*K.1^5,K.1^41,-1*K.1^49,-1*K.1,K.1^57,K.1^21,-1*K.1,K.1^57,K.1^25,K.1^37,K.1^53,K.1^25,K.1^37,-1*K.1^5,K.1^41,K.1^21,-1*K.1^19,-1*K.1^23,-1*K.1^23,K.1^11,K.1^11,K.1^7,K.1^7,-1*K.1^35,-1*K.1^35,-1*K.1^39,-1*K.1^39,-1*K.1^63,-1*K.1^63,-1*K.1^59,-1*K.1^59,-1*K.1^19,-1*K.1^21,K.1^5,-1*K.1^61,K.1^49,-1*K.1^33,-1*K.1^57,-1*K.1^21,-1*K.1^33,-1*K.1^57,K.1^9,-1*K.1^37,-1*K.1^49,K.1^9,-1*K.1^37,K.1^5,-1*K.1^61,-1*K.1^55,K.1^15,K.1^15,-1*K.1^27,-1*K.1^27,-1*K.1^31,-1*K.1^31,K.1^3,K.1^3,-1*K.1^67,-1*K.1^67,-1*K.1^43,-1*K.1^43,-1*K.1^47,-1*K.1^47,-1*K.1^55,-1*K.1^53,-1*K.1^29,-1*K.1^41,K.1^13,K.1,-1*K.1^45,K.1^13,K.1,-1*K.1^45,-1*K.1^25,-1*K.1^65,-1*K.1^53,-1*K.1^25,-1*K.1^65,-1*K.1^29,K.1^10,K.1^18,-1*K.1^42,K.1^2,-1*K.1^54,-1*K.1^10,-1*K.1^38,K.1^42,-1*K.1^14,-1*K.1^30,-1*K.1^2,-1*K.1^10,-1*K.1^18,-1*K.1^46,K.1^46,-1*K.1^54,K.1^30,-1*K.1^42,K.1^22,-1*K.1^46,K.1^18,K.1^62,K.1^10,-1*K.1^66,K.1^46,-1*K.1^26,K.1^22,K.1^62,K.1^38,-1*K.1^50,-1*K.1^38,-1*K.1^50,-1*K.1^26,K.1^50,K.1^54,-1*K.1^22,-1*K.1^66,K.1^6,K.1^14,-1*K.1^14,K.1^54,-1*K.1^2,K.1^58,-1*K.1^30,K.1^30,K.1^6,-1*K.1^6,K.1^58,K.1^66,-1*K.1^62,K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^58,-1*K.1^58,K.1^38,-1*K.1^22,K.1^42,K.1^66,K.1^26,-1*K.1^62,K.1^2,K.1^26,K.1^50]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^12,-1*K.1^28,K.1^16,K.1^48,-1*K.1^20,-1*K.1^36,K.1^8,K.1^64,-1*K.1^52,-1*K.1^4,-1*K.1^44,K.1^24,K.1^40,K.1^56,K.1^32,-1*K.1^60,-1*K.1^64,K.1^24,K.1^32,K.1^40,-1*K.1^24,K.1^52,K.1^16,-1*K.1^60,-1*K.1^52,-1*K.1^20,-1*K.1^28,-1*K.1^36,K.1^20,-1*K.1^56,-1*K.1^4,K.1^64,K.1^56,K.1^60,-1*K.1^56,K.1^36,-1*K.1^44,-1*K.1^48,K.1^44,-1*K.1^40,K.1^36,-1*K.1^32,K.1^28,K.1^52,K.1^60,-1*K.1^64,K.1^8,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^48,K.1^44,-1*K.1^40,K.1^48,K.1^4,-1*K.1^8,K.1^12,-1*K.1^16,K.1^20,-1*K.1^24,K.1^28,-1*K.1^32,K.1^40,-1*K.1^52,K.1^56,-1*K.1^36,-1*K.1^44,-1*K.1^28,K.1^32,K.1^64,-1*K.1^12,-1*K.1^4,K.1^48,-1*K.1^20,K.1^24,K.1^16,-1*K.1^60,K.1^8,K.1^58,-1*K.1^6,-1*K.1^26,K.1^2,K.1^6,K.1^10,-1*K.1^54,-1*K.1^18,-1*K.1^10,-1*K.1^26,-1*K.1^2,K.1^42,-1*K.1^66,K.1^38,-1*K.1^58,K.1^46,K.1^50,-1*K.1^22,K.1^42,-1*K.1^42,K.1^26,K.1^62,K.1^46,K.1^58,-1*K.1^66,K.1^2,-1*K.1^30,-1*K.1^46,-1*K.1^30,K.1^18,K.1^54,-1*K.1^18,K.1^26,-1*K.1^62,K.1^10,K.1^66,-1*K.1^38,-1*K.1^50,K.1^22,-1*K.1^10,-1*K.1^6,-1*K.1^2,-1*K.1^14,K.1^14,K.1^22,K.1^6,K.1^30,-1*K.1^54,K.1^18,K.1^62,-1*K.1^42,K.1^54,-1*K.1^50,-1*K.1^46,K.1^38,-1*K.1^38,K.1^66,-1*K.1^14,K.1^50,-1*K.1^62,-1*K.1^22,-1*K.1^58,K.1^14,K.1^30,-1*K.1^60,-1*K.1^56,K.1^52,-1*K.1^16,K.1^20,K.1^24,K.1^64,-1*K.1^4,-1*K.1^12,-1*K.1^44,-1*K.1^36,-1*K.1^32,-1*K.1^28,K.1^8,-1*K.1^52,K.1^16,-1*K.1^64,-1*K.1^20,K.1^4,K.1^12,K.1^20,K.1^52,K.1^44,-1*K.1^56,-1*K.1^8,-1*K.1^16,-1*K.1^48,-1*K.1^40,K.1^28,K.1^28,-1*K.1^8,K.1^44,K.1^60,-1*K.1^24,-1*K.1^48,K.1^36,-1*K.1^64,K.1^60,-1*K.1^40,K.1^36,K.1^4,-1*K.1^24,-1*K.1^32,K.1^56,K.1^12,K.1^48,K.1^40,K.1^32,K.1^27,K.1^53,K.1^53,K.1^57,K.1^57,-1*K.1^37,-1*K.1^37,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^21,-1*K.1^21,-1*K.1^49,-1*K.1^49,-1*K.1^39,-1*K.1^7,K.1^55,-1*K.1^35,-1*K.1^23,K.1^55,-1*K.1^35,-1*K.1^23,K.1^59,-1*K.1^3,-1*K.1^19,K.1^59,-1*K.1^3,-1*K.1^39,-1*K.1^7,-1*K.1^13,-1*K.1^45,-1*K.1^45,-1*K.1^41,-1*K.1^41,K.1^61,K.1^61,K.1^65,K.1^65,-1*K.1^29,-1*K.1^29,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,-1*K.1^13,-1*K.1^15,K.1^63,-1*K.1^27,K.1^19,K.1^67,-1*K.1^11,-1*K.1^47,K.1^67,-1*K.1^11,-1*K.1^43,-1*K.1^31,-1*K.1^15,-1*K.1^43,-1*K.1^31,K.1^63,-1*K.1^27,-1*K.1^47,K.1^49,K.1^45,K.1^45,-1*K.1^57,-1*K.1^57,-1*K.1^61,-1*K.1^61,K.1^33,K.1^33,K.1^29,K.1^29,K.1^5,K.1^5,K.1^9,K.1^9,K.1^49,K.1^47,-1*K.1^63,K.1^7,-1*K.1^19,K.1^35,K.1^11,K.1^47,K.1^35,K.1^11,-1*K.1^59,K.1^31,K.1^19,-1*K.1^59,K.1^31,-1*K.1^63,K.1^7,K.1^13,-1*K.1^53,-1*K.1^53,K.1^41,K.1^41,K.1^37,K.1^37,-1*K.1^65,-1*K.1^65,K.1,K.1,K.1^25,K.1^25,K.1^21,K.1^21,K.1^13,K.1^15,K.1^39,K.1^27,-1*K.1^55,-1*K.1^67,K.1^23,-1*K.1^55,-1*K.1^67,K.1^23,K.1^43,K.1^3,K.1^15,K.1^43,K.1^3,K.1^39,-1*K.1^58,-1*K.1^50,K.1^26,-1*K.1^66,K.1^14,K.1^58,K.1^30,-1*K.1^26,K.1^54,K.1^38,K.1^66,K.1^58,K.1^50,K.1^22,-1*K.1^22,K.1^14,-1*K.1^38,K.1^26,-1*K.1^46,K.1^22,-1*K.1^50,-1*K.1^6,-1*K.1^58,K.1^2,-1*K.1^22,K.1^42,-1*K.1^46,-1*K.1^6,-1*K.1^30,K.1^18,K.1^30,K.1^18,K.1^42,-1*K.1^18,-1*K.1^14,K.1^46,K.1^2,-1*K.1^62,-1*K.1^54,K.1^54,-1*K.1^14,K.1^66,-1*K.1^10,K.1^38,-1*K.1^38,-1*K.1^62,K.1^62,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^54,K.1^50,K.1^62,K.1^10,K.1^10,-1*K.1^30,K.1^46,-1*K.1^26,-1*K.1^2,-1*K.1^42,K.1^6,-1*K.1^66,-1*K.1^42,-1*K.1^18]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^20,K.1^24,-1*K.1^4,-1*K.1^12,K.1^56,-1*K.1^60,-1*K.1^36,K.1^16,K.1^64,-1*K.1^52,-1*K.1^28,K.1^40,-1*K.1^44,K.1^48,K.1^8,K.1^32,-1*K.1^16,K.1^40,K.1^8,-1*K.1^44,-1*K.1^40,-1*K.1^64,-1*K.1^4,K.1^32,K.1^64,K.1^56,K.1^24,-1*K.1^60,-1*K.1^56,-1*K.1^48,-1*K.1^52,K.1^16,K.1^48,-1*K.1^32,-1*K.1^48,K.1^60,-1*K.1^28,K.1^12,K.1^28,K.1^44,K.1^60,-1*K.1^8,-1*K.1^24,-1*K.1^64,-1*K.1^32,-1*K.1^16,-1*K.1^36,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^20,K.1^12,K.1^28,K.1^44,-1*K.1^12,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,-1*K.1^44,K.1^64,K.1^48,-1*K.1^60,-1*K.1^28,K.1^24,K.1^8,K.1^16,-1*K.1^20,-1*K.1^52,-1*K.1^12,K.1^56,K.1^40,-1*K.1^4,K.1^32,-1*K.1^36,K.1^6,-1*K.1^10,K.1^66,-1*K.1^26,K.1^10,K.1^62,K.1^22,-1*K.1^30,-1*K.1^62,K.1^66,K.1^26,-1*K.1^2,K.1^42,K.1^18,-1*K.1^6,-1*K.1^54,K.1^38,K.1^14,-1*K.1^2,K.1^2,-1*K.1^66,K.1^58,-1*K.1^54,K.1^6,K.1^42,-1*K.1^26,-1*K.1^50,K.1^54,-1*K.1^50,K.1^30,-1*K.1^22,-1*K.1^30,-1*K.1^66,-1*K.1^58,K.1^62,-1*K.1^42,-1*K.1^18,-1*K.1^38,-1*K.1^14,-1*K.1^62,-1*K.1^10,K.1^26,K.1^46,-1*K.1^46,-1*K.1^14,K.1^10,K.1^50,K.1^22,K.1^30,K.1^58,K.1^2,-1*K.1^22,-1*K.1^38,K.1^54,K.1^18,-1*K.1^18,-1*K.1^42,K.1^46,K.1^38,-1*K.1^58,K.1^14,-1*K.1^6,-1*K.1^46,K.1^50,K.1^32,-1*K.1^48,-1*K.1^64,K.1^4,-1*K.1^56,K.1^40,K.1^16,-1*K.1^52,-1*K.1^20,-1*K.1^28,-1*K.1^60,-1*K.1^8,K.1^24,-1*K.1^36,K.1^64,-1*K.1^4,-1*K.1^16,K.1^56,K.1^52,K.1^20,-1*K.1^56,-1*K.1^64,K.1^28,-1*K.1^48,K.1^36,K.1^4,K.1^12,K.1^44,-1*K.1^24,-1*K.1^24,K.1^36,K.1^28,-1*K.1^32,-1*K.1^40,K.1^12,K.1^60,-1*K.1^16,-1*K.1^32,K.1^44,K.1^60,K.1^52,-1*K.1^40,-1*K.1^8,K.1^48,K.1^20,-1*K.1^12,-1*K.1^44,K.1^8,K.1^45,K.1^43,K.1^43,-1*K.1^27,-1*K.1^27,K.1^39,K.1^39,-1*K.1^55,-1*K.1^55,-1*K.1^47,-1*K.1^47,K.1^31,K.1^31,-1*K.1^35,-1*K.1^35,K.1^59,K.1^59,-1*K.1^65,-1*K.1^57,K.1,-1*K.1^13,K.1^61,K.1,-1*K.1^13,K.1^61,K.1^53,-1*K.1^5,K.1^9,K.1^53,-1*K.1^5,-1*K.1^65,-1*K.1^57,-1*K.1^67,K.1^7,K.1^7,-1*K.1^23,-1*K.1^23,K.1^11,K.1^11,K.1^63,K.1^63,-1*K.1^3,-1*K.1^3,K.1^19,K.1^19,-1*K.1^15,-1*K.1^15,-1*K.1^67,-1*K.1^25,-1*K.1^37,-1*K.1^45,-1*K.1^9,K.1^21,K.1^41,-1*K.1^33,K.1^21,K.1^41,K.1^49,K.1^29,-1*K.1^25,K.1^49,K.1^29,-1*K.1^37,-1*K.1^45,-1*K.1^33,-1*K.1^59,-1*K.1^7,-1*K.1^7,K.1^27,K.1^27,-1*K.1^11,-1*K.1^11,K.1^55,K.1^55,K.1^3,K.1^3,-1*K.1^31,-1*K.1^31,K.1^15,K.1^15,-1*K.1^59,K.1^33,K.1^37,K.1^57,K.1^9,K.1^13,-1*K.1^41,K.1^33,K.1^13,-1*K.1^41,-1*K.1^53,-1*K.1^29,-1*K.1^9,-1*K.1^53,-1*K.1^29,K.1^37,K.1^57,K.1^67,-1*K.1^43,-1*K.1^43,K.1^23,K.1^23,-1*K.1^39,-1*K.1^39,-1*K.1^63,-1*K.1^63,K.1^47,K.1^47,-1*K.1^19,-1*K.1^19,K.1^35,K.1^35,K.1^67,K.1^25,K.1^65,K.1^45,-1*K.1,-1*K.1^21,-1*K.1^61,-1*K.1,-1*K.1^21,-1*K.1^61,-1*K.1^49,K.1^5,K.1^25,-1*K.1^49,K.1^5,K.1^65,-1*K.1^6,-1*K.1^38,-1*K.1^66,K.1^42,-1*K.1^46,K.1^6,K.1^50,K.1^66,-1*K.1^22,K.1^18,-1*K.1^42,K.1^6,K.1^38,-1*K.1^14,K.1^14,-1*K.1^46,-1*K.1^18,-1*K.1^66,K.1^54,-1*K.1^14,-1*K.1^38,-1*K.1^10,-1*K.1^6,-1*K.1^26,K.1^14,-1*K.1^2,K.1^54,-1*K.1^10,-1*K.1^50,K.1^30,K.1^50,K.1^30,-1*K.1^2,-1*K.1^30,K.1^46,-1*K.1^54,-1*K.1^26,-1*K.1^58,K.1^22,-1*K.1^22,K.1^46,-1*K.1^42,-1*K.1^62,K.1^18,-1*K.1^18,-1*K.1^58,K.1^58,-1*K.1^62,K.1^26,K.1^10,K.1^22,K.1^38,K.1^58,K.1^62,K.1^62,-1*K.1^50,-1*K.1^54,K.1^66,K.1^26,K.1^2,K.1^10,K.1^42,K.1^2,-1*K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^48,-1*K.1^44,K.1^64,K.1^56,-1*K.1^12,K.1^8,K.1^32,-1*K.1^52,-1*K.1^4,K.1^16,K.1^40,-1*K.1^28,K.1^24,-1*K.1^20,-1*K.1^60,-1*K.1^36,K.1^52,-1*K.1^28,-1*K.1^60,K.1^24,K.1^28,K.1^4,K.1^64,-1*K.1^36,-1*K.1^4,-1*K.1^12,-1*K.1^44,K.1^8,K.1^12,K.1^20,K.1^16,-1*K.1^52,-1*K.1^20,K.1^36,K.1^20,-1*K.1^8,K.1^40,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,K.1^60,K.1^44,K.1^4,K.1^36,K.1^52,K.1^32,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^48,-1*K.1^56,-1*K.1^40,-1*K.1^24,K.1^56,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^12,K.1^28,K.1^44,K.1^60,K.1^24,-1*K.1^4,-1*K.1^20,K.1^8,K.1^40,-1*K.1^44,-1*K.1^60,-1*K.1^52,K.1^48,K.1^16,K.1^56,-1*K.1^12,-1*K.1^28,K.1^64,-1*K.1^36,K.1^32,-1*K.1^62,K.1^58,-1*K.1^2,K.1^42,-1*K.1^58,-1*K.1^6,-1*K.1^46,K.1^38,K.1^6,-1*K.1^2,-1*K.1^42,K.1^66,-1*K.1^26,-1*K.1^50,K.1^62,K.1^14,-1*K.1^30,-1*K.1^54,K.1^66,-1*K.1^66,K.1^2,-1*K.1^10,K.1^14,-1*K.1^62,-1*K.1^26,K.1^42,K.1^18,-1*K.1^14,K.1^18,-1*K.1^38,K.1^46,K.1^38,K.1^2,K.1^10,-1*K.1^6,K.1^26,K.1^50,K.1^30,K.1^54,K.1^6,K.1^58,-1*K.1^42,-1*K.1^22,K.1^22,K.1^54,-1*K.1^58,-1*K.1^18,-1*K.1^46,-1*K.1^38,-1*K.1^10,-1*K.1^66,K.1^46,K.1^30,-1*K.1^14,-1*K.1^50,K.1^50,K.1^26,-1*K.1^22,-1*K.1^30,K.1^10,-1*K.1^54,K.1^62,K.1^22,-1*K.1^18,-1*K.1^36,K.1^20,K.1^4,-1*K.1^64,K.1^12,-1*K.1^28,-1*K.1^52,K.1^16,K.1^48,K.1^40,K.1^8,K.1^60,-1*K.1^44,K.1^32,-1*K.1^4,K.1^64,K.1^52,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^12,K.1^4,-1*K.1^40,K.1^20,-1*K.1^32,-1*K.1^64,-1*K.1^56,-1*K.1^24,K.1^44,K.1^44,-1*K.1^32,-1*K.1^40,K.1^36,K.1^28,-1*K.1^56,-1*K.1^8,K.1^52,K.1^36,-1*K.1^24,-1*K.1^8,-1*K.1^16,K.1^28,K.1^60,-1*K.1^20,-1*K.1^48,K.1^56,K.1^24,-1*K.1^60,-1*K.1^23,-1*K.1^25,-1*K.1^25,K.1^41,K.1^41,-1*K.1^29,-1*K.1^29,K.1^13,K.1^13,K.1^21,K.1^21,-1*K.1^37,-1*K.1^37,K.1^33,K.1^33,-1*K.1^9,-1*K.1^9,K.1^3,K.1^11,-1*K.1^67,K.1^55,-1*K.1^7,-1*K.1^67,K.1^55,-1*K.1^7,-1*K.1^15,K.1^63,-1*K.1^59,-1*K.1^15,K.1^63,K.1^3,K.1^11,K.1,-1*K.1^61,-1*K.1^61,K.1^45,K.1^45,-1*K.1^57,-1*K.1^57,-1*K.1^5,-1*K.1^5,K.1^65,K.1^65,-1*K.1^49,-1*K.1^49,K.1^53,K.1^53,K.1,K.1^43,K.1^31,K.1^23,K.1^59,-1*K.1^47,-1*K.1^27,K.1^35,-1*K.1^47,-1*K.1^27,-1*K.1^19,-1*K.1^39,K.1^43,-1*K.1^19,-1*K.1^39,K.1^31,K.1^23,K.1^35,K.1^9,K.1^61,K.1^61,-1*K.1^41,-1*K.1^41,K.1^57,K.1^57,-1*K.1^13,-1*K.1^13,-1*K.1^65,-1*K.1^65,K.1^37,K.1^37,-1*K.1^53,-1*K.1^53,K.1^9,-1*K.1^35,-1*K.1^31,-1*K.1^11,-1*K.1^59,-1*K.1^55,K.1^27,-1*K.1^35,-1*K.1^55,K.1^27,K.1^15,K.1^39,K.1^59,K.1^15,K.1^39,-1*K.1^31,-1*K.1^11,-1*K.1,K.1^25,K.1^25,-1*K.1^45,-1*K.1^45,K.1^29,K.1^29,K.1^5,K.1^5,-1*K.1^21,-1*K.1^21,K.1^49,K.1^49,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1^43,-1*K.1^3,-1*K.1^23,K.1^67,K.1^47,K.1^7,K.1^67,K.1^47,K.1^7,K.1^19,-1*K.1^63,-1*K.1^43,K.1^19,-1*K.1^63,-1*K.1^3,K.1^62,K.1^30,K.1^2,-1*K.1^26,K.1^22,-1*K.1^62,-1*K.1^18,-1*K.1^2,K.1^46,-1*K.1^50,K.1^26,-1*K.1^62,-1*K.1^30,K.1^54,-1*K.1^54,K.1^22,K.1^50,K.1^2,-1*K.1^14,K.1^54,K.1^30,K.1^58,K.1^62,K.1^42,-1*K.1^54,K.1^66,-1*K.1^14,K.1^58,K.1^18,-1*K.1^38,-1*K.1^18,-1*K.1^38,K.1^66,K.1^38,-1*K.1^22,K.1^14,K.1^42,K.1^10,-1*K.1^46,K.1^46,-1*K.1^22,K.1^26,K.1^6,-1*K.1^50,K.1^50,K.1^10,-1*K.1^10,K.1^6,-1*K.1^42,-1*K.1^58,-1*K.1^46,-1*K.1^30,-1*K.1^10,-1*K.1^6,-1*K.1^6,K.1^18,K.1^14,-1*K.1^2,-1*K.1^42,-1*K.1^66,-1*K.1^58,-1*K.1^26,-1*K.1^66,K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^48,-1*K.1^44,K.1^64,K.1^56,-1*K.1^12,K.1^8,K.1^32,-1*K.1^52,-1*K.1^4,K.1^16,K.1^40,-1*K.1^28,K.1^24,-1*K.1^20,-1*K.1^60,-1*K.1^36,K.1^52,-1*K.1^28,-1*K.1^60,K.1^24,K.1^28,K.1^4,K.1^64,-1*K.1^36,-1*K.1^4,-1*K.1^12,-1*K.1^44,K.1^8,K.1^12,K.1^20,K.1^16,-1*K.1^52,-1*K.1^20,K.1^36,K.1^20,-1*K.1^8,K.1^40,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,K.1^60,K.1^44,K.1^4,K.1^36,K.1^52,K.1^32,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^48,-1*K.1^56,-1*K.1^40,-1*K.1^24,K.1^56,-1*K.1^16,-1*K.1^32,-1*K.1^48,-1*K.1^64,K.1^12,K.1^28,K.1^44,K.1^60,K.1^24,-1*K.1^4,-1*K.1^20,K.1^8,K.1^40,-1*K.1^44,-1*K.1^60,-1*K.1^52,K.1^48,K.1^16,K.1^56,-1*K.1^12,-1*K.1^28,K.1^64,-1*K.1^36,K.1^32,K.1^62,-1*K.1^58,K.1^2,-1*K.1^42,K.1^58,K.1^6,K.1^46,-1*K.1^38,-1*K.1^6,K.1^2,K.1^42,-1*K.1^66,K.1^26,K.1^50,-1*K.1^62,-1*K.1^14,K.1^30,K.1^54,-1*K.1^66,K.1^66,-1*K.1^2,K.1^10,-1*K.1^14,K.1^62,K.1^26,-1*K.1^42,-1*K.1^18,K.1^14,-1*K.1^18,K.1^38,-1*K.1^46,-1*K.1^38,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^26,-1*K.1^50,-1*K.1^30,-1*K.1^54,-1*K.1^6,-1*K.1^58,K.1^42,K.1^22,-1*K.1^22,-1*K.1^54,K.1^58,K.1^18,K.1^46,K.1^38,K.1^10,K.1^66,-1*K.1^46,-1*K.1^30,K.1^14,K.1^50,-1*K.1^50,-1*K.1^26,K.1^22,K.1^30,-1*K.1^10,K.1^54,-1*K.1^62,-1*K.1^22,K.1^18,-1*K.1^36,K.1^20,K.1^4,-1*K.1^64,K.1^12,-1*K.1^28,-1*K.1^52,K.1^16,K.1^48,K.1^40,K.1^8,K.1^60,-1*K.1^44,K.1^32,-1*K.1^4,K.1^64,K.1^52,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^12,K.1^4,-1*K.1^40,K.1^20,-1*K.1^32,-1*K.1^64,-1*K.1^56,-1*K.1^24,K.1^44,K.1^44,-1*K.1^32,-1*K.1^40,K.1^36,K.1^28,-1*K.1^56,-1*K.1^8,K.1^52,K.1^36,-1*K.1^24,-1*K.1^8,-1*K.1^16,K.1^28,K.1^60,-1*K.1^20,-1*K.1^48,K.1^56,K.1^24,-1*K.1^60,-1*K.1^57,K.1^59,K.1^59,K.1^7,K.1^7,K.1^63,K.1^63,-1*K.1^47,-1*K.1^47,-1*K.1^55,-1*K.1^55,-1*K.1^3,-1*K.1^3,-1*K.1^67,-1*K.1^67,K.1^43,K.1^43,K.1^37,K.1^45,K.1^33,-1*K.1^21,-1*K.1^41,K.1^33,-1*K.1^21,-1*K.1^41,-1*K.1^49,-1*K.1^29,K.1^25,-1*K.1^49,-1*K.1^29,K.1^37,K.1^45,-1*K.1^35,-1*K.1^27,-1*K.1^27,K.1^11,K.1^11,-1*K.1^23,-1*K.1^23,K.1^39,K.1^39,K.1^31,K.1^31,-1*K.1^15,-1*K.1^15,K.1^19,K.1^19,-1*K.1^35,-1*K.1^9,K.1^65,K.1^57,-1*K.1^25,K.1^13,-1*K.1^61,-1*K.1,K.1^13,-1*K.1^61,-1*K.1^53,K.1^5,-1*K.1^9,-1*K.1^53,K.1^5,K.1^65,K.1^57,-1*K.1,-1*K.1^43,K.1^27,K.1^27,-1*K.1^7,-1*K.1^7,K.1^23,K.1^23,K.1^47,K.1^47,-1*K.1^31,-1*K.1^31,K.1^3,K.1^3,-1*K.1^19,-1*K.1^19,-1*K.1^43,K.1,-1*K.1^65,-1*K.1^45,K.1^25,K.1^21,K.1^61,K.1,K.1^21,K.1^61,K.1^49,-1*K.1^5,-1*K.1^25,K.1^49,-1*K.1^5,-1*K.1^65,-1*K.1^45,K.1^35,-1*K.1^59,-1*K.1^59,-1*K.1^11,-1*K.1^11,-1*K.1^63,-1*K.1^63,-1*K.1^39,-1*K.1^39,K.1^55,K.1^55,K.1^15,K.1^15,K.1^67,K.1^67,K.1^35,K.1^9,-1*K.1^37,-1*K.1^57,-1*K.1^33,-1*K.1^13,K.1^41,-1*K.1^33,-1*K.1^13,K.1^41,K.1^53,K.1^29,K.1^9,K.1^53,K.1^29,-1*K.1^37,-1*K.1^62,-1*K.1^30,-1*K.1^2,K.1^26,-1*K.1^22,K.1^62,K.1^18,K.1^2,-1*K.1^46,K.1^50,-1*K.1^26,K.1^62,K.1^30,-1*K.1^54,K.1^54,-1*K.1^22,-1*K.1^50,-1*K.1^2,K.1^14,-1*K.1^54,-1*K.1^30,-1*K.1^58,-1*K.1^62,-1*K.1^42,K.1^54,-1*K.1^66,K.1^14,-1*K.1^58,-1*K.1^18,K.1^38,K.1^18,K.1^38,-1*K.1^66,-1*K.1^38,K.1^22,-1*K.1^14,-1*K.1^42,-1*K.1^10,K.1^46,-1*K.1^46,K.1^22,-1*K.1^26,-1*K.1^6,K.1^50,-1*K.1^50,-1*K.1^10,K.1^10,-1*K.1^6,K.1^42,K.1^58,K.1^46,K.1^30,K.1^10,K.1^6,K.1^6,-1*K.1^18,-1*K.1^14,K.1^2,K.1^42,K.1^66,K.1^58,K.1^26,K.1^66,-1*K.1^38]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^20,K.1^24,-1*K.1^4,-1*K.1^12,K.1^56,-1*K.1^60,-1*K.1^36,K.1^16,K.1^64,-1*K.1^52,-1*K.1^28,K.1^40,-1*K.1^44,K.1^48,K.1^8,K.1^32,-1*K.1^16,K.1^40,K.1^8,-1*K.1^44,-1*K.1^40,-1*K.1^64,-1*K.1^4,K.1^32,K.1^64,K.1^56,K.1^24,-1*K.1^60,-1*K.1^56,-1*K.1^48,-1*K.1^52,K.1^16,K.1^48,-1*K.1^32,-1*K.1^48,K.1^60,-1*K.1^28,K.1^12,K.1^28,K.1^44,K.1^60,-1*K.1^8,-1*K.1^24,-1*K.1^64,-1*K.1^32,-1*K.1^16,-1*K.1^36,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^20,K.1^12,K.1^28,K.1^44,-1*K.1^12,K.1^52,K.1^36,K.1^20,K.1^4,-1*K.1^56,-1*K.1^40,-1*K.1^24,-1*K.1^8,-1*K.1^44,K.1^64,K.1^48,-1*K.1^60,-1*K.1^28,K.1^24,K.1^8,K.1^16,-1*K.1^20,-1*K.1^52,-1*K.1^12,K.1^56,K.1^40,-1*K.1^4,K.1^32,-1*K.1^36,-1*K.1^6,K.1^10,-1*K.1^66,K.1^26,-1*K.1^10,-1*K.1^62,-1*K.1^22,K.1^30,K.1^62,-1*K.1^66,-1*K.1^26,K.1^2,-1*K.1^42,-1*K.1^18,K.1^6,K.1^54,-1*K.1^38,-1*K.1^14,K.1^2,-1*K.1^2,K.1^66,-1*K.1^58,K.1^54,-1*K.1^6,-1*K.1^42,K.1^26,K.1^50,-1*K.1^54,K.1^50,-1*K.1^30,K.1^22,K.1^30,K.1^66,K.1^58,-1*K.1^62,K.1^42,K.1^18,K.1^38,K.1^14,K.1^62,K.1^10,-1*K.1^26,-1*K.1^46,K.1^46,K.1^14,-1*K.1^10,-1*K.1^50,-1*K.1^22,-1*K.1^30,-1*K.1^58,-1*K.1^2,K.1^22,K.1^38,-1*K.1^54,-1*K.1^18,K.1^18,K.1^42,-1*K.1^46,-1*K.1^38,K.1^58,-1*K.1^14,K.1^6,K.1^46,-1*K.1^50,K.1^32,-1*K.1^48,-1*K.1^64,K.1^4,-1*K.1^56,K.1^40,K.1^16,-1*K.1^52,-1*K.1^20,-1*K.1^28,-1*K.1^60,-1*K.1^8,K.1^24,-1*K.1^36,K.1^64,-1*K.1^4,-1*K.1^16,K.1^56,K.1^52,K.1^20,-1*K.1^56,-1*K.1^64,K.1^28,-1*K.1^48,K.1^36,K.1^4,K.1^12,K.1^44,-1*K.1^24,-1*K.1^24,K.1^36,K.1^28,-1*K.1^32,-1*K.1^40,K.1^12,K.1^60,-1*K.1^16,-1*K.1^32,K.1^44,K.1^60,K.1^52,-1*K.1^40,-1*K.1^8,K.1^48,K.1^20,-1*K.1^12,-1*K.1^44,K.1^8,K.1^11,-1*K.1^9,-1*K.1^9,-1*K.1^61,-1*K.1^61,-1*K.1^5,-1*K.1^5,K.1^21,K.1^21,K.1^13,K.1^13,K.1^65,K.1^65,K.1,K.1,-1*K.1^25,-1*K.1^25,-1*K.1^31,-1*K.1^23,-1*K.1^35,K.1^47,K.1^27,-1*K.1^35,K.1^47,K.1^27,K.1^19,K.1^39,-1*K.1^43,K.1^19,K.1^39,-1*K.1^31,-1*K.1^23,K.1^33,K.1^41,K.1^41,-1*K.1^57,-1*K.1^57,K.1^45,K.1^45,-1*K.1^29,-1*K.1^29,-1*K.1^37,-1*K.1^37,K.1^53,K.1^53,-1*K.1^49,-1*K.1^49,K.1^33,K.1^59,-1*K.1^3,-1*K.1^11,K.1^43,-1*K.1^55,K.1^7,K.1^67,-1*K.1^55,K.1^7,K.1^15,-1*K.1^63,K.1^59,K.1^15,-1*K.1^63,-1*K.1^3,-1*K.1^11,K.1^67,K.1^25,-1*K.1^41,-1*K.1^41,K.1^61,K.1^61,-1*K.1^45,-1*K.1^45,-1*K.1^21,-1*K.1^21,K.1^37,K.1^37,-1*K.1^65,-1*K.1^65,K.1^49,K.1^49,K.1^25,-1*K.1^67,K.1^3,K.1^23,-1*K.1^43,-1*K.1^47,-1*K.1^7,-1*K.1^67,-1*K.1^47,-1*K.1^7,-1*K.1^19,K.1^63,K.1^43,-1*K.1^19,K.1^63,K.1^3,K.1^23,-1*K.1^33,K.1^9,K.1^9,K.1^57,K.1^57,K.1^5,K.1^5,K.1^29,K.1^29,-1*K.1^13,-1*K.1^13,-1*K.1^53,-1*K.1^53,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^59,K.1^31,K.1^11,K.1^35,K.1^55,-1*K.1^27,K.1^35,K.1^55,-1*K.1^27,-1*K.1^15,-1*K.1^39,-1*K.1^59,-1*K.1^15,-1*K.1^39,K.1^31,K.1^6,K.1^38,K.1^66,-1*K.1^42,K.1^46,-1*K.1^6,-1*K.1^50,-1*K.1^66,K.1^22,-1*K.1^18,K.1^42,-1*K.1^6,-1*K.1^38,K.1^14,-1*K.1^14,K.1^46,K.1^18,K.1^66,-1*K.1^54,K.1^14,K.1^38,K.1^10,K.1^6,K.1^26,-1*K.1^14,K.1^2,-1*K.1^54,K.1^10,K.1^50,-1*K.1^30,-1*K.1^50,-1*K.1^30,K.1^2,K.1^30,-1*K.1^46,K.1^54,K.1^26,K.1^58,-1*K.1^22,K.1^22,-1*K.1^46,K.1^42,K.1^62,-1*K.1^18,K.1^18,K.1^58,-1*K.1^58,K.1^62,-1*K.1^26,-1*K.1^10,-1*K.1^22,-1*K.1^38,-1*K.1^58,-1*K.1^62,-1*K.1^62,K.1^50,K.1^54,-1*K.1^66,-1*K.1^26,-1*K.1^2,-1*K.1^10,-1*K.1^42,-1*K.1^2,K.1^30]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^28,-1*K.1^20,-1*K.1^60,-1*K.1^44,K.1^24,K.1^16,K.1^64,-1*K.1^36,K.1^8,K.1^32,-1*K.1^12,K.1^56,K.1^48,K.1^40,-1*K.1^52,-1*K.1^4,K.1^36,K.1^56,-1*K.1^52,K.1^48,-1*K.1^56,-1*K.1^8,-1*K.1^60,-1*K.1^4,K.1^8,K.1^24,-1*K.1^20,K.1^16,-1*K.1^24,-1*K.1^40,K.1^32,-1*K.1^36,K.1^40,K.1^4,-1*K.1^40,-1*K.1^16,-1*K.1^12,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,K.1^52,K.1^20,-1*K.1^8,K.1^4,K.1^36,K.1^64,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^28,K.1^44,K.1^12,-1*K.1^48,-1*K.1^44,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,K.1^48,K.1^8,K.1^40,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^44,K.1^24,K.1^56,-1*K.1^60,-1*K.1^4,K.1^64,K.1^22,K.1^14,-1*K.1^38,-1*K.1^50,-1*K.1^14,K.1^46,-1*K.1^58,K.1^42,-1*K.1^46,-1*K.1^38,K.1^50,K.1^30,K.1^18,K.1^66,-1*K.1^22,-1*K.1^62,-1*K.1^26,K.1^6,K.1^30,-1*K.1^30,K.1^38,-1*K.1^54,-1*K.1^62,K.1^22,K.1^18,-1*K.1^50,-1*K.1^2,K.1^62,-1*K.1^2,-1*K.1^42,K.1^58,K.1^42,K.1^38,K.1^54,K.1^46,-1*K.1^18,-1*K.1^66,K.1^26,-1*K.1^6,-1*K.1^46,K.1^14,K.1^50,-1*K.1^10,K.1^10,-1*K.1^6,-1*K.1^14,K.1^2,-1*K.1^58,-1*K.1^42,-1*K.1^54,-1*K.1^30,K.1^58,K.1^26,K.1^62,K.1^66,-1*K.1^66,-1*K.1^18,-1*K.1^10,-1*K.1^26,K.1^54,K.1^6,-1*K.1^22,K.1^10,K.1^2,-1*K.1^4,-1*K.1^40,-1*K.1^8,K.1^60,-1*K.1^24,K.1^56,-1*K.1^36,K.1^32,-1*K.1^28,-1*K.1^12,K.1^16,K.1^52,-1*K.1^20,K.1^64,K.1^8,-1*K.1^60,K.1^36,K.1^24,-1*K.1^32,K.1^28,-1*K.1^24,-1*K.1^8,K.1^12,-1*K.1^40,-1*K.1^64,K.1^60,K.1^44,-1*K.1^48,K.1^20,K.1^20,-1*K.1^64,K.1^12,K.1^4,-1*K.1^56,K.1^44,-1*K.1^16,K.1^36,K.1^4,-1*K.1^48,-1*K.1^16,-1*K.1^32,-1*K.1^56,K.1^52,K.1^40,K.1^28,-1*K.1^44,K.1^48,-1*K.1^52,K.1^29,K.1^67,K.1^67,K.1^31,K.1^31,K.1^7,K.1^7,K.1^43,K.1^43,K.1^59,K.1^59,K.1^23,K.1^23,K.1^15,K.1^15,K.1^35,K.1^35,-1*K.1^57,K.1^5,K.1^49,K.1^25,-1*K.1^65,K.1^49,K.1^25,-1*K.1^65,K.1^13,K.1^41,K.1^33,K.1^13,K.1^41,-1*K.1^57,K.1^5,-1*K.1^19,-1*K.1^3,-1*K.1^3,-1*K.1^39,-1*K.1^39,-1*K.1^63,-1*K.1^63,-1*K.1^27,-1*K.1^27,-1*K.1^11,-1*K.1^11,-1*K.1^47,-1*K.1^47,-1*K.1^55,-1*K.1^55,-1*K.1^19,-1*K.1,-1*K.1^45,-1*K.1^29,-1*K.1^33,-1*K.1^9,-1*K.1^37,K.1^53,-1*K.1^9,-1*K.1^37,-1*K.1^21,K.1^61,-1*K.1,-1*K.1^21,K.1^61,-1*K.1^45,-1*K.1^29,K.1^53,-1*K.1^35,K.1^3,K.1^3,-1*K.1^31,-1*K.1^31,K.1^63,K.1^63,-1*K.1^43,-1*K.1^43,K.1^11,K.1^11,-1*K.1^23,-1*K.1^23,K.1^55,K.1^55,-1*K.1^35,-1*K.1^53,K.1^45,-1*K.1^5,K.1^33,-1*K.1^25,K.1^37,-1*K.1^53,-1*K.1^25,K.1^37,-1*K.1^13,-1*K.1^61,-1*K.1^33,-1*K.1^13,-1*K.1^61,K.1^45,-1*K.1^5,K.1^19,-1*K.1^67,-1*K.1^67,K.1^39,K.1^39,-1*K.1^7,-1*K.1^7,K.1^27,K.1^27,-1*K.1^59,-1*K.1^59,K.1^47,K.1^47,-1*K.1^15,-1*K.1^15,K.1^19,K.1,K.1^57,K.1^29,-1*K.1^49,K.1^9,K.1^65,-1*K.1^49,K.1^9,K.1^65,K.1^21,-1*K.1^41,K.1,K.1^21,-1*K.1^41,K.1^57,-1*K.1^22,K.1^26,K.1^38,K.1^18,K.1^10,K.1^22,K.1^2,-1*K.1^38,K.1^58,K.1^66,-1*K.1^18,K.1^22,-1*K.1^26,-1*K.1^6,K.1^6,K.1^10,-1*K.1^66,K.1^38,K.1^62,-1*K.1^6,K.1^26,K.1^14,-1*K.1^22,-1*K.1^50,K.1^6,K.1^30,K.1^62,K.1^14,-1*K.1^2,-1*K.1^42,K.1^2,-1*K.1^42,K.1^30,K.1^42,-1*K.1^10,-1*K.1^62,-1*K.1^50,K.1^54,-1*K.1^58,K.1^58,-1*K.1^10,-1*K.1^18,-1*K.1^46,K.1^66,-1*K.1^66,K.1^54,-1*K.1^54,-1*K.1^46,K.1^50,-1*K.1^14,-1*K.1^58,-1*K.1^26,-1*K.1^54,K.1^46,K.1^46,-1*K.1^2,-1*K.1^62,-1*K.1^38,K.1^50,-1*K.1^30,-1*K.1^14,K.1^18,-1*K.1^30,K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^40,K.1^48,K.1^8,K.1^24,-1*K.1^44,-1*K.1^52,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^16,K.1^64,-1*K.1^32,-1*K.1^12,K.1^16,-1*K.1^20,K.1^12,K.1^60,K.1^8,K.1^64,-1*K.1^60,-1*K.1^44,K.1^48,-1*K.1^52,K.1^44,K.1^28,-1*K.1^36,K.1^32,-1*K.1^28,-1*K.1^64,K.1^28,K.1^52,K.1^56,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,-1*K.1^16,-1*K.1^48,K.1^60,-1*K.1^64,-1*K.1^32,-1*K.1^4,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^40,-1*K.1^24,-1*K.1^56,K.1^20,K.1^24,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,-1*K.1^20,-1*K.1^60,-1*K.1^28,-1*K.1^52,K.1^56,K.1^48,K.1^16,K.1^32,K.1^40,-1*K.1^36,K.1^24,-1*K.1^44,-1*K.1^12,K.1^8,K.1^64,-1*K.1^4,-1*K.1^46,-1*K.1^54,K.1^30,K.1^18,K.1^54,-1*K.1^22,K.1^10,-1*K.1^26,K.1^22,K.1^30,-1*K.1^18,-1*K.1^38,-1*K.1^50,-1*K.1^2,K.1^46,K.1^6,K.1^42,-1*K.1^62,-1*K.1^38,K.1^38,-1*K.1^30,K.1^14,K.1^6,-1*K.1^46,-1*K.1^50,K.1^18,K.1^66,-1*K.1^6,K.1^66,K.1^26,-1*K.1^10,-1*K.1^26,-1*K.1^30,-1*K.1^14,-1*K.1^22,K.1^50,K.1^2,-1*K.1^42,K.1^62,K.1^22,-1*K.1^54,-1*K.1^18,K.1^58,-1*K.1^58,K.1^62,K.1^54,-1*K.1^66,K.1^10,K.1^26,K.1^14,K.1^38,-1*K.1^10,-1*K.1^42,-1*K.1^6,-1*K.1^2,K.1^2,K.1^50,K.1^58,K.1^42,-1*K.1^14,-1*K.1^62,K.1^46,-1*K.1^58,-1*K.1^66,K.1^64,K.1^28,K.1^60,-1*K.1^8,K.1^44,-1*K.1^12,K.1^32,-1*K.1^36,K.1^40,K.1^56,-1*K.1^52,-1*K.1^16,K.1^48,-1*K.1^4,-1*K.1^60,K.1^8,-1*K.1^32,-1*K.1^44,K.1^36,-1*K.1^40,K.1^44,K.1^60,-1*K.1^56,K.1^28,K.1^4,-1*K.1^8,-1*K.1^24,K.1^20,-1*K.1^48,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^64,K.1^12,-1*K.1^24,K.1^52,-1*K.1^32,-1*K.1^64,K.1^20,K.1^52,K.1^36,K.1^12,-1*K.1^16,-1*K.1^28,-1*K.1^40,K.1^24,-1*K.1^20,K.1^16,-1*K.1^39,-1*K.1,-1*K.1,-1*K.1^37,-1*K.1^37,-1*K.1^61,-1*K.1^61,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,-1*K.1^45,-1*K.1^45,-1*K.1^53,-1*K.1^53,-1*K.1^33,-1*K.1^33,K.1^11,-1*K.1^63,-1*K.1^19,-1*K.1^43,K.1^3,-1*K.1^19,-1*K.1^43,K.1^3,-1*K.1^55,-1*K.1^27,-1*K.1^35,-1*K.1^55,-1*K.1^27,K.1^11,-1*K.1^63,K.1^49,K.1^65,K.1^65,K.1^29,K.1^29,K.1^5,K.1^5,K.1^41,K.1^41,K.1^57,K.1^57,K.1^21,K.1^21,K.1^13,K.1^13,K.1^49,K.1^67,K.1^23,K.1^39,K.1^35,K.1^59,K.1^31,-1*K.1^15,K.1^59,K.1^31,K.1^47,-1*K.1^7,K.1^67,K.1^47,-1*K.1^7,K.1^23,K.1^39,-1*K.1^15,K.1^33,-1*K.1^65,-1*K.1^65,K.1^37,K.1^37,-1*K.1^5,-1*K.1^5,K.1^25,K.1^25,-1*K.1^57,-1*K.1^57,K.1^45,K.1^45,-1*K.1^13,-1*K.1^13,K.1^33,K.1^15,-1*K.1^23,K.1^63,-1*K.1^35,K.1^43,-1*K.1^31,K.1^15,K.1^43,-1*K.1^31,K.1^55,K.1^7,K.1^35,K.1^55,K.1^7,-1*K.1^23,K.1^63,-1*K.1^49,K.1,K.1,-1*K.1^29,-1*K.1^29,K.1^61,K.1^61,-1*K.1^41,-1*K.1^41,K.1^9,K.1^9,-1*K.1^21,-1*K.1^21,K.1^53,K.1^53,-1*K.1^49,-1*K.1^67,-1*K.1^11,-1*K.1^39,K.1^19,-1*K.1^59,-1*K.1^3,K.1^19,-1*K.1^59,-1*K.1^3,-1*K.1^47,K.1^27,-1*K.1^67,-1*K.1^47,K.1^27,-1*K.1^11,K.1^46,-1*K.1^42,-1*K.1^30,-1*K.1^50,-1*K.1^58,-1*K.1^46,-1*K.1^66,K.1^30,-1*K.1^10,-1*K.1^2,K.1^50,-1*K.1^46,K.1^42,K.1^62,-1*K.1^62,-1*K.1^58,K.1^2,-1*K.1^30,-1*K.1^6,K.1^62,-1*K.1^42,-1*K.1^54,K.1^46,K.1^18,-1*K.1^62,-1*K.1^38,-1*K.1^6,-1*K.1^54,K.1^66,K.1^26,-1*K.1^66,K.1^26,-1*K.1^38,-1*K.1^26,K.1^58,K.1^6,K.1^18,-1*K.1^14,K.1^10,-1*K.1^10,K.1^58,K.1^50,K.1^22,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,K.1^22,-1*K.1^18,K.1^54,K.1^10,K.1^42,K.1^14,-1*K.1^22,-1*K.1^22,K.1^66,K.1^6,K.1^30,-1*K.1^18,K.1^38,K.1^54,-1*K.1^50,K.1^38,-1*K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^40,K.1^48,K.1^8,K.1^24,-1*K.1^44,-1*K.1^52,-1*K.1^4,K.1^32,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^12,-1*K.1^20,-1*K.1^28,K.1^16,K.1^64,-1*K.1^32,-1*K.1^12,K.1^16,-1*K.1^20,K.1^12,K.1^60,K.1^8,K.1^64,-1*K.1^60,-1*K.1^44,K.1^48,-1*K.1^52,K.1^44,K.1^28,-1*K.1^36,K.1^32,-1*K.1^28,-1*K.1^64,K.1^28,K.1^52,K.1^56,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,-1*K.1^16,-1*K.1^48,K.1^60,-1*K.1^64,-1*K.1^32,-1*K.1^4,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^40,-1*K.1^24,-1*K.1^56,K.1^20,K.1^24,K.1^36,K.1^4,-1*K.1^40,-1*K.1^8,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,-1*K.1^20,-1*K.1^60,-1*K.1^28,-1*K.1^52,K.1^56,K.1^48,K.1^16,K.1^32,K.1^40,-1*K.1^36,K.1^24,-1*K.1^44,-1*K.1^12,K.1^8,K.1^64,-1*K.1^4,K.1^46,K.1^54,-1*K.1^30,-1*K.1^18,-1*K.1^54,K.1^22,-1*K.1^10,K.1^26,-1*K.1^22,-1*K.1^30,K.1^18,K.1^38,K.1^50,K.1^2,-1*K.1^46,-1*K.1^6,-1*K.1^42,K.1^62,K.1^38,-1*K.1^38,K.1^30,-1*K.1^14,-1*K.1^6,K.1^46,K.1^50,-1*K.1^18,-1*K.1^66,K.1^6,-1*K.1^66,-1*K.1^26,K.1^10,K.1^26,K.1^30,K.1^14,K.1^22,-1*K.1^50,-1*K.1^2,K.1^42,-1*K.1^62,-1*K.1^22,K.1^54,K.1^18,-1*K.1^58,K.1^58,-1*K.1^62,-1*K.1^54,K.1^66,-1*K.1^10,-1*K.1^26,-1*K.1^14,-1*K.1^38,K.1^10,K.1^42,K.1^6,K.1^2,-1*K.1^2,-1*K.1^50,-1*K.1^58,-1*K.1^42,K.1^14,K.1^62,-1*K.1^46,K.1^58,K.1^66,K.1^64,K.1^28,K.1^60,-1*K.1^8,K.1^44,-1*K.1^12,K.1^32,-1*K.1^36,K.1^40,K.1^56,-1*K.1^52,-1*K.1^16,K.1^48,-1*K.1^4,-1*K.1^60,K.1^8,-1*K.1^32,-1*K.1^44,K.1^36,-1*K.1^40,K.1^44,K.1^60,-1*K.1^56,K.1^28,K.1^4,-1*K.1^8,-1*K.1^24,K.1^20,-1*K.1^48,-1*K.1^48,K.1^4,-1*K.1^56,-1*K.1^64,K.1^12,-1*K.1^24,K.1^52,-1*K.1^32,-1*K.1^64,K.1^20,K.1^52,K.1^36,K.1^12,-1*K.1^16,-1*K.1^28,-1*K.1^40,K.1^24,-1*K.1^20,K.1^16,K.1^5,K.1^35,K.1^35,-1*K.1^3,-1*K.1^3,-1*K.1^27,-1*K.1^27,K.1^59,K.1^59,K.1^43,K.1^43,-1*K.1^11,-1*K.1^11,-1*K.1^19,-1*K.1^19,K.1^67,K.1^67,K.1^45,K.1^29,-1*K.1^53,K.1^9,K.1^37,-1*K.1^53,K.1^9,K.1^37,K.1^21,-1*K.1^61,K.1,K.1^21,-1*K.1^61,K.1^45,K.1^29,K.1^15,K.1^31,K.1^31,-1*K.1^63,-1*K.1^63,-1*K.1^39,-1*K.1^39,K.1^7,K.1^7,K.1^23,K.1^23,-1*K.1^55,-1*K.1^55,-1*K.1^47,-1*K.1^47,K.1^15,-1*K.1^33,K.1^57,-1*K.1^5,-1*K.1,-1*K.1^25,K.1^65,-1*K.1^49,-1*K.1^25,K.1^65,-1*K.1^13,-1*K.1^41,-1*K.1^33,-1*K.1^13,-1*K.1^41,K.1^57,-1*K.1^5,-1*K.1^49,-1*K.1^67,-1*K.1^31,-1*K.1^31,K.1^3,K.1^3,K.1^39,K.1^39,-1*K.1^59,-1*K.1^59,-1*K.1^23,-1*K.1^23,K.1^11,K.1^11,K.1^47,K.1^47,-1*K.1^67,K.1^49,-1*K.1^57,-1*K.1^29,K.1,-1*K.1^9,-1*K.1^65,K.1^49,-1*K.1^9,-1*K.1^65,-1*K.1^21,K.1^41,-1*K.1,-1*K.1^21,K.1^41,-1*K.1^57,-1*K.1^29,-1*K.1^15,-1*K.1^35,-1*K.1^35,K.1^63,K.1^63,K.1^27,K.1^27,-1*K.1^7,-1*K.1^7,-1*K.1^43,-1*K.1^43,K.1^55,K.1^55,K.1^19,K.1^19,-1*K.1^15,K.1^33,-1*K.1^45,K.1^5,K.1^53,K.1^25,-1*K.1^37,K.1^53,K.1^25,-1*K.1^37,K.1^13,K.1^61,K.1^33,K.1^13,K.1^61,-1*K.1^45,-1*K.1^46,K.1^42,K.1^30,K.1^50,K.1^58,K.1^46,K.1^66,-1*K.1^30,K.1^10,K.1^2,-1*K.1^50,K.1^46,-1*K.1^42,-1*K.1^62,K.1^62,K.1^58,-1*K.1^2,K.1^30,K.1^6,-1*K.1^62,K.1^42,K.1^54,-1*K.1^46,-1*K.1^18,K.1^62,K.1^38,K.1^6,K.1^54,-1*K.1^66,-1*K.1^26,K.1^66,-1*K.1^26,K.1^38,K.1^26,-1*K.1^58,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^10,K.1^10,-1*K.1^58,-1*K.1^50,-1*K.1^22,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^22,K.1^18,-1*K.1^54,-1*K.1^10,-1*K.1^42,-1*K.1^14,K.1^22,K.1^22,-1*K.1^66,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^38,-1*K.1^54,K.1^50,-1*K.1^38,K.1^26]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^28,-1*K.1^20,-1*K.1^60,-1*K.1^44,K.1^24,K.1^16,K.1^64,-1*K.1^36,K.1^8,K.1^32,-1*K.1^12,K.1^56,K.1^48,K.1^40,-1*K.1^52,-1*K.1^4,K.1^36,K.1^56,-1*K.1^52,K.1^48,-1*K.1^56,-1*K.1^8,-1*K.1^60,-1*K.1^4,K.1^8,K.1^24,-1*K.1^20,K.1^16,-1*K.1^24,-1*K.1^40,K.1^32,-1*K.1^36,K.1^40,K.1^4,-1*K.1^40,-1*K.1^16,-1*K.1^12,K.1^44,K.1^12,-1*K.1^48,-1*K.1^16,K.1^52,K.1^20,-1*K.1^8,K.1^4,K.1^36,K.1^64,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^28,K.1^44,K.1^12,-1*K.1^48,-1*K.1^44,-1*K.1^32,-1*K.1^64,K.1^28,K.1^60,-1*K.1^24,-1*K.1^56,K.1^20,K.1^52,K.1^48,K.1^8,K.1^40,K.1^16,-1*K.1^12,-1*K.1^20,-1*K.1^52,-1*K.1^36,-1*K.1^28,K.1^32,-1*K.1^44,K.1^24,K.1^56,-1*K.1^60,-1*K.1^4,K.1^64,-1*K.1^22,-1*K.1^14,K.1^38,K.1^50,K.1^14,-1*K.1^46,K.1^58,-1*K.1^42,K.1^46,K.1^38,-1*K.1^50,-1*K.1^30,-1*K.1^18,-1*K.1^66,K.1^22,K.1^62,K.1^26,-1*K.1^6,-1*K.1^30,K.1^30,-1*K.1^38,K.1^54,K.1^62,-1*K.1^22,-1*K.1^18,K.1^50,K.1^2,-1*K.1^62,K.1^2,K.1^42,-1*K.1^58,-1*K.1^42,-1*K.1^38,-1*K.1^54,-1*K.1^46,K.1^18,K.1^66,-1*K.1^26,K.1^6,K.1^46,-1*K.1^14,-1*K.1^50,K.1^10,-1*K.1^10,K.1^6,K.1^14,-1*K.1^2,K.1^58,K.1^42,K.1^54,K.1^30,-1*K.1^58,-1*K.1^26,-1*K.1^62,-1*K.1^66,K.1^66,K.1^18,K.1^10,K.1^26,-1*K.1^54,-1*K.1^6,K.1^22,-1*K.1^10,-1*K.1^2,-1*K.1^4,-1*K.1^40,-1*K.1^8,K.1^60,-1*K.1^24,K.1^56,-1*K.1^36,K.1^32,-1*K.1^28,-1*K.1^12,K.1^16,K.1^52,-1*K.1^20,K.1^64,K.1^8,-1*K.1^60,K.1^36,K.1^24,-1*K.1^32,K.1^28,-1*K.1^24,-1*K.1^8,K.1^12,-1*K.1^40,-1*K.1^64,K.1^60,K.1^44,-1*K.1^48,K.1^20,K.1^20,-1*K.1^64,K.1^12,K.1^4,-1*K.1^56,K.1^44,-1*K.1^16,K.1^36,K.1^4,-1*K.1^48,-1*K.1^16,-1*K.1^32,-1*K.1^56,K.1^52,K.1^40,K.1^28,-1*K.1^44,K.1^48,-1*K.1^52,-1*K.1^63,-1*K.1^33,-1*K.1^33,K.1^65,K.1^65,K.1^41,K.1^41,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,K.1^57,K.1^57,K.1^49,K.1^49,-1*K.1,-1*K.1,-1*K.1^23,-1*K.1^39,K.1^15,-1*K.1^59,-1*K.1^31,K.1^15,-1*K.1^59,-1*K.1^31,-1*K.1^47,K.1^7,-1*K.1^67,-1*K.1^47,K.1^7,-1*K.1^23,-1*K.1^39,-1*K.1^53,-1*K.1^37,-1*K.1^37,K.1^5,K.1^5,K.1^29,K.1^29,-1*K.1^61,-1*K.1^61,-1*K.1^45,-1*K.1^45,K.1^13,K.1^13,K.1^21,K.1^21,-1*K.1^53,K.1^35,-1*K.1^11,K.1^63,K.1^67,K.1^43,-1*K.1^3,K.1^19,K.1^43,-1*K.1^3,K.1^55,K.1^27,K.1^35,K.1^55,K.1^27,-1*K.1^11,K.1^63,K.1^19,K.1,K.1^37,K.1^37,-1*K.1^65,-1*K.1^65,-1*K.1^29,-1*K.1^29,K.1^9,K.1^9,K.1^45,K.1^45,-1*K.1^57,-1*K.1^57,-1*K.1^21,-1*K.1^21,K.1,-1*K.1^19,K.1^11,K.1^39,-1*K.1^67,K.1^59,K.1^3,-1*K.1^19,K.1^59,K.1^3,K.1^47,-1*K.1^27,K.1^67,K.1^47,-1*K.1^27,K.1^11,K.1^39,K.1^53,K.1^33,K.1^33,-1*K.1^5,-1*K.1^5,-1*K.1^41,-1*K.1^41,K.1^61,K.1^61,K.1^25,K.1^25,-1*K.1^13,-1*K.1^13,-1*K.1^49,-1*K.1^49,K.1^53,-1*K.1^35,K.1^23,-1*K.1^63,-1*K.1^15,-1*K.1^43,K.1^31,-1*K.1^15,-1*K.1^43,K.1^31,-1*K.1^55,-1*K.1^7,-1*K.1^35,-1*K.1^55,-1*K.1^7,K.1^23,K.1^22,-1*K.1^26,-1*K.1^38,-1*K.1^18,-1*K.1^10,-1*K.1^22,-1*K.1^2,K.1^38,-1*K.1^58,-1*K.1^66,K.1^18,-1*K.1^22,K.1^26,K.1^6,-1*K.1^6,-1*K.1^10,K.1^66,-1*K.1^38,-1*K.1^62,K.1^6,-1*K.1^26,-1*K.1^14,K.1^22,K.1^50,-1*K.1^6,-1*K.1^30,-1*K.1^62,-1*K.1^14,K.1^2,K.1^42,-1*K.1^2,K.1^42,-1*K.1^30,-1*K.1^42,K.1^10,K.1^62,K.1^50,-1*K.1^54,K.1^58,-1*K.1^58,K.1^10,K.1^18,K.1^46,-1*K.1^66,K.1^66,-1*K.1^54,K.1^54,K.1^46,-1*K.1^50,K.1^14,K.1^58,K.1^26,K.1^54,-1*K.1^46,-1*K.1^46,K.1^2,K.1^62,K.1^38,-1*K.1^50,K.1^30,K.1^14,-1*K.1^18,K.1^30,-1*K.1^42]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^36,K.1^16,K.1^48,K.1^8,-1*K.1^60,K.1^40,K.1^24,K.1^56,-1*K.1^20,-1*K.1^12,K.1^64,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^28,-1*K.1^44,-1*K.1^56,-1*K.1^4,-1*K.1^28,-1*K.1^52,K.1^4,K.1^20,K.1^48,-1*K.1^44,-1*K.1^20,-1*K.1^60,K.1^16,K.1^40,K.1^60,-1*K.1^32,-1*K.1^12,K.1^56,K.1^32,K.1^44,-1*K.1^32,-1*K.1^40,K.1^64,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^28,-1*K.1^16,K.1^20,K.1^44,-1*K.1^56,K.1^24,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,-1*K.1^36,-1*K.1^8,-1*K.1^64,K.1^52,K.1^8,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^52,-1*K.1^20,K.1^32,K.1^40,K.1^64,K.1^16,-1*K.1^28,K.1^56,-1*K.1^36,-1*K.1^12,K.1^8,-1*K.1^60,-1*K.1^4,K.1^48,-1*K.1^44,K.1^24,K.1^38,-1*K.1^18,K.1^10,K.1^6,K.1^18,K.1^30,-1*K.1^26,-1*K.1^54,-1*K.1^30,K.1^10,-1*K.1^6,-1*K.1^58,-1*K.1^62,-1*K.1^46,-1*K.1^38,K.1^2,K.1^14,-1*K.1^66,-1*K.1^58,K.1^58,-1*K.1^10,K.1^50,K.1^2,K.1^38,-1*K.1^62,K.1^6,K.1^22,-1*K.1^2,K.1^22,K.1^54,K.1^26,-1*K.1^54,-1*K.1^10,-1*K.1^50,K.1^30,K.1^62,K.1^46,-1*K.1^14,K.1^66,-1*K.1^30,-1*K.1^18,-1*K.1^6,-1*K.1^42,K.1^42,K.1^66,K.1^18,-1*K.1^22,-1*K.1^26,K.1^54,K.1^50,K.1^58,K.1^26,-1*K.1^14,-1*K.1^2,-1*K.1^46,K.1^46,K.1^62,-1*K.1^42,K.1^14,-1*K.1^50,-1*K.1^66,-1*K.1^38,K.1^42,-1*K.1^22,-1*K.1^44,-1*K.1^32,K.1^20,-1*K.1^48,K.1^60,-1*K.1^4,K.1^56,-1*K.1^12,-1*K.1^36,K.1^64,K.1^40,K.1^28,K.1^16,K.1^24,-1*K.1^20,K.1^48,-1*K.1^56,-1*K.1^60,K.1^12,K.1^36,K.1^60,K.1^20,-1*K.1^64,-1*K.1^32,-1*K.1^24,-1*K.1^48,-1*K.1^8,K.1^52,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^44,K.1^4,-1*K.1^8,-1*K.1^40,-1*K.1^56,K.1^44,K.1^52,-1*K.1^40,K.1^12,K.1^4,K.1^28,K.1^32,K.1^36,K.1^8,-1*K.1^52,-1*K.1^28,K.1^13,-1*K.1^23,-1*K.1^23,-1*K.1^35,-1*K.1^35,-1*K.1^43,-1*K.1^43,-1*K.1^31,-1*K.1^31,K.1^3,K.1^3,K.1^15,K.1^15,K.1^63,K.1^63,K.1^11,K.1^11,-1*K.1^49,K.1^21,-1*K.1^29,-1*K.1^37,-1*K.1,-1*K.1^29,-1*K.1^37,-1*K.1,-1*K.1^41,K.1^9,K.1^57,-1*K.1^41,K.1^9,-1*K.1^49,K.1^21,K.1^39,-1*K.1^67,-1*K.1^67,-1*K.1^55,-1*K.1^55,-1*K.1^47,-1*K.1^47,-1*K.1^59,-1*K.1^59,-1*K.1^19,-1*K.1^19,-1*K.1^7,-1*K.1^7,K.1^27,K.1^27,K.1^39,K.1^45,-1*K.1^53,-1*K.1^13,-1*K.1^57,-1*K.1^65,K.1^33,K.1^5,-1*K.1^65,K.1^33,-1*K.1^61,-1*K.1^25,K.1^45,-1*K.1^61,-1*K.1^25,-1*K.1^53,-1*K.1^13,K.1^5,-1*K.1^11,K.1^67,K.1^67,K.1^35,K.1^35,K.1^47,K.1^47,K.1^31,K.1^31,K.1^19,K.1^19,-1*K.1^15,-1*K.1^15,-1*K.1^27,-1*K.1^27,-1*K.1^11,-1*K.1^5,K.1^53,-1*K.1^21,K.1^57,K.1^37,-1*K.1^33,-1*K.1^5,K.1^37,-1*K.1^33,K.1^41,K.1^25,-1*K.1^57,K.1^41,K.1^25,K.1^53,-1*K.1^21,-1*K.1^39,K.1^23,K.1^23,K.1^55,K.1^55,K.1^43,K.1^43,K.1^59,K.1^59,-1*K.1^3,-1*K.1^3,K.1^7,K.1^7,-1*K.1^63,-1*K.1^63,-1*K.1^39,-1*K.1^45,K.1^49,K.1^13,K.1^29,K.1^65,K.1,K.1^29,K.1^65,K.1,K.1^61,-1*K.1^9,-1*K.1^45,K.1^61,-1*K.1^9,K.1^49,-1*K.1^38,-1*K.1^14,-1*K.1^10,-1*K.1^62,K.1^42,K.1^38,-1*K.1^22,K.1^10,K.1^26,-1*K.1^46,K.1^62,K.1^38,K.1^14,K.1^66,-1*K.1^66,K.1^42,K.1^46,-1*K.1^10,-1*K.1^2,K.1^66,-1*K.1^14,-1*K.1^18,-1*K.1^38,K.1^6,-1*K.1^66,-1*K.1^58,-1*K.1^2,-1*K.1^18,K.1^22,K.1^54,-1*K.1^22,K.1^54,-1*K.1^58,-1*K.1^54,-1*K.1^42,K.1^2,K.1^6,-1*K.1^50,-1*K.1^26,K.1^26,-1*K.1^42,K.1^62,-1*K.1^30,-1*K.1^46,K.1^46,-1*K.1^50,K.1^50,-1*K.1^30,-1*K.1^6,K.1^18,-1*K.1^26,K.1^14,K.1^50,K.1^30,K.1^30,K.1^22,K.1^2,K.1^10,-1*K.1^6,K.1^58,K.1^18,-1*K.1^62,K.1^58,-1*K.1^54]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^32,-1*K.1^52,-1*K.1^20,-1*K.1^60,K.1^8,-1*K.1^28,-1*K.1^44,-1*K.1^12,K.1^48,K.1^56,-1*K.1^4,K.1^64,K.1^16,-1*K.1^36,K.1^40,K.1^24,K.1^12,K.1^64,K.1^40,K.1^16,-1*K.1^64,-1*K.1^48,-1*K.1^20,K.1^24,K.1^48,K.1^8,-1*K.1^52,-1*K.1^28,-1*K.1^8,K.1^36,K.1^56,-1*K.1^12,-1*K.1^36,-1*K.1^24,K.1^36,K.1^28,-1*K.1^4,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^40,K.1^52,-1*K.1^48,-1*K.1^24,K.1^12,-1*K.1^44,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,K.1^32,K.1^60,K.1^4,-1*K.1^16,-1*K.1^60,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^16,K.1^48,-1*K.1^36,-1*K.1^28,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^12,K.1^32,K.1^56,-1*K.1^60,K.1^8,K.1^64,-1*K.1^20,K.1^24,-1*K.1^44,-1*K.1^30,K.1^50,-1*K.1^58,-1*K.1^62,-1*K.1^50,-1*K.1^38,K.1^42,K.1^14,K.1^38,-1*K.1^58,K.1^62,K.1^10,K.1^6,K.1^22,K.1^30,-1*K.1^66,-1*K.1^54,K.1^2,K.1^10,-1*K.1^10,K.1^58,-1*K.1^18,-1*K.1^66,-1*K.1^30,K.1^6,-1*K.1^62,-1*K.1^46,K.1^66,-1*K.1^46,-1*K.1^14,-1*K.1^42,K.1^14,K.1^58,K.1^18,-1*K.1^38,-1*K.1^6,-1*K.1^22,K.1^54,-1*K.1^2,K.1^38,K.1^50,K.1^62,K.1^26,-1*K.1^26,-1*K.1^2,-1*K.1^50,K.1^46,K.1^42,-1*K.1^14,-1*K.1^18,-1*K.1^10,-1*K.1^42,K.1^54,K.1^66,K.1^22,-1*K.1^22,-1*K.1^6,K.1^26,-1*K.1^54,K.1^18,K.1^2,K.1^30,-1*K.1^26,K.1^46,K.1^24,K.1^36,-1*K.1^48,K.1^20,-1*K.1^8,K.1^64,-1*K.1^12,K.1^56,K.1^32,-1*K.1^4,-1*K.1^28,-1*K.1^40,-1*K.1^52,-1*K.1^44,K.1^48,-1*K.1^20,K.1^12,K.1^8,-1*K.1^56,-1*K.1^32,-1*K.1^8,-1*K.1^48,K.1^4,K.1^36,K.1^44,K.1^20,K.1^60,-1*K.1^16,K.1^52,K.1^52,K.1^44,K.1^4,-1*K.1^24,-1*K.1^64,K.1^60,K.1^28,K.1^12,-1*K.1^24,-1*K.1^16,K.1^28,-1*K.1^56,-1*K.1^64,-1*K.1^40,-1*K.1^36,-1*K.1^32,-1*K.1^60,K.1^16,K.1^40,-1*K.1^55,K.1^45,K.1^45,K.1^33,K.1^33,K.1^25,K.1^25,K.1^37,K.1^37,-1*K.1^65,-1*K.1^65,-1*K.1^53,-1*K.1^53,-1*K.1^5,-1*K.1^5,-1*K.1^57,-1*K.1^57,K.1^19,-1*K.1^47,K.1^39,K.1^31,K.1^67,K.1^39,K.1^31,K.1^67,K.1^27,-1*K.1^59,-1*K.1^11,K.1^27,-1*K.1^59,K.1^19,-1*K.1^47,-1*K.1^29,K.1,K.1,K.1^13,K.1^13,K.1^21,K.1^21,K.1^9,K.1^9,K.1^49,K.1^49,K.1^61,K.1^61,-1*K.1^41,-1*K.1^41,-1*K.1^29,-1*K.1^23,K.1^15,K.1^55,K.1^11,K.1^3,-1*K.1^35,-1*K.1^63,K.1^3,-1*K.1^35,K.1^7,K.1^43,-1*K.1^23,K.1^7,K.1^43,K.1^15,K.1^55,-1*K.1^63,K.1^57,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,-1*K.1^21,-1*K.1^21,-1*K.1^37,-1*K.1^37,-1*K.1^49,-1*K.1^49,K.1^53,K.1^53,K.1^41,K.1^41,K.1^57,K.1^63,-1*K.1^15,K.1^47,-1*K.1^11,-1*K.1^31,K.1^35,K.1^63,-1*K.1^31,K.1^35,-1*K.1^27,-1*K.1^43,K.1^11,-1*K.1^27,-1*K.1^43,-1*K.1^15,K.1^47,K.1^29,-1*K.1^45,-1*K.1^45,-1*K.1^13,-1*K.1^13,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,K.1^65,K.1^65,-1*K.1^61,-1*K.1^61,K.1^5,K.1^5,K.1^29,K.1^23,-1*K.1^19,-1*K.1^55,-1*K.1^39,-1*K.1^3,-1*K.1^67,-1*K.1^39,-1*K.1^3,-1*K.1^67,-1*K.1^7,K.1^59,K.1^23,-1*K.1^7,K.1^59,-1*K.1^19,K.1^30,K.1^54,K.1^58,K.1^6,-1*K.1^26,-1*K.1^30,K.1^46,-1*K.1^58,-1*K.1^42,K.1^22,-1*K.1^6,-1*K.1^30,-1*K.1^54,-1*K.1^2,K.1^2,-1*K.1^26,-1*K.1^22,K.1^58,K.1^66,-1*K.1^2,K.1^54,K.1^50,K.1^30,-1*K.1^62,K.1^2,K.1^10,K.1^66,K.1^50,-1*K.1^46,-1*K.1^14,K.1^46,-1*K.1^14,K.1^10,K.1^14,K.1^26,-1*K.1^66,-1*K.1^62,K.1^18,K.1^42,-1*K.1^42,K.1^26,-1*K.1^6,K.1^38,K.1^22,-1*K.1^22,K.1^18,-1*K.1^18,K.1^38,K.1^62,-1*K.1^50,K.1^42,-1*K.1^54,-1*K.1^18,-1*K.1^38,-1*K.1^38,-1*K.1^46,-1*K.1^66,-1*K.1^58,K.1^62,-1*K.1^10,-1*K.1^50,K.1^6,-1*K.1^10,K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^32,-1*K.1^52,-1*K.1^20,-1*K.1^60,K.1^8,-1*K.1^28,-1*K.1^44,-1*K.1^12,K.1^48,K.1^56,-1*K.1^4,K.1^64,K.1^16,-1*K.1^36,K.1^40,K.1^24,K.1^12,K.1^64,K.1^40,K.1^16,-1*K.1^64,-1*K.1^48,-1*K.1^20,K.1^24,K.1^48,K.1^8,-1*K.1^52,-1*K.1^28,-1*K.1^8,K.1^36,K.1^56,-1*K.1^12,-1*K.1^36,-1*K.1^24,K.1^36,K.1^28,-1*K.1^4,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^40,K.1^52,-1*K.1^48,-1*K.1^24,K.1^12,-1*K.1^44,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,K.1^32,K.1^60,K.1^4,-1*K.1^16,-1*K.1^60,-1*K.1^56,K.1^44,-1*K.1^32,K.1^20,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^16,K.1^48,-1*K.1^36,-1*K.1^28,-1*K.1^4,-1*K.1^52,K.1^40,-1*K.1^12,K.1^32,K.1^56,-1*K.1^60,K.1^8,K.1^64,-1*K.1^20,K.1^24,-1*K.1^44,K.1^30,-1*K.1^50,K.1^58,K.1^62,K.1^50,K.1^38,-1*K.1^42,-1*K.1^14,-1*K.1^38,K.1^58,-1*K.1^62,-1*K.1^10,-1*K.1^6,-1*K.1^22,-1*K.1^30,K.1^66,K.1^54,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^58,K.1^18,K.1^66,K.1^30,-1*K.1^6,K.1^62,K.1^46,-1*K.1^66,K.1^46,K.1^14,K.1^42,-1*K.1^14,-1*K.1^58,-1*K.1^18,K.1^38,K.1^6,K.1^22,-1*K.1^54,K.1^2,-1*K.1^38,-1*K.1^50,-1*K.1^62,-1*K.1^26,K.1^26,K.1^2,K.1^50,-1*K.1^46,-1*K.1^42,K.1^14,K.1^18,K.1^10,K.1^42,-1*K.1^54,-1*K.1^66,-1*K.1^22,K.1^22,K.1^6,-1*K.1^26,K.1^54,-1*K.1^18,-1*K.1^2,-1*K.1^30,K.1^26,-1*K.1^46,K.1^24,K.1^36,-1*K.1^48,K.1^20,-1*K.1^8,K.1^64,-1*K.1^12,K.1^56,K.1^32,-1*K.1^4,-1*K.1^28,-1*K.1^40,-1*K.1^52,-1*K.1^44,K.1^48,-1*K.1^20,K.1^12,K.1^8,-1*K.1^56,-1*K.1^32,-1*K.1^8,-1*K.1^48,K.1^4,K.1^36,K.1^44,K.1^20,K.1^60,-1*K.1^16,K.1^52,K.1^52,K.1^44,K.1^4,-1*K.1^24,-1*K.1^64,K.1^60,K.1^28,K.1^12,-1*K.1^24,-1*K.1^16,K.1^28,-1*K.1^56,-1*K.1^64,-1*K.1^40,-1*K.1^36,-1*K.1^32,-1*K.1^60,K.1^16,K.1^40,K.1^21,K.1^11,K.1^11,-1*K.1^67,-1*K.1^67,-1*K.1^59,-1*K.1^59,K.1^3,K.1^3,-1*K.1^31,-1*K.1^31,-1*K.1^19,-1*K.1^19,K.1^39,K.1^39,-1*K.1^23,-1*K.1^23,K.1^53,K.1^13,-1*K.1^5,K.1^65,-1*K.1^33,-1*K.1^5,K.1^65,-1*K.1^33,K.1^61,K.1^25,-1*K.1^45,K.1^61,K.1^25,K.1^53,K.1^13,K.1^63,-1*K.1^35,-1*K.1^35,-1*K.1^47,-1*K.1^47,-1*K.1^55,-1*K.1^55,-1*K.1^43,-1*K.1^43,K.1^15,K.1^15,K.1^27,K.1^27,-1*K.1^7,-1*K.1^7,K.1^63,-1*K.1^57,K.1^49,-1*K.1^21,K.1^45,K.1^37,K.1,K.1^29,K.1^37,K.1,K.1^41,-1*K.1^9,-1*K.1^57,K.1^41,-1*K.1^9,K.1^49,-1*K.1^21,K.1^29,K.1^23,K.1^35,K.1^35,K.1^67,K.1^67,K.1^55,K.1^55,-1*K.1^3,-1*K.1^3,-1*K.1^15,-1*K.1^15,K.1^19,K.1^19,K.1^7,K.1^7,K.1^23,-1*K.1^29,-1*K.1^49,-1*K.1^13,-1*K.1^45,-1*K.1^65,-1*K.1,-1*K.1^29,-1*K.1^65,-1*K.1,-1*K.1^61,K.1^9,K.1^45,-1*K.1^61,K.1^9,-1*K.1^49,-1*K.1^13,-1*K.1^63,-1*K.1^11,-1*K.1^11,K.1^47,K.1^47,K.1^59,K.1^59,K.1^43,K.1^43,K.1^31,K.1^31,-1*K.1^27,-1*K.1^27,-1*K.1^39,-1*K.1^39,-1*K.1^63,K.1^57,-1*K.1^53,K.1^21,K.1^5,-1*K.1^37,K.1^33,K.1^5,-1*K.1^37,K.1^33,-1*K.1^41,-1*K.1^25,K.1^57,-1*K.1^41,-1*K.1^25,-1*K.1^53,-1*K.1^30,-1*K.1^54,-1*K.1^58,-1*K.1^6,K.1^26,K.1^30,-1*K.1^46,K.1^58,K.1^42,-1*K.1^22,K.1^6,K.1^30,K.1^54,K.1^2,-1*K.1^2,K.1^26,K.1^22,-1*K.1^58,-1*K.1^66,K.1^2,-1*K.1^54,-1*K.1^50,-1*K.1^30,K.1^62,-1*K.1^2,-1*K.1^10,-1*K.1^66,-1*K.1^50,K.1^46,K.1^14,-1*K.1^46,K.1^14,-1*K.1^10,-1*K.1^14,-1*K.1^26,K.1^66,K.1^62,-1*K.1^18,-1*K.1^42,K.1^42,-1*K.1^26,K.1^6,-1*K.1^38,-1*K.1^22,K.1^22,-1*K.1^18,K.1^18,-1*K.1^38,-1*K.1^62,K.1^50,-1*K.1^42,K.1^54,K.1^18,K.1^38,K.1^38,K.1^46,K.1^66,K.1^58,-1*K.1^62,K.1^10,K.1^50,-1*K.1^6,K.1^10,-1*K.1^14]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^36,K.1^16,K.1^48,K.1^8,-1*K.1^60,K.1^40,K.1^24,K.1^56,-1*K.1^20,-1*K.1^12,K.1^64,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^28,-1*K.1^44,-1*K.1^56,-1*K.1^4,-1*K.1^28,-1*K.1^52,K.1^4,K.1^20,K.1^48,-1*K.1^44,-1*K.1^20,-1*K.1^60,K.1^16,K.1^40,K.1^60,-1*K.1^32,-1*K.1^12,K.1^56,K.1^32,K.1^44,-1*K.1^32,-1*K.1^40,K.1^64,-1*K.1^8,-1*K.1^64,K.1^52,-1*K.1^40,K.1^28,-1*K.1^16,K.1^20,K.1^44,-1*K.1^56,K.1^24,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,-1*K.1^36,-1*K.1^8,-1*K.1^64,K.1^52,K.1^8,K.1^12,-1*K.1^24,K.1^36,-1*K.1^48,K.1^60,K.1^4,-1*K.1^16,K.1^28,-1*K.1^52,-1*K.1^20,K.1^32,K.1^40,K.1^64,K.1^16,-1*K.1^28,K.1^56,-1*K.1^36,-1*K.1^12,K.1^8,-1*K.1^60,-1*K.1^4,K.1^48,-1*K.1^44,K.1^24,-1*K.1^38,K.1^18,-1*K.1^10,-1*K.1^6,-1*K.1^18,-1*K.1^30,K.1^26,K.1^54,K.1^30,-1*K.1^10,K.1^6,K.1^58,K.1^62,K.1^46,K.1^38,-1*K.1^2,-1*K.1^14,K.1^66,K.1^58,-1*K.1^58,K.1^10,-1*K.1^50,-1*K.1^2,-1*K.1^38,K.1^62,-1*K.1^6,-1*K.1^22,K.1^2,-1*K.1^22,-1*K.1^54,-1*K.1^26,K.1^54,K.1^10,K.1^50,-1*K.1^30,-1*K.1^62,-1*K.1^46,K.1^14,-1*K.1^66,K.1^30,K.1^18,K.1^6,K.1^42,-1*K.1^42,-1*K.1^66,-1*K.1^18,K.1^22,K.1^26,-1*K.1^54,-1*K.1^50,-1*K.1^58,-1*K.1^26,K.1^14,K.1^2,K.1^46,-1*K.1^46,-1*K.1^62,K.1^42,-1*K.1^14,K.1^50,K.1^66,K.1^38,-1*K.1^42,K.1^22,-1*K.1^44,-1*K.1^32,K.1^20,-1*K.1^48,K.1^60,-1*K.1^4,K.1^56,-1*K.1^12,-1*K.1^36,K.1^64,K.1^40,K.1^28,K.1^16,K.1^24,-1*K.1^20,K.1^48,-1*K.1^56,-1*K.1^60,K.1^12,K.1^36,K.1^60,K.1^20,-1*K.1^64,-1*K.1^32,-1*K.1^24,-1*K.1^48,-1*K.1^8,K.1^52,-1*K.1^16,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^44,K.1^4,-1*K.1^8,-1*K.1^40,-1*K.1^56,K.1^44,K.1^52,-1*K.1^40,K.1^12,K.1^4,K.1^28,K.1^32,K.1^36,K.1^8,-1*K.1^52,-1*K.1^28,-1*K.1^47,-1*K.1^57,-1*K.1^57,K.1,K.1,K.1^9,K.1^9,-1*K.1^65,-1*K.1^65,K.1^37,K.1^37,K.1^49,K.1^49,-1*K.1^29,-1*K.1^29,K.1^45,K.1^45,-1*K.1^15,-1*K.1^55,K.1^63,-1*K.1^3,K.1^35,K.1^63,-1*K.1^3,K.1^35,-1*K.1^7,-1*K.1^43,K.1^23,-1*K.1^7,-1*K.1^43,-1*K.1^15,-1*K.1^55,-1*K.1^5,K.1^33,K.1^33,K.1^21,K.1^21,K.1^13,K.1^13,K.1^25,K.1^25,-1*K.1^53,-1*K.1^53,-1*K.1^41,-1*K.1^41,K.1^61,K.1^61,-1*K.1^5,K.1^11,-1*K.1^19,K.1^47,-1*K.1^23,-1*K.1^31,-1*K.1^67,-1*K.1^39,-1*K.1^31,-1*K.1^67,-1*K.1^27,K.1^59,K.1^11,-1*K.1^27,K.1^59,-1*K.1^19,K.1^47,-1*K.1^39,-1*K.1^45,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,-1*K.1^13,-1*K.1^13,K.1^65,K.1^65,K.1^53,K.1^53,-1*K.1^49,-1*K.1^49,-1*K.1^61,-1*K.1^61,-1*K.1^45,K.1^39,K.1^19,K.1^55,K.1^23,K.1^3,K.1^67,K.1^39,K.1^3,K.1^67,K.1^7,-1*K.1^59,-1*K.1^23,K.1^7,-1*K.1^59,K.1^19,K.1^55,K.1^5,K.1^57,K.1^57,-1*K.1^21,-1*K.1^21,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,-1*K.1^37,-1*K.1^37,K.1^41,K.1^41,K.1^29,K.1^29,K.1^5,-1*K.1^11,K.1^15,-1*K.1^47,-1*K.1^63,K.1^31,-1*K.1^35,-1*K.1^63,K.1^31,-1*K.1^35,K.1^27,K.1^43,-1*K.1^11,K.1^27,K.1^43,K.1^15,K.1^38,K.1^14,K.1^10,K.1^62,-1*K.1^42,-1*K.1^38,K.1^22,-1*K.1^10,-1*K.1^26,K.1^46,-1*K.1^62,-1*K.1^38,-1*K.1^14,-1*K.1^66,K.1^66,-1*K.1^42,-1*K.1^46,K.1^10,K.1^2,-1*K.1^66,K.1^14,K.1^18,K.1^38,-1*K.1^6,K.1^66,K.1^58,K.1^2,K.1^18,-1*K.1^22,-1*K.1^54,K.1^22,-1*K.1^54,K.1^58,K.1^54,K.1^42,-1*K.1^2,-1*K.1^6,K.1^50,K.1^26,-1*K.1^26,K.1^42,-1*K.1^62,K.1^30,K.1^46,-1*K.1^46,K.1^50,-1*K.1^50,K.1^30,K.1^6,-1*K.1^18,K.1^26,-1*K.1^14,-1*K.1^50,-1*K.1^30,-1*K.1^30,-1*K.1^22,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^58,-1*K.1^18,K.1^62,-1*K.1^58,K.1^54]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^44,-1*K.1^12,-1*K.1^36,K.1^40,-1*K.1^28,K.1^64,-1*K.1^52,K.1^8,K.1^32,-1*K.1^60,K.1^48,-1*K.1^20,K.1^56,K.1^24,-1*K.1^4,K.1^16,-1*K.1^8,-1*K.1^20,-1*K.1^4,K.1^56,K.1^20,-1*K.1^32,-1*K.1^36,K.1^16,K.1^32,-1*K.1^28,-1*K.1^12,K.1^64,K.1^28,-1*K.1^24,-1*K.1^60,K.1^8,K.1^24,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^48,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,K.1^4,K.1^12,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^52,K.1^60,K.1^52,K.1^44,K.1^36,-1*K.1^44,-1*K.1^40,-1*K.1^48,-1*K.1^56,K.1^40,K.1^60,K.1^52,K.1^44,K.1^36,K.1^28,K.1^20,K.1^12,K.1^4,K.1^56,K.1^32,K.1^24,K.1^64,K.1^48,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^44,-1*K.1^60,K.1^40,-1*K.1^28,-1*K.1^20,-1*K.1^36,K.1^16,-1*K.1^52,K.1^54,K.1^22,K.1^50,K.1^30,-1*K.1^22,K.1^14,K.1^62,K.1^66,-1*K.1^14,K.1^50,-1*K.1^30,-1*K.1^18,-1*K.1^38,K.1^26,-1*K.1^54,K.1^10,-1*K.1^2,-1*K.1^58,-1*K.1^18,K.1^18,-1*K.1^50,-1*K.1^46,K.1^10,K.1^54,-1*K.1^38,K.1^30,-1*K.1^42,-1*K.1^10,-1*K.1^42,-1*K.1^66,-1*K.1^62,K.1^66,-1*K.1^50,K.1^46,K.1^14,K.1^38,-1*K.1^26,K.1^2,K.1^58,-1*K.1^14,K.1^22,-1*K.1^30,K.1^6,-1*K.1^6,K.1^58,-1*K.1^22,K.1^42,K.1^62,-1*K.1^66,-1*K.1^46,K.1^18,-1*K.1^62,K.1^2,-1*K.1^10,K.1^26,-1*K.1^26,K.1^38,K.1^6,-1*K.1^2,K.1^46,-1*K.1^58,-1*K.1^54,-1*K.1^6,K.1^42,K.1^16,-1*K.1^24,-1*K.1^32,K.1^36,K.1^28,-1*K.1^20,K.1^8,-1*K.1^60,-1*K.1^44,K.1^48,K.1^64,K.1^4,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^36,-1*K.1^8,-1*K.1^28,K.1^60,K.1^44,K.1^28,-1*K.1^32,-1*K.1^48,-1*K.1^24,K.1^52,K.1^36,-1*K.1^40,-1*K.1^56,K.1^12,K.1^12,K.1^52,-1*K.1^48,-1*K.1^16,K.1^20,-1*K.1^40,-1*K.1^64,-1*K.1^8,-1*K.1^16,-1*K.1^56,-1*K.1^64,K.1^60,K.1^20,K.1^4,K.1^24,K.1^44,K.1^40,K.1^56,-1*K.1^4,-1*K.1^65,-1*K.1^47,-1*K.1^47,K.1^39,K.1^39,-1*K.1^11,-1*K.1^11,K.1^19,K.1^19,-1*K.1^15,-1*K.1^15,K.1^7,K.1^7,-1*K.1^43,-1*K.1^43,-1*K.1^55,-1*K.1^55,-1*K.1^41,K.1^37,K.1^9,K.1^49,K.1^5,K.1^9,K.1^49,K.1^5,-1*K.1,-1*K.1^45,-1*K.1^13,-1*K.1,-1*K.1^45,-1*K.1^41,K.1^37,-1*K.1^59,K.1^63,K.1^63,K.1^3,K.1^3,-1*K.1^31,-1*K.1^31,K.1^23,K.1^23,-1*K.1^27,-1*K.1^27,K.1^35,K.1^35,K.1^67,K.1^67,-1*K.1^59,K.1^21,-1*K.1^61,K.1^65,K.1^13,K.1^53,-1*K.1^29,-1*K.1^25,K.1^53,-1*K.1^29,K.1^33,-1*K.1^57,K.1^21,K.1^33,-1*K.1^57,-1*K.1^61,K.1^65,-1*K.1^25,K.1^55,-1*K.1^63,-1*K.1^63,-1*K.1^39,-1*K.1^39,K.1^31,K.1^31,-1*K.1^19,-1*K.1^19,K.1^27,K.1^27,-1*K.1^7,-1*K.1^7,-1*K.1^67,-1*K.1^67,K.1^55,K.1^25,K.1^61,-1*K.1^37,-1*K.1^13,-1*K.1^49,K.1^29,K.1^25,-1*K.1^49,K.1^29,K.1,K.1^57,K.1^13,K.1,K.1^57,K.1^61,-1*K.1^37,K.1^59,K.1^47,K.1^47,-1*K.1^3,-1*K.1^3,K.1^11,K.1^11,-1*K.1^23,-1*K.1^23,K.1^15,K.1^15,-1*K.1^35,-1*K.1^35,K.1^43,K.1^43,K.1^59,-1*K.1^21,K.1^41,-1*K.1^65,-1*K.1^9,-1*K.1^53,-1*K.1^5,-1*K.1^9,-1*K.1^53,-1*K.1^5,-1*K.1^33,K.1^45,-1*K.1^21,-1*K.1^33,K.1^45,K.1^41,-1*K.1^54,K.1^2,-1*K.1^50,-1*K.1^38,-1*K.1^6,K.1^54,K.1^42,K.1^50,-1*K.1^62,K.1^26,K.1^38,K.1^54,-1*K.1^2,K.1^58,-1*K.1^58,-1*K.1^6,-1*K.1^26,-1*K.1^50,-1*K.1^10,K.1^58,K.1^2,K.1^22,-1*K.1^54,K.1^30,-1*K.1^58,-1*K.1^18,-1*K.1^10,K.1^22,-1*K.1^42,-1*K.1^66,K.1^42,-1*K.1^66,-1*K.1^18,K.1^66,K.1^6,K.1^10,K.1^30,K.1^46,K.1^62,-1*K.1^62,K.1^6,K.1^38,-1*K.1^14,K.1^26,-1*K.1^26,K.1^46,-1*K.1^46,-1*K.1^14,-1*K.1^30,-1*K.1^22,K.1^62,-1*K.1^2,-1*K.1^46,K.1^14,K.1^14,-1*K.1^42,K.1^10,K.1^50,-1*K.1^30,K.1^18,-1*K.1^22,-1*K.1^38,K.1^18,K.1^66]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^24,K.1^56,K.1^32,-1*K.1^28,K.1^40,-1*K.1^4,K.1^16,-1*K.1^60,-1*K.1^36,K.1^8,-1*K.1^20,K.1^48,-1*K.1^12,-1*K.1^44,K.1^64,-1*K.1^52,K.1^60,K.1^48,K.1^64,-1*K.1^12,-1*K.1^48,K.1^36,K.1^32,-1*K.1^52,-1*K.1^36,K.1^40,K.1^56,-1*K.1^4,-1*K.1^40,K.1^44,K.1^8,-1*K.1^60,-1*K.1^44,K.1^52,K.1^44,K.1^4,-1*K.1^20,K.1^28,K.1^20,K.1^12,K.1^4,-1*K.1^64,-1*K.1^56,K.1^36,K.1^52,K.1^60,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,K.1^24,K.1^28,K.1^20,K.1^12,-1*K.1^28,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,-1*K.1^12,-1*K.1^36,-1*K.1^44,-1*K.1^4,-1*K.1^20,K.1^56,K.1^64,-1*K.1^60,K.1^24,K.1^8,-1*K.1^28,K.1^40,K.1^48,K.1^32,-1*K.1^52,K.1^16,-1*K.1^14,-1*K.1^46,-1*K.1^18,-1*K.1^38,K.1^46,-1*K.1^54,-1*K.1^6,-1*K.1^2,K.1^54,-1*K.1^18,K.1^38,K.1^50,K.1^30,-1*K.1^42,K.1^14,-1*K.1^58,K.1^66,K.1^10,K.1^50,-1*K.1^50,K.1^18,K.1^22,-1*K.1^58,-1*K.1^14,K.1^30,-1*K.1^38,K.1^26,K.1^58,K.1^26,K.1^2,K.1^6,-1*K.1^2,K.1^18,-1*K.1^22,-1*K.1^54,-1*K.1^30,K.1^42,-1*K.1^66,-1*K.1^10,K.1^54,-1*K.1^46,K.1^38,-1*K.1^62,K.1^62,-1*K.1^10,K.1^46,-1*K.1^26,-1*K.1^6,K.1^2,K.1^22,-1*K.1^50,K.1^6,-1*K.1^66,K.1^58,-1*K.1^42,K.1^42,-1*K.1^30,-1*K.1^62,K.1^66,-1*K.1^22,K.1^10,K.1^14,K.1^62,-1*K.1^26,-1*K.1^52,K.1^44,K.1^36,-1*K.1^32,-1*K.1^40,K.1^48,-1*K.1^60,K.1^8,K.1^24,-1*K.1^20,-1*K.1^4,-1*K.1^64,K.1^56,K.1^16,-1*K.1^36,K.1^32,K.1^60,K.1^40,-1*K.1^8,-1*K.1^24,-1*K.1^40,K.1^36,K.1^20,K.1^44,-1*K.1^16,-1*K.1^32,K.1^28,K.1^12,-1*K.1^56,-1*K.1^56,-1*K.1^16,K.1^20,K.1^52,-1*K.1^48,K.1^28,K.1^4,K.1^60,K.1^52,K.1^12,K.1^4,-1*K.1^8,-1*K.1^48,-1*K.1^64,-1*K.1^44,-1*K.1^24,-1*K.1^28,-1*K.1^12,K.1^64,K.1^3,K.1^21,K.1^21,-1*K.1^29,-1*K.1^29,K.1^57,K.1^57,-1*K.1^49,-1*K.1^49,K.1^53,K.1^53,-1*K.1^61,-1*K.1^61,K.1^25,K.1^25,K.1^13,K.1^13,K.1^27,-1*K.1^31,-1*K.1^59,-1*K.1^19,-1*K.1^63,-1*K.1^59,-1*K.1^19,-1*K.1^63,K.1^67,K.1^23,K.1^55,K.1^67,K.1^23,K.1^27,-1*K.1^31,K.1^9,-1*K.1^5,-1*K.1^5,-1*K.1^65,-1*K.1^65,K.1^37,K.1^37,-1*K.1^45,-1*K.1^45,K.1^41,K.1^41,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,K.1^9,-1*K.1^47,K.1^7,-1*K.1^3,-1*K.1^55,-1*K.1^15,K.1^39,K.1^43,-1*K.1^15,K.1^39,-1*K.1^35,K.1^11,-1*K.1^47,-1*K.1^35,K.1^11,K.1^7,-1*K.1^3,K.1^43,-1*K.1^13,K.1^5,K.1^5,K.1^29,K.1^29,-1*K.1^37,-1*K.1^37,K.1^49,K.1^49,-1*K.1^41,-1*K.1^41,K.1^61,K.1^61,K.1,K.1,-1*K.1^13,-1*K.1^43,-1*K.1^7,K.1^31,K.1^55,K.1^19,-1*K.1^39,-1*K.1^43,K.1^19,-1*K.1^39,-1*K.1^67,-1*K.1^11,-1*K.1^55,-1*K.1^67,-1*K.1^11,-1*K.1^7,K.1^31,-1*K.1^9,-1*K.1^21,-1*K.1^21,K.1^65,K.1^65,-1*K.1^57,-1*K.1^57,K.1^45,K.1^45,-1*K.1^53,-1*K.1^53,K.1^33,K.1^33,-1*K.1^25,-1*K.1^25,-1*K.1^9,K.1^47,-1*K.1^27,K.1^3,K.1^59,K.1^15,K.1^63,K.1^59,K.1^15,K.1^63,K.1^35,-1*K.1^23,K.1^47,K.1^35,-1*K.1^23,-1*K.1^27,K.1^14,-1*K.1^66,K.1^18,K.1^30,K.1^62,-1*K.1^14,-1*K.1^26,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^30,-1*K.1^14,K.1^66,-1*K.1^10,K.1^10,K.1^62,K.1^42,K.1^18,K.1^58,-1*K.1^10,-1*K.1^66,-1*K.1^46,K.1^14,-1*K.1^38,K.1^10,K.1^50,K.1^58,-1*K.1^46,K.1^26,K.1^2,-1*K.1^26,K.1^2,K.1^50,-1*K.1^2,-1*K.1^62,-1*K.1^58,-1*K.1^38,-1*K.1^22,-1*K.1^6,K.1^6,-1*K.1^62,-1*K.1^30,K.1^54,-1*K.1^42,K.1^42,-1*K.1^22,K.1^22,K.1^54,K.1^38,K.1^46,-1*K.1^6,K.1^66,K.1^22,-1*K.1^54,-1*K.1^54,K.1^26,-1*K.1^58,-1*K.1^18,K.1^38,-1*K.1^50,K.1^46,K.1^30,-1*K.1^50,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^24,K.1^56,K.1^32,-1*K.1^28,K.1^40,-1*K.1^4,K.1^16,-1*K.1^60,-1*K.1^36,K.1^8,-1*K.1^20,K.1^48,-1*K.1^12,-1*K.1^44,K.1^64,-1*K.1^52,K.1^60,K.1^48,K.1^64,-1*K.1^12,-1*K.1^48,K.1^36,K.1^32,-1*K.1^52,-1*K.1^36,K.1^40,K.1^56,-1*K.1^4,-1*K.1^40,K.1^44,K.1^8,-1*K.1^60,-1*K.1^44,K.1^52,K.1^44,K.1^4,-1*K.1^20,K.1^28,K.1^20,K.1^12,K.1^4,-1*K.1^64,-1*K.1^56,K.1^36,K.1^52,K.1^60,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,K.1^24,K.1^28,K.1^20,K.1^12,-1*K.1^28,-1*K.1^8,-1*K.1^16,-1*K.1^24,-1*K.1^32,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,-1*K.1^12,-1*K.1^36,-1*K.1^44,-1*K.1^4,-1*K.1^20,K.1^56,K.1^64,-1*K.1^60,K.1^24,K.1^8,-1*K.1^28,K.1^40,K.1^48,K.1^32,-1*K.1^52,K.1^16,K.1^14,K.1^46,K.1^18,K.1^38,-1*K.1^46,K.1^54,K.1^6,K.1^2,-1*K.1^54,K.1^18,-1*K.1^38,-1*K.1^50,-1*K.1^30,K.1^42,-1*K.1^14,K.1^58,-1*K.1^66,-1*K.1^10,-1*K.1^50,K.1^50,-1*K.1^18,-1*K.1^22,K.1^58,K.1^14,-1*K.1^30,K.1^38,-1*K.1^26,-1*K.1^58,-1*K.1^26,-1*K.1^2,-1*K.1^6,K.1^2,-1*K.1^18,K.1^22,K.1^54,K.1^30,-1*K.1^42,K.1^66,K.1^10,-1*K.1^54,K.1^46,-1*K.1^38,K.1^62,-1*K.1^62,K.1^10,-1*K.1^46,K.1^26,K.1^6,-1*K.1^2,-1*K.1^22,K.1^50,-1*K.1^6,K.1^66,-1*K.1^58,K.1^42,-1*K.1^42,K.1^30,K.1^62,-1*K.1^66,K.1^22,-1*K.1^10,-1*K.1^14,-1*K.1^62,K.1^26,-1*K.1^52,K.1^44,K.1^36,-1*K.1^32,-1*K.1^40,K.1^48,-1*K.1^60,K.1^8,K.1^24,-1*K.1^20,-1*K.1^4,-1*K.1^64,K.1^56,K.1^16,-1*K.1^36,K.1^32,K.1^60,K.1^40,-1*K.1^8,-1*K.1^24,-1*K.1^40,K.1^36,K.1^20,K.1^44,-1*K.1^16,-1*K.1^32,K.1^28,K.1^12,-1*K.1^56,-1*K.1^56,-1*K.1^16,K.1^20,K.1^52,-1*K.1^48,K.1^28,K.1^4,K.1^60,K.1^52,K.1^12,K.1^4,-1*K.1^8,-1*K.1^48,-1*K.1^64,-1*K.1^44,-1*K.1^24,-1*K.1^28,-1*K.1^12,K.1^64,K.1^37,-1*K.1^55,-1*K.1^55,K.1^63,K.1^63,K.1^23,K.1^23,-1*K.1^15,-1*K.1^15,K.1^19,K.1^19,-1*K.1^27,-1*K.1^27,-1*K.1^59,-1*K.1^59,-1*K.1^47,-1*K.1^47,K.1^61,-1*K.1^65,K.1^25,-1*K.1^53,K.1^29,K.1^25,-1*K.1^53,K.1^29,-1*K.1^33,K.1^57,-1*K.1^21,-1*K.1^33,K.1^57,K.1^61,-1*K.1^65,-1*K.1^43,K.1^39,K.1^39,-1*K.1^31,-1*K.1^31,K.1^3,K.1^3,-1*K.1^11,-1*K.1^11,K.1^7,K.1^7,K.1^67,K.1^67,K.1^35,K.1^35,-1*K.1^43,K.1^13,K.1^41,-1*K.1^37,K.1^21,-1*K.1^49,-1*K.1^5,-1*K.1^9,-1*K.1^49,-1*K.1^5,K.1,K.1^45,K.1^13,K.1,K.1^45,K.1^41,-1*K.1^37,-1*K.1^9,K.1^47,-1*K.1^39,-1*K.1^39,-1*K.1^63,-1*K.1^63,-1*K.1^3,-1*K.1^3,K.1^15,K.1^15,-1*K.1^7,-1*K.1^7,K.1^27,K.1^27,-1*K.1^35,-1*K.1^35,K.1^47,K.1^9,-1*K.1^41,K.1^65,-1*K.1^21,K.1^53,K.1^5,K.1^9,K.1^53,K.1^5,K.1^33,-1*K.1^45,K.1^21,K.1^33,-1*K.1^45,-1*K.1^41,K.1^65,K.1^43,K.1^55,K.1^55,K.1^31,K.1^31,-1*K.1^23,-1*K.1^23,K.1^11,K.1^11,-1*K.1^19,-1*K.1^19,-1*K.1^67,-1*K.1^67,K.1^59,K.1^59,K.1^43,-1*K.1^13,-1*K.1^61,K.1^37,-1*K.1^25,K.1^49,-1*K.1^29,-1*K.1^25,K.1^49,-1*K.1^29,-1*K.1,-1*K.1^57,-1*K.1^13,-1*K.1,-1*K.1^57,-1*K.1^61,-1*K.1^14,K.1^66,-1*K.1^18,-1*K.1^30,-1*K.1^62,K.1^14,K.1^26,K.1^18,-1*K.1^6,K.1^42,K.1^30,K.1^14,-1*K.1^66,K.1^10,-1*K.1^10,-1*K.1^62,-1*K.1^42,-1*K.1^18,-1*K.1^58,K.1^10,K.1^66,K.1^46,-1*K.1^14,K.1^38,-1*K.1^10,-1*K.1^50,-1*K.1^58,K.1^46,-1*K.1^26,-1*K.1^2,K.1^26,-1*K.1^2,-1*K.1^50,K.1^2,K.1^62,K.1^58,K.1^38,K.1^22,K.1^6,-1*K.1^6,K.1^62,K.1^30,-1*K.1^54,K.1^42,-1*K.1^42,K.1^22,-1*K.1^22,-1*K.1^54,-1*K.1^38,-1*K.1^46,K.1^6,-1*K.1^66,-1*K.1^22,K.1^54,K.1^54,-1*K.1^26,K.1^58,K.1^18,-1*K.1^38,K.1^50,-1*K.1^46,-1*K.1^30,K.1^50,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^44,-1*K.1^12,-1*K.1^36,K.1^40,-1*K.1^28,K.1^64,-1*K.1^52,K.1^8,K.1^32,-1*K.1^60,K.1^48,-1*K.1^20,K.1^56,K.1^24,-1*K.1^4,K.1^16,-1*K.1^8,-1*K.1^20,-1*K.1^4,K.1^56,K.1^20,-1*K.1^32,-1*K.1^36,K.1^16,K.1^32,-1*K.1^28,-1*K.1^12,K.1^64,K.1^28,-1*K.1^24,-1*K.1^60,K.1^8,K.1^24,-1*K.1^16,-1*K.1^24,-1*K.1^64,K.1^48,-1*K.1^40,-1*K.1^48,-1*K.1^56,-1*K.1^64,K.1^4,K.1^12,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^52,K.1^60,K.1^52,K.1^44,K.1^36,-1*K.1^44,-1*K.1^40,-1*K.1^48,-1*K.1^56,K.1^40,K.1^60,K.1^52,K.1^44,K.1^36,K.1^28,K.1^20,K.1^12,K.1^4,K.1^56,K.1^32,K.1^24,K.1^64,K.1^48,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^44,-1*K.1^60,K.1^40,-1*K.1^28,-1*K.1^20,-1*K.1^36,K.1^16,-1*K.1^52,-1*K.1^54,-1*K.1^22,-1*K.1^50,-1*K.1^30,K.1^22,-1*K.1^14,-1*K.1^62,-1*K.1^66,K.1^14,-1*K.1^50,K.1^30,K.1^18,K.1^38,-1*K.1^26,K.1^54,-1*K.1^10,K.1^2,K.1^58,K.1^18,-1*K.1^18,K.1^50,K.1^46,-1*K.1^10,-1*K.1^54,K.1^38,-1*K.1^30,K.1^42,K.1^10,K.1^42,K.1^66,K.1^62,-1*K.1^66,K.1^50,-1*K.1^46,-1*K.1^14,-1*K.1^38,K.1^26,-1*K.1^2,-1*K.1^58,K.1^14,-1*K.1^22,K.1^30,-1*K.1^6,K.1^6,-1*K.1^58,K.1^22,-1*K.1^42,-1*K.1^62,K.1^66,K.1^46,-1*K.1^18,K.1^62,-1*K.1^2,K.1^10,-1*K.1^26,K.1^26,-1*K.1^38,-1*K.1^6,K.1^2,-1*K.1^46,K.1^58,K.1^54,K.1^6,-1*K.1^42,K.1^16,-1*K.1^24,-1*K.1^32,K.1^36,K.1^28,-1*K.1^20,K.1^8,-1*K.1^60,-1*K.1^44,K.1^48,K.1^64,K.1^4,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^36,-1*K.1^8,-1*K.1^28,K.1^60,K.1^44,K.1^28,-1*K.1^32,-1*K.1^48,-1*K.1^24,K.1^52,K.1^36,-1*K.1^40,-1*K.1^56,K.1^12,K.1^12,K.1^52,-1*K.1^48,-1*K.1^16,K.1^20,-1*K.1^40,-1*K.1^64,-1*K.1^8,-1*K.1^16,-1*K.1^56,-1*K.1^64,K.1^60,K.1^20,K.1^4,K.1^24,K.1^44,K.1^40,K.1^56,-1*K.1^4,-1*K.1^31,K.1^13,K.1^13,-1*K.1^5,-1*K.1^5,-1*K.1^45,-1*K.1^45,K.1^53,K.1^53,-1*K.1^49,-1*K.1^49,K.1^41,K.1^41,K.1^9,K.1^9,K.1^21,K.1^21,-1*K.1^7,K.1^3,-1*K.1^43,K.1^15,-1*K.1^39,-1*K.1^43,K.1^15,-1*K.1^39,K.1^35,-1*K.1^11,K.1^47,K.1^35,-1*K.1^11,-1*K.1^7,K.1^3,K.1^25,-1*K.1^29,-1*K.1^29,K.1^37,K.1^37,-1*K.1^65,-1*K.1^65,K.1^57,K.1^57,-1*K.1^61,-1*K.1^61,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,K.1^25,-1*K.1^55,-1*K.1^27,K.1^31,-1*K.1^47,K.1^19,K.1^63,K.1^59,K.1^19,K.1^63,-1*K.1^67,-1*K.1^23,-1*K.1^55,-1*K.1^67,-1*K.1^23,-1*K.1^27,K.1^31,K.1^59,-1*K.1^21,K.1^29,K.1^29,K.1^5,K.1^5,K.1^65,K.1^65,-1*K.1^53,-1*K.1^53,K.1^61,K.1^61,-1*K.1^41,-1*K.1^41,K.1^33,K.1^33,-1*K.1^21,-1*K.1^59,K.1^27,-1*K.1^3,K.1^47,-1*K.1^15,-1*K.1^63,-1*K.1^59,-1*K.1^15,-1*K.1^63,-1*K.1^35,K.1^23,-1*K.1^47,-1*K.1^35,K.1^23,K.1^27,-1*K.1^3,-1*K.1^25,-1*K.1^13,-1*K.1^13,-1*K.1^37,-1*K.1^37,K.1^45,K.1^45,-1*K.1^57,-1*K.1^57,K.1^49,K.1^49,K.1,K.1,-1*K.1^9,-1*K.1^9,-1*K.1^25,K.1^55,K.1^7,-1*K.1^31,K.1^43,-1*K.1^19,K.1^39,K.1^43,-1*K.1^19,K.1^39,K.1^67,K.1^11,K.1^55,K.1^67,K.1^11,K.1^7,K.1^54,-1*K.1^2,K.1^50,K.1^38,K.1^6,-1*K.1^54,-1*K.1^42,-1*K.1^50,K.1^62,-1*K.1^26,-1*K.1^38,-1*K.1^54,K.1^2,-1*K.1^58,K.1^58,K.1^6,K.1^26,K.1^50,K.1^10,-1*K.1^58,-1*K.1^2,-1*K.1^22,K.1^54,-1*K.1^30,K.1^58,K.1^18,K.1^10,-1*K.1^22,K.1^42,K.1^66,-1*K.1^42,K.1^66,K.1^18,-1*K.1^66,-1*K.1^6,-1*K.1^10,-1*K.1^30,-1*K.1^46,-1*K.1^62,K.1^62,-1*K.1^6,-1*K.1^38,K.1^14,-1*K.1^26,K.1^26,-1*K.1^46,K.1^46,K.1^14,K.1^30,K.1^22,-1*K.1^62,K.1^2,K.1^46,-1*K.1^14,-1*K.1^14,K.1^42,-1*K.1^10,-1*K.1^50,K.1^30,-1*K.1^18,K.1^22,K.1^38,-1*K.1^18,-1*K.1^66]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^52,K.1^8,K.1^24,-1*K.1^4,K.1^64,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^44,K.1^40,K.1^32,-1*K.1^36,-1*K.1^60,K.1^16,K.1^48,K.1^56,K.1^28,-1*K.1^36,K.1^48,-1*K.1^60,K.1^36,K.1^44,K.1^24,K.1^56,-1*K.1^44,K.1^64,K.1^8,-1*K.1^20,-1*K.1^64,-1*K.1^16,K.1^40,-1*K.1^28,K.1^16,-1*K.1^56,-1*K.1^16,K.1^20,K.1^32,K.1^4,-1*K.1^32,K.1^60,K.1^20,-1*K.1^48,-1*K.1^8,K.1^44,-1*K.1^56,K.1^28,-1*K.1^12,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^52,K.1^4,-1*K.1^32,K.1^60,-1*K.1^4,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,-1*K.1^60,-1*K.1^44,K.1^16,-1*K.1^20,K.1^32,K.1^8,K.1^48,-1*K.1^28,-1*K.1^52,K.1^40,-1*K.1^4,K.1^64,-1*K.1^36,K.1^24,K.1^56,-1*K.1^12,-1*K.1^2,-1*K.1^26,-1*K.1^22,K.1^54,K.1^26,-1*K.1^66,K.1^30,K.1^10,K.1^66,-1*K.1^22,-1*K.1^54,K.1^46,-1*K.1^14,-1*K.1^6,K.1^2,K.1^18,-1*K.1^58,-1*K.1^50,K.1^46,-1*K.1^46,K.1^22,K.1^42,K.1^18,-1*K.1^2,-1*K.1^14,K.1^54,K.1^62,-1*K.1^18,K.1^62,-1*K.1^10,-1*K.1^30,K.1^10,K.1^22,-1*K.1^42,-1*K.1^66,K.1^14,K.1^6,K.1^58,K.1^50,K.1^66,-1*K.1^26,-1*K.1^54,K.1^38,-1*K.1^38,K.1^50,K.1^26,-1*K.1^62,K.1^30,-1*K.1^10,K.1^42,-1*K.1^46,-1*K.1^30,K.1^58,-1*K.1^18,-1*K.1^6,K.1^6,K.1^14,K.1^38,-1*K.1^58,-1*K.1^42,-1*K.1^50,K.1^2,-1*K.1^38,-1*K.1^62,K.1^56,-1*K.1^16,K.1^44,-1*K.1^24,-1*K.1^64,-1*K.1^36,-1*K.1^28,K.1^40,-1*K.1^52,K.1^32,-1*K.1^20,-1*K.1^48,K.1^8,-1*K.1^12,-1*K.1^44,K.1^24,K.1^28,K.1^64,-1*K.1^40,K.1^52,-1*K.1^64,K.1^44,-1*K.1^32,-1*K.1^16,K.1^12,-1*K.1^24,K.1^4,K.1^60,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^56,K.1^36,K.1^4,K.1^20,K.1^28,-1*K.1^56,K.1^60,K.1^20,-1*K.1^40,K.1^36,-1*K.1^48,K.1^16,K.1^52,-1*K.1^4,-1*K.1^60,K.1^48,-1*K.1^49,K.1^3,K.1^3,-1*K.1^43,-1*K.1^43,K.1^47,K.1^47,-1*K.1^7,-1*K.1^7,K.1^27,K.1^27,-1*K.1^67,-1*K.1^67,K.1^23,K.1^23,-1*K.1^31,-1*K.1^31,-1*K.1^33,K.1^53,K.1^57,-1*K.1^61,-1*K.1^9,K.1^57,-1*K.1^61,-1*K.1^9,K.1^29,-1*K.1^13,-1*K.1^37,K.1^29,-1*K.1^13,-1*K.1^33,K.1^53,-1*K.1^11,-1*K.1^59,-1*K.1^59,K.1^19,K.1^19,-1*K.1^15,-1*K.1^15,K.1^55,K.1^55,-1*K.1^35,-1*K.1^35,-1*K.1^63,-1*K.1^63,-1*K.1^39,-1*K.1^39,-1*K.1^11,-1*K.1^65,K.1,K.1^49,K.1^37,-1*K.1^41,K.1^25,K.1^45,-1*K.1^41,K.1^25,-1*K.1^5,K.1^21,-1*K.1^65,-1*K.1^5,K.1^21,K.1,K.1^49,K.1^45,K.1^31,K.1^59,K.1^59,K.1^43,K.1^43,K.1^15,K.1^15,K.1^7,K.1^7,K.1^35,K.1^35,K.1^67,K.1^67,K.1^39,K.1^39,K.1^31,-1*K.1^45,-1*K.1,-1*K.1^53,-1*K.1^37,K.1^61,-1*K.1^25,-1*K.1^45,K.1^61,-1*K.1^25,-1*K.1^29,-1*K.1^21,K.1^37,-1*K.1^29,-1*K.1^21,-1*K.1,-1*K.1^53,K.1^11,-1*K.1^3,-1*K.1^3,-1*K.1^19,-1*K.1^19,-1*K.1^47,-1*K.1^47,-1*K.1^55,-1*K.1^55,-1*K.1^27,-1*K.1^27,K.1^63,K.1^63,-1*K.1^23,-1*K.1^23,K.1^11,K.1^65,K.1^33,-1*K.1^49,-1*K.1^57,K.1^41,K.1^9,-1*K.1^57,K.1^41,K.1^9,K.1^5,K.1^13,K.1^65,K.1^5,K.1^13,K.1^33,K.1^2,K.1^58,K.1^22,-1*K.1^14,-1*K.1^38,-1*K.1^2,-1*K.1^62,-1*K.1^22,-1*K.1^30,-1*K.1^6,K.1^14,-1*K.1^2,-1*K.1^58,K.1^50,-1*K.1^50,-1*K.1^38,K.1^6,K.1^22,-1*K.1^18,K.1^50,K.1^58,-1*K.1^26,K.1^2,K.1^54,-1*K.1^50,K.1^46,-1*K.1^18,-1*K.1^26,K.1^62,-1*K.1^10,-1*K.1^62,-1*K.1^10,K.1^46,K.1^10,K.1^38,K.1^18,K.1^54,-1*K.1^42,K.1^30,-1*K.1^30,K.1^38,K.1^14,K.1^66,-1*K.1^6,K.1^6,-1*K.1^42,K.1^42,K.1^66,-1*K.1^54,K.1^26,K.1^30,-1*K.1^58,K.1^42,-1*K.1^66,-1*K.1^66,K.1^62,K.1^18,-1*K.1^22,-1*K.1^54,-1*K.1^46,K.1^26,-1*K.1^14,-1*K.1^46,K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^16,-1*K.1^60,-1*K.1^44,K.1^64,-1*K.1^4,K.1^48,K.1^56,K.1^40,K.1^24,-1*K.1^28,-1*K.1^36,K.1^32,K.1^8,-1*K.1^52,-1*K.1^20,-1*K.1^12,-1*K.1^40,K.1^32,-1*K.1^20,K.1^8,-1*K.1^32,-1*K.1^24,-1*K.1^44,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^60,K.1^48,K.1^4,K.1^52,-1*K.1^28,K.1^40,-1*K.1^52,K.1^12,K.1^52,-1*K.1^48,-1*K.1^36,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,K.1^20,K.1^60,-1*K.1^24,K.1^12,-1*K.1^40,K.1^56,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^16,-1*K.1^64,K.1^36,-1*K.1^8,K.1^64,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^4,-1*K.1^32,K.1^60,K.1^20,K.1^8,K.1^24,-1*K.1^52,K.1^48,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^40,K.1^16,-1*K.1^28,K.1^64,-1*K.1^4,K.1^32,-1*K.1^44,-1*K.1^12,K.1^56,K.1^66,K.1^42,K.1^46,-1*K.1^14,-1*K.1^42,K.1^2,-1*K.1^38,-1*K.1^58,-1*K.1^2,K.1^46,K.1^14,-1*K.1^22,K.1^54,K.1^62,-1*K.1^66,-1*K.1^50,K.1^10,K.1^18,-1*K.1^22,K.1^22,-1*K.1^46,-1*K.1^26,-1*K.1^50,K.1^66,K.1^54,-1*K.1^14,-1*K.1^6,K.1^50,-1*K.1^6,K.1^58,K.1^38,-1*K.1^58,-1*K.1^46,K.1^26,K.1^2,-1*K.1^54,-1*K.1^62,-1*K.1^10,-1*K.1^18,-1*K.1^2,K.1^42,K.1^14,-1*K.1^30,K.1^30,-1*K.1^18,-1*K.1^42,K.1^6,-1*K.1^38,K.1^58,-1*K.1^26,K.1^22,K.1^38,-1*K.1^10,K.1^50,K.1^62,-1*K.1^62,-1*K.1^54,-1*K.1^30,K.1^10,K.1^26,K.1^18,-1*K.1^66,K.1^30,K.1^6,-1*K.1^12,K.1^52,-1*K.1^24,K.1^44,K.1^4,K.1^32,K.1^40,-1*K.1^28,K.1^16,-1*K.1^36,K.1^48,K.1^20,-1*K.1^60,K.1^56,K.1^24,-1*K.1^44,-1*K.1^40,-1*K.1^4,K.1^28,-1*K.1^16,K.1^4,-1*K.1^24,K.1^36,K.1^52,-1*K.1^56,K.1^44,-1*K.1^64,-1*K.1^8,K.1^60,K.1^60,-1*K.1^56,K.1^36,K.1^12,-1*K.1^32,-1*K.1^64,-1*K.1^48,-1*K.1^40,K.1^12,-1*K.1^8,-1*K.1^48,K.1^28,-1*K.1^32,K.1^20,-1*K.1^52,-1*K.1^16,K.1^64,K.1^8,-1*K.1^20,K.1^19,-1*K.1^65,-1*K.1^65,K.1^25,K.1^25,-1*K.1^21,-1*K.1^21,K.1^61,K.1^61,-1*K.1^41,-1*K.1^41,K.1,K.1,-1*K.1^45,-1*K.1^45,K.1^37,K.1^37,K.1^35,-1*K.1^15,-1*K.1^11,K.1^7,K.1^59,-1*K.1^11,K.1^7,K.1^59,-1*K.1^39,K.1^55,K.1^31,-1*K.1^39,K.1^55,K.1^35,-1*K.1^15,K.1^57,K.1^9,K.1^9,-1*K.1^49,-1*K.1^49,K.1^53,K.1^53,-1*K.1^13,-1*K.1^13,K.1^33,K.1^33,K.1^5,K.1^5,K.1^29,K.1^29,K.1^57,K.1^3,-1*K.1^67,-1*K.1^19,-1*K.1^31,K.1^27,-1*K.1^43,-1*K.1^23,K.1^27,-1*K.1^43,K.1^63,-1*K.1^47,K.1^3,K.1^63,-1*K.1^47,-1*K.1^67,-1*K.1^19,-1*K.1^23,-1*K.1^37,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,-1*K.1^53,-1*K.1^53,-1*K.1^61,-1*K.1^61,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,-1*K.1^29,-1*K.1^29,-1*K.1^37,K.1^23,K.1^67,K.1^15,K.1^31,-1*K.1^7,K.1^43,K.1^23,-1*K.1^7,K.1^43,K.1^39,K.1^47,-1*K.1^31,K.1^39,K.1^47,K.1^67,K.1^15,-1*K.1^57,K.1^65,K.1^65,K.1^49,K.1^49,K.1^21,K.1^21,K.1^13,K.1^13,K.1^41,K.1^41,-1*K.1^5,-1*K.1^5,K.1^45,K.1^45,-1*K.1^57,-1*K.1^3,-1*K.1^35,K.1^19,K.1^11,-1*K.1^27,-1*K.1^59,K.1^11,-1*K.1^27,-1*K.1^59,-1*K.1^63,-1*K.1^55,-1*K.1^3,-1*K.1^63,-1*K.1^55,-1*K.1^35,-1*K.1^66,-1*K.1^10,-1*K.1^46,K.1^54,K.1^30,K.1^66,K.1^6,K.1^46,K.1^38,K.1^62,-1*K.1^54,K.1^66,K.1^10,-1*K.1^18,K.1^18,K.1^30,-1*K.1^62,-1*K.1^46,K.1^50,-1*K.1^18,-1*K.1^10,K.1^42,-1*K.1^66,-1*K.1^14,K.1^18,-1*K.1^22,K.1^50,K.1^42,-1*K.1^6,K.1^58,K.1^6,K.1^58,-1*K.1^22,-1*K.1^58,-1*K.1^30,-1*K.1^50,-1*K.1^14,K.1^26,-1*K.1^38,K.1^38,-1*K.1^30,-1*K.1^54,-1*K.1^2,K.1^62,-1*K.1^62,K.1^26,-1*K.1^26,-1*K.1^2,K.1^14,-1*K.1^42,-1*K.1^38,K.1^10,-1*K.1^26,K.1^2,K.1^2,-1*K.1^6,-1*K.1^50,K.1^46,K.1^14,K.1^22,-1*K.1^42,K.1^54,K.1^22,-1*K.1^58]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^16,-1*K.1^60,-1*K.1^44,K.1^64,-1*K.1^4,K.1^48,K.1^56,K.1^40,K.1^24,-1*K.1^28,-1*K.1^36,K.1^32,K.1^8,-1*K.1^52,-1*K.1^20,-1*K.1^12,-1*K.1^40,K.1^32,-1*K.1^20,K.1^8,-1*K.1^32,-1*K.1^24,-1*K.1^44,-1*K.1^12,K.1^24,-1*K.1^4,-1*K.1^60,K.1^48,K.1^4,K.1^52,-1*K.1^28,K.1^40,-1*K.1^52,K.1^12,K.1^52,-1*K.1^48,-1*K.1^36,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,K.1^20,K.1^60,-1*K.1^24,K.1^12,-1*K.1^40,K.1^56,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^16,-1*K.1^64,K.1^36,-1*K.1^8,K.1^64,K.1^28,-1*K.1^56,-1*K.1^16,K.1^44,K.1^4,-1*K.1^32,K.1^60,K.1^20,K.1^8,K.1^24,-1*K.1^52,K.1^48,-1*K.1^36,-1*K.1^60,-1*K.1^20,K.1^40,K.1^16,-1*K.1^28,K.1^64,-1*K.1^4,K.1^32,-1*K.1^44,-1*K.1^12,K.1^56,-1*K.1^66,-1*K.1^42,-1*K.1^46,K.1^14,K.1^42,-1*K.1^2,K.1^38,K.1^58,K.1^2,-1*K.1^46,-1*K.1^14,K.1^22,-1*K.1^54,-1*K.1^62,K.1^66,K.1^50,-1*K.1^10,-1*K.1^18,K.1^22,-1*K.1^22,K.1^46,K.1^26,K.1^50,-1*K.1^66,-1*K.1^54,K.1^14,K.1^6,-1*K.1^50,K.1^6,-1*K.1^58,-1*K.1^38,K.1^58,K.1^46,-1*K.1^26,-1*K.1^2,K.1^54,K.1^62,K.1^10,K.1^18,K.1^2,-1*K.1^42,-1*K.1^14,K.1^30,-1*K.1^30,K.1^18,K.1^42,-1*K.1^6,K.1^38,-1*K.1^58,K.1^26,-1*K.1^22,-1*K.1^38,K.1^10,-1*K.1^50,-1*K.1^62,K.1^62,K.1^54,K.1^30,-1*K.1^10,-1*K.1^26,-1*K.1^18,K.1^66,-1*K.1^30,-1*K.1^6,-1*K.1^12,K.1^52,-1*K.1^24,K.1^44,K.1^4,K.1^32,K.1^40,-1*K.1^28,K.1^16,-1*K.1^36,K.1^48,K.1^20,-1*K.1^60,K.1^56,K.1^24,-1*K.1^44,-1*K.1^40,-1*K.1^4,K.1^28,-1*K.1^16,K.1^4,-1*K.1^24,K.1^36,K.1^52,-1*K.1^56,K.1^44,-1*K.1^64,-1*K.1^8,K.1^60,K.1^60,-1*K.1^56,K.1^36,K.1^12,-1*K.1^32,-1*K.1^64,-1*K.1^48,-1*K.1^40,K.1^12,-1*K.1^8,-1*K.1^48,K.1^28,-1*K.1^32,K.1^20,-1*K.1^52,-1*K.1^16,K.1^64,K.1^8,-1*K.1^20,K.1^53,-1*K.1^31,-1*K.1^31,-1*K.1^59,-1*K.1^59,K.1^55,K.1^55,K.1^27,K.1^27,-1*K.1^7,-1*K.1^7,-1*K.1^35,-1*K.1^35,-1*K.1^11,-1*K.1^11,K.1^3,K.1^3,-1*K.1,-1*K.1^49,-1*K.1^45,K.1^41,-1*K.1^25,-1*K.1^45,K.1^41,-1*K.1^25,K.1^5,-1*K.1^21,K.1^65,K.1^5,-1*K.1^21,-1*K.1,-1*K.1^49,K.1^23,-1*K.1^43,-1*K.1^43,-1*K.1^15,-1*K.1^15,K.1^19,K.1^19,K.1^47,K.1^47,-1*K.1^67,-1*K.1^67,-1*K.1^39,-1*K.1^39,-1*K.1^63,-1*K.1^63,K.1^23,K.1^37,K.1^33,-1*K.1^53,-1*K.1^65,K.1^61,K.1^9,-1*K.1^57,K.1^61,K.1^9,-1*K.1^29,K.1^13,K.1^37,-1*K.1^29,K.1^13,K.1^33,-1*K.1^53,-1*K.1^57,-1*K.1^3,K.1^43,K.1^43,K.1^59,K.1^59,-1*K.1^19,-1*K.1^19,-1*K.1^27,-1*K.1^27,K.1^67,K.1^67,K.1^35,K.1^35,K.1^63,K.1^63,-1*K.1^3,K.1^57,-1*K.1^33,K.1^49,K.1^65,-1*K.1^41,-1*K.1^9,K.1^57,-1*K.1^41,-1*K.1^9,-1*K.1^5,-1*K.1^13,-1*K.1^65,-1*K.1^5,-1*K.1^13,-1*K.1^33,K.1^49,-1*K.1^23,K.1^31,K.1^31,K.1^15,K.1^15,-1*K.1^55,-1*K.1^55,-1*K.1^47,-1*K.1^47,K.1^7,K.1^7,K.1^39,K.1^39,K.1^11,K.1^11,-1*K.1^23,-1*K.1^37,K.1,K.1^53,K.1^45,-1*K.1^61,K.1^25,K.1^45,-1*K.1^61,K.1^25,K.1^29,K.1^21,-1*K.1^37,K.1^29,K.1^21,K.1,K.1^66,K.1^10,K.1^46,-1*K.1^54,-1*K.1^30,-1*K.1^66,-1*K.1^6,-1*K.1^46,-1*K.1^38,-1*K.1^62,K.1^54,-1*K.1^66,-1*K.1^10,K.1^18,-1*K.1^18,-1*K.1^30,K.1^62,K.1^46,-1*K.1^50,K.1^18,K.1^10,-1*K.1^42,K.1^66,K.1^14,-1*K.1^18,K.1^22,-1*K.1^50,-1*K.1^42,K.1^6,-1*K.1^58,-1*K.1^6,-1*K.1^58,K.1^22,K.1^58,K.1^30,K.1^50,K.1^14,-1*K.1^26,K.1^38,-1*K.1^38,K.1^30,K.1^54,K.1^2,-1*K.1^62,K.1^62,-1*K.1^26,K.1^26,K.1^2,-1*K.1^14,K.1^42,K.1^38,-1*K.1^10,K.1^26,-1*K.1^2,-1*K.1^2,K.1^6,K.1^50,-1*K.1^46,-1*K.1^14,-1*K.1^22,K.1^42,-1*K.1^54,-1*K.1^22,K.1^58]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^52,K.1^8,K.1^24,-1*K.1^4,K.1^64,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^44,K.1^40,K.1^32,-1*K.1^36,-1*K.1^60,K.1^16,K.1^48,K.1^56,K.1^28,-1*K.1^36,K.1^48,-1*K.1^60,K.1^36,K.1^44,K.1^24,K.1^56,-1*K.1^44,K.1^64,K.1^8,-1*K.1^20,-1*K.1^64,-1*K.1^16,K.1^40,-1*K.1^28,K.1^16,-1*K.1^56,-1*K.1^16,K.1^20,K.1^32,K.1^4,-1*K.1^32,K.1^60,K.1^20,-1*K.1^48,-1*K.1^8,K.1^44,-1*K.1^56,K.1^28,-1*K.1^12,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^52,K.1^4,-1*K.1^32,K.1^60,-1*K.1^4,-1*K.1^40,K.1^12,K.1^52,-1*K.1^24,-1*K.1^64,K.1^36,-1*K.1^8,-1*K.1^48,-1*K.1^60,-1*K.1^44,K.1^16,-1*K.1^20,K.1^32,K.1^8,K.1^48,-1*K.1^28,-1*K.1^52,K.1^40,-1*K.1^4,K.1^64,-1*K.1^36,K.1^24,K.1^56,-1*K.1^12,K.1^2,K.1^26,K.1^22,-1*K.1^54,-1*K.1^26,K.1^66,-1*K.1^30,-1*K.1^10,-1*K.1^66,K.1^22,K.1^54,-1*K.1^46,K.1^14,K.1^6,-1*K.1^2,-1*K.1^18,K.1^58,K.1^50,-1*K.1^46,K.1^46,-1*K.1^22,-1*K.1^42,-1*K.1^18,K.1^2,K.1^14,-1*K.1^54,-1*K.1^62,K.1^18,-1*K.1^62,K.1^10,K.1^30,-1*K.1^10,-1*K.1^22,K.1^42,K.1^66,-1*K.1^14,-1*K.1^6,-1*K.1^58,-1*K.1^50,-1*K.1^66,K.1^26,K.1^54,-1*K.1^38,K.1^38,-1*K.1^50,-1*K.1^26,K.1^62,-1*K.1^30,K.1^10,-1*K.1^42,K.1^46,K.1^30,-1*K.1^58,K.1^18,K.1^6,-1*K.1^6,-1*K.1^14,-1*K.1^38,K.1^58,K.1^42,K.1^50,-1*K.1^2,K.1^38,K.1^62,K.1^56,-1*K.1^16,K.1^44,-1*K.1^24,-1*K.1^64,-1*K.1^36,-1*K.1^28,K.1^40,-1*K.1^52,K.1^32,-1*K.1^20,-1*K.1^48,K.1^8,-1*K.1^12,-1*K.1^44,K.1^24,K.1^28,K.1^64,-1*K.1^40,K.1^52,-1*K.1^64,K.1^44,-1*K.1^32,-1*K.1^16,K.1^12,-1*K.1^24,K.1^4,K.1^60,-1*K.1^8,-1*K.1^8,K.1^12,-1*K.1^32,-1*K.1^56,K.1^36,K.1^4,K.1^20,K.1^28,-1*K.1^56,K.1^60,K.1^20,-1*K.1^40,K.1^36,-1*K.1^48,K.1^16,K.1^52,-1*K.1^4,-1*K.1^60,K.1^48,-1*K.1^15,K.1^37,K.1^37,K.1^9,K.1^9,-1*K.1^13,-1*K.1^13,-1*K.1^41,-1*K.1^41,K.1^61,K.1^61,K.1^33,K.1^33,K.1^57,K.1^57,-1*K.1^65,-1*K.1^65,K.1^67,K.1^19,K.1^23,-1*K.1^27,K.1^43,K.1^23,-1*K.1^27,K.1^43,-1*K.1^63,K.1^47,-1*K.1^3,-1*K.1^63,K.1^47,K.1^67,K.1^19,-1*K.1^45,K.1^25,K.1^25,K.1^53,K.1^53,-1*K.1^49,-1*K.1^49,-1*K.1^21,-1*K.1^21,K.1,K.1,K.1^29,K.1^29,K.1^5,K.1^5,-1*K.1^45,-1*K.1^31,-1*K.1^35,K.1^15,K.1^3,-1*K.1^7,-1*K.1^59,K.1^11,-1*K.1^7,-1*K.1^59,K.1^39,-1*K.1^55,-1*K.1^31,K.1^39,-1*K.1^55,-1*K.1^35,K.1^15,K.1^11,K.1^65,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,K.1^49,K.1^49,K.1^41,K.1^41,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,-1*K.1^5,-1*K.1^5,K.1^65,-1*K.1^11,K.1^35,-1*K.1^19,-1*K.1^3,K.1^27,K.1^59,-1*K.1^11,K.1^27,K.1^59,K.1^63,K.1^55,K.1^3,K.1^63,K.1^55,K.1^35,-1*K.1^19,K.1^45,-1*K.1^37,-1*K.1^37,-1*K.1^53,-1*K.1^53,K.1^13,K.1^13,K.1^21,K.1^21,-1*K.1^61,-1*K.1^61,-1*K.1^29,-1*K.1^29,-1*K.1^57,-1*K.1^57,K.1^45,K.1^31,-1*K.1^67,-1*K.1^15,-1*K.1^23,K.1^7,-1*K.1^43,-1*K.1^23,K.1^7,-1*K.1^43,-1*K.1^39,-1*K.1^47,K.1^31,-1*K.1^39,-1*K.1^47,-1*K.1^67,-1*K.1^2,-1*K.1^58,-1*K.1^22,K.1^14,K.1^38,K.1^2,K.1^62,K.1^22,K.1^30,K.1^6,-1*K.1^14,K.1^2,K.1^58,-1*K.1^50,K.1^50,K.1^38,-1*K.1^6,-1*K.1^22,K.1^18,-1*K.1^50,-1*K.1^58,K.1^26,-1*K.1^2,-1*K.1^54,K.1^50,-1*K.1^46,K.1^18,K.1^26,-1*K.1^62,K.1^10,K.1^62,K.1^10,-1*K.1^46,-1*K.1^10,-1*K.1^38,-1*K.1^18,-1*K.1^54,K.1^42,-1*K.1^30,K.1^30,-1*K.1^38,-1*K.1^14,-1*K.1^66,K.1^6,-1*K.1^6,K.1^42,-1*K.1^42,-1*K.1^66,K.1^54,-1*K.1^26,-1*K.1^30,K.1^58,-1*K.1^42,K.1^66,K.1^66,-1*K.1^62,-1*K.1^18,K.1^22,K.1^54,K.1^46,-1*K.1^26,K.1^14,K.1^46,-1*K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,-1*K.1^60,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^32,-1*K.1^44,K.1^40,K.1^48,K.1^56,-1*K.1^20,K.1^16,-1*K.1^52,K.1^64,K.1^8,K.1^24,-1*K.1^28,-1*K.1^48,-1*K.1^52,K.1^24,K.1^64,K.1^52,-1*K.1^56,-1*K.1^12,-1*K.1^28,K.1^56,K.1^32,-1*K.1^4,-1*K.1^44,-1*K.1^32,-1*K.1^8,-1*K.1^20,K.1^48,K.1^8,K.1^28,-1*K.1^8,K.1^44,K.1^16,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^24,K.1^4,-1*K.1^56,K.1^28,-1*K.1^48,K.1^40,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^60,K.1^36,-1*K.1^16,-1*K.1^64,-1*K.1^36,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^64,K.1^56,K.1^8,-1*K.1^44,K.1^16,-1*K.1^4,K.1^24,K.1^48,-1*K.1^60,-1*K.1^20,-1*K.1^36,K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^28,K.1^40,-1*K.1^18,K.1^30,-1*K.1^62,-1*K.1^10,-1*K.1^30,-1*K.1^50,-1*K.1^66,-1*K.1^22,K.1^50,-1*K.1^62,K.1^10,K.1^6,K.1^58,-1*K.1^54,K.1^18,K.1^26,K.1^46,-1*K.1^42,K.1^6,-1*K.1^6,K.1^62,-1*K.1^38,K.1^26,-1*K.1^18,K.1^58,-1*K.1^10,K.1^14,-1*K.1^26,K.1^14,K.1^22,K.1^66,-1*K.1^22,K.1^62,K.1^38,-1*K.1^50,-1*K.1^58,K.1^54,-1*K.1^46,K.1^42,K.1^50,K.1^30,K.1^10,-1*K.1^2,K.1^2,K.1^42,-1*K.1^30,-1*K.1^14,-1*K.1^66,K.1^22,-1*K.1^38,-1*K.1^6,K.1^66,-1*K.1^46,-1*K.1^26,-1*K.1^54,K.1^54,-1*K.1^58,-1*K.1^2,K.1^46,K.1^38,-1*K.1^42,K.1^18,K.1^2,-1*K.1^14,-1*K.1^28,-1*K.1^8,-1*K.1^56,K.1^12,-1*K.1^32,-1*K.1^52,K.1^48,-1*K.1^20,-1*K.1^60,K.1^16,-1*K.1^44,-1*K.1^24,-1*K.1^4,K.1^40,K.1^56,-1*K.1^12,-1*K.1^48,K.1^32,K.1^20,K.1^60,-1*K.1^32,-1*K.1^56,-1*K.1^16,-1*K.1^8,-1*K.1^40,K.1^12,K.1^36,-1*K.1^64,K.1^4,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,K.1^52,K.1^36,K.1^44,-1*K.1^48,K.1^28,-1*K.1^64,K.1^44,K.1^20,K.1^52,-1*K.1^24,K.1^8,K.1^60,-1*K.1^36,K.1^64,K.1^24,-1*K.1^33,K.1^27,K.1^27,K.1^47,K.1^47,K.1^15,K.1^15,-1*K.1^63,-1*K.1^63,-1*K.1^39,-1*K.1^39,-1*K.1^59,-1*K.1^59,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^25,-1*K.1,-1*K.1^37,-1*K.1^5,K.1^13,-1*K.1^37,-1*K.1^5,K.1^13,-1*K.1^57,K.1^49,-1*K.1^61,-1*K.1^57,K.1^49,-1*K.1^25,-1*K.1,K.1^31,K.1^55,K.1^55,K.1^35,K.1^35,K.1^67,K.1^67,-1*K.1^19,-1*K.1^19,-1*K.1^43,-1*K.1^43,-1*K.1^23,-1*K.1^23,K.1^11,K.1^11,K.1^31,-1*K.1^41,K.1^9,K.1^33,K.1^61,K.1^29,-1*K.1^21,-1*K.1^65,K.1^29,-1*K.1^21,-1*K.1^45,K.1^53,-1*K.1^41,-1*K.1^45,K.1^53,K.1^9,K.1^33,-1*K.1^65,K.1^7,-1*K.1^55,-1*K.1^55,-1*K.1^47,-1*K.1^47,-1*K.1^67,-1*K.1^67,K.1^63,K.1^63,K.1^43,K.1^43,K.1^59,K.1^59,-1*K.1^11,-1*K.1^11,K.1^7,K.1^65,-1*K.1^9,K.1,-1*K.1^61,K.1^5,K.1^21,K.1^65,K.1^5,K.1^21,K.1^57,-1*K.1^53,K.1^61,K.1^57,-1*K.1^53,-1*K.1^9,K.1,-1*K.1^31,-1*K.1^27,-1*K.1^27,-1*K.1^35,-1*K.1^35,-1*K.1^15,-1*K.1^15,K.1^19,K.1^19,K.1^39,K.1^39,K.1^23,K.1^23,K.1^3,K.1^3,-1*K.1^31,K.1^41,K.1^25,-1*K.1^33,K.1^37,-1*K.1^29,-1*K.1^13,K.1^37,-1*K.1^29,-1*K.1^13,K.1^45,-1*K.1^49,K.1^41,K.1^45,-1*K.1^49,K.1^25,K.1^18,-1*K.1^46,K.1^62,K.1^58,K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^62,K.1^66,-1*K.1^54,-1*K.1^58,-1*K.1^18,K.1^46,K.1^42,-1*K.1^42,K.1^2,K.1^54,K.1^62,-1*K.1^26,K.1^42,-1*K.1^46,K.1^30,K.1^18,-1*K.1^10,-1*K.1^42,K.1^6,-1*K.1^26,K.1^30,K.1^14,K.1^22,-1*K.1^14,K.1^22,K.1^6,-1*K.1^22,-1*K.1^2,K.1^26,-1*K.1^10,K.1^38,-1*K.1^66,K.1^66,-1*K.1^2,-1*K.1^58,K.1^50,-1*K.1^54,K.1^54,K.1^38,-1*K.1^38,K.1^50,K.1^10,-1*K.1^30,-1*K.1^66,K.1^46,-1*K.1^38,-1*K.1^50,-1*K.1^50,K.1^14,K.1^26,-1*K.1^62,K.1^10,-1*K.1^6,-1*K.1^30,K.1^58,-1*K.1^6,-1*K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,K.1^8,K.1^64,K.1^56,K.1^32,-1*K.1^36,K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^12,K.1^48,-1*K.1^52,K.1^16,-1*K.1^4,-1*K.1^60,-1*K.1^44,K.1^40,K.1^20,K.1^16,-1*K.1^44,-1*K.1^4,-1*K.1^16,K.1^12,K.1^56,K.1^40,-1*K.1^12,-1*K.1^36,K.1^64,K.1^24,K.1^36,K.1^60,K.1^48,-1*K.1^20,-1*K.1^60,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^52,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^44,-1*K.1^64,K.1^12,-1*K.1^40,K.1^20,-1*K.1^28,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^8,-1*K.1^32,K.1^52,K.1^4,K.1^32,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^4,-1*K.1^12,-1*K.1^60,K.1^24,-1*K.1^52,K.1^64,-1*K.1^44,-1*K.1^20,K.1^8,K.1^48,K.1^32,-1*K.1^36,K.1^16,K.1^56,K.1^40,-1*K.1^28,K.1^50,-1*K.1^38,K.1^6,K.1^58,K.1^38,K.1^18,K.1^2,K.1^46,-1*K.1^18,K.1^6,-1*K.1^58,-1*K.1^62,-1*K.1^10,K.1^14,-1*K.1^50,-1*K.1^42,-1*K.1^22,K.1^26,-1*K.1^62,K.1^62,-1*K.1^6,K.1^30,-1*K.1^42,K.1^50,-1*K.1^10,K.1^58,-1*K.1^54,K.1^42,-1*K.1^54,-1*K.1^46,-1*K.1^2,K.1^46,-1*K.1^6,-1*K.1^30,K.1^18,K.1^10,-1*K.1^14,K.1^22,-1*K.1^26,-1*K.1^18,-1*K.1^38,-1*K.1^58,K.1^66,-1*K.1^66,-1*K.1^26,K.1^38,K.1^54,K.1^2,-1*K.1^46,K.1^30,K.1^62,-1*K.1^2,K.1^22,K.1^42,K.1^14,-1*K.1^14,K.1^10,K.1^66,-1*K.1^22,-1*K.1^30,K.1^26,-1*K.1^50,-1*K.1^66,K.1^54,K.1^40,K.1^60,K.1^12,-1*K.1^56,K.1^36,K.1^16,-1*K.1^20,K.1^48,K.1^8,-1*K.1^52,K.1^24,K.1^44,K.1^64,-1*K.1^28,-1*K.1^12,K.1^56,K.1^20,-1*K.1^36,-1*K.1^48,-1*K.1^8,K.1^36,K.1^12,K.1^52,K.1^60,K.1^28,-1*K.1^56,-1*K.1^32,K.1^4,-1*K.1^64,-1*K.1^64,K.1^28,K.1^52,-1*K.1^40,-1*K.1^16,-1*K.1^32,-1*K.1^24,K.1^20,-1*K.1^40,K.1^4,-1*K.1^24,-1*K.1^48,-1*K.1^16,K.1^44,-1*K.1^60,-1*K.1^8,K.1^32,-1*K.1^4,-1*K.1^44,K.1^35,-1*K.1^41,-1*K.1^41,-1*K.1^21,-1*K.1^21,-1*K.1^53,-1*K.1^53,K.1^5,K.1^5,K.1^29,K.1^29,K.1^9,K.1^9,K.1^65,K.1^65,K.1^61,K.1^61,K.1^43,K.1^67,K.1^31,K.1^63,-1*K.1^55,K.1^31,K.1^63,-1*K.1^55,K.1^11,-1*K.1^19,K.1^7,K.1^11,-1*K.1^19,K.1^43,K.1^67,-1*K.1^37,-1*K.1^13,-1*K.1^13,-1*K.1^33,-1*K.1^33,-1*K.1,-1*K.1,K.1^49,K.1^49,K.1^25,K.1^25,K.1^45,K.1^45,-1*K.1^57,-1*K.1^57,-1*K.1^37,K.1^27,-1*K.1^59,-1*K.1^35,-1*K.1^7,-1*K.1^39,K.1^47,K.1^3,-1*K.1^39,K.1^47,K.1^23,-1*K.1^15,K.1^27,K.1^23,-1*K.1^15,-1*K.1^59,-1*K.1^35,K.1^3,-1*K.1^61,K.1^13,K.1^13,K.1^21,K.1^21,K.1,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^25,-1*K.1^25,-1*K.1^9,-1*K.1^9,K.1^57,K.1^57,-1*K.1^61,-1*K.1^3,K.1^59,-1*K.1^67,K.1^7,-1*K.1^63,-1*K.1^47,-1*K.1^3,-1*K.1^63,-1*K.1^47,-1*K.1^11,K.1^15,-1*K.1^7,-1*K.1^11,K.1^15,K.1^59,-1*K.1^67,K.1^37,K.1^41,K.1^41,K.1^33,K.1^33,K.1^53,K.1^53,-1*K.1^49,-1*K.1^49,-1*K.1^29,-1*K.1^29,-1*K.1^45,-1*K.1^45,-1*K.1^65,-1*K.1^65,K.1^37,-1*K.1^27,-1*K.1^43,K.1^35,-1*K.1^31,K.1^39,K.1^55,-1*K.1^31,K.1^39,K.1^55,-1*K.1^23,K.1^19,-1*K.1^27,-1*K.1^23,K.1^19,-1*K.1^43,-1*K.1^50,K.1^22,-1*K.1^6,-1*K.1^10,-1*K.1^66,K.1^50,K.1^54,K.1^6,-1*K.1^2,K.1^14,K.1^10,K.1^50,-1*K.1^22,-1*K.1^26,K.1^26,-1*K.1^66,-1*K.1^14,-1*K.1^6,K.1^42,-1*K.1^26,K.1^22,-1*K.1^38,-1*K.1^50,K.1^58,K.1^26,-1*K.1^62,K.1^42,-1*K.1^38,-1*K.1^54,-1*K.1^46,K.1^54,-1*K.1^46,-1*K.1^62,K.1^46,K.1^66,-1*K.1^42,K.1^58,-1*K.1^30,K.1^2,-1*K.1^2,K.1^66,K.1^10,-1*K.1^18,K.1^14,-1*K.1^14,-1*K.1^30,K.1^30,-1*K.1^18,-1*K.1^58,K.1^38,K.1^2,-1*K.1^22,K.1^30,K.1^18,K.1^18,-1*K.1^54,-1*K.1^42,K.1^6,-1*K.1^58,K.1^62,K.1^38,-1*K.1^10,K.1^62,K.1^46]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,-1*K.1^34,K.1^34,K.1^34,-1*K.1^34,1,-1,-1,K.1^17,-1*K.1^17,-1*K.1^51,-1*K.1^51,-1*K.1^17,K.1^51,K.1^17,K.1^51,K.1^34,K.1^34,-1*K.1^34,-1*K.1^34,K.1^8,K.1^64,K.1^56,K.1^32,-1*K.1^36,K.1^24,-1*K.1^28,-1*K.1^20,-1*K.1^12,K.1^48,-1*K.1^52,K.1^16,-1*K.1^4,-1*K.1^60,-1*K.1^44,K.1^40,K.1^20,K.1^16,-1*K.1^44,-1*K.1^4,-1*K.1^16,K.1^12,K.1^56,K.1^40,-1*K.1^12,-1*K.1^36,K.1^64,K.1^24,K.1^36,K.1^60,K.1^48,-1*K.1^20,-1*K.1^60,-1*K.1^40,K.1^60,-1*K.1^24,-1*K.1^52,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^44,-1*K.1^64,K.1^12,-1*K.1^40,K.1^20,-1*K.1^28,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^8,-1*K.1^32,K.1^52,K.1^4,K.1^32,-1*K.1^48,K.1^28,-1*K.1^8,-1*K.1^56,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^4,-1*K.1^12,-1*K.1^60,K.1^24,-1*K.1^52,K.1^64,-1*K.1^44,-1*K.1^20,K.1^8,K.1^48,K.1^32,-1*K.1^36,K.1^16,K.1^56,K.1^40,-1*K.1^28,-1*K.1^50,K.1^38,-1*K.1^6,-1*K.1^58,-1*K.1^38,-1*K.1^18,-1*K.1^2,-1*K.1^46,K.1^18,-1*K.1^6,K.1^58,K.1^62,K.1^10,-1*K.1^14,K.1^50,K.1^42,K.1^22,-1*K.1^26,K.1^62,-1*K.1^62,K.1^6,-1*K.1^30,K.1^42,-1*K.1^50,K.1^10,-1*K.1^58,K.1^54,-1*K.1^42,K.1^54,K.1^46,K.1^2,-1*K.1^46,K.1^6,K.1^30,-1*K.1^18,-1*K.1^10,K.1^14,-1*K.1^22,K.1^26,K.1^18,K.1^38,K.1^58,-1*K.1^66,K.1^66,K.1^26,-1*K.1^38,-1*K.1^54,-1*K.1^2,K.1^46,-1*K.1^30,-1*K.1^62,K.1^2,-1*K.1^22,-1*K.1^42,-1*K.1^14,K.1^14,-1*K.1^10,-1*K.1^66,K.1^22,K.1^30,-1*K.1^26,K.1^50,K.1^66,-1*K.1^54,K.1^40,K.1^60,K.1^12,-1*K.1^56,K.1^36,K.1^16,-1*K.1^20,K.1^48,K.1^8,-1*K.1^52,K.1^24,K.1^44,K.1^64,-1*K.1^28,-1*K.1^12,K.1^56,K.1^20,-1*K.1^36,-1*K.1^48,-1*K.1^8,K.1^36,K.1^12,K.1^52,K.1^60,K.1^28,-1*K.1^56,-1*K.1^32,K.1^4,-1*K.1^64,-1*K.1^64,K.1^28,K.1^52,-1*K.1^40,-1*K.1^16,-1*K.1^32,-1*K.1^24,K.1^20,-1*K.1^40,K.1^4,-1*K.1^24,-1*K.1^48,-1*K.1^16,K.1^44,-1*K.1^60,-1*K.1^8,K.1^32,-1*K.1^4,-1*K.1^44,-1*K.1,-1*K.1^7,-1*K.1^7,K.1^55,K.1^55,-1*K.1^19,-1*K.1^19,-1*K.1^39,-1*K.1^39,-1*K.1^63,-1*K.1^63,-1*K.1^43,-1*K.1^43,K.1^31,K.1^31,K.1^27,K.1^27,-1*K.1^9,-1*K.1^33,K.1^65,-1*K.1^29,K.1^21,K.1^65,-1*K.1^29,K.1^21,K.1^45,-1*K.1^53,K.1^41,K.1^45,-1*K.1^53,-1*K.1^9,-1*K.1^33,-1*K.1^3,K.1^47,K.1^47,K.1^67,K.1^67,K.1^35,K.1^35,K.1^15,K.1^15,-1*K.1^59,-1*K.1^59,K.1^11,K.1^11,-1*K.1^23,-1*K.1^23,-1*K.1^3,K.1^61,K.1^25,K.1,-1*K.1^41,K.1^5,-1*K.1^13,K.1^37,K.1^5,-1*K.1^13,K.1^57,-1*K.1^49,K.1^61,K.1^57,-1*K.1^49,K.1^25,K.1,K.1^37,-1*K.1^27,-1*K.1^47,-1*K.1^47,-1*K.1^55,-1*K.1^55,-1*K.1^35,-1*K.1^35,K.1^39,K.1^39,K.1^59,K.1^59,K.1^43,K.1^43,K.1^23,K.1^23,-1*K.1^27,-1*K.1^37,-1*K.1^25,K.1^33,K.1^41,K.1^29,K.1^13,-1*K.1^37,K.1^29,K.1^13,-1*K.1^45,K.1^49,-1*K.1^41,-1*K.1^45,K.1^49,-1*K.1^25,K.1^33,K.1^3,K.1^7,K.1^7,-1*K.1^67,-1*K.1^67,K.1^19,K.1^19,-1*K.1^15,-1*K.1^15,K.1^63,K.1^63,-1*K.1^11,-1*K.1^11,-1*K.1^31,-1*K.1^31,K.1^3,-1*K.1^61,K.1^9,-1*K.1,-1*K.1^65,-1*K.1^5,-1*K.1^21,-1*K.1^65,-1*K.1^5,-1*K.1^21,-1*K.1^57,K.1^53,-1*K.1^61,-1*K.1^57,K.1^53,K.1^9,K.1^50,-1*K.1^22,K.1^6,K.1^10,K.1^66,-1*K.1^50,-1*K.1^54,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^10,-1*K.1^50,K.1^22,K.1^26,-1*K.1^26,K.1^66,K.1^14,K.1^6,-1*K.1^42,K.1^26,-1*K.1^22,K.1^38,K.1^50,-1*K.1^58,-1*K.1^26,K.1^62,-1*K.1^42,K.1^38,K.1^54,K.1^46,-1*K.1^54,K.1^46,K.1^62,-1*K.1^46,-1*K.1^66,K.1^42,-1*K.1^58,K.1^30,-1*K.1^2,K.1^2,-1*K.1^66,-1*K.1^10,K.1^18,-1*K.1^14,K.1^14,K.1^30,-1*K.1^30,K.1^18,K.1^58,-1*K.1^38,-1*K.1^2,K.1^22,-1*K.1^30,-1*K.1^18,-1*K.1^18,K.1^54,K.1^42,-1*K.1^6,K.1^58,-1*K.1^62,-1*K.1^38,K.1^10,-1*K.1^62,-1*K.1^46]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(136: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^34,-1*K.1^34,-1*K.1^34,K.1^34,1,-1,-1,-1*K.1^51,K.1^51,K.1^17,K.1^17,K.1^51,-1*K.1^17,-1*K.1^51,-1*K.1^17,-1*K.1^34,-1*K.1^34,K.1^34,K.1^34,-1*K.1^60,-1*K.1^4,-1*K.1^12,-1*K.1^36,K.1^32,-1*K.1^44,K.1^40,K.1^48,K.1^56,-1*K.1^20,K.1^16,-1*K.1^52,K.1^64,K.1^8,K.1^24,-1*K.1^28,-1*K.1^48,-1*K.1^52,K.1^24,K.1^64,K.1^52,-1*K.1^56,-1*K.1^12,-1*K.1^28,K.1^56,K.1^32,-1*K.1^4,-1*K.1^44,-1*K.1^32,-1*K.1^8,-1*K.1^20,K.1^48,K.1^8,K.1^28,-1*K.1^8,K.1^44,K.1^16,K.1^36,-1*K.1^16,-1*K.1^64,K.1^44,-1*K.1^24,K.1^4,-1*K.1^56,K.1^28,-1*K.1^48,K.1^40,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^60,K.1^36,-1*K.1^16,-1*K.1^64,-1*K.1^36,K.1^20,-1*K.1^40,K.1^60,K.1^12,-1*K.1^32,K.1^52,K.1^4,-1*K.1^24,K.1^64,K.1^56,K.1^8,-1*K.1^44,K.1^16,-1*K.1^4,K.1^24,K.1^48,-1*K.1^60,-1*K.1^20,-1*K.1^36,K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^28,K.1^40,K.1^18,-1*K.1^30,K.1^62,K.1^10,K.1^30,K.1^50,K.1^66,K.1^22,-1*K.1^50,K.1^62,-1*K.1^10,-1*K.1^6,-1*K.1^58,K.1^54,-1*K.1^18,-1*K.1^26,-1*K.1^46,K.1^42,-1*K.1^6,K.1^6,-1*K.1^62,K.1^38,-1*K.1^26,K.1^18,-1*K.1^58,K.1^10,-1*K.1^14,K.1^26,-1*K.1^14,-1*K.1^22,-1*K.1^66,K.1^22,-1*K.1^62,-1*K.1^38,K.1^50,K.1^58,-1*K.1^54,K.1^46,-1*K.1^42,-1*K.1^50,-1*K.1^30,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^42,K.1^30,K.1^14,K.1^66,-1*K.1^22,K.1^38,K.1^6,-1*K.1^66,K.1^46,K.1^26,K.1^54,-1*K.1^54,K.1^58,K.1^2,-1*K.1^46,-1*K.1^38,K.1^42,-1*K.1^18,-1*K.1^2,K.1^14,-1*K.1^28,-1*K.1^8,-1*K.1^56,K.1^12,-1*K.1^32,-1*K.1^52,K.1^48,-1*K.1^20,-1*K.1^60,K.1^16,-1*K.1^44,-1*K.1^24,-1*K.1^4,K.1^40,K.1^56,-1*K.1^12,-1*K.1^48,K.1^32,K.1^20,K.1^60,-1*K.1^32,-1*K.1^56,-1*K.1^16,-1*K.1^8,-1*K.1^40,K.1^12,K.1^36,-1*K.1^64,K.1^4,K.1^4,-1*K.1^40,-1*K.1^16,K.1^28,K.1^52,K.1^36,K.1^44,-1*K.1^48,K.1^28,-1*K.1^64,K.1^44,K.1^20,K.1^52,-1*K.1^24,K.1^8,K.1^60,-1*K.1^36,K.1^64,K.1^24,K.1^67,K.1^61,K.1^61,-1*K.1^13,-1*K.1^13,K.1^49,K.1^49,K.1^29,K.1^29,K.1^5,K.1^5,K.1^25,K.1^25,-1*K.1^37,-1*K.1^37,-1*K.1^41,-1*K.1^41,K.1^59,K.1^35,-1*K.1^3,K.1^39,-1*K.1^47,-1*K.1^3,K.1^39,-1*K.1^47,-1*K.1^23,K.1^15,-1*K.1^27,-1*K.1^23,K.1^15,K.1^59,K.1^35,K.1^65,-1*K.1^21,-1*K.1^21,-1*K.1,-1*K.1,-1*K.1^33,-1*K.1^33,-1*K.1^53,-1*K.1^53,K.1^9,K.1^9,-1*K.1^57,-1*K.1^57,K.1^45,K.1^45,K.1^65,-1*K.1^7,-1*K.1^43,-1*K.1^67,K.1^27,-1*K.1^63,K.1^55,-1*K.1^31,-1*K.1^63,K.1^55,-1*K.1^11,K.1^19,-1*K.1^7,-1*K.1^11,K.1^19,-1*K.1^43,-1*K.1^67,-1*K.1^31,K.1^41,K.1^21,K.1^21,K.1^13,K.1^13,K.1^33,K.1^33,-1*K.1^29,-1*K.1^29,-1*K.1^9,-1*K.1^9,-1*K.1^25,-1*K.1^25,-1*K.1^45,-1*K.1^45,K.1^41,K.1^31,K.1^43,-1*K.1^35,-1*K.1^27,-1*K.1^39,-1*K.1^55,K.1^31,-1*K.1^39,-1*K.1^55,K.1^23,-1*K.1^19,K.1^27,K.1^23,-1*K.1^19,K.1^43,-1*K.1^35,-1*K.1^65,-1*K.1^61,-1*K.1^61,K.1,K.1,-1*K.1^49,-1*K.1^49,K.1^53,K.1^53,-1*K.1^5,-1*K.1^5,K.1^57,K.1^57,K.1^37,K.1^37,-1*K.1^65,K.1^7,-1*K.1^59,K.1^67,K.1^3,K.1^63,K.1^47,K.1^3,K.1^63,K.1^47,K.1^11,-1*K.1^15,K.1^7,K.1^11,-1*K.1^15,-1*K.1^59,-1*K.1^18,K.1^46,-1*K.1^62,-1*K.1^58,-1*K.1^2,K.1^18,K.1^14,K.1^62,-1*K.1^66,K.1^54,K.1^58,K.1^18,-1*K.1^46,-1*K.1^42,K.1^42,-1*K.1^2,-1*K.1^54,-1*K.1^62,K.1^26,-1*K.1^42,K.1^46,-1*K.1^30,-1*K.1^18,K.1^10,K.1^42,-1*K.1^6,K.1^26,-1*K.1^30,-1*K.1^14,-1*K.1^22,K.1^14,-1*K.1^22,-1*K.1^6,K.1^22,K.1^2,-1*K.1^26,K.1^10,-1*K.1^38,K.1^66,-1*K.1^66,K.1^2,K.1^58,-1*K.1^50,K.1^54,-1*K.1^54,-1*K.1^38,K.1^38,-1*K.1^50,-1*K.1^10,K.1^30,K.1^66,-1*K.1^46,K.1^38,K.1^50,K.1^50,-1*K.1^14,-1*K.1^26,K.1^62,-1*K.1^10,K.1^6,K.1^30,-1*K.1^58,K.1^6,K.1^22]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -1, 2, 2, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -1, -2, -2, 2, 2, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, 2, 2, 2, 2, -2, 2, -2, -2, -2, 2, 2, 2, -2, -2, 2, -2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, 2, -2, -2, -2, -2, 2, 2, 2, -2, -2, -2, 2, -2, 2, 2, 2, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -1, 2, 2, -2, -2, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, -2, -2, -2, 2, -2, 2, 2, 2, -2, -2, -2, 2, 2, -2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, -2, 2, 2, 2, 2, -2, -2, -2, 2, 2, 2, -2, 2, -2, -2, -2, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -1, -2, -2, -2, -2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1,2*K.1,-2*K.1,2*K.1,1,-1,1,0,0,0,0,0,0,0,0,K.1,-1*K.1,K.1,-1*K.1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-2,2,2,-2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,1,-1,1,-1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1,-2*K.1,2*K.1,-2*K.1,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1,K.1,-1*K.1,K.1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,-2,2,2,-2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,1,1,1,1,1,1,1,1,1,1,1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,1,-1,1,-1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1,2*K.1,2*K.1,-2*K.1,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1,K.1,K.1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,2,2,2,-2,-2,2,2,2,2,2,2,-2,-2,2,2,2,-2,-2,-2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,-2,-2,-2,-2,2,-2,-2,-2,2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1,-2*K.1,-2*K.1,2*K.1,-1,1,1,0,0,0,0,0,0,0,0,K.1,K.1,-1*K.1,-1*K.1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,2,2,2,-2,-2,2,2,2,2,2,2,-2,-2,2,2,2,-2,-2,-2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,-2,-2,-2,-2,2,-2,-2,-2,2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^-8,2*K.1^4,2*K.1^-5,2*K.1^2,2*K.1^-2,2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-4,2*K.1^8,2*K.1^7,2*K.1^-6,2*K.1^-3,2*K.1,2*K.1^7,2*K.1^-4,2*K.1,2*K.1^5,2*K.1^-5,2*K.1^-6,2*K.1^5,2*K.1^-2,2*K.1^4,2*K.1^-7,2*K.1^-2,2*K.1^8,2*K.1^3,2*K.1^-3,2*K.1^8,2*K.1^-6,2*K.1^8,2*K.1^-7,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1^-7,2*K.1^7,2*K.1^4,2*K.1^5,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^6,2*K.1^-8,2*K.1^-5,2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^3,2*K.1^6,2*K.1^-8,2*K.1^-5,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^7,-1*K.1^-4,-1*K.1^5,-1*K.1^8,-1*K.1^-7,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-5,-1*K.1^-6,-1*K.1^6,2*K.1,2*K.1^-4,2*K.1^-6,2*K.1^-7,2*K.1^-4,2*K.1^-1,2*K.1^-2,2*K.1^5,2*K.1^-1,2*K.1^-6,2*K.1^-7,2*K.1^6,2*K.1^7,2*K.1^3,2*K.1,2*K.1^-8,2*K.1^-5,2*K.1^8,2*K.1^6,2*K.1^6,2*K.1^-6,2*K.1^4,2*K.1^-8,2*K.1,2*K.1^7,2*K.1^-7,2*K.1^-3,2*K.1^-8,2*K.1^-3,2*K.1^5,2*K.1^-2,2*K.1^5,2*K.1^-6,2*K.1^4,2*K.1^-1,2*K.1^7,2*K.1^3,2*K.1^-5,2*K.1^8,2*K.1^-1,2*K.1^-4,2*K.1^-7,2*K.1^2,2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1^-3,2*K.1^-2,2*K.1^5,2*K.1^4,2*K.1^6,2*K.1^-2,2*K.1^-5,2*K.1^-8,2*K.1^3,2*K.1^3,2*K.1^7,2*K.1^2,2*K.1^-5,2*K.1^4,2*K.1^8,2*K.1,2*K.1^2,2*K.1^-3,-1*K.1^-6,-1*K.1^8,-1*K.1^5,-1*K.1^-5,-1*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1^-7,-1*K.1^7,-1*K.1^4,-1*K.1^6,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1^-1,-1*K.1^8,-1*K.1^6,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^-1,-1*K.1^-6,-1*K.1,-1*K.1^2,-1*K.1^-7,-1*K.1^-3,-1*K.1^-6,-1*K.1^-4,-1*K.1^-7,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^8,-1*K.1^-8,-1*K.1^2,-1*K.1^-4,-1*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-5,-1*K.1^-6,-1*K.1^7,-1*K.1^2,-1*K.1,-1*K.1^-3,-1*K.1^-6,-1*K.1^-2,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1^-5,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^3,-1*K.1^-6,-1*K.1^-8,-1*K.1^8,-1*K.1^-5,-1*K.1^-4,-1*K.1,-1*K.1^-7,-1*K.1^8,-1*K.1^6,-1*K.1^-8,-1*K.1^-4,-1*K.1^-3,-1*K.1^5,-1*K.1^-3,-1*K.1^5,-1*K.1^6,-1*K.1^5,-1*K.1^2,-1*K.1^-8,-1*K.1^-7,-1*K.1^4,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^7,-1*K.1^-1,-1*K.1^3,-1*K.1^3,-1*K.1^4,-1*K.1^4,-1*K.1^-1,-1*K.1^-7,-1*K.1^-4,-1*K.1^-2,-1*K.1^-5,-1*K.1^4,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^-8,-1*K.1^-6,-1*K.1^-7,-1*K.1^6,-1*K.1^-4,-1*K.1^7,-1*K.1^6,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^8,2*K.1^-4,2*K.1^5,2*K.1^-2,2*K.1^2,2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^4,2*K.1^-8,2*K.1^-7,2*K.1^6,2*K.1^3,2*K.1^-1,2*K.1^-7,2*K.1^4,2*K.1^-1,2*K.1^-5,2*K.1^5,2*K.1^6,2*K.1^-5,2*K.1^2,2*K.1^-4,2*K.1^7,2*K.1^2,2*K.1^-8,2*K.1^-3,2*K.1^3,2*K.1^-8,2*K.1^6,2*K.1^-8,2*K.1^7,2*K.1,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^7,2*K.1^-7,2*K.1^-4,2*K.1^-5,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^-6,2*K.1^8,2*K.1^5,2*K.1^8,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^-2,2*K.1^-3,2*K.1^-6,2*K.1^8,2*K.1^5,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1^-7,-1*K.1^4,-1*K.1^-5,-1*K.1^-8,-1*K.1^7,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^5,-1*K.1^6,-1*K.1^-6,2*K.1^-1,2*K.1^4,2*K.1^6,2*K.1^7,2*K.1^4,2*K.1,2*K.1^2,2*K.1^-5,2*K.1,2*K.1^6,2*K.1^7,2*K.1^-6,2*K.1^-7,2*K.1^-3,2*K.1^-1,2*K.1^8,2*K.1^5,2*K.1^-8,2*K.1^-6,2*K.1^-6,2*K.1^6,2*K.1^-4,2*K.1^8,2*K.1^-1,2*K.1^-7,2*K.1^7,2*K.1^3,2*K.1^8,2*K.1^3,2*K.1^-5,2*K.1^2,2*K.1^-5,2*K.1^6,2*K.1^-4,2*K.1,2*K.1^-7,2*K.1^-3,2*K.1^5,2*K.1^-8,2*K.1,2*K.1^4,2*K.1^7,2*K.1^-2,2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^3,2*K.1^2,2*K.1^-5,2*K.1^-4,2*K.1^-6,2*K.1^2,2*K.1^5,2*K.1^8,2*K.1^-3,2*K.1^-3,2*K.1^-7,2*K.1^-2,2*K.1^5,2*K.1^-4,2*K.1^-8,2*K.1^-1,2*K.1^-2,2*K.1^3,-1*K.1^6,-1*K.1^-8,-1*K.1^-5,-1*K.1^5,-1*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,-1*K.1^-6,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1,-1*K.1^-8,-1*K.1^-6,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^-4,-1*K.1^-4,-1*K.1^-6,-1*K.1,-1*K.1^6,-1*K.1^-1,-1*K.1^-2,-1*K.1^7,-1*K.1^3,-1*K.1^6,-1*K.1^4,-1*K.1^7,-1*K.1^-3,-1*K.1^-1,-1*K.1^-7,-1*K.1^-8,-1*K.1^8,-1*K.1^-2,-1*K.1^4,-1*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1^5,-1*K.1^6,-1*K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^3,-1*K.1^6,-1*K.1^2,-1*K.1^-3,-1*K.1^-7,-1*K.1^-1,-1*K.1^5,-1*K.1^-8,-1*K.1^-8,-1*K.1^-2,-1*K.1^-3,-1*K.1^6,-1*K.1^8,-1*K.1^-8,-1*K.1^5,-1*K.1^4,-1*K.1^-1,-1*K.1^7,-1*K.1^-8,-1*K.1^-6,-1*K.1^8,-1*K.1^4,-1*K.1^3,-1*K.1^-5,-1*K.1^3,-1*K.1^-5,-1*K.1^-6,-1*K.1^-5,-1*K.1^-2,-1*K.1^8,-1*K.1^7,-1*K.1^-4,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-7,-1*K.1,-1*K.1^-3,-1*K.1^-3,-1*K.1^-4,-1*K.1^-4,-1*K.1,-1*K.1^7,-1*K.1^4,-1*K.1^2,-1*K.1^5,-1*K.1^-4,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^8,-1*K.1^6,-1*K.1^7,-1*K.1^-6,-1*K.1^4,-1*K.1^-7,-1*K.1^-6,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^-7,2*K.1^-5,2*K.1^2,2*K.1^6,2*K.1^-6,2*K.1^-4,2*K.1,2*K.1^8,2*K.1^-2,2*K.1^-8,2*K.1^-3,2*K.1^3,2*K.1^5,2*K.1^7,2*K.1^4,2*K.1^-1,2*K.1^8,2*K.1^3,2*K.1^4,2*K.1^5,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-6,2*K.1^-5,2*K.1^-4,2*K.1^-6,2*K.1^7,2*K.1^-8,2*K.1^8,2*K.1^7,2*K.1^-1,2*K.1^7,2*K.1^-4,2*K.1^-3,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^-4,2*K.1^4,2*K.1^-5,2*K.1^-2,2*K.1^-1,2*K.1^8,2*K.1,2*K.1^-8,2*K.1,2*K.1^-7,2*K.1^2,2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^-8,2*K.1,2*K.1^-7,2*K.1^2,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^4,-1*K.1^5,-1*K.1^-2,-1*K.1^7,-1*K.1^-4,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^8,-1*K.1^-7,-1*K.1^-8,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1,2*K.1^3,2*K.1^5,2*K.1^-1,2*K.1^-4,2*K.1^5,2*K.1^-3,2*K.1^-6,2*K.1^-2,2*K.1^-3,2*K.1^-1,2*K.1^-4,2*K.1,2*K.1^4,2*K.1^-8,2*K.1^3,2*K.1^-7,2*K.1^2,2*K.1^7,2*K.1,2*K.1,2*K.1^-1,2*K.1^-5,2*K.1^-7,2*K.1^3,2*K.1^4,2*K.1^-4,2*K.1^8,2*K.1^-7,2*K.1^8,2*K.1^-2,2*K.1^-6,2*K.1^-2,2*K.1^-1,2*K.1^-5,2*K.1^-3,2*K.1^4,2*K.1^-8,2*K.1^2,2*K.1^7,2*K.1^-3,2*K.1^5,2*K.1^-4,2*K.1^6,2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^8,2*K.1^-6,2*K.1^-2,2*K.1^-5,2*K.1,2*K.1^-6,2*K.1^2,2*K.1^-7,2*K.1^-8,2*K.1^-8,2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^-5,2*K.1^7,2*K.1^3,2*K.1^6,2*K.1^8,-1*K.1^-1,-1*K.1^7,-1*K.1^-2,-1*K.1^2,-1*K.1^-6,-1*K.1^3,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^8,-1*K.1^-6,-1*K.1^-8,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-3,-1*K.1^7,-1*K.1,-1*K.1^2,-1*K.1^6,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^6,-1*K.1^-4,-1*K.1^8,-1*K.1^-1,-1*K.1^5,-1*K.1^-4,-1*K.1^-8,-1*K.1^3,-1*K.1^4,-1*K.1^7,-1*K.1^-7,-1*K.1^6,-1*K.1^5,-1*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^8,-1*K.1^-1,-1*K.1^-6,-1*K.1^-8,-1*K.1^4,-1*K.1^3,-1*K.1^2,-1*K.1^7,-1*K.1^7,-1*K.1^6,-1*K.1^-8,-1*K.1^-1,-1*K.1^-7,-1*K.1^7,-1*K.1^2,-1*K.1^5,-1*K.1^3,-1*K.1^-4,-1*K.1^7,-1*K.1,-1*K.1^-7,-1*K.1^5,-1*K.1^8,-1*K.1^-2,-1*K.1^8,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^6,-1*K.1^-7,-1*K.1^-4,-1*K.1^-5,-1*K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^4,-1*K.1^-3,-1*K.1^-8,-1*K.1^-8,-1*K.1^-5,-1*K.1^-5,-1*K.1^-3,-1*K.1^-4,-1*K.1^5,-1*K.1^-6,-1*K.1^2,-1*K.1^-5,-1*K.1^-3,-1*K.1^-3,-1*K.1^8,-1*K.1^-7,-1*K.1^-1,-1*K.1^-4,-1*K.1,-1*K.1^5,-1*K.1^4,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^7,2*K.1^5,2*K.1^-2,2*K.1^-6,2*K.1^6,2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^8,2*K.1^3,2*K.1^-3,2*K.1^-5,2*K.1^-7,2*K.1^-4,2*K.1,2*K.1^-8,2*K.1^-3,2*K.1^-4,2*K.1^-5,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^6,2*K.1^5,2*K.1^4,2*K.1^6,2*K.1^-7,2*K.1^8,2*K.1^-8,2*K.1^-7,2*K.1,2*K.1^-7,2*K.1^4,2*K.1^3,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^4,2*K.1^-4,2*K.1^5,2*K.1^2,2*K.1,2*K.1^-8,2*K.1^-1,2*K.1^8,2*K.1^-1,2*K.1^7,2*K.1^-2,2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^8,2*K.1^-1,2*K.1^7,2*K.1^-2,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^-4,-1*K.1^-5,-1*K.1^2,-1*K.1^-7,-1*K.1^4,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^-8,-1*K.1^7,-1*K.1^8,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-1,2*K.1^-3,2*K.1^-5,2*K.1,2*K.1^4,2*K.1^-5,2*K.1^3,2*K.1^6,2*K.1^2,2*K.1^3,2*K.1,2*K.1^4,2*K.1^-1,2*K.1^-4,2*K.1^8,2*K.1^-3,2*K.1^7,2*K.1^-2,2*K.1^-7,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^5,2*K.1^7,2*K.1^-3,2*K.1^-4,2*K.1^4,2*K.1^-8,2*K.1^7,2*K.1^-8,2*K.1^2,2*K.1^6,2*K.1^2,2*K.1,2*K.1^5,2*K.1^3,2*K.1^-4,2*K.1^8,2*K.1^-2,2*K.1^-7,2*K.1^3,2*K.1^-5,2*K.1^4,2*K.1^-6,2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1^-8,2*K.1^6,2*K.1^2,2*K.1^5,2*K.1^-1,2*K.1^6,2*K.1^-2,2*K.1^7,2*K.1^8,2*K.1^8,2*K.1^-4,2*K.1^-6,2*K.1^-2,2*K.1^5,2*K.1^-7,2*K.1^-3,2*K.1^-6,2*K.1^-8,-1*K.1,-1*K.1^-7,-1*K.1^2,-1*K.1^-2,-1*K.1^6,-1*K.1^-3,-1*K.1^-8,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^4,-1*K.1^-4,-1*K.1^5,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-8,-1*K.1^6,-1*K.1^8,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^3,-1*K.1^-7,-1*K.1^-1,-1*K.1^-2,-1*K.1^-6,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-6,-1*K.1^4,-1*K.1^-8,-1*K.1,-1*K.1^-5,-1*K.1^4,-1*K.1^8,-1*K.1^-3,-1*K.1^-4,-1*K.1^-7,-1*K.1^7,-1*K.1^-6,-1*K.1^-5,-1*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1^-8,-1*K.1,-1*K.1^6,-1*K.1^8,-1*K.1^-4,-1*K.1^-3,-1*K.1^-2,-1*K.1^-7,-1*K.1^-7,-1*K.1^-6,-1*K.1^8,-1*K.1,-1*K.1^7,-1*K.1^-7,-1*K.1^-2,-1*K.1^-5,-1*K.1^-3,-1*K.1^4,-1*K.1^-7,-1*K.1^-1,-1*K.1^7,-1*K.1^-5,-1*K.1^-8,-1*K.1^2,-1*K.1^-8,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-6,-1*K.1^7,-1*K.1^4,-1*K.1^5,-1*K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^-4,-1*K.1^3,-1*K.1^8,-1*K.1^8,-1*K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^4,-1*K.1^-5,-1*K.1^6,-1*K.1^-2,-1*K.1^5,-1*K.1^3,-1*K.1^3,-1*K.1^-8,-1*K.1^7,-1*K.1,-1*K.1^4,-1*K.1^-1,-1*K.1^-5,-1*K.1^-4,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^-6,2*K.1^3,2*K.1^-8,2*K.1^-7,2*K.1^7,2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-2,2*K.1^-5,2*K.1^5,2*K.1^-3,2*K.1^6,2*K.1,2*K.1^4,2*K.1^2,2*K.1^5,2*K.1,2*K.1^-3,2*K.1^5,2*K.1^8,2*K.1^-8,2*K.1^4,2*K.1^8,2*K.1^7,2*K.1^3,2*K.1^-1,2*K.1^7,2*K.1^6,2*K.1^-2,2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^6,2*K.1^-1,2*K.1^-5,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^8,2*K.1^4,2*K.1^2,2*K.1^-4,2*K.1^-2,2*K.1^-4,2*K.1^-6,2*K.1^-8,2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^-2,2*K.1^-4,2*K.1^-6,2*K.1^-8,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1,-1*K.1^-3,-1*K.1^8,-1*K.1^6,-1*K.1^-1,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-6,-1*K.1^-2,-1*K.1^-7,-1*K.1^7,-1*K.1^5,-1*K.1^-8,-1*K.1^4,-1*K.1^-4,2*K.1^5,2*K.1^-3,2*K.1^4,2*K.1^-1,2*K.1^-3,2*K.1^-5,2*K.1^7,2*K.1^8,2*K.1^-5,2*K.1^4,2*K.1^-1,2*K.1^-4,2*K.1,2*K.1^-2,2*K.1^5,2*K.1^-6,2*K.1^-8,2*K.1^6,2*K.1^-4,2*K.1^-4,2*K.1^4,2*K.1^3,2*K.1^-6,2*K.1^5,2*K.1,2*K.1^-1,2*K.1^2,2*K.1^-6,2*K.1^2,2*K.1^8,2*K.1^7,2*K.1^8,2*K.1^4,2*K.1^3,2*K.1^-5,2*K.1,2*K.1^-2,2*K.1^-8,2*K.1^6,2*K.1^-5,2*K.1^-3,2*K.1^-1,2*K.1^-7,2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^2,2*K.1^7,2*K.1^8,2*K.1^3,2*K.1^-4,2*K.1^7,2*K.1^-8,2*K.1^-6,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^-7,2*K.1^-8,2*K.1^3,2*K.1^6,2*K.1^5,2*K.1^-7,2*K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^-8,-1*K.1^7,-1*K.1^5,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-4,-1*K.1^8,-1*K.1^-8,-1*K.1^2,-1*K.1^7,-1*K.1^-2,-1*K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^-5,-1*K.1^6,-1*K.1^-4,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^-4,-1*K.1^-5,-1*K.1^4,-1*K.1^5,-1*K.1^-7,-1*K.1^-1,-1*K.1^2,-1*K.1^4,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^5,-1*K.1,-1*K.1^6,-1*K.1^-6,-1*K.1^-7,-1*K.1^-3,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5,-1*K.1^-8,-1*K.1^4,-1*K.1,-1*K.1^-7,-1*K.1^5,-1*K.1^2,-1*K.1^4,-1*K.1^7,-1*K.1^-2,-1*K.1,-1*K.1^5,-1*K.1^-8,-1*K.1^6,-1*K.1^6,-1*K.1^-7,-1*K.1^-2,-1*K.1^4,-1*K.1^-6,-1*K.1^6,-1*K.1^-8,-1*K.1^-3,-1*K.1^5,-1*K.1^-1,-1*K.1^6,-1*K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^-4,-1*K.1^8,-1*K.1^-7,-1*K.1^-6,-1*K.1^-1,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^-7,-1*K.1,-1*K.1^-5,-1*K.1^-2,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1^-5,-1*K.1^-1,-1*K.1^-3,-1*K.1^7,-1*K.1^-8,-1*K.1^3,-1*K.1^-5,-1*K.1^-5,-1*K.1^2,-1*K.1^-6,-1*K.1^4,-1*K.1^-1,-1*K.1^-4,-1*K.1^-3,-1*K.1,-1*K.1^-4,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^6,2*K.1^-3,2*K.1^8,2*K.1^7,2*K.1^-7,2*K.1,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^2,2*K.1^5,2*K.1^-5,2*K.1^3,2*K.1^-6,2*K.1^-1,2*K.1^-4,2*K.1^-2,2*K.1^-5,2*K.1^-1,2*K.1^3,2*K.1^-5,2*K.1^-8,2*K.1^8,2*K.1^-4,2*K.1^-8,2*K.1^-7,2*K.1^-3,2*K.1,2*K.1^-7,2*K.1^-6,2*K.1^2,2*K.1^-2,2*K.1^-6,2*K.1^-4,2*K.1^-6,2*K.1,2*K.1^5,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-8,2*K.1^-4,2*K.1^-2,2*K.1^4,2*K.1^2,2*K.1^4,2*K.1^6,2*K.1^8,2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1^7,2*K.1^2,2*K.1^4,2*K.1^6,2*K.1^8,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^-1,-1*K.1^3,-1*K.1^-8,-1*K.1^-6,-1*K.1,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1^-7,-1*K.1^-5,-1*K.1^8,-1*K.1^-4,-1*K.1^4,2*K.1^-5,2*K.1^3,2*K.1^-4,2*K.1,2*K.1^3,2*K.1^5,2*K.1^-7,2*K.1^-8,2*K.1^5,2*K.1^-4,2*K.1,2*K.1^4,2*K.1^-1,2*K.1^2,2*K.1^-5,2*K.1^6,2*K.1^8,2*K.1^-6,2*K.1^4,2*K.1^4,2*K.1^-4,2*K.1^-3,2*K.1^6,2*K.1^-5,2*K.1^-1,2*K.1,2*K.1^-2,2*K.1^6,2*K.1^-2,2*K.1^-8,2*K.1^-7,2*K.1^-8,2*K.1^-4,2*K.1^-3,2*K.1^5,2*K.1^-1,2*K.1^2,2*K.1^8,2*K.1^-6,2*K.1^5,2*K.1^3,2*K.1,2*K.1^7,2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-2,2*K.1^-7,2*K.1^-8,2*K.1^-3,2*K.1^4,2*K.1^-7,2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^7,2*K.1^8,2*K.1^-3,2*K.1^-6,2*K.1^-5,2*K.1^7,2*K.1^-2,-1*K.1^-4,-1*K.1^-6,-1*K.1^-8,-1*K.1^8,-1*K.1^-7,-1*K.1^-5,-1*K.1^-2,-1*K.1^2,-1*K.1^6,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^4,-1*K.1^-8,-1*K.1^8,-1*K.1^-2,-1*K.1^-7,-1*K.1^2,-1*K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1^5,-1*K.1^-6,-1*K.1^4,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^4,-1*K.1^5,-1*K.1^-4,-1*K.1^-5,-1*K.1^7,-1*K.1,-1*K.1^-2,-1*K.1^-4,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-5,-1*K.1^-1,-1*K.1^-6,-1*K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-5,-1*K.1^8,-1*K.1^-4,-1*K.1^-1,-1*K.1^7,-1*K.1^-5,-1*K.1^-2,-1*K.1^-4,-1*K.1^-7,-1*K.1^2,-1*K.1^-1,-1*K.1^-5,-1*K.1^8,-1*K.1^-6,-1*K.1^-6,-1*K.1^7,-1*K.1^2,-1*K.1^-4,-1*K.1^6,-1*K.1^-6,-1*K.1^8,-1*K.1^3,-1*K.1^-5,-1*K.1,-1*K.1^-6,-1*K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^-2,-1*K.1^-8,-1*K.1^-2,-1*K.1^-8,-1*K.1^4,-1*K.1^-8,-1*K.1^7,-1*K.1^6,-1*K.1,-1*K.1^-3,-1*K.1^-7,-1*K.1^-7,-1*K.1^7,-1*K.1^-1,-1*K.1^5,-1*K.1^2,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1^-7,-1*K.1^8,-1*K.1^-3,-1*K.1^5,-1*K.1^5,-1*K.1^-2,-1*K.1^6,-1*K.1^-4,-1*K.1,-1*K.1^4,-1*K.1^3,-1*K.1^-1,-1*K.1^4,-1*K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^-5,2*K.1^-6,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^4,2*K.1^-7,2*K.1^7,2*K.1^6,2*K.1^5,2*K.1^-2,2*K.1^-8,2*K.1^-4,2*K.1^7,2*K.1^-2,2*K.1^6,2*K.1^7,2*K.1,2*K.1^-1,2*K.1^-8,2*K.1,2*K.1^3,2*K.1^-6,2*K.1^2,2*K.1^3,2*K.1^5,2*K.1^4,2*K.1^-4,2*K.1^5,2*K.1^-8,2*K.1^5,2*K.1^2,2*K.1^-7,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^2,2*K.1^-2,2*K.1^-6,2*K.1,2*K.1^-8,2*K.1^-4,2*K.1^8,2*K.1^4,2*K.1^8,2*K.1^-5,2*K.1^-1,2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^4,2*K.1^8,2*K.1^-5,2*K.1^-1,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^-2,-1*K.1^6,-1*K.1,-1*K.1^5,-1*K.1^2,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-4,-1*K.1^-5,-1*K.1^4,-1*K.1^-3,-1*K.1^3,-1*K.1^7,-1*K.1^-1,-1*K.1^-8,-1*K.1^8,2*K.1^7,2*K.1^6,2*K.1^-8,2*K.1^2,2*K.1^6,2*K.1^-7,2*K.1^3,2*K.1,2*K.1^-7,2*K.1^-8,2*K.1^2,2*K.1^8,2*K.1^-2,2*K.1^4,2*K.1^7,2*K.1^-5,2*K.1^-1,2*K.1^5,2*K.1^8,2*K.1^8,2*K.1^-8,2*K.1^-6,2*K.1^-5,2*K.1^7,2*K.1^-2,2*K.1^2,2*K.1^-4,2*K.1^-5,2*K.1^-4,2*K.1,2*K.1^3,2*K.1,2*K.1^-8,2*K.1^-6,2*K.1^-7,2*K.1^-2,2*K.1^4,2*K.1^-1,2*K.1^5,2*K.1^-7,2*K.1^6,2*K.1^2,2*K.1^-3,2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^-4,2*K.1^3,2*K.1,2*K.1^-6,2*K.1^8,2*K.1^3,2*K.1^-1,2*K.1^-5,2*K.1^4,2*K.1^4,2*K.1^-2,2*K.1^-3,2*K.1^-1,2*K.1^-6,2*K.1^5,2*K.1^7,2*K.1^-3,2*K.1^-4,-1*K.1^-8,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^7,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,-1*K.1^-7,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,-1*K.1^8,-1*K.1,-1*K.1^-1,-1*K.1^-4,-1*K.1^3,-1*K.1^4,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^-7,-1*K.1^5,-1*K.1^8,-1*K.1^-1,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^8,-1*K.1^-7,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,-1*K.1^2,-1*K.1^-4,-1*K.1^-8,-1*K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^7,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^6,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^7,-1*K.1^-1,-1*K.1^-8,-1*K.1^-2,-1*K.1^-3,-1*K.1^7,-1*K.1^-4,-1*K.1^-8,-1*K.1^3,-1*K.1^4,-1*K.1^-2,-1*K.1^7,-1*K.1^-1,-1*K.1^5,-1*K.1^5,-1*K.1^-3,-1*K.1^4,-1*K.1^-8,-1*K.1^-5,-1*K.1^5,-1*K.1^-1,-1*K.1^6,-1*K.1^7,-1*K.1^2,-1*K.1^5,-1*K.1^8,-1*K.1^-5,-1*K.1^6,-1*K.1^-4,-1*K.1,-1*K.1^-4,-1*K.1,-1*K.1^8,-1*K.1,-1*K.1^-3,-1*K.1^-5,-1*K.1^2,-1*K.1^-6,-1*K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-7,-1*K.1^4,-1*K.1^4,-1*K.1^-6,-1*K.1^-6,-1*K.1^-7,-1*K.1^2,-1*K.1^6,-1*K.1^3,-1*K.1^-1,-1*K.1^-6,-1*K.1^-7,-1*K.1^-7,-1*K.1^-4,-1*K.1^-5,-1*K.1^-8,-1*K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^-2,-1*K.1^8,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^5,2*K.1^6,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-4,2*K.1^7,2*K.1^-7,2*K.1^-6,2*K.1^-5,2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^-7,2*K.1^2,2*K.1^-6,2*K.1^-7,2*K.1^-1,2*K.1,2*K.1^8,2*K.1^-1,2*K.1^-3,2*K.1^6,2*K.1^-2,2*K.1^-3,2*K.1^-5,2*K.1^-4,2*K.1^4,2*K.1^-5,2*K.1^8,2*K.1^-5,2*K.1^-2,2*K.1^7,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^-2,2*K.1^2,2*K.1^6,2*K.1^-1,2*K.1^8,2*K.1^4,2*K.1^-8,2*K.1^-4,2*K.1^-8,2*K.1^5,2*K.1,2*K.1^5,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-4,2*K.1^-8,2*K.1^5,2*K.1,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^2,-1*K.1^-6,-1*K.1^-1,-1*K.1^-5,-1*K.1^-2,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^5,-1*K.1^-4,-1*K.1^3,-1*K.1^-3,-1*K.1^-7,-1*K.1,-1*K.1^8,-1*K.1^-8,2*K.1^-7,2*K.1^-6,2*K.1^8,2*K.1^-2,2*K.1^-6,2*K.1^7,2*K.1^-3,2*K.1^-1,2*K.1^7,2*K.1^8,2*K.1^-2,2*K.1^-8,2*K.1^2,2*K.1^-4,2*K.1^-7,2*K.1^5,2*K.1,2*K.1^-5,2*K.1^-8,2*K.1^-8,2*K.1^8,2*K.1^6,2*K.1^5,2*K.1^-7,2*K.1^2,2*K.1^-2,2*K.1^4,2*K.1^5,2*K.1^4,2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^8,2*K.1^6,2*K.1^7,2*K.1^2,2*K.1^-4,2*K.1,2*K.1^-5,2*K.1^7,2*K.1^-6,2*K.1^-2,2*K.1^3,2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^4,2*K.1^-3,2*K.1^-1,2*K.1^6,2*K.1^-8,2*K.1^-3,2*K.1,2*K.1^5,2*K.1^-4,2*K.1^-4,2*K.1^2,2*K.1^3,2*K.1,2*K.1^6,2*K.1^-5,2*K.1^-7,2*K.1^3,2*K.1^4,-1*K.1^8,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-7,-1*K.1^4,-1*K.1^-4,-1*K.1^5,-1*K.1^7,-1*K.1^-2,-1*K.1^2,-1*K.1^6,-1*K.1^-8,-1*K.1^-1,-1*K.1,-1*K.1^4,-1*K.1^-3,-1*K.1^-4,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^7,-1*K.1^-5,-1*K.1^-8,-1*K.1,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^-8,-1*K.1^7,-1*K.1^8,-1*K.1^-7,-1*K.1^3,-1*K.1^-2,-1*K.1^4,-1*K.1^8,-1*K.1^-6,-1*K.1^-2,-1*K.1^-4,-1*K.1^-7,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^-6,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-7,-1*K.1,-1*K.1^8,-1*K.1^2,-1*K.1^3,-1*K.1^-7,-1*K.1^4,-1*K.1^8,-1*K.1^-3,-1*K.1^-4,-1*K.1^2,-1*K.1^-7,-1*K.1,-1*K.1^-5,-1*K.1^-5,-1*K.1^3,-1*K.1^-4,-1*K.1^8,-1*K.1^5,-1*K.1^-5,-1*K.1,-1*K.1^-6,-1*K.1^-7,-1*K.1^-2,-1*K.1^-5,-1*K.1^-8,-1*K.1^5,-1*K.1^-6,-1*K.1^4,-1*K.1^-1,-1*K.1^4,-1*K.1^-1,-1*K.1^-8,-1*K.1^-1,-1*K.1^3,-1*K.1^5,-1*K.1^-2,-1*K.1^6,-1*K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^2,-1*K.1^7,-1*K.1^-4,-1*K.1^-4,-1*K.1^6,-1*K.1^6,-1*K.1^7,-1*K.1^-2,-1*K.1^-6,-1*K.1^-3,-1*K.1,-1*K.1^6,-1*K.1^7,-1*K.1^7,-1*K.1^4,-1*K.1^5,-1*K.1^8,-1*K.1^-2,-1*K.1^-8,-1*K.1^-6,-1*K.1^2,-1*K.1^-8,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^-4,2*K.1^2,2*K.1^6,2*K.1,2*K.1^-1,2*K.1^5,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^-7,2*K.1^8,2*K.1^-8,2*K.1^-2,2*K.1^4,2*K.1^-5,2*K.1^-3,2*K.1^7,2*K.1^-8,2*K.1^-5,2*K.1^-2,2*K.1^-8,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^-6,2*K.1^-1,2*K.1^2,2*K.1^5,2*K.1^-1,2*K.1^4,2*K.1^-7,2*K.1^7,2*K.1^4,2*K.1^-3,2*K.1^4,2*K.1^5,2*K.1^8,2*K.1,2*K.1^8,2*K.1^-2,2*K.1^5,2*K.1^-5,2*K.1^2,2*K.1^-6,2*K.1^-3,2*K.1^7,2*K.1^3,2*K.1^-7,2*K.1^3,2*K.1^-4,2*K.1^6,2*K.1^-4,2*K.1,2*K.1^8,2*K.1^-2,2*K.1,2*K.1^-7,2*K.1^3,2*K.1^-4,2*K.1^6,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^-5,-1*K.1^-2,-1*K.1^-6,-1*K.1^4,-1*K.1^5,-1*K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1^7,-1*K.1^-4,-1*K.1^-7,-1*K.1,-1*K.1^-1,-1*K.1^-8,-1*K.1^6,-1*K.1^-3,-1*K.1^3,2*K.1^-8,2*K.1^-2,2*K.1^-3,2*K.1^5,2*K.1^-2,2*K.1^8,2*K.1^-1,2*K.1^-6,2*K.1^8,2*K.1^-3,2*K.1^5,2*K.1^3,2*K.1^-5,2*K.1^-7,2*K.1^-8,2*K.1^-4,2*K.1^6,2*K.1^4,2*K.1^3,2*K.1^3,2*K.1^-3,2*K.1^2,2*K.1^-4,2*K.1^-8,2*K.1^-5,2*K.1^5,2*K.1^7,2*K.1^-4,2*K.1^7,2*K.1^-6,2*K.1^-1,2*K.1^-6,2*K.1^-3,2*K.1^2,2*K.1^8,2*K.1^-5,2*K.1^-7,2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^-2,2*K.1^5,2*K.1,2*K.1,2*K.1^4,2*K.1^-2,2*K.1^7,2*K.1^-1,2*K.1^-6,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^6,2*K.1^-4,2*K.1^-7,2*K.1^-7,2*K.1^-5,2*K.1,2*K.1^6,2*K.1^2,2*K.1^4,2*K.1^-8,2*K.1,2*K.1^7,-1*K.1^-3,-1*K.1^4,-1*K.1^-6,-1*K.1^6,-1*K.1^-1,-1*K.1^-8,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,-1*K.1^8,-1*K.1^5,-1*K.1^-5,-1*K.1^2,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^7,-1*K.1^-1,-1*K.1^-7,-1*K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^8,-1*K.1^4,-1*K.1^3,-1*K.1^6,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^8,-1*K.1^-3,-1*K.1^-8,-1*K.1,-1*K.1^5,-1*K.1^7,-1*K.1^-3,-1*K.1^-2,-1*K.1^5,-1*K.1^-7,-1*K.1^-8,-1*K.1^-5,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-2,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-8,-1*K.1^6,-1*K.1^-3,-1*K.1^-5,-1*K.1,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,-1*K.1^-1,-1*K.1^-7,-1*K.1^-5,-1*K.1^-8,-1*K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1^-7,-1*K.1^-3,-1*K.1^-4,-1*K.1^4,-1*K.1^6,-1*K.1^-2,-1*K.1^-8,-1*K.1^5,-1*K.1^4,-1*K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^7,-1*K.1^-6,-1*K.1^7,-1*K.1^-6,-1*K.1^3,-1*K.1^-6,-1*K.1,-1*K.1^-4,-1*K.1^5,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-5,-1*K.1^8,-1*K.1^-7,-1*K.1^-7,-1*K.1^2,-1*K.1^2,-1*K.1^8,-1*K.1^5,-1*K.1^-2,-1*K.1^-1,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^7,-1*K.1^-4,-1*K.1^-3,-1*K.1^5,-1*K.1^3,-1*K.1^-2,-1*K.1^-5,-1*K.1^3,-1*K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^4,2*K.1^-2,2*K.1^-6,2*K.1^-1,2*K.1,2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^7,2*K.1^-8,2*K.1^8,2*K.1^2,2*K.1^-4,2*K.1^5,2*K.1^3,2*K.1^-7,2*K.1^8,2*K.1^5,2*K.1^2,2*K.1^8,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^6,2*K.1,2*K.1^-2,2*K.1^-5,2*K.1,2*K.1^-4,2*K.1^7,2*K.1^-7,2*K.1^-4,2*K.1^3,2*K.1^-4,2*K.1^-5,2*K.1^-8,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^-5,2*K.1^5,2*K.1^-2,2*K.1^6,2*K.1^3,2*K.1^-7,2*K.1^-3,2*K.1^7,2*K.1^-3,2*K.1^4,2*K.1^-6,2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^7,2*K.1^-3,2*K.1^4,2*K.1^-6,2*K.1,2*K.1^8,2*K.1^-2,2*K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^-4,-1*K.1^-5,-1*K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1^-7,-1*K.1^4,-1*K.1^7,-1*K.1^-1,-1*K.1,-1*K.1^8,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,2*K.1^8,2*K.1^2,2*K.1^3,2*K.1^-5,2*K.1^2,2*K.1^-8,2*K.1,2*K.1^6,2*K.1^-8,2*K.1^3,2*K.1^-5,2*K.1^-3,2*K.1^5,2*K.1^7,2*K.1^8,2*K.1^4,2*K.1^-6,2*K.1^-4,2*K.1^-3,2*K.1^-3,2*K.1^3,2*K.1^-2,2*K.1^4,2*K.1^8,2*K.1^5,2*K.1^-5,2*K.1^-7,2*K.1^4,2*K.1^-7,2*K.1^6,2*K.1,2*K.1^6,2*K.1^3,2*K.1^-2,2*K.1^-8,2*K.1^5,2*K.1^7,2*K.1^-6,2*K.1^-4,2*K.1^-8,2*K.1^2,2*K.1^-5,2*K.1^-1,2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^-7,2*K.1,2*K.1^6,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^-6,2*K.1^4,2*K.1^7,2*K.1^7,2*K.1^5,2*K.1^-1,2*K.1^-6,2*K.1^-2,2*K.1^-4,2*K.1^8,2*K.1^-1,2*K.1^-7,-1*K.1^3,-1*K.1^-4,-1*K.1^6,-1*K.1^-6,-1*K.1,-1*K.1^8,-1*K.1^-7,-1*K.1^7,-1*K.1^4,-1*K.1^-8,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^-7,-1*K.1,-1*K.1^7,-1*K.1^4,-1*K.1,-1*K.1^6,-1*K.1^-8,-1*K.1^-4,-1*K.1^-3,-1*K.1^-6,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-8,-1*K.1^3,-1*K.1^8,-1*K.1^-1,-1*K.1^-5,-1*K.1^-7,-1*K.1^3,-1*K.1^2,-1*K.1^-5,-1*K.1^7,-1*K.1^8,-1*K.1^5,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1^2,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,-1*K.1^-6,-1*K.1^3,-1*K.1^5,-1*K.1^-1,-1*K.1^8,-1*K.1^-7,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^5,-1*K.1^8,-1*K.1^-6,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^7,-1*K.1^3,-1*K.1^4,-1*K.1^-4,-1*K.1^-6,-1*K.1^2,-1*K.1^8,-1*K.1^-5,-1*K.1^-4,-1*K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^-7,-1*K.1^6,-1*K.1^-7,-1*K.1^6,-1*K.1^-3,-1*K.1^6,-1*K.1^-1,-1*K.1^4,-1*K.1^-5,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^5,-1*K.1^-8,-1*K.1^7,-1*K.1^7,-1*K.1^-2,-1*K.1^-2,-1*K.1^-8,-1*K.1^-5,-1*K.1^2,-1*K.1,-1*K.1^-6,-1*K.1^-2,-1*K.1^-8,-1*K.1^-8,-1*K.1^-7,-1*K.1^4,-1*K.1^3,-1*K.1^-5,-1*K.1^-3,-1*K.1^2,-1*K.1^5,-1*K.1^-3,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^-3,2*K.1^-7,2*K.1^-4,2*K.1^5,2*K.1^-5,2*K.1^8,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^-1,2*K.1^6,2*K.1^-6,2*K.1^7,2*K.1^3,2*K.1^-8,2*K.1^2,2*K.1,2*K.1^-6,2*K.1^-8,2*K.1^7,2*K.1^-6,2*K.1^4,2*K.1^-4,2*K.1^2,2*K.1^4,2*K.1^-5,2*K.1^-7,2*K.1^8,2*K.1^-5,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^8,2*K.1^6,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^8,2*K.1^-8,2*K.1^-7,2*K.1^4,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1^-4,2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1^-4,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^-8,-1*K.1^7,-1*K.1^4,-1*K.1^3,-1*K.1^8,-1*K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^5,-1*K.1^-5,-1*K.1^-6,-1*K.1^-4,-1*K.1^2,-1*K.1^-2,2*K.1^-6,2*K.1^7,2*K.1^2,2*K.1^8,2*K.1^7,2*K.1^6,2*K.1^-5,2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^8,2*K.1^-2,2*K.1^-8,2*K.1^-1,2*K.1^-6,2*K.1^-3,2*K.1^-4,2*K.1^3,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-7,2*K.1^-3,2*K.1^-6,2*K.1^-8,2*K.1^8,2*K.1,2*K.1^-3,2*K.1,2*K.1^4,2*K.1^-5,2*K.1^4,2*K.1^2,2*K.1^-7,2*K.1^6,2*K.1^-8,2*K.1^-1,2*K.1^-4,2*K.1^3,2*K.1^6,2*K.1^7,2*K.1^8,2*K.1^5,2*K.1^5,2*K.1^3,2*K.1^7,2*K.1,2*K.1^-5,2*K.1^4,2*K.1^-7,2*K.1^-2,2*K.1^-5,2*K.1^-4,2*K.1^-3,2*K.1^-1,2*K.1^-1,2*K.1^-8,2*K.1^5,2*K.1^-4,2*K.1^-7,2*K.1^3,2*K.1^-6,2*K.1^5,2*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^4,-1*K.1^-4,-1*K.1^-5,-1*K.1^-6,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^6,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,-1*K.1^-2,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-5,-1*K.1^-1,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^-2,-1*K.1^-4,-1*K.1^5,-1*K.1^7,-1*K.1^-7,-1*K.1^-7,-1*K.1^-2,-1*K.1^6,-1*K.1^2,-1*K.1^-6,-1*K.1^5,-1*K.1^8,-1*K.1,-1*K.1^2,-1*K.1^7,-1*K.1^8,-1*K.1^-1,-1*K.1^-6,-1*K.1^-8,-1*K.1^3,-1*K.1^-3,-1*K.1^5,-1*K.1^7,-1*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,-1*K.1^-4,-1*K.1^2,-1*K.1^-8,-1*K.1^5,-1*K.1^-6,-1*K.1,-1*K.1^2,-1*K.1^-5,-1*K.1^-1,-1*K.1^-8,-1*K.1^-6,-1*K.1^-4,-1*K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-4,-1*K.1^7,-1*K.1^-6,-1*K.1^8,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^7,-1*K.1,-1*K.1^4,-1*K.1,-1*K.1^4,-1*K.1^-2,-1*K.1^4,-1*K.1^5,-1*K.1^-3,-1*K.1^8,-1*K.1^-7,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^-8,-1*K.1^6,-1*K.1^-1,-1*K.1^-1,-1*K.1^-7,-1*K.1^-7,-1*K.1^6,-1*K.1^8,-1*K.1^7,-1*K.1^-5,-1*K.1^-4,-1*K.1^-7,-1*K.1^6,-1*K.1^6,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^8,-1*K.1^-2,-1*K.1^7,-1*K.1^-8,-1*K.1^-2,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^3,2*K.1^7,2*K.1^4,2*K.1^-5,2*K.1^5,2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1,2*K.1^-6,2*K.1^6,2*K.1^-7,2*K.1^-3,2*K.1^8,2*K.1^-2,2*K.1^-1,2*K.1^6,2*K.1^8,2*K.1^-7,2*K.1^6,2*K.1^-4,2*K.1^4,2*K.1^-2,2*K.1^-4,2*K.1^5,2*K.1^7,2*K.1^-8,2*K.1^5,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^-8,2*K.1^-6,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^-8,2*K.1^8,2*K.1^7,2*K.1^-4,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^2,2*K.1^3,2*K.1^4,2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1,2*K.1^2,2*K.1^3,2*K.1^4,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^8,-1*K.1^-7,-1*K.1^-4,-1*K.1^-3,-1*K.1^-8,-1*K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-5,-1*K.1^5,-1*K.1^6,-1*K.1^4,-1*K.1^-2,-1*K.1^2,2*K.1^6,2*K.1^-7,2*K.1^-2,2*K.1^-8,2*K.1^-7,2*K.1^-6,2*K.1^5,2*K.1^-4,2*K.1^-6,2*K.1^-2,2*K.1^-8,2*K.1^2,2*K.1^8,2*K.1,2*K.1^6,2*K.1^3,2*K.1^4,2*K.1^-3,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1^7,2*K.1^3,2*K.1^6,2*K.1^8,2*K.1^-8,2*K.1^-1,2*K.1^3,2*K.1^-1,2*K.1^-4,2*K.1^5,2*K.1^-4,2*K.1^-2,2*K.1^7,2*K.1^-6,2*K.1^8,2*K.1,2*K.1^4,2*K.1^-3,2*K.1^-6,2*K.1^-7,2*K.1^-8,2*K.1^-5,2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^-1,2*K.1^5,2*K.1^-4,2*K.1^7,2*K.1^2,2*K.1^5,2*K.1^4,2*K.1^3,2*K.1,2*K.1,2*K.1^8,2*K.1^-5,2*K.1^4,2*K.1^7,2*K.1^-3,2*K.1^6,2*K.1^-5,2*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-4,-1*K.1^4,-1*K.1^5,-1*K.1^6,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-6,-1*K.1^-8,-1*K.1^8,-1*K.1^7,-1*K.1^2,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1^2,-1*K.1^4,-1*K.1^-5,-1*K.1^-7,-1*K.1^7,-1*K.1^7,-1*K.1^2,-1*K.1^-6,-1*K.1^-2,-1*K.1^6,-1*K.1^-5,-1*K.1^-8,-1*K.1^-1,-1*K.1^-2,-1*K.1^-7,-1*K.1^-8,-1*K.1,-1*K.1^6,-1*K.1^8,-1*K.1^-3,-1*K.1^3,-1*K.1^-5,-1*K.1^-7,-1*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,-1*K.1^4,-1*K.1^-2,-1*K.1^8,-1*K.1^-5,-1*K.1^6,-1*K.1^-1,-1*K.1^-2,-1*K.1^5,-1*K.1,-1*K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^-3,-1*K.1^-3,-1*K.1^-5,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^4,-1*K.1^-7,-1*K.1^6,-1*K.1^-8,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^-7,-1*K.1^-1,-1*K.1^-4,-1*K.1^-1,-1*K.1^-4,-1*K.1^2,-1*K.1^-4,-1*K.1^-5,-1*K.1^3,-1*K.1^-8,-1*K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^8,-1*K.1^-6,-1*K.1,-1*K.1,-1*K.1^7,-1*K.1^7,-1*K.1^-6,-1*K.1^-8,-1*K.1^-7,-1*K.1^5,-1*K.1^4,-1*K.1^7,-1*K.1^-6,-1*K.1^-6,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1^-8,-1*K.1^2,-1*K.1^-7,-1*K.1^8,-1*K.1^2,-1*K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-8,2*K.1^8,2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^5,2*K.1^4,2*K.1^-4,2*K.1^-1,2*K.1^2,2*K.1^6,2*K.1^7,2*K.1^-5,2*K.1^-4,2*K.1^6,2*K.1^-1,2*K.1^-4,2*K.1^-3,2*K.1^3,2*K.1^7,2*K.1^-3,2*K.1^8,2*K.1,2*K.1^-6,2*K.1^8,2*K.1^2,2*K.1^5,2*K.1^-5,2*K.1^2,2*K.1^7,2*K.1^2,2*K.1^-6,2*K.1^4,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-6,2*K.1^6,2*K.1,2*K.1^-3,2*K.1^7,2*K.1^-5,2*K.1^-7,2*K.1^5,2*K.1^-7,2*K.1^-2,2*K.1^3,2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^5,2*K.1^-7,2*K.1^-2,2*K.1^3,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^6,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^-6,-1*K.1^4,-1*K.1,-1*K.1^6,-1*K.1^-5,-1*K.1^-2,-1*K.1^5,-1*K.1^-8,-1*K.1^8,-1*K.1^-4,-1*K.1^3,-1*K.1^7,-1*K.1^-7,2*K.1^-4,2*K.1^-1,2*K.1^7,2*K.1^-6,2*K.1^-1,2*K.1^4,2*K.1^8,2*K.1^-3,2*K.1^4,2*K.1^7,2*K.1^-6,2*K.1^-7,2*K.1^6,2*K.1^5,2*K.1^-4,2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-7,2*K.1^-7,2*K.1^7,2*K.1,2*K.1^-2,2*K.1^-4,2*K.1^6,2*K.1^-6,2*K.1^-5,2*K.1^-2,2*K.1^-5,2*K.1^-3,2*K.1^8,2*K.1^-3,2*K.1^7,2*K.1,2*K.1^4,2*K.1^6,2*K.1^5,2*K.1^3,2*K.1^2,2*K.1^4,2*K.1^-1,2*K.1^-6,2*K.1^-8,2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^-5,2*K.1^8,2*K.1^-3,2*K.1,2*K.1^-7,2*K.1^8,2*K.1^3,2*K.1^-2,2*K.1^5,2*K.1^5,2*K.1^6,2*K.1^-8,2*K.1^3,2*K.1,2*K.1^2,2*K.1^-4,2*K.1^-8,2*K.1^-5,-1*K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^8,-1*K.1^-4,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^-6,-1*K.1^6,-1*K.1,-1*K.1^-7,-1*K.1^-3,-1*K.1^3,-1*K.1^-5,-1*K.1^8,-1*K.1^5,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^-7,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-7,-1*K.1^4,-1*K.1^7,-1*K.1^-4,-1*K.1^-8,-1*K.1^-6,-1*K.1^-5,-1*K.1^7,-1*K.1^-1,-1*K.1^-6,-1*K.1^5,-1*K.1^-4,-1*K.1^6,-1*K.1^2,-1*K.1^-2,-1*K.1^-8,-1*K.1^-1,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-4,-1*K.1^3,-1*K.1^7,-1*K.1^6,-1*K.1^-8,-1*K.1^-4,-1*K.1^-5,-1*K.1^7,-1*K.1^8,-1*K.1^5,-1*K.1^6,-1*K.1^-4,-1*K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-8,-1*K.1^5,-1*K.1^7,-1*K.1^-2,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^-4,-1*K.1^-6,-1*K.1^2,-1*K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^-5,-1*K.1^-3,-1*K.1^-5,-1*K.1^-3,-1*K.1^-7,-1*K.1^-3,-1*K.1^-8,-1*K.1^-2,-1*K.1^-6,-1*K.1,-1*K.1^8,-1*K.1^8,-1*K.1^-8,-1*K.1^6,-1*K.1^4,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^4,-1*K.1^-6,-1*K.1^-1,-1*K.1^8,-1*K.1^3,-1*K.1,-1*K.1^4,-1*K.1^4,-1*K.1^-5,-1*K.1^-2,-1*K.1^7,-1*K.1^-6,-1*K.1^-7,-1*K.1^-1,-1*K.1^6,-1*K.1^-7,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^8,2*K.1^-8,2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1^-5,2*K.1^-4,2*K.1^4,2*K.1,2*K.1^-2,2*K.1^-6,2*K.1^-7,2*K.1^5,2*K.1^4,2*K.1^-6,2*K.1,2*K.1^4,2*K.1^3,2*K.1^-3,2*K.1^-7,2*K.1^3,2*K.1^-8,2*K.1^-1,2*K.1^6,2*K.1^-8,2*K.1^-2,2*K.1^-5,2*K.1^5,2*K.1^-2,2*K.1^-7,2*K.1^-2,2*K.1^6,2*K.1^-4,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^6,2*K.1^-6,2*K.1^-1,2*K.1^3,2*K.1^-7,2*K.1^5,2*K.1^7,2*K.1^-5,2*K.1^7,2*K.1^2,2*K.1^-3,2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^8,2*K.1^-5,2*K.1^7,2*K.1^2,2*K.1^-3,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-6,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^6,-1*K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^5,-1*K.1^2,-1*K.1^-5,-1*K.1^8,-1*K.1^-8,-1*K.1^4,-1*K.1^-3,-1*K.1^-7,-1*K.1^7,2*K.1^4,2*K.1,2*K.1^-7,2*K.1^6,2*K.1,2*K.1^-4,2*K.1^-8,2*K.1^3,2*K.1^-4,2*K.1^-7,2*K.1^6,2*K.1^7,2*K.1^-6,2*K.1^-5,2*K.1^4,2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^7,2*K.1^7,2*K.1^-7,2*K.1^-1,2*K.1^2,2*K.1^4,2*K.1^-6,2*K.1^6,2*K.1^5,2*K.1^2,2*K.1^5,2*K.1^3,2*K.1^-8,2*K.1^3,2*K.1^-7,2*K.1^-1,2*K.1^-4,2*K.1^-6,2*K.1^-5,2*K.1^-3,2*K.1^-2,2*K.1^-4,2*K.1,2*K.1^6,2*K.1^8,2*K.1^8,2*K.1^-2,2*K.1,2*K.1^5,2*K.1^-8,2*K.1^3,2*K.1^-1,2*K.1^7,2*K.1^-8,2*K.1^-3,2*K.1^2,2*K.1^-5,2*K.1^-5,2*K.1^-6,2*K.1^8,2*K.1^-3,2*K.1^-1,2*K.1^-2,2*K.1^4,2*K.1^8,2*K.1^5,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-8,-1*K.1^4,-1*K.1^5,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,-1*K.1^7,-1*K.1^3,-1*K.1^-3,-1*K.1^5,-1*K.1^-8,-1*K.1^-5,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^7,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^7,-1*K.1^-4,-1*K.1^-7,-1*K.1^4,-1*K.1^8,-1*K.1^6,-1*K.1^5,-1*K.1^-7,-1*K.1,-1*K.1^6,-1*K.1^-5,-1*K.1^4,-1*K.1^-6,-1*K.1^-2,-1*K.1^2,-1*K.1^8,-1*K.1,-1*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,-1*K.1^-3,-1*K.1^-7,-1*K.1^-6,-1*K.1^8,-1*K.1^4,-1*K.1^5,-1*K.1^-7,-1*K.1^-8,-1*K.1^-5,-1*K.1^-6,-1*K.1^4,-1*K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^8,-1*K.1^-5,-1*K.1^-7,-1*K.1^2,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^4,-1*K.1^6,-1*K.1^-2,-1*K.1^7,-1*K.1^2,-1*K.1,-1*K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^-1,-1*K.1^-8,-1*K.1^-8,-1*K.1^8,-1*K.1^-6,-1*K.1^-4,-1*K.1^-5,-1*K.1^-5,-1*K.1^-1,-1*K.1^-1,-1*K.1^-4,-1*K.1^6,-1*K.1,-1*K.1^-8,-1*K.1^-3,-1*K.1^-1,-1*K.1^-4,-1*K.1^-4,-1*K.1^5,-1*K.1^2,-1*K.1^-7,-1*K.1^6,-1*K.1^7,-1*K.1,-1*K.1^-6,-1*K.1^7,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1^-1,2*K.1^-8,2*K.1^-7,2*K.1^-4,2*K.1^4,2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^-6,2*K.1^2,2*K.1^-2,2*K.1^8,2*K.1,2*K.1^3,2*K.1^-5,2*K.1^6,2*K.1^-2,2*K.1^3,2*K.1^8,2*K.1^-2,2*K.1^7,2*K.1^-7,2*K.1^-5,2*K.1^7,2*K.1^4,2*K.1^-8,2*K.1^-3,2*K.1^4,2*K.1,2*K.1^-6,2*K.1^6,2*K.1,2*K.1^-5,2*K.1,2*K.1^-3,2*K.1^2,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-3,2*K.1^3,2*K.1^-8,2*K.1^7,2*K.1^-5,2*K.1^6,2*K.1^5,2*K.1^-6,2*K.1^5,2*K.1^-1,2*K.1^-7,2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1^-6,2*K.1^5,2*K.1^-1,2*K.1^-7,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^3,-1*K.1^8,-1*K.1^7,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^6,-1*K.1^-1,-1*K.1^-6,-1*K.1^-4,-1*K.1^4,-1*K.1^-2,-1*K.1^-7,-1*K.1^-5,-1*K.1^5,2*K.1^-2,2*K.1^8,2*K.1^-5,2*K.1^-3,2*K.1^8,2*K.1^2,2*K.1^4,2*K.1^7,2*K.1^2,2*K.1^-5,2*K.1^-3,2*K.1^5,2*K.1^3,2*K.1^-6,2*K.1^-2,2*K.1^-1,2*K.1^-7,2*K.1,2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^-8,2*K.1^-1,2*K.1^-2,2*K.1^3,2*K.1^-3,2*K.1^6,2*K.1^-1,2*K.1^6,2*K.1^7,2*K.1^4,2*K.1^7,2*K.1^-5,2*K.1^-8,2*K.1^2,2*K.1^3,2*K.1^-6,2*K.1^-7,2*K.1,2*K.1^2,2*K.1^8,2*K.1^-3,2*K.1^-4,2*K.1^-4,2*K.1,2*K.1^8,2*K.1^6,2*K.1^4,2*K.1^7,2*K.1^-8,2*K.1^5,2*K.1^4,2*K.1^-7,2*K.1^-1,2*K.1^-6,2*K.1^-6,2*K.1^3,2*K.1^-4,2*K.1^-7,2*K.1^-8,2*K.1,2*K.1^-2,2*K.1^-4,2*K.1^6,-1*K.1^-5,-1*K.1,-1*K.1^7,-1*K.1^-7,-1*K.1^4,-1*K.1^-2,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,-1*K.1^5,-1*K.1^7,-1*K.1^-7,-1*K.1^6,-1*K.1^4,-1*K.1^-6,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^2,-1*K.1,-1*K.1^5,-1*K.1^-7,-1*K.1^-4,-1*K.1^8,-1*K.1^-8,-1*K.1^-8,-1*K.1^5,-1*K.1^2,-1*K.1^-5,-1*K.1^-2,-1*K.1^-4,-1*K.1^-3,-1*K.1^6,-1*K.1^-5,-1*K.1^8,-1*K.1^-3,-1*K.1^-6,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^-4,-1*K.1^8,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,-1*K.1^-7,-1*K.1^-5,-1*K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^6,-1*K.1^-5,-1*K.1^4,-1*K.1^-6,-1*K.1^3,-1*K.1^-2,-1*K.1^-7,-1*K.1,-1*K.1,-1*K.1^-4,-1*K.1^-6,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^-7,-1*K.1^8,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^5,-1*K.1^-1,-1*K.1^8,-1*K.1^6,-1*K.1^7,-1*K.1^6,-1*K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^-4,-1*K.1^-1,-1*K.1^-3,-1*K.1^-8,-1*K.1^4,-1*K.1^4,-1*K.1^-4,-1*K.1^3,-1*K.1^2,-1*K.1^-6,-1*K.1^-6,-1*K.1^-8,-1*K.1^-8,-1*K.1^2,-1*K.1^-3,-1*K.1^8,-1*K.1^4,-1*K.1^-7,-1*K.1^-8,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^-1,-1*K.1^-5,-1*K.1^-3,-1*K.1^5,-1*K.1^8,-1*K.1^3,-1*K.1^5,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,2,2,2,2,-1,-1,-1,0,0,0,0,0,0,0,0,-1,-1,-1,-1,2*K.1,2*K.1^8,2*K.1^7,2*K.1^4,2*K.1^-4,2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^6,2*K.1^-2,2*K.1^2,2*K.1^-8,2*K.1^-1,2*K.1^-3,2*K.1^5,2*K.1^-6,2*K.1^2,2*K.1^-3,2*K.1^-8,2*K.1^2,2*K.1^-7,2*K.1^7,2*K.1^5,2*K.1^-7,2*K.1^-4,2*K.1^8,2*K.1^3,2*K.1^-4,2*K.1^-1,2*K.1^6,2*K.1^-6,2*K.1^-1,2*K.1^5,2*K.1^-1,2*K.1^3,2*K.1^-2,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^3,2*K.1^-3,2*K.1^8,2*K.1^-7,2*K.1^5,2*K.1^-6,2*K.1^-5,2*K.1^6,2*K.1^-5,2*K.1,2*K.1^7,2*K.1,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^6,2*K.1^-5,2*K.1,2*K.1^7,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-3,-1*K.1^-8,-1*K.1^-7,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^-6,-1*K.1,-1*K.1^6,-1*K.1^4,-1*K.1^-4,-1*K.1^2,-1*K.1^7,-1*K.1^5,-1*K.1^-5,2*K.1^2,2*K.1^-8,2*K.1^5,2*K.1^3,2*K.1^-8,2*K.1^-2,2*K.1^-4,2*K.1^-7,2*K.1^-2,2*K.1^5,2*K.1^3,2*K.1^-5,2*K.1^-3,2*K.1^6,2*K.1^2,2*K.1,2*K.1^7,2*K.1^-1,2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^8,2*K.1,2*K.1^2,2*K.1^-3,2*K.1^3,2*K.1^-6,2*K.1,2*K.1^-6,2*K.1^-7,2*K.1^-4,2*K.1^-7,2*K.1^5,2*K.1^8,2*K.1^-2,2*K.1^-3,2*K.1^6,2*K.1^7,2*K.1^-1,2*K.1^-2,2*K.1^-8,2*K.1^3,2*K.1^4,2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^-6,2*K.1^-4,2*K.1^-7,2*K.1^8,2*K.1^-5,2*K.1^-4,2*K.1^7,2*K.1,2*K.1^6,2*K.1^6,2*K.1^-3,2*K.1^4,2*K.1^7,2*K.1^8,2*K.1^-1,2*K.1^2,2*K.1^4,2*K.1^-6,-1*K.1^5,-1*K.1^-1,-1*K.1^-7,-1*K.1^7,-1*K.1^-4,-1*K.1^2,-1*K.1^-6,-1*K.1^6,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^8,-1*K.1^-5,-1*K.1^-7,-1*K.1^7,-1*K.1^-6,-1*K.1^-4,-1*K.1^6,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^-5,-1*K.1^7,-1*K.1^4,-1*K.1^-8,-1*K.1^8,-1*K.1^8,-1*K.1^-5,-1*K.1^-2,-1*K.1^5,-1*K.1^2,-1*K.1^4,-1*K.1^3,-1*K.1^-6,-1*K.1^5,-1*K.1^-8,-1*K.1^3,-1*K.1^6,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^4,-1*K.1^-8,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,-1*K.1^7,-1*K.1^5,-1*K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^-6,-1*K.1^5,-1*K.1^-4,-1*K.1^6,-1*K.1^-3,-1*K.1^2,-1*K.1^7,-1*K.1^-1,-1*K.1^-1,-1*K.1^4,-1*K.1^6,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^7,-1*K.1^-8,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^-5,-1*K.1,-1*K.1^-8,-1*K.1^-6,-1*K.1^-7,-1*K.1^-6,-1*K.1^-7,-1*K.1^-5,-1*K.1^-7,-1*K.1^4,-1*K.1,-1*K.1^3,-1*K.1^8,-1*K.1^-4,-1*K.1^-4,-1*K.1^4,-1*K.1^-3,-1*K.1^-2,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^-2,-1*K.1^3,-1*K.1^-8,-1*K.1^-4,-1*K.1^7,-1*K.1^8,-1*K.1^-2,-1*K.1^-2,-1*K.1^-6,-1*K.1,-1*K.1^5,-1*K.1^3,-1*K.1^-5,-1*K.1^-8,-1*K.1^-3,-1*K.1^-5,-1*K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^-8,2*K.1^4,2*K.1^-5,2*K.1^2,2*K.1^-2,2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-4,2*K.1^8,2*K.1^7,2*K.1^-6,2*K.1^-3,-2*K.1,-2*K.1^7,-2*K.1^-4,-2*K.1,-2*K.1^5,-2*K.1^-5,-2*K.1^-6,-2*K.1^5,-2*K.1^-2,-2*K.1^4,-2*K.1^-7,-2*K.1^-2,-2*K.1^8,-2*K.1^3,-2*K.1^-3,-2*K.1^8,2*K.1^-6,2*K.1^8,2*K.1^-7,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^-4,-2*K.1^-7,-2*K.1^7,-2*K.1^4,2*K.1^5,-2*K.1^-6,-2*K.1^-3,-2*K.1^6,-2*K.1^3,-2*K.1^6,-2*K.1^-8,-2*K.1^-5,-2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^-4,-2*K.1^2,2*K.1^3,2*K.1^6,2*K.1^-8,2*K.1^-5,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^7,-1*K.1^-4,-1*K.1^5,-1*K.1^8,-1*K.1^-7,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-5,-1*K.1^-6,-1*K.1^6,-2*K.1,-2*K.1^-4,2*K.1^-6,2*K.1^-7,2*K.1^-4,2*K.1^-1,2*K.1^-2,-2*K.1^5,-2*K.1^-1,-2*K.1^-6,-2*K.1^-7,-2*K.1^6,-2*K.1^7,-2*K.1^3,-2*K.1,-2*K.1^-8,2*K.1^-5,2*K.1^8,2*K.1^6,2*K.1^6,-2*K.1^-6,2*K.1^4,2*K.1^-8,2*K.1,2*K.1^7,-2*K.1^-7,2*K.1^-3,-2*K.1^-8,-2*K.1^-3,-2*K.1^5,2*K.1^-2,2*K.1^5,2*K.1^-6,-2*K.1^4,-2*K.1^-1,2*K.1^7,-2*K.1^3,2*K.1^-5,2*K.1^8,2*K.1^-1,2*K.1^-4,2*K.1^-7,2*K.1^2,-2*K.1^2,-2*K.1^8,-2*K.1^-4,-2*K.1^-3,-2*K.1^-2,2*K.1^5,-2*K.1^4,-2*K.1^6,-2*K.1^-2,-2*K.1^-5,2*K.1^-8,2*K.1^3,2*K.1^3,-2*K.1^7,-2*K.1^2,-2*K.1^-5,2*K.1^4,-2*K.1^8,2*K.1,2*K.1^2,2*K.1^-3,K.1^-6,-1*K.1^8,-1*K.1^5,-1*K.1^-5,-1*K.1^-2,K.1,K.1^-3,K.1^3,K.1^-8,K.1^-1,K.1^-7,K.1^7,K.1^4,K.1^6,K.1^5,K.1^-5,K.1^-3,K.1^-2,K.1^3,K.1^-8,K.1^-2,K.1^5,K.1^-1,K.1^8,K.1^6,K.1^-5,K.1^2,K.1^-4,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^-1,-1*K.1^-6,-1*K.1,-1*K.1^2,-1*K.1^-7,-1*K.1^-3,K.1^-6,-1*K.1^-4,K.1^-7,-1*K.1^3,K.1,-1*K.1^7,K.1^8,-1*K.1^-8,K.1^2,K.1^-4,K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,K.1^-5,K.1^-6,-1*K.1^7,K.1^2,K.1,K.1^-3,K.1^-6,K.1^-2,-1*K.1^3,-1*K.1^7,-1*K.1,K.1^-5,-1*K.1^8,-1*K.1^8,-1*K.1^2,K.1^3,-1*K.1^-6,-1*K.1^-8,K.1^8,-1*K.1^-5,K.1^-4,K.1,-1*K.1^-7,K.1^8,-1*K.1^6,K.1^-8,-1*K.1^-4,K.1^-3,-1*K.1^5,-1*K.1^-3,K.1^5,K.1^6,-1*K.1^5,-1*K.1^2,-1*K.1^-8,K.1^-7,-1*K.1^4,-1*K.1^-2,-1*K.1^-2,K.1^2,K.1^7,-1*K.1^-1,K.1^3,-1*K.1^3,K.1^4,-1*K.1^4,K.1^-1,K.1^-7,-1*K.1^-4,K.1^-2,-1*K.1^-5,K.1^4,K.1^-1,-1*K.1^-1,-1*K.1^-3,K.1^-8,-1*K.1^-6,-1*K.1^-7,K.1^6,K.1^-4,K.1^7,-1*K.1^6,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^8,2*K.1^-4,2*K.1^5,2*K.1^-2,2*K.1^2,2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^4,2*K.1^-8,2*K.1^-7,2*K.1^6,2*K.1^3,-2*K.1^-1,-2*K.1^-7,-2*K.1^4,-2*K.1^-1,-2*K.1^-5,-2*K.1^5,-2*K.1^6,-2*K.1^-5,-2*K.1^2,-2*K.1^-4,-2*K.1^7,-2*K.1^2,-2*K.1^-8,-2*K.1^-3,-2*K.1^3,-2*K.1^-8,2*K.1^6,2*K.1^-8,2*K.1^7,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^4,-2*K.1^7,-2*K.1^-7,-2*K.1^-4,2*K.1^-5,-2*K.1^6,-2*K.1^3,-2*K.1^-6,-2*K.1^-3,-2*K.1^-6,-2*K.1^8,-2*K.1^5,-2*K.1^8,2*K.1^-2,2*K.1,2*K.1^4,-2*K.1^-2,2*K.1^-3,2*K.1^-6,2*K.1^8,2*K.1^5,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1^-7,-1*K.1^4,-1*K.1^-5,-1*K.1^-8,-1*K.1^7,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^5,-1*K.1^6,-1*K.1^-6,-2*K.1^-1,-2*K.1^4,2*K.1^6,2*K.1^7,2*K.1^4,2*K.1,2*K.1^2,-2*K.1^-5,-2*K.1,-2*K.1^6,-2*K.1^7,-2*K.1^-6,-2*K.1^-7,-2*K.1^-3,-2*K.1^-1,-2*K.1^8,2*K.1^5,2*K.1^-8,2*K.1^-6,2*K.1^-6,-2*K.1^6,2*K.1^-4,2*K.1^8,2*K.1^-1,2*K.1^-7,-2*K.1^7,2*K.1^3,-2*K.1^8,-2*K.1^3,-2*K.1^-5,2*K.1^2,2*K.1^-5,2*K.1^6,-2*K.1^-4,-2*K.1,2*K.1^-7,-2*K.1^-3,2*K.1^5,2*K.1^-8,2*K.1,2*K.1^4,2*K.1^7,2*K.1^-2,-2*K.1^-2,-2*K.1^-8,-2*K.1^4,-2*K.1^3,-2*K.1^2,2*K.1^-5,-2*K.1^-4,-2*K.1^-6,-2*K.1^2,-2*K.1^5,2*K.1^8,2*K.1^-3,2*K.1^-3,-2*K.1^-7,-2*K.1^-2,-2*K.1^5,2*K.1^-4,-2*K.1^-8,2*K.1^-1,2*K.1^-2,2*K.1^3,K.1^6,-1*K.1^-8,-1*K.1^-5,-1*K.1^5,-1*K.1^2,K.1^-1,K.1^3,K.1^-3,K.1^8,K.1,K.1^7,K.1^-7,K.1^-4,K.1^-6,K.1^-5,K.1^5,K.1^3,K.1^2,K.1^-3,K.1^8,K.1^2,K.1^-5,K.1,K.1^-8,K.1^-6,K.1^5,K.1^-2,K.1^4,K.1^-4,-1*K.1^-4,-1*K.1^-6,-1*K.1,-1*K.1^6,-1*K.1^-1,-1*K.1^-2,-1*K.1^7,-1*K.1^3,K.1^6,-1*K.1^4,K.1^7,-1*K.1^-3,K.1^-1,-1*K.1^-7,K.1^-8,-1*K.1^8,K.1^-2,K.1^4,K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,K.1^5,K.1^6,-1*K.1^-7,K.1^-2,K.1^-1,K.1^3,K.1^6,K.1^2,-1*K.1^-3,-1*K.1^-7,-1*K.1^-1,K.1^5,-1*K.1^-8,-1*K.1^-8,-1*K.1^-2,K.1^-3,-1*K.1^6,-1*K.1^8,K.1^-8,-1*K.1^5,K.1^4,K.1^-1,-1*K.1^7,K.1^-8,-1*K.1^-6,K.1^8,-1*K.1^4,K.1^3,-1*K.1^-5,-1*K.1^3,K.1^-5,K.1^-6,-1*K.1^-5,-1*K.1^-2,-1*K.1^8,K.1^7,-1*K.1^-4,-1*K.1^2,-1*K.1^2,K.1^-2,K.1^-7,-1*K.1,K.1^-3,-1*K.1^-3,K.1^-4,-1*K.1^-4,K.1,K.1^7,-1*K.1^4,K.1^2,-1*K.1^5,K.1^-4,K.1,-1*K.1,-1*K.1^3,K.1^8,-1*K.1^6,-1*K.1^7,K.1^-6,K.1^4,K.1^-7,-1*K.1^-6,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^-7,2*K.1^-5,2*K.1^2,2*K.1^6,2*K.1^-6,2*K.1^-4,2*K.1,2*K.1^8,2*K.1^-2,2*K.1^-8,2*K.1^-3,2*K.1^3,2*K.1^5,2*K.1^7,2*K.1^4,2*K.1^-1,2*K.1^8,-2*K.1^3,-2*K.1^4,-2*K.1^5,-2*K.1^3,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-6,-2*K.1^-5,-2*K.1^-4,-2*K.1^-6,-2*K.1^7,-2*K.1^-8,-2*K.1^8,-2*K.1^7,2*K.1^-1,2*K.1^7,2*K.1^-4,-2*K.1^-3,-2*K.1^6,-2*K.1^-3,-2*K.1^5,-2*K.1^-4,-2*K.1^4,-2*K.1^-5,2*K.1^-2,-2*K.1^-1,-2*K.1^8,-2*K.1,-2*K.1^-8,-2*K.1,-2*K.1^-7,-2*K.1^2,-2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^5,-2*K.1^6,2*K.1^-8,2*K.1,2*K.1^-7,2*K.1^2,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^4,-1*K.1^5,-1*K.1^-2,-1*K.1^7,-1*K.1^-4,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^8,-1*K.1^-7,-1*K.1^-8,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1,-2*K.1^3,-2*K.1^5,2*K.1^-1,2*K.1^-4,2*K.1^5,2*K.1^-3,2*K.1^-6,-2*K.1^-2,-2*K.1^-3,-2*K.1^-1,-2*K.1^-4,-2*K.1,-2*K.1^4,-2*K.1^-8,-2*K.1^3,-2*K.1^-7,2*K.1^2,2*K.1^7,2*K.1,2*K.1,-2*K.1^-1,2*K.1^-5,2*K.1^-7,2*K.1^3,2*K.1^4,-2*K.1^-4,2*K.1^8,-2*K.1^-7,-2*K.1^8,-2*K.1^-2,2*K.1^-6,2*K.1^-2,2*K.1^-1,-2*K.1^-5,-2*K.1^-3,2*K.1^4,-2*K.1^-8,2*K.1^2,2*K.1^7,2*K.1^-3,2*K.1^5,2*K.1^-4,2*K.1^6,-2*K.1^6,-2*K.1^7,-2*K.1^5,-2*K.1^8,-2*K.1^-6,2*K.1^-2,-2*K.1^-5,-2*K.1,-2*K.1^-6,-2*K.1^2,2*K.1^-7,2*K.1^-8,2*K.1^-8,-2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^-5,-2*K.1^7,2*K.1^3,2*K.1^6,2*K.1^8,K.1^-1,-1*K.1^7,-1*K.1^-2,-1*K.1^2,-1*K.1^-6,K.1^3,K.1^8,K.1^-8,K.1^-7,K.1^-3,K.1^-4,K.1^4,K.1^-5,K.1,K.1^-2,K.1^2,K.1^8,K.1^-6,K.1^-8,K.1^-7,K.1^-6,K.1^-2,K.1^-3,K.1^7,K.1,K.1^2,K.1^6,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^6,-1*K.1^-4,-1*K.1^8,K.1^-1,-1*K.1^5,K.1^-4,-1*K.1^-8,K.1^3,-1*K.1^4,K.1^7,-1*K.1^-7,K.1^6,K.1^5,K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,K.1^2,K.1^-1,-1*K.1^4,K.1^6,K.1^3,K.1^8,K.1^-1,K.1^-6,-1*K.1^-8,-1*K.1^4,-1*K.1^3,K.1^2,-1*K.1^7,-1*K.1^7,-1*K.1^6,K.1^-8,-1*K.1^-1,-1*K.1^-7,K.1^7,-1*K.1^2,K.1^5,K.1^3,-1*K.1^-4,K.1^7,-1*K.1,K.1^-7,-1*K.1^5,K.1^8,-1*K.1^-2,-1*K.1^8,K.1^-2,K.1,-1*K.1^-2,-1*K.1^6,-1*K.1^-7,K.1^-4,-1*K.1^-5,-1*K.1^-6,-1*K.1^-6,K.1^6,K.1^4,-1*K.1^-3,K.1^-8,-1*K.1^-8,K.1^-5,-1*K.1^-5,K.1^-3,K.1^-4,-1*K.1^5,K.1^-6,-1*K.1^2,K.1^-5,K.1^-3,-1*K.1^-3,-1*K.1^8,K.1^-7,-1*K.1^-1,-1*K.1^-4,K.1,K.1^5,K.1^4,-1*K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^7,2*K.1^5,2*K.1^-2,2*K.1^-6,2*K.1^6,2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^8,2*K.1^3,2*K.1^-3,2*K.1^-5,2*K.1^-7,2*K.1^-4,2*K.1,2*K.1^-8,-2*K.1^-3,-2*K.1^-4,-2*K.1^-5,-2*K.1^-3,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^6,-2*K.1^5,-2*K.1^4,-2*K.1^6,-2*K.1^-7,-2*K.1^8,-2*K.1^-8,-2*K.1^-7,2*K.1,2*K.1^-7,2*K.1^4,-2*K.1^3,-2*K.1^-6,-2*K.1^3,-2*K.1^-5,-2*K.1^4,-2*K.1^-4,-2*K.1^5,2*K.1^2,-2*K.1,-2*K.1^-8,-2*K.1^-1,-2*K.1^8,-2*K.1^-1,-2*K.1^7,-2*K.1^-2,-2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-5,-2*K.1^-6,2*K.1^8,2*K.1^-1,2*K.1^7,2*K.1^-2,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^-4,-1*K.1^-5,-1*K.1^2,-1*K.1^-7,-1*K.1^4,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^-8,-1*K.1^7,-1*K.1^8,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-1,-2*K.1^-3,-2*K.1^-5,2*K.1,2*K.1^4,2*K.1^-5,2*K.1^3,2*K.1^6,-2*K.1^2,-2*K.1^3,-2*K.1,-2*K.1^4,-2*K.1^-1,-2*K.1^-4,-2*K.1^8,-2*K.1^-3,-2*K.1^7,2*K.1^-2,2*K.1^-7,2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1^5,2*K.1^7,2*K.1^-3,2*K.1^-4,-2*K.1^4,2*K.1^-8,-2*K.1^7,-2*K.1^-8,-2*K.1^2,2*K.1^6,2*K.1^2,2*K.1,-2*K.1^5,-2*K.1^3,2*K.1^-4,-2*K.1^8,2*K.1^-2,2*K.1^-7,2*K.1^3,2*K.1^-5,2*K.1^4,2*K.1^-6,-2*K.1^-6,-2*K.1^-7,-2*K.1^-5,-2*K.1^-8,-2*K.1^6,2*K.1^2,-2*K.1^5,-2*K.1^-1,-2*K.1^6,-2*K.1^-2,2*K.1^7,2*K.1^8,2*K.1^8,-2*K.1^-4,-2*K.1^-6,-2*K.1^-2,2*K.1^5,-2*K.1^-7,2*K.1^-3,2*K.1^-6,2*K.1^-8,K.1,-1*K.1^-7,-1*K.1^2,-1*K.1^-2,-1*K.1^6,K.1^-3,K.1^-8,K.1^8,K.1^7,K.1^3,K.1^4,K.1^-4,K.1^5,K.1^-1,K.1^2,K.1^-2,K.1^-8,K.1^6,K.1^8,K.1^7,K.1^6,K.1^2,K.1^3,K.1^-7,K.1^-1,K.1^-2,K.1^-6,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-6,-1*K.1^4,-1*K.1^-8,K.1,-1*K.1^-5,K.1^4,-1*K.1^8,K.1^-3,-1*K.1^-4,K.1^-7,-1*K.1^7,K.1^-6,K.1^-5,K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-3,K.1^-2,K.1,-1*K.1^-4,K.1^-6,K.1^-3,K.1^-8,K.1,K.1^6,-1*K.1^8,-1*K.1^-4,-1*K.1^-3,K.1^-2,-1*K.1^-7,-1*K.1^-7,-1*K.1^-6,K.1^8,-1*K.1,-1*K.1^7,K.1^-7,-1*K.1^-2,K.1^-5,K.1^-3,-1*K.1^4,K.1^-7,-1*K.1^-1,K.1^7,-1*K.1^-5,K.1^-8,-1*K.1^2,-1*K.1^-8,K.1^2,K.1^-1,-1*K.1^2,-1*K.1^-6,-1*K.1^7,K.1^4,-1*K.1^5,-1*K.1^6,-1*K.1^6,K.1^-6,K.1^-4,-1*K.1^3,K.1^8,-1*K.1^8,K.1^5,-1*K.1^5,K.1^3,K.1^4,-1*K.1^-5,K.1^6,-1*K.1^-2,K.1^5,K.1^3,-1*K.1^3,-1*K.1^-8,K.1^7,-1*K.1,-1*K.1^4,K.1^-1,K.1^-5,K.1^-4,-1*K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^-6,2*K.1^3,2*K.1^-8,2*K.1^-7,2*K.1^7,2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-2,2*K.1^-5,2*K.1^5,2*K.1^-3,2*K.1^6,2*K.1,2*K.1^4,2*K.1^2,-2*K.1^5,-2*K.1,-2*K.1^-3,-2*K.1^5,-2*K.1^8,-2*K.1^-8,-2*K.1^4,-2*K.1^8,-2*K.1^7,-2*K.1^3,-2*K.1^-1,-2*K.1^7,-2*K.1^6,-2*K.1^-2,-2*K.1^2,-2*K.1^6,2*K.1^4,2*K.1^6,2*K.1^-1,-2*K.1^-5,-2*K.1^-7,-2*K.1^-5,-2*K.1^-3,-2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1^8,-2*K.1^4,-2*K.1^2,-2*K.1^-4,-2*K.1^-2,-2*K.1^-4,-2*K.1^-6,-2*K.1^-8,-2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1^-3,-2*K.1^-7,2*K.1^-2,2*K.1^-4,2*K.1^-6,2*K.1^-8,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1,-1*K.1^-3,-1*K.1^8,-1*K.1^6,-1*K.1^-1,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-6,-1*K.1^-2,-1*K.1^-7,-1*K.1^7,-1*K.1^5,-1*K.1^-8,-1*K.1^4,-1*K.1^-4,-2*K.1^5,-2*K.1^-3,2*K.1^4,2*K.1^-1,2*K.1^-3,2*K.1^-5,2*K.1^7,-2*K.1^8,-2*K.1^-5,-2*K.1^4,-2*K.1^-1,-2*K.1^-4,-2*K.1,-2*K.1^-2,-2*K.1^5,-2*K.1^-6,2*K.1^-8,2*K.1^6,2*K.1^-4,2*K.1^-4,-2*K.1^4,2*K.1^3,2*K.1^-6,2*K.1^5,2*K.1,-2*K.1^-1,2*K.1^2,-2*K.1^-6,-2*K.1^2,-2*K.1^8,2*K.1^7,2*K.1^8,2*K.1^4,-2*K.1^3,-2*K.1^-5,2*K.1,-2*K.1^-2,2*K.1^-8,2*K.1^6,2*K.1^-5,2*K.1^-3,2*K.1^-1,2*K.1^-7,-2*K.1^-7,-2*K.1^6,-2*K.1^-3,-2*K.1^2,-2*K.1^7,2*K.1^8,-2*K.1^3,-2*K.1^-4,-2*K.1^7,-2*K.1^-8,2*K.1^-6,2*K.1^-2,2*K.1^-2,-2*K.1,-2*K.1^-7,-2*K.1^-8,2*K.1^3,-2*K.1^6,2*K.1^5,2*K.1^-7,2*K.1^2,K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^-8,-1*K.1^7,K.1^5,K.1^2,K.1^-2,K.1^-6,K.1^-5,K.1^-1,K.1,K.1^3,K.1^-4,K.1^8,K.1^-8,K.1^2,K.1^7,K.1^-2,K.1^-6,K.1^7,K.1^8,K.1^-5,K.1^6,K.1^-4,K.1^-8,K.1^-7,K.1^-3,K.1^3,-1*K.1^3,-1*K.1^-4,-1*K.1^-5,-1*K.1^4,-1*K.1^5,-1*K.1^-7,-1*K.1^-1,-1*K.1^2,K.1^4,-1*K.1^-3,K.1^-1,-1*K.1^-2,K.1^5,-1*K.1,K.1^6,-1*K.1^-6,K.1^-7,K.1^-3,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5,K.1^-8,K.1^4,-1*K.1,K.1^-7,K.1^5,K.1^2,K.1^4,K.1^7,-1*K.1^-2,-1*K.1,-1*K.1^5,K.1^-8,-1*K.1^6,-1*K.1^6,-1*K.1^-7,K.1^-2,-1*K.1^4,-1*K.1^-6,K.1^6,-1*K.1^-8,K.1^-3,K.1^5,-1*K.1^-1,K.1^6,-1*K.1^-4,K.1^-6,-1*K.1^-3,K.1^2,-1*K.1^8,-1*K.1^2,K.1^8,K.1^-4,-1*K.1^8,-1*K.1^-7,-1*K.1^-6,K.1^-1,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^-7,K.1,-1*K.1^-5,K.1^-2,-1*K.1^-2,K.1^3,-1*K.1^3,K.1^-5,K.1^-1,-1*K.1^-3,K.1^7,-1*K.1^-8,K.1^3,K.1^-5,-1*K.1^-5,-1*K.1^2,K.1^-6,-1*K.1^4,-1*K.1^-1,K.1^-4,K.1^-3,K.1,-1*K.1^-4,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^6,2*K.1^-3,2*K.1^8,2*K.1^7,2*K.1^-7,2*K.1,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^2,2*K.1^5,2*K.1^-5,2*K.1^3,2*K.1^-6,2*K.1^-1,2*K.1^-4,2*K.1^-2,-2*K.1^-5,-2*K.1^-1,-2*K.1^3,-2*K.1^-5,-2*K.1^-8,-2*K.1^8,-2*K.1^-4,-2*K.1^-8,-2*K.1^-7,-2*K.1^-3,-2*K.1,-2*K.1^-7,-2*K.1^-6,-2*K.1^2,-2*K.1^-2,-2*K.1^-6,2*K.1^-4,2*K.1^-6,2*K.1,-2*K.1^5,-2*K.1^7,-2*K.1^5,-2*K.1^3,-2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^-8,-2*K.1^-4,-2*K.1^-2,-2*K.1^4,-2*K.1^2,-2*K.1^4,-2*K.1^6,-2*K.1^8,-2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^3,-2*K.1^7,2*K.1^2,2*K.1^4,2*K.1^6,2*K.1^8,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^-1,-1*K.1^3,-1*K.1^-8,-1*K.1^-6,-1*K.1,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1^-7,-1*K.1^-5,-1*K.1^8,-1*K.1^-4,-1*K.1^4,-2*K.1^-5,-2*K.1^3,2*K.1^-4,2*K.1,2*K.1^3,2*K.1^5,2*K.1^-7,-2*K.1^-8,-2*K.1^5,-2*K.1^-4,-2*K.1,-2*K.1^4,-2*K.1^-1,-2*K.1^2,-2*K.1^-5,-2*K.1^6,2*K.1^8,2*K.1^-6,2*K.1^4,2*K.1^4,-2*K.1^-4,2*K.1^-3,2*K.1^6,2*K.1^-5,2*K.1^-1,-2*K.1,2*K.1^-2,-2*K.1^6,-2*K.1^-2,-2*K.1^-8,2*K.1^-7,2*K.1^-8,2*K.1^-4,-2*K.1^-3,-2*K.1^5,2*K.1^-1,-2*K.1^2,2*K.1^8,2*K.1^-6,2*K.1^5,2*K.1^3,2*K.1,2*K.1^7,-2*K.1^7,-2*K.1^-6,-2*K.1^3,-2*K.1^-2,-2*K.1^-7,2*K.1^-8,-2*K.1^-3,-2*K.1^4,-2*K.1^-7,-2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^2,-2*K.1^-1,-2*K.1^7,-2*K.1^8,2*K.1^-3,-2*K.1^-6,2*K.1^-5,2*K.1^7,2*K.1^-2,K.1^-4,-1*K.1^-6,-1*K.1^-8,-1*K.1^8,-1*K.1^-7,K.1^-5,K.1^-2,K.1^2,K.1^6,K.1^5,K.1,K.1^-1,K.1^-3,K.1^4,K.1^-8,K.1^8,K.1^-2,K.1^-7,K.1^2,K.1^6,K.1^-7,K.1^-8,K.1^5,K.1^-6,K.1^4,K.1^8,K.1^7,K.1^3,K.1^-3,-1*K.1^-3,-1*K.1^4,-1*K.1^5,-1*K.1^-4,-1*K.1^-5,-1*K.1^7,-1*K.1,-1*K.1^-2,K.1^-4,-1*K.1^3,K.1,-1*K.1^2,K.1^-5,-1*K.1^-1,K.1^-6,-1*K.1^6,K.1^7,K.1^3,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-5,K.1^8,K.1^-4,-1*K.1^-1,K.1^7,K.1^-5,K.1^-2,K.1^-4,K.1^-7,-1*K.1^2,-1*K.1^-1,-1*K.1^-5,K.1^8,-1*K.1^-6,-1*K.1^-6,-1*K.1^7,K.1^2,-1*K.1^-4,-1*K.1^6,K.1^-6,-1*K.1^8,K.1^3,K.1^-5,-1*K.1,K.1^-6,-1*K.1^4,K.1^6,-1*K.1^3,K.1^-2,-1*K.1^-8,-1*K.1^-2,K.1^-8,K.1^4,-1*K.1^-8,-1*K.1^7,-1*K.1^6,K.1,-1*K.1^-3,-1*K.1^-7,-1*K.1^-7,K.1^7,K.1^-1,-1*K.1^5,K.1^2,-1*K.1^2,K.1^-3,-1*K.1^-3,K.1^5,K.1,-1*K.1^3,K.1^-7,-1*K.1^8,K.1^-3,K.1^5,-1*K.1^5,-1*K.1^-2,K.1^6,-1*K.1^-4,-1*K.1,K.1^4,K.1^3,K.1^-1,-1*K.1^4,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^-5,2*K.1^-6,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^4,2*K.1^-7,2*K.1^7,2*K.1^6,2*K.1^5,2*K.1^-2,2*K.1^-8,2*K.1^-4,-2*K.1^7,-2*K.1^-2,-2*K.1^6,-2*K.1^7,-2*K.1,-2*K.1^-1,-2*K.1^-8,-2*K.1,-2*K.1^3,-2*K.1^-6,-2*K.1^2,-2*K.1^3,-2*K.1^5,-2*K.1^4,-2*K.1^-4,-2*K.1^5,2*K.1^-8,2*K.1^5,2*K.1^2,-2*K.1^-7,-2*K.1^-3,-2*K.1^-7,-2*K.1^6,-2*K.1^2,-2*K.1^-2,-2*K.1^-6,2*K.1,-2*K.1^-8,-2*K.1^-4,-2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^-5,-2*K.1^-1,-2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^6,-2*K.1^-3,2*K.1^4,2*K.1^8,2*K.1^-5,2*K.1^-1,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^-2,-1*K.1^6,-1*K.1,-1*K.1^5,-1*K.1^2,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-4,-1*K.1^-5,-1*K.1^4,-1*K.1^-3,-1*K.1^3,-1*K.1^7,-1*K.1^-1,-1*K.1^-8,-1*K.1^8,-2*K.1^7,-2*K.1^6,2*K.1^-8,2*K.1^2,2*K.1^6,2*K.1^-7,2*K.1^3,-2*K.1,-2*K.1^-7,-2*K.1^-8,-2*K.1^2,-2*K.1^8,-2*K.1^-2,-2*K.1^4,-2*K.1^7,-2*K.1^-5,2*K.1^-1,2*K.1^5,2*K.1^8,2*K.1^8,-2*K.1^-8,2*K.1^-6,2*K.1^-5,2*K.1^7,2*K.1^-2,-2*K.1^2,2*K.1^-4,-2*K.1^-5,-2*K.1^-4,-2*K.1,2*K.1^3,2*K.1,2*K.1^-8,-2*K.1^-6,-2*K.1^-7,2*K.1^-2,-2*K.1^4,2*K.1^-1,2*K.1^5,2*K.1^-7,2*K.1^6,2*K.1^2,2*K.1^-3,-2*K.1^-3,-2*K.1^5,-2*K.1^6,-2*K.1^-4,-2*K.1^3,2*K.1,-2*K.1^-6,-2*K.1^8,-2*K.1^3,-2*K.1^-1,2*K.1^-5,2*K.1^4,2*K.1^4,-2*K.1^-2,-2*K.1^-3,-2*K.1^-1,2*K.1^-6,-2*K.1^5,2*K.1^7,2*K.1^-3,2*K.1^-4,K.1^-8,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^3,K.1^7,K.1^-4,K.1^4,K.1^-5,K.1^-7,K.1^2,K.1^-2,K.1^-6,K.1^8,K.1,K.1^-1,K.1^-4,K.1^3,K.1^4,K.1^-5,K.1^3,K.1,K.1^-7,K.1^5,K.1^8,K.1^-1,K.1^-3,K.1^6,K.1^-6,-1*K.1^-6,-1*K.1^8,-1*K.1^-7,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,-1*K.1^2,-1*K.1^-4,K.1^-8,-1*K.1^6,K.1^2,-1*K.1^4,K.1^7,-1*K.1^-2,K.1^5,-1*K.1^-5,K.1^-3,K.1^6,K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^7,K.1^-1,K.1^-8,-1*K.1^-2,K.1^-3,K.1^7,K.1^-4,K.1^-8,K.1^3,-1*K.1^4,-1*K.1^-2,-1*K.1^7,K.1^-1,-1*K.1^5,-1*K.1^5,-1*K.1^-3,K.1^4,-1*K.1^-8,-1*K.1^-5,K.1^5,-1*K.1^-1,K.1^6,K.1^7,-1*K.1^2,K.1^5,-1*K.1^8,K.1^-5,-1*K.1^6,K.1^-4,-1*K.1,-1*K.1^-4,K.1,K.1^8,-1*K.1,-1*K.1^-3,-1*K.1^-5,K.1^2,-1*K.1^-6,-1*K.1^3,-1*K.1^3,K.1^-3,K.1^-2,-1*K.1^-7,K.1^4,-1*K.1^4,K.1^-6,-1*K.1^-6,K.1^-7,K.1^2,-1*K.1^6,K.1^3,-1*K.1^-1,K.1^-6,K.1^-7,-1*K.1^-7,-1*K.1^-4,K.1^-5,-1*K.1^-8,-1*K.1^2,K.1^8,K.1^6,K.1^-2,-1*K.1^8,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^5,2*K.1^6,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-4,2*K.1^7,2*K.1^-7,2*K.1^-6,2*K.1^-5,2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^-7,-2*K.1^2,-2*K.1^-6,-2*K.1^-7,-2*K.1^-1,-2*K.1,-2*K.1^8,-2*K.1^-1,-2*K.1^-3,-2*K.1^6,-2*K.1^-2,-2*K.1^-3,-2*K.1^-5,-2*K.1^-4,-2*K.1^4,-2*K.1^-5,2*K.1^8,2*K.1^-5,2*K.1^-2,-2*K.1^7,-2*K.1^3,-2*K.1^7,-2*K.1^-6,-2*K.1^-2,-2*K.1^2,-2*K.1^6,2*K.1^-1,-2*K.1^8,-2*K.1^4,-2*K.1^-8,-2*K.1^-4,-2*K.1^-8,-2*K.1^5,-2*K.1,-2*K.1^5,2*K.1^3,2*K.1^7,2*K.1^-6,-2*K.1^3,2*K.1^-4,2*K.1^-8,2*K.1^5,2*K.1,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^2,-1*K.1^-6,-1*K.1^-1,-1*K.1^-5,-1*K.1^-2,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^5,-1*K.1^-4,-1*K.1^3,-1*K.1^-3,-1*K.1^-7,-1*K.1,-1*K.1^8,-1*K.1^-8,-2*K.1^-7,-2*K.1^-6,2*K.1^8,2*K.1^-2,2*K.1^-6,2*K.1^7,2*K.1^-3,-2*K.1^-1,-2*K.1^7,-2*K.1^8,-2*K.1^-2,-2*K.1^-8,-2*K.1^2,-2*K.1^-4,-2*K.1^-7,-2*K.1^5,2*K.1,2*K.1^-5,2*K.1^-8,2*K.1^-8,-2*K.1^8,2*K.1^6,2*K.1^5,2*K.1^-7,2*K.1^2,-2*K.1^-2,2*K.1^4,-2*K.1^5,-2*K.1^4,-2*K.1^-1,2*K.1^-3,2*K.1^-1,2*K.1^8,-2*K.1^6,-2*K.1^7,2*K.1^2,-2*K.1^-4,2*K.1,2*K.1^-5,2*K.1^7,2*K.1^-6,2*K.1^-2,2*K.1^3,-2*K.1^3,-2*K.1^-5,-2*K.1^-6,-2*K.1^4,-2*K.1^-3,2*K.1^-1,-2*K.1^6,-2*K.1^-8,-2*K.1^-3,-2*K.1,2*K.1^5,2*K.1^-4,2*K.1^-4,-2*K.1^2,-2*K.1^3,-2*K.1,2*K.1^6,-2*K.1^-5,2*K.1^-7,2*K.1^3,2*K.1^4,K.1^8,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^-3,K.1^-7,K.1^4,K.1^-4,K.1^5,K.1^7,K.1^-2,K.1^2,K.1^6,K.1^-8,K.1^-1,K.1,K.1^4,K.1^-3,K.1^-4,K.1^5,K.1^-3,K.1^-1,K.1^7,K.1^-5,K.1^-8,K.1,K.1^3,K.1^-6,K.1^6,-1*K.1^6,-1*K.1^-8,-1*K.1^7,-1*K.1^8,-1*K.1^-7,-1*K.1^3,-1*K.1^-2,-1*K.1^4,K.1^8,-1*K.1^-6,K.1^-2,-1*K.1^-4,K.1^-7,-1*K.1^2,K.1^-5,-1*K.1^5,K.1^3,K.1^-6,K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-7,K.1,K.1^8,-1*K.1^2,K.1^3,K.1^-7,K.1^4,K.1^8,K.1^-3,-1*K.1^-4,-1*K.1^2,-1*K.1^-7,K.1,-1*K.1^-5,-1*K.1^-5,-1*K.1^3,K.1^-4,-1*K.1^8,-1*K.1^5,K.1^-5,-1*K.1,K.1^-6,K.1^-7,-1*K.1^-2,K.1^-5,-1*K.1^-8,K.1^5,-1*K.1^-6,K.1^4,-1*K.1^-1,-1*K.1^4,K.1^-1,K.1^-8,-1*K.1^-1,-1*K.1^3,-1*K.1^5,K.1^-2,-1*K.1^6,-1*K.1^-3,-1*K.1^-3,K.1^3,K.1^2,-1*K.1^7,K.1^-4,-1*K.1^-4,K.1^6,-1*K.1^6,K.1^7,K.1^-2,-1*K.1^-6,K.1^-3,-1*K.1,K.1^6,K.1^7,-1*K.1^7,-1*K.1^4,K.1^5,-1*K.1^8,-1*K.1^-2,K.1^-8,K.1^-6,K.1^2,-1*K.1^-8,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^-4,2*K.1^2,2*K.1^6,2*K.1,2*K.1^-1,2*K.1^5,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^-7,2*K.1^8,2*K.1^-8,2*K.1^-2,2*K.1^4,2*K.1^-5,2*K.1^-3,2*K.1^7,-2*K.1^-8,-2*K.1^-5,-2*K.1^-2,-2*K.1^-8,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^-6,-2*K.1^-1,-2*K.1^2,-2*K.1^5,-2*K.1^-1,-2*K.1^4,-2*K.1^-7,-2*K.1^7,-2*K.1^4,2*K.1^-3,2*K.1^4,2*K.1^5,-2*K.1^8,-2*K.1,-2*K.1^8,-2*K.1^-2,-2*K.1^5,-2*K.1^-5,-2*K.1^2,2*K.1^-6,-2*K.1^-3,-2*K.1^7,-2*K.1^3,-2*K.1^-7,-2*K.1^3,-2*K.1^-4,-2*K.1^6,-2*K.1^-4,2*K.1,2*K.1^8,2*K.1^-2,-2*K.1,2*K.1^-7,2*K.1^3,2*K.1^-4,2*K.1^6,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^-5,-1*K.1^-2,-1*K.1^-6,-1*K.1^4,-1*K.1^5,-1*K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1^7,-1*K.1^-4,-1*K.1^-7,-1*K.1,-1*K.1^-1,-1*K.1^-8,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-2*K.1^-8,-2*K.1^-2,2*K.1^-3,2*K.1^5,2*K.1^-2,2*K.1^8,2*K.1^-1,-2*K.1^-6,-2*K.1^8,-2*K.1^-3,-2*K.1^5,-2*K.1^3,-2*K.1^-5,-2*K.1^-7,-2*K.1^-8,-2*K.1^-4,2*K.1^6,2*K.1^4,2*K.1^3,2*K.1^3,-2*K.1^-3,2*K.1^2,2*K.1^-4,2*K.1^-8,2*K.1^-5,-2*K.1^5,2*K.1^7,-2*K.1^-4,-2*K.1^7,-2*K.1^-6,2*K.1^-1,2*K.1^-6,2*K.1^-3,-2*K.1^2,-2*K.1^8,2*K.1^-5,-2*K.1^-7,2*K.1^6,2*K.1^4,2*K.1^8,2*K.1^-2,2*K.1^5,2*K.1,-2*K.1,-2*K.1^4,-2*K.1^-2,-2*K.1^7,-2*K.1^-1,2*K.1^-6,-2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1^6,2*K.1^-4,2*K.1^-7,2*K.1^-7,-2*K.1^-5,-2*K.1,-2*K.1^6,2*K.1^2,-2*K.1^4,2*K.1^-8,2*K.1,2*K.1^7,K.1^-3,-1*K.1^4,-1*K.1^-6,-1*K.1^6,-1*K.1^-1,K.1^-8,K.1^7,K.1^-7,K.1^-4,K.1^8,K.1^5,K.1^-5,K.1^2,K.1^3,K.1^-6,K.1^6,K.1^7,K.1^-1,K.1^-7,K.1^-4,K.1^-1,K.1^-6,K.1^8,K.1^4,K.1^3,K.1^6,K.1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^8,-1*K.1^-3,-1*K.1^-8,-1*K.1,-1*K.1^5,-1*K.1^7,K.1^-3,-1*K.1^-2,K.1^5,-1*K.1^-7,K.1^-8,-1*K.1^-5,K.1^4,-1*K.1^-4,K.1,K.1^-2,K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-8,K.1^6,K.1^-3,-1*K.1^-5,K.1,K.1^-8,K.1^7,K.1^-3,K.1^-1,-1*K.1^-7,-1*K.1^-5,-1*K.1^-8,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1,K.1^-7,-1*K.1^-3,-1*K.1^-4,K.1^4,-1*K.1^6,K.1^-2,K.1^-8,-1*K.1^5,K.1^4,-1*K.1^3,K.1^-4,-1*K.1^-2,K.1^7,-1*K.1^-6,-1*K.1^7,K.1^-6,K.1^3,-1*K.1^-6,-1*K.1,-1*K.1^-4,K.1^5,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-5,-1*K.1^8,K.1^-7,-1*K.1^-7,K.1^2,-1*K.1^2,K.1^8,K.1^5,-1*K.1^-2,K.1^-1,-1*K.1^6,K.1^2,K.1^8,-1*K.1^8,-1*K.1^7,K.1^-4,-1*K.1^-3,-1*K.1^5,K.1^3,K.1^-2,K.1^-5,-1*K.1^3,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^4,2*K.1^-2,2*K.1^-6,2*K.1^-1,2*K.1,2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^7,2*K.1^-8,2*K.1^8,2*K.1^2,2*K.1^-4,2*K.1^5,2*K.1^3,2*K.1^-7,-2*K.1^8,-2*K.1^5,-2*K.1^2,-2*K.1^8,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^6,-2*K.1,-2*K.1^-2,-2*K.1^-5,-2*K.1,-2*K.1^-4,-2*K.1^7,-2*K.1^-7,-2*K.1^-4,2*K.1^3,2*K.1^-4,2*K.1^-5,-2*K.1^-8,-2*K.1^-1,-2*K.1^-8,-2*K.1^2,-2*K.1^-5,-2*K.1^5,-2*K.1^-2,2*K.1^6,-2*K.1^3,-2*K.1^-7,-2*K.1^-3,-2*K.1^7,-2*K.1^-3,-2*K.1^4,-2*K.1^-6,-2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^2,-2*K.1^-1,2*K.1^7,2*K.1^-3,2*K.1^4,2*K.1^-6,2*K.1,2*K.1^8,2*K.1^-2,2*K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^-4,-1*K.1^-5,-1*K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1^-7,-1*K.1^4,-1*K.1^7,-1*K.1^-1,-1*K.1,-1*K.1^8,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-2*K.1^8,-2*K.1^2,2*K.1^3,2*K.1^-5,2*K.1^2,2*K.1^-8,2*K.1,-2*K.1^6,-2*K.1^-8,-2*K.1^3,-2*K.1^-5,-2*K.1^-3,-2*K.1^5,-2*K.1^7,-2*K.1^8,-2*K.1^4,2*K.1^-6,2*K.1^-4,2*K.1^-3,2*K.1^-3,-2*K.1^3,2*K.1^-2,2*K.1^4,2*K.1^8,2*K.1^5,-2*K.1^-5,2*K.1^-7,-2*K.1^4,-2*K.1^-7,-2*K.1^6,2*K.1,2*K.1^6,2*K.1^3,-2*K.1^-2,-2*K.1^-8,2*K.1^5,-2*K.1^7,2*K.1^-6,2*K.1^-4,2*K.1^-8,2*K.1^2,2*K.1^-5,2*K.1^-1,-2*K.1^-1,-2*K.1^-4,-2*K.1^2,-2*K.1^-7,-2*K.1,2*K.1^6,-2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1^-6,2*K.1^4,2*K.1^7,2*K.1^7,-2*K.1^5,-2*K.1^-1,-2*K.1^-6,2*K.1^-2,-2*K.1^-4,2*K.1^8,2*K.1^-1,2*K.1^-7,K.1^3,-1*K.1^-4,-1*K.1^6,-1*K.1^-6,-1*K.1,K.1^8,K.1^-7,K.1^7,K.1^4,K.1^-8,K.1^-5,K.1^5,K.1^-2,K.1^-3,K.1^6,K.1^-6,K.1^-7,K.1,K.1^7,K.1^4,K.1,K.1^6,K.1^-8,K.1^-4,K.1^-3,K.1^-6,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-8,-1*K.1^3,-1*K.1^8,-1*K.1^-1,-1*K.1^-5,-1*K.1^-7,K.1^3,-1*K.1^2,K.1^-5,-1*K.1^7,K.1^8,-1*K.1^5,K.1^-4,-1*K.1^4,K.1^-1,K.1^2,K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^8,K.1^-6,K.1^3,-1*K.1^5,K.1^-1,K.1^8,K.1^-7,K.1^3,K.1,-1*K.1^7,-1*K.1^5,-1*K.1^8,K.1^-6,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,K.1^7,-1*K.1^3,-1*K.1^4,K.1^-4,-1*K.1^-6,K.1^2,K.1^8,-1*K.1^-5,K.1^-4,-1*K.1^-3,K.1^4,-1*K.1^2,K.1^-7,-1*K.1^6,-1*K.1^-7,K.1^6,K.1^-3,-1*K.1^6,-1*K.1^-1,-1*K.1^4,K.1^-5,-1*K.1^-2,-1*K.1,-1*K.1,K.1^-1,K.1^5,-1*K.1^-8,K.1^7,-1*K.1^7,K.1^-2,-1*K.1^-2,K.1^-8,K.1^-5,-1*K.1^2,K.1,-1*K.1^-6,K.1^-2,K.1^-8,-1*K.1^-8,-1*K.1^-7,K.1^4,-1*K.1^3,-1*K.1^-5,K.1^-3,K.1^2,K.1^5,-1*K.1^-3,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^-3,2*K.1^-7,2*K.1^-4,2*K.1^5,2*K.1^-5,2*K.1^8,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^-1,2*K.1^6,2*K.1^-6,2*K.1^7,2*K.1^3,2*K.1^-8,2*K.1^2,2*K.1,-2*K.1^-6,-2*K.1^-8,-2*K.1^7,-2*K.1^-6,-2*K.1^4,-2*K.1^-4,-2*K.1^2,-2*K.1^4,-2*K.1^-5,-2*K.1^-7,-2*K.1^8,-2*K.1^-5,-2*K.1^3,-2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^8,-2*K.1^6,-2*K.1^5,-2*K.1^6,-2*K.1^7,-2*K.1^8,-2*K.1^-8,-2*K.1^-7,2*K.1^4,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-3,-2*K.1^-4,-2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^7,-2*K.1^5,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1^-4,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^-8,-1*K.1^7,-1*K.1^4,-1*K.1^3,-1*K.1^8,-1*K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^5,-1*K.1^-5,-1*K.1^-6,-1*K.1^-4,-1*K.1^2,-1*K.1^-2,-2*K.1^-6,-2*K.1^7,2*K.1^2,2*K.1^8,2*K.1^7,2*K.1^6,2*K.1^-5,-2*K.1^4,-2*K.1^6,-2*K.1^2,-2*K.1^8,-2*K.1^-2,-2*K.1^-8,-2*K.1^-1,-2*K.1^-6,-2*K.1^-3,2*K.1^-4,2*K.1^3,2*K.1^-2,2*K.1^-2,-2*K.1^2,2*K.1^-7,2*K.1^-3,2*K.1^-6,2*K.1^-8,-2*K.1^8,2*K.1,-2*K.1^-3,-2*K.1,-2*K.1^4,2*K.1^-5,2*K.1^4,2*K.1^2,-2*K.1^-7,-2*K.1^6,2*K.1^-8,-2*K.1^-1,2*K.1^-4,2*K.1^3,2*K.1^6,2*K.1^7,2*K.1^8,2*K.1^5,-2*K.1^5,-2*K.1^3,-2*K.1^7,-2*K.1,-2*K.1^-5,2*K.1^4,-2*K.1^-7,-2*K.1^-2,-2*K.1^-5,-2*K.1^-4,2*K.1^-3,2*K.1^-1,2*K.1^-1,-2*K.1^-8,-2*K.1^5,-2*K.1^-4,2*K.1^-7,-2*K.1^3,2*K.1^-6,2*K.1^5,2*K.1,K.1^2,-1*K.1^3,-1*K.1^4,-1*K.1^-4,-1*K.1^-5,K.1^-6,K.1,K.1^-1,K.1^-3,K.1^6,K.1^8,K.1^-8,K.1^-7,K.1^-2,K.1^4,K.1^-4,K.1,K.1^-5,K.1^-1,K.1^-3,K.1^-5,K.1^4,K.1^6,K.1^3,K.1^-2,K.1^-4,K.1^5,K.1^7,K.1^-7,-1*K.1^-7,-1*K.1^-2,-1*K.1^6,-1*K.1^2,-1*K.1^-6,-1*K.1^5,-1*K.1^8,-1*K.1,K.1^2,-1*K.1^7,K.1^8,-1*K.1^-1,K.1^-6,-1*K.1^-8,K.1^3,-1*K.1^-3,K.1^5,K.1^7,K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-6,K.1^-4,K.1^2,-1*K.1^-8,K.1^5,K.1^-6,K.1,K.1^2,K.1^-5,-1*K.1^-1,-1*K.1^-8,-1*K.1^-6,K.1^-4,-1*K.1^3,-1*K.1^3,-1*K.1^5,K.1^-1,-1*K.1^2,-1*K.1^-3,K.1^3,-1*K.1^-4,K.1^7,K.1^-6,-1*K.1^8,K.1^3,-1*K.1^-2,K.1^-3,-1*K.1^7,K.1,-1*K.1^4,-1*K.1,K.1^4,K.1^-2,-1*K.1^4,-1*K.1^5,-1*K.1^-3,K.1^8,-1*K.1^-7,-1*K.1^-5,-1*K.1^-5,K.1^5,K.1^-8,-1*K.1^6,K.1^-1,-1*K.1^-1,K.1^-7,-1*K.1^-7,K.1^6,K.1^8,-1*K.1^7,K.1^-5,-1*K.1^-4,K.1^-7,K.1^6,-1*K.1^6,-1*K.1,K.1^-3,-1*K.1^2,-1*K.1^8,K.1^-2,K.1^7,K.1^-8,-1*K.1^-2,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^3,2*K.1^7,2*K.1^4,2*K.1^-5,2*K.1^5,2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1,2*K.1^-6,2*K.1^6,2*K.1^-7,2*K.1^-3,2*K.1^8,2*K.1^-2,2*K.1^-1,-2*K.1^6,-2*K.1^8,-2*K.1^-7,-2*K.1^6,-2*K.1^-4,-2*K.1^4,-2*K.1^-2,-2*K.1^-4,-2*K.1^5,-2*K.1^7,-2*K.1^-8,-2*K.1^5,-2*K.1^-3,-2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^-8,-2*K.1^-6,-2*K.1^-5,-2*K.1^-6,-2*K.1^-7,-2*K.1^-8,-2*K.1^8,-2*K.1^7,2*K.1^-4,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^3,-2*K.1^4,-2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^-7,-2*K.1^-5,2*K.1,2*K.1^2,2*K.1^3,2*K.1^4,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^8,-1*K.1^-7,-1*K.1^-4,-1*K.1^-3,-1*K.1^-8,-1*K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-5,-1*K.1^5,-1*K.1^6,-1*K.1^4,-1*K.1^-2,-1*K.1^2,-2*K.1^6,-2*K.1^-7,2*K.1^-2,2*K.1^-8,2*K.1^-7,2*K.1^-6,2*K.1^5,-2*K.1^-4,-2*K.1^-6,-2*K.1^-2,-2*K.1^-8,-2*K.1^2,-2*K.1^8,-2*K.1,-2*K.1^6,-2*K.1^3,2*K.1^4,2*K.1^-3,2*K.1^2,2*K.1^2,-2*K.1^-2,2*K.1^7,2*K.1^3,2*K.1^6,2*K.1^8,-2*K.1^-8,2*K.1^-1,-2*K.1^3,-2*K.1^-1,-2*K.1^-4,2*K.1^5,2*K.1^-4,2*K.1^-2,-2*K.1^7,-2*K.1^-6,2*K.1^8,-2*K.1,2*K.1^4,2*K.1^-3,2*K.1^-6,2*K.1^-7,2*K.1^-8,2*K.1^-5,-2*K.1^-5,-2*K.1^-3,-2*K.1^-7,-2*K.1^-1,-2*K.1^5,2*K.1^-4,-2*K.1^7,-2*K.1^2,-2*K.1^5,-2*K.1^4,2*K.1^3,2*K.1,2*K.1,-2*K.1^8,-2*K.1^-5,-2*K.1^4,2*K.1^7,-2*K.1^-3,2*K.1^6,2*K.1^-5,2*K.1^-1,K.1^-2,-1*K.1^-3,-1*K.1^-4,-1*K.1^4,-1*K.1^5,K.1^6,K.1^-1,K.1,K.1^3,K.1^-6,K.1^-8,K.1^8,K.1^7,K.1^2,K.1^-4,K.1^4,K.1^-1,K.1^5,K.1,K.1^3,K.1^5,K.1^-4,K.1^-6,K.1^-3,K.1^2,K.1^4,K.1^-5,K.1^-7,K.1^7,-1*K.1^7,-1*K.1^2,-1*K.1^-6,-1*K.1^-2,-1*K.1^6,-1*K.1^-5,-1*K.1^-8,-1*K.1^-1,K.1^-2,-1*K.1^-7,K.1^-8,-1*K.1,K.1^6,-1*K.1^8,K.1^-3,-1*K.1^3,K.1^-5,K.1^-7,K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^6,K.1^4,K.1^-2,-1*K.1^8,K.1^-5,K.1^6,K.1^-1,K.1^-2,K.1^5,-1*K.1,-1*K.1^8,-1*K.1^6,K.1^4,-1*K.1^-3,-1*K.1^-3,-1*K.1^-5,K.1,-1*K.1^-2,-1*K.1^3,K.1^-3,-1*K.1^4,K.1^-7,K.1^6,-1*K.1^-8,K.1^-3,-1*K.1^2,K.1^3,-1*K.1^-7,K.1^-1,-1*K.1^-4,-1*K.1^-1,K.1^-4,K.1^2,-1*K.1^-4,-1*K.1^-5,-1*K.1^3,K.1^-8,-1*K.1^7,-1*K.1^5,-1*K.1^5,K.1^-5,K.1^8,-1*K.1^-6,K.1,-1*K.1,K.1^7,-1*K.1^7,K.1^-6,K.1^-8,-1*K.1^-7,K.1^5,-1*K.1^4,K.1^7,K.1^-6,-1*K.1^-6,-1*K.1^-1,K.1^3,-1*K.1^-2,-1*K.1^-8,K.1^2,K.1^-7,K.1^8,-1*K.1^2,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-8,2*K.1^8,2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^5,2*K.1^4,2*K.1^-4,2*K.1^-1,2*K.1^2,2*K.1^6,2*K.1^7,2*K.1^-5,-2*K.1^-4,-2*K.1^6,-2*K.1^-1,-2*K.1^-4,-2*K.1^-3,-2*K.1^3,-2*K.1^7,-2*K.1^-3,-2*K.1^8,-2*K.1,-2*K.1^-6,-2*K.1^8,-2*K.1^2,-2*K.1^5,-2*K.1^-5,-2*K.1^2,2*K.1^7,2*K.1^2,2*K.1^-6,-2*K.1^4,-2*K.1^-8,-2*K.1^4,-2*K.1^-1,-2*K.1^-6,-2*K.1^6,-2*K.1,2*K.1^-3,-2*K.1^7,-2*K.1^-5,-2*K.1^-7,-2*K.1^5,-2*K.1^-7,-2*K.1^-2,-2*K.1^3,-2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^-1,-2*K.1^-8,2*K.1^5,2*K.1^-7,2*K.1^-2,2*K.1^3,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^6,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^-6,-1*K.1^4,-1*K.1,-1*K.1^6,-1*K.1^-5,-1*K.1^-2,-1*K.1^5,-1*K.1^-8,-1*K.1^8,-1*K.1^-4,-1*K.1^3,-1*K.1^7,-1*K.1^-7,-2*K.1^-4,-2*K.1^-1,2*K.1^7,2*K.1^-6,2*K.1^-1,2*K.1^4,2*K.1^8,-2*K.1^-3,-2*K.1^4,-2*K.1^7,-2*K.1^-6,-2*K.1^-7,-2*K.1^6,-2*K.1^5,-2*K.1^-4,-2*K.1^-2,2*K.1^3,2*K.1^2,2*K.1^-7,2*K.1^-7,-2*K.1^7,2*K.1,2*K.1^-2,2*K.1^-4,2*K.1^6,-2*K.1^-6,2*K.1^-5,-2*K.1^-2,-2*K.1^-5,-2*K.1^-3,2*K.1^8,2*K.1^-3,2*K.1^7,-2*K.1,-2*K.1^4,2*K.1^6,-2*K.1^5,2*K.1^3,2*K.1^2,2*K.1^4,2*K.1^-1,2*K.1^-6,2*K.1^-8,-2*K.1^-8,-2*K.1^2,-2*K.1^-1,-2*K.1^-5,-2*K.1^8,2*K.1^-3,-2*K.1,-2*K.1^-7,-2*K.1^8,-2*K.1^3,2*K.1^-2,2*K.1^5,2*K.1^5,-2*K.1^6,-2*K.1^-8,-2*K.1^3,2*K.1,-2*K.1^2,2*K.1^-4,2*K.1^-8,2*K.1^-5,K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^8,K.1^-4,K.1^-5,K.1^5,K.1^-2,K.1^4,K.1^-6,K.1^6,K.1,K.1^-7,K.1^-3,K.1^3,K.1^-5,K.1^8,K.1^5,K.1^-2,K.1^8,K.1^-3,K.1^4,K.1^2,K.1^-7,K.1^3,K.1^-8,K.1^-1,K.1,-1*K.1,-1*K.1^-7,-1*K.1^4,-1*K.1^7,-1*K.1^-4,-1*K.1^-8,-1*K.1^-6,-1*K.1^-5,K.1^7,-1*K.1^-1,K.1^-6,-1*K.1^5,K.1^-4,-1*K.1^6,K.1^2,-1*K.1^-2,K.1^-8,K.1^-1,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-4,K.1^3,K.1^7,-1*K.1^6,K.1^-8,K.1^-4,K.1^-5,K.1^7,K.1^8,-1*K.1^5,-1*K.1^6,-1*K.1^-4,K.1^3,-1*K.1^2,-1*K.1^2,-1*K.1^-8,K.1^5,-1*K.1^7,-1*K.1^-2,K.1^2,-1*K.1^3,K.1^-1,K.1^-4,-1*K.1^-6,K.1^2,-1*K.1^-7,K.1^-2,-1*K.1^-1,K.1^-5,-1*K.1^-3,-1*K.1^-5,K.1^-3,K.1^-7,-1*K.1^-3,-1*K.1^-8,-1*K.1^-2,K.1^-6,-1*K.1,-1*K.1^8,-1*K.1^8,K.1^-8,K.1^6,-1*K.1^4,K.1^5,-1*K.1^5,K.1,-1*K.1,K.1^4,K.1^-6,-1*K.1^-1,K.1^8,-1*K.1^3,K.1,K.1^4,-1*K.1^4,-1*K.1^-5,K.1^-2,-1*K.1^7,-1*K.1^-6,K.1^-7,K.1^-1,K.1^6,-1*K.1^-7,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^8,2*K.1^-8,2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1^-5,2*K.1^-4,2*K.1^4,2*K.1,2*K.1^-2,2*K.1^-6,2*K.1^-7,2*K.1^5,-2*K.1^4,-2*K.1^-6,-2*K.1,-2*K.1^4,-2*K.1^3,-2*K.1^-3,-2*K.1^-7,-2*K.1^3,-2*K.1^-8,-2*K.1^-1,-2*K.1^6,-2*K.1^-8,-2*K.1^-2,-2*K.1^-5,-2*K.1^5,-2*K.1^-2,2*K.1^-7,2*K.1^-2,2*K.1^6,-2*K.1^-4,-2*K.1^8,-2*K.1^-4,-2*K.1,-2*K.1^6,-2*K.1^-6,-2*K.1^-1,2*K.1^3,-2*K.1^-7,-2*K.1^5,-2*K.1^7,-2*K.1^-5,-2*K.1^7,-2*K.1^2,-2*K.1^-3,-2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1,-2*K.1^8,2*K.1^-5,2*K.1^7,2*K.1^2,2*K.1^-3,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-6,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^6,-1*K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^5,-1*K.1^2,-1*K.1^-5,-1*K.1^8,-1*K.1^-8,-1*K.1^4,-1*K.1^-3,-1*K.1^-7,-1*K.1^7,-2*K.1^4,-2*K.1,2*K.1^-7,2*K.1^6,2*K.1,2*K.1^-4,2*K.1^-8,-2*K.1^3,-2*K.1^-4,-2*K.1^-7,-2*K.1^6,-2*K.1^7,-2*K.1^-6,-2*K.1^-5,-2*K.1^4,-2*K.1^2,2*K.1^-3,2*K.1^-2,2*K.1^7,2*K.1^7,-2*K.1^-7,2*K.1^-1,2*K.1^2,2*K.1^4,2*K.1^-6,-2*K.1^6,2*K.1^5,-2*K.1^2,-2*K.1^5,-2*K.1^3,2*K.1^-8,2*K.1^3,2*K.1^-7,-2*K.1^-1,-2*K.1^-4,2*K.1^-6,-2*K.1^-5,2*K.1^-3,2*K.1^-2,2*K.1^-4,2*K.1,2*K.1^6,2*K.1^8,-2*K.1^8,-2*K.1^-2,-2*K.1,-2*K.1^5,-2*K.1^-8,2*K.1^3,-2*K.1^-1,-2*K.1^7,-2*K.1^-8,-2*K.1^-3,2*K.1^2,2*K.1^-5,2*K.1^-5,-2*K.1^-6,-2*K.1^8,-2*K.1^-3,2*K.1^-1,-2*K.1^-2,2*K.1^4,2*K.1^8,2*K.1^5,K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-8,K.1^4,K.1^5,K.1^-5,K.1^2,K.1^-4,K.1^6,K.1^-6,K.1^-1,K.1^7,K.1^3,K.1^-3,K.1^5,K.1^-8,K.1^-5,K.1^2,K.1^-8,K.1^3,K.1^-4,K.1^-2,K.1^7,K.1^-3,K.1^8,K.1,K.1^-1,-1*K.1^-1,-1*K.1^7,-1*K.1^-4,-1*K.1^-7,-1*K.1^4,-1*K.1^8,-1*K.1^6,-1*K.1^5,K.1^-7,-1*K.1,K.1^6,-1*K.1^-5,K.1^4,-1*K.1^-6,K.1^-2,-1*K.1^2,K.1^8,K.1,K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^4,K.1^-3,K.1^-7,-1*K.1^-6,K.1^8,K.1^4,K.1^5,K.1^-7,K.1^-8,-1*K.1^-5,-1*K.1^-6,-1*K.1^4,K.1^-3,-1*K.1^-2,-1*K.1^-2,-1*K.1^8,K.1^-5,-1*K.1^-7,-1*K.1^2,K.1^-2,-1*K.1^-3,K.1,K.1^4,-1*K.1^6,K.1^-2,-1*K.1^7,K.1^2,-1*K.1,K.1^5,-1*K.1^3,-1*K.1^5,K.1^3,K.1^7,-1*K.1^3,-1*K.1^8,-1*K.1^2,K.1^6,-1*K.1^-1,-1*K.1^-8,-1*K.1^-8,K.1^8,K.1^-6,-1*K.1^-4,K.1^-5,-1*K.1^-5,K.1^-1,-1*K.1^-1,K.1^-4,K.1^6,-1*K.1,K.1^-8,-1*K.1^-3,K.1^-1,K.1^-4,-1*K.1^-4,-1*K.1^5,K.1^2,-1*K.1^-7,-1*K.1^6,K.1^7,K.1,K.1^-6,-1*K.1^7,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1^-1,2*K.1^-8,2*K.1^-7,2*K.1^-4,2*K.1^4,2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^-6,2*K.1^2,2*K.1^-2,2*K.1^8,2*K.1,2*K.1^3,2*K.1^-5,2*K.1^6,-2*K.1^-2,-2*K.1^3,-2*K.1^8,-2*K.1^-2,-2*K.1^7,-2*K.1^-7,-2*K.1^-5,-2*K.1^7,-2*K.1^4,-2*K.1^-8,-2*K.1^-3,-2*K.1^4,-2*K.1,-2*K.1^-6,-2*K.1^6,-2*K.1,2*K.1^-5,2*K.1,2*K.1^-3,-2*K.1^2,-2*K.1^-4,-2*K.1^2,-2*K.1^8,-2*K.1^-3,-2*K.1^3,-2*K.1^-8,2*K.1^7,-2*K.1^-5,-2*K.1^6,-2*K.1^5,-2*K.1^-6,-2*K.1^5,-2*K.1^-1,-2*K.1^-7,-2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^8,-2*K.1^-4,2*K.1^-6,2*K.1^5,2*K.1^-1,2*K.1^-7,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^3,-1*K.1^8,-1*K.1^7,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^6,-1*K.1^-1,-1*K.1^-6,-1*K.1^-4,-1*K.1^4,-1*K.1^-2,-1*K.1^-7,-1*K.1^-5,-1*K.1^5,-2*K.1^-2,-2*K.1^8,2*K.1^-5,2*K.1^-3,2*K.1^8,2*K.1^2,2*K.1^4,-2*K.1^7,-2*K.1^2,-2*K.1^-5,-2*K.1^-3,-2*K.1^5,-2*K.1^3,-2*K.1^-6,-2*K.1^-2,-2*K.1^-1,2*K.1^-7,2*K.1,2*K.1^5,2*K.1^5,-2*K.1^-5,2*K.1^-8,2*K.1^-1,2*K.1^-2,2*K.1^3,-2*K.1^-3,2*K.1^6,-2*K.1^-1,-2*K.1^6,-2*K.1^7,2*K.1^4,2*K.1^7,2*K.1^-5,-2*K.1^-8,-2*K.1^2,2*K.1^3,-2*K.1^-6,2*K.1^-7,2*K.1,2*K.1^2,2*K.1^8,2*K.1^-3,2*K.1^-4,-2*K.1^-4,-2*K.1,-2*K.1^8,-2*K.1^6,-2*K.1^4,2*K.1^7,-2*K.1^-8,-2*K.1^5,-2*K.1^4,-2*K.1^-7,2*K.1^-1,2*K.1^-6,2*K.1^-6,-2*K.1^3,-2*K.1^-4,-2*K.1^-7,2*K.1^-8,-2*K.1,2*K.1^-2,2*K.1^-4,2*K.1^6,K.1^-5,-1*K.1,-1*K.1^7,-1*K.1^-7,-1*K.1^4,K.1^-2,K.1^6,K.1^-6,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^-8,K.1^5,K.1^7,K.1^-7,K.1^6,K.1^4,K.1^-6,K.1^-1,K.1^4,K.1^7,K.1^2,K.1,K.1^5,K.1^-7,K.1^-4,K.1^8,K.1^-8,-1*K.1^-8,-1*K.1^5,-1*K.1^2,-1*K.1^-5,-1*K.1^-2,-1*K.1^-4,-1*K.1^-3,-1*K.1^6,K.1^-5,-1*K.1^8,K.1^-3,-1*K.1^-6,K.1^-2,-1*K.1^3,K.1,-1*K.1^-1,K.1^-4,K.1^8,K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-2,K.1^-7,K.1^-5,-1*K.1^3,K.1^-4,K.1^-2,K.1^6,K.1^-5,K.1^4,-1*K.1^-6,-1*K.1^3,-1*K.1^-2,K.1^-7,-1*K.1,-1*K.1,-1*K.1^-4,K.1^-6,-1*K.1^-5,-1*K.1^-1,K.1,-1*K.1^-7,K.1^8,K.1^-2,-1*K.1^-3,K.1,-1*K.1^5,K.1^-1,-1*K.1^8,K.1^6,-1*K.1^7,-1*K.1^6,K.1^7,K.1^5,-1*K.1^7,-1*K.1^-4,-1*K.1^-1,K.1^-3,-1*K.1^-8,-1*K.1^4,-1*K.1^4,K.1^-4,K.1^3,-1*K.1^2,K.1^-6,-1*K.1^-6,K.1^-8,-1*K.1^-8,K.1^2,K.1^-3,-1*K.1^8,K.1^4,-1*K.1^-7,K.1^-8,K.1^2,-1*K.1^2,-1*K.1^6,K.1^-1,-1*K.1^-5,-1*K.1^-3,K.1^5,K.1^8,K.1^3,-1*K.1^5,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,-2,-2,2,2,1,1,-1,0,0,0,0,0,0,0,0,-1,1,1,-1,2*K.1,2*K.1^8,2*K.1^7,2*K.1^4,2*K.1^-4,2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^6,2*K.1^-2,2*K.1^2,2*K.1^-8,2*K.1^-1,2*K.1^-3,2*K.1^5,2*K.1^-6,-2*K.1^2,-2*K.1^-3,-2*K.1^-8,-2*K.1^2,-2*K.1^-7,-2*K.1^7,-2*K.1^5,-2*K.1^-7,-2*K.1^-4,-2*K.1^8,-2*K.1^3,-2*K.1^-4,-2*K.1^-1,-2*K.1^6,-2*K.1^-6,-2*K.1^-1,2*K.1^5,2*K.1^-1,2*K.1^3,-2*K.1^-2,-2*K.1^4,-2*K.1^-2,-2*K.1^-8,-2*K.1^3,-2*K.1^-3,-2*K.1^8,2*K.1^-7,-2*K.1^5,-2*K.1^-6,-2*K.1^-5,-2*K.1^6,-2*K.1^-5,-2*K.1,-2*K.1^7,-2*K.1,2*K.1^4,2*K.1^-2,2*K.1^-8,-2*K.1^4,2*K.1^6,2*K.1^-5,2*K.1,2*K.1^7,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-3,-1*K.1^-8,-1*K.1^-7,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^-6,-1*K.1,-1*K.1^6,-1*K.1^4,-1*K.1^-4,-1*K.1^2,-1*K.1^7,-1*K.1^5,-1*K.1^-5,-2*K.1^2,-2*K.1^-8,2*K.1^5,2*K.1^3,2*K.1^-8,2*K.1^-2,2*K.1^-4,-2*K.1^-7,-2*K.1^-2,-2*K.1^5,-2*K.1^3,-2*K.1^-5,-2*K.1^-3,-2*K.1^6,-2*K.1^2,-2*K.1,2*K.1^7,2*K.1^-1,2*K.1^-5,2*K.1^-5,-2*K.1^5,2*K.1^8,2*K.1,2*K.1^2,2*K.1^-3,-2*K.1^3,2*K.1^-6,-2*K.1,-2*K.1^-6,-2*K.1^-7,2*K.1^-4,2*K.1^-7,2*K.1^5,-2*K.1^8,-2*K.1^-2,2*K.1^-3,-2*K.1^6,2*K.1^7,2*K.1^-1,2*K.1^-2,2*K.1^-8,2*K.1^3,2*K.1^4,-2*K.1^4,-2*K.1^-1,-2*K.1^-8,-2*K.1^-6,-2*K.1^-4,2*K.1^-7,-2*K.1^8,-2*K.1^-5,-2*K.1^-4,-2*K.1^7,2*K.1,2*K.1^6,2*K.1^6,-2*K.1^-3,-2*K.1^4,-2*K.1^7,2*K.1^8,-2*K.1^-1,2*K.1^2,2*K.1^4,2*K.1^-6,K.1^5,-1*K.1^-1,-1*K.1^-7,-1*K.1^7,-1*K.1^-4,K.1^2,K.1^-6,K.1^6,K.1,K.1^-2,K.1^3,K.1^-3,K.1^8,K.1^-5,K.1^-7,K.1^7,K.1^-6,K.1^-4,K.1^6,K.1,K.1^-4,K.1^-7,K.1^-2,K.1^-1,K.1^-5,K.1^7,K.1^4,K.1^-8,K.1^8,-1*K.1^8,-1*K.1^-5,-1*K.1^-2,-1*K.1^5,-1*K.1^2,-1*K.1^4,-1*K.1^3,-1*K.1^-6,K.1^5,-1*K.1^-8,K.1^3,-1*K.1^6,K.1^2,-1*K.1^-3,K.1^-1,-1*K.1,K.1^4,K.1^-8,K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^2,K.1^7,K.1^5,-1*K.1^-3,K.1^4,K.1^2,K.1^-6,K.1^5,K.1^-4,-1*K.1^6,-1*K.1^-3,-1*K.1^2,K.1^7,-1*K.1^-1,-1*K.1^-1,-1*K.1^4,K.1^6,-1*K.1^5,-1*K.1,K.1^-1,-1*K.1^7,K.1^-8,K.1^2,-1*K.1^3,K.1^-1,-1*K.1^-5,K.1,-1*K.1^-8,K.1^-6,-1*K.1^-7,-1*K.1^-6,K.1^-7,K.1^-5,-1*K.1^-7,-1*K.1^4,-1*K.1,K.1^3,-1*K.1^8,-1*K.1^-4,-1*K.1^-4,K.1^4,K.1^-3,-1*K.1^-2,K.1^6,-1*K.1^6,K.1^8,-1*K.1^8,K.1^-2,K.1^3,-1*K.1^-8,K.1^-4,-1*K.1^7,K.1^8,K.1^-2,-1*K.1^-2,-1*K.1^-6,K.1,-1*K.1^5,-1*K.1^3,K.1^-5,K.1^-8,K.1^-3,-1*K.1^-5,K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^-8,2*K.1^4,2*K.1^-5,2*K.1^2,2*K.1^-2,2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-4,2*K.1^8,2*K.1^7,2*K.1^-6,2*K.1^-3,-2*K.1,-2*K.1^7,-2*K.1^-4,-2*K.1,-2*K.1^5,-2*K.1^-5,-2*K.1^-6,-2*K.1^5,-2*K.1^-2,-2*K.1^4,-2*K.1^-7,-2*K.1^-2,-2*K.1^8,-2*K.1^3,-2*K.1^-3,-2*K.1^8,2*K.1^-6,2*K.1^8,2*K.1^-7,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^-4,-2*K.1^-7,-2*K.1^7,-2*K.1^4,2*K.1^5,-2*K.1^-6,-2*K.1^-3,-2*K.1^6,-2*K.1^3,-2*K.1^6,-2*K.1^-8,-2*K.1^-5,-2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^-4,-2*K.1^2,2*K.1^3,2*K.1^6,2*K.1^-8,2*K.1^-5,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^7,-1*K.1^-4,-1*K.1^5,-1*K.1^8,-1*K.1^-7,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-5,-1*K.1^-6,-1*K.1^6,2*K.1,2*K.1^-4,-2*K.1^-6,-2*K.1^-7,-2*K.1^-4,-2*K.1^-1,-2*K.1^-2,2*K.1^5,2*K.1^-1,2*K.1^-6,2*K.1^-7,2*K.1^6,2*K.1^7,2*K.1^3,2*K.1,2*K.1^-8,-2*K.1^-5,-2*K.1^8,-2*K.1^6,-2*K.1^6,2*K.1^-6,-2*K.1^4,-2*K.1^-8,-2*K.1,-2*K.1^7,2*K.1^-7,-2*K.1^-3,2*K.1^-8,2*K.1^-3,2*K.1^5,-2*K.1^-2,-2*K.1^5,-2*K.1^-6,2*K.1^4,2*K.1^-1,-2*K.1^7,2*K.1^3,-2*K.1^-5,-2*K.1^8,-2*K.1^-1,-2*K.1^-4,-2*K.1^-7,-2*K.1^2,2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1^-3,2*K.1^-2,-2*K.1^5,2*K.1^4,2*K.1^6,2*K.1^-2,2*K.1^-5,-2*K.1^-8,-2*K.1^3,-2*K.1^3,2*K.1^7,2*K.1^2,2*K.1^-5,-2*K.1^4,2*K.1^8,-2*K.1,-2*K.1^2,-2*K.1^-3,K.1^-6,-1*K.1^8,-1*K.1^5,-1*K.1^-5,-1*K.1^-2,K.1,K.1^-3,K.1^3,K.1^-8,K.1^-1,K.1^-7,K.1^7,K.1^4,K.1^6,K.1^5,K.1^-5,K.1^-3,K.1^-2,K.1^3,K.1^-8,K.1^-2,K.1^5,K.1^-1,K.1^8,K.1^6,K.1^-5,K.1^2,K.1^-4,K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^-1,-1*K.1^-6,-1*K.1,-1*K.1^2,-1*K.1^-7,-1*K.1^-3,K.1^-6,-1*K.1^-4,K.1^-7,-1*K.1^3,K.1,-1*K.1^7,K.1^8,-1*K.1^-8,K.1^2,K.1^-4,K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,-1*K.1^-5,-1*K.1^-6,K.1^7,-1*K.1^2,-1*K.1,-1*K.1^-3,-1*K.1^-6,-1*K.1^-2,K.1^3,K.1^7,K.1,-1*K.1^-5,K.1^8,K.1^8,K.1^2,-1*K.1^3,K.1^-6,K.1^-8,-1*K.1^8,K.1^-5,-1*K.1^-4,-1*K.1,K.1^-7,-1*K.1^8,K.1^6,-1*K.1^-8,K.1^-4,-1*K.1^-3,K.1^5,K.1^-3,-1*K.1^5,-1*K.1^6,K.1^5,K.1^2,K.1^-8,-1*K.1^-7,K.1^4,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1^7,K.1^-1,-1*K.1^3,K.1^3,-1*K.1^4,K.1^4,-1*K.1^-1,-1*K.1^-7,K.1^-4,-1*K.1^-2,K.1^-5,-1*K.1^4,-1*K.1^-1,K.1^-1,K.1^-3,-1*K.1^-8,K.1^-6,K.1^-7,-1*K.1^6,-1*K.1^-4,-1*K.1^7,K.1^6,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^8,2*K.1^-4,2*K.1^5,2*K.1^-2,2*K.1^2,2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^4,2*K.1^-8,2*K.1^-7,2*K.1^6,2*K.1^3,-2*K.1^-1,-2*K.1^-7,-2*K.1^4,-2*K.1^-1,-2*K.1^-5,-2*K.1^5,-2*K.1^6,-2*K.1^-5,-2*K.1^2,-2*K.1^-4,-2*K.1^7,-2*K.1^2,-2*K.1^-8,-2*K.1^-3,-2*K.1^3,-2*K.1^-8,2*K.1^6,2*K.1^-8,2*K.1^7,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^4,-2*K.1^7,-2*K.1^-7,-2*K.1^-4,2*K.1^-5,-2*K.1^6,-2*K.1^3,-2*K.1^-6,-2*K.1^-3,-2*K.1^-6,-2*K.1^8,-2*K.1^5,-2*K.1^8,2*K.1^-2,2*K.1,2*K.1^4,-2*K.1^-2,2*K.1^-3,2*K.1^-6,2*K.1^8,2*K.1^5,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1^-7,-1*K.1^4,-1*K.1^-5,-1*K.1^-8,-1*K.1^7,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^5,-1*K.1^6,-1*K.1^-6,2*K.1^-1,2*K.1^4,-2*K.1^6,-2*K.1^7,-2*K.1^4,-2*K.1,-2*K.1^2,2*K.1^-5,2*K.1,2*K.1^6,2*K.1^7,2*K.1^-6,2*K.1^-7,2*K.1^-3,2*K.1^-1,2*K.1^8,-2*K.1^5,-2*K.1^-8,-2*K.1^-6,-2*K.1^-6,2*K.1^6,-2*K.1^-4,-2*K.1^8,-2*K.1^-1,-2*K.1^-7,2*K.1^7,-2*K.1^3,2*K.1^8,2*K.1^3,2*K.1^-5,-2*K.1^2,-2*K.1^-5,-2*K.1^6,2*K.1^-4,2*K.1,-2*K.1^-7,2*K.1^-3,-2*K.1^5,-2*K.1^-8,-2*K.1,-2*K.1^4,-2*K.1^7,-2*K.1^-2,2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^3,2*K.1^2,-2*K.1^-5,2*K.1^-4,2*K.1^-6,2*K.1^2,2*K.1^5,-2*K.1^8,-2*K.1^-3,-2*K.1^-3,2*K.1^-7,2*K.1^-2,2*K.1^5,-2*K.1^-4,2*K.1^-8,-2*K.1^-1,-2*K.1^-2,-2*K.1^3,K.1^6,-1*K.1^-8,-1*K.1^-5,-1*K.1^5,-1*K.1^2,K.1^-1,K.1^3,K.1^-3,K.1^8,K.1,K.1^7,K.1^-7,K.1^-4,K.1^-6,K.1^-5,K.1^5,K.1^3,K.1^2,K.1^-3,K.1^8,K.1^2,K.1^-5,K.1,K.1^-8,K.1^-6,K.1^5,K.1^-2,K.1^4,K.1^-4,-1*K.1^-4,-1*K.1^-6,-1*K.1,-1*K.1^6,-1*K.1^-1,-1*K.1^-2,-1*K.1^7,-1*K.1^3,K.1^6,-1*K.1^4,K.1^7,-1*K.1^-3,K.1^-1,-1*K.1^-7,K.1^-8,-1*K.1^8,K.1^-2,K.1^4,K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,-1*K.1^5,-1*K.1^6,K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^3,-1*K.1^6,-1*K.1^2,K.1^-3,K.1^-7,K.1^-1,-1*K.1^5,K.1^-8,K.1^-8,K.1^-2,-1*K.1^-3,K.1^6,K.1^8,-1*K.1^-8,K.1^5,-1*K.1^4,-1*K.1^-1,K.1^7,-1*K.1^-8,K.1^-6,-1*K.1^8,K.1^4,-1*K.1^3,K.1^-5,K.1^3,-1*K.1^-5,-1*K.1^-6,K.1^-5,K.1^-2,K.1^8,-1*K.1^7,K.1^-4,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-7,K.1,-1*K.1^-3,K.1^-3,-1*K.1^-4,K.1^-4,-1*K.1,-1*K.1^7,K.1^4,-1*K.1^2,K.1^5,-1*K.1^-4,-1*K.1,K.1,K.1^3,-1*K.1^8,K.1^6,K.1^7,-1*K.1^-6,-1*K.1^4,-1*K.1^-7,K.1^-6,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^-7,2*K.1^-5,2*K.1^2,2*K.1^6,2*K.1^-6,2*K.1^-4,2*K.1,2*K.1^8,2*K.1^-2,2*K.1^-8,2*K.1^-3,2*K.1^3,2*K.1^5,2*K.1^7,2*K.1^4,2*K.1^-1,2*K.1^8,-2*K.1^3,-2*K.1^4,-2*K.1^5,-2*K.1^3,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-6,-2*K.1^-5,-2*K.1^-4,-2*K.1^-6,-2*K.1^7,-2*K.1^-8,-2*K.1^8,-2*K.1^7,2*K.1^-1,2*K.1^7,2*K.1^-4,-2*K.1^-3,-2*K.1^6,-2*K.1^-3,-2*K.1^5,-2*K.1^-4,-2*K.1^4,-2*K.1^-5,2*K.1^-2,-2*K.1^-1,-2*K.1^8,-2*K.1,-2*K.1^-8,-2*K.1,-2*K.1^-7,-2*K.1^2,-2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^5,-2*K.1^6,2*K.1^-8,2*K.1,2*K.1^-7,2*K.1^2,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^4,-1*K.1^5,-1*K.1^-2,-1*K.1^7,-1*K.1^-4,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^8,-1*K.1^-7,-1*K.1^-8,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1,2*K.1^3,2*K.1^5,-2*K.1^-1,-2*K.1^-4,-2*K.1^5,-2*K.1^-3,-2*K.1^-6,2*K.1^-2,2*K.1^-3,2*K.1^-1,2*K.1^-4,2*K.1,2*K.1^4,2*K.1^-8,2*K.1^3,2*K.1^-7,-2*K.1^2,-2*K.1^7,-2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-5,-2*K.1^-7,-2*K.1^3,-2*K.1^4,2*K.1^-4,-2*K.1^8,2*K.1^-7,2*K.1^8,2*K.1^-2,-2*K.1^-6,-2*K.1^-2,-2*K.1^-1,2*K.1^-5,2*K.1^-3,-2*K.1^4,2*K.1^-8,-2*K.1^2,-2*K.1^7,-2*K.1^-3,-2*K.1^5,-2*K.1^-4,-2*K.1^6,2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^8,2*K.1^-6,-2*K.1^-2,2*K.1^-5,2*K.1,2*K.1^-6,2*K.1^2,-2*K.1^-7,-2*K.1^-8,-2*K.1^-8,2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^-5,2*K.1^7,-2*K.1^3,-2*K.1^6,-2*K.1^8,K.1^-1,-1*K.1^7,-1*K.1^-2,-1*K.1^2,-1*K.1^-6,K.1^3,K.1^8,K.1^-8,K.1^-7,K.1^-3,K.1^-4,K.1^4,K.1^-5,K.1,K.1^-2,K.1^2,K.1^8,K.1^-6,K.1^-8,K.1^-7,K.1^-6,K.1^-2,K.1^-3,K.1^7,K.1,K.1^2,K.1^6,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^6,-1*K.1^-4,-1*K.1^8,K.1^-1,-1*K.1^5,K.1^-4,-1*K.1^-8,K.1^3,-1*K.1^4,K.1^7,-1*K.1^-7,K.1^6,K.1^5,K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3,-1*K.1^2,-1*K.1^-1,K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^8,-1*K.1^-1,-1*K.1^-6,K.1^-8,K.1^4,K.1^3,-1*K.1^2,K.1^7,K.1^7,K.1^6,-1*K.1^-8,K.1^-1,K.1^-7,-1*K.1^7,K.1^2,-1*K.1^5,-1*K.1^3,K.1^-4,-1*K.1^7,K.1,-1*K.1^-7,K.1^5,-1*K.1^8,K.1^-2,K.1^8,-1*K.1^-2,-1*K.1,K.1^-2,K.1^6,K.1^-7,-1*K.1^-4,K.1^-5,K.1^-6,K.1^-6,-1*K.1^6,-1*K.1^4,K.1^-3,-1*K.1^-8,K.1^-8,-1*K.1^-5,K.1^-5,-1*K.1^-3,-1*K.1^-4,K.1^5,-1*K.1^-6,K.1^2,-1*K.1^-5,-1*K.1^-3,K.1^-3,K.1^8,-1*K.1^-7,K.1^-1,K.1^-4,-1*K.1,-1*K.1^5,-1*K.1^4,K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^7,2*K.1^5,2*K.1^-2,2*K.1^-6,2*K.1^6,2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^8,2*K.1^3,2*K.1^-3,2*K.1^-5,2*K.1^-7,2*K.1^-4,2*K.1,2*K.1^-8,-2*K.1^-3,-2*K.1^-4,-2*K.1^-5,-2*K.1^-3,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^6,-2*K.1^5,-2*K.1^4,-2*K.1^6,-2*K.1^-7,-2*K.1^8,-2*K.1^-8,-2*K.1^-7,2*K.1,2*K.1^-7,2*K.1^4,-2*K.1^3,-2*K.1^-6,-2*K.1^3,-2*K.1^-5,-2*K.1^4,-2*K.1^-4,-2*K.1^5,2*K.1^2,-2*K.1,-2*K.1^-8,-2*K.1^-1,-2*K.1^8,-2*K.1^-1,-2*K.1^7,-2*K.1^-2,-2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-5,-2*K.1^-6,2*K.1^8,2*K.1^-1,2*K.1^7,2*K.1^-2,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^-4,-1*K.1^-5,-1*K.1^2,-1*K.1^-7,-1*K.1^4,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^-8,-1*K.1^7,-1*K.1^8,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-1,2*K.1^-3,2*K.1^-5,-2*K.1,-2*K.1^4,-2*K.1^-5,-2*K.1^3,-2*K.1^6,2*K.1^2,2*K.1^3,2*K.1,2*K.1^4,2*K.1^-1,2*K.1^-4,2*K.1^8,2*K.1^-3,2*K.1^7,-2*K.1^-2,-2*K.1^-7,-2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^5,-2*K.1^7,-2*K.1^-3,-2*K.1^-4,2*K.1^4,-2*K.1^-8,2*K.1^7,2*K.1^-8,2*K.1^2,-2*K.1^6,-2*K.1^2,-2*K.1,2*K.1^5,2*K.1^3,-2*K.1^-4,2*K.1^8,-2*K.1^-2,-2*K.1^-7,-2*K.1^3,-2*K.1^-5,-2*K.1^4,-2*K.1^-6,2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1^-8,2*K.1^6,-2*K.1^2,2*K.1^5,2*K.1^-1,2*K.1^6,2*K.1^-2,-2*K.1^7,-2*K.1^8,-2*K.1^8,2*K.1^-4,2*K.1^-6,2*K.1^-2,-2*K.1^5,2*K.1^-7,-2*K.1^-3,-2*K.1^-6,-2*K.1^-8,K.1,-1*K.1^-7,-1*K.1^2,-1*K.1^-2,-1*K.1^6,K.1^-3,K.1^-8,K.1^8,K.1^7,K.1^3,K.1^4,K.1^-4,K.1^5,K.1^-1,K.1^2,K.1^-2,K.1^-8,K.1^6,K.1^8,K.1^7,K.1^6,K.1^2,K.1^3,K.1^-7,K.1^-1,K.1^-2,K.1^-6,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-6,-1*K.1^4,-1*K.1^-8,K.1,-1*K.1^-5,K.1^4,-1*K.1^8,K.1^-3,-1*K.1^-4,K.1^-7,-1*K.1^7,K.1^-6,K.1^-5,K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-3,-1*K.1^-2,-1*K.1,K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1^-8,-1*K.1,-1*K.1^6,K.1^8,K.1^-4,K.1^-3,-1*K.1^-2,K.1^-7,K.1^-7,K.1^-6,-1*K.1^8,K.1,K.1^7,-1*K.1^-7,K.1^-2,-1*K.1^-5,-1*K.1^-3,K.1^4,-1*K.1^-7,K.1^-1,-1*K.1^7,K.1^-5,-1*K.1^-8,K.1^2,K.1^-8,-1*K.1^2,-1*K.1^-1,K.1^2,K.1^-6,K.1^7,-1*K.1^4,K.1^5,K.1^6,K.1^6,-1*K.1^-6,-1*K.1^-4,K.1^3,-1*K.1^8,K.1^8,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1^4,K.1^-5,-1*K.1^6,K.1^-2,-1*K.1^5,-1*K.1^3,K.1^3,K.1^-8,-1*K.1^7,K.1,K.1^4,-1*K.1^-1,-1*K.1^-5,-1*K.1^-4,K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^-6,2*K.1^3,2*K.1^-8,2*K.1^-7,2*K.1^7,2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-2,2*K.1^-5,2*K.1^5,2*K.1^-3,2*K.1^6,2*K.1,2*K.1^4,2*K.1^2,-2*K.1^5,-2*K.1,-2*K.1^-3,-2*K.1^5,-2*K.1^8,-2*K.1^-8,-2*K.1^4,-2*K.1^8,-2*K.1^7,-2*K.1^3,-2*K.1^-1,-2*K.1^7,-2*K.1^6,-2*K.1^-2,-2*K.1^2,-2*K.1^6,2*K.1^4,2*K.1^6,2*K.1^-1,-2*K.1^-5,-2*K.1^-7,-2*K.1^-5,-2*K.1^-3,-2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1^8,-2*K.1^4,-2*K.1^2,-2*K.1^-4,-2*K.1^-2,-2*K.1^-4,-2*K.1^-6,-2*K.1^-8,-2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1^-3,-2*K.1^-7,2*K.1^-2,2*K.1^-4,2*K.1^-6,2*K.1^-8,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1,-1*K.1^-3,-1*K.1^8,-1*K.1^6,-1*K.1^-1,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-6,-1*K.1^-2,-1*K.1^-7,-1*K.1^7,-1*K.1^5,-1*K.1^-8,-1*K.1^4,-1*K.1^-4,2*K.1^5,2*K.1^-3,-2*K.1^4,-2*K.1^-1,-2*K.1^-3,-2*K.1^-5,-2*K.1^7,2*K.1^8,2*K.1^-5,2*K.1^4,2*K.1^-1,2*K.1^-4,2*K.1,2*K.1^-2,2*K.1^5,2*K.1^-6,-2*K.1^-8,-2*K.1^6,-2*K.1^-4,-2*K.1^-4,2*K.1^4,-2*K.1^3,-2*K.1^-6,-2*K.1^5,-2*K.1,2*K.1^-1,-2*K.1^2,2*K.1^-6,2*K.1^2,2*K.1^8,-2*K.1^7,-2*K.1^8,-2*K.1^4,2*K.1^3,2*K.1^-5,-2*K.1,2*K.1^-2,-2*K.1^-8,-2*K.1^6,-2*K.1^-5,-2*K.1^-3,-2*K.1^-1,-2*K.1^-7,2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^2,2*K.1^7,-2*K.1^8,2*K.1^3,2*K.1^-4,2*K.1^7,2*K.1^-8,-2*K.1^-6,-2*K.1^-2,-2*K.1^-2,2*K.1,2*K.1^-7,2*K.1^-8,-2*K.1^3,2*K.1^6,-2*K.1^5,-2*K.1^-7,-2*K.1^2,K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^-8,-1*K.1^7,K.1^5,K.1^2,K.1^-2,K.1^-6,K.1^-5,K.1^-1,K.1,K.1^3,K.1^-4,K.1^8,K.1^-8,K.1^2,K.1^7,K.1^-2,K.1^-6,K.1^7,K.1^8,K.1^-5,K.1^6,K.1^-4,K.1^-8,K.1^-7,K.1^-3,K.1^3,-1*K.1^3,-1*K.1^-4,-1*K.1^-5,-1*K.1^4,-1*K.1^5,-1*K.1^-7,-1*K.1^-1,-1*K.1^2,K.1^4,-1*K.1^-3,K.1^-1,-1*K.1^-2,K.1^5,-1*K.1,K.1^6,-1*K.1^-6,K.1^-7,K.1^-3,K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5,-1*K.1^-8,-1*K.1^4,K.1,-1*K.1^-7,-1*K.1^5,-1*K.1^2,-1*K.1^4,-1*K.1^7,K.1^-2,K.1,K.1^5,-1*K.1^-8,K.1^6,K.1^6,K.1^-7,-1*K.1^-2,K.1^4,K.1^-6,-1*K.1^6,K.1^-8,-1*K.1^-3,-1*K.1^5,K.1^-1,-1*K.1^6,K.1^-4,-1*K.1^-6,K.1^-3,-1*K.1^2,K.1^8,K.1^2,-1*K.1^8,-1*K.1^-4,K.1^8,K.1^-7,K.1^-6,-1*K.1^-1,K.1^3,K.1^7,K.1^7,-1*K.1^-7,-1*K.1,K.1^-5,-1*K.1^-2,K.1^-2,-1*K.1^3,K.1^3,-1*K.1^-5,-1*K.1^-1,K.1^-3,-1*K.1^7,K.1^-8,-1*K.1^3,-1*K.1^-5,K.1^-5,K.1^2,-1*K.1^-6,K.1^4,K.1^-1,-1*K.1^-4,-1*K.1^-3,-1*K.1,K.1^-4,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^6,2*K.1^-3,2*K.1^8,2*K.1^7,2*K.1^-7,2*K.1,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^2,2*K.1^5,2*K.1^-5,2*K.1^3,2*K.1^-6,2*K.1^-1,2*K.1^-4,2*K.1^-2,-2*K.1^-5,-2*K.1^-1,-2*K.1^3,-2*K.1^-5,-2*K.1^-8,-2*K.1^8,-2*K.1^-4,-2*K.1^-8,-2*K.1^-7,-2*K.1^-3,-2*K.1,-2*K.1^-7,-2*K.1^-6,-2*K.1^2,-2*K.1^-2,-2*K.1^-6,2*K.1^-4,2*K.1^-6,2*K.1,-2*K.1^5,-2*K.1^7,-2*K.1^5,-2*K.1^3,-2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^-8,-2*K.1^-4,-2*K.1^-2,-2*K.1^4,-2*K.1^2,-2*K.1^4,-2*K.1^6,-2*K.1^8,-2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^3,-2*K.1^7,2*K.1^2,2*K.1^4,2*K.1^6,2*K.1^8,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^-1,-1*K.1^3,-1*K.1^-8,-1*K.1^-6,-1*K.1,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1^-7,-1*K.1^-5,-1*K.1^8,-1*K.1^-4,-1*K.1^4,2*K.1^-5,2*K.1^3,-2*K.1^-4,-2*K.1,-2*K.1^3,-2*K.1^5,-2*K.1^-7,2*K.1^-8,2*K.1^5,2*K.1^-4,2*K.1,2*K.1^4,2*K.1^-1,2*K.1^2,2*K.1^-5,2*K.1^6,-2*K.1^8,-2*K.1^-6,-2*K.1^4,-2*K.1^4,2*K.1^-4,-2*K.1^-3,-2*K.1^6,-2*K.1^-5,-2*K.1^-1,2*K.1,-2*K.1^-2,2*K.1^6,2*K.1^-2,2*K.1^-8,-2*K.1^-7,-2*K.1^-8,-2*K.1^-4,2*K.1^-3,2*K.1^5,-2*K.1^-1,2*K.1^2,-2*K.1^8,-2*K.1^-6,-2*K.1^5,-2*K.1^3,-2*K.1,-2*K.1^7,2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-2,2*K.1^-7,-2*K.1^-8,2*K.1^-3,2*K.1^4,2*K.1^-7,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1^2,2*K.1^-1,2*K.1^7,2*K.1^8,-2*K.1^-3,2*K.1^-6,-2*K.1^-5,-2*K.1^7,-2*K.1^-2,K.1^-4,-1*K.1^-6,-1*K.1^-8,-1*K.1^8,-1*K.1^-7,K.1^-5,K.1^-2,K.1^2,K.1^6,K.1^5,K.1,K.1^-1,K.1^-3,K.1^4,K.1^-8,K.1^8,K.1^-2,K.1^-7,K.1^2,K.1^6,K.1^-7,K.1^-8,K.1^5,K.1^-6,K.1^4,K.1^8,K.1^7,K.1^3,K.1^-3,-1*K.1^-3,-1*K.1^4,-1*K.1^5,-1*K.1^-4,-1*K.1^-5,-1*K.1^7,-1*K.1,-1*K.1^-2,K.1^-4,-1*K.1^3,K.1,-1*K.1^2,K.1^-5,-1*K.1^-1,K.1^-6,-1*K.1^6,K.1^7,K.1^3,K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-5,-1*K.1^8,-1*K.1^-4,K.1^-1,-1*K.1^7,-1*K.1^-5,-1*K.1^-2,-1*K.1^-4,-1*K.1^-7,K.1^2,K.1^-1,K.1^-5,-1*K.1^8,K.1^-6,K.1^-6,K.1^7,-1*K.1^2,K.1^-4,K.1^6,-1*K.1^-6,K.1^8,-1*K.1^3,-1*K.1^-5,K.1,-1*K.1^-6,K.1^4,-1*K.1^6,K.1^3,-1*K.1^-2,K.1^-8,K.1^-2,-1*K.1^-8,-1*K.1^4,K.1^-8,K.1^7,K.1^6,-1*K.1,K.1^-3,K.1^-7,K.1^-7,-1*K.1^7,-1*K.1^-1,K.1^5,-1*K.1^2,K.1^2,-1*K.1^-3,K.1^-3,-1*K.1^5,-1*K.1,K.1^3,-1*K.1^-7,K.1^8,-1*K.1^-3,-1*K.1^5,K.1^5,K.1^-2,-1*K.1^6,K.1^-4,K.1,-1*K.1^4,-1*K.1^3,-1*K.1^-1,K.1^4,-1*K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^-5,2*K.1^-6,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^4,2*K.1^-7,2*K.1^7,2*K.1^6,2*K.1^5,2*K.1^-2,2*K.1^-8,2*K.1^-4,-2*K.1^7,-2*K.1^-2,-2*K.1^6,-2*K.1^7,-2*K.1,-2*K.1^-1,-2*K.1^-8,-2*K.1,-2*K.1^3,-2*K.1^-6,-2*K.1^2,-2*K.1^3,-2*K.1^5,-2*K.1^4,-2*K.1^-4,-2*K.1^5,2*K.1^-8,2*K.1^5,2*K.1^2,-2*K.1^-7,-2*K.1^-3,-2*K.1^-7,-2*K.1^6,-2*K.1^2,-2*K.1^-2,-2*K.1^-6,2*K.1,-2*K.1^-8,-2*K.1^-4,-2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^-5,-2*K.1^-1,-2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^6,-2*K.1^-3,2*K.1^4,2*K.1^8,2*K.1^-5,2*K.1^-1,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^-2,-1*K.1^6,-1*K.1,-1*K.1^5,-1*K.1^2,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-4,-1*K.1^-5,-1*K.1^4,-1*K.1^-3,-1*K.1^3,-1*K.1^7,-1*K.1^-1,-1*K.1^-8,-1*K.1^8,2*K.1^7,2*K.1^6,-2*K.1^-8,-2*K.1^2,-2*K.1^6,-2*K.1^-7,-2*K.1^3,2*K.1,2*K.1^-7,2*K.1^-8,2*K.1^2,2*K.1^8,2*K.1^-2,2*K.1^4,2*K.1^7,2*K.1^-5,-2*K.1^-1,-2*K.1^5,-2*K.1^8,-2*K.1^8,2*K.1^-8,-2*K.1^-6,-2*K.1^-5,-2*K.1^7,-2*K.1^-2,2*K.1^2,-2*K.1^-4,2*K.1^-5,2*K.1^-4,2*K.1,-2*K.1^3,-2*K.1,-2*K.1^-8,2*K.1^-6,2*K.1^-7,-2*K.1^-2,2*K.1^4,-2*K.1^-1,-2*K.1^5,-2*K.1^-7,-2*K.1^6,-2*K.1^2,-2*K.1^-3,2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^-4,2*K.1^3,-2*K.1,2*K.1^-6,2*K.1^8,2*K.1^3,2*K.1^-1,-2*K.1^-5,-2*K.1^4,-2*K.1^4,2*K.1^-2,2*K.1^-3,2*K.1^-1,-2*K.1^-6,2*K.1^5,-2*K.1^7,-2*K.1^-3,-2*K.1^-4,K.1^-8,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^3,K.1^7,K.1^-4,K.1^4,K.1^-5,K.1^-7,K.1^2,K.1^-2,K.1^-6,K.1^8,K.1,K.1^-1,K.1^-4,K.1^3,K.1^4,K.1^-5,K.1^3,K.1,K.1^-7,K.1^5,K.1^8,K.1^-1,K.1^-3,K.1^6,K.1^-6,-1*K.1^-6,-1*K.1^8,-1*K.1^-7,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,-1*K.1^2,-1*K.1^-4,K.1^-8,-1*K.1^6,K.1^2,-1*K.1^4,K.1^7,-1*K.1^-2,K.1^5,-1*K.1^-5,K.1^-3,K.1^6,K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^7,-1*K.1^-1,-1*K.1^-8,K.1^-2,-1*K.1^-3,-1*K.1^7,-1*K.1^-4,-1*K.1^-8,-1*K.1^3,K.1^4,K.1^-2,K.1^7,-1*K.1^-1,K.1^5,K.1^5,K.1^-3,-1*K.1^4,K.1^-8,K.1^-5,-1*K.1^5,K.1^-1,-1*K.1^6,-1*K.1^7,K.1^2,-1*K.1^5,K.1^8,-1*K.1^-5,K.1^6,-1*K.1^-4,K.1,K.1^-4,-1*K.1,-1*K.1^8,K.1,K.1^-3,K.1^-5,-1*K.1^2,K.1^-6,K.1^3,K.1^3,-1*K.1^-3,-1*K.1^-2,K.1^-7,-1*K.1^4,K.1^4,-1*K.1^-6,K.1^-6,-1*K.1^-7,-1*K.1^2,K.1^6,-1*K.1^3,K.1^-1,-1*K.1^-6,-1*K.1^-7,K.1^-7,K.1^-4,-1*K.1^-5,K.1^-8,K.1^2,-1*K.1^8,-1*K.1^6,-1*K.1^-2,K.1^8,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^5,2*K.1^6,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-4,2*K.1^7,2*K.1^-7,2*K.1^-6,2*K.1^-5,2*K.1^2,2*K.1^8,2*K.1^4,-2*K.1^-7,-2*K.1^2,-2*K.1^-6,-2*K.1^-7,-2*K.1^-1,-2*K.1,-2*K.1^8,-2*K.1^-1,-2*K.1^-3,-2*K.1^6,-2*K.1^-2,-2*K.1^-3,-2*K.1^-5,-2*K.1^-4,-2*K.1^4,-2*K.1^-5,2*K.1^8,2*K.1^-5,2*K.1^-2,-2*K.1^7,-2*K.1^3,-2*K.1^7,-2*K.1^-6,-2*K.1^-2,-2*K.1^2,-2*K.1^6,2*K.1^-1,-2*K.1^8,-2*K.1^4,-2*K.1^-8,-2*K.1^-4,-2*K.1^-8,-2*K.1^5,-2*K.1,-2*K.1^5,2*K.1^3,2*K.1^7,2*K.1^-6,-2*K.1^3,2*K.1^-4,2*K.1^-8,2*K.1^5,2*K.1,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^2,-1*K.1^-6,-1*K.1^-1,-1*K.1^-5,-1*K.1^-2,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^5,-1*K.1^-4,-1*K.1^3,-1*K.1^-3,-1*K.1^-7,-1*K.1,-1*K.1^8,-1*K.1^-8,2*K.1^-7,2*K.1^-6,-2*K.1^8,-2*K.1^-2,-2*K.1^-6,-2*K.1^7,-2*K.1^-3,2*K.1^-1,2*K.1^7,2*K.1^8,2*K.1^-2,2*K.1^-8,2*K.1^2,2*K.1^-4,2*K.1^-7,2*K.1^5,-2*K.1,-2*K.1^-5,-2*K.1^-8,-2*K.1^-8,2*K.1^8,-2*K.1^6,-2*K.1^5,-2*K.1^-7,-2*K.1^2,2*K.1^-2,-2*K.1^4,2*K.1^5,2*K.1^4,2*K.1^-1,-2*K.1^-3,-2*K.1^-1,-2*K.1^8,2*K.1^6,2*K.1^7,-2*K.1^2,2*K.1^-4,-2*K.1,-2*K.1^-5,-2*K.1^7,-2*K.1^-6,-2*K.1^-2,-2*K.1^3,2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^4,2*K.1^-3,-2*K.1^-1,2*K.1^6,2*K.1^-8,2*K.1^-3,2*K.1,-2*K.1^5,-2*K.1^-4,-2*K.1^-4,2*K.1^2,2*K.1^3,2*K.1,-2*K.1^6,2*K.1^-5,-2*K.1^-7,-2*K.1^3,-2*K.1^4,K.1^8,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^-3,K.1^-7,K.1^4,K.1^-4,K.1^5,K.1^7,K.1^-2,K.1^2,K.1^6,K.1^-8,K.1^-1,K.1,K.1^4,K.1^-3,K.1^-4,K.1^5,K.1^-3,K.1^-1,K.1^7,K.1^-5,K.1^-8,K.1,K.1^3,K.1^-6,K.1^6,-1*K.1^6,-1*K.1^-8,-1*K.1^7,-1*K.1^8,-1*K.1^-7,-1*K.1^3,-1*K.1^-2,-1*K.1^4,K.1^8,-1*K.1^-6,K.1^-2,-1*K.1^-4,K.1^-7,-1*K.1^2,K.1^-5,-1*K.1^5,K.1^3,K.1^-6,K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-7,-1*K.1,-1*K.1^8,K.1^2,-1*K.1^3,-1*K.1^-7,-1*K.1^4,-1*K.1^8,-1*K.1^-3,K.1^-4,K.1^2,K.1^-7,-1*K.1,K.1^-5,K.1^-5,K.1^3,-1*K.1^-4,K.1^8,K.1^5,-1*K.1^-5,K.1,-1*K.1^-6,-1*K.1^-7,K.1^-2,-1*K.1^-5,K.1^-8,-1*K.1^5,K.1^-6,-1*K.1^4,K.1^-1,K.1^4,-1*K.1^-1,-1*K.1^-8,K.1^-1,K.1^3,K.1^5,-1*K.1^-2,K.1^6,K.1^-3,K.1^-3,-1*K.1^3,-1*K.1^2,K.1^7,-1*K.1^-4,K.1^-4,-1*K.1^6,K.1^6,-1*K.1^7,-1*K.1^-2,K.1^-6,-1*K.1^-3,K.1,-1*K.1^6,-1*K.1^7,K.1^7,K.1^4,-1*K.1^5,K.1^8,K.1^-2,-1*K.1^-8,-1*K.1^-6,-1*K.1^2,K.1^-8,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^-4,2*K.1^2,2*K.1^6,2*K.1,2*K.1^-1,2*K.1^5,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^-7,2*K.1^8,2*K.1^-8,2*K.1^-2,2*K.1^4,2*K.1^-5,2*K.1^-3,2*K.1^7,-2*K.1^-8,-2*K.1^-5,-2*K.1^-2,-2*K.1^-8,-2*K.1^-6,-2*K.1^6,-2*K.1^-3,-2*K.1^-6,-2*K.1^-1,-2*K.1^2,-2*K.1^5,-2*K.1^-1,-2*K.1^4,-2*K.1^-7,-2*K.1^7,-2*K.1^4,2*K.1^-3,2*K.1^4,2*K.1^5,-2*K.1^8,-2*K.1,-2*K.1^8,-2*K.1^-2,-2*K.1^5,-2*K.1^-5,-2*K.1^2,2*K.1^-6,-2*K.1^-3,-2*K.1^7,-2*K.1^3,-2*K.1^-7,-2*K.1^3,-2*K.1^-4,-2*K.1^6,-2*K.1^-4,2*K.1,2*K.1^8,2*K.1^-2,-2*K.1,2*K.1^-7,2*K.1^3,2*K.1^-4,2*K.1^6,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^-5,-1*K.1^-2,-1*K.1^-6,-1*K.1^4,-1*K.1^5,-1*K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1^7,-1*K.1^-4,-1*K.1^-7,-1*K.1,-1*K.1^-1,-1*K.1^-8,-1*K.1^6,-1*K.1^-3,-1*K.1^3,2*K.1^-8,2*K.1^-2,-2*K.1^-3,-2*K.1^5,-2*K.1^-2,-2*K.1^8,-2*K.1^-1,2*K.1^-6,2*K.1^8,2*K.1^-3,2*K.1^5,2*K.1^3,2*K.1^-5,2*K.1^-7,2*K.1^-8,2*K.1^-4,-2*K.1^6,-2*K.1^4,-2*K.1^3,-2*K.1^3,2*K.1^-3,-2*K.1^2,-2*K.1^-4,-2*K.1^-8,-2*K.1^-5,2*K.1^5,-2*K.1^7,2*K.1^-4,2*K.1^7,2*K.1^-6,-2*K.1^-1,-2*K.1^-6,-2*K.1^-3,2*K.1^2,2*K.1^8,-2*K.1^-5,2*K.1^-7,-2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^-2,-2*K.1^5,-2*K.1,2*K.1,2*K.1^4,2*K.1^-2,2*K.1^7,2*K.1^-1,-2*K.1^-6,2*K.1^2,2*K.1^3,2*K.1^-1,2*K.1^6,-2*K.1^-4,-2*K.1^-7,-2*K.1^-7,2*K.1^-5,2*K.1,2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^-8,-2*K.1,-2*K.1^7,K.1^-3,-1*K.1^4,-1*K.1^-6,-1*K.1^6,-1*K.1^-1,K.1^-8,K.1^7,K.1^-7,K.1^-4,K.1^8,K.1^5,K.1^-5,K.1^2,K.1^3,K.1^-6,K.1^6,K.1^7,K.1^-1,K.1^-7,K.1^-4,K.1^-1,K.1^-6,K.1^8,K.1^4,K.1^3,K.1^6,K.1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^8,-1*K.1^-3,-1*K.1^-8,-1*K.1,-1*K.1^5,-1*K.1^7,K.1^-3,-1*K.1^-2,K.1^5,-1*K.1^-7,K.1^-8,-1*K.1^-5,K.1^4,-1*K.1^-4,K.1,K.1^-2,K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-8,-1*K.1^6,-1*K.1^-3,K.1^-5,-1*K.1,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,-1*K.1^-1,K.1^-7,K.1^-5,K.1^-8,-1*K.1^6,K.1^4,K.1^4,K.1,-1*K.1^-7,K.1^-3,K.1^-4,-1*K.1^4,K.1^6,-1*K.1^-2,-1*K.1^-8,K.1^5,-1*K.1^4,K.1^3,-1*K.1^-4,K.1^-2,-1*K.1^7,K.1^-6,K.1^7,-1*K.1^-6,-1*K.1^3,K.1^-6,K.1,K.1^-4,-1*K.1^5,K.1^2,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-5,K.1^8,-1*K.1^-7,K.1^-7,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^5,K.1^-2,-1*K.1^-1,K.1^6,-1*K.1^2,-1*K.1^8,K.1^8,K.1^7,-1*K.1^-4,K.1^-3,K.1^5,-1*K.1^3,-1*K.1^-2,-1*K.1^-5,K.1^3,-1*K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^4,2*K.1^-2,2*K.1^-6,2*K.1^-1,2*K.1,2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^7,2*K.1^-8,2*K.1^8,2*K.1^2,2*K.1^-4,2*K.1^5,2*K.1^3,2*K.1^-7,-2*K.1^8,-2*K.1^5,-2*K.1^2,-2*K.1^8,-2*K.1^6,-2*K.1^-6,-2*K.1^3,-2*K.1^6,-2*K.1,-2*K.1^-2,-2*K.1^-5,-2*K.1,-2*K.1^-4,-2*K.1^7,-2*K.1^-7,-2*K.1^-4,2*K.1^3,2*K.1^-4,2*K.1^-5,-2*K.1^-8,-2*K.1^-1,-2*K.1^-8,-2*K.1^2,-2*K.1^-5,-2*K.1^5,-2*K.1^-2,2*K.1^6,-2*K.1^3,-2*K.1^-7,-2*K.1^-3,-2*K.1^7,-2*K.1^-3,-2*K.1^4,-2*K.1^-6,-2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^2,-2*K.1^-1,2*K.1^7,2*K.1^-3,2*K.1^4,2*K.1^-6,2*K.1,2*K.1^8,2*K.1^-2,2*K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^-4,-1*K.1^-5,-1*K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1^-7,-1*K.1^4,-1*K.1^7,-1*K.1^-1,-1*K.1,-1*K.1^8,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,2*K.1^8,2*K.1^2,-2*K.1^3,-2*K.1^-5,-2*K.1^2,-2*K.1^-8,-2*K.1,2*K.1^6,2*K.1^-8,2*K.1^3,2*K.1^-5,2*K.1^-3,2*K.1^5,2*K.1^7,2*K.1^8,2*K.1^4,-2*K.1^-6,-2*K.1^-4,-2*K.1^-3,-2*K.1^-3,2*K.1^3,-2*K.1^-2,-2*K.1^4,-2*K.1^8,-2*K.1^5,2*K.1^-5,-2*K.1^-7,2*K.1^4,2*K.1^-7,2*K.1^6,-2*K.1,-2*K.1^6,-2*K.1^3,2*K.1^-2,2*K.1^-8,-2*K.1^5,2*K.1^7,-2*K.1^-6,-2*K.1^-4,-2*K.1^-8,-2*K.1^2,-2*K.1^-5,-2*K.1^-1,2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^-7,2*K.1,-2*K.1^6,2*K.1^-2,2*K.1^-3,2*K.1,2*K.1^-6,-2*K.1^4,-2*K.1^7,-2*K.1^7,2*K.1^5,2*K.1^-1,2*K.1^-6,-2*K.1^-2,2*K.1^-4,-2*K.1^8,-2*K.1^-1,-2*K.1^-7,K.1^3,-1*K.1^-4,-1*K.1^6,-1*K.1^-6,-1*K.1,K.1^8,K.1^-7,K.1^7,K.1^4,K.1^-8,K.1^-5,K.1^5,K.1^-2,K.1^-3,K.1^6,K.1^-6,K.1^-7,K.1,K.1^7,K.1^4,K.1,K.1^6,K.1^-8,K.1^-4,K.1^-3,K.1^-6,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-8,-1*K.1^3,-1*K.1^8,-1*K.1^-1,-1*K.1^-5,-1*K.1^-7,K.1^3,-1*K.1^2,K.1^-5,-1*K.1^7,K.1^8,-1*K.1^5,K.1^-4,-1*K.1^4,K.1^-1,K.1^2,K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,-1*K.1^-6,-1*K.1^3,K.1^5,-1*K.1^-1,-1*K.1^8,-1*K.1^-7,-1*K.1^3,-1*K.1,K.1^7,K.1^5,K.1^8,-1*K.1^-6,K.1^-4,K.1^-4,K.1^-1,-1*K.1^7,K.1^3,K.1^4,-1*K.1^-4,K.1^-6,-1*K.1^2,-1*K.1^8,K.1^-5,-1*K.1^-4,K.1^-3,-1*K.1^4,K.1^2,-1*K.1^-7,K.1^6,K.1^-7,-1*K.1^6,-1*K.1^-3,K.1^6,K.1^-1,K.1^4,-1*K.1^-5,K.1^-2,K.1,K.1,-1*K.1^-1,-1*K.1^5,K.1^-8,-1*K.1^7,K.1^7,-1*K.1^-2,K.1^-2,-1*K.1^-8,-1*K.1^-5,K.1^2,-1*K.1,K.1^-6,-1*K.1^-2,-1*K.1^-8,K.1^-8,K.1^-7,-1*K.1^4,K.1^3,K.1^-5,-1*K.1^-3,-1*K.1^2,-1*K.1^5,K.1^-3,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^-3,2*K.1^-7,2*K.1^-4,2*K.1^5,2*K.1^-5,2*K.1^8,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^-1,2*K.1^6,2*K.1^-6,2*K.1^7,2*K.1^3,2*K.1^-8,2*K.1^2,2*K.1,-2*K.1^-6,-2*K.1^-8,-2*K.1^7,-2*K.1^-6,-2*K.1^4,-2*K.1^-4,-2*K.1^2,-2*K.1^4,-2*K.1^-5,-2*K.1^-7,-2*K.1^8,-2*K.1^-5,-2*K.1^3,-2*K.1^-1,-2*K.1,-2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^8,-2*K.1^6,-2*K.1^5,-2*K.1^6,-2*K.1^7,-2*K.1^8,-2*K.1^-8,-2*K.1^-7,2*K.1^4,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1^-3,-2*K.1^-4,-2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^7,-2*K.1^5,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1^-4,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^-8,-1*K.1^7,-1*K.1^4,-1*K.1^3,-1*K.1^8,-1*K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^5,-1*K.1^-5,-1*K.1^-6,-1*K.1^-4,-1*K.1^2,-1*K.1^-2,2*K.1^-6,2*K.1^7,-2*K.1^2,-2*K.1^8,-2*K.1^7,-2*K.1^6,-2*K.1^-5,2*K.1^4,2*K.1^6,2*K.1^2,2*K.1^8,2*K.1^-2,2*K.1^-8,2*K.1^-1,2*K.1^-6,2*K.1^-3,-2*K.1^-4,-2*K.1^3,-2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1^-7,-2*K.1^-3,-2*K.1^-6,-2*K.1^-8,2*K.1^8,-2*K.1,2*K.1^-3,2*K.1,2*K.1^4,-2*K.1^-5,-2*K.1^4,-2*K.1^2,2*K.1^-7,2*K.1^6,-2*K.1^-8,2*K.1^-1,-2*K.1^-4,-2*K.1^3,-2*K.1^6,-2*K.1^7,-2*K.1^8,-2*K.1^5,2*K.1^5,2*K.1^3,2*K.1^7,2*K.1,2*K.1^-5,-2*K.1^4,2*K.1^-7,2*K.1^-2,2*K.1^-5,2*K.1^-4,-2*K.1^-3,-2*K.1^-1,-2*K.1^-1,2*K.1^-8,2*K.1^5,2*K.1^-4,-2*K.1^-7,2*K.1^3,-2*K.1^-6,-2*K.1^5,-2*K.1,K.1^2,-1*K.1^3,-1*K.1^4,-1*K.1^-4,-1*K.1^-5,K.1^-6,K.1,K.1^-1,K.1^-3,K.1^6,K.1^8,K.1^-8,K.1^-7,K.1^-2,K.1^4,K.1^-4,K.1,K.1^-5,K.1^-1,K.1^-3,K.1^-5,K.1^4,K.1^6,K.1^3,K.1^-2,K.1^-4,K.1^5,K.1^7,K.1^-7,-1*K.1^-7,-1*K.1^-2,-1*K.1^6,-1*K.1^2,-1*K.1^-6,-1*K.1^5,-1*K.1^8,-1*K.1,K.1^2,-1*K.1^7,K.1^8,-1*K.1^-1,K.1^-6,-1*K.1^-8,K.1^3,-1*K.1^-3,K.1^5,K.1^7,K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-6,-1*K.1^-4,-1*K.1^2,K.1^-8,-1*K.1^5,-1*K.1^-6,-1*K.1,-1*K.1^2,-1*K.1^-5,K.1^-1,K.1^-8,K.1^-6,-1*K.1^-4,K.1^3,K.1^3,K.1^5,-1*K.1^-1,K.1^2,K.1^-3,-1*K.1^3,K.1^-4,-1*K.1^7,-1*K.1^-6,K.1^8,-1*K.1^3,K.1^-2,-1*K.1^-3,K.1^7,-1*K.1,K.1^4,K.1,-1*K.1^4,-1*K.1^-2,K.1^4,K.1^5,K.1^-3,-1*K.1^8,K.1^-7,K.1^-5,K.1^-5,-1*K.1^5,-1*K.1^-8,K.1^6,-1*K.1^-1,K.1^-1,-1*K.1^-7,K.1^-7,-1*K.1^6,-1*K.1^8,K.1^7,-1*K.1^-5,K.1^-4,-1*K.1^-7,-1*K.1^6,K.1^6,K.1,-1*K.1^-3,K.1^2,K.1^8,-1*K.1^-2,-1*K.1^7,-1*K.1^-8,K.1^-2,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^3,2*K.1^7,2*K.1^4,2*K.1^-5,2*K.1^5,2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1,2*K.1^-6,2*K.1^6,2*K.1^-7,2*K.1^-3,2*K.1^8,2*K.1^-2,2*K.1^-1,-2*K.1^6,-2*K.1^8,-2*K.1^-7,-2*K.1^6,-2*K.1^-4,-2*K.1^4,-2*K.1^-2,-2*K.1^-4,-2*K.1^5,-2*K.1^7,-2*K.1^-8,-2*K.1^5,-2*K.1^-3,-2*K.1,-2*K.1^-1,-2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^-8,-2*K.1^-6,-2*K.1^-5,-2*K.1^-6,-2*K.1^-7,-2*K.1^-8,-2*K.1^8,-2*K.1^7,2*K.1^-4,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^3,-2*K.1^4,-2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^-7,-2*K.1^-5,2*K.1,2*K.1^2,2*K.1^3,2*K.1^4,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^8,-1*K.1^-7,-1*K.1^-4,-1*K.1^-3,-1*K.1^-8,-1*K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-5,-1*K.1^5,-1*K.1^6,-1*K.1^4,-1*K.1^-2,-1*K.1^2,2*K.1^6,2*K.1^-7,-2*K.1^-2,-2*K.1^-8,-2*K.1^-7,-2*K.1^-6,-2*K.1^5,2*K.1^-4,2*K.1^-6,2*K.1^-2,2*K.1^-8,2*K.1^2,2*K.1^8,2*K.1,2*K.1^6,2*K.1^3,-2*K.1^4,-2*K.1^-3,-2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1^7,-2*K.1^3,-2*K.1^6,-2*K.1^8,2*K.1^-8,-2*K.1^-1,2*K.1^3,2*K.1^-1,2*K.1^-4,-2*K.1^5,-2*K.1^-4,-2*K.1^-2,2*K.1^7,2*K.1^-6,-2*K.1^8,2*K.1,-2*K.1^4,-2*K.1^-3,-2*K.1^-6,-2*K.1^-7,-2*K.1^-8,-2*K.1^-5,2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^-1,2*K.1^5,-2*K.1^-4,2*K.1^7,2*K.1^2,2*K.1^5,2*K.1^4,-2*K.1^3,-2*K.1,-2*K.1,2*K.1^8,2*K.1^-5,2*K.1^4,-2*K.1^7,2*K.1^-3,-2*K.1^6,-2*K.1^-5,-2*K.1^-1,K.1^-2,-1*K.1^-3,-1*K.1^-4,-1*K.1^4,-1*K.1^5,K.1^6,K.1^-1,K.1,K.1^3,K.1^-6,K.1^-8,K.1^8,K.1^7,K.1^2,K.1^-4,K.1^4,K.1^-1,K.1^5,K.1,K.1^3,K.1^5,K.1^-4,K.1^-6,K.1^-3,K.1^2,K.1^4,K.1^-5,K.1^-7,K.1^7,-1*K.1^7,-1*K.1^2,-1*K.1^-6,-1*K.1^-2,-1*K.1^6,-1*K.1^-5,-1*K.1^-8,-1*K.1^-1,K.1^-2,-1*K.1^-7,K.1^-8,-1*K.1,K.1^6,-1*K.1^8,K.1^-3,-1*K.1^3,K.1^-5,K.1^-7,K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,-1*K.1^4,-1*K.1^-2,K.1^8,-1*K.1^-5,-1*K.1^6,-1*K.1^-1,-1*K.1^-2,-1*K.1^5,K.1,K.1^8,K.1^6,-1*K.1^4,K.1^-3,K.1^-3,K.1^-5,-1*K.1,K.1^-2,K.1^3,-1*K.1^-3,K.1^4,-1*K.1^-7,-1*K.1^6,K.1^-8,-1*K.1^-3,K.1^2,-1*K.1^3,K.1^-7,-1*K.1^-1,K.1^-4,K.1^-1,-1*K.1^-4,-1*K.1^2,K.1^-4,K.1^-5,K.1^3,-1*K.1^-8,K.1^7,K.1^5,K.1^5,-1*K.1^-5,-1*K.1^8,K.1^-6,-1*K.1,K.1,-1*K.1^7,K.1^7,-1*K.1^-6,-1*K.1^-8,K.1^-7,-1*K.1^5,K.1^4,-1*K.1^7,-1*K.1^-6,K.1^-6,K.1^-1,-1*K.1^3,K.1^-2,K.1^-8,-1*K.1^2,-1*K.1^-7,-1*K.1^8,K.1^2,-1*K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-8,2*K.1^8,2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^5,2*K.1^4,2*K.1^-4,2*K.1^-1,2*K.1^2,2*K.1^6,2*K.1^7,2*K.1^-5,-2*K.1^-4,-2*K.1^6,-2*K.1^-1,-2*K.1^-4,-2*K.1^-3,-2*K.1^3,-2*K.1^7,-2*K.1^-3,-2*K.1^8,-2*K.1,-2*K.1^-6,-2*K.1^8,-2*K.1^2,-2*K.1^5,-2*K.1^-5,-2*K.1^2,2*K.1^7,2*K.1^2,2*K.1^-6,-2*K.1^4,-2*K.1^-8,-2*K.1^4,-2*K.1^-1,-2*K.1^-6,-2*K.1^6,-2*K.1,2*K.1^-3,-2*K.1^7,-2*K.1^-5,-2*K.1^-7,-2*K.1^5,-2*K.1^-7,-2*K.1^-2,-2*K.1^3,-2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^-1,-2*K.1^-8,2*K.1^5,2*K.1^-7,2*K.1^-2,2*K.1^3,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^6,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^-6,-1*K.1^4,-1*K.1,-1*K.1^6,-1*K.1^-5,-1*K.1^-2,-1*K.1^5,-1*K.1^-8,-1*K.1^8,-1*K.1^-4,-1*K.1^3,-1*K.1^7,-1*K.1^-7,2*K.1^-4,2*K.1^-1,-2*K.1^7,-2*K.1^-6,-2*K.1^-1,-2*K.1^4,-2*K.1^8,2*K.1^-3,2*K.1^4,2*K.1^7,2*K.1^-6,2*K.1^-7,2*K.1^6,2*K.1^5,2*K.1^-4,2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^-7,-2*K.1^-7,2*K.1^7,-2*K.1,-2*K.1^-2,-2*K.1^-4,-2*K.1^6,2*K.1^-6,-2*K.1^-5,2*K.1^-2,2*K.1^-5,2*K.1^-3,-2*K.1^8,-2*K.1^-3,-2*K.1^7,2*K.1,2*K.1^4,-2*K.1^6,2*K.1^5,-2*K.1^3,-2*K.1^2,-2*K.1^4,-2*K.1^-1,-2*K.1^-6,-2*K.1^-8,2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^-5,2*K.1^8,-2*K.1^-3,2*K.1,2*K.1^-7,2*K.1^8,2*K.1^3,-2*K.1^-2,-2*K.1^5,-2*K.1^5,2*K.1^6,2*K.1^-8,2*K.1^3,-2*K.1,2*K.1^2,-2*K.1^-4,-2*K.1^-8,-2*K.1^-5,K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^8,K.1^-4,K.1^-5,K.1^5,K.1^-2,K.1^4,K.1^-6,K.1^6,K.1,K.1^-7,K.1^-3,K.1^3,K.1^-5,K.1^8,K.1^5,K.1^-2,K.1^8,K.1^-3,K.1^4,K.1^2,K.1^-7,K.1^3,K.1^-8,K.1^-1,K.1,-1*K.1,-1*K.1^-7,-1*K.1^4,-1*K.1^7,-1*K.1^-4,-1*K.1^-8,-1*K.1^-6,-1*K.1^-5,K.1^7,-1*K.1^-1,K.1^-6,-1*K.1^5,K.1^-4,-1*K.1^6,K.1^2,-1*K.1^-2,K.1^-8,K.1^-1,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-4,-1*K.1^3,-1*K.1^7,K.1^6,-1*K.1^-8,-1*K.1^-4,-1*K.1^-5,-1*K.1^7,-1*K.1^8,K.1^5,K.1^6,K.1^-4,-1*K.1^3,K.1^2,K.1^2,K.1^-8,-1*K.1^5,K.1^7,K.1^-2,-1*K.1^2,K.1^3,-1*K.1^-1,-1*K.1^-4,K.1^-6,-1*K.1^2,K.1^-7,-1*K.1^-2,K.1^-1,-1*K.1^-5,K.1^-3,K.1^-5,-1*K.1^-3,-1*K.1^-7,K.1^-3,K.1^-8,K.1^-2,-1*K.1^-6,K.1,K.1^8,K.1^8,-1*K.1^-8,-1*K.1^6,K.1^4,-1*K.1^5,K.1^5,-1*K.1,K.1,-1*K.1^4,-1*K.1^-6,K.1^-1,-1*K.1^8,K.1^3,-1*K.1,-1*K.1^4,K.1^4,K.1^-5,-1*K.1^-2,K.1^7,K.1^-6,-1*K.1^-7,-1*K.1^-1,-1*K.1^6,K.1^-7,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^8,2*K.1^-8,2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1^-5,2*K.1^-4,2*K.1^4,2*K.1,2*K.1^-2,2*K.1^-6,2*K.1^-7,2*K.1^5,-2*K.1^4,-2*K.1^-6,-2*K.1,-2*K.1^4,-2*K.1^3,-2*K.1^-3,-2*K.1^-7,-2*K.1^3,-2*K.1^-8,-2*K.1^-1,-2*K.1^6,-2*K.1^-8,-2*K.1^-2,-2*K.1^-5,-2*K.1^5,-2*K.1^-2,2*K.1^-7,2*K.1^-2,2*K.1^6,-2*K.1^-4,-2*K.1^8,-2*K.1^-4,-2*K.1,-2*K.1^6,-2*K.1^-6,-2*K.1^-1,2*K.1^3,-2*K.1^-7,-2*K.1^5,-2*K.1^7,-2*K.1^-5,-2*K.1^7,-2*K.1^2,-2*K.1^-3,-2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1,-2*K.1^8,2*K.1^-5,2*K.1^7,2*K.1^2,2*K.1^-3,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-6,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^6,-1*K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^5,-1*K.1^2,-1*K.1^-5,-1*K.1^8,-1*K.1^-8,-1*K.1^4,-1*K.1^-3,-1*K.1^-7,-1*K.1^7,2*K.1^4,2*K.1,-2*K.1^-7,-2*K.1^6,-2*K.1,-2*K.1^-4,-2*K.1^-8,2*K.1^3,2*K.1^-4,2*K.1^-7,2*K.1^6,2*K.1^7,2*K.1^-6,2*K.1^-5,2*K.1^4,2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1^7,-2*K.1^7,2*K.1^-7,-2*K.1^-1,-2*K.1^2,-2*K.1^4,-2*K.1^-6,2*K.1^6,-2*K.1^5,2*K.1^2,2*K.1^5,2*K.1^3,-2*K.1^-8,-2*K.1^3,-2*K.1^-7,2*K.1^-1,2*K.1^-4,-2*K.1^-6,2*K.1^-5,-2*K.1^-3,-2*K.1^-2,-2*K.1^-4,-2*K.1,-2*K.1^6,-2*K.1^8,2*K.1^8,2*K.1^-2,2*K.1,2*K.1^5,2*K.1^-8,-2*K.1^3,2*K.1^-1,2*K.1^7,2*K.1^-8,2*K.1^-3,-2*K.1^2,-2*K.1^-5,-2*K.1^-5,2*K.1^-6,2*K.1^8,2*K.1^-3,-2*K.1^-1,2*K.1^-2,-2*K.1^4,-2*K.1^8,-2*K.1^5,K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-8,K.1^4,K.1^5,K.1^-5,K.1^2,K.1^-4,K.1^6,K.1^-6,K.1^-1,K.1^7,K.1^3,K.1^-3,K.1^5,K.1^-8,K.1^-5,K.1^2,K.1^-8,K.1^3,K.1^-4,K.1^-2,K.1^7,K.1^-3,K.1^8,K.1,K.1^-1,-1*K.1^-1,-1*K.1^7,-1*K.1^-4,-1*K.1^-7,-1*K.1^4,-1*K.1^8,-1*K.1^6,-1*K.1^5,K.1^-7,-1*K.1,K.1^6,-1*K.1^-5,K.1^4,-1*K.1^-6,K.1^-2,-1*K.1^2,K.1^8,K.1,K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,-1*K.1^-3,-1*K.1^-7,K.1^-6,-1*K.1^8,-1*K.1^4,-1*K.1^5,-1*K.1^-7,-1*K.1^-8,K.1^-5,K.1^-6,K.1^4,-1*K.1^-3,K.1^-2,K.1^-2,K.1^8,-1*K.1^-5,K.1^-7,K.1^2,-1*K.1^-2,K.1^-3,-1*K.1,-1*K.1^4,K.1^6,-1*K.1^-2,K.1^7,-1*K.1^2,K.1,-1*K.1^5,K.1^3,K.1^5,-1*K.1^3,-1*K.1^7,K.1^3,K.1^8,K.1^2,-1*K.1^6,K.1^-1,K.1^-8,K.1^-8,-1*K.1^8,-1*K.1^-6,K.1^-4,-1*K.1^-5,K.1^-5,-1*K.1^-1,K.1^-1,-1*K.1^-4,-1*K.1^6,K.1,-1*K.1^-8,K.1^-3,-1*K.1^-1,-1*K.1^-4,K.1^-4,K.1^5,-1*K.1^2,K.1^-7,K.1^6,-1*K.1^7,-1*K.1,-1*K.1^-6,K.1^7,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1^-1,2*K.1^-8,2*K.1^-7,2*K.1^-4,2*K.1^4,2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^-6,2*K.1^2,2*K.1^-2,2*K.1^8,2*K.1,2*K.1^3,2*K.1^-5,2*K.1^6,-2*K.1^-2,-2*K.1^3,-2*K.1^8,-2*K.1^-2,-2*K.1^7,-2*K.1^-7,-2*K.1^-5,-2*K.1^7,-2*K.1^4,-2*K.1^-8,-2*K.1^-3,-2*K.1^4,-2*K.1,-2*K.1^-6,-2*K.1^6,-2*K.1,2*K.1^-5,2*K.1,2*K.1^-3,-2*K.1^2,-2*K.1^-4,-2*K.1^2,-2*K.1^8,-2*K.1^-3,-2*K.1^3,-2*K.1^-8,2*K.1^7,-2*K.1^-5,-2*K.1^6,-2*K.1^5,-2*K.1^-6,-2*K.1^5,-2*K.1^-1,-2*K.1^-7,-2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^8,-2*K.1^-4,2*K.1^-6,2*K.1^5,2*K.1^-1,2*K.1^-7,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^3,-1*K.1^8,-1*K.1^7,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^6,-1*K.1^-1,-1*K.1^-6,-1*K.1^-4,-1*K.1^4,-1*K.1^-2,-1*K.1^-7,-1*K.1^-5,-1*K.1^5,2*K.1^-2,2*K.1^8,-2*K.1^-5,-2*K.1^-3,-2*K.1^8,-2*K.1^2,-2*K.1^4,2*K.1^7,2*K.1^2,2*K.1^-5,2*K.1^-3,2*K.1^5,2*K.1^3,2*K.1^-6,2*K.1^-2,2*K.1^-1,-2*K.1^-7,-2*K.1,-2*K.1^5,-2*K.1^5,2*K.1^-5,-2*K.1^-8,-2*K.1^-1,-2*K.1^-2,-2*K.1^3,2*K.1^-3,-2*K.1^6,2*K.1^-1,2*K.1^6,2*K.1^7,-2*K.1^4,-2*K.1^7,-2*K.1^-5,2*K.1^-8,2*K.1^2,-2*K.1^3,2*K.1^-6,-2*K.1^-7,-2*K.1,-2*K.1^2,-2*K.1^8,-2*K.1^-3,-2*K.1^-4,2*K.1^-4,2*K.1,2*K.1^8,2*K.1^6,2*K.1^4,-2*K.1^7,2*K.1^-8,2*K.1^5,2*K.1^4,2*K.1^-7,-2*K.1^-1,-2*K.1^-6,-2*K.1^-6,2*K.1^3,2*K.1^-4,2*K.1^-7,-2*K.1^-8,2*K.1,-2*K.1^-2,-2*K.1^-4,-2*K.1^6,K.1^-5,-1*K.1,-1*K.1^7,-1*K.1^-7,-1*K.1^4,K.1^-2,K.1^6,K.1^-6,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^-8,K.1^5,K.1^7,K.1^-7,K.1^6,K.1^4,K.1^-6,K.1^-1,K.1^4,K.1^7,K.1^2,K.1,K.1^5,K.1^-7,K.1^-4,K.1^8,K.1^-8,-1*K.1^-8,-1*K.1^5,-1*K.1^2,-1*K.1^-5,-1*K.1^-2,-1*K.1^-4,-1*K.1^-3,-1*K.1^6,K.1^-5,-1*K.1^8,K.1^-3,-1*K.1^-6,K.1^-2,-1*K.1^3,K.1,-1*K.1^-1,K.1^-4,K.1^8,K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-2,-1*K.1^-7,-1*K.1^-5,K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^6,-1*K.1^-5,-1*K.1^4,K.1^-6,K.1^3,K.1^-2,-1*K.1^-7,K.1,K.1,K.1^-4,-1*K.1^-6,K.1^-5,K.1^-1,-1*K.1,K.1^-7,-1*K.1^8,-1*K.1^-2,K.1^-3,-1*K.1,K.1^5,-1*K.1^-1,K.1^8,-1*K.1^6,K.1^7,K.1^6,-1*K.1^7,-1*K.1^5,K.1^7,K.1^-4,K.1^-1,-1*K.1^-3,K.1^-8,K.1^4,K.1^4,-1*K.1^-4,-1*K.1^3,K.1^2,-1*K.1^-6,K.1^-6,-1*K.1^-8,K.1^-8,-1*K.1^2,-1*K.1^-3,K.1^8,-1*K.1^4,K.1^-7,-1*K.1^-8,-1*K.1^2,K.1^2,K.1^6,-1*K.1^-1,K.1^-5,K.1^-3,-1*K.1^5,-1*K.1^8,-1*K.1^3,K.1^5,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,-2,-2,2,-1,2,2,-2,-2,1,1,-1,0,0,0,0,0,0,0,0,1,-1,-1,1,2*K.1,2*K.1^8,2*K.1^7,2*K.1^4,2*K.1^-4,2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^6,2*K.1^-2,2*K.1^2,2*K.1^-8,2*K.1^-1,2*K.1^-3,2*K.1^5,2*K.1^-6,-2*K.1^2,-2*K.1^-3,-2*K.1^-8,-2*K.1^2,-2*K.1^-7,-2*K.1^7,-2*K.1^5,-2*K.1^-7,-2*K.1^-4,-2*K.1^8,-2*K.1^3,-2*K.1^-4,-2*K.1^-1,-2*K.1^6,-2*K.1^-6,-2*K.1^-1,2*K.1^5,2*K.1^-1,2*K.1^3,-2*K.1^-2,-2*K.1^4,-2*K.1^-2,-2*K.1^-8,-2*K.1^3,-2*K.1^-3,-2*K.1^8,2*K.1^-7,-2*K.1^5,-2*K.1^-6,-2*K.1^-5,-2*K.1^6,-2*K.1^-5,-2*K.1,-2*K.1^7,-2*K.1,2*K.1^4,2*K.1^-2,2*K.1^-8,-2*K.1^4,2*K.1^6,2*K.1^-5,2*K.1,2*K.1^7,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-3,-1*K.1^-8,-1*K.1^-7,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^-6,-1*K.1,-1*K.1^6,-1*K.1^4,-1*K.1^-4,-1*K.1^2,-1*K.1^7,-1*K.1^5,-1*K.1^-5,2*K.1^2,2*K.1^-8,-2*K.1^5,-2*K.1^3,-2*K.1^-8,-2*K.1^-2,-2*K.1^-4,2*K.1^-7,2*K.1^-2,2*K.1^5,2*K.1^3,2*K.1^-5,2*K.1^-3,2*K.1^6,2*K.1^2,2*K.1,-2*K.1^7,-2*K.1^-1,-2*K.1^-5,-2*K.1^-5,2*K.1^5,-2*K.1^8,-2*K.1,-2*K.1^2,-2*K.1^-3,2*K.1^3,-2*K.1^-6,2*K.1,2*K.1^-6,2*K.1^-7,-2*K.1^-4,-2*K.1^-7,-2*K.1^5,2*K.1^8,2*K.1^-2,-2*K.1^-3,2*K.1^6,-2*K.1^7,-2*K.1^-1,-2*K.1^-2,-2*K.1^-8,-2*K.1^3,-2*K.1^4,2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^-6,2*K.1^-4,-2*K.1^-7,2*K.1^8,2*K.1^-5,2*K.1^-4,2*K.1^7,-2*K.1,-2*K.1^6,-2*K.1^6,2*K.1^-3,2*K.1^4,2*K.1^7,-2*K.1^8,2*K.1^-1,-2*K.1^2,-2*K.1^4,-2*K.1^-6,K.1^5,-1*K.1^-1,-1*K.1^-7,-1*K.1^7,-1*K.1^-4,K.1^2,K.1^-6,K.1^6,K.1,K.1^-2,K.1^3,K.1^-3,K.1^8,K.1^-5,K.1^-7,K.1^7,K.1^-6,K.1^-4,K.1^6,K.1,K.1^-4,K.1^-7,K.1^-2,K.1^-1,K.1^-5,K.1^7,K.1^4,K.1^-8,K.1^8,-1*K.1^8,-1*K.1^-5,-1*K.1^-2,-1*K.1^5,-1*K.1^2,-1*K.1^4,-1*K.1^3,-1*K.1^-6,K.1^5,-1*K.1^-8,K.1^3,-1*K.1^6,K.1^2,-1*K.1^-3,K.1^-1,-1*K.1,K.1^4,K.1^-8,K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,-1*K.1^7,-1*K.1^5,K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^-6,-1*K.1^5,-1*K.1^-4,K.1^6,K.1^-3,K.1^2,-1*K.1^7,K.1^-1,K.1^-1,K.1^4,-1*K.1^6,K.1^5,K.1,-1*K.1^-1,K.1^7,-1*K.1^-8,-1*K.1^2,K.1^3,-1*K.1^-1,K.1^-5,-1*K.1,K.1^-8,-1*K.1^-6,K.1^-7,K.1^-6,-1*K.1^-7,-1*K.1^-5,K.1^-7,K.1^4,K.1,-1*K.1^3,K.1^8,K.1^-4,K.1^-4,-1*K.1^4,-1*K.1^-3,K.1^-2,-1*K.1^6,K.1^6,-1*K.1^8,K.1^8,-1*K.1^-2,-1*K.1^3,K.1^-8,-1*K.1^-4,K.1^7,-1*K.1^8,-1*K.1^-2,K.1^-2,K.1^-6,-1*K.1,K.1^5,K.1^3,-1*K.1^-5,-1*K.1^-8,-1*K.1^-3,K.1^-5,-1*K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^-8,2*K.1^4,2*K.1^-5,2*K.1^2,2*K.1^-2,2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^-4,2*K.1^8,2*K.1^7,2*K.1^-6,2*K.1^-3,2*K.1,2*K.1^7,2*K.1^-4,2*K.1,2*K.1^5,2*K.1^-5,2*K.1^-6,2*K.1^5,2*K.1^-2,2*K.1^4,2*K.1^-7,2*K.1^-2,2*K.1^8,2*K.1^3,2*K.1^-3,2*K.1^8,2*K.1^-6,2*K.1^8,2*K.1^-7,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1^-7,2*K.1^7,2*K.1^4,2*K.1^5,2*K.1^-6,2*K.1^-3,2*K.1^6,2*K.1^3,2*K.1^6,2*K.1^-8,2*K.1^-5,2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^3,2*K.1^6,2*K.1^-8,2*K.1^-5,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^7,-1*K.1^-4,-1*K.1^5,-1*K.1^8,-1*K.1^-7,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-5,-1*K.1^-6,-1*K.1^6,-2*K.1,-2*K.1^-4,-2*K.1^-6,-2*K.1^-7,-2*K.1^-4,-2*K.1^-1,-2*K.1^-2,-2*K.1^5,-2*K.1^-1,-2*K.1^-6,-2*K.1^-7,-2*K.1^6,-2*K.1^7,-2*K.1^3,-2*K.1,-2*K.1^-8,-2*K.1^-5,-2*K.1^8,-2*K.1^6,-2*K.1^6,-2*K.1^-6,-2*K.1^4,-2*K.1^-8,-2*K.1,-2*K.1^7,-2*K.1^-7,-2*K.1^-3,-2*K.1^-8,-2*K.1^-3,-2*K.1^5,-2*K.1^-2,-2*K.1^5,-2*K.1^-6,-2*K.1^4,-2*K.1^-1,-2*K.1^7,-2*K.1^3,-2*K.1^-5,-2*K.1^8,-2*K.1^-1,-2*K.1^-4,-2*K.1^-7,-2*K.1^2,-2*K.1^2,-2*K.1^8,-2*K.1^-4,-2*K.1^-3,-2*K.1^-2,-2*K.1^5,-2*K.1^4,-2*K.1^6,-2*K.1^-2,-2*K.1^-5,-2*K.1^-8,-2*K.1^3,-2*K.1^3,-2*K.1^7,-2*K.1^2,-2*K.1^-5,-2*K.1^4,-2*K.1^8,-2*K.1,-2*K.1^2,-2*K.1^-3,-1*K.1^-6,-1*K.1^8,-1*K.1^5,-1*K.1^-5,-1*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1^-7,-1*K.1^7,-1*K.1^4,-1*K.1^6,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^-2,-1*K.1^3,-1*K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1^-1,-1*K.1^8,-1*K.1^6,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^4,-1*K.1^4,-1*K.1^6,-1*K.1^-1,-1*K.1^-6,-1*K.1,-1*K.1^2,-1*K.1^-7,-1*K.1^-3,-1*K.1^-6,-1*K.1^-4,-1*K.1^-7,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^8,-1*K.1^-8,-1*K.1^2,-1*K.1^-4,-1*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^-5,K.1^-6,K.1^7,K.1^2,K.1,K.1^-3,K.1^-6,K.1^-2,K.1^3,K.1^7,K.1,K.1^-5,K.1^8,K.1^8,K.1^2,K.1^3,K.1^-6,K.1^-8,K.1^8,K.1^-5,K.1^-4,K.1,K.1^-7,K.1^8,K.1^6,K.1^-8,K.1^-4,K.1^-3,K.1^5,K.1^-3,K.1^5,K.1^6,K.1^5,K.1^2,K.1^-8,K.1^-7,K.1^4,K.1^-2,K.1^-2,K.1^2,K.1^7,K.1^-1,K.1^3,K.1^3,K.1^4,K.1^4,K.1^-1,K.1^-7,K.1^-4,K.1^-2,K.1^-5,K.1^4,K.1^-1,K.1^-1,K.1^-3,K.1^-8,K.1^-6,K.1^-7,K.1^6,K.1^-4,K.1^7,K.1^6,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^8,2*K.1^-4,2*K.1^5,2*K.1^-2,2*K.1^2,2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^4,2*K.1^-8,2*K.1^-7,2*K.1^6,2*K.1^3,2*K.1^-1,2*K.1^-7,2*K.1^4,2*K.1^-1,2*K.1^-5,2*K.1^5,2*K.1^6,2*K.1^-5,2*K.1^2,2*K.1^-4,2*K.1^7,2*K.1^2,2*K.1^-8,2*K.1^-3,2*K.1^3,2*K.1^-8,2*K.1^6,2*K.1^-8,2*K.1^7,2*K.1,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^7,2*K.1^-7,2*K.1^-4,2*K.1^-5,2*K.1^6,2*K.1^3,2*K.1^-6,2*K.1^-3,2*K.1^-6,2*K.1^8,2*K.1^5,2*K.1^8,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^-2,2*K.1^-3,2*K.1^-6,2*K.1^8,2*K.1^5,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1^-7,-1*K.1^4,-1*K.1^-5,-1*K.1^-8,-1*K.1^7,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^5,-1*K.1^6,-1*K.1^-6,-2*K.1^-1,-2*K.1^4,-2*K.1^6,-2*K.1^7,-2*K.1^4,-2*K.1,-2*K.1^2,-2*K.1^-5,-2*K.1,-2*K.1^6,-2*K.1^7,-2*K.1^-6,-2*K.1^-7,-2*K.1^-3,-2*K.1^-1,-2*K.1^8,-2*K.1^5,-2*K.1^-8,-2*K.1^-6,-2*K.1^-6,-2*K.1^6,-2*K.1^-4,-2*K.1^8,-2*K.1^-1,-2*K.1^-7,-2*K.1^7,-2*K.1^3,-2*K.1^8,-2*K.1^3,-2*K.1^-5,-2*K.1^2,-2*K.1^-5,-2*K.1^6,-2*K.1^-4,-2*K.1,-2*K.1^-7,-2*K.1^-3,-2*K.1^5,-2*K.1^-8,-2*K.1,-2*K.1^4,-2*K.1^7,-2*K.1^-2,-2*K.1^-2,-2*K.1^-8,-2*K.1^4,-2*K.1^3,-2*K.1^2,-2*K.1^-5,-2*K.1^-4,-2*K.1^-6,-2*K.1^2,-2*K.1^5,-2*K.1^8,-2*K.1^-3,-2*K.1^-3,-2*K.1^-7,-2*K.1^-2,-2*K.1^5,-2*K.1^-4,-2*K.1^-8,-2*K.1^-1,-2*K.1^-2,-2*K.1^3,-1*K.1^6,-1*K.1^-8,-1*K.1^-5,-1*K.1^5,-1*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,-1*K.1^-6,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^2,-1*K.1^-3,-1*K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1,-1*K.1^-8,-1*K.1^-6,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^-4,-1*K.1^-4,-1*K.1^-6,-1*K.1,-1*K.1^6,-1*K.1^-1,-1*K.1^-2,-1*K.1^7,-1*K.1^3,-1*K.1^6,-1*K.1^4,-1*K.1^7,-1*K.1^-3,-1*K.1^-1,-1*K.1^-7,-1*K.1^-8,-1*K.1^8,-1*K.1^-2,-1*K.1^4,-1*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-1,K.1^5,K.1^6,K.1^-7,K.1^-2,K.1^-1,K.1^3,K.1^6,K.1^2,K.1^-3,K.1^-7,K.1^-1,K.1^5,K.1^-8,K.1^-8,K.1^-2,K.1^-3,K.1^6,K.1^8,K.1^-8,K.1^5,K.1^4,K.1^-1,K.1^7,K.1^-8,K.1^-6,K.1^8,K.1^4,K.1^3,K.1^-5,K.1^3,K.1^-5,K.1^-6,K.1^-5,K.1^-2,K.1^8,K.1^7,K.1^-4,K.1^2,K.1^2,K.1^-2,K.1^-7,K.1,K.1^-3,K.1^-3,K.1^-4,K.1^-4,K.1,K.1^7,K.1^4,K.1^2,K.1^5,K.1^-4,K.1,K.1,K.1^3,K.1^8,K.1^6,K.1^7,K.1^-6,K.1^4,K.1^-7,K.1^-6,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^-7,2*K.1^-5,2*K.1^2,2*K.1^6,2*K.1^-6,2*K.1^-4,2*K.1,2*K.1^8,2*K.1^-2,2*K.1^-8,2*K.1^-3,2*K.1^3,2*K.1^5,2*K.1^7,2*K.1^4,2*K.1^-1,2*K.1^8,2*K.1^3,2*K.1^4,2*K.1^5,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-6,2*K.1^-5,2*K.1^-4,2*K.1^-6,2*K.1^7,2*K.1^-8,2*K.1^8,2*K.1^7,2*K.1^-1,2*K.1^7,2*K.1^-4,2*K.1^-3,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^-4,2*K.1^4,2*K.1^-5,2*K.1^-2,2*K.1^-1,2*K.1^8,2*K.1,2*K.1^-8,2*K.1,2*K.1^-7,2*K.1^2,2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^-8,2*K.1,2*K.1^-7,2*K.1^2,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^4,-1*K.1^5,-1*K.1^-2,-1*K.1^7,-1*K.1^-4,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^8,-1*K.1^-7,-1*K.1^-8,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^2,-1*K.1^-1,-1*K.1,-2*K.1^3,-2*K.1^5,-2*K.1^-1,-2*K.1^-4,-2*K.1^5,-2*K.1^-3,-2*K.1^-6,-2*K.1^-2,-2*K.1^-3,-2*K.1^-1,-2*K.1^-4,-2*K.1,-2*K.1^4,-2*K.1^-8,-2*K.1^3,-2*K.1^-7,-2*K.1^2,-2*K.1^7,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-5,-2*K.1^-7,-2*K.1^3,-2*K.1^4,-2*K.1^-4,-2*K.1^8,-2*K.1^-7,-2*K.1^8,-2*K.1^-2,-2*K.1^-6,-2*K.1^-2,-2*K.1^-1,-2*K.1^-5,-2*K.1^-3,-2*K.1^4,-2*K.1^-8,-2*K.1^2,-2*K.1^7,-2*K.1^-3,-2*K.1^5,-2*K.1^-4,-2*K.1^6,-2*K.1^6,-2*K.1^7,-2*K.1^5,-2*K.1^8,-2*K.1^-6,-2*K.1^-2,-2*K.1^-5,-2*K.1,-2*K.1^-6,-2*K.1^2,-2*K.1^-7,-2*K.1^-8,-2*K.1^-8,-2*K.1^4,-2*K.1^6,-2*K.1^2,-2*K.1^-5,-2*K.1^7,-2*K.1^3,-2*K.1^6,-2*K.1^8,-1*K.1^-1,-1*K.1^7,-1*K.1^-2,-1*K.1^2,-1*K.1^-6,-1*K.1^3,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^8,-1*K.1^-6,-1*K.1^-8,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-3,-1*K.1^7,-1*K.1,-1*K.1^2,-1*K.1^6,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^3,-1*K.1^6,-1*K.1^-4,-1*K.1^8,-1*K.1^-1,-1*K.1^5,-1*K.1^-4,-1*K.1^-8,-1*K.1^3,-1*K.1^4,-1*K.1^7,-1*K.1^-7,-1*K.1^6,-1*K.1^5,-1*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3,K.1^2,K.1^-1,K.1^4,K.1^6,K.1^3,K.1^8,K.1^-1,K.1^-6,K.1^-8,K.1^4,K.1^3,K.1^2,K.1^7,K.1^7,K.1^6,K.1^-8,K.1^-1,K.1^-7,K.1^7,K.1^2,K.1^5,K.1^3,K.1^-4,K.1^7,K.1,K.1^-7,K.1^5,K.1^8,K.1^-2,K.1^8,K.1^-2,K.1,K.1^-2,K.1^6,K.1^-7,K.1^-4,K.1^-5,K.1^-6,K.1^-6,K.1^6,K.1^4,K.1^-3,K.1^-8,K.1^-8,K.1^-5,K.1^-5,K.1^-3,K.1^-4,K.1^5,K.1^-6,K.1^2,K.1^-5,K.1^-3,K.1^-3,K.1^8,K.1^-7,K.1^-1,K.1^-4,K.1,K.1^5,K.1^4,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^7,2*K.1^5,2*K.1^-2,2*K.1^-6,2*K.1^6,2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^8,2*K.1^3,2*K.1^-3,2*K.1^-5,2*K.1^-7,2*K.1^-4,2*K.1,2*K.1^-8,2*K.1^-3,2*K.1^-4,2*K.1^-5,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^6,2*K.1^5,2*K.1^4,2*K.1^6,2*K.1^-7,2*K.1^8,2*K.1^-8,2*K.1^-7,2*K.1,2*K.1^-7,2*K.1^4,2*K.1^3,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^4,2*K.1^-4,2*K.1^5,2*K.1^2,2*K.1,2*K.1^-8,2*K.1^-1,2*K.1^8,2*K.1^-1,2*K.1^7,2*K.1^-2,2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^8,2*K.1^-1,2*K.1^7,2*K.1^-2,2*K.1^6,2*K.1^-3,2*K.1^5,2*K.1^-4,-1*K.1^-5,-1*K.1^2,-1*K.1^-7,-1*K.1^4,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^-8,-1*K.1^7,-1*K.1^8,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^-2,-1*K.1,-1*K.1^-1,-2*K.1^-3,-2*K.1^-5,-2*K.1,-2*K.1^4,-2*K.1^-5,-2*K.1^3,-2*K.1^6,-2*K.1^2,-2*K.1^3,-2*K.1,-2*K.1^4,-2*K.1^-1,-2*K.1^-4,-2*K.1^8,-2*K.1^-3,-2*K.1^7,-2*K.1^-2,-2*K.1^-7,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^5,-2*K.1^7,-2*K.1^-3,-2*K.1^-4,-2*K.1^4,-2*K.1^-8,-2*K.1^7,-2*K.1^-8,-2*K.1^2,-2*K.1^6,-2*K.1^2,-2*K.1,-2*K.1^5,-2*K.1^3,-2*K.1^-4,-2*K.1^8,-2*K.1^-2,-2*K.1^-7,-2*K.1^3,-2*K.1^-5,-2*K.1^4,-2*K.1^-6,-2*K.1^-6,-2*K.1^-7,-2*K.1^-5,-2*K.1^-8,-2*K.1^6,-2*K.1^2,-2*K.1^5,-2*K.1^-1,-2*K.1^6,-2*K.1^-2,-2*K.1^7,-2*K.1^8,-2*K.1^8,-2*K.1^-4,-2*K.1^-6,-2*K.1^-2,-2*K.1^5,-2*K.1^-7,-2*K.1^-3,-2*K.1^-6,-2*K.1^-8,-1*K.1,-1*K.1^-7,-1*K.1^2,-1*K.1^-2,-1*K.1^6,-1*K.1^-3,-1*K.1^-8,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^4,-1*K.1^-4,-1*K.1^5,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-8,-1*K.1^6,-1*K.1^8,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^3,-1*K.1^-7,-1*K.1^-1,-1*K.1^-2,-1*K.1^-6,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-3,-1*K.1^-6,-1*K.1^4,-1*K.1^-8,-1*K.1,-1*K.1^-5,-1*K.1^4,-1*K.1^8,-1*K.1^-3,-1*K.1^-4,-1*K.1^-7,-1*K.1^7,-1*K.1^-6,-1*K.1^-5,-1*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-3,K.1^-2,K.1,K.1^-4,K.1^-6,K.1^-3,K.1^-8,K.1,K.1^6,K.1^8,K.1^-4,K.1^-3,K.1^-2,K.1^-7,K.1^-7,K.1^-6,K.1^8,K.1,K.1^7,K.1^-7,K.1^-2,K.1^-5,K.1^-3,K.1^4,K.1^-7,K.1^-1,K.1^7,K.1^-5,K.1^-8,K.1^2,K.1^-8,K.1^2,K.1^-1,K.1^2,K.1^-6,K.1^7,K.1^4,K.1^5,K.1^6,K.1^6,K.1^-6,K.1^-4,K.1^3,K.1^8,K.1^8,K.1^5,K.1^5,K.1^3,K.1^4,K.1^-5,K.1^6,K.1^-2,K.1^5,K.1^3,K.1^3,K.1^-8,K.1^7,K.1,K.1^4,K.1^-1,K.1^-5,K.1^-4,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^-6,2*K.1^3,2*K.1^-8,2*K.1^-7,2*K.1^7,2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-2,2*K.1^-5,2*K.1^5,2*K.1^-3,2*K.1^6,2*K.1,2*K.1^4,2*K.1^2,2*K.1^5,2*K.1,2*K.1^-3,2*K.1^5,2*K.1^8,2*K.1^-8,2*K.1^4,2*K.1^8,2*K.1^7,2*K.1^3,2*K.1^-1,2*K.1^7,2*K.1^6,2*K.1^-2,2*K.1^2,2*K.1^6,2*K.1^4,2*K.1^6,2*K.1^-1,2*K.1^-5,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^8,2*K.1^4,2*K.1^2,2*K.1^-4,2*K.1^-2,2*K.1^-4,2*K.1^-6,2*K.1^-8,2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^-2,2*K.1^-4,2*K.1^-6,2*K.1^-8,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1,-1*K.1^-3,-1*K.1^8,-1*K.1^6,-1*K.1^-1,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-6,-1*K.1^-2,-1*K.1^-7,-1*K.1^7,-1*K.1^5,-1*K.1^-8,-1*K.1^4,-1*K.1^-4,-2*K.1^5,-2*K.1^-3,-2*K.1^4,-2*K.1^-1,-2*K.1^-3,-2*K.1^-5,-2*K.1^7,-2*K.1^8,-2*K.1^-5,-2*K.1^4,-2*K.1^-1,-2*K.1^-4,-2*K.1,-2*K.1^-2,-2*K.1^5,-2*K.1^-6,-2*K.1^-8,-2*K.1^6,-2*K.1^-4,-2*K.1^-4,-2*K.1^4,-2*K.1^3,-2*K.1^-6,-2*K.1^5,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-6,-2*K.1^2,-2*K.1^8,-2*K.1^7,-2*K.1^8,-2*K.1^4,-2*K.1^3,-2*K.1^-5,-2*K.1,-2*K.1^-2,-2*K.1^-8,-2*K.1^6,-2*K.1^-5,-2*K.1^-3,-2*K.1^-1,-2*K.1^-7,-2*K.1^-7,-2*K.1^6,-2*K.1^-3,-2*K.1^2,-2*K.1^7,-2*K.1^8,-2*K.1^3,-2*K.1^-4,-2*K.1^7,-2*K.1^-8,-2*K.1^-6,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^-7,-2*K.1^-8,-2*K.1^3,-2*K.1^6,-2*K.1^5,-2*K.1^-7,-2*K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^-8,-1*K.1^7,-1*K.1^5,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-4,-1*K.1^8,-1*K.1^-8,-1*K.1^2,-1*K.1^7,-1*K.1^-2,-1*K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^-5,-1*K.1^6,-1*K.1^-4,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1^3,-1*K.1^3,-1*K.1^-4,-1*K.1^-5,-1*K.1^4,-1*K.1^5,-1*K.1^-7,-1*K.1^-1,-1*K.1^2,-1*K.1^4,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^5,-1*K.1,-1*K.1^6,-1*K.1^-6,-1*K.1^-7,-1*K.1^-3,-1*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5,K.1^-8,K.1^4,K.1,K.1^-7,K.1^5,K.1^2,K.1^4,K.1^7,K.1^-2,K.1,K.1^5,K.1^-8,K.1^6,K.1^6,K.1^-7,K.1^-2,K.1^4,K.1^-6,K.1^6,K.1^-8,K.1^-3,K.1^5,K.1^-1,K.1^6,K.1^-4,K.1^-6,K.1^-3,K.1^2,K.1^8,K.1^2,K.1^8,K.1^-4,K.1^8,K.1^-7,K.1^-6,K.1^-1,K.1^3,K.1^7,K.1^7,K.1^-7,K.1,K.1^-5,K.1^-2,K.1^-2,K.1^3,K.1^3,K.1^-5,K.1^-1,K.1^-3,K.1^7,K.1^-8,K.1^3,K.1^-5,K.1^-5,K.1^2,K.1^-6,K.1^4,K.1^-1,K.1^-4,K.1^-3,K.1,K.1^-4,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^6,2*K.1^-3,2*K.1^8,2*K.1^7,2*K.1^-7,2*K.1,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^2,2*K.1^5,2*K.1^-5,2*K.1^3,2*K.1^-6,2*K.1^-1,2*K.1^-4,2*K.1^-2,2*K.1^-5,2*K.1^-1,2*K.1^3,2*K.1^-5,2*K.1^-8,2*K.1^8,2*K.1^-4,2*K.1^-8,2*K.1^-7,2*K.1^-3,2*K.1,2*K.1^-7,2*K.1^-6,2*K.1^2,2*K.1^-2,2*K.1^-6,2*K.1^-4,2*K.1^-6,2*K.1,2*K.1^5,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-8,2*K.1^-4,2*K.1^-2,2*K.1^4,2*K.1^2,2*K.1^4,2*K.1^6,2*K.1^8,2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1^7,2*K.1^2,2*K.1^4,2*K.1^6,2*K.1^8,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^-1,-1*K.1^3,-1*K.1^-8,-1*K.1^-6,-1*K.1,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^-2,-1*K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1^-7,-1*K.1^-5,-1*K.1^8,-1*K.1^-4,-1*K.1^4,-2*K.1^-5,-2*K.1^3,-2*K.1^-4,-2*K.1,-2*K.1^3,-2*K.1^5,-2*K.1^-7,-2*K.1^-8,-2*K.1^5,-2*K.1^-4,-2*K.1,-2*K.1^4,-2*K.1^-1,-2*K.1^2,-2*K.1^-5,-2*K.1^6,-2*K.1^8,-2*K.1^-6,-2*K.1^4,-2*K.1^4,-2*K.1^-4,-2*K.1^-3,-2*K.1^6,-2*K.1^-5,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^6,-2*K.1^-2,-2*K.1^-8,-2*K.1^-7,-2*K.1^-8,-2*K.1^-4,-2*K.1^-3,-2*K.1^5,-2*K.1^-1,-2*K.1^2,-2*K.1^8,-2*K.1^-6,-2*K.1^5,-2*K.1^3,-2*K.1,-2*K.1^7,-2*K.1^7,-2*K.1^-6,-2*K.1^3,-2*K.1^-2,-2*K.1^-7,-2*K.1^-8,-2*K.1^-3,-2*K.1^4,-2*K.1^-7,-2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^7,-2*K.1^8,-2*K.1^-3,-2*K.1^-6,-2*K.1^-5,-2*K.1^7,-2*K.1^-2,-1*K.1^-4,-1*K.1^-6,-1*K.1^-8,-1*K.1^8,-1*K.1^-7,-1*K.1^-5,-1*K.1^-2,-1*K.1^2,-1*K.1^6,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^4,-1*K.1^-8,-1*K.1^8,-1*K.1^-2,-1*K.1^-7,-1*K.1^2,-1*K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1^5,-1*K.1^-6,-1*K.1^4,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^-3,-1*K.1^-3,-1*K.1^4,-1*K.1^5,-1*K.1^-4,-1*K.1^-5,-1*K.1^7,-1*K.1,-1*K.1^-2,-1*K.1^-4,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^-5,-1*K.1^-1,-1*K.1^-6,-1*K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-5,K.1^8,K.1^-4,K.1^-1,K.1^7,K.1^-5,K.1^-2,K.1^-4,K.1^-7,K.1^2,K.1^-1,K.1^-5,K.1^8,K.1^-6,K.1^-6,K.1^7,K.1^2,K.1^-4,K.1^6,K.1^-6,K.1^8,K.1^3,K.1^-5,K.1,K.1^-6,K.1^4,K.1^6,K.1^3,K.1^-2,K.1^-8,K.1^-2,K.1^-8,K.1^4,K.1^-8,K.1^7,K.1^6,K.1,K.1^-3,K.1^-7,K.1^-7,K.1^7,K.1^-1,K.1^5,K.1^2,K.1^2,K.1^-3,K.1^-3,K.1^5,K.1,K.1^3,K.1^-7,K.1^8,K.1^-3,K.1^5,K.1^5,K.1^-2,K.1^6,K.1^-4,K.1,K.1^4,K.1^3,K.1^-1,K.1^4,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^-5,2*K.1^-6,2*K.1^-1,2*K.1^-3,2*K.1^3,2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^4,2*K.1^-7,2*K.1^7,2*K.1^6,2*K.1^5,2*K.1^-2,2*K.1^-8,2*K.1^-4,2*K.1^7,2*K.1^-2,2*K.1^6,2*K.1^7,2*K.1,2*K.1^-1,2*K.1^-8,2*K.1,2*K.1^3,2*K.1^-6,2*K.1^2,2*K.1^3,2*K.1^5,2*K.1^4,2*K.1^-4,2*K.1^5,2*K.1^-8,2*K.1^5,2*K.1^2,2*K.1^-7,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^2,2*K.1^-2,2*K.1^-6,2*K.1,2*K.1^-8,2*K.1^-4,2*K.1^8,2*K.1^4,2*K.1^8,2*K.1^-5,2*K.1^-1,2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^-3,2*K.1^4,2*K.1^8,2*K.1^-5,2*K.1^-1,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^-2,-1*K.1^6,-1*K.1,-1*K.1^5,-1*K.1^2,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-4,-1*K.1^-5,-1*K.1^4,-1*K.1^-3,-1*K.1^3,-1*K.1^7,-1*K.1^-1,-1*K.1^-8,-1*K.1^8,-2*K.1^7,-2*K.1^6,-2*K.1^-8,-2*K.1^2,-2*K.1^6,-2*K.1^-7,-2*K.1^3,-2*K.1,-2*K.1^-7,-2*K.1^-8,-2*K.1^2,-2*K.1^8,-2*K.1^-2,-2*K.1^4,-2*K.1^7,-2*K.1^-5,-2*K.1^-1,-2*K.1^5,-2*K.1^8,-2*K.1^8,-2*K.1^-8,-2*K.1^-6,-2*K.1^-5,-2*K.1^7,-2*K.1^-2,-2*K.1^2,-2*K.1^-4,-2*K.1^-5,-2*K.1^-4,-2*K.1,-2*K.1^3,-2*K.1,-2*K.1^-8,-2*K.1^-6,-2*K.1^-7,-2*K.1^-2,-2*K.1^4,-2*K.1^-1,-2*K.1^5,-2*K.1^-7,-2*K.1^6,-2*K.1^2,-2*K.1^-3,-2*K.1^-3,-2*K.1^5,-2*K.1^6,-2*K.1^-4,-2*K.1^3,-2*K.1,-2*K.1^-6,-2*K.1^8,-2*K.1^3,-2*K.1^-1,-2*K.1^-5,-2*K.1^4,-2*K.1^4,-2*K.1^-2,-2*K.1^-3,-2*K.1^-1,-2*K.1^-6,-2*K.1^5,-2*K.1^7,-2*K.1^-3,-2*K.1^-4,-1*K.1^-8,-1*K.1^5,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^7,-1*K.1^-4,-1*K.1^4,-1*K.1^-5,-1*K.1^-7,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,-1*K.1^8,-1*K.1,-1*K.1^-1,-1*K.1^-4,-1*K.1^3,-1*K.1^4,-1*K.1^-5,-1*K.1^3,-1*K.1,-1*K.1^-7,-1*K.1^5,-1*K.1^8,-1*K.1^-1,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^-6,-1*K.1^8,-1*K.1^-7,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,-1*K.1^2,-1*K.1^-4,-1*K.1^-8,-1*K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^7,-1*K.1^-2,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^6,-1*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^7,K.1^-1,K.1^-8,K.1^-2,K.1^-3,K.1^7,K.1^-4,K.1^-8,K.1^3,K.1^4,K.1^-2,K.1^7,K.1^-1,K.1^5,K.1^5,K.1^-3,K.1^4,K.1^-8,K.1^-5,K.1^5,K.1^-1,K.1^6,K.1^7,K.1^2,K.1^5,K.1^8,K.1^-5,K.1^6,K.1^-4,K.1,K.1^-4,K.1,K.1^8,K.1,K.1^-3,K.1^-5,K.1^2,K.1^-6,K.1^3,K.1^3,K.1^-3,K.1^-2,K.1^-7,K.1^4,K.1^4,K.1^-6,K.1^-6,K.1^-7,K.1^2,K.1^6,K.1^3,K.1^-1,K.1^-6,K.1^-7,K.1^-7,K.1^-4,K.1^-5,K.1^-8,K.1^2,K.1^8,K.1^6,K.1^-2,K.1^8,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^5,2*K.1^6,2*K.1,2*K.1^3,2*K.1^-3,2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-4,2*K.1^7,2*K.1^-7,2*K.1^-6,2*K.1^-5,2*K.1^2,2*K.1^8,2*K.1^4,2*K.1^-7,2*K.1^2,2*K.1^-6,2*K.1^-7,2*K.1^-1,2*K.1,2*K.1^8,2*K.1^-1,2*K.1^-3,2*K.1^6,2*K.1^-2,2*K.1^-3,2*K.1^-5,2*K.1^-4,2*K.1^4,2*K.1^-5,2*K.1^8,2*K.1^-5,2*K.1^-2,2*K.1^7,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^-2,2*K.1^2,2*K.1^6,2*K.1^-1,2*K.1^8,2*K.1^4,2*K.1^-8,2*K.1^-4,2*K.1^-8,2*K.1^5,2*K.1,2*K.1^5,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^3,2*K.1^-4,2*K.1^-8,2*K.1^5,2*K.1,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^2,-1*K.1^-6,-1*K.1^-1,-1*K.1^-5,-1*K.1^-2,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^4,-1*K.1^5,-1*K.1^-4,-1*K.1^3,-1*K.1^-3,-1*K.1^-7,-1*K.1,-1*K.1^8,-1*K.1^-8,-2*K.1^-7,-2*K.1^-6,-2*K.1^8,-2*K.1^-2,-2*K.1^-6,-2*K.1^7,-2*K.1^-3,-2*K.1^-1,-2*K.1^7,-2*K.1^8,-2*K.1^-2,-2*K.1^-8,-2*K.1^2,-2*K.1^-4,-2*K.1^-7,-2*K.1^5,-2*K.1,-2*K.1^-5,-2*K.1^-8,-2*K.1^-8,-2*K.1^8,-2*K.1^6,-2*K.1^5,-2*K.1^-7,-2*K.1^2,-2*K.1^-2,-2*K.1^4,-2*K.1^5,-2*K.1^4,-2*K.1^-1,-2*K.1^-3,-2*K.1^-1,-2*K.1^8,-2*K.1^6,-2*K.1^7,-2*K.1^2,-2*K.1^-4,-2*K.1,-2*K.1^-5,-2*K.1^7,-2*K.1^-6,-2*K.1^-2,-2*K.1^3,-2*K.1^3,-2*K.1^-5,-2*K.1^-6,-2*K.1^4,-2*K.1^-3,-2*K.1^-1,-2*K.1^6,-2*K.1^-8,-2*K.1^-3,-2*K.1,-2*K.1^5,-2*K.1^-4,-2*K.1^-4,-2*K.1^2,-2*K.1^3,-2*K.1,-2*K.1^6,-2*K.1^-5,-2*K.1^-7,-2*K.1^3,-2*K.1^4,-1*K.1^8,-1*K.1^-5,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-7,-1*K.1^4,-1*K.1^-4,-1*K.1^5,-1*K.1^7,-1*K.1^-2,-1*K.1^2,-1*K.1^6,-1*K.1^-8,-1*K.1^-1,-1*K.1,-1*K.1^4,-1*K.1^-3,-1*K.1^-4,-1*K.1^5,-1*K.1^-3,-1*K.1^-1,-1*K.1^7,-1*K.1^-5,-1*K.1^-8,-1*K.1,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^6,-1*K.1^-8,-1*K.1^7,-1*K.1^8,-1*K.1^-7,-1*K.1^3,-1*K.1^-2,-1*K.1^4,-1*K.1^8,-1*K.1^-6,-1*K.1^-2,-1*K.1^-4,-1*K.1^-7,-1*K.1^2,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^-6,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-7,K.1,K.1^8,K.1^2,K.1^3,K.1^-7,K.1^4,K.1^8,K.1^-3,K.1^-4,K.1^2,K.1^-7,K.1,K.1^-5,K.1^-5,K.1^3,K.1^-4,K.1^8,K.1^5,K.1^-5,K.1,K.1^-6,K.1^-7,K.1^-2,K.1^-5,K.1^-8,K.1^5,K.1^-6,K.1^4,K.1^-1,K.1^4,K.1^-1,K.1^-8,K.1^-1,K.1^3,K.1^5,K.1^-2,K.1^6,K.1^-3,K.1^-3,K.1^3,K.1^2,K.1^7,K.1^-4,K.1^-4,K.1^6,K.1^6,K.1^7,K.1^-2,K.1^-6,K.1^-3,K.1,K.1^6,K.1^7,K.1^7,K.1^4,K.1^5,K.1^8,K.1^-2,K.1^-8,K.1^-6,K.1^2,K.1^-8,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^-4,2*K.1^2,2*K.1^6,2*K.1,2*K.1^-1,2*K.1^5,2*K.1^3,2*K.1^7,2*K.1^-6,2*K.1^-7,2*K.1^8,2*K.1^-8,2*K.1^-2,2*K.1^4,2*K.1^-5,2*K.1^-3,2*K.1^7,2*K.1^-8,2*K.1^-5,2*K.1^-2,2*K.1^-8,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^-6,2*K.1^-1,2*K.1^2,2*K.1^5,2*K.1^-1,2*K.1^4,2*K.1^-7,2*K.1^7,2*K.1^4,2*K.1^-3,2*K.1^4,2*K.1^5,2*K.1^8,2*K.1,2*K.1^8,2*K.1^-2,2*K.1^5,2*K.1^-5,2*K.1^2,2*K.1^-6,2*K.1^-3,2*K.1^7,2*K.1^3,2*K.1^-7,2*K.1^3,2*K.1^-4,2*K.1^6,2*K.1^-4,2*K.1,2*K.1^8,2*K.1^-2,2*K.1,2*K.1^-7,2*K.1^3,2*K.1^-4,2*K.1^6,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^-5,-1*K.1^-2,-1*K.1^-6,-1*K.1^4,-1*K.1^5,-1*K.1^8,-1*K.1^2,-1*K.1^-5,-1*K.1^7,-1*K.1^-4,-1*K.1^-7,-1*K.1,-1*K.1^-1,-1*K.1^-8,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-2*K.1^-8,-2*K.1^-2,-2*K.1^-3,-2*K.1^5,-2*K.1^-2,-2*K.1^8,-2*K.1^-1,-2*K.1^-6,-2*K.1^8,-2*K.1^-3,-2*K.1^5,-2*K.1^3,-2*K.1^-5,-2*K.1^-7,-2*K.1^-8,-2*K.1^-4,-2*K.1^6,-2*K.1^4,-2*K.1^3,-2*K.1^3,-2*K.1^-3,-2*K.1^2,-2*K.1^-4,-2*K.1^-8,-2*K.1^-5,-2*K.1^5,-2*K.1^7,-2*K.1^-4,-2*K.1^7,-2*K.1^-6,-2*K.1^-1,-2*K.1^-6,-2*K.1^-3,-2*K.1^2,-2*K.1^8,-2*K.1^-5,-2*K.1^-7,-2*K.1^6,-2*K.1^4,-2*K.1^8,-2*K.1^-2,-2*K.1^5,-2*K.1,-2*K.1,-2*K.1^4,-2*K.1^-2,-2*K.1^7,-2*K.1^-1,-2*K.1^-6,-2*K.1^2,-2*K.1^3,-2*K.1^-1,-2*K.1^6,-2*K.1^-4,-2*K.1^-7,-2*K.1^-7,-2*K.1^-5,-2*K.1,-2*K.1^6,-2*K.1^2,-2*K.1^4,-2*K.1^-8,-2*K.1,-2*K.1^7,-1*K.1^-3,-1*K.1^4,-1*K.1^-6,-1*K.1^6,-1*K.1^-1,-1*K.1^-8,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,-1*K.1^8,-1*K.1^5,-1*K.1^-5,-1*K.1^2,-1*K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^7,-1*K.1^-1,-1*K.1^-7,-1*K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^8,-1*K.1^4,-1*K.1^3,-1*K.1^6,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^8,-1*K.1^-3,-1*K.1^-8,-1*K.1,-1*K.1^5,-1*K.1^7,-1*K.1^-3,-1*K.1^-2,-1*K.1^5,-1*K.1^-7,-1*K.1^-8,-1*K.1^-5,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-2,-1*K.1^-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-8,K.1^6,K.1^-3,K.1^-5,K.1,K.1^-8,K.1^7,K.1^-3,K.1^-1,K.1^-7,K.1^-5,K.1^-8,K.1^6,K.1^4,K.1^4,K.1,K.1^-7,K.1^-3,K.1^-4,K.1^4,K.1^6,K.1^-2,K.1^-8,K.1^5,K.1^4,K.1^3,K.1^-4,K.1^-2,K.1^7,K.1^-6,K.1^7,K.1^-6,K.1^3,K.1^-6,K.1,K.1^-4,K.1^5,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-5,K.1^8,K.1^-7,K.1^-7,K.1^2,K.1^2,K.1^8,K.1^5,K.1^-2,K.1^-1,K.1^6,K.1^2,K.1^8,K.1^8,K.1^7,K.1^-4,K.1^-3,K.1^5,K.1^3,K.1^-2,K.1^-5,K.1^3,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^4,2*K.1^-2,2*K.1^-6,2*K.1^-1,2*K.1,2*K.1^-5,2*K.1^-3,2*K.1^-7,2*K.1^6,2*K.1^7,2*K.1^-8,2*K.1^8,2*K.1^2,2*K.1^-4,2*K.1^5,2*K.1^3,2*K.1^-7,2*K.1^8,2*K.1^5,2*K.1^2,2*K.1^8,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^6,2*K.1,2*K.1^-2,2*K.1^-5,2*K.1,2*K.1^-4,2*K.1^7,2*K.1^-7,2*K.1^-4,2*K.1^3,2*K.1^-4,2*K.1^-5,2*K.1^-8,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^-5,2*K.1^5,2*K.1^-2,2*K.1^6,2*K.1^3,2*K.1^-7,2*K.1^-3,2*K.1^7,2*K.1^-3,2*K.1^4,2*K.1^-6,2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^7,2*K.1^-3,2*K.1^4,2*K.1^-6,2*K.1,2*K.1^8,2*K.1^-2,2*K.1^5,-1*K.1^2,-1*K.1^6,-1*K.1^-4,-1*K.1^-5,-1*K.1^-8,-1*K.1^-2,-1*K.1^5,-1*K.1^-7,-1*K.1^4,-1*K.1^7,-1*K.1^-1,-1*K.1,-1*K.1^8,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-2*K.1^8,-2*K.1^2,-2*K.1^3,-2*K.1^-5,-2*K.1^2,-2*K.1^-8,-2*K.1,-2*K.1^6,-2*K.1^-8,-2*K.1^3,-2*K.1^-5,-2*K.1^-3,-2*K.1^5,-2*K.1^7,-2*K.1^8,-2*K.1^4,-2*K.1^-6,-2*K.1^-4,-2*K.1^-3,-2*K.1^-3,-2*K.1^3,-2*K.1^-2,-2*K.1^4,-2*K.1^8,-2*K.1^5,-2*K.1^-5,-2*K.1^-7,-2*K.1^4,-2*K.1^-7,-2*K.1^6,-2*K.1,-2*K.1^6,-2*K.1^3,-2*K.1^-2,-2*K.1^-8,-2*K.1^5,-2*K.1^7,-2*K.1^-6,-2*K.1^-4,-2*K.1^-8,-2*K.1^2,-2*K.1^-5,-2*K.1^-1,-2*K.1^-1,-2*K.1^-4,-2*K.1^2,-2*K.1^-7,-2*K.1,-2*K.1^6,-2*K.1^-2,-2*K.1^-3,-2*K.1,-2*K.1^-6,-2*K.1^4,-2*K.1^7,-2*K.1^7,-2*K.1^5,-2*K.1^-1,-2*K.1^-6,-2*K.1^-2,-2*K.1^-4,-2*K.1^8,-2*K.1^-1,-2*K.1^-7,-1*K.1^3,-1*K.1^-4,-1*K.1^6,-1*K.1^-6,-1*K.1,-1*K.1^8,-1*K.1^-7,-1*K.1^7,-1*K.1^4,-1*K.1^-8,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,-1*K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^-7,-1*K.1,-1*K.1^7,-1*K.1^4,-1*K.1,-1*K.1^6,-1*K.1^-8,-1*K.1^-4,-1*K.1^-3,-1*K.1^-6,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-3,-1*K.1^-8,-1*K.1^3,-1*K.1^8,-1*K.1^-1,-1*K.1^-5,-1*K.1^-7,-1*K.1^3,-1*K.1^2,-1*K.1^-5,-1*K.1^7,-1*K.1^8,-1*K.1^5,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1^2,-1*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^8,K.1^-6,K.1^3,K.1^5,K.1^-1,K.1^8,K.1^-7,K.1^3,K.1,K.1^7,K.1^5,K.1^8,K.1^-6,K.1^-4,K.1^-4,K.1^-1,K.1^7,K.1^3,K.1^4,K.1^-4,K.1^-6,K.1^2,K.1^8,K.1^-5,K.1^-4,K.1^-3,K.1^4,K.1^2,K.1^-7,K.1^6,K.1^-7,K.1^6,K.1^-3,K.1^6,K.1^-1,K.1^4,K.1^-5,K.1^-2,K.1,K.1,K.1^-1,K.1^5,K.1^-8,K.1^7,K.1^7,K.1^-2,K.1^-2,K.1^-8,K.1^-5,K.1^2,K.1,K.1^-6,K.1^-2,K.1^-8,K.1^-8,K.1^-7,K.1^4,K.1^3,K.1^-5,K.1^-3,K.1^2,K.1^5,K.1^-3,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^-3,2*K.1^-7,2*K.1^-4,2*K.1^5,2*K.1^-5,2*K.1^8,2*K.1^-2,2*K.1,2*K.1^4,2*K.1^-1,2*K.1^6,2*K.1^-6,2*K.1^7,2*K.1^3,2*K.1^-8,2*K.1^2,2*K.1,2*K.1^-6,2*K.1^-8,2*K.1^7,2*K.1^-6,2*K.1^4,2*K.1^-4,2*K.1^2,2*K.1^4,2*K.1^-5,2*K.1^-7,2*K.1^8,2*K.1^-5,2*K.1^3,2*K.1^-1,2*K.1,2*K.1^3,2*K.1^2,2*K.1^3,2*K.1^8,2*K.1^6,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^8,2*K.1^-8,2*K.1^-7,2*K.1^4,2*K.1^2,2*K.1,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1^-4,2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^-1,2*K.1^-2,2*K.1^-3,2*K.1^-4,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^-8,-1*K.1^7,-1*K.1^4,-1*K.1^3,-1*K.1^8,-1*K.1^6,-1*K.1^-7,-1*K.1^-8,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^5,-1*K.1^-5,-1*K.1^-6,-1*K.1^-4,-1*K.1^2,-1*K.1^-2,-2*K.1^-6,-2*K.1^7,-2*K.1^2,-2*K.1^8,-2*K.1^7,-2*K.1^6,-2*K.1^-5,-2*K.1^4,-2*K.1^6,-2*K.1^2,-2*K.1^8,-2*K.1^-2,-2*K.1^-8,-2*K.1^-1,-2*K.1^-6,-2*K.1^-3,-2*K.1^-4,-2*K.1^3,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1^-7,-2*K.1^-3,-2*K.1^-6,-2*K.1^-8,-2*K.1^8,-2*K.1,-2*K.1^-3,-2*K.1,-2*K.1^4,-2*K.1^-5,-2*K.1^4,-2*K.1^2,-2*K.1^-7,-2*K.1^6,-2*K.1^-8,-2*K.1^-1,-2*K.1^-4,-2*K.1^3,-2*K.1^6,-2*K.1^7,-2*K.1^8,-2*K.1^5,-2*K.1^5,-2*K.1^3,-2*K.1^7,-2*K.1,-2*K.1^-5,-2*K.1^4,-2*K.1^-7,-2*K.1^-2,-2*K.1^-5,-2*K.1^-4,-2*K.1^-3,-2*K.1^-1,-2*K.1^-1,-2*K.1^-8,-2*K.1^5,-2*K.1^-4,-2*K.1^-7,-2*K.1^3,-2*K.1^-6,-2*K.1^5,-2*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^4,-1*K.1^-4,-1*K.1^-5,-1*K.1^-6,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^6,-1*K.1^8,-1*K.1^-8,-1*K.1^-7,-1*K.1^-2,-1*K.1^4,-1*K.1^-4,-1*K.1,-1*K.1^-5,-1*K.1^-1,-1*K.1^-3,-1*K.1^-5,-1*K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^-2,-1*K.1^-4,-1*K.1^5,-1*K.1^7,-1*K.1^-7,-1*K.1^-7,-1*K.1^-2,-1*K.1^6,-1*K.1^2,-1*K.1^-6,-1*K.1^5,-1*K.1^8,-1*K.1,-1*K.1^2,-1*K.1^7,-1*K.1^8,-1*K.1^-1,-1*K.1^-6,-1*K.1^-8,-1*K.1^3,-1*K.1^-3,-1*K.1^5,-1*K.1^7,-1*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-6,K.1^-4,K.1^2,K.1^-8,K.1^5,K.1^-6,K.1,K.1^2,K.1^-5,K.1^-1,K.1^-8,K.1^-6,K.1^-4,K.1^3,K.1^3,K.1^5,K.1^-1,K.1^2,K.1^-3,K.1^3,K.1^-4,K.1^7,K.1^-6,K.1^8,K.1^3,K.1^-2,K.1^-3,K.1^7,K.1,K.1^4,K.1,K.1^4,K.1^-2,K.1^4,K.1^5,K.1^-3,K.1^8,K.1^-7,K.1^-5,K.1^-5,K.1^5,K.1^-8,K.1^6,K.1^-1,K.1^-1,K.1^-7,K.1^-7,K.1^6,K.1^8,K.1^7,K.1^-5,K.1^-4,K.1^-7,K.1^6,K.1^6,K.1,K.1^-3,K.1^2,K.1^8,K.1^-2,K.1^7,K.1^-8,K.1^-2,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^3,2*K.1^7,2*K.1^4,2*K.1^-5,2*K.1^5,2*K.1^-8,2*K.1^2,2*K.1^-1,2*K.1^-4,2*K.1,2*K.1^-6,2*K.1^6,2*K.1^-7,2*K.1^-3,2*K.1^8,2*K.1^-2,2*K.1^-1,2*K.1^6,2*K.1^8,2*K.1^-7,2*K.1^6,2*K.1^-4,2*K.1^4,2*K.1^-2,2*K.1^-4,2*K.1^5,2*K.1^7,2*K.1^-8,2*K.1^5,2*K.1^-3,2*K.1,2*K.1^-1,2*K.1^-3,2*K.1^-2,2*K.1^-3,2*K.1^-8,2*K.1^-6,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^-8,2*K.1^8,2*K.1^7,2*K.1^-4,2*K.1^-2,2*K.1^-1,2*K.1^2,2*K.1,2*K.1^2,2*K.1^3,2*K.1^4,2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1,2*K.1^2,2*K.1^3,2*K.1^4,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^8,-1*K.1^-7,-1*K.1^-4,-1*K.1^-3,-1*K.1^-8,-1*K.1^-6,-1*K.1^7,-1*K.1^8,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-5,-1*K.1^5,-1*K.1^6,-1*K.1^4,-1*K.1^-2,-1*K.1^2,-2*K.1^6,-2*K.1^-7,-2*K.1^-2,-2*K.1^-8,-2*K.1^-7,-2*K.1^-6,-2*K.1^5,-2*K.1^-4,-2*K.1^-6,-2*K.1^-2,-2*K.1^-8,-2*K.1^2,-2*K.1^8,-2*K.1,-2*K.1^6,-2*K.1^3,-2*K.1^4,-2*K.1^-3,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^7,-2*K.1^3,-2*K.1^6,-2*K.1^8,-2*K.1^-8,-2*K.1^-1,-2*K.1^3,-2*K.1^-1,-2*K.1^-4,-2*K.1^5,-2*K.1^-4,-2*K.1^-2,-2*K.1^7,-2*K.1^-6,-2*K.1^8,-2*K.1,-2*K.1^4,-2*K.1^-3,-2*K.1^-6,-2*K.1^-7,-2*K.1^-8,-2*K.1^-5,-2*K.1^-5,-2*K.1^-3,-2*K.1^-7,-2*K.1^-1,-2*K.1^5,-2*K.1^-4,-2*K.1^7,-2*K.1^2,-2*K.1^5,-2*K.1^4,-2*K.1^3,-2*K.1,-2*K.1,-2*K.1^8,-2*K.1^-5,-2*K.1^4,-2*K.1^7,-2*K.1^-3,-2*K.1^6,-2*K.1^-5,-2*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^-4,-1*K.1^4,-1*K.1^5,-1*K.1^6,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-6,-1*K.1^-8,-1*K.1^8,-1*K.1^7,-1*K.1^2,-1*K.1^-4,-1*K.1^4,-1*K.1^-1,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1^2,-1*K.1^4,-1*K.1^-5,-1*K.1^-7,-1*K.1^7,-1*K.1^7,-1*K.1^2,-1*K.1^-6,-1*K.1^-2,-1*K.1^6,-1*K.1^-5,-1*K.1^-8,-1*K.1^-1,-1*K.1^-2,-1*K.1^-7,-1*K.1^-8,-1*K.1,-1*K.1^6,-1*K.1^8,-1*K.1^-3,-1*K.1^3,-1*K.1^-5,-1*K.1^-7,-1*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^6,K.1^4,K.1^-2,K.1^8,K.1^-5,K.1^6,K.1^-1,K.1^-2,K.1^5,K.1,K.1^8,K.1^6,K.1^4,K.1^-3,K.1^-3,K.1^-5,K.1,K.1^-2,K.1^3,K.1^-3,K.1^4,K.1^-7,K.1^6,K.1^-8,K.1^-3,K.1^2,K.1^3,K.1^-7,K.1^-1,K.1^-4,K.1^-1,K.1^-4,K.1^2,K.1^-4,K.1^-5,K.1^3,K.1^-8,K.1^7,K.1^5,K.1^5,K.1^-5,K.1^8,K.1^-6,K.1,K.1,K.1^7,K.1^7,K.1^-6,K.1^-8,K.1^-7,K.1^5,K.1^4,K.1^7,K.1^-6,K.1^-6,K.1^-1,K.1^3,K.1^-2,K.1^-8,K.1^2,K.1^-7,K.1^8,K.1^2,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^-2,2*K.1,2*K.1^3,2*K.1^-8,2*K.1^8,2*K.1^-6,2*K.1^-7,2*K.1^-5,2*K.1^-3,2*K.1^5,2*K.1^4,2*K.1^-4,2*K.1^-1,2*K.1^2,2*K.1^6,2*K.1^7,2*K.1^-5,2*K.1^-4,2*K.1^6,2*K.1^-1,2*K.1^-4,2*K.1^-3,2*K.1^3,2*K.1^7,2*K.1^-3,2*K.1^8,2*K.1,2*K.1^-6,2*K.1^8,2*K.1^2,2*K.1^5,2*K.1^-5,2*K.1^2,2*K.1^7,2*K.1^2,2*K.1^-6,2*K.1^4,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-6,2*K.1^6,2*K.1,2*K.1^-3,2*K.1^7,2*K.1^-5,2*K.1^-7,2*K.1^5,2*K.1^-7,2*K.1^-2,2*K.1^3,2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-8,2*K.1^5,2*K.1^-7,2*K.1^-2,2*K.1^3,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^6,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^-6,-1*K.1^4,-1*K.1,-1*K.1^6,-1*K.1^-5,-1*K.1^-2,-1*K.1^5,-1*K.1^-8,-1*K.1^8,-1*K.1^-4,-1*K.1^3,-1*K.1^7,-1*K.1^-7,-2*K.1^-4,-2*K.1^-1,-2*K.1^7,-2*K.1^-6,-2*K.1^-1,-2*K.1^4,-2*K.1^8,-2*K.1^-3,-2*K.1^4,-2*K.1^7,-2*K.1^-6,-2*K.1^-7,-2*K.1^6,-2*K.1^5,-2*K.1^-4,-2*K.1^-2,-2*K.1^3,-2*K.1^2,-2*K.1^-7,-2*K.1^-7,-2*K.1^7,-2*K.1,-2*K.1^-2,-2*K.1^-4,-2*K.1^6,-2*K.1^-6,-2*K.1^-5,-2*K.1^-2,-2*K.1^-5,-2*K.1^-3,-2*K.1^8,-2*K.1^-3,-2*K.1^7,-2*K.1,-2*K.1^4,-2*K.1^6,-2*K.1^5,-2*K.1^3,-2*K.1^2,-2*K.1^4,-2*K.1^-1,-2*K.1^-6,-2*K.1^-8,-2*K.1^-8,-2*K.1^2,-2*K.1^-1,-2*K.1^-5,-2*K.1^8,-2*K.1^-3,-2*K.1,-2*K.1^-7,-2*K.1^8,-2*K.1^3,-2*K.1^-2,-2*K.1^5,-2*K.1^5,-2*K.1^6,-2*K.1^-8,-2*K.1^3,-2*K.1,-2*K.1^2,-2*K.1^-4,-2*K.1^-8,-2*K.1^-5,-1*K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^8,-1*K.1^-4,-1*K.1^-5,-1*K.1^5,-1*K.1^-2,-1*K.1^4,-1*K.1^-6,-1*K.1^6,-1*K.1,-1*K.1^-7,-1*K.1^-3,-1*K.1^3,-1*K.1^-5,-1*K.1^8,-1*K.1^5,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^-7,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-7,-1*K.1^4,-1*K.1^7,-1*K.1^-4,-1*K.1^-8,-1*K.1^-6,-1*K.1^-5,-1*K.1^7,-1*K.1^-1,-1*K.1^-6,-1*K.1^5,-1*K.1^-4,-1*K.1^6,-1*K.1^2,-1*K.1^-2,-1*K.1^-8,-1*K.1^-1,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-4,K.1^3,K.1^7,K.1^6,K.1^-8,K.1^-4,K.1^-5,K.1^7,K.1^8,K.1^5,K.1^6,K.1^-4,K.1^3,K.1^2,K.1^2,K.1^-8,K.1^5,K.1^7,K.1^-2,K.1^2,K.1^3,K.1^-1,K.1^-4,K.1^-6,K.1^2,K.1^-7,K.1^-2,K.1^-1,K.1^-5,K.1^-3,K.1^-5,K.1^-3,K.1^-7,K.1^-3,K.1^-8,K.1^-2,K.1^-6,K.1,K.1^8,K.1^8,K.1^-8,K.1^6,K.1^4,K.1^5,K.1^5,K.1,K.1,K.1^4,K.1^-6,K.1^-1,K.1^8,K.1^3,K.1,K.1^4,K.1^4,K.1^-5,K.1^-2,K.1^7,K.1^-6,K.1^-7,K.1^-1,K.1^6,K.1^-7,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^2,2*K.1^-1,2*K.1^-3,2*K.1^8,2*K.1^-8,2*K.1^6,2*K.1^7,2*K.1^5,2*K.1^3,2*K.1^-5,2*K.1^-4,2*K.1^4,2*K.1,2*K.1^-2,2*K.1^-6,2*K.1^-7,2*K.1^5,2*K.1^4,2*K.1^-6,2*K.1,2*K.1^4,2*K.1^3,2*K.1^-3,2*K.1^-7,2*K.1^3,2*K.1^-8,2*K.1^-1,2*K.1^6,2*K.1^-8,2*K.1^-2,2*K.1^-5,2*K.1^5,2*K.1^-2,2*K.1^-7,2*K.1^-2,2*K.1^6,2*K.1^-4,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^6,2*K.1^-6,2*K.1^-1,2*K.1^3,2*K.1^-7,2*K.1^5,2*K.1^7,2*K.1^-5,2*K.1^7,2*K.1^2,2*K.1^-3,2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1,2*K.1^8,2*K.1^-5,2*K.1^7,2*K.1^2,2*K.1^-3,2*K.1^-8,2*K.1^4,2*K.1^-1,2*K.1^-6,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^6,-1*K.1^-4,-1*K.1^-1,-1*K.1^-6,-1*K.1^5,-1*K.1^2,-1*K.1^-5,-1*K.1^8,-1*K.1^-8,-1*K.1^4,-1*K.1^-3,-1*K.1^-7,-1*K.1^7,-2*K.1^4,-2*K.1,-2*K.1^-7,-2*K.1^6,-2*K.1,-2*K.1^-4,-2*K.1^-8,-2*K.1^3,-2*K.1^-4,-2*K.1^-7,-2*K.1^6,-2*K.1^7,-2*K.1^-6,-2*K.1^-5,-2*K.1^4,-2*K.1^2,-2*K.1^-3,-2*K.1^-2,-2*K.1^7,-2*K.1^7,-2*K.1^-7,-2*K.1^-1,-2*K.1^2,-2*K.1^4,-2*K.1^-6,-2*K.1^6,-2*K.1^5,-2*K.1^2,-2*K.1^5,-2*K.1^3,-2*K.1^-8,-2*K.1^3,-2*K.1^-7,-2*K.1^-1,-2*K.1^-4,-2*K.1^-6,-2*K.1^-5,-2*K.1^-3,-2*K.1^-2,-2*K.1^-4,-2*K.1,-2*K.1^6,-2*K.1^8,-2*K.1^8,-2*K.1^-2,-2*K.1,-2*K.1^5,-2*K.1^-8,-2*K.1^3,-2*K.1^-1,-2*K.1^7,-2*K.1^-8,-2*K.1^-3,-2*K.1^2,-2*K.1^-5,-2*K.1^-5,-2*K.1^-6,-2*K.1^8,-2*K.1^-3,-2*K.1^-1,-2*K.1^-2,-2*K.1^4,-2*K.1^8,-2*K.1^5,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^-8,-1*K.1^4,-1*K.1^5,-1*K.1^-5,-1*K.1^2,-1*K.1^-4,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,-1*K.1^7,-1*K.1^3,-1*K.1^-3,-1*K.1^5,-1*K.1^-8,-1*K.1^-5,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^7,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^7,-1*K.1^-4,-1*K.1^-7,-1*K.1^4,-1*K.1^8,-1*K.1^6,-1*K.1^5,-1*K.1^-7,-1*K.1,-1*K.1^6,-1*K.1^-5,-1*K.1^4,-1*K.1^-6,-1*K.1^-2,-1*K.1^2,-1*K.1^8,-1*K.1,-1*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^4,K.1^-3,K.1^-7,K.1^-6,K.1^8,K.1^4,K.1^5,K.1^-7,K.1^-8,K.1^-5,K.1^-6,K.1^4,K.1^-3,K.1^-2,K.1^-2,K.1^8,K.1^-5,K.1^-7,K.1^2,K.1^-2,K.1^-3,K.1,K.1^4,K.1^6,K.1^-2,K.1^7,K.1^2,K.1,K.1^5,K.1^3,K.1^5,K.1^3,K.1^7,K.1^3,K.1^8,K.1^2,K.1^6,K.1^-1,K.1^-8,K.1^-8,K.1^8,K.1^-6,K.1^-4,K.1^-5,K.1^-5,K.1^-1,K.1^-1,K.1^-4,K.1^6,K.1,K.1^-8,K.1^-3,K.1^-1,K.1^-4,K.1^-4,K.1^5,K.1^2,K.1^-7,K.1^6,K.1^7,K.1,K.1^-6,K.1^7,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1^-1,2*K.1^-8,2*K.1^-7,2*K.1^-4,2*K.1^4,2*K.1^-3,2*K.1^5,2*K.1^6,2*K.1^7,2*K.1^-6,2*K.1^2,2*K.1^-2,2*K.1^8,2*K.1,2*K.1^3,2*K.1^-5,2*K.1^6,2*K.1^-2,2*K.1^3,2*K.1^8,2*K.1^-2,2*K.1^7,2*K.1^-7,2*K.1^-5,2*K.1^7,2*K.1^4,2*K.1^-8,2*K.1^-3,2*K.1^4,2*K.1,2*K.1^-6,2*K.1^6,2*K.1,2*K.1^-5,2*K.1,2*K.1^-3,2*K.1^2,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-3,2*K.1^3,2*K.1^-8,2*K.1^7,2*K.1^-5,2*K.1^6,2*K.1^5,2*K.1^-6,2*K.1^5,2*K.1^-1,2*K.1^-7,2*K.1^-1,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-4,2*K.1^-6,2*K.1^5,2*K.1^-1,2*K.1^-7,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^3,-1*K.1^8,-1*K.1^7,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-8,-1*K.1^3,-1*K.1^6,-1*K.1^-1,-1*K.1^-6,-1*K.1^-4,-1*K.1^4,-1*K.1^-2,-1*K.1^-7,-1*K.1^-5,-1*K.1^5,-2*K.1^-2,-2*K.1^8,-2*K.1^-5,-2*K.1^-3,-2*K.1^8,-2*K.1^2,-2*K.1^4,-2*K.1^7,-2*K.1^2,-2*K.1^-5,-2*K.1^-3,-2*K.1^5,-2*K.1^3,-2*K.1^-6,-2*K.1^-2,-2*K.1^-1,-2*K.1^-7,-2*K.1,-2*K.1^5,-2*K.1^5,-2*K.1^-5,-2*K.1^-8,-2*K.1^-1,-2*K.1^-2,-2*K.1^3,-2*K.1^-3,-2*K.1^6,-2*K.1^-1,-2*K.1^6,-2*K.1^7,-2*K.1^4,-2*K.1^7,-2*K.1^-5,-2*K.1^-8,-2*K.1^2,-2*K.1^3,-2*K.1^-6,-2*K.1^-7,-2*K.1,-2*K.1^2,-2*K.1^8,-2*K.1^-3,-2*K.1^-4,-2*K.1^-4,-2*K.1,-2*K.1^8,-2*K.1^6,-2*K.1^4,-2*K.1^7,-2*K.1^-8,-2*K.1^5,-2*K.1^4,-2*K.1^-7,-2*K.1^-1,-2*K.1^-6,-2*K.1^-6,-2*K.1^3,-2*K.1^-4,-2*K.1^-7,-2*K.1^-8,-2*K.1,-2*K.1^-2,-2*K.1^-4,-2*K.1^6,-1*K.1^-5,-1*K.1,-1*K.1^7,-1*K.1^-7,-1*K.1^4,-1*K.1^-2,-1*K.1^6,-1*K.1^-6,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^3,-1*K.1^-8,-1*K.1^5,-1*K.1^7,-1*K.1^-7,-1*K.1^6,-1*K.1^4,-1*K.1^-6,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^2,-1*K.1,-1*K.1^5,-1*K.1^-7,-1*K.1^-4,-1*K.1^8,-1*K.1^-8,-1*K.1^-8,-1*K.1^5,-1*K.1^2,-1*K.1^-5,-1*K.1^-2,-1*K.1^-4,-1*K.1^-3,-1*K.1^6,-1*K.1^-5,-1*K.1^8,-1*K.1^-3,-1*K.1^-6,-1*K.1^-2,-1*K.1^3,-1*K.1,-1*K.1^-1,-1*K.1^-4,-1*K.1^8,-1*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^-2,K.1^-7,K.1^-5,K.1^3,K.1^-4,K.1^-2,K.1^6,K.1^-5,K.1^4,K.1^-6,K.1^3,K.1^-2,K.1^-7,K.1,K.1,K.1^-4,K.1^-6,K.1^-5,K.1^-1,K.1,K.1^-7,K.1^8,K.1^-2,K.1^-3,K.1,K.1^5,K.1^-1,K.1^8,K.1^6,K.1^7,K.1^6,K.1^7,K.1^5,K.1^7,K.1^-4,K.1^-1,K.1^-3,K.1^-8,K.1^4,K.1^4,K.1^-4,K.1^3,K.1^2,K.1^-6,K.1^-6,K.1^-8,K.1^-8,K.1^2,K.1^-3,K.1^8,K.1^4,K.1^-7,K.1^-8,K.1^2,K.1^2,K.1^6,K.1^-1,K.1^-5,K.1^-3,K.1^5,K.1^8,K.1^3,K.1^5,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(17: Sparse := true); S := [ K |2,2,2,2,-1,-2,-2,-2,-2,-1,-1,-1,0,0,0,0,0,0,0,0,1,1,1,1,2*K.1,2*K.1^8,2*K.1^7,2*K.1^4,2*K.1^-4,2*K.1^3,2*K.1^-5,2*K.1^-6,2*K.1^-7,2*K.1^6,2*K.1^-2,2*K.1^2,2*K.1^-8,2*K.1^-1,2*K.1^-3,2*K.1^5,2*K.1^-6,2*K.1^2,2*K.1^-3,2*K.1^-8,2*K.1^2,2*K.1^-7,2*K.1^7,2*K.1^5,2*K.1^-7,2*K.1^-4,2*K.1^8,2*K.1^3,2*K.1^-4,2*K.1^-1,2*K.1^6,2*K.1^-6,2*K.1^-1,2*K.1^5,2*K.1^-1,2*K.1^3,2*K.1^-2,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^3,2*K.1^-3,2*K.1^8,2*K.1^-7,2*K.1^5,2*K.1^-6,2*K.1^-5,2*K.1^6,2*K.1^-5,2*K.1,2*K.1^7,2*K.1,2*K.1^4,2*K.1^-2,2*K.1^-8,2*K.1^4,2*K.1^6,2*K.1^-5,2*K.1,2*K.1^7,2*K.1^-4,2*K.1^2,2*K.1^8,2*K.1^-3,-1*K.1^-8,-1*K.1^-7,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1^8,-1*K.1^-3,-1*K.1^-6,-1*K.1,-1*K.1^6,-1*K.1^4,-1*K.1^-4,-1*K.1^2,-1*K.1^7,-1*K.1^5,-1*K.1^-5,-2*K.1^2,-2*K.1^-8,-2*K.1^5,-2*K.1^3,-2*K.1^-8,-2*K.1^-2,-2*K.1^-4,-2*K.1^-7,-2*K.1^-2,-2*K.1^5,-2*K.1^3,-2*K.1^-5,-2*K.1^-3,-2*K.1^6,-2*K.1^2,-2*K.1,-2*K.1^7,-2*K.1^-1,-2*K.1^-5,-2*K.1^-5,-2*K.1^5,-2*K.1^8,-2*K.1,-2*K.1^2,-2*K.1^-3,-2*K.1^3,-2*K.1^-6,-2*K.1,-2*K.1^-6,-2*K.1^-7,-2*K.1^-4,-2*K.1^-7,-2*K.1^5,-2*K.1^8,-2*K.1^-2,-2*K.1^-3,-2*K.1^6,-2*K.1^7,-2*K.1^-1,-2*K.1^-2,-2*K.1^-8,-2*K.1^3,-2*K.1^4,-2*K.1^4,-2*K.1^-1,-2*K.1^-8,-2*K.1^-6,-2*K.1^-4,-2*K.1^-7,-2*K.1^8,-2*K.1^-5,-2*K.1^-4,-2*K.1^7,-2*K.1,-2*K.1^6,-2*K.1^6,-2*K.1^-3,-2*K.1^4,-2*K.1^7,-2*K.1^8,-2*K.1^-1,-2*K.1^2,-2*K.1^4,-2*K.1^-6,-1*K.1^5,-1*K.1^-1,-1*K.1^-7,-1*K.1^7,-1*K.1^-4,-1*K.1^2,-1*K.1^-6,-1*K.1^6,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^-3,-1*K.1^8,-1*K.1^-5,-1*K.1^-7,-1*K.1^7,-1*K.1^-6,-1*K.1^-4,-1*K.1^6,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^-5,-1*K.1^7,-1*K.1^4,-1*K.1^-8,-1*K.1^8,-1*K.1^8,-1*K.1^-5,-1*K.1^-2,-1*K.1^5,-1*K.1^2,-1*K.1^4,-1*K.1^3,-1*K.1^-6,-1*K.1^5,-1*K.1^-8,-1*K.1^3,-1*K.1^6,-1*K.1^2,-1*K.1^-3,-1*K.1^-1,-1*K.1,-1*K.1^4,-1*K.1^-8,-1*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^2,K.1^7,K.1^5,K.1^-3,K.1^4,K.1^2,K.1^-6,K.1^5,K.1^-4,K.1^6,K.1^-3,K.1^2,K.1^7,K.1^-1,K.1^-1,K.1^4,K.1^6,K.1^5,K.1,K.1^-1,K.1^7,K.1^-8,K.1^2,K.1^3,K.1^-1,K.1^-5,K.1,K.1^-8,K.1^-6,K.1^-7,K.1^-6,K.1^-7,K.1^-5,K.1^-7,K.1^4,K.1,K.1^3,K.1^8,K.1^-4,K.1^-4,K.1^4,K.1^-3,K.1^-2,K.1^6,K.1^6,K.1^8,K.1^8,K.1^-2,K.1^3,K.1^-8,K.1^-4,K.1^7,K.1^8,K.1^-2,K.1^-2,K.1^-6,K.1,K.1^5,K.1^3,K.1^-5,K.1^-8,K.1^-3,K.1^-5,K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-2*K.1^2,2*K.1^16,-2*K.1^14,2*K.1^8,-2*K.1^26,-2*K.1^6,2*K.1^24,-2*K.1^22,2*K.1^20,2*K.1^12,-2*K.1^30,2*K.1^4,-2*K.1^18,2*K.1^32,2*K.1^28,-2*K.1^10,2*K.1^22,-2*K.1^4,-2*K.1^28,2*K.1^18,2*K.1^4,2*K.1^20,2*K.1^14,2*K.1^10,-2*K.1^20,2*K.1^26,-2*K.1^16,2*K.1^6,-2*K.1^26,2*K.1^32,-2*K.1^12,2*K.1^22,-2*K.1^32,2*K.1^10,-2*K.1^32,2*K.1^6,2*K.1^30,2*K.1^8,-2*K.1^30,-2*K.1^18,-2*K.1^6,2*K.1^28,2*K.1^16,-2*K.1^20,-2*K.1^10,-2*K.1^22,-2*K.1^24,2*K.1^12,2*K.1^24,-2*K.1^2,-2*K.1^14,2*K.1^2,-2*K.1^8,2*K.1^30,2*K.1^18,-2*K.1^8,-2*K.1^12,-2*K.1^24,2*K.1^2,2*K.1^14,2*K.1^26,-2*K.1^4,-2*K.1^16,-2*K.1^28,K.1^18,-1*K.1^20,-1*K.1^32,K.1^6,K.1^30,-1*K.1^16,-1*K.1^28,K.1^22,K.1^2,-1*K.1^12,-1*K.1^8,K.1^26,-1*K.1^4,K.1^14,K.1^10,-1*K.1^24,-2*K.1^21,-2*K.1,2*K.1^27,-2*K.1^23,-2*K.1,2*K.1^13,2*K.1^9,-2*K.1^3,2*K.1^13,-2*K.1^27,-2*K.1^23,2*K.1^7,-2*K.1^11,2*K.1^29,2*K.1^21,-2*K.1^19,-2*K.1^31,-2*K.1^15,-2*K.1^7,2*K.1^7,2*K.1^27,-2*K.1^33,2*K.1^19,2*K.1^21,2*K.1^11,2*K.1^23,2*K.1^5,2*K.1^19,-2*K.1^5,2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^27,-2*K.1^33,-2*K.1^13,-2*K.1^11,-2*K.1^29,2*K.1^31,2*K.1^15,-2*K.1^13,2*K.1,2*K.1^23,2*K.1^25,2*K.1^25,-2*K.1^15,2*K.1,2*K.1^5,-2*K.1^9,-2*K.1^3,2*K.1^33,-2*K.1^7,2*K.1^9,-2*K.1^31,-2*K.1^19,-2*K.1^29,2*K.1^29,2*K.1^11,-2*K.1^25,2*K.1^31,2*K.1^33,2*K.1^15,-2*K.1^21,-2*K.1^25,-2*K.1^5,-1*K.1^10,K.1^32,K.1^20,-1*K.1^14,-1*K.1^26,K.1^4,-1*K.1^22,K.1^12,-1*K.1^2,-1*K.1^30,-1*K.1^6,-1*K.1^28,K.1^16,K.1^24,K.1^20,-1*K.1^14,K.1^22,-1*K.1^26,-1*K.1^12,K.1^2,K.1^26,-1*K.1^20,K.1^30,-1*K.1^32,-1*K.1^24,K.1^14,-1*K.1^8,K.1^18,-1*K.1^16,K.1^16,K.1^24,-1*K.1^30,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,-1*K.1^22,K.1^10,-1*K.1^18,K.1^6,K.1^12,-1*K.1^4,K.1^28,K.1^32,-1*K.1^2,K.1^8,-1*K.1^18,K.1^28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^21,K.1^31,-1*K.1^27,-1*K.1^11,-1*K.1^25,K.1^21,-1*K.1^5,K.1^27,-1*K.1^9,K.1^29,K.1^11,-1*K.1^21,-1*K.1^31,-1*K.1^15,K.1^15,K.1^25,K.1^29,K.1^27,K.1^19,K.1^15,-1*K.1^31,K.1,-1*K.1^21,K.1^23,-1*K.1^15,K.1^7,-1*K.1^19,-1*K.1,K.1^5,K.1^3,K.1^5,-1*K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1^25,-1*K.1^19,-1*K.1^23,-1*K.1^33,-1*K.1^9,K.1^9,K.1^25,-1*K.1^11,K.1^13,-1*K.1^29,-1*K.1^29,K.1^33,K.1^33,-1*K.1^13,K.1^23,K.1,K.1^9,K.1^31,-1*K.1^33,K.1^13,-1*K.1^13,-1*K.1^5,K.1^19,-1*K.1^27,-1*K.1^23,K.1^7,-1*K.1,K.1^11,-1*K.1^7,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,2*K.1^32,-2*K.1^18,2*K.1^20,-2*K.1^26,2*K.1^8,2*K.1^28,-2*K.1^10,2*K.1^12,-2*K.1^14,-2*K.1^22,2*K.1^4,-2*K.1^30,2*K.1^16,-2*K.1^2,-2*K.1^6,2*K.1^24,-2*K.1^12,2*K.1^30,2*K.1^6,-2*K.1^16,-2*K.1^30,-2*K.1^14,-2*K.1^20,-2*K.1^24,2*K.1^14,-2*K.1^8,2*K.1^18,-2*K.1^28,2*K.1^8,-2*K.1^2,2*K.1^22,-2*K.1^12,2*K.1^2,-2*K.1^24,2*K.1^2,-2*K.1^28,-2*K.1^4,-2*K.1^26,2*K.1^4,2*K.1^16,2*K.1^28,-2*K.1^6,-2*K.1^18,2*K.1^14,2*K.1^24,2*K.1^12,2*K.1^10,-2*K.1^22,-2*K.1^10,2*K.1^32,2*K.1^20,-2*K.1^32,2*K.1^26,-2*K.1^4,-2*K.1^16,2*K.1^26,2*K.1^22,2*K.1^10,-2*K.1^32,-2*K.1^20,-2*K.1^8,2*K.1^30,2*K.1^18,2*K.1^6,-1*K.1^16,K.1^14,K.1^2,-1*K.1^28,-1*K.1^4,K.1^18,K.1^6,-1*K.1^12,-1*K.1^32,K.1^22,K.1^26,-1*K.1^8,K.1^30,-1*K.1^20,-1*K.1^24,K.1^10,2*K.1^13,2*K.1^33,-2*K.1^7,2*K.1^11,2*K.1^33,-2*K.1^21,-2*K.1^25,2*K.1^31,-2*K.1^21,2*K.1^7,2*K.1^11,-2*K.1^27,2*K.1^23,-2*K.1^5,-2*K.1^13,2*K.1^15,2*K.1^3,2*K.1^19,2*K.1^27,-2*K.1^27,-2*K.1^7,2*K.1,-2*K.1^15,-2*K.1^13,-2*K.1^23,-2*K.1^11,-2*K.1^29,-2*K.1^15,2*K.1^29,-2*K.1^31,2*K.1^25,-2*K.1^31,2*K.1^7,2*K.1,2*K.1^21,2*K.1^23,2*K.1^5,-2*K.1^3,-2*K.1^19,2*K.1^21,-2*K.1^33,-2*K.1^11,-2*K.1^9,-2*K.1^9,2*K.1^19,-2*K.1^33,-2*K.1^29,2*K.1^25,2*K.1^31,-2*K.1,2*K.1^27,-2*K.1^25,2*K.1^3,2*K.1^15,2*K.1^5,-2*K.1^5,-2*K.1^23,2*K.1^9,-2*K.1^3,-2*K.1,-2*K.1^19,2*K.1^13,2*K.1^9,2*K.1^29,K.1^24,-1*K.1^2,-1*K.1^14,K.1^20,K.1^8,-1*K.1^30,K.1^12,-1*K.1^22,K.1^32,K.1^4,K.1^28,K.1^6,-1*K.1^18,-1*K.1^10,-1*K.1^14,K.1^20,-1*K.1^12,K.1^8,K.1^22,-1*K.1^32,-1*K.1^8,K.1^14,-1*K.1^4,K.1^2,K.1^10,-1*K.1^20,K.1^26,-1*K.1^16,K.1^18,-1*K.1^18,-1*K.1^10,K.1^4,K.1^24,-1*K.1^30,-1*K.1^26,K.1^28,K.1^12,-1*K.1^24,K.1^16,-1*K.1^28,-1*K.1^22,K.1^30,-1*K.1^6,-1*K.1^2,K.1^32,-1*K.1^26,K.1^16,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^13,-1*K.1^3,K.1^7,K.1^23,K.1^9,-1*K.1^13,K.1^29,-1*K.1^7,K.1^25,-1*K.1^5,-1*K.1^23,K.1^13,K.1^3,K.1^19,-1*K.1^19,-1*K.1^9,-1*K.1^5,-1*K.1^7,-1*K.1^15,-1*K.1^19,K.1^3,-1*K.1^33,K.1^13,-1*K.1^11,K.1^19,-1*K.1^27,K.1^15,K.1^33,-1*K.1^29,-1*K.1^31,-1*K.1^29,K.1^31,K.1^27,K.1^31,K.1^9,K.1^15,K.1^11,K.1,K.1^25,-1*K.1^25,-1*K.1^9,K.1^23,-1*K.1^21,K.1^5,K.1^5,-1*K.1,-1*K.1,K.1^21,-1*K.1^11,-1*K.1^33,-1*K.1^25,-1*K.1^3,K.1,-1*K.1^21,K.1^21,K.1^29,-1*K.1^15,K.1^7,K.1^11,-1*K.1^27,K.1^33,-1*K.1^23,K.1^27,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,2*K.1^32,-2*K.1^18,2*K.1^20,-2*K.1^26,2*K.1^8,2*K.1^28,-2*K.1^10,2*K.1^12,-2*K.1^14,-2*K.1^22,2*K.1^4,-2*K.1^30,2*K.1^16,-2*K.1^2,-2*K.1^6,2*K.1^24,-2*K.1^12,2*K.1^30,2*K.1^6,-2*K.1^16,-2*K.1^30,-2*K.1^14,-2*K.1^20,-2*K.1^24,2*K.1^14,-2*K.1^8,2*K.1^18,-2*K.1^28,2*K.1^8,-2*K.1^2,2*K.1^22,-2*K.1^12,2*K.1^2,-2*K.1^24,2*K.1^2,-2*K.1^28,-2*K.1^4,-2*K.1^26,2*K.1^4,2*K.1^16,2*K.1^28,-2*K.1^6,-2*K.1^18,2*K.1^14,2*K.1^24,2*K.1^12,2*K.1^10,-2*K.1^22,-2*K.1^10,2*K.1^32,2*K.1^20,-2*K.1^32,2*K.1^26,-2*K.1^4,-2*K.1^16,2*K.1^26,2*K.1^22,2*K.1^10,-2*K.1^32,-2*K.1^20,-2*K.1^8,2*K.1^30,2*K.1^18,2*K.1^6,-1*K.1^16,K.1^14,K.1^2,-1*K.1^28,-1*K.1^4,K.1^18,K.1^6,-1*K.1^12,-1*K.1^32,K.1^22,K.1^26,-1*K.1^8,K.1^30,-1*K.1^20,-1*K.1^24,K.1^10,-2*K.1^13,-2*K.1^33,2*K.1^7,-2*K.1^11,-2*K.1^33,2*K.1^21,2*K.1^25,-2*K.1^31,2*K.1^21,-2*K.1^7,-2*K.1^11,2*K.1^27,-2*K.1^23,2*K.1^5,2*K.1^13,-2*K.1^15,-2*K.1^3,-2*K.1^19,-2*K.1^27,2*K.1^27,2*K.1^7,-2*K.1,2*K.1^15,2*K.1^13,2*K.1^23,2*K.1^11,2*K.1^29,2*K.1^15,-2*K.1^29,2*K.1^31,-2*K.1^25,2*K.1^31,-2*K.1^7,-2*K.1,-2*K.1^21,-2*K.1^23,-2*K.1^5,2*K.1^3,2*K.1^19,-2*K.1^21,2*K.1^33,2*K.1^11,2*K.1^9,2*K.1^9,-2*K.1^19,2*K.1^33,2*K.1^29,-2*K.1^25,-2*K.1^31,2*K.1,-2*K.1^27,2*K.1^25,-2*K.1^3,-2*K.1^15,-2*K.1^5,2*K.1^5,2*K.1^23,-2*K.1^9,2*K.1^3,2*K.1,2*K.1^19,-2*K.1^13,-2*K.1^9,-2*K.1^29,K.1^24,-1*K.1^2,-1*K.1^14,K.1^20,K.1^8,-1*K.1^30,K.1^12,-1*K.1^22,K.1^32,K.1^4,K.1^28,K.1^6,-1*K.1^18,-1*K.1^10,-1*K.1^14,K.1^20,-1*K.1^12,K.1^8,K.1^22,-1*K.1^32,-1*K.1^8,K.1^14,-1*K.1^4,K.1^2,K.1^10,-1*K.1^20,K.1^26,-1*K.1^16,K.1^18,-1*K.1^18,-1*K.1^10,K.1^4,K.1^24,-1*K.1^30,-1*K.1^26,K.1^28,K.1^12,-1*K.1^24,K.1^16,-1*K.1^28,-1*K.1^22,K.1^30,-1*K.1^6,-1*K.1^2,K.1^32,-1*K.1^26,K.1^16,-1*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^13,K.1^3,-1*K.1^7,-1*K.1^23,-1*K.1^9,K.1^13,-1*K.1^29,K.1^7,-1*K.1^25,K.1^5,K.1^23,-1*K.1^13,-1*K.1^3,-1*K.1^19,K.1^19,K.1^9,K.1^5,K.1^7,K.1^15,K.1^19,-1*K.1^3,K.1^33,-1*K.1^13,K.1^11,-1*K.1^19,K.1^27,-1*K.1^15,-1*K.1^33,K.1^29,K.1^31,K.1^29,-1*K.1^31,-1*K.1^27,-1*K.1^31,-1*K.1^9,-1*K.1^15,-1*K.1^11,-1*K.1,-1*K.1^25,K.1^25,K.1^9,-1*K.1^23,K.1^21,-1*K.1^5,-1*K.1^5,K.1,K.1,-1*K.1^21,K.1^11,K.1^33,K.1^25,K.1^3,-1*K.1,K.1^21,-1*K.1^21,-1*K.1^29,K.1^15,-1*K.1^7,-1*K.1^11,K.1^27,-1*K.1^33,K.1^23,-1*K.1^27,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-2*K.1^2,2*K.1^16,-2*K.1^14,2*K.1^8,-2*K.1^26,-2*K.1^6,2*K.1^24,-2*K.1^22,2*K.1^20,2*K.1^12,-2*K.1^30,2*K.1^4,-2*K.1^18,2*K.1^32,2*K.1^28,-2*K.1^10,2*K.1^22,-2*K.1^4,-2*K.1^28,2*K.1^18,2*K.1^4,2*K.1^20,2*K.1^14,2*K.1^10,-2*K.1^20,2*K.1^26,-2*K.1^16,2*K.1^6,-2*K.1^26,2*K.1^32,-2*K.1^12,2*K.1^22,-2*K.1^32,2*K.1^10,-2*K.1^32,2*K.1^6,2*K.1^30,2*K.1^8,-2*K.1^30,-2*K.1^18,-2*K.1^6,2*K.1^28,2*K.1^16,-2*K.1^20,-2*K.1^10,-2*K.1^22,-2*K.1^24,2*K.1^12,2*K.1^24,-2*K.1^2,-2*K.1^14,2*K.1^2,-2*K.1^8,2*K.1^30,2*K.1^18,-2*K.1^8,-2*K.1^12,-2*K.1^24,2*K.1^2,2*K.1^14,2*K.1^26,-2*K.1^4,-2*K.1^16,-2*K.1^28,K.1^18,-1*K.1^20,-1*K.1^32,K.1^6,K.1^30,-1*K.1^16,-1*K.1^28,K.1^22,K.1^2,-1*K.1^12,-1*K.1^8,K.1^26,-1*K.1^4,K.1^14,K.1^10,-1*K.1^24,2*K.1^21,2*K.1,-2*K.1^27,2*K.1^23,2*K.1,-2*K.1^13,-2*K.1^9,2*K.1^3,-2*K.1^13,2*K.1^27,2*K.1^23,-2*K.1^7,2*K.1^11,-2*K.1^29,-2*K.1^21,2*K.1^19,2*K.1^31,2*K.1^15,2*K.1^7,-2*K.1^7,-2*K.1^27,2*K.1^33,-2*K.1^19,-2*K.1^21,-2*K.1^11,-2*K.1^23,-2*K.1^5,-2*K.1^19,2*K.1^5,-2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^27,2*K.1^33,2*K.1^13,2*K.1^11,2*K.1^29,-2*K.1^31,-2*K.1^15,2*K.1^13,-2*K.1,-2*K.1^23,-2*K.1^25,-2*K.1^25,2*K.1^15,-2*K.1,-2*K.1^5,2*K.1^9,2*K.1^3,-2*K.1^33,2*K.1^7,-2*K.1^9,2*K.1^31,2*K.1^19,2*K.1^29,-2*K.1^29,-2*K.1^11,2*K.1^25,-2*K.1^31,-2*K.1^33,-2*K.1^15,2*K.1^21,2*K.1^25,2*K.1^5,-1*K.1^10,K.1^32,K.1^20,-1*K.1^14,-1*K.1^26,K.1^4,-1*K.1^22,K.1^12,-1*K.1^2,-1*K.1^30,-1*K.1^6,-1*K.1^28,K.1^16,K.1^24,K.1^20,-1*K.1^14,K.1^22,-1*K.1^26,-1*K.1^12,K.1^2,K.1^26,-1*K.1^20,K.1^30,-1*K.1^32,-1*K.1^24,K.1^14,-1*K.1^8,K.1^18,-1*K.1^16,K.1^16,K.1^24,-1*K.1^30,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,-1*K.1^22,K.1^10,-1*K.1^18,K.1^6,K.1^12,-1*K.1^4,K.1^28,K.1^32,-1*K.1^2,K.1^8,-1*K.1^18,K.1^28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^21,-1*K.1^31,K.1^27,K.1^11,K.1^25,-1*K.1^21,K.1^5,-1*K.1^27,K.1^9,-1*K.1^29,-1*K.1^11,K.1^21,K.1^31,K.1^15,-1*K.1^15,-1*K.1^25,-1*K.1^29,-1*K.1^27,-1*K.1^19,-1*K.1^15,K.1^31,-1*K.1,K.1^21,-1*K.1^23,K.1^15,-1*K.1^7,K.1^19,K.1,-1*K.1^5,-1*K.1^3,-1*K.1^5,K.1^3,K.1^7,K.1^3,K.1^25,K.1^19,K.1^23,K.1^33,K.1^9,-1*K.1^9,-1*K.1^25,K.1^11,-1*K.1^13,K.1^29,K.1^29,-1*K.1^33,-1*K.1^33,K.1^13,-1*K.1^23,-1*K.1,-1*K.1^9,-1*K.1^31,K.1^33,-1*K.1^13,K.1^13,K.1^5,-1*K.1^19,K.1^27,K.1^23,-1*K.1^7,K.1,-1*K.1^11,K.1^7,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-2*K.1^6,-2*K.1^14,2*K.1^8,2*K.1^24,-2*K.1^10,-2*K.1^18,2*K.1^4,2*K.1^32,-2*K.1^26,-2*K.1^2,-2*K.1^22,2*K.1^12,2*K.1^20,2*K.1^28,2*K.1^16,-2*K.1^30,-2*K.1^32,-2*K.1^12,-2*K.1^16,-2*K.1^20,2*K.1^12,-2*K.1^26,-2*K.1^8,2*K.1^30,2*K.1^26,2*K.1^10,2*K.1^14,2*K.1^18,-2*K.1^10,2*K.1^28,2*K.1^2,-2*K.1^32,-2*K.1^28,2*K.1^30,-2*K.1^28,2*K.1^18,2*K.1^22,2*K.1^24,-2*K.1^22,2*K.1^20,-2*K.1^18,2*K.1^16,-2*K.1^14,2*K.1^26,-2*K.1^30,2*K.1^32,-2*K.1^4,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,2*K.1^6,-2*K.1^24,2*K.1^22,-2*K.1^20,-2*K.1^24,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^10,-2*K.1^12,2*K.1^14,-2*K.1^16,-1*K.1^20,K.1^26,-1*K.1^28,K.1^18,K.1^22,K.1^14,-1*K.1^16,-1*K.1^32,K.1^6,K.1^2,-1*K.1^24,K.1^10,-1*K.1^12,-1*K.1^8,K.1^30,-1*K.1^4,-2*K.1^29,2*K.1^3,-2*K.1^13,2*K.1,2*K.1^3,2*K.1^5,-2*K.1^27,2*K.1^9,2*K.1^5,2*K.1^13,2*K.1,-2*K.1^21,2*K.1^33,-2*K.1^19,2*K.1^29,-2*K.1^23,2*K.1^25,-2*K.1^11,2*K.1^21,-2*K.1^21,-2*K.1^13,2*K.1^31,2*K.1^23,2*K.1^29,-2*K.1^33,-2*K.1,-2*K.1^15,2*K.1^23,2*K.1^15,-2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^13,2*K.1^31,-2*K.1^5,2*K.1^33,2*K.1^19,-2*K.1^25,2*K.1^11,-2*K.1^5,-2*K.1^3,-2*K.1,-2*K.1^7,-2*K.1^7,-2*K.1^11,-2*K.1^3,-2*K.1^15,2*K.1^27,2*K.1^9,-2*K.1^31,2*K.1^21,-2*K.1^27,2*K.1^25,-2*K.1^23,2*K.1^19,-2*K.1^19,-2*K.1^33,2*K.1^7,-2*K.1^25,-2*K.1^31,2*K.1^11,-2*K.1^29,2*K.1^7,2*K.1^15,-1*K.1^30,K.1^28,-1*K.1^26,K.1^8,-1*K.1^10,K.1^12,K.1^32,-1*K.1^2,-1*K.1^6,-1*K.1^22,-1*K.1^18,-1*K.1^16,-1*K.1^14,K.1^4,-1*K.1^26,K.1^8,-1*K.1^32,-1*K.1^10,K.1^2,K.1^6,K.1^10,K.1^26,K.1^22,-1*K.1^28,-1*K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^20,K.1^14,-1*K.1^14,K.1^4,-1*K.1^22,-1*K.1^30,K.1^12,K.1^24,-1*K.1^18,K.1^32,K.1^30,K.1^20,K.1^18,-1*K.1^2,-1*K.1^12,K.1^16,K.1^28,-1*K.1^6,K.1^24,K.1^20,K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^29,-1*K.1^25,K.1^13,K.1^33,K.1^7,K.1^29,K.1^15,-1*K.1^13,K.1^27,-1*K.1^19,-1*K.1^33,-1*K.1^29,K.1^25,-1*K.1^11,K.1^11,-1*K.1^7,-1*K.1^19,-1*K.1^13,K.1^23,K.1^11,K.1^25,-1*K.1^3,-1*K.1^29,-1*K.1,-1*K.1^11,-1*K.1^21,-1*K.1^23,K.1^3,-1*K.1^15,-1*K.1^9,-1*K.1^15,K.1^9,K.1^21,K.1^9,K.1^7,-1*K.1^23,K.1,K.1^31,K.1^27,-1*K.1^27,-1*K.1^7,K.1^33,K.1^5,K.1^19,K.1^19,-1*K.1^31,-1*K.1^31,-1*K.1^5,-1*K.1,-1*K.1^3,-1*K.1^27,-1*K.1^25,K.1^31,K.1^5,-1*K.1^5,K.1^15,K.1^23,K.1^13,K.1,-1*K.1^21,K.1^3,-1*K.1^33,K.1^21,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,2*K.1^28,2*K.1^20,-2*K.1^26,-2*K.1^10,2*K.1^24,2*K.1^16,-2*K.1^30,-2*K.1^2,2*K.1^8,2*K.1^32,2*K.1^12,-2*K.1^22,-2*K.1^14,-2*K.1^6,-2*K.1^18,2*K.1^4,2*K.1^2,2*K.1^22,2*K.1^18,2*K.1^14,-2*K.1^22,2*K.1^8,2*K.1^26,-2*K.1^4,-2*K.1^8,-2*K.1^24,-2*K.1^20,-2*K.1^16,2*K.1^24,-2*K.1^6,-2*K.1^32,2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^16,-2*K.1^12,-2*K.1^10,2*K.1^12,-2*K.1^14,2*K.1^16,-2*K.1^18,2*K.1^20,-2*K.1^8,2*K.1^4,-2*K.1^2,2*K.1^30,2*K.1^32,-2*K.1^30,2*K.1^28,-2*K.1^26,-2*K.1^28,2*K.1^10,-2*K.1^12,2*K.1^14,2*K.1^10,-2*K.1^32,2*K.1^30,-2*K.1^28,2*K.1^26,-2*K.1^24,2*K.1^22,-2*K.1^20,2*K.1^18,K.1^14,-1*K.1^8,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^20,K.1^18,K.1^2,-1*K.1^28,-1*K.1^32,K.1^10,-1*K.1^24,K.1^22,K.1^26,-1*K.1^4,K.1^30,2*K.1^5,-2*K.1^31,2*K.1^21,-2*K.1^33,-2*K.1^31,-2*K.1^29,2*K.1^7,-2*K.1^25,-2*K.1^29,-2*K.1^21,-2*K.1^33,2*K.1^13,-2*K.1,2*K.1^15,-2*K.1^5,2*K.1^11,-2*K.1^9,2*K.1^23,-2*K.1^13,2*K.1^13,2*K.1^21,-2*K.1^3,-2*K.1^11,-2*K.1^5,2*K.1,2*K.1^33,2*K.1^19,-2*K.1^11,-2*K.1^19,2*K.1^25,-2*K.1^7,2*K.1^25,-2*K.1^21,-2*K.1^3,2*K.1^29,-2*K.1,-2*K.1^15,2*K.1^9,-2*K.1^23,2*K.1^29,2*K.1^31,2*K.1^33,2*K.1^27,2*K.1^27,2*K.1^23,2*K.1^31,2*K.1^19,-2*K.1^7,-2*K.1^25,2*K.1^3,-2*K.1^13,2*K.1^7,-2*K.1^9,2*K.1^11,-2*K.1^15,2*K.1^15,2*K.1,-2*K.1^27,2*K.1^9,2*K.1^3,-2*K.1^23,2*K.1^5,-2*K.1^27,-2*K.1^19,K.1^4,-1*K.1^6,K.1^8,-1*K.1^26,K.1^24,-1*K.1^22,-1*K.1^2,K.1^32,K.1^28,K.1^12,K.1^16,K.1^18,K.1^20,-1*K.1^30,K.1^8,-1*K.1^26,K.1^2,K.1^24,-1*K.1^32,-1*K.1^28,-1*K.1^24,-1*K.1^8,-1*K.1^12,K.1^6,K.1^30,K.1^26,K.1^10,K.1^14,-1*K.1^20,K.1^20,-1*K.1^30,K.1^12,K.1^4,-1*K.1^22,-1*K.1^10,K.1^16,-1*K.1^2,-1*K.1^4,-1*K.1^14,-1*K.1^16,K.1^32,K.1^22,-1*K.1^18,-1*K.1^6,K.1^28,-1*K.1^10,-1*K.1^14,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5,K.1^9,-1*K.1^21,-1*K.1,-1*K.1^27,-1*K.1^5,-1*K.1^19,K.1^21,-1*K.1^7,K.1^15,K.1,K.1^5,-1*K.1^9,K.1^23,-1*K.1^23,K.1^27,K.1^15,K.1^21,-1*K.1^11,-1*K.1^23,-1*K.1^9,K.1^31,K.1^5,K.1^33,K.1^23,K.1^13,K.1^11,-1*K.1^31,K.1^19,K.1^25,K.1^19,-1*K.1^25,-1*K.1^13,-1*K.1^25,-1*K.1^27,K.1^11,-1*K.1^33,-1*K.1^3,-1*K.1^7,K.1^7,K.1^27,-1*K.1,-1*K.1^29,-1*K.1^15,-1*K.1^15,K.1^3,K.1^3,K.1^29,K.1^33,K.1^31,K.1^7,K.1^9,-1*K.1^3,-1*K.1^29,K.1^29,-1*K.1^19,-1*K.1^11,-1*K.1^21,-1*K.1^33,K.1^13,-1*K.1^31,K.1,-1*K.1^13,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,2*K.1^28,2*K.1^20,-2*K.1^26,-2*K.1^10,2*K.1^24,2*K.1^16,-2*K.1^30,-2*K.1^2,2*K.1^8,2*K.1^32,2*K.1^12,-2*K.1^22,-2*K.1^14,-2*K.1^6,-2*K.1^18,2*K.1^4,2*K.1^2,2*K.1^22,2*K.1^18,2*K.1^14,-2*K.1^22,2*K.1^8,2*K.1^26,-2*K.1^4,-2*K.1^8,-2*K.1^24,-2*K.1^20,-2*K.1^16,2*K.1^24,-2*K.1^6,-2*K.1^32,2*K.1^2,2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^16,-2*K.1^12,-2*K.1^10,2*K.1^12,-2*K.1^14,2*K.1^16,-2*K.1^18,2*K.1^20,-2*K.1^8,2*K.1^4,-2*K.1^2,2*K.1^30,2*K.1^32,-2*K.1^30,2*K.1^28,-2*K.1^26,-2*K.1^28,2*K.1^10,-2*K.1^12,2*K.1^14,2*K.1^10,-2*K.1^32,2*K.1^30,-2*K.1^28,2*K.1^26,-2*K.1^24,2*K.1^22,-2*K.1^20,2*K.1^18,K.1^14,-1*K.1^8,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^20,K.1^18,K.1^2,-1*K.1^28,-1*K.1^32,K.1^10,-1*K.1^24,K.1^22,K.1^26,-1*K.1^4,K.1^30,-2*K.1^5,2*K.1^31,-2*K.1^21,2*K.1^33,2*K.1^31,2*K.1^29,-2*K.1^7,2*K.1^25,2*K.1^29,2*K.1^21,2*K.1^33,-2*K.1^13,2*K.1,-2*K.1^15,2*K.1^5,-2*K.1^11,2*K.1^9,-2*K.1^23,2*K.1^13,-2*K.1^13,-2*K.1^21,2*K.1^3,2*K.1^11,2*K.1^5,-2*K.1,-2*K.1^33,-2*K.1^19,2*K.1^11,2*K.1^19,-2*K.1^25,2*K.1^7,-2*K.1^25,2*K.1^21,2*K.1^3,-2*K.1^29,2*K.1,2*K.1^15,-2*K.1^9,2*K.1^23,-2*K.1^29,-2*K.1^31,-2*K.1^33,-2*K.1^27,-2*K.1^27,-2*K.1^23,-2*K.1^31,-2*K.1^19,2*K.1^7,2*K.1^25,-2*K.1^3,2*K.1^13,-2*K.1^7,2*K.1^9,-2*K.1^11,2*K.1^15,-2*K.1^15,-2*K.1,2*K.1^27,-2*K.1^9,-2*K.1^3,2*K.1^23,-2*K.1^5,2*K.1^27,2*K.1^19,K.1^4,-1*K.1^6,K.1^8,-1*K.1^26,K.1^24,-1*K.1^22,-1*K.1^2,K.1^32,K.1^28,K.1^12,K.1^16,K.1^18,K.1^20,-1*K.1^30,K.1^8,-1*K.1^26,K.1^2,K.1^24,-1*K.1^32,-1*K.1^28,-1*K.1^24,-1*K.1^8,-1*K.1^12,K.1^6,K.1^30,K.1^26,K.1^10,K.1^14,-1*K.1^20,K.1^20,-1*K.1^30,K.1^12,K.1^4,-1*K.1^22,-1*K.1^10,K.1^16,-1*K.1^2,-1*K.1^4,-1*K.1^14,-1*K.1^16,K.1^32,K.1^22,-1*K.1^18,-1*K.1^6,K.1^28,-1*K.1^10,-1*K.1^14,-1*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5,-1*K.1^9,K.1^21,K.1,K.1^27,K.1^5,K.1^19,-1*K.1^21,K.1^7,-1*K.1^15,-1*K.1,-1*K.1^5,K.1^9,-1*K.1^23,K.1^23,-1*K.1^27,-1*K.1^15,-1*K.1^21,K.1^11,K.1^23,K.1^9,-1*K.1^31,-1*K.1^5,-1*K.1^33,-1*K.1^23,-1*K.1^13,-1*K.1^11,K.1^31,-1*K.1^19,-1*K.1^25,-1*K.1^19,K.1^25,K.1^13,K.1^25,K.1^27,-1*K.1^11,K.1^33,K.1^3,K.1^7,-1*K.1^7,-1*K.1^27,K.1,K.1^29,K.1^15,K.1^15,-1*K.1^3,-1*K.1^3,-1*K.1^29,-1*K.1^33,-1*K.1^31,-1*K.1^7,-1*K.1^9,K.1^3,K.1^29,-1*K.1^29,K.1^19,K.1^11,K.1^21,K.1^33,-1*K.1^13,K.1^31,-1*K.1,K.1^13,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-2*K.1^6,-2*K.1^14,2*K.1^8,2*K.1^24,-2*K.1^10,-2*K.1^18,2*K.1^4,2*K.1^32,-2*K.1^26,-2*K.1^2,-2*K.1^22,2*K.1^12,2*K.1^20,2*K.1^28,2*K.1^16,-2*K.1^30,-2*K.1^32,-2*K.1^12,-2*K.1^16,-2*K.1^20,2*K.1^12,-2*K.1^26,-2*K.1^8,2*K.1^30,2*K.1^26,2*K.1^10,2*K.1^14,2*K.1^18,-2*K.1^10,2*K.1^28,2*K.1^2,-2*K.1^32,-2*K.1^28,2*K.1^30,-2*K.1^28,2*K.1^18,2*K.1^22,2*K.1^24,-2*K.1^22,2*K.1^20,-2*K.1^18,2*K.1^16,-2*K.1^14,2*K.1^26,-2*K.1^30,2*K.1^32,-2*K.1^4,-2*K.1^2,2*K.1^4,-2*K.1^6,2*K.1^8,2*K.1^6,-2*K.1^24,2*K.1^22,-2*K.1^20,-2*K.1^24,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^10,-2*K.1^12,2*K.1^14,-2*K.1^16,-1*K.1^20,K.1^26,-1*K.1^28,K.1^18,K.1^22,K.1^14,-1*K.1^16,-1*K.1^32,K.1^6,K.1^2,-1*K.1^24,K.1^10,-1*K.1^12,-1*K.1^8,K.1^30,-1*K.1^4,2*K.1^29,-2*K.1^3,2*K.1^13,-2*K.1,-2*K.1^3,-2*K.1^5,2*K.1^27,-2*K.1^9,-2*K.1^5,-2*K.1^13,-2*K.1,2*K.1^21,-2*K.1^33,2*K.1^19,-2*K.1^29,2*K.1^23,-2*K.1^25,2*K.1^11,-2*K.1^21,2*K.1^21,2*K.1^13,-2*K.1^31,-2*K.1^23,-2*K.1^29,2*K.1^33,2*K.1,2*K.1^15,-2*K.1^23,-2*K.1^15,2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^13,-2*K.1^31,2*K.1^5,-2*K.1^33,-2*K.1^19,2*K.1^25,-2*K.1^11,2*K.1^5,2*K.1^3,2*K.1,2*K.1^7,2*K.1^7,2*K.1^11,2*K.1^3,2*K.1^15,-2*K.1^27,-2*K.1^9,2*K.1^31,-2*K.1^21,2*K.1^27,-2*K.1^25,2*K.1^23,-2*K.1^19,2*K.1^19,2*K.1^33,-2*K.1^7,2*K.1^25,2*K.1^31,-2*K.1^11,2*K.1^29,-2*K.1^7,-2*K.1^15,-1*K.1^30,K.1^28,-1*K.1^26,K.1^8,-1*K.1^10,K.1^12,K.1^32,-1*K.1^2,-1*K.1^6,-1*K.1^22,-1*K.1^18,-1*K.1^16,-1*K.1^14,K.1^4,-1*K.1^26,K.1^8,-1*K.1^32,-1*K.1^10,K.1^2,K.1^6,K.1^10,K.1^26,K.1^22,-1*K.1^28,-1*K.1^4,-1*K.1^8,-1*K.1^24,-1*K.1^20,K.1^14,-1*K.1^14,K.1^4,-1*K.1^22,-1*K.1^30,K.1^12,K.1^24,-1*K.1^18,K.1^32,K.1^30,K.1^20,K.1^18,-1*K.1^2,-1*K.1^12,K.1^16,K.1^28,-1*K.1^6,K.1^24,K.1^20,K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^29,K.1^25,-1*K.1^13,-1*K.1^33,-1*K.1^7,-1*K.1^29,-1*K.1^15,K.1^13,-1*K.1^27,K.1^19,K.1^33,K.1^29,-1*K.1^25,K.1^11,-1*K.1^11,K.1^7,K.1^19,K.1^13,-1*K.1^23,-1*K.1^11,-1*K.1^25,K.1^3,K.1^29,K.1,K.1^11,K.1^21,K.1^23,-1*K.1^3,K.1^15,K.1^9,K.1^15,-1*K.1^9,-1*K.1^21,-1*K.1^9,-1*K.1^7,K.1^23,-1*K.1,-1*K.1^31,-1*K.1^27,K.1^27,K.1^7,-1*K.1^33,-1*K.1^5,-1*K.1^19,-1*K.1^19,K.1^31,K.1^31,K.1^5,K.1,K.1^3,K.1^27,K.1^25,-1*K.1^31,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^23,-1*K.1^13,-1*K.1,K.1^21,-1*K.1^3,K.1^33,-1*K.1^21,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-2*K.1^10,2*K.1^12,-2*K.1^2,-2*K.1^6,2*K.1^28,-2*K.1^30,-2*K.1^18,2*K.1^8,2*K.1^32,-2*K.1^26,-2*K.1^14,2*K.1^20,-2*K.1^22,2*K.1^24,2*K.1^4,2*K.1^16,-2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^22,2*K.1^20,2*K.1^32,2*K.1^2,-2*K.1^16,-2*K.1^32,-2*K.1^28,-2*K.1^12,2*K.1^30,2*K.1^28,2*K.1^24,2*K.1^26,-2*K.1^8,-2*K.1^24,-2*K.1^16,-2*K.1^24,2*K.1^30,2*K.1^14,-2*K.1^6,-2*K.1^14,-2*K.1^22,-2*K.1^30,2*K.1^4,2*K.1^12,-2*K.1^32,2*K.1^16,2*K.1^8,2*K.1^18,-2*K.1^26,-2*K.1^18,-2*K.1^10,-2*K.1^2,2*K.1^10,2*K.1^6,2*K.1^14,2*K.1^22,2*K.1^6,2*K.1^26,2*K.1^18,2*K.1^10,2*K.1^2,-2*K.1^28,-2*K.1^20,-2*K.1^12,-2*K.1^4,K.1^22,-1*K.1^32,-1*K.1^24,K.1^30,K.1^14,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,K.1^26,K.1^6,-1*K.1^28,-1*K.1^20,K.1^2,-1*K.1^16,K.1^18,2*K.1^3,-2*K.1^5,-2*K.1^33,2*K.1^13,-2*K.1^5,-2*K.1^31,-2*K.1^11,-2*K.1^15,-2*K.1^31,2*K.1^33,2*K.1^13,-2*K.1,2*K.1^21,2*K.1^9,-2*K.1^3,-2*K.1^27,-2*K.1^19,-2*K.1^7,2*K.1,-2*K.1,-2*K.1^33,-2*K.1^29,2*K.1^27,-2*K.1^3,-2*K.1^21,-2*K.1^13,2*K.1^25,2*K.1^27,-2*K.1^25,2*K.1^15,2*K.1^11,2*K.1^15,2*K.1^33,-2*K.1^29,2*K.1^31,2*K.1^21,-2*K.1^9,2*K.1^19,2*K.1^7,2*K.1^31,2*K.1^5,-2*K.1^13,-2*K.1^23,-2*K.1^23,-2*K.1^7,2*K.1^5,2*K.1^25,2*K.1^11,-2*K.1^15,2*K.1^29,2*K.1,-2*K.1^11,-2*K.1^19,-2*K.1^27,-2*K.1^9,2*K.1^9,-2*K.1^21,2*K.1^23,2*K.1^19,2*K.1^29,2*K.1^7,2*K.1^3,2*K.1^23,-2*K.1^25,K.1^16,K.1^24,K.1^32,-1*K.1^2,K.1^28,K.1^20,K.1^8,-1*K.1^26,-1*K.1^10,-1*K.1^14,-1*K.1^30,-1*K.1^4,K.1^12,-1*K.1^18,K.1^32,-1*K.1^2,-1*K.1^8,K.1^28,K.1^26,K.1^10,-1*K.1^28,-1*K.1^32,K.1^14,-1*K.1^24,K.1^18,K.1^2,K.1^6,K.1^22,-1*K.1^12,K.1^12,-1*K.1^18,-1*K.1^14,K.1^16,K.1^20,-1*K.1^6,-1*K.1^30,K.1^8,-1*K.1^16,-1*K.1^22,K.1^30,-1*K.1^26,-1*K.1^20,K.1^4,K.1^24,-1*K.1^10,-1*K.1^6,-1*K.1^22,K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,K.1^19,K.1^33,K.1^21,K.1^23,-1*K.1^3,-1*K.1^25,-1*K.1^33,K.1^11,K.1^9,-1*K.1^21,K.1^3,-1*K.1^19,-1*K.1^7,K.1^7,-1*K.1^23,K.1^9,-1*K.1^33,K.1^27,K.1^7,-1*K.1^19,K.1^5,K.1^3,-1*K.1^13,-1*K.1^7,-1*K.1,-1*K.1^27,-1*K.1^5,K.1^25,K.1^15,K.1^25,-1*K.1^15,K.1,-1*K.1^15,K.1^23,-1*K.1^27,K.1^13,-1*K.1^29,K.1^11,-1*K.1^11,-1*K.1^23,K.1^21,-1*K.1^31,-1*K.1^9,-1*K.1^9,K.1^29,K.1^29,K.1^31,-1*K.1^13,K.1^5,-1*K.1^11,K.1^19,-1*K.1^29,-1*K.1^31,K.1^31,-1*K.1^25,K.1^27,K.1^33,K.1^13,-1*K.1,-1*K.1^5,-1*K.1^21,K.1,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,2*K.1^24,-2*K.1^22,2*K.1^32,2*K.1^28,-2*K.1^6,2*K.1^4,2*K.1^16,-2*K.1^26,-2*K.1^2,2*K.1^8,2*K.1^20,-2*K.1^14,2*K.1^12,-2*K.1^10,-2*K.1^30,-2*K.1^18,2*K.1^26,2*K.1^14,2*K.1^30,-2*K.1^12,-2*K.1^14,-2*K.1^2,-2*K.1^32,2*K.1^18,2*K.1^2,2*K.1^6,2*K.1^22,-2*K.1^4,-2*K.1^6,-2*K.1^10,-2*K.1^8,2*K.1^26,2*K.1^10,2*K.1^18,2*K.1^10,-2*K.1^4,-2*K.1^20,2*K.1^28,2*K.1^20,2*K.1^12,2*K.1^4,-2*K.1^30,-2*K.1^22,2*K.1^2,-2*K.1^18,-2*K.1^26,-2*K.1^16,2*K.1^8,2*K.1^16,2*K.1^24,2*K.1^32,-2*K.1^24,-2*K.1^28,-2*K.1^20,-2*K.1^12,-2*K.1^28,-2*K.1^8,-2*K.1^16,-2*K.1^24,-2*K.1^32,2*K.1^6,2*K.1^14,2*K.1^22,2*K.1^30,-1*K.1^12,K.1^2,K.1^10,-1*K.1^4,-1*K.1^20,K.1^22,K.1^30,K.1^26,-1*K.1^24,-1*K.1^8,-1*K.1^28,K.1^6,K.1^14,-1*K.1^32,K.1^18,-1*K.1^16,-2*K.1^31,2*K.1^29,2*K.1,-2*K.1^21,2*K.1^29,2*K.1^3,2*K.1^23,2*K.1^19,2*K.1^3,-2*K.1,-2*K.1^21,2*K.1^33,-2*K.1^13,-2*K.1^25,2*K.1^31,2*K.1^7,2*K.1^15,2*K.1^27,-2*K.1^33,2*K.1^33,2*K.1,2*K.1^5,-2*K.1^7,2*K.1^31,2*K.1^13,2*K.1^21,-2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1^19,-2*K.1^23,-2*K.1^19,-2*K.1,2*K.1^5,-2*K.1^3,-2*K.1^13,2*K.1^25,-2*K.1^15,-2*K.1^27,-2*K.1^3,-2*K.1^29,2*K.1^21,2*K.1^11,2*K.1^11,2*K.1^27,-2*K.1^29,-2*K.1^9,-2*K.1^23,2*K.1^19,-2*K.1^5,-2*K.1^33,2*K.1^23,2*K.1^15,2*K.1^7,2*K.1^25,-2*K.1^25,2*K.1^13,-2*K.1^11,-2*K.1^15,-2*K.1^5,-2*K.1^27,-2*K.1^31,-2*K.1^11,2*K.1^9,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^32,-1*K.1^6,-1*K.1^14,-1*K.1^26,K.1^8,K.1^24,K.1^20,K.1^4,K.1^30,-1*K.1^22,K.1^16,-1*K.1^2,K.1^32,K.1^26,-1*K.1^6,-1*K.1^8,-1*K.1^24,K.1^6,K.1^2,-1*K.1^20,K.1^10,-1*K.1^16,-1*K.1^32,-1*K.1^28,-1*K.1^12,K.1^22,-1*K.1^22,K.1^16,K.1^20,-1*K.1^18,-1*K.1^14,K.1^28,K.1^4,-1*K.1^26,K.1^18,K.1^12,-1*K.1^4,K.1^8,K.1^14,-1*K.1^30,-1*K.1^10,K.1^24,K.1^28,K.1^12,-1*K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^31,-1*K.1^15,-1*K.1,-1*K.1^13,-1*K.1^11,K.1^31,K.1^9,K.1,-1*K.1^23,-1*K.1^25,K.1^13,-1*K.1^31,K.1^15,K.1^27,-1*K.1^27,K.1^11,-1*K.1^25,K.1,-1*K.1^7,-1*K.1^27,K.1^15,-1*K.1^29,-1*K.1^31,K.1^21,K.1^27,K.1^33,K.1^7,K.1^29,-1*K.1^9,-1*K.1^19,-1*K.1^9,K.1^19,-1*K.1^33,K.1^19,-1*K.1^11,K.1^7,-1*K.1^21,K.1^5,-1*K.1^23,K.1^23,K.1^11,-1*K.1^13,K.1^3,K.1^25,K.1^25,-1*K.1^5,-1*K.1^5,-1*K.1^3,K.1^21,-1*K.1^29,K.1^23,-1*K.1^15,K.1^5,K.1^3,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1,-1*K.1^21,K.1^33,K.1^29,K.1^13,-1*K.1^33,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,2*K.1^24,-2*K.1^22,2*K.1^32,2*K.1^28,-2*K.1^6,2*K.1^4,2*K.1^16,-2*K.1^26,-2*K.1^2,2*K.1^8,2*K.1^20,-2*K.1^14,2*K.1^12,-2*K.1^10,-2*K.1^30,-2*K.1^18,2*K.1^26,2*K.1^14,2*K.1^30,-2*K.1^12,-2*K.1^14,-2*K.1^2,-2*K.1^32,2*K.1^18,2*K.1^2,2*K.1^6,2*K.1^22,-2*K.1^4,-2*K.1^6,-2*K.1^10,-2*K.1^8,2*K.1^26,2*K.1^10,2*K.1^18,2*K.1^10,-2*K.1^4,-2*K.1^20,2*K.1^28,2*K.1^20,2*K.1^12,2*K.1^4,-2*K.1^30,-2*K.1^22,2*K.1^2,-2*K.1^18,-2*K.1^26,-2*K.1^16,2*K.1^8,2*K.1^16,2*K.1^24,2*K.1^32,-2*K.1^24,-2*K.1^28,-2*K.1^20,-2*K.1^12,-2*K.1^28,-2*K.1^8,-2*K.1^16,-2*K.1^24,-2*K.1^32,2*K.1^6,2*K.1^14,2*K.1^22,2*K.1^30,-1*K.1^12,K.1^2,K.1^10,-1*K.1^4,-1*K.1^20,K.1^22,K.1^30,K.1^26,-1*K.1^24,-1*K.1^8,-1*K.1^28,K.1^6,K.1^14,-1*K.1^32,K.1^18,-1*K.1^16,2*K.1^31,-2*K.1^29,-2*K.1,2*K.1^21,-2*K.1^29,-2*K.1^3,-2*K.1^23,-2*K.1^19,-2*K.1^3,2*K.1,2*K.1^21,-2*K.1^33,2*K.1^13,2*K.1^25,-2*K.1^31,-2*K.1^7,-2*K.1^15,-2*K.1^27,2*K.1^33,-2*K.1^33,-2*K.1,-2*K.1^5,2*K.1^7,-2*K.1^31,-2*K.1^13,-2*K.1^21,2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1^19,2*K.1^23,2*K.1^19,2*K.1,-2*K.1^5,2*K.1^3,2*K.1^13,-2*K.1^25,2*K.1^15,2*K.1^27,2*K.1^3,2*K.1^29,-2*K.1^21,-2*K.1^11,-2*K.1^11,-2*K.1^27,2*K.1^29,2*K.1^9,2*K.1^23,-2*K.1^19,2*K.1^5,2*K.1^33,-2*K.1^23,-2*K.1^15,-2*K.1^7,-2*K.1^25,2*K.1^25,-2*K.1^13,2*K.1^11,2*K.1^15,2*K.1^5,2*K.1^27,2*K.1^31,2*K.1^11,-2*K.1^9,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^32,-1*K.1^6,-1*K.1^14,-1*K.1^26,K.1^8,K.1^24,K.1^20,K.1^4,K.1^30,-1*K.1^22,K.1^16,-1*K.1^2,K.1^32,K.1^26,-1*K.1^6,-1*K.1^8,-1*K.1^24,K.1^6,K.1^2,-1*K.1^20,K.1^10,-1*K.1^16,-1*K.1^32,-1*K.1^28,-1*K.1^12,K.1^22,-1*K.1^22,K.1^16,K.1^20,-1*K.1^18,-1*K.1^14,K.1^28,K.1^4,-1*K.1^26,K.1^18,K.1^12,-1*K.1^4,K.1^8,K.1^14,-1*K.1^30,-1*K.1^10,K.1^24,K.1^28,K.1^12,-1*K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^31,K.1^15,K.1,K.1^13,K.1^11,-1*K.1^31,-1*K.1^9,-1*K.1,K.1^23,K.1^25,-1*K.1^13,K.1^31,-1*K.1^15,-1*K.1^27,K.1^27,-1*K.1^11,K.1^25,-1*K.1,K.1^7,K.1^27,-1*K.1^15,K.1^29,K.1^31,-1*K.1^21,-1*K.1^27,-1*K.1^33,-1*K.1^7,-1*K.1^29,K.1^9,K.1^19,K.1^9,-1*K.1^19,K.1^33,-1*K.1^19,K.1^11,-1*K.1^7,K.1^21,-1*K.1^5,K.1^23,-1*K.1^23,-1*K.1^11,K.1^13,-1*K.1^3,-1*K.1^25,-1*K.1^25,K.1^5,K.1^5,K.1^3,-1*K.1^21,K.1^29,-1*K.1^23,K.1^15,-1*K.1^5,-1*K.1^3,K.1^3,-1*K.1^9,K.1^7,K.1,K.1^21,-1*K.1^33,-1*K.1^29,-1*K.1^13,K.1^33,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-2*K.1^10,2*K.1^12,-2*K.1^2,-2*K.1^6,2*K.1^28,-2*K.1^30,-2*K.1^18,2*K.1^8,2*K.1^32,-2*K.1^26,-2*K.1^14,2*K.1^20,-2*K.1^22,2*K.1^24,2*K.1^4,2*K.1^16,-2*K.1^8,-2*K.1^20,-2*K.1^4,2*K.1^22,2*K.1^20,2*K.1^32,2*K.1^2,-2*K.1^16,-2*K.1^32,-2*K.1^28,-2*K.1^12,2*K.1^30,2*K.1^28,2*K.1^24,2*K.1^26,-2*K.1^8,-2*K.1^24,-2*K.1^16,-2*K.1^24,2*K.1^30,2*K.1^14,-2*K.1^6,-2*K.1^14,-2*K.1^22,-2*K.1^30,2*K.1^4,2*K.1^12,-2*K.1^32,2*K.1^16,2*K.1^8,2*K.1^18,-2*K.1^26,-2*K.1^18,-2*K.1^10,-2*K.1^2,2*K.1^10,2*K.1^6,2*K.1^14,2*K.1^22,2*K.1^6,2*K.1^26,2*K.1^18,2*K.1^10,2*K.1^2,-2*K.1^28,-2*K.1^20,-2*K.1^12,-2*K.1^4,K.1^22,-1*K.1^32,-1*K.1^24,K.1^30,K.1^14,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,K.1^26,K.1^6,-1*K.1^28,-1*K.1^20,K.1^2,-1*K.1^16,K.1^18,-2*K.1^3,2*K.1^5,2*K.1^33,-2*K.1^13,2*K.1^5,2*K.1^31,2*K.1^11,2*K.1^15,2*K.1^31,-2*K.1^33,-2*K.1^13,2*K.1,-2*K.1^21,-2*K.1^9,2*K.1^3,2*K.1^27,2*K.1^19,2*K.1^7,-2*K.1,2*K.1,2*K.1^33,2*K.1^29,-2*K.1^27,2*K.1^3,2*K.1^21,2*K.1^13,-2*K.1^25,-2*K.1^27,2*K.1^25,-2*K.1^15,-2*K.1^11,-2*K.1^15,-2*K.1^33,2*K.1^29,-2*K.1^31,-2*K.1^21,2*K.1^9,-2*K.1^19,-2*K.1^7,-2*K.1^31,-2*K.1^5,2*K.1^13,2*K.1^23,2*K.1^23,2*K.1^7,-2*K.1^5,-2*K.1^25,-2*K.1^11,2*K.1^15,-2*K.1^29,-2*K.1,2*K.1^11,2*K.1^19,2*K.1^27,2*K.1^9,-2*K.1^9,2*K.1^21,-2*K.1^23,-2*K.1^19,-2*K.1^29,-2*K.1^7,-2*K.1^3,-2*K.1^23,2*K.1^25,K.1^16,K.1^24,K.1^32,-1*K.1^2,K.1^28,K.1^20,K.1^8,-1*K.1^26,-1*K.1^10,-1*K.1^14,-1*K.1^30,-1*K.1^4,K.1^12,-1*K.1^18,K.1^32,-1*K.1^2,-1*K.1^8,K.1^28,K.1^26,K.1^10,-1*K.1^28,-1*K.1^32,K.1^14,-1*K.1^24,K.1^18,K.1^2,K.1^6,K.1^22,-1*K.1^12,K.1^12,-1*K.1^18,-1*K.1^14,K.1^16,K.1^20,-1*K.1^6,-1*K.1^30,K.1^8,-1*K.1^16,-1*K.1^22,K.1^30,-1*K.1^26,-1*K.1^20,K.1^4,K.1^24,-1*K.1^10,-1*K.1^6,-1*K.1^22,K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3,-1*K.1^19,-1*K.1^33,-1*K.1^21,-1*K.1^23,K.1^3,K.1^25,K.1^33,-1*K.1^11,-1*K.1^9,K.1^21,-1*K.1^3,K.1^19,K.1^7,-1*K.1^7,K.1^23,-1*K.1^9,K.1^33,-1*K.1^27,-1*K.1^7,K.1^19,-1*K.1^5,-1*K.1^3,K.1^13,K.1^7,K.1,K.1^27,K.1^5,-1*K.1^25,-1*K.1^15,-1*K.1^25,K.1^15,-1*K.1,K.1^15,-1*K.1^23,K.1^27,-1*K.1^13,K.1^29,-1*K.1^11,K.1^11,K.1^23,-1*K.1^21,K.1^31,K.1^9,K.1^9,-1*K.1^29,-1*K.1^29,-1*K.1^31,K.1^13,-1*K.1^5,K.1^11,-1*K.1^19,K.1^29,K.1^31,-1*K.1^31,K.1^25,-1*K.1^27,-1*K.1^33,-1*K.1^13,K.1,K.1^5,K.1^21,-1*K.1,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-2*K.1^14,-2*K.1^10,-2*K.1^30,-2*K.1^22,2*K.1^12,2*K.1^8,2*K.1^32,-2*K.1^18,2*K.1^4,2*K.1^16,-2*K.1^6,2*K.1^28,2*K.1^24,2*K.1^20,-2*K.1^26,-2*K.1^2,2*K.1^18,-2*K.1^28,2*K.1^26,-2*K.1^24,2*K.1^28,2*K.1^4,2*K.1^30,2*K.1^2,-2*K.1^4,-2*K.1^12,2*K.1^10,-2*K.1^8,2*K.1^12,2*K.1^20,-2*K.1^16,2*K.1^18,-2*K.1^20,2*K.1^2,-2*K.1^20,-2*K.1^8,2*K.1^6,-2*K.1^22,-2*K.1^6,2*K.1^24,2*K.1^8,-2*K.1^26,-2*K.1^10,-2*K.1^4,-2*K.1^2,-2*K.1^18,-2*K.1^32,2*K.1^16,2*K.1^32,-2*K.1^14,-2*K.1^30,2*K.1^14,2*K.1^22,2*K.1^6,-2*K.1^24,2*K.1^22,-2*K.1^16,-2*K.1^32,2*K.1^14,2*K.1^30,-2*K.1^12,-2*K.1^28,2*K.1^10,2*K.1^26,-1*K.1^24,-1*K.1^4,-1*K.1^20,-1*K.1^8,K.1^6,K.1^10,K.1^26,K.1^18,K.1^14,-1*K.1^16,K.1^22,-1*K.1^12,-1*K.1^28,K.1^30,K.1^2,-1*K.1^32,2*K.1^11,2*K.1^7,2*K.1^19,2*K.1^25,2*K.1^7,-2*K.1^23,2*K.1^29,2*K.1^21,-2*K.1^23,-2*K.1^19,2*K.1^25,2*K.1^15,2*K.1^9,2*K.1^33,-2*K.1^11,-2*K.1^31,2*K.1^13,-2*K.1^3,-2*K.1^15,2*K.1^15,2*K.1^19,2*K.1^27,2*K.1^31,-2*K.1^11,-2*K.1^9,-2*K.1^25,2*K.1,2*K.1^31,-2*K.1,-2*K.1^21,-2*K.1^29,-2*K.1^21,-2*K.1^19,2*K.1^27,2*K.1^23,2*K.1^9,-2*K.1^33,-2*K.1^13,2*K.1^3,2*K.1^23,-2*K.1^7,-2*K.1^25,2*K.1^5,2*K.1^5,-2*K.1^3,-2*K.1^7,2*K.1,-2*K.1^29,2*K.1^21,-2*K.1^27,-2*K.1^15,2*K.1^29,2*K.1^13,-2*K.1^31,-2*K.1^33,2*K.1^33,-2*K.1^9,-2*K.1^5,-2*K.1^13,-2*K.1^27,2*K.1^3,2*K.1^11,-2*K.1^5,-2*K.1,-1*K.1^2,K.1^20,K.1^4,-1*K.1^30,K.1^12,K.1^28,-1*K.1^18,K.1^16,-1*K.1^14,-1*K.1^6,K.1^8,K.1^26,-1*K.1^10,K.1^32,K.1^4,-1*K.1^30,K.1^18,K.1^12,-1*K.1^16,K.1^14,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^20,-1*K.1^32,K.1^30,K.1^22,-1*K.1^24,K.1^10,-1*K.1^10,K.1^32,-1*K.1^6,-1*K.1^2,K.1^28,-1*K.1^22,K.1^8,-1*K.1^18,K.1^2,K.1^24,-1*K.1^8,K.1^16,-1*K.1^28,-1*K.1^26,K.1^20,-1*K.1^14,-1*K.1^22,K.1^24,-1*K.1^26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^11,-1*K.1^13,-1*K.1^19,K.1^9,-1*K.1^5,-1*K.1^11,-1*K.1,K.1^19,-1*K.1^29,K.1^33,-1*K.1^9,K.1^11,K.1^13,-1*K.1^3,K.1^3,K.1^5,K.1^33,K.1^19,K.1^31,K.1^3,K.1^13,-1*K.1^7,K.1^11,-1*K.1^25,-1*K.1^3,K.1^15,-1*K.1^31,K.1^7,K.1,-1*K.1^21,K.1,K.1^21,-1*K.1^15,K.1^21,-1*K.1^5,-1*K.1^31,K.1^25,K.1^27,-1*K.1^29,K.1^29,K.1^5,K.1^9,-1*K.1^23,-1*K.1^33,-1*K.1^33,-1*K.1^27,-1*K.1^27,K.1^23,-1*K.1^25,-1*K.1^7,K.1^29,-1*K.1^13,K.1^27,-1*K.1^23,K.1^23,-1*K.1,K.1^31,-1*K.1^19,K.1^25,K.1^15,K.1^7,-1*K.1^9,-1*K.1^15,-1*K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,2*K.1^20,2*K.1^24,2*K.1^4,2*K.1^12,-2*K.1^22,-2*K.1^26,-2*K.1^2,2*K.1^16,-2*K.1^30,-2*K.1^18,2*K.1^28,-2*K.1^6,-2*K.1^10,-2*K.1^14,2*K.1^8,2*K.1^32,-2*K.1^16,2*K.1^6,-2*K.1^8,2*K.1^10,-2*K.1^6,-2*K.1^30,-2*K.1^4,-2*K.1^32,2*K.1^30,2*K.1^22,-2*K.1^24,2*K.1^26,-2*K.1^22,-2*K.1^14,2*K.1^18,-2*K.1^16,2*K.1^14,-2*K.1^32,2*K.1^14,2*K.1^26,-2*K.1^28,2*K.1^12,2*K.1^28,-2*K.1^10,-2*K.1^26,2*K.1^8,2*K.1^24,2*K.1^30,2*K.1^32,2*K.1^16,2*K.1^2,-2*K.1^18,-2*K.1^2,2*K.1^20,2*K.1^4,-2*K.1^20,-2*K.1^12,-2*K.1^28,2*K.1^10,-2*K.1^12,2*K.1^18,2*K.1^2,-2*K.1^20,-2*K.1^4,2*K.1^22,2*K.1^6,-2*K.1^24,-2*K.1^8,K.1^10,K.1^30,K.1^14,K.1^26,-1*K.1^28,-1*K.1^24,-1*K.1^8,-1*K.1^16,-1*K.1^20,K.1^18,-1*K.1^12,K.1^22,K.1^6,-1*K.1^4,-1*K.1^32,K.1^2,-2*K.1^23,-2*K.1^27,-2*K.1^15,-2*K.1^9,-2*K.1^27,2*K.1^11,-2*K.1^5,-2*K.1^13,2*K.1^11,2*K.1^15,-2*K.1^9,-2*K.1^19,-2*K.1^25,-2*K.1,2*K.1^23,2*K.1^3,-2*K.1^21,2*K.1^31,2*K.1^19,-2*K.1^19,-2*K.1^15,-2*K.1^7,-2*K.1^3,2*K.1^23,2*K.1^25,2*K.1^9,-2*K.1^33,-2*K.1^3,2*K.1^33,2*K.1^13,2*K.1^5,2*K.1^13,2*K.1^15,-2*K.1^7,-2*K.1^11,-2*K.1^25,2*K.1,2*K.1^21,-2*K.1^31,-2*K.1^11,2*K.1^27,2*K.1^9,-2*K.1^29,-2*K.1^29,2*K.1^31,2*K.1^27,-2*K.1^33,2*K.1^5,-2*K.1^13,2*K.1^7,2*K.1^19,-2*K.1^5,-2*K.1^21,2*K.1^3,2*K.1,-2*K.1,2*K.1^25,2*K.1^29,2*K.1^21,2*K.1^7,-2*K.1^31,-2*K.1^23,2*K.1^29,2*K.1^33,K.1^32,-1*K.1^14,-1*K.1^30,K.1^4,-1*K.1^22,-1*K.1^6,K.1^16,-1*K.1^18,K.1^20,K.1^28,-1*K.1^26,-1*K.1^8,K.1^24,-1*K.1^2,-1*K.1^30,K.1^4,-1*K.1^16,-1*K.1^22,K.1^18,-1*K.1^20,K.1^22,K.1^30,-1*K.1^28,K.1^14,K.1^2,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^24,K.1^24,-1*K.1^2,K.1^28,K.1^32,-1*K.1^6,K.1^12,-1*K.1^26,K.1^16,-1*K.1^32,-1*K.1^10,K.1^26,-1*K.1^18,K.1^6,K.1^8,-1*K.1^14,K.1^20,K.1^12,-1*K.1^10,K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^23,K.1^21,K.1^15,-1*K.1^25,K.1^29,K.1^23,K.1^33,-1*K.1^15,K.1^5,-1*K.1,K.1^25,-1*K.1^23,-1*K.1^21,K.1^31,-1*K.1^31,-1*K.1^29,-1*K.1,-1*K.1^15,-1*K.1^3,-1*K.1^31,-1*K.1^21,K.1^27,-1*K.1^23,K.1^9,K.1^31,-1*K.1^19,K.1^3,-1*K.1^27,-1*K.1^33,K.1^13,-1*K.1^33,-1*K.1^13,K.1^19,-1*K.1^13,K.1^29,K.1^3,-1*K.1^9,-1*K.1^7,K.1^5,-1*K.1^5,-1*K.1^29,-1*K.1^25,K.1^11,K.1,K.1,K.1^7,K.1^7,-1*K.1^11,K.1^9,K.1^27,-1*K.1^5,K.1^21,-1*K.1^7,K.1^11,-1*K.1^11,K.1^33,-1*K.1^3,K.1^15,-1*K.1^9,-1*K.1^19,-1*K.1^27,K.1^25,K.1^19,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,2*K.1^20,2*K.1^24,2*K.1^4,2*K.1^12,-2*K.1^22,-2*K.1^26,-2*K.1^2,2*K.1^16,-2*K.1^30,-2*K.1^18,2*K.1^28,-2*K.1^6,-2*K.1^10,-2*K.1^14,2*K.1^8,2*K.1^32,-2*K.1^16,2*K.1^6,-2*K.1^8,2*K.1^10,-2*K.1^6,-2*K.1^30,-2*K.1^4,-2*K.1^32,2*K.1^30,2*K.1^22,-2*K.1^24,2*K.1^26,-2*K.1^22,-2*K.1^14,2*K.1^18,-2*K.1^16,2*K.1^14,-2*K.1^32,2*K.1^14,2*K.1^26,-2*K.1^28,2*K.1^12,2*K.1^28,-2*K.1^10,-2*K.1^26,2*K.1^8,2*K.1^24,2*K.1^30,2*K.1^32,2*K.1^16,2*K.1^2,-2*K.1^18,-2*K.1^2,2*K.1^20,2*K.1^4,-2*K.1^20,-2*K.1^12,-2*K.1^28,2*K.1^10,-2*K.1^12,2*K.1^18,2*K.1^2,-2*K.1^20,-2*K.1^4,2*K.1^22,2*K.1^6,-2*K.1^24,-2*K.1^8,K.1^10,K.1^30,K.1^14,K.1^26,-1*K.1^28,-1*K.1^24,-1*K.1^8,-1*K.1^16,-1*K.1^20,K.1^18,-1*K.1^12,K.1^22,K.1^6,-1*K.1^4,-1*K.1^32,K.1^2,2*K.1^23,2*K.1^27,2*K.1^15,2*K.1^9,2*K.1^27,-2*K.1^11,2*K.1^5,2*K.1^13,-2*K.1^11,-2*K.1^15,2*K.1^9,2*K.1^19,2*K.1^25,2*K.1,-2*K.1^23,-2*K.1^3,2*K.1^21,-2*K.1^31,-2*K.1^19,2*K.1^19,2*K.1^15,2*K.1^7,2*K.1^3,-2*K.1^23,-2*K.1^25,-2*K.1^9,2*K.1^33,2*K.1^3,-2*K.1^33,-2*K.1^13,-2*K.1^5,-2*K.1^13,-2*K.1^15,2*K.1^7,2*K.1^11,2*K.1^25,-2*K.1,-2*K.1^21,2*K.1^31,2*K.1^11,-2*K.1^27,-2*K.1^9,2*K.1^29,2*K.1^29,-2*K.1^31,-2*K.1^27,2*K.1^33,-2*K.1^5,2*K.1^13,-2*K.1^7,-2*K.1^19,2*K.1^5,2*K.1^21,-2*K.1^3,-2*K.1,2*K.1,-2*K.1^25,-2*K.1^29,-2*K.1^21,-2*K.1^7,2*K.1^31,2*K.1^23,-2*K.1^29,-2*K.1^33,K.1^32,-1*K.1^14,-1*K.1^30,K.1^4,-1*K.1^22,-1*K.1^6,K.1^16,-1*K.1^18,K.1^20,K.1^28,-1*K.1^26,-1*K.1^8,K.1^24,-1*K.1^2,-1*K.1^30,K.1^4,-1*K.1^16,-1*K.1^22,K.1^18,-1*K.1^20,K.1^22,K.1^30,-1*K.1^28,K.1^14,K.1^2,-1*K.1^4,-1*K.1^12,K.1^10,-1*K.1^24,K.1^24,-1*K.1^2,K.1^28,K.1^32,-1*K.1^6,K.1^12,-1*K.1^26,K.1^16,-1*K.1^32,-1*K.1^10,K.1^26,-1*K.1^18,K.1^6,K.1^8,-1*K.1^14,K.1^20,K.1^12,-1*K.1^10,K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^23,-1*K.1^21,-1*K.1^15,K.1^25,-1*K.1^29,-1*K.1^23,-1*K.1^33,K.1^15,-1*K.1^5,K.1,-1*K.1^25,K.1^23,K.1^21,-1*K.1^31,K.1^31,K.1^29,K.1,K.1^15,K.1^3,K.1^31,K.1^21,-1*K.1^27,K.1^23,-1*K.1^9,-1*K.1^31,K.1^19,-1*K.1^3,K.1^27,K.1^33,-1*K.1^13,K.1^33,K.1^13,-1*K.1^19,K.1^13,-1*K.1^29,-1*K.1^3,K.1^9,K.1^7,-1*K.1^5,K.1^5,K.1^29,K.1^25,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^7,-1*K.1^7,K.1^11,-1*K.1^9,-1*K.1^27,K.1^5,-1*K.1^21,K.1^7,-1*K.1^11,K.1^11,-1*K.1^33,K.1^3,-1*K.1^15,K.1^9,K.1^19,K.1^27,-1*K.1^25,-1*K.1^19,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-2*K.1^14,-2*K.1^10,-2*K.1^30,-2*K.1^22,2*K.1^12,2*K.1^8,2*K.1^32,-2*K.1^18,2*K.1^4,2*K.1^16,-2*K.1^6,2*K.1^28,2*K.1^24,2*K.1^20,-2*K.1^26,-2*K.1^2,2*K.1^18,-2*K.1^28,2*K.1^26,-2*K.1^24,2*K.1^28,2*K.1^4,2*K.1^30,2*K.1^2,-2*K.1^4,-2*K.1^12,2*K.1^10,-2*K.1^8,2*K.1^12,2*K.1^20,-2*K.1^16,2*K.1^18,-2*K.1^20,2*K.1^2,-2*K.1^20,-2*K.1^8,2*K.1^6,-2*K.1^22,-2*K.1^6,2*K.1^24,2*K.1^8,-2*K.1^26,-2*K.1^10,-2*K.1^4,-2*K.1^2,-2*K.1^18,-2*K.1^32,2*K.1^16,2*K.1^32,-2*K.1^14,-2*K.1^30,2*K.1^14,2*K.1^22,2*K.1^6,-2*K.1^24,2*K.1^22,-2*K.1^16,-2*K.1^32,2*K.1^14,2*K.1^30,-2*K.1^12,-2*K.1^28,2*K.1^10,2*K.1^26,-1*K.1^24,-1*K.1^4,-1*K.1^20,-1*K.1^8,K.1^6,K.1^10,K.1^26,K.1^18,K.1^14,-1*K.1^16,K.1^22,-1*K.1^12,-1*K.1^28,K.1^30,K.1^2,-1*K.1^32,-2*K.1^11,-2*K.1^7,-2*K.1^19,-2*K.1^25,-2*K.1^7,2*K.1^23,-2*K.1^29,-2*K.1^21,2*K.1^23,2*K.1^19,-2*K.1^25,-2*K.1^15,-2*K.1^9,-2*K.1^33,2*K.1^11,2*K.1^31,-2*K.1^13,2*K.1^3,2*K.1^15,-2*K.1^15,-2*K.1^19,-2*K.1^27,-2*K.1^31,2*K.1^11,2*K.1^9,2*K.1^25,-2*K.1,-2*K.1^31,2*K.1,2*K.1^21,2*K.1^29,2*K.1^21,2*K.1^19,-2*K.1^27,-2*K.1^23,-2*K.1^9,2*K.1^33,2*K.1^13,-2*K.1^3,-2*K.1^23,2*K.1^7,2*K.1^25,-2*K.1^5,-2*K.1^5,2*K.1^3,2*K.1^7,-2*K.1,2*K.1^29,-2*K.1^21,2*K.1^27,2*K.1^15,-2*K.1^29,-2*K.1^13,2*K.1^31,2*K.1^33,-2*K.1^33,2*K.1^9,2*K.1^5,2*K.1^13,2*K.1^27,-2*K.1^3,-2*K.1^11,2*K.1^5,2*K.1,-1*K.1^2,K.1^20,K.1^4,-1*K.1^30,K.1^12,K.1^28,-1*K.1^18,K.1^16,-1*K.1^14,-1*K.1^6,K.1^8,K.1^26,-1*K.1^10,K.1^32,K.1^4,-1*K.1^30,K.1^18,K.1^12,-1*K.1^16,K.1^14,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^20,-1*K.1^32,K.1^30,K.1^22,-1*K.1^24,K.1^10,-1*K.1^10,K.1^32,-1*K.1^6,-1*K.1^2,K.1^28,-1*K.1^22,K.1^8,-1*K.1^18,K.1^2,K.1^24,-1*K.1^8,K.1^16,-1*K.1^28,-1*K.1^26,K.1^20,-1*K.1^14,-1*K.1^22,K.1^24,-1*K.1^26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^11,K.1^13,K.1^19,-1*K.1^9,K.1^5,K.1^11,K.1,-1*K.1^19,K.1^29,-1*K.1^33,K.1^9,-1*K.1^11,-1*K.1^13,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^33,-1*K.1^19,-1*K.1^31,-1*K.1^3,-1*K.1^13,K.1^7,-1*K.1^11,K.1^25,K.1^3,-1*K.1^15,K.1^31,-1*K.1^7,-1*K.1,K.1^21,-1*K.1,-1*K.1^21,K.1^15,-1*K.1^21,K.1^5,K.1^31,-1*K.1^25,-1*K.1^27,K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^9,K.1^23,K.1^33,K.1^33,K.1^27,K.1^27,-1*K.1^23,K.1^25,K.1^7,-1*K.1^29,K.1^13,-1*K.1^27,K.1^23,-1*K.1^23,K.1,-1*K.1^31,K.1^19,-1*K.1^25,-1*K.1^15,-1*K.1^7,K.1^9,K.1^15,K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-2*K.1^18,2*K.1^8,2*K.1^24,2*K.1^4,-2*K.1^30,2*K.1^20,2*K.1^12,2*K.1^28,-2*K.1^10,-2*K.1^6,2*K.1^32,-2*K.1^2,-2*K.1^26,2*K.1^16,-2*K.1^14,-2*K.1^22,-2*K.1^28,2*K.1^2,2*K.1^14,2*K.1^26,-2*K.1^2,-2*K.1^10,-2*K.1^24,2*K.1^22,2*K.1^10,2*K.1^30,-2*K.1^8,-2*K.1^20,-2*K.1^30,2*K.1^16,2*K.1^6,-2*K.1^28,-2*K.1^16,2*K.1^22,-2*K.1^16,-2*K.1^20,-2*K.1^32,2*K.1^4,2*K.1^32,-2*K.1^26,2*K.1^20,-2*K.1^14,2*K.1^8,2*K.1^10,-2*K.1^22,2*K.1^28,-2*K.1^12,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^18,-2*K.1^4,-2*K.1^32,2*K.1^26,-2*K.1^4,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^30,2*K.1^2,-2*K.1^8,2*K.1^14,K.1^26,K.1^10,-1*K.1^16,-1*K.1^20,-1*K.1^32,-1*K.1^8,K.1^14,-1*K.1^28,K.1^18,K.1^6,-1*K.1^4,K.1^30,K.1^2,-1*K.1^24,K.1^22,-1*K.1^12,2*K.1^19,-2*K.1^9,-2*K.1^5,-2*K.1^3,-2*K.1^9,-2*K.1^15,2*K.1^13,-2*K.1^27,-2*K.1^15,2*K.1^5,-2*K.1^3,-2*K.1^29,-2*K.1^31,-2*K.1^23,-2*K.1^19,2*K.1,-2*K.1^7,2*K.1^33,2*K.1^29,-2*K.1^29,-2*K.1^5,-2*K.1^25,-2*K.1,-2*K.1^19,2*K.1^31,2*K.1^3,-2*K.1^11,-2*K.1,2*K.1^11,2*K.1^27,-2*K.1^13,2*K.1^27,2*K.1^5,-2*K.1^25,2*K.1^15,-2*K.1^31,2*K.1^23,2*K.1^7,-2*K.1^33,2*K.1^15,2*K.1^9,2*K.1^3,2*K.1^21,2*K.1^21,2*K.1^33,2*K.1^9,-2*K.1^11,-2*K.1^13,-2*K.1^27,2*K.1^25,2*K.1^29,2*K.1^13,-2*K.1^7,2*K.1,2*K.1^23,-2*K.1^23,2*K.1^31,-2*K.1^21,2*K.1^7,2*K.1^25,-2*K.1^33,2*K.1^19,-2*K.1^21,2*K.1^11,-1*K.1^22,K.1^16,-1*K.1^10,K.1^24,-1*K.1^30,-1*K.1^2,K.1^28,-1*K.1^6,-1*K.1^18,K.1^32,K.1^20,K.1^14,K.1^8,K.1^12,-1*K.1^10,K.1^24,-1*K.1^28,-1*K.1^30,K.1^6,K.1^18,K.1^30,K.1^10,-1*K.1^32,-1*K.1^16,-1*K.1^12,-1*K.1^24,-1*K.1^4,K.1^26,-1*K.1^8,K.1^8,K.1^12,K.1^32,-1*K.1^22,-1*K.1^2,K.1^4,K.1^20,K.1^28,K.1^22,-1*K.1^26,-1*K.1^20,-1*K.1^6,K.1^2,-1*K.1^14,K.1^16,-1*K.1^18,K.1^4,-1*K.1^26,-1*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^19,K.1^7,K.1^5,-1*K.1^31,-1*K.1^21,-1*K.1^19,K.1^11,-1*K.1^5,-1*K.1^13,-1*K.1^23,K.1^31,K.1^19,-1*K.1^7,K.1^33,-1*K.1^33,K.1^21,-1*K.1^23,-1*K.1^5,-1*K.1,-1*K.1^33,-1*K.1^7,K.1^9,K.1^19,K.1^3,K.1^33,-1*K.1^29,K.1,-1*K.1^9,-1*K.1^11,K.1^27,-1*K.1^11,-1*K.1^27,K.1^29,-1*K.1^27,-1*K.1^21,K.1,-1*K.1^3,-1*K.1^25,-1*K.1^13,K.1^13,K.1^21,-1*K.1^31,-1*K.1^15,K.1^23,K.1^23,K.1^25,K.1^25,K.1^15,K.1^3,K.1^9,K.1^13,K.1^7,-1*K.1^25,-1*K.1^15,K.1^15,K.1^11,-1*K.1,K.1^5,-1*K.1^3,-1*K.1^29,-1*K.1^9,K.1^31,K.1^29,K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,2*K.1^16,-2*K.1^26,-2*K.1^10,-2*K.1^30,2*K.1^4,-2*K.1^14,-2*K.1^22,-2*K.1^6,2*K.1^24,2*K.1^28,-2*K.1^2,2*K.1^32,2*K.1^8,-2*K.1^18,2*K.1^20,2*K.1^12,2*K.1^6,-2*K.1^32,-2*K.1^20,-2*K.1^8,2*K.1^32,2*K.1^24,2*K.1^10,-2*K.1^12,-2*K.1^24,-2*K.1^4,2*K.1^26,2*K.1^14,2*K.1^4,-2*K.1^18,-2*K.1^28,2*K.1^6,2*K.1^18,-2*K.1^12,2*K.1^18,2*K.1^14,2*K.1^2,-2*K.1^30,-2*K.1^2,2*K.1^8,-2*K.1^14,2*K.1^20,-2*K.1^26,-2*K.1^24,2*K.1^12,-2*K.1^6,2*K.1^22,2*K.1^28,-2*K.1^22,2*K.1^16,-2*K.1^10,-2*K.1^16,2*K.1^30,2*K.1^2,-2*K.1^8,2*K.1^30,-2*K.1^28,2*K.1^22,-2*K.1^16,2*K.1^10,-2*K.1^4,-2*K.1^32,2*K.1^26,-2*K.1^20,-1*K.1^8,-1*K.1^24,K.1^18,K.1^14,K.1^2,K.1^26,-1*K.1^20,K.1^6,-1*K.1^16,-1*K.1^28,K.1^30,-1*K.1^4,-1*K.1^32,K.1^10,-1*K.1^12,K.1^22,-2*K.1^15,2*K.1^25,2*K.1^29,2*K.1^31,2*K.1^25,2*K.1^19,-2*K.1^21,2*K.1^7,2*K.1^19,-2*K.1^29,2*K.1^31,2*K.1^5,2*K.1^3,2*K.1^11,2*K.1^15,-2*K.1^33,2*K.1^27,-2*K.1,-2*K.1^5,2*K.1^5,2*K.1^29,2*K.1^9,2*K.1^33,2*K.1^15,-2*K.1^3,-2*K.1^31,2*K.1^23,2*K.1^33,-2*K.1^23,-2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^29,2*K.1^9,-2*K.1^19,2*K.1^3,-2*K.1^11,-2*K.1^27,2*K.1,-2*K.1^19,-2*K.1^25,-2*K.1^31,-2*K.1^13,-2*K.1^13,-2*K.1,-2*K.1^25,2*K.1^23,2*K.1^21,2*K.1^7,-2*K.1^9,-2*K.1^5,-2*K.1^21,2*K.1^27,-2*K.1^33,-2*K.1^11,2*K.1^11,-2*K.1^3,2*K.1^13,-2*K.1^27,-2*K.1^9,2*K.1,-2*K.1^15,2*K.1^13,-2*K.1^23,K.1^12,-1*K.1^18,K.1^24,-1*K.1^10,K.1^4,K.1^32,-1*K.1^6,K.1^28,K.1^16,-1*K.1^2,-1*K.1^14,-1*K.1^20,-1*K.1^26,-1*K.1^22,K.1^24,-1*K.1^10,K.1^6,K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^4,-1*K.1^24,K.1^2,K.1^18,K.1^22,K.1^10,K.1^30,-1*K.1^8,K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^12,K.1^32,-1*K.1^30,-1*K.1^14,-1*K.1^6,-1*K.1^12,K.1^8,K.1^14,K.1^28,-1*K.1^32,K.1^20,-1*K.1^18,K.1^16,-1*K.1^30,K.1^8,K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^15,-1*K.1^27,-1*K.1^29,K.1^3,K.1^13,K.1^15,-1*K.1^23,K.1^29,K.1^21,K.1^11,-1*K.1^3,-1*K.1^15,K.1^27,-1*K.1,K.1,-1*K.1^13,K.1^11,K.1^29,K.1^33,K.1,K.1^27,-1*K.1^25,-1*K.1^15,-1*K.1^31,-1*K.1,K.1^5,-1*K.1^33,K.1^25,K.1^23,-1*K.1^7,K.1^23,K.1^7,-1*K.1^5,K.1^7,K.1^13,-1*K.1^33,K.1^31,K.1^9,K.1^21,-1*K.1^21,-1*K.1^13,K.1^3,K.1^19,-1*K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^9,-1*K.1^19,-1*K.1^31,-1*K.1^25,-1*K.1^21,-1*K.1^27,K.1^9,K.1^19,-1*K.1^19,-1*K.1^23,K.1^33,-1*K.1^29,K.1^31,K.1^5,K.1^25,-1*K.1^3,-1*K.1^5,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,2*K.1^16,-2*K.1^26,-2*K.1^10,-2*K.1^30,2*K.1^4,-2*K.1^14,-2*K.1^22,-2*K.1^6,2*K.1^24,2*K.1^28,-2*K.1^2,2*K.1^32,2*K.1^8,-2*K.1^18,2*K.1^20,2*K.1^12,2*K.1^6,-2*K.1^32,-2*K.1^20,-2*K.1^8,2*K.1^32,2*K.1^24,2*K.1^10,-2*K.1^12,-2*K.1^24,-2*K.1^4,2*K.1^26,2*K.1^14,2*K.1^4,-2*K.1^18,-2*K.1^28,2*K.1^6,2*K.1^18,-2*K.1^12,2*K.1^18,2*K.1^14,2*K.1^2,-2*K.1^30,-2*K.1^2,2*K.1^8,-2*K.1^14,2*K.1^20,-2*K.1^26,-2*K.1^24,2*K.1^12,-2*K.1^6,2*K.1^22,2*K.1^28,-2*K.1^22,2*K.1^16,-2*K.1^10,-2*K.1^16,2*K.1^30,2*K.1^2,-2*K.1^8,2*K.1^30,-2*K.1^28,2*K.1^22,-2*K.1^16,2*K.1^10,-2*K.1^4,-2*K.1^32,2*K.1^26,-2*K.1^20,-1*K.1^8,-1*K.1^24,K.1^18,K.1^14,K.1^2,K.1^26,-1*K.1^20,K.1^6,-1*K.1^16,-1*K.1^28,K.1^30,-1*K.1^4,-1*K.1^32,K.1^10,-1*K.1^12,K.1^22,2*K.1^15,-2*K.1^25,-2*K.1^29,-2*K.1^31,-2*K.1^25,-2*K.1^19,2*K.1^21,-2*K.1^7,-2*K.1^19,2*K.1^29,-2*K.1^31,-2*K.1^5,-2*K.1^3,-2*K.1^11,-2*K.1^15,2*K.1^33,-2*K.1^27,2*K.1,2*K.1^5,-2*K.1^5,-2*K.1^29,-2*K.1^9,-2*K.1^33,-2*K.1^15,2*K.1^3,2*K.1^31,-2*K.1^23,-2*K.1^33,2*K.1^23,2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^29,-2*K.1^9,2*K.1^19,-2*K.1^3,2*K.1^11,2*K.1^27,-2*K.1,2*K.1^19,2*K.1^25,2*K.1^31,2*K.1^13,2*K.1^13,2*K.1,2*K.1^25,-2*K.1^23,-2*K.1^21,-2*K.1^7,2*K.1^9,2*K.1^5,2*K.1^21,-2*K.1^27,2*K.1^33,2*K.1^11,-2*K.1^11,2*K.1^3,-2*K.1^13,2*K.1^27,2*K.1^9,-2*K.1,2*K.1^15,-2*K.1^13,2*K.1^23,K.1^12,-1*K.1^18,K.1^24,-1*K.1^10,K.1^4,K.1^32,-1*K.1^6,K.1^28,K.1^16,-1*K.1^2,-1*K.1^14,-1*K.1^20,-1*K.1^26,-1*K.1^22,K.1^24,-1*K.1^10,K.1^6,K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^4,-1*K.1^24,K.1^2,K.1^18,K.1^22,K.1^10,K.1^30,-1*K.1^8,K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^12,K.1^32,-1*K.1^30,-1*K.1^14,-1*K.1^6,-1*K.1^12,K.1^8,K.1^14,K.1^28,-1*K.1^32,K.1^20,-1*K.1^18,K.1^16,-1*K.1^30,K.1^8,K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^15,K.1^27,K.1^29,-1*K.1^3,-1*K.1^13,-1*K.1^15,K.1^23,-1*K.1^29,-1*K.1^21,-1*K.1^11,K.1^3,K.1^15,-1*K.1^27,K.1,-1*K.1,K.1^13,-1*K.1^11,-1*K.1^29,-1*K.1^33,-1*K.1,-1*K.1^27,K.1^25,K.1^15,K.1^31,K.1,-1*K.1^5,K.1^33,-1*K.1^25,-1*K.1^23,K.1^7,-1*K.1^23,-1*K.1^7,K.1^5,-1*K.1^7,-1*K.1^13,K.1^33,-1*K.1^31,-1*K.1^9,-1*K.1^21,K.1^21,K.1^13,-1*K.1^3,-1*K.1^19,K.1^11,K.1^11,K.1^9,K.1^9,K.1^19,K.1^31,K.1^25,K.1^21,K.1^27,-1*K.1^9,-1*K.1^19,K.1^19,K.1^23,-1*K.1^33,K.1^29,-1*K.1^31,-1*K.1^5,-1*K.1^25,K.1^3,K.1^5,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-2*K.1^18,2*K.1^8,2*K.1^24,2*K.1^4,-2*K.1^30,2*K.1^20,2*K.1^12,2*K.1^28,-2*K.1^10,-2*K.1^6,2*K.1^32,-2*K.1^2,-2*K.1^26,2*K.1^16,-2*K.1^14,-2*K.1^22,-2*K.1^28,2*K.1^2,2*K.1^14,2*K.1^26,-2*K.1^2,-2*K.1^10,-2*K.1^24,2*K.1^22,2*K.1^10,2*K.1^30,-2*K.1^8,-2*K.1^20,-2*K.1^30,2*K.1^16,2*K.1^6,-2*K.1^28,-2*K.1^16,2*K.1^22,-2*K.1^16,-2*K.1^20,-2*K.1^32,2*K.1^4,2*K.1^32,-2*K.1^26,2*K.1^20,-2*K.1^14,2*K.1^8,2*K.1^10,-2*K.1^22,2*K.1^28,-2*K.1^12,-2*K.1^6,2*K.1^12,-2*K.1^18,2*K.1^24,2*K.1^18,-2*K.1^4,-2*K.1^32,2*K.1^26,-2*K.1^4,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^30,2*K.1^2,-2*K.1^8,2*K.1^14,K.1^26,K.1^10,-1*K.1^16,-1*K.1^20,-1*K.1^32,-1*K.1^8,K.1^14,-1*K.1^28,K.1^18,K.1^6,-1*K.1^4,K.1^30,K.1^2,-1*K.1^24,K.1^22,-1*K.1^12,-2*K.1^19,2*K.1^9,2*K.1^5,2*K.1^3,2*K.1^9,2*K.1^15,-2*K.1^13,2*K.1^27,2*K.1^15,-2*K.1^5,2*K.1^3,2*K.1^29,2*K.1^31,2*K.1^23,2*K.1^19,-2*K.1,2*K.1^7,-2*K.1^33,-2*K.1^29,2*K.1^29,2*K.1^5,2*K.1^25,2*K.1,2*K.1^19,-2*K.1^31,-2*K.1^3,2*K.1^11,2*K.1,-2*K.1^11,-2*K.1^27,2*K.1^13,-2*K.1^27,-2*K.1^5,2*K.1^25,-2*K.1^15,2*K.1^31,-2*K.1^23,-2*K.1^7,2*K.1^33,-2*K.1^15,-2*K.1^9,-2*K.1^3,-2*K.1^21,-2*K.1^21,-2*K.1^33,-2*K.1^9,2*K.1^11,2*K.1^13,2*K.1^27,-2*K.1^25,-2*K.1^29,-2*K.1^13,2*K.1^7,-2*K.1,-2*K.1^23,2*K.1^23,-2*K.1^31,2*K.1^21,-2*K.1^7,-2*K.1^25,2*K.1^33,-2*K.1^19,2*K.1^21,-2*K.1^11,-1*K.1^22,K.1^16,-1*K.1^10,K.1^24,-1*K.1^30,-1*K.1^2,K.1^28,-1*K.1^6,-1*K.1^18,K.1^32,K.1^20,K.1^14,K.1^8,K.1^12,-1*K.1^10,K.1^24,-1*K.1^28,-1*K.1^30,K.1^6,K.1^18,K.1^30,K.1^10,-1*K.1^32,-1*K.1^16,-1*K.1^12,-1*K.1^24,-1*K.1^4,K.1^26,-1*K.1^8,K.1^8,K.1^12,K.1^32,-1*K.1^22,-1*K.1^2,K.1^4,K.1^20,K.1^28,K.1^22,-1*K.1^26,-1*K.1^20,-1*K.1^6,K.1^2,-1*K.1^14,K.1^16,-1*K.1^18,K.1^4,-1*K.1^26,-1*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^19,-1*K.1^7,-1*K.1^5,K.1^31,K.1^21,K.1^19,-1*K.1^11,K.1^5,K.1^13,K.1^23,-1*K.1^31,-1*K.1^19,K.1^7,-1*K.1^33,K.1^33,-1*K.1^21,K.1^23,K.1^5,K.1,K.1^33,K.1^7,-1*K.1^9,-1*K.1^19,-1*K.1^3,-1*K.1^33,K.1^29,-1*K.1,K.1^9,K.1^11,-1*K.1^27,K.1^11,K.1^27,-1*K.1^29,K.1^27,K.1^21,-1*K.1,K.1^3,K.1^25,K.1^13,-1*K.1^13,-1*K.1^21,K.1^31,K.1^15,-1*K.1^23,-1*K.1^23,-1*K.1^25,-1*K.1^25,-1*K.1^15,-1*K.1^3,-1*K.1^9,-1*K.1^13,-1*K.1^7,K.1^25,K.1^15,-1*K.1^15,-1*K.1^11,K.1,-1*K.1^5,K.1^3,K.1^29,K.1^9,-1*K.1^31,-1*K.1^29,-1*K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-2*K.1^22,-2*K.1^6,-2*K.1^18,2*K.1^20,-2*K.1^14,2*K.1^32,-2*K.1^26,2*K.1^4,2*K.1^16,-2*K.1^30,2*K.1^24,-2*K.1^10,2*K.1^28,2*K.1^12,-2*K.1^2,2*K.1^8,-2*K.1^4,2*K.1^10,2*K.1^2,-2*K.1^28,-2*K.1^10,2*K.1^16,2*K.1^18,-2*K.1^8,-2*K.1^16,2*K.1^14,2*K.1^6,-2*K.1^32,-2*K.1^14,2*K.1^12,2*K.1^30,-2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^12,-2*K.1^32,-2*K.1^24,2*K.1^20,2*K.1^24,2*K.1^28,2*K.1^32,-2*K.1^2,-2*K.1^6,-2*K.1^16,2*K.1^8,2*K.1^4,2*K.1^26,-2*K.1^30,-2*K.1^26,-2*K.1^22,-2*K.1^18,2*K.1^22,-2*K.1^20,-2*K.1^24,-2*K.1^28,-2*K.1^20,2*K.1^30,2*K.1^26,2*K.1^22,2*K.1^18,2*K.1^14,2*K.1^10,2*K.1^6,2*K.1^2,-1*K.1^28,-1*K.1^16,-1*K.1^12,-1*K.1^32,-1*K.1^24,K.1^6,K.1^2,-1*K.1^4,K.1^22,K.1^30,-1*K.1^20,K.1^14,K.1^10,K.1^18,-1*K.1^8,K.1^26,2*K.1^27,2*K.1^11,-2*K.1^25,-2*K.1^15,2*K.1^11,-2*K.1^7,-2*K.1^31,2*K.1^33,-2*K.1^7,2*K.1^25,-2*K.1^15,-2*K.1^9,-2*K.1^19,2*K.1^13,-2*K.1^27,2*K.1^5,2*K.1,2*K.1^29,2*K.1^9,-2*K.1^9,-2*K.1^25,2*K.1^23,-2*K.1^5,-2*K.1^27,2*K.1^19,2*K.1^15,2*K.1^21,-2*K.1^5,-2*K.1^21,-2*K.1^33,2*K.1^31,-2*K.1^33,2*K.1^25,2*K.1^23,2*K.1^7,-2*K.1^19,-2*K.1^13,-2*K.1,-2*K.1^29,2*K.1^7,-2*K.1^11,2*K.1^15,-2*K.1^3,-2*K.1^3,2*K.1^29,-2*K.1^11,2*K.1^21,2*K.1^31,2*K.1^33,-2*K.1^23,2*K.1^9,-2*K.1^31,2*K.1,2*K.1^5,-2*K.1^13,2*K.1^13,2*K.1^19,2*K.1^3,-2*K.1,-2*K.1^23,-2*K.1^29,2*K.1^27,2*K.1^3,-2*K.1^21,K.1^8,K.1^12,K.1^16,-1*K.1^18,-1*K.1^14,-1*K.1^10,K.1^4,-1*K.1^30,-1*K.1^22,K.1^24,K.1^32,K.1^2,-1*K.1^6,-1*K.1^26,K.1^16,-1*K.1^18,-1*K.1^4,-1*K.1^14,K.1^30,K.1^22,K.1^14,-1*K.1^16,-1*K.1^24,-1*K.1^12,K.1^26,K.1^18,-1*K.1^20,-1*K.1^28,K.1^6,-1*K.1^6,-1*K.1^26,K.1^24,K.1^8,-1*K.1^10,K.1^20,K.1^32,K.1^4,-1*K.1^8,K.1^28,-1*K.1^32,-1*K.1^30,K.1^10,-1*K.1^2,K.1^12,-1*K.1^22,K.1^20,K.1^28,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^27,-1*K.1,K.1^25,-1*K.1^19,K.1^3,-1*K.1^27,-1*K.1^21,-1*K.1^25,K.1^31,K.1^13,K.1^19,K.1^27,K.1,K.1^29,-1*K.1^29,-1*K.1^3,K.1^13,-1*K.1^25,-1*K.1^5,-1*K.1^29,K.1,-1*K.1^11,K.1^27,K.1^15,K.1^29,-1*K.1^9,K.1^5,K.1^11,K.1^21,-1*K.1^33,K.1^21,K.1^33,K.1^9,K.1^33,K.1^3,K.1^5,-1*K.1^15,K.1^23,K.1^31,-1*K.1^31,-1*K.1^3,-1*K.1^19,-1*K.1^7,-1*K.1^13,-1*K.1^13,-1*K.1^23,-1*K.1^23,K.1^7,K.1^15,-1*K.1^11,-1*K.1^31,-1*K.1,K.1^23,-1*K.1^7,K.1^7,-1*K.1^21,-1*K.1^5,K.1^25,-1*K.1^15,-1*K.1^9,K.1^11,K.1^19,K.1^9,-1*K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,2*K.1^12,2*K.1^28,2*K.1^16,-2*K.1^14,2*K.1^20,-2*K.1^2,2*K.1^8,-2*K.1^30,-2*K.1^18,2*K.1^4,-2*K.1^10,2*K.1^24,-2*K.1^6,-2*K.1^22,2*K.1^32,-2*K.1^26,2*K.1^30,-2*K.1^24,-2*K.1^32,2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^16,2*K.1^26,2*K.1^18,-2*K.1^20,-2*K.1^28,2*K.1^2,2*K.1^20,-2*K.1^22,-2*K.1^4,2*K.1^30,2*K.1^22,2*K.1^26,2*K.1^22,2*K.1^2,2*K.1^10,-2*K.1^14,-2*K.1^10,-2*K.1^6,-2*K.1^2,2*K.1^32,2*K.1^28,2*K.1^18,-2*K.1^26,-2*K.1^30,-2*K.1^8,2*K.1^4,2*K.1^8,2*K.1^12,2*K.1^16,-2*K.1^12,2*K.1^14,2*K.1^10,2*K.1^6,2*K.1^14,-2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^16,-2*K.1^20,-2*K.1^24,-2*K.1^28,-2*K.1^32,K.1^6,K.1^18,K.1^22,K.1^2,K.1^10,-1*K.1^28,-1*K.1^32,K.1^30,-1*K.1^12,-1*K.1^4,K.1^14,-1*K.1^20,-1*K.1^24,-1*K.1^16,K.1^26,-1*K.1^8,-2*K.1^7,-2*K.1^23,2*K.1^9,2*K.1^19,-2*K.1^23,2*K.1^27,2*K.1^3,-2*K.1,2*K.1^27,-2*K.1^9,2*K.1^19,2*K.1^25,2*K.1^15,-2*K.1^21,2*K.1^7,-2*K.1^29,-2*K.1^33,-2*K.1^5,-2*K.1^25,2*K.1^25,2*K.1^9,-2*K.1^11,2*K.1^29,2*K.1^7,-2*K.1^15,-2*K.1^19,-2*K.1^13,2*K.1^29,2*K.1^13,2*K.1,-2*K.1^3,2*K.1,-2*K.1^9,-2*K.1^11,-2*K.1^27,2*K.1^15,2*K.1^21,2*K.1^33,2*K.1^5,-2*K.1^27,2*K.1^23,-2*K.1^19,2*K.1^31,2*K.1^31,-2*K.1^5,2*K.1^23,-2*K.1^13,-2*K.1^3,-2*K.1,2*K.1^11,-2*K.1^25,2*K.1^3,-2*K.1^33,-2*K.1^29,2*K.1^21,-2*K.1^21,-2*K.1^15,-2*K.1^31,2*K.1^33,2*K.1^11,2*K.1^5,-2*K.1^7,-2*K.1^31,2*K.1^13,-1*K.1^26,-1*K.1^22,-1*K.1^18,K.1^16,K.1^20,K.1^24,-1*K.1^30,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^32,K.1^28,K.1^8,-1*K.1^18,K.1^16,K.1^30,K.1^20,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^18,K.1^10,K.1^22,-1*K.1^8,-1*K.1^16,K.1^14,K.1^6,-1*K.1^28,K.1^28,K.1^8,-1*K.1^10,-1*K.1^26,K.1^24,-1*K.1^14,-1*K.1^2,-1*K.1^30,K.1^26,-1*K.1^6,K.1^2,K.1^4,-1*K.1^24,K.1^32,-1*K.1^22,K.1^12,-1*K.1^14,-1*K.1^6,K.1^32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^7,K.1^33,-1*K.1^9,K.1^15,-1*K.1^31,K.1^7,K.1^13,K.1^9,-1*K.1^3,-1*K.1^21,-1*K.1^15,-1*K.1^7,-1*K.1^33,-1*K.1^5,K.1^5,K.1^31,-1*K.1^21,K.1^9,K.1^29,K.1^5,-1*K.1^33,K.1^23,-1*K.1^7,-1*K.1^19,-1*K.1^5,K.1^25,-1*K.1^29,-1*K.1^23,-1*K.1^13,K.1,-1*K.1^13,-1*K.1,-1*K.1^25,-1*K.1,-1*K.1^31,-1*K.1^29,K.1^19,-1*K.1^11,-1*K.1^3,K.1^3,K.1^31,K.1^15,K.1^27,K.1^21,K.1^21,K.1^11,K.1^11,-1*K.1^27,-1*K.1^19,K.1^23,K.1^3,K.1^33,-1*K.1^11,K.1^27,-1*K.1^27,K.1^13,K.1^29,-1*K.1^9,K.1^19,K.1^25,-1*K.1^23,-1*K.1^15,-1*K.1^25,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,2*K.1^12,2*K.1^28,2*K.1^16,-2*K.1^14,2*K.1^20,-2*K.1^2,2*K.1^8,-2*K.1^30,-2*K.1^18,2*K.1^4,-2*K.1^10,2*K.1^24,-2*K.1^6,-2*K.1^22,2*K.1^32,-2*K.1^26,2*K.1^30,-2*K.1^24,-2*K.1^32,2*K.1^6,2*K.1^24,-2*K.1^18,-2*K.1^16,2*K.1^26,2*K.1^18,-2*K.1^20,-2*K.1^28,2*K.1^2,2*K.1^20,-2*K.1^22,-2*K.1^4,2*K.1^30,2*K.1^22,2*K.1^26,2*K.1^22,2*K.1^2,2*K.1^10,-2*K.1^14,-2*K.1^10,-2*K.1^6,-2*K.1^2,2*K.1^32,2*K.1^28,2*K.1^18,-2*K.1^26,-2*K.1^30,-2*K.1^8,2*K.1^4,2*K.1^8,2*K.1^12,2*K.1^16,-2*K.1^12,2*K.1^14,2*K.1^10,2*K.1^6,2*K.1^14,-2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^16,-2*K.1^20,-2*K.1^24,-2*K.1^28,-2*K.1^32,K.1^6,K.1^18,K.1^22,K.1^2,K.1^10,-1*K.1^28,-1*K.1^32,K.1^30,-1*K.1^12,-1*K.1^4,K.1^14,-1*K.1^20,-1*K.1^24,-1*K.1^16,K.1^26,-1*K.1^8,2*K.1^7,2*K.1^23,-2*K.1^9,-2*K.1^19,2*K.1^23,-2*K.1^27,-2*K.1^3,2*K.1,-2*K.1^27,2*K.1^9,-2*K.1^19,-2*K.1^25,-2*K.1^15,2*K.1^21,-2*K.1^7,2*K.1^29,2*K.1^33,2*K.1^5,2*K.1^25,-2*K.1^25,-2*K.1^9,2*K.1^11,-2*K.1^29,-2*K.1^7,2*K.1^15,2*K.1^19,2*K.1^13,-2*K.1^29,-2*K.1^13,-2*K.1,2*K.1^3,-2*K.1,2*K.1^9,2*K.1^11,2*K.1^27,-2*K.1^15,-2*K.1^21,-2*K.1^33,-2*K.1^5,2*K.1^27,-2*K.1^23,2*K.1^19,-2*K.1^31,-2*K.1^31,2*K.1^5,-2*K.1^23,2*K.1^13,2*K.1^3,2*K.1,-2*K.1^11,2*K.1^25,-2*K.1^3,2*K.1^33,2*K.1^29,-2*K.1^21,2*K.1^21,2*K.1^15,2*K.1^31,-2*K.1^33,-2*K.1^11,-2*K.1^5,2*K.1^7,2*K.1^31,-2*K.1^13,-1*K.1^26,-1*K.1^22,-1*K.1^18,K.1^16,K.1^20,K.1^24,-1*K.1^30,K.1^4,K.1^12,-1*K.1^10,-1*K.1^2,-1*K.1^32,K.1^28,K.1^8,-1*K.1^18,K.1^16,K.1^30,K.1^20,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^18,K.1^10,K.1^22,-1*K.1^8,-1*K.1^16,K.1^14,K.1^6,-1*K.1^28,K.1^28,K.1^8,-1*K.1^10,-1*K.1^26,K.1^24,-1*K.1^14,-1*K.1^2,-1*K.1^30,K.1^26,-1*K.1^6,K.1^2,K.1^4,-1*K.1^24,K.1^32,-1*K.1^22,K.1^12,-1*K.1^14,-1*K.1^6,K.1^32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^7,-1*K.1^33,K.1^9,-1*K.1^15,K.1^31,-1*K.1^7,-1*K.1^13,-1*K.1^9,K.1^3,K.1^21,K.1^15,K.1^7,K.1^33,K.1^5,-1*K.1^5,-1*K.1^31,K.1^21,-1*K.1^9,-1*K.1^29,-1*K.1^5,K.1^33,-1*K.1^23,K.1^7,K.1^19,K.1^5,-1*K.1^25,K.1^29,K.1^23,K.1^13,-1*K.1,K.1^13,K.1,K.1^25,K.1,K.1^31,K.1^29,-1*K.1^19,K.1^11,K.1^3,-1*K.1^3,-1*K.1^31,-1*K.1^15,-1*K.1^27,-1*K.1^21,-1*K.1^21,-1*K.1^11,-1*K.1^11,K.1^27,K.1^19,-1*K.1^23,-1*K.1^3,-1*K.1^33,K.1^11,-1*K.1^27,K.1^27,-1*K.1^13,-1*K.1^29,K.1^9,-1*K.1^19,-1*K.1^25,K.1^23,K.1^15,K.1^25,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-2*K.1^22,-2*K.1^6,-2*K.1^18,2*K.1^20,-2*K.1^14,2*K.1^32,-2*K.1^26,2*K.1^4,2*K.1^16,-2*K.1^30,2*K.1^24,-2*K.1^10,2*K.1^28,2*K.1^12,-2*K.1^2,2*K.1^8,-2*K.1^4,2*K.1^10,2*K.1^2,-2*K.1^28,-2*K.1^10,2*K.1^16,2*K.1^18,-2*K.1^8,-2*K.1^16,2*K.1^14,2*K.1^6,-2*K.1^32,-2*K.1^14,2*K.1^12,2*K.1^30,-2*K.1^4,-2*K.1^12,-2*K.1^8,-2*K.1^12,-2*K.1^32,-2*K.1^24,2*K.1^20,2*K.1^24,2*K.1^28,2*K.1^32,-2*K.1^2,-2*K.1^6,-2*K.1^16,2*K.1^8,2*K.1^4,2*K.1^26,-2*K.1^30,-2*K.1^26,-2*K.1^22,-2*K.1^18,2*K.1^22,-2*K.1^20,-2*K.1^24,-2*K.1^28,-2*K.1^20,2*K.1^30,2*K.1^26,2*K.1^22,2*K.1^18,2*K.1^14,2*K.1^10,2*K.1^6,2*K.1^2,-1*K.1^28,-1*K.1^16,-1*K.1^12,-1*K.1^32,-1*K.1^24,K.1^6,K.1^2,-1*K.1^4,K.1^22,K.1^30,-1*K.1^20,K.1^14,K.1^10,K.1^18,-1*K.1^8,K.1^26,-2*K.1^27,-2*K.1^11,2*K.1^25,2*K.1^15,-2*K.1^11,2*K.1^7,2*K.1^31,-2*K.1^33,2*K.1^7,-2*K.1^25,2*K.1^15,2*K.1^9,2*K.1^19,-2*K.1^13,2*K.1^27,-2*K.1^5,-2*K.1,-2*K.1^29,-2*K.1^9,2*K.1^9,2*K.1^25,-2*K.1^23,2*K.1^5,2*K.1^27,-2*K.1^19,-2*K.1^15,-2*K.1^21,2*K.1^5,2*K.1^21,2*K.1^33,-2*K.1^31,2*K.1^33,-2*K.1^25,-2*K.1^23,-2*K.1^7,2*K.1^19,2*K.1^13,2*K.1,2*K.1^29,-2*K.1^7,2*K.1^11,-2*K.1^15,2*K.1^3,2*K.1^3,-2*K.1^29,2*K.1^11,-2*K.1^21,-2*K.1^31,-2*K.1^33,2*K.1^23,-2*K.1^9,2*K.1^31,-2*K.1,-2*K.1^5,2*K.1^13,-2*K.1^13,-2*K.1^19,-2*K.1^3,2*K.1,2*K.1^23,2*K.1^29,-2*K.1^27,-2*K.1^3,2*K.1^21,K.1^8,K.1^12,K.1^16,-1*K.1^18,-1*K.1^14,-1*K.1^10,K.1^4,-1*K.1^30,-1*K.1^22,K.1^24,K.1^32,K.1^2,-1*K.1^6,-1*K.1^26,K.1^16,-1*K.1^18,-1*K.1^4,-1*K.1^14,K.1^30,K.1^22,K.1^14,-1*K.1^16,-1*K.1^24,-1*K.1^12,K.1^26,K.1^18,-1*K.1^20,-1*K.1^28,K.1^6,-1*K.1^6,-1*K.1^26,K.1^24,K.1^8,-1*K.1^10,K.1^20,K.1^32,K.1^4,-1*K.1^8,K.1^28,-1*K.1^32,-1*K.1^30,K.1^10,-1*K.1^2,K.1^12,-1*K.1^22,K.1^20,K.1^28,-1*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^27,K.1,-1*K.1^25,K.1^19,-1*K.1^3,K.1^27,K.1^21,K.1^25,-1*K.1^31,-1*K.1^13,-1*K.1^19,-1*K.1^27,-1*K.1,-1*K.1^29,K.1^29,K.1^3,-1*K.1^13,K.1^25,K.1^5,K.1^29,-1*K.1,K.1^11,-1*K.1^27,-1*K.1^15,-1*K.1^29,K.1^9,-1*K.1^5,-1*K.1^11,-1*K.1^21,K.1^33,-1*K.1^21,-1*K.1^33,-1*K.1^9,-1*K.1^33,-1*K.1^3,-1*K.1^5,K.1^15,-1*K.1^23,-1*K.1^31,K.1^31,K.1^3,K.1^19,K.1^7,K.1^13,K.1^13,K.1^23,K.1^23,-1*K.1^7,-1*K.1^15,K.1^11,K.1^31,K.1,-1*K.1^23,K.1^7,-1*K.1^7,K.1^21,K.1^5,-1*K.1^25,K.1^15,K.1^9,-1*K.1^11,-1*K.1^19,-1*K.1^9,K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-2*K.1^26,2*K.1^4,2*K.1^12,-2*K.1^2,2*K.1^32,-2*K.1^10,-2*K.1^6,-2*K.1^14,-2*K.1^22,2*K.1^20,2*K.1^16,-2*K.1^18,-2*K.1^30,2*K.1^8,2*K.1^24,2*K.1^28,2*K.1^14,2*K.1^18,-2*K.1^24,2*K.1^30,-2*K.1^18,-2*K.1^22,-2*K.1^12,-2*K.1^28,2*K.1^22,-2*K.1^32,-2*K.1^4,2*K.1^10,2*K.1^32,2*K.1^8,-2*K.1^20,2*K.1^14,-2*K.1^8,-2*K.1^28,-2*K.1^8,2*K.1^10,-2*K.1^16,-2*K.1^2,2*K.1^16,-2*K.1^30,-2*K.1^10,2*K.1^24,2*K.1^4,2*K.1^22,2*K.1^28,-2*K.1^14,2*K.1^6,2*K.1^20,-2*K.1^6,-2*K.1^26,2*K.1^12,2*K.1^26,2*K.1^2,-2*K.1^16,2*K.1^30,2*K.1^2,-2*K.1^20,2*K.1^6,2*K.1^26,-2*K.1^12,-2*K.1^32,2*K.1^18,-2*K.1^4,-2*K.1^24,K.1^30,K.1^22,-1*K.1^8,K.1^10,-1*K.1^16,-1*K.1^4,-1*K.1^24,K.1^14,K.1^26,-1*K.1^20,K.1^2,-1*K.1^32,K.1^18,-1*K.1^12,-1*K.1^28,K.1^6,-2*K.1,-2*K.1^13,2*K.1^11,-2*K.1^27,-2*K.1^13,2*K.1^33,-2*K.1^15,2*K.1^5,2*K.1^33,-2*K.1^11,-2*K.1^27,2*K.1^23,-2*K.1^7,-2*K.1^3,2*K.1,2*K.1^9,2*K.1^29,2*K.1^25,-2*K.1^23,2*K.1^23,2*K.1^11,-2*K.1^21,-2*K.1^9,2*K.1,2*K.1^7,2*K.1^27,-2*K.1^31,-2*K.1^9,2*K.1^31,-2*K.1^5,2*K.1^15,-2*K.1^5,-2*K.1^11,-2*K.1^21,-2*K.1^33,-2*K.1^7,2*K.1^3,-2*K.1^29,-2*K.1^25,-2*K.1^33,2*K.1^13,2*K.1^27,-2*K.1^19,-2*K.1^19,2*K.1^25,2*K.1^13,-2*K.1^31,2*K.1^15,2*K.1^5,2*K.1^21,-2*K.1^23,-2*K.1^15,2*K.1^29,2*K.1^9,2*K.1^3,-2*K.1^3,2*K.1^7,2*K.1^19,-2*K.1^29,2*K.1^21,-2*K.1^25,-2*K.1,2*K.1^19,2*K.1^31,K.1^28,K.1^8,-1*K.1^22,K.1^12,K.1^32,-1*K.1^18,-1*K.1^14,K.1^20,-1*K.1^26,K.1^16,-1*K.1^10,-1*K.1^24,K.1^4,-1*K.1^6,-1*K.1^22,K.1^12,K.1^14,K.1^32,-1*K.1^20,K.1^26,-1*K.1^32,K.1^22,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^12,K.1^2,K.1^30,-1*K.1^4,K.1^4,-1*K.1^6,K.1^16,K.1^28,-1*K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^28,-1*K.1^30,K.1^10,K.1^20,K.1^18,K.1^24,K.1^8,-1*K.1^26,-1*K.1^2,-1*K.1^30,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,-1*K.1^29,-1*K.1^11,-1*K.1^7,K.1^19,K.1,K.1^31,K.1^11,K.1^15,-1*K.1^3,K.1^7,-1*K.1,K.1^29,K.1^25,-1*K.1^25,-1*K.1^19,-1*K.1^3,K.1^11,-1*K.1^9,-1*K.1^25,K.1^29,K.1^13,-1*K.1,K.1^27,K.1^25,K.1^23,K.1^9,-1*K.1^13,-1*K.1^31,-1*K.1^5,-1*K.1^31,K.1^5,-1*K.1^23,K.1^5,K.1^19,K.1^9,-1*K.1^27,-1*K.1^21,K.1^15,-1*K.1^15,-1*K.1^19,-1*K.1^7,K.1^33,K.1^3,K.1^3,K.1^21,K.1^21,-1*K.1^33,K.1^27,K.1^13,-1*K.1^15,-1*K.1^29,-1*K.1^21,K.1^33,-1*K.1^33,K.1^31,-1*K.1^9,-1*K.1^11,-1*K.1^27,K.1^23,-1*K.1^13,K.1^7,-1*K.1^23,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,2*K.1^8,-2*K.1^30,-2*K.1^22,2*K.1^32,-2*K.1^2,2*K.1^24,2*K.1^28,2*K.1^20,2*K.1^12,-2*K.1^14,-2*K.1^18,2*K.1^16,2*K.1^4,-2*K.1^26,-2*K.1^10,-2*K.1^6,-2*K.1^20,-2*K.1^16,2*K.1^10,-2*K.1^4,2*K.1^16,2*K.1^12,2*K.1^22,2*K.1^6,-2*K.1^12,2*K.1^2,2*K.1^30,-2*K.1^24,-2*K.1^2,-2*K.1^26,2*K.1^14,-2*K.1^20,2*K.1^26,2*K.1^6,2*K.1^26,-2*K.1^24,2*K.1^18,2*K.1^32,-2*K.1^18,2*K.1^4,2*K.1^24,-2*K.1^10,-2*K.1^30,-2*K.1^12,-2*K.1^6,2*K.1^20,-2*K.1^28,-2*K.1^14,2*K.1^28,2*K.1^8,-2*K.1^22,-2*K.1^8,-2*K.1^32,2*K.1^18,-2*K.1^4,-2*K.1^32,2*K.1^14,-2*K.1^28,-2*K.1^8,2*K.1^22,2*K.1^2,-2*K.1^16,2*K.1^30,2*K.1^10,-1*K.1^4,-1*K.1^12,K.1^26,-1*K.1^24,K.1^18,K.1^30,K.1^10,-1*K.1^20,-1*K.1^8,K.1^14,-1*K.1^32,K.1^2,-1*K.1^16,K.1^22,K.1^6,-1*K.1^28,2*K.1^33,2*K.1^21,-2*K.1^23,2*K.1^7,2*K.1^21,-2*K.1,2*K.1^19,-2*K.1^29,-2*K.1,2*K.1^23,2*K.1^7,-2*K.1^11,2*K.1^27,2*K.1^31,-2*K.1^33,-2*K.1^25,-2*K.1^5,-2*K.1^9,2*K.1^11,-2*K.1^11,-2*K.1^23,2*K.1^13,2*K.1^25,-2*K.1^33,-2*K.1^27,-2*K.1^7,2*K.1^3,2*K.1^25,-2*K.1^3,2*K.1^29,-2*K.1^19,2*K.1^29,2*K.1^23,2*K.1^13,2*K.1,2*K.1^27,-2*K.1^31,2*K.1^5,2*K.1^9,2*K.1,-2*K.1^21,-2*K.1^7,2*K.1^15,2*K.1^15,-2*K.1^9,-2*K.1^21,2*K.1^3,-2*K.1^19,-2*K.1^29,-2*K.1^13,2*K.1^11,2*K.1^19,-2*K.1^5,-2*K.1^25,-2*K.1^31,2*K.1^31,-2*K.1^27,-2*K.1^15,2*K.1^5,-2*K.1^13,2*K.1^9,2*K.1^33,-2*K.1^15,-2*K.1^3,-1*K.1^6,-1*K.1^26,K.1^12,-1*K.1^22,-1*K.1^2,K.1^16,K.1^20,-1*K.1^14,K.1^8,-1*K.1^18,K.1^24,K.1^10,-1*K.1^30,K.1^28,K.1^12,-1*K.1^22,-1*K.1^20,-1*K.1^2,K.1^14,-1*K.1^8,K.1^2,-1*K.1^12,K.1^18,K.1^26,-1*K.1^28,K.1^22,-1*K.1^32,-1*K.1^4,K.1^30,-1*K.1^30,K.1^28,-1*K.1^18,-1*K.1^6,K.1^16,K.1^32,K.1^24,K.1^20,K.1^6,K.1^4,-1*K.1^24,-1*K.1^14,-1*K.1^16,-1*K.1^10,-1*K.1^26,K.1^8,K.1^32,K.1^4,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^33,K.1^5,K.1^23,K.1^27,-1*K.1^15,-1*K.1^33,-1*K.1^3,-1*K.1^23,-1*K.1^19,K.1^31,-1*K.1^27,K.1^33,-1*K.1^5,-1*K.1^9,K.1^9,K.1^15,K.1^31,-1*K.1^23,K.1^25,K.1^9,-1*K.1^5,-1*K.1^21,K.1^33,-1*K.1^7,-1*K.1^9,-1*K.1^11,-1*K.1^25,K.1^21,K.1^3,K.1^29,K.1^3,-1*K.1^29,K.1^11,-1*K.1^29,-1*K.1^15,-1*K.1^25,K.1^7,K.1^13,-1*K.1^19,K.1^19,K.1^15,K.1^27,-1*K.1,-1*K.1^31,-1*K.1^31,-1*K.1^13,-1*K.1^13,K.1,-1*K.1^7,-1*K.1^21,K.1^19,K.1^5,K.1^13,-1*K.1,K.1,-1*K.1^3,K.1^25,K.1^23,K.1^7,-1*K.1^11,K.1^21,-1*K.1^27,K.1^11,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,2*K.1^8,-2*K.1^30,-2*K.1^22,2*K.1^32,-2*K.1^2,2*K.1^24,2*K.1^28,2*K.1^20,2*K.1^12,-2*K.1^14,-2*K.1^18,2*K.1^16,2*K.1^4,-2*K.1^26,-2*K.1^10,-2*K.1^6,-2*K.1^20,-2*K.1^16,2*K.1^10,-2*K.1^4,2*K.1^16,2*K.1^12,2*K.1^22,2*K.1^6,-2*K.1^12,2*K.1^2,2*K.1^30,-2*K.1^24,-2*K.1^2,-2*K.1^26,2*K.1^14,-2*K.1^20,2*K.1^26,2*K.1^6,2*K.1^26,-2*K.1^24,2*K.1^18,2*K.1^32,-2*K.1^18,2*K.1^4,2*K.1^24,-2*K.1^10,-2*K.1^30,-2*K.1^12,-2*K.1^6,2*K.1^20,-2*K.1^28,-2*K.1^14,2*K.1^28,2*K.1^8,-2*K.1^22,-2*K.1^8,-2*K.1^32,2*K.1^18,-2*K.1^4,-2*K.1^32,2*K.1^14,-2*K.1^28,-2*K.1^8,2*K.1^22,2*K.1^2,-2*K.1^16,2*K.1^30,2*K.1^10,-1*K.1^4,-1*K.1^12,K.1^26,-1*K.1^24,K.1^18,K.1^30,K.1^10,-1*K.1^20,-1*K.1^8,K.1^14,-1*K.1^32,K.1^2,-1*K.1^16,K.1^22,K.1^6,-1*K.1^28,-2*K.1^33,-2*K.1^21,2*K.1^23,-2*K.1^7,-2*K.1^21,2*K.1,-2*K.1^19,2*K.1^29,2*K.1,-2*K.1^23,-2*K.1^7,2*K.1^11,-2*K.1^27,-2*K.1^31,2*K.1^33,2*K.1^25,2*K.1^5,2*K.1^9,-2*K.1^11,2*K.1^11,2*K.1^23,-2*K.1^13,-2*K.1^25,2*K.1^33,2*K.1^27,2*K.1^7,-2*K.1^3,-2*K.1^25,2*K.1^3,-2*K.1^29,2*K.1^19,-2*K.1^29,-2*K.1^23,-2*K.1^13,-2*K.1,-2*K.1^27,2*K.1^31,-2*K.1^5,-2*K.1^9,-2*K.1,2*K.1^21,2*K.1^7,-2*K.1^15,-2*K.1^15,2*K.1^9,2*K.1^21,-2*K.1^3,2*K.1^19,2*K.1^29,2*K.1^13,-2*K.1^11,-2*K.1^19,2*K.1^5,2*K.1^25,2*K.1^31,-2*K.1^31,2*K.1^27,2*K.1^15,-2*K.1^5,2*K.1^13,-2*K.1^9,-2*K.1^33,2*K.1^15,2*K.1^3,-1*K.1^6,-1*K.1^26,K.1^12,-1*K.1^22,-1*K.1^2,K.1^16,K.1^20,-1*K.1^14,K.1^8,-1*K.1^18,K.1^24,K.1^10,-1*K.1^30,K.1^28,K.1^12,-1*K.1^22,-1*K.1^20,-1*K.1^2,K.1^14,-1*K.1^8,K.1^2,-1*K.1^12,K.1^18,K.1^26,-1*K.1^28,K.1^22,-1*K.1^32,-1*K.1^4,K.1^30,-1*K.1^30,K.1^28,-1*K.1^18,-1*K.1^6,K.1^16,K.1^32,K.1^24,K.1^20,K.1^6,K.1^4,-1*K.1^24,-1*K.1^14,-1*K.1^16,-1*K.1^10,-1*K.1^26,K.1^8,K.1^32,K.1^4,-1*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^33,-1*K.1^5,-1*K.1^23,-1*K.1^27,K.1^15,K.1^33,K.1^3,K.1^23,K.1^19,-1*K.1^31,K.1^27,-1*K.1^33,K.1^5,K.1^9,-1*K.1^9,-1*K.1^15,-1*K.1^31,K.1^23,-1*K.1^25,-1*K.1^9,K.1^5,K.1^21,-1*K.1^33,K.1^7,K.1^9,K.1^11,K.1^25,-1*K.1^21,-1*K.1^3,-1*K.1^29,-1*K.1^3,K.1^29,-1*K.1^11,K.1^29,K.1^15,K.1^25,-1*K.1^7,-1*K.1^13,K.1^19,-1*K.1^19,-1*K.1^15,-1*K.1^27,K.1,K.1^31,K.1^31,K.1^13,K.1^13,-1*K.1,K.1^7,K.1^21,-1*K.1^19,-1*K.1^5,-1*K.1^13,K.1,-1*K.1,K.1^3,-1*K.1^25,-1*K.1^23,-1*K.1^7,K.1^11,-1*K.1^21,K.1^27,-1*K.1^11,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-2*K.1^26,2*K.1^4,2*K.1^12,-2*K.1^2,2*K.1^32,-2*K.1^10,-2*K.1^6,-2*K.1^14,-2*K.1^22,2*K.1^20,2*K.1^16,-2*K.1^18,-2*K.1^30,2*K.1^8,2*K.1^24,2*K.1^28,2*K.1^14,2*K.1^18,-2*K.1^24,2*K.1^30,-2*K.1^18,-2*K.1^22,-2*K.1^12,-2*K.1^28,2*K.1^22,-2*K.1^32,-2*K.1^4,2*K.1^10,2*K.1^32,2*K.1^8,-2*K.1^20,2*K.1^14,-2*K.1^8,-2*K.1^28,-2*K.1^8,2*K.1^10,-2*K.1^16,-2*K.1^2,2*K.1^16,-2*K.1^30,-2*K.1^10,2*K.1^24,2*K.1^4,2*K.1^22,2*K.1^28,-2*K.1^14,2*K.1^6,2*K.1^20,-2*K.1^6,-2*K.1^26,2*K.1^12,2*K.1^26,2*K.1^2,-2*K.1^16,2*K.1^30,2*K.1^2,-2*K.1^20,2*K.1^6,2*K.1^26,-2*K.1^12,-2*K.1^32,2*K.1^18,-2*K.1^4,-2*K.1^24,K.1^30,K.1^22,-1*K.1^8,K.1^10,-1*K.1^16,-1*K.1^4,-1*K.1^24,K.1^14,K.1^26,-1*K.1^20,K.1^2,-1*K.1^32,K.1^18,-1*K.1^12,-1*K.1^28,K.1^6,2*K.1,2*K.1^13,-2*K.1^11,2*K.1^27,2*K.1^13,-2*K.1^33,2*K.1^15,-2*K.1^5,-2*K.1^33,2*K.1^11,2*K.1^27,-2*K.1^23,2*K.1^7,2*K.1^3,-2*K.1,-2*K.1^9,-2*K.1^29,-2*K.1^25,2*K.1^23,-2*K.1^23,-2*K.1^11,2*K.1^21,2*K.1^9,-2*K.1,-2*K.1^7,-2*K.1^27,2*K.1^31,2*K.1^9,-2*K.1^31,2*K.1^5,-2*K.1^15,2*K.1^5,2*K.1^11,2*K.1^21,2*K.1^33,2*K.1^7,-2*K.1^3,2*K.1^29,2*K.1^25,2*K.1^33,-2*K.1^13,-2*K.1^27,2*K.1^19,2*K.1^19,-2*K.1^25,-2*K.1^13,2*K.1^31,-2*K.1^15,-2*K.1^5,-2*K.1^21,2*K.1^23,2*K.1^15,-2*K.1^29,-2*K.1^9,-2*K.1^3,2*K.1^3,-2*K.1^7,-2*K.1^19,2*K.1^29,-2*K.1^21,2*K.1^25,2*K.1,-2*K.1^19,-2*K.1^31,K.1^28,K.1^8,-1*K.1^22,K.1^12,K.1^32,-1*K.1^18,-1*K.1^14,K.1^20,-1*K.1^26,K.1^16,-1*K.1^10,-1*K.1^24,K.1^4,-1*K.1^6,-1*K.1^22,K.1^12,K.1^14,K.1^32,-1*K.1^20,K.1^26,-1*K.1^32,K.1^22,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^12,K.1^2,K.1^30,-1*K.1^4,K.1^4,-1*K.1^6,K.1^16,K.1^28,-1*K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^28,-1*K.1^30,K.1^10,K.1^20,K.1^18,K.1^24,K.1^8,-1*K.1^26,-1*K.1^2,-1*K.1^30,K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,K.1^29,K.1^11,K.1^7,-1*K.1^19,-1*K.1,-1*K.1^31,-1*K.1^11,-1*K.1^15,K.1^3,-1*K.1^7,K.1,-1*K.1^29,-1*K.1^25,K.1^25,K.1^19,K.1^3,-1*K.1^11,K.1^9,K.1^25,-1*K.1^29,-1*K.1^13,K.1,-1*K.1^27,-1*K.1^25,-1*K.1^23,-1*K.1^9,K.1^13,K.1^31,K.1^5,K.1^31,-1*K.1^5,K.1^23,-1*K.1^5,-1*K.1^19,-1*K.1^9,K.1^27,K.1^21,-1*K.1^15,K.1^15,K.1^19,K.1^7,-1*K.1^33,-1*K.1^3,-1*K.1^3,-1*K.1^21,-1*K.1^21,K.1^33,-1*K.1^27,-1*K.1^13,K.1^15,K.1^29,K.1^21,-1*K.1^33,K.1^33,-1*K.1^31,K.1^9,K.1^11,K.1^27,-1*K.1^23,K.1^13,-1*K.1^7,K.1^23,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,-2*K.1^30,-2*K.1^2,-2*K.1^6,-2*K.1^18,2*K.1^16,-2*K.1^22,2*K.1^20,2*K.1^24,2*K.1^28,-2*K.1^10,2*K.1^8,-2*K.1^26,2*K.1^32,2*K.1^4,2*K.1^12,-2*K.1^14,-2*K.1^24,2*K.1^26,-2*K.1^12,-2*K.1^32,-2*K.1^26,2*K.1^28,2*K.1^6,2*K.1^14,-2*K.1^28,-2*K.1^16,2*K.1^2,2*K.1^22,2*K.1^16,2*K.1^4,2*K.1^10,-2*K.1^24,-2*K.1^4,2*K.1^14,-2*K.1^4,2*K.1^22,-2*K.1^8,-2*K.1^18,2*K.1^8,2*K.1^32,-2*K.1^22,2*K.1^12,-2*K.1^2,-2*K.1^28,-2*K.1^14,2*K.1^24,-2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^30,-2*K.1^6,2*K.1^30,2*K.1^18,-2*K.1^8,-2*K.1^32,2*K.1^18,2*K.1^10,-2*K.1^20,2*K.1^30,2*K.1^6,-2*K.1^16,2*K.1^26,2*K.1^2,-2*K.1^12,-1*K.1^32,-1*K.1^28,-1*K.1^4,K.1^22,-1*K.1^8,K.1^2,-1*K.1^12,-1*K.1^24,K.1^30,K.1^10,K.1^18,-1*K.1^16,K.1^26,K.1^6,K.1^14,-1*K.1^20,-2*K.1^9,2*K.1^15,2*K.1^31,2*K.1^5,2*K.1^15,2*K.1^25,2*K.1^33,-2*K.1^11,2*K.1^25,-2*K.1^31,2*K.1^5,2*K.1^3,2*K.1^29,-2*K.1^27,2*K.1^9,2*K.1^13,-2*K.1^23,2*K.1^21,-2*K.1^3,2*K.1^3,2*K.1^31,2*K.1^19,-2*K.1^13,2*K.1^9,-2*K.1^29,-2*K.1^5,-2*K.1^7,-2*K.1^13,2*K.1^7,2*K.1^11,-2*K.1^33,2*K.1^11,-2*K.1^31,2*K.1^19,-2*K.1^25,2*K.1^29,2*K.1^27,2*K.1^23,-2*K.1^21,-2*K.1^25,-2*K.1^15,-2*K.1^5,2*K.1,2*K.1,2*K.1^21,-2*K.1^15,-2*K.1^7,-2*K.1^33,-2*K.1^11,-2*K.1^19,-2*K.1^3,2*K.1^33,-2*K.1^23,2*K.1^13,2*K.1^27,-2*K.1^27,-2*K.1^29,-2*K.1,2*K.1^23,-2*K.1^19,-2*K.1^21,-2*K.1^9,-2*K.1,2*K.1^7,-1*K.1^14,K.1^4,K.1^28,-1*K.1^6,K.1^16,-1*K.1^26,K.1^24,-1*K.1^10,-1*K.1^30,K.1^8,-1*K.1^22,-1*K.1^12,-1*K.1^2,K.1^20,K.1^28,-1*K.1^6,-1*K.1^24,K.1^16,K.1^10,K.1^30,-1*K.1^16,-1*K.1^28,-1*K.1^8,-1*K.1^4,-1*K.1^20,K.1^6,K.1^18,-1*K.1^32,K.1^2,-1*K.1^2,K.1^20,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^18,-1*K.1^22,K.1^24,K.1^14,K.1^32,K.1^22,-1*K.1^10,K.1^26,K.1^12,K.1^4,-1*K.1^30,-1*K.1^18,K.1^32,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9,K.1^23,-1*K.1^31,K.1^29,-1*K.1,K.1^9,K.1^7,K.1^31,-1*K.1^33,-1*K.1^27,-1*K.1^29,-1*K.1^9,-1*K.1^23,K.1^21,-1*K.1^21,K.1,-1*K.1^27,K.1^31,-1*K.1^13,-1*K.1^21,-1*K.1^23,-1*K.1^15,-1*K.1^9,-1*K.1^5,K.1^21,K.1^3,K.1^13,K.1^15,-1*K.1^7,K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1,K.1^13,K.1^5,K.1^19,-1*K.1^33,K.1^33,K.1,K.1^29,K.1^25,K.1^27,K.1^27,-1*K.1^19,-1*K.1^19,-1*K.1^25,-1*K.1^5,-1*K.1^15,K.1^33,K.1^23,K.1^19,K.1^25,-1*K.1^25,K.1^7,-1*K.1^13,-1*K.1^31,K.1^5,K.1^3,K.1^15,-1*K.1^29,-1*K.1^3,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,2*K.1^4,2*K.1^32,2*K.1^28,2*K.1^16,-2*K.1^18,2*K.1^12,-2*K.1^14,-2*K.1^10,-2*K.1^6,2*K.1^24,-2*K.1^26,2*K.1^8,-2*K.1^2,-2*K.1^30,-2*K.1^22,2*K.1^20,2*K.1^10,-2*K.1^8,2*K.1^22,2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^28,-2*K.1^20,2*K.1^6,2*K.1^18,-2*K.1^32,-2*K.1^12,-2*K.1^18,-2*K.1^30,-2*K.1^24,2*K.1^10,2*K.1^30,-2*K.1^20,2*K.1^30,-2*K.1^12,2*K.1^26,2*K.1^16,-2*K.1^26,-2*K.1^2,2*K.1^12,-2*K.1^22,2*K.1^32,2*K.1^6,2*K.1^20,-2*K.1^10,2*K.1^14,2*K.1^24,-2*K.1^14,2*K.1^4,2*K.1^28,-2*K.1^4,-2*K.1^16,2*K.1^26,2*K.1^2,-2*K.1^16,-2*K.1^24,2*K.1^14,-2*K.1^4,-2*K.1^28,2*K.1^18,-2*K.1^8,-2*K.1^32,2*K.1^22,K.1^2,K.1^6,K.1^30,-1*K.1^12,K.1^26,-1*K.1^32,K.1^22,K.1^10,-1*K.1^4,-1*K.1^24,-1*K.1^16,K.1^18,-1*K.1^8,-1*K.1^28,-1*K.1^20,K.1^14,2*K.1^25,-2*K.1^19,-2*K.1^3,-2*K.1^29,-2*K.1^19,-2*K.1^9,-2*K.1,2*K.1^23,-2*K.1^9,2*K.1^3,-2*K.1^29,-2*K.1^31,-2*K.1^5,2*K.1^7,-2*K.1^25,-2*K.1^21,2*K.1^11,-2*K.1^13,2*K.1^31,-2*K.1^31,-2*K.1^3,-2*K.1^15,2*K.1^21,-2*K.1^25,2*K.1^5,2*K.1^29,2*K.1^27,2*K.1^21,-2*K.1^27,-2*K.1^23,2*K.1,-2*K.1^23,2*K.1^3,-2*K.1^15,2*K.1^9,-2*K.1^5,-2*K.1^7,-2*K.1^11,2*K.1^13,2*K.1^9,2*K.1^19,2*K.1^29,-2*K.1^33,-2*K.1^33,-2*K.1^13,2*K.1^19,2*K.1^27,2*K.1,2*K.1^23,2*K.1^15,2*K.1^31,-2*K.1,2*K.1^11,-2*K.1^21,-2*K.1^7,2*K.1^7,2*K.1^5,2*K.1^33,-2*K.1^11,2*K.1^15,2*K.1^13,2*K.1^25,2*K.1^33,-2*K.1^27,K.1^20,-1*K.1^30,-1*K.1^6,K.1^28,-1*K.1^18,K.1^8,-1*K.1^10,K.1^24,K.1^4,-1*K.1^26,K.1^12,K.1^22,K.1^32,-1*K.1^14,-1*K.1^6,K.1^28,K.1^10,-1*K.1^18,-1*K.1^24,-1*K.1^4,K.1^18,K.1^6,K.1^26,K.1^30,K.1^14,-1*K.1^28,-1*K.1^16,K.1^2,-1*K.1^32,K.1^32,-1*K.1^14,-1*K.1^26,K.1^20,K.1^8,K.1^16,K.1^12,-1*K.1^10,-1*K.1^20,-1*K.1^2,-1*K.1^12,K.1^24,-1*K.1^8,-1*K.1^22,-1*K.1^30,K.1^4,K.1^16,-1*K.1^2,-1*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^25,-1*K.1^11,K.1^3,-1*K.1^5,K.1^33,-1*K.1^25,-1*K.1^27,-1*K.1^3,K.1,K.1^7,K.1^5,K.1^25,K.1^11,-1*K.1^13,K.1^13,-1*K.1^33,K.1^7,-1*K.1^3,K.1^21,K.1^13,K.1^11,K.1^19,K.1^25,K.1^29,-1*K.1^13,-1*K.1^31,-1*K.1^21,-1*K.1^19,K.1^27,-1*K.1^23,K.1^27,K.1^23,K.1^31,K.1^23,K.1^33,-1*K.1^21,-1*K.1^29,-1*K.1^15,K.1,-1*K.1,-1*K.1^33,-1*K.1^5,-1*K.1^9,-1*K.1^7,-1*K.1^7,K.1^15,K.1^15,K.1^9,K.1^29,K.1^19,-1*K.1,-1*K.1^11,-1*K.1^15,-1*K.1^9,K.1^9,-1*K.1^27,K.1^21,K.1^3,-1*K.1^29,-1*K.1^31,-1*K.1^19,K.1^5,K.1^31,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,-2*K.1^17,2*K.1^17,-2*K.1^17,2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,K.1^17,-1*K.1^17,K.1^17,-1*K.1^17,2*K.1^4,2*K.1^32,2*K.1^28,2*K.1^16,-2*K.1^18,2*K.1^12,-2*K.1^14,-2*K.1^10,-2*K.1^6,2*K.1^24,-2*K.1^26,2*K.1^8,-2*K.1^2,-2*K.1^30,-2*K.1^22,2*K.1^20,2*K.1^10,-2*K.1^8,2*K.1^22,2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^28,-2*K.1^20,2*K.1^6,2*K.1^18,-2*K.1^32,-2*K.1^12,-2*K.1^18,-2*K.1^30,-2*K.1^24,2*K.1^10,2*K.1^30,-2*K.1^20,2*K.1^30,-2*K.1^12,2*K.1^26,2*K.1^16,-2*K.1^26,-2*K.1^2,2*K.1^12,-2*K.1^22,2*K.1^32,2*K.1^6,2*K.1^20,-2*K.1^10,2*K.1^14,2*K.1^24,-2*K.1^14,2*K.1^4,2*K.1^28,-2*K.1^4,-2*K.1^16,2*K.1^26,2*K.1^2,-2*K.1^16,-2*K.1^24,2*K.1^14,-2*K.1^4,-2*K.1^28,2*K.1^18,-2*K.1^8,-2*K.1^32,2*K.1^22,K.1^2,K.1^6,K.1^30,-1*K.1^12,K.1^26,-1*K.1^32,K.1^22,K.1^10,-1*K.1^4,-1*K.1^24,-1*K.1^16,K.1^18,-1*K.1^8,-1*K.1^28,-1*K.1^20,K.1^14,-2*K.1^25,2*K.1^19,2*K.1^3,2*K.1^29,2*K.1^19,2*K.1^9,2*K.1,-2*K.1^23,2*K.1^9,-2*K.1^3,2*K.1^29,2*K.1^31,2*K.1^5,-2*K.1^7,2*K.1^25,2*K.1^21,-2*K.1^11,2*K.1^13,-2*K.1^31,2*K.1^31,2*K.1^3,2*K.1^15,-2*K.1^21,2*K.1^25,-2*K.1^5,-2*K.1^29,-2*K.1^27,-2*K.1^21,2*K.1^27,2*K.1^23,-2*K.1,2*K.1^23,-2*K.1^3,2*K.1^15,-2*K.1^9,2*K.1^5,2*K.1^7,2*K.1^11,-2*K.1^13,-2*K.1^9,-2*K.1^19,-2*K.1^29,2*K.1^33,2*K.1^33,2*K.1^13,-2*K.1^19,-2*K.1^27,-2*K.1,-2*K.1^23,-2*K.1^15,-2*K.1^31,2*K.1,-2*K.1^11,2*K.1^21,2*K.1^7,-2*K.1^7,-2*K.1^5,-2*K.1^33,2*K.1^11,-2*K.1^15,-2*K.1^13,-2*K.1^25,-2*K.1^33,2*K.1^27,K.1^20,-1*K.1^30,-1*K.1^6,K.1^28,-1*K.1^18,K.1^8,-1*K.1^10,K.1^24,K.1^4,-1*K.1^26,K.1^12,K.1^22,K.1^32,-1*K.1^14,-1*K.1^6,K.1^28,K.1^10,-1*K.1^18,-1*K.1^24,-1*K.1^4,K.1^18,K.1^6,K.1^26,K.1^30,K.1^14,-1*K.1^28,-1*K.1^16,K.1^2,-1*K.1^32,K.1^32,-1*K.1^14,-1*K.1^26,K.1^20,K.1^8,K.1^16,K.1^12,-1*K.1^10,-1*K.1^20,-1*K.1^2,-1*K.1^12,K.1^24,-1*K.1^8,-1*K.1^22,-1*K.1^30,K.1^4,K.1^16,-1*K.1^2,-1*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^25,K.1^11,-1*K.1^3,K.1^5,-1*K.1^33,K.1^25,K.1^27,K.1^3,-1*K.1,-1*K.1^7,-1*K.1^5,-1*K.1^25,-1*K.1^11,K.1^13,-1*K.1^13,K.1^33,-1*K.1^7,K.1^3,-1*K.1^21,-1*K.1^13,-1*K.1^11,-1*K.1^19,-1*K.1^25,-1*K.1^29,K.1^13,K.1^31,K.1^21,K.1^19,-1*K.1^27,K.1^23,-1*K.1^27,-1*K.1^23,-1*K.1^31,-1*K.1^23,-1*K.1^33,K.1^21,K.1^29,K.1^15,-1*K.1,K.1,K.1^33,K.1^5,K.1^9,K.1^7,K.1^7,-1*K.1^15,-1*K.1^15,-1*K.1^9,-1*K.1^29,-1*K.1^19,K.1,K.1^11,K.1^15,K.1^9,-1*K.1^9,K.1^27,-1*K.1^21,-1*K.1^3,K.1^29,K.1^31,K.1^19,-1*K.1^5,-1*K.1^31,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,-2,2,-2,-1,2*K.1^17,-2*K.1^17,2*K.1^17,-2*K.1^17,1,-1,1,0,0,0,0,0,0,0,0,-1*K.1^17,K.1^17,-1*K.1^17,K.1^17,-2*K.1^30,-2*K.1^2,-2*K.1^6,-2*K.1^18,2*K.1^16,-2*K.1^22,2*K.1^20,2*K.1^24,2*K.1^28,-2*K.1^10,2*K.1^8,-2*K.1^26,2*K.1^32,2*K.1^4,2*K.1^12,-2*K.1^14,-2*K.1^24,2*K.1^26,-2*K.1^12,-2*K.1^32,-2*K.1^26,2*K.1^28,2*K.1^6,2*K.1^14,-2*K.1^28,-2*K.1^16,2*K.1^2,2*K.1^22,2*K.1^16,2*K.1^4,2*K.1^10,-2*K.1^24,-2*K.1^4,2*K.1^14,-2*K.1^4,2*K.1^22,-2*K.1^8,-2*K.1^18,2*K.1^8,2*K.1^32,-2*K.1^22,2*K.1^12,-2*K.1^2,-2*K.1^28,-2*K.1^14,2*K.1^24,-2*K.1^20,-2*K.1^10,2*K.1^20,-2*K.1^30,-2*K.1^6,2*K.1^30,2*K.1^18,-2*K.1^8,-2*K.1^32,2*K.1^18,2*K.1^10,-2*K.1^20,2*K.1^30,2*K.1^6,-2*K.1^16,2*K.1^26,2*K.1^2,-2*K.1^12,-1*K.1^32,-1*K.1^28,-1*K.1^4,K.1^22,-1*K.1^8,K.1^2,-1*K.1^12,-1*K.1^24,K.1^30,K.1^10,K.1^18,-1*K.1^16,K.1^26,K.1^6,K.1^14,-1*K.1^20,2*K.1^9,-2*K.1^15,-2*K.1^31,-2*K.1^5,-2*K.1^15,-2*K.1^25,-2*K.1^33,2*K.1^11,-2*K.1^25,2*K.1^31,-2*K.1^5,-2*K.1^3,-2*K.1^29,2*K.1^27,-2*K.1^9,-2*K.1^13,2*K.1^23,-2*K.1^21,2*K.1^3,-2*K.1^3,-2*K.1^31,-2*K.1^19,2*K.1^13,-2*K.1^9,2*K.1^29,2*K.1^5,2*K.1^7,2*K.1^13,-2*K.1^7,-2*K.1^11,2*K.1^33,-2*K.1^11,2*K.1^31,-2*K.1^19,2*K.1^25,-2*K.1^29,-2*K.1^27,-2*K.1^23,2*K.1^21,2*K.1^25,2*K.1^15,2*K.1^5,-2*K.1,-2*K.1,-2*K.1^21,2*K.1^15,2*K.1^7,2*K.1^33,2*K.1^11,2*K.1^19,2*K.1^3,-2*K.1^33,2*K.1^23,-2*K.1^13,-2*K.1^27,2*K.1^27,2*K.1^29,2*K.1,-2*K.1^23,2*K.1^19,2*K.1^21,2*K.1^9,2*K.1,-2*K.1^7,-1*K.1^14,K.1^4,K.1^28,-1*K.1^6,K.1^16,-1*K.1^26,K.1^24,-1*K.1^10,-1*K.1^30,K.1^8,-1*K.1^22,-1*K.1^12,-1*K.1^2,K.1^20,K.1^28,-1*K.1^6,-1*K.1^24,K.1^16,K.1^10,K.1^30,-1*K.1^16,-1*K.1^28,-1*K.1^8,-1*K.1^4,-1*K.1^20,K.1^6,K.1^18,-1*K.1^32,K.1^2,-1*K.1^2,K.1^20,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^18,-1*K.1^22,K.1^24,K.1^14,K.1^32,K.1^22,-1*K.1^10,K.1^26,K.1^12,K.1^4,-1*K.1^30,-1*K.1^18,K.1^32,K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9,-1*K.1^23,K.1^31,-1*K.1^29,K.1,-1*K.1^9,-1*K.1^7,-1*K.1^31,K.1^33,K.1^27,K.1^29,K.1^9,K.1^23,-1*K.1^21,K.1^21,-1*K.1,K.1^27,-1*K.1^31,K.1^13,K.1^21,K.1^23,K.1^15,K.1^9,K.1^5,-1*K.1^21,-1*K.1^3,-1*K.1^13,-1*K.1^15,K.1^7,-1*K.1^11,K.1^7,K.1^11,K.1^3,K.1^11,K.1,-1*K.1^13,-1*K.1^5,-1*K.1^19,K.1^33,-1*K.1^33,-1*K.1,-1*K.1^29,-1*K.1^25,-1*K.1^27,-1*K.1^27,K.1^19,K.1^19,K.1^25,K.1^5,K.1^15,-1*K.1^33,-1*K.1^23,-1*K.1^19,-1*K.1^25,K.1^25,-1*K.1^7,K.1^13,K.1^31,-1*K.1^5,-1*K.1^3,-1*K.1^15,K.1^29,K.1^3,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-2*K.1^2,2*K.1^16,-2*K.1^14,2*K.1^8,-2*K.1^26,-2*K.1^6,2*K.1^24,-2*K.1^22,2*K.1^20,2*K.1^12,-2*K.1^30,2*K.1^4,-2*K.1^18,2*K.1^32,2*K.1^28,-2*K.1^10,2*K.1^22,2*K.1^4,2*K.1^28,-2*K.1^18,-2*K.1^4,-2*K.1^20,-2*K.1^14,-2*K.1^10,2*K.1^20,-2*K.1^26,2*K.1^16,-2*K.1^6,2*K.1^26,-2*K.1^32,2*K.1^12,-2*K.1^22,2*K.1^32,2*K.1^10,-2*K.1^32,2*K.1^6,-2*K.1^30,-2*K.1^8,2*K.1^30,2*K.1^18,2*K.1^6,-2*K.1^28,-2*K.1^16,-2*K.1^20,2*K.1^10,2*K.1^22,2*K.1^24,-2*K.1^12,-2*K.1^24,2*K.1^2,2*K.1^14,-2*K.1^2,-2*K.1^8,2*K.1^30,2*K.1^18,2*K.1^8,-2*K.1^12,-2*K.1^24,2*K.1^2,2*K.1^14,2*K.1^26,-2*K.1^4,-2*K.1^16,-2*K.1^28,K.1^18,-1*K.1^20,-1*K.1^32,K.1^6,K.1^30,-1*K.1^16,-1*K.1^28,K.1^22,K.1^2,-1*K.1^12,-1*K.1^8,K.1^26,-1*K.1^4,K.1^14,K.1^10,-1*K.1^24,-2*K.1^21,-2*K.1,-2*K.1^27,2*K.1^23,2*K.1,-2*K.1^13,-2*K.1^9,-2*K.1^3,2*K.1^13,-2*K.1^27,-2*K.1^23,2*K.1^7,-2*K.1^11,2*K.1^29,2*K.1^21,-2*K.1^19,2*K.1^31,2*K.1^15,2*K.1^7,-2*K.1^7,2*K.1^27,2*K.1^33,-2*K.1^19,-2*K.1^21,-2*K.1^11,2*K.1^23,-2*K.1^5,2*K.1^19,-2*K.1^5,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^27,-2*K.1^33,-2*K.1^13,2*K.1^11,-2*K.1^29,-2*K.1^31,-2*K.1^15,2*K.1^13,-2*K.1,-2*K.1^23,-2*K.1^25,2*K.1^25,-2*K.1^15,2*K.1,2*K.1^5,-2*K.1^9,2*K.1^3,2*K.1^33,-2*K.1^7,2*K.1^9,-2*K.1^31,2*K.1^19,2*K.1^29,-2*K.1^29,2*K.1^11,-2*K.1^25,2*K.1^31,-2*K.1^33,2*K.1^15,2*K.1^21,2*K.1^25,2*K.1^5,K.1^10,K.1^32,K.1^20,-1*K.1^14,-1*K.1^26,-1*K.1^4,K.1^22,-1*K.1^12,K.1^2,K.1^30,K.1^6,K.1^28,-1*K.1^16,-1*K.1^24,-1*K.1^20,K.1^14,-1*K.1^22,K.1^26,K.1^12,-1*K.1^2,-1*K.1^26,K.1^20,-1*K.1^30,K.1^32,K.1^24,-1*K.1^14,K.1^8,-1*K.1^18,K.1^16,K.1^16,K.1^24,-1*K.1^30,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,-1*K.1^22,-1*K.1^10,-1*K.1^18,-1*K.1^6,K.1^12,K.1^4,K.1^28,-1*K.1^32,-1*K.1^2,-1*K.1^8,K.1^18,-1*K.1^28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^21,K.1^31,-1*K.1^27,K.1^11,-1*K.1^25,K.1^21,-1*K.1^5,K.1^27,-1*K.1^9,-1*K.1^29,-1*K.1^11,K.1^21,-1*K.1^31,K.1^15,-1*K.1^15,-1*K.1^25,K.1^29,-1*K.1^27,-1*K.1^19,K.1^15,K.1^31,K.1,-1*K.1^21,-1*K.1^23,-1*K.1^15,-1*K.1^7,-1*K.1^19,K.1,K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^7,K.1^3,K.1^25,K.1^19,-1*K.1^23,K.1^33,K.1^9,-1*K.1^9,K.1^25,-1*K.1^11,-1*K.1^13,-1*K.1^29,K.1^29,K.1^33,-1*K.1^33,-1*K.1^13,K.1^23,-1*K.1,K.1^9,-1*K.1^31,-1*K.1^33,K.1^13,K.1^13,K.1^5,K.1^19,K.1^27,K.1^23,K.1^7,-1*K.1,K.1^11,K.1^7,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,2*K.1^32,-2*K.1^18,2*K.1^20,-2*K.1^26,2*K.1^8,2*K.1^28,-2*K.1^10,2*K.1^12,-2*K.1^14,-2*K.1^22,2*K.1^4,-2*K.1^30,2*K.1^16,-2*K.1^2,-2*K.1^6,2*K.1^24,-2*K.1^12,-2*K.1^30,-2*K.1^6,2*K.1^16,2*K.1^30,2*K.1^14,2*K.1^20,2*K.1^24,-2*K.1^14,2*K.1^8,-2*K.1^18,2*K.1^28,-2*K.1^8,2*K.1^2,-2*K.1^22,2*K.1^12,-2*K.1^2,-2*K.1^24,2*K.1^2,-2*K.1^28,2*K.1^4,2*K.1^26,-2*K.1^4,-2*K.1^16,-2*K.1^28,2*K.1^6,2*K.1^18,2*K.1^14,-2*K.1^24,-2*K.1^12,-2*K.1^10,2*K.1^22,2*K.1^10,-2*K.1^32,-2*K.1^20,2*K.1^32,2*K.1^26,-2*K.1^4,-2*K.1^16,-2*K.1^26,2*K.1^22,2*K.1^10,-2*K.1^32,-2*K.1^20,-2*K.1^8,2*K.1^30,2*K.1^18,2*K.1^6,-1*K.1^16,K.1^14,K.1^2,-1*K.1^28,-1*K.1^4,K.1^18,K.1^6,-1*K.1^12,-1*K.1^32,K.1^22,K.1^26,-1*K.1^8,K.1^30,-1*K.1^20,-1*K.1^24,K.1^10,2*K.1^13,2*K.1^33,2*K.1^7,-2*K.1^11,-2*K.1^33,2*K.1^21,2*K.1^25,2*K.1^31,-2*K.1^21,2*K.1^7,2*K.1^11,-2*K.1^27,2*K.1^23,-2*K.1^5,-2*K.1^13,2*K.1^15,-2*K.1^3,-2*K.1^19,-2*K.1^27,2*K.1^27,-2*K.1^7,-2*K.1,2*K.1^15,2*K.1^13,2*K.1^23,-2*K.1^11,2*K.1^29,-2*K.1^15,2*K.1^29,-2*K.1^31,-2*K.1^25,2*K.1^31,-2*K.1^7,2*K.1,2*K.1^21,-2*K.1^23,2*K.1^5,2*K.1^3,2*K.1^19,-2*K.1^21,2*K.1^33,2*K.1^11,2*K.1^9,-2*K.1^9,2*K.1^19,-2*K.1^33,-2*K.1^29,2*K.1^25,-2*K.1^31,-2*K.1,2*K.1^27,-2*K.1^25,2*K.1^3,-2*K.1^15,-2*K.1^5,2*K.1^5,-2*K.1^23,2*K.1^9,-2*K.1^3,2*K.1,-2*K.1^19,-2*K.1^13,-2*K.1^9,-2*K.1^29,-1*K.1^24,-1*K.1^2,-1*K.1^14,K.1^20,K.1^8,K.1^30,-1*K.1^12,K.1^22,-1*K.1^32,-1*K.1^4,-1*K.1^28,-1*K.1^6,K.1^18,K.1^10,K.1^14,-1*K.1^20,K.1^12,-1*K.1^8,-1*K.1^22,K.1^32,K.1^8,-1*K.1^14,K.1^4,-1*K.1^2,-1*K.1^10,K.1^20,-1*K.1^26,K.1^16,-1*K.1^18,-1*K.1^18,-1*K.1^10,K.1^4,K.1^24,-1*K.1^30,-1*K.1^26,K.1^28,K.1^12,K.1^24,K.1^16,K.1^28,-1*K.1^22,-1*K.1^30,-1*K.1^6,K.1^2,K.1^32,K.1^26,-1*K.1^16,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^13,-1*K.1^3,K.1^7,-1*K.1^23,K.1^9,-1*K.1^13,K.1^29,-1*K.1^7,K.1^25,K.1^5,K.1^23,-1*K.1^13,K.1^3,-1*K.1^19,K.1^19,K.1^9,-1*K.1^5,K.1^7,K.1^15,-1*K.1^19,-1*K.1^3,-1*K.1^33,K.1^13,K.1^11,K.1^19,K.1^27,K.1^15,-1*K.1^33,-1*K.1^29,K.1^31,K.1^29,K.1^31,K.1^27,-1*K.1^31,-1*K.1^9,-1*K.1^15,K.1^11,-1*K.1,-1*K.1^25,K.1^25,-1*K.1^9,K.1^23,K.1^21,K.1^5,-1*K.1^5,-1*K.1,K.1,K.1^21,-1*K.1^11,K.1^33,-1*K.1^25,K.1^3,K.1,-1*K.1^21,-1*K.1^21,-1*K.1^29,-1*K.1^15,-1*K.1^7,-1*K.1^11,-1*K.1^27,K.1^33,-1*K.1^23,-1*K.1^27,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,2*K.1^32,-2*K.1^18,2*K.1^20,-2*K.1^26,2*K.1^8,2*K.1^28,-2*K.1^10,2*K.1^12,-2*K.1^14,-2*K.1^22,2*K.1^4,-2*K.1^30,2*K.1^16,-2*K.1^2,-2*K.1^6,2*K.1^24,-2*K.1^12,-2*K.1^30,-2*K.1^6,2*K.1^16,2*K.1^30,2*K.1^14,2*K.1^20,2*K.1^24,-2*K.1^14,2*K.1^8,-2*K.1^18,2*K.1^28,-2*K.1^8,2*K.1^2,-2*K.1^22,2*K.1^12,-2*K.1^2,-2*K.1^24,2*K.1^2,-2*K.1^28,2*K.1^4,2*K.1^26,-2*K.1^4,-2*K.1^16,-2*K.1^28,2*K.1^6,2*K.1^18,2*K.1^14,-2*K.1^24,-2*K.1^12,-2*K.1^10,2*K.1^22,2*K.1^10,-2*K.1^32,-2*K.1^20,2*K.1^32,2*K.1^26,-2*K.1^4,-2*K.1^16,-2*K.1^26,2*K.1^22,2*K.1^10,-2*K.1^32,-2*K.1^20,-2*K.1^8,2*K.1^30,2*K.1^18,2*K.1^6,-1*K.1^16,K.1^14,K.1^2,-1*K.1^28,-1*K.1^4,K.1^18,K.1^6,-1*K.1^12,-1*K.1^32,K.1^22,K.1^26,-1*K.1^8,K.1^30,-1*K.1^20,-1*K.1^24,K.1^10,-2*K.1^13,-2*K.1^33,-2*K.1^7,2*K.1^11,2*K.1^33,-2*K.1^21,-2*K.1^25,-2*K.1^31,2*K.1^21,-2*K.1^7,-2*K.1^11,2*K.1^27,-2*K.1^23,2*K.1^5,2*K.1^13,-2*K.1^15,2*K.1^3,2*K.1^19,2*K.1^27,-2*K.1^27,2*K.1^7,2*K.1,-2*K.1^15,-2*K.1^13,-2*K.1^23,2*K.1^11,-2*K.1^29,2*K.1^15,-2*K.1^29,2*K.1^31,2*K.1^25,-2*K.1^31,2*K.1^7,-2*K.1,-2*K.1^21,2*K.1^23,-2*K.1^5,-2*K.1^3,-2*K.1^19,2*K.1^21,-2*K.1^33,-2*K.1^11,-2*K.1^9,2*K.1^9,-2*K.1^19,2*K.1^33,2*K.1^29,-2*K.1^25,2*K.1^31,2*K.1,-2*K.1^27,2*K.1^25,-2*K.1^3,2*K.1^15,2*K.1^5,-2*K.1^5,2*K.1^23,-2*K.1^9,2*K.1^3,-2*K.1,2*K.1^19,2*K.1^13,2*K.1^9,2*K.1^29,-1*K.1^24,-1*K.1^2,-1*K.1^14,K.1^20,K.1^8,K.1^30,-1*K.1^12,K.1^22,-1*K.1^32,-1*K.1^4,-1*K.1^28,-1*K.1^6,K.1^18,K.1^10,K.1^14,-1*K.1^20,K.1^12,-1*K.1^8,-1*K.1^22,K.1^32,K.1^8,-1*K.1^14,K.1^4,-1*K.1^2,-1*K.1^10,K.1^20,-1*K.1^26,K.1^16,-1*K.1^18,-1*K.1^18,-1*K.1^10,K.1^4,K.1^24,-1*K.1^30,-1*K.1^26,K.1^28,K.1^12,K.1^24,K.1^16,K.1^28,-1*K.1^22,-1*K.1^30,-1*K.1^6,K.1^2,K.1^32,K.1^26,-1*K.1^16,K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^13,K.1^3,-1*K.1^7,K.1^23,-1*K.1^9,K.1^13,-1*K.1^29,K.1^7,-1*K.1^25,-1*K.1^5,-1*K.1^23,K.1^13,-1*K.1^3,K.1^19,-1*K.1^19,-1*K.1^9,K.1^5,-1*K.1^7,-1*K.1^15,K.1^19,K.1^3,K.1^33,-1*K.1^13,-1*K.1^11,-1*K.1^19,-1*K.1^27,-1*K.1^15,K.1^33,K.1^29,-1*K.1^31,-1*K.1^29,-1*K.1^31,-1*K.1^27,K.1^31,K.1^9,K.1^15,-1*K.1^11,K.1,K.1^25,-1*K.1^25,K.1^9,-1*K.1^23,-1*K.1^21,-1*K.1^5,K.1^5,K.1,-1*K.1,-1*K.1^21,K.1^11,-1*K.1^33,K.1^25,-1*K.1^3,-1*K.1,K.1^21,K.1^21,K.1^29,K.1^15,K.1^7,K.1^11,K.1^27,-1*K.1^33,K.1^23,K.1^27,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-2*K.1^2,2*K.1^16,-2*K.1^14,2*K.1^8,-2*K.1^26,-2*K.1^6,2*K.1^24,-2*K.1^22,2*K.1^20,2*K.1^12,-2*K.1^30,2*K.1^4,-2*K.1^18,2*K.1^32,2*K.1^28,-2*K.1^10,2*K.1^22,2*K.1^4,2*K.1^28,-2*K.1^18,-2*K.1^4,-2*K.1^20,-2*K.1^14,-2*K.1^10,2*K.1^20,-2*K.1^26,2*K.1^16,-2*K.1^6,2*K.1^26,-2*K.1^32,2*K.1^12,-2*K.1^22,2*K.1^32,2*K.1^10,-2*K.1^32,2*K.1^6,-2*K.1^30,-2*K.1^8,2*K.1^30,2*K.1^18,2*K.1^6,-2*K.1^28,-2*K.1^16,-2*K.1^20,2*K.1^10,2*K.1^22,2*K.1^24,-2*K.1^12,-2*K.1^24,2*K.1^2,2*K.1^14,-2*K.1^2,-2*K.1^8,2*K.1^30,2*K.1^18,2*K.1^8,-2*K.1^12,-2*K.1^24,2*K.1^2,2*K.1^14,2*K.1^26,-2*K.1^4,-2*K.1^16,-2*K.1^28,K.1^18,-1*K.1^20,-1*K.1^32,K.1^6,K.1^30,-1*K.1^16,-1*K.1^28,K.1^22,K.1^2,-1*K.1^12,-1*K.1^8,K.1^26,-1*K.1^4,K.1^14,K.1^10,-1*K.1^24,2*K.1^21,2*K.1,2*K.1^27,-2*K.1^23,-2*K.1,2*K.1^13,2*K.1^9,2*K.1^3,-2*K.1^13,2*K.1^27,2*K.1^23,-2*K.1^7,2*K.1^11,-2*K.1^29,-2*K.1^21,2*K.1^19,-2*K.1^31,-2*K.1^15,-2*K.1^7,2*K.1^7,-2*K.1^27,-2*K.1^33,2*K.1^19,2*K.1^21,2*K.1^11,-2*K.1^23,2*K.1^5,-2*K.1^19,2*K.1^5,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^27,2*K.1^33,2*K.1^13,-2*K.1^11,2*K.1^29,2*K.1^31,2*K.1^15,-2*K.1^13,2*K.1,2*K.1^23,2*K.1^25,-2*K.1^25,2*K.1^15,-2*K.1,-2*K.1^5,2*K.1^9,-2*K.1^3,-2*K.1^33,2*K.1^7,-2*K.1^9,2*K.1^31,-2*K.1^19,-2*K.1^29,2*K.1^29,-2*K.1^11,2*K.1^25,-2*K.1^31,2*K.1^33,-2*K.1^15,-2*K.1^21,-2*K.1^25,-2*K.1^5,K.1^10,K.1^32,K.1^20,-1*K.1^14,-1*K.1^26,-1*K.1^4,K.1^22,-1*K.1^12,K.1^2,K.1^30,K.1^6,K.1^28,-1*K.1^16,-1*K.1^24,-1*K.1^20,K.1^14,-1*K.1^22,K.1^26,K.1^12,-1*K.1^2,-1*K.1^26,K.1^20,-1*K.1^30,K.1^32,K.1^24,-1*K.1^14,K.1^8,-1*K.1^18,K.1^16,K.1^16,K.1^24,-1*K.1^30,-1*K.1^10,K.1^4,K.1^8,-1*K.1^6,-1*K.1^22,-1*K.1^10,-1*K.1^18,-1*K.1^6,K.1^12,K.1^4,K.1^28,-1*K.1^32,-1*K.1^2,-1*K.1^8,K.1^18,-1*K.1^28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^21,-1*K.1^31,K.1^27,-1*K.1^11,K.1^25,-1*K.1^21,K.1^5,-1*K.1^27,K.1^9,K.1^29,K.1^11,-1*K.1^21,K.1^31,-1*K.1^15,K.1^15,K.1^25,-1*K.1^29,K.1^27,K.1^19,-1*K.1^15,-1*K.1^31,-1*K.1,K.1^21,K.1^23,K.1^15,K.1^7,K.1^19,-1*K.1,-1*K.1^5,K.1^3,K.1^5,K.1^3,K.1^7,-1*K.1^3,-1*K.1^25,-1*K.1^19,K.1^23,-1*K.1^33,-1*K.1^9,K.1^9,-1*K.1^25,K.1^11,K.1^13,K.1^29,-1*K.1^29,-1*K.1^33,K.1^33,K.1^13,-1*K.1^23,K.1,-1*K.1^9,K.1^31,K.1^33,-1*K.1^13,-1*K.1^13,-1*K.1^5,-1*K.1^19,-1*K.1^27,-1*K.1^23,-1*K.1^7,K.1,-1*K.1^11,-1*K.1^7,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-2*K.1^6,-2*K.1^14,2*K.1^8,2*K.1^24,-2*K.1^10,-2*K.1^18,2*K.1^4,2*K.1^32,-2*K.1^26,-2*K.1^2,-2*K.1^22,2*K.1^12,2*K.1^20,2*K.1^28,2*K.1^16,-2*K.1^30,-2*K.1^32,2*K.1^12,2*K.1^16,2*K.1^20,-2*K.1^12,2*K.1^26,2*K.1^8,-2*K.1^30,-2*K.1^26,-2*K.1^10,-2*K.1^14,-2*K.1^18,2*K.1^10,-2*K.1^28,-2*K.1^2,2*K.1^32,2*K.1^28,2*K.1^30,-2*K.1^28,2*K.1^18,-2*K.1^22,-2*K.1^24,2*K.1^22,-2*K.1^20,2*K.1^18,-2*K.1^16,2*K.1^14,2*K.1^26,2*K.1^30,-2*K.1^32,2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^6,-2*K.1^24,2*K.1^22,-2*K.1^20,2*K.1^24,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^10,-2*K.1^12,2*K.1^14,-2*K.1^16,-1*K.1^20,K.1^26,-1*K.1^28,K.1^18,K.1^22,K.1^14,-1*K.1^16,-1*K.1^32,K.1^6,K.1^2,-1*K.1^24,K.1^10,-1*K.1^12,-1*K.1^8,K.1^30,-1*K.1^4,-2*K.1^29,2*K.1^3,2*K.1^13,-2*K.1,-2*K.1^3,-2*K.1^5,2*K.1^27,2*K.1^9,2*K.1^5,2*K.1^13,2*K.1,-2*K.1^21,2*K.1^33,-2*K.1^19,2*K.1^29,-2*K.1^23,-2*K.1^25,2*K.1^11,-2*K.1^21,2*K.1^21,-2*K.1^13,-2*K.1^31,-2*K.1^23,-2*K.1^29,2*K.1^33,-2*K.1,2*K.1^15,2*K.1^23,2*K.1^15,-2*K.1^9,-2*K.1^27,2*K.1^9,-2*K.1^13,2*K.1^31,-2*K.1^5,-2*K.1^33,2*K.1^19,2*K.1^25,-2*K.1^11,2*K.1^5,2*K.1^3,2*K.1,2*K.1^7,-2*K.1^7,-2*K.1^11,-2*K.1^3,-2*K.1^15,2*K.1^27,-2*K.1^9,-2*K.1^31,2*K.1^21,-2*K.1^27,2*K.1^25,2*K.1^23,-2*K.1^19,2*K.1^19,-2*K.1^33,2*K.1^7,-2*K.1^25,2*K.1^31,2*K.1^11,2*K.1^29,-2*K.1^7,-2*K.1^15,K.1^30,K.1^28,-1*K.1^26,K.1^8,-1*K.1^10,-1*K.1^12,-1*K.1^32,K.1^2,K.1^6,K.1^22,K.1^18,K.1^16,K.1^14,-1*K.1^4,K.1^26,-1*K.1^8,K.1^32,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^10,-1*K.1^26,-1*K.1^22,K.1^28,K.1^4,K.1^8,K.1^24,K.1^20,-1*K.1^14,-1*K.1^14,K.1^4,-1*K.1^22,-1*K.1^30,K.1^12,K.1^24,-1*K.1^18,K.1^32,-1*K.1^30,K.1^20,-1*K.1^18,-1*K.1^2,K.1^12,K.1^16,-1*K.1^28,-1*K.1^6,-1*K.1^24,-1*K.1^20,-1*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^29,-1*K.1^25,K.1^13,-1*K.1^33,K.1^7,K.1^29,K.1^15,-1*K.1^13,K.1^27,K.1^19,K.1^33,K.1^29,K.1^25,K.1^11,-1*K.1^11,K.1^7,-1*K.1^19,K.1^13,-1*K.1^23,K.1^11,-1*K.1^25,-1*K.1^3,-1*K.1^29,K.1,-1*K.1^11,K.1^21,-1*K.1^23,-1*K.1^3,-1*K.1^15,K.1^9,K.1^15,K.1^9,K.1^21,-1*K.1^9,-1*K.1^7,K.1^23,K.1,-1*K.1^31,-1*K.1^27,K.1^27,-1*K.1^7,K.1^33,-1*K.1^5,K.1^19,-1*K.1^19,-1*K.1^31,K.1^31,-1*K.1^5,-1*K.1,K.1^3,-1*K.1^27,K.1^25,K.1^31,K.1^5,K.1^5,-1*K.1^15,K.1^23,-1*K.1^13,-1*K.1,-1*K.1^21,K.1^3,-1*K.1^33,-1*K.1^21,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,2*K.1^28,2*K.1^20,-2*K.1^26,-2*K.1^10,2*K.1^24,2*K.1^16,-2*K.1^30,-2*K.1^2,2*K.1^8,2*K.1^32,2*K.1^12,-2*K.1^22,-2*K.1^14,-2*K.1^6,-2*K.1^18,2*K.1^4,2*K.1^2,-2*K.1^22,-2*K.1^18,-2*K.1^14,2*K.1^22,-2*K.1^8,-2*K.1^26,2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^20,2*K.1^16,-2*K.1^24,2*K.1^6,2*K.1^32,-2*K.1^2,-2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^16,2*K.1^12,2*K.1^10,-2*K.1^12,2*K.1^14,-2*K.1^16,2*K.1^18,-2*K.1^20,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^30,-2*K.1^32,2*K.1^30,-2*K.1^28,2*K.1^26,2*K.1^28,2*K.1^10,-2*K.1^12,2*K.1^14,-2*K.1^10,-2*K.1^32,2*K.1^30,-2*K.1^28,2*K.1^26,-2*K.1^24,2*K.1^22,-2*K.1^20,2*K.1^18,K.1^14,-1*K.1^8,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^20,K.1^18,K.1^2,-1*K.1^28,-1*K.1^32,K.1^10,-1*K.1^24,K.1^22,K.1^26,-1*K.1^4,K.1^30,2*K.1^5,-2*K.1^31,-2*K.1^21,2*K.1^33,2*K.1^31,2*K.1^29,-2*K.1^7,-2*K.1^25,-2*K.1^29,-2*K.1^21,-2*K.1^33,2*K.1^13,-2*K.1,2*K.1^15,-2*K.1^5,2*K.1^11,2*K.1^9,-2*K.1^23,2*K.1^13,-2*K.1^13,2*K.1^21,2*K.1^3,2*K.1^11,2*K.1^5,-2*K.1,2*K.1^33,-2*K.1^19,-2*K.1^11,-2*K.1^19,2*K.1^25,2*K.1^7,-2*K.1^25,2*K.1^21,-2*K.1^3,2*K.1^29,2*K.1,-2*K.1^15,-2*K.1^9,2*K.1^23,-2*K.1^29,-2*K.1^31,-2*K.1^33,-2*K.1^27,2*K.1^27,2*K.1^23,2*K.1^31,2*K.1^19,-2*K.1^7,2*K.1^25,2*K.1^3,-2*K.1^13,2*K.1^7,-2*K.1^9,-2*K.1^11,2*K.1^15,-2*K.1^15,2*K.1,-2*K.1^27,2*K.1^9,-2*K.1^3,-2*K.1^23,-2*K.1^5,2*K.1^27,2*K.1^19,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^26,K.1^24,K.1^22,K.1^2,-1*K.1^32,-1*K.1^28,-1*K.1^12,-1*K.1^16,-1*K.1^18,-1*K.1^20,K.1^30,-1*K.1^8,K.1^26,-1*K.1^2,-1*K.1^24,K.1^32,K.1^28,K.1^24,K.1^8,K.1^12,-1*K.1^6,-1*K.1^30,-1*K.1^26,-1*K.1^10,-1*K.1^14,K.1^20,K.1^20,-1*K.1^30,K.1^12,K.1^4,-1*K.1^22,-1*K.1^10,K.1^16,-1*K.1^2,K.1^4,-1*K.1^14,K.1^16,K.1^32,-1*K.1^22,-1*K.1^18,K.1^6,K.1^28,K.1^10,K.1^14,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5,K.1^9,-1*K.1^21,K.1,-1*K.1^27,-1*K.1^5,-1*K.1^19,K.1^21,-1*K.1^7,-1*K.1^15,-1*K.1,-1*K.1^5,-1*K.1^9,-1*K.1^23,K.1^23,-1*K.1^27,K.1^15,-1*K.1^21,K.1^11,-1*K.1^23,K.1^9,K.1^31,K.1^5,-1*K.1^33,K.1^23,-1*K.1^13,K.1^11,K.1^31,K.1^19,-1*K.1^25,-1*K.1^19,-1*K.1^25,-1*K.1^13,K.1^25,K.1^27,-1*K.1^11,-1*K.1^33,K.1^3,K.1^7,-1*K.1^7,K.1^27,-1*K.1,K.1^29,-1*K.1^15,K.1^15,K.1^3,-1*K.1^3,K.1^29,K.1^33,-1*K.1^31,K.1^7,-1*K.1^9,-1*K.1^3,-1*K.1^29,-1*K.1^29,K.1^19,-1*K.1^11,K.1^21,K.1^33,K.1^13,-1*K.1^31,K.1,K.1^13,K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,2*K.1^28,2*K.1^20,-2*K.1^26,-2*K.1^10,2*K.1^24,2*K.1^16,-2*K.1^30,-2*K.1^2,2*K.1^8,2*K.1^32,2*K.1^12,-2*K.1^22,-2*K.1^14,-2*K.1^6,-2*K.1^18,2*K.1^4,2*K.1^2,-2*K.1^22,-2*K.1^18,-2*K.1^14,2*K.1^22,-2*K.1^8,-2*K.1^26,2*K.1^4,2*K.1^8,2*K.1^24,2*K.1^20,2*K.1^16,-2*K.1^24,2*K.1^6,2*K.1^32,-2*K.1^2,-2*K.1^6,-2*K.1^4,2*K.1^6,-2*K.1^16,2*K.1^12,2*K.1^10,-2*K.1^12,2*K.1^14,-2*K.1^16,2*K.1^18,-2*K.1^20,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^30,-2*K.1^32,2*K.1^30,-2*K.1^28,2*K.1^26,2*K.1^28,2*K.1^10,-2*K.1^12,2*K.1^14,-2*K.1^10,-2*K.1^32,2*K.1^30,-2*K.1^28,2*K.1^26,-2*K.1^24,2*K.1^22,-2*K.1^20,2*K.1^18,K.1^14,-1*K.1^8,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^20,K.1^18,K.1^2,-1*K.1^28,-1*K.1^32,K.1^10,-1*K.1^24,K.1^22,K.1^26,-1*K.1^4,K.1^30,-2*K.1^5,2*K.1^31,2*K.1^21,-2*K.1^33,-2*K.1^31,-2*K.1^29,2*K.1^7,2*K.1^25,2*K.1^29,2*K.1^21,2*K.1^33,-2*K.1^13,2*K.1,-2*K.1^15,2*K.1^5,-2*K.1^11,-2*K.1^9,2*K.1^23,-2*K.1^13,2*K.1^13,-2*K.1^21,-2*K.1^3,-2*K.1^11,-2*K.1^5,2*K.1,-2*K.1^33,2*K.1^19,2*K.1^11,2*K.1^19,-2*K.1^25,-2*K.1^7,2*K.1^25,-2*K.1^21,2*K.1^3,-2*K.1^29,-2*K.1,2*K.1^15,2*K.1^9,-2*K.1^23,2*K.1^29,2*K.1^31,2*K.1^33,2*K.1^27,-2*K.1^27,-2*K.1^23,-2*K.1^31,-2*K.1^19,2*K.1^7,-2*K.1^25,-2*K.1^3,2*K.1^13,-2*K.1^7,2*K.1^9,2*K.1^11,-2*K.1^15,2*K.1^15,-2*K.1,2*K.1^27,-2*K.1^9,2*K.1^3,2*K.1^23,2*K.1^5,-2*K.1^27,-2*K.1^19,-1*K.1^4,-1*K.1^6,K.1^8,-1*K.1^26,K.1^24,K.1^22,K.1^2,-1*K.1^32,-1*K.1^28,-1*K.1^12,-1*K.1^16,-1*K.1^18,-1*K.1^20,K.1^30,-1*K.1^8,K.1^26,-1*K.1^2,-1*K.1^24,K.1^32,K.1^28,K.1^24,K.1^8,K.1^12,-1*K.1^6,-1*K.1^30,-1*K.1^26,-1*K.1^10,-1*K.1^14,K.1^20,K.1^20,-1*K.1^30,K.1^12,K.1^4,-1*K.1^22,-1*K.1^10,K.1^16,-1*K.1^2,K.1^4,-1*K.1^14,K.1^16,K.1^32,-1*K.1^22,-1*K.1^18,K.1^6,K.1^28,K.1^10,K.1^14,K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5,-1*K.1^9,K.1^21,-1*K.1,K.1^27,K.1^5,K.1^19,-1*K.1^21,K.1^7,K.1^15,K.1,K.1^5,K.1^9,K.1^23,-1*K.1^23,K.1^27,-1*K.1^15,K.1^21,-1*K.1^11,K.1^23,-1*K.1^9,-1*K.1^31,-1*K.1^5,K.1^33,-1*K.1^23,K.1^13,-1*K.1^11,-1*K.1^31,-1*K.1^19,K.1^25,K.1^19,K.1^25,K.1^13,-1*K.1^25,-1*K.1^27,K.1^11,K.1^33,-1*K.1^3,-1*K.1^7,K.1^7,-1*K.1^27,K.1,-1*K.1^29,K.1^15,-1*K.1^15,-1*K.1^3,K.1^3,-1*K.1^29,-1*K.1^33,K.1^31,-1*K.1^7,K.1^9,K.1^3,K.1^29,K.1^29,-1*K.1^19,K.1^11,-1*K.1^21,-1*K.1^33,-1*K.1^13,K.1^31,-1*K.1,-1*K.1^13,-1*K.1^25]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-2*K.1^6,-2*K.1^14,2*K.1^8,2*K.1^24,-2*K.1^10,-2*K.1^18,2*K.1^4,2*K.1^32,-2*K.1^26,-2*K.1^2,-2*K.1^22,2*K.1^12,2*K.1^20,2*K.1^28,2*K.1^16,-2*K.1^30,-2*K.1^32,2*K.1^12,2*K.1^16,2*K.1^20,-2*K.1^12,2*K.1^26,2*K.1^8,-2*K.1^30,-2*K.1^26,-2*K.1^10,-2*K.1^14,-2*K.1^18,2*K.1^10,-2*K.1^28,-2*K.1^2,2*K.1^32,2*K.1^28,2*K.1^30,-2*K.1^28,2*K.1^18,-2*K.1^22,-2*K.1^24,2*K.1^22,-2*K.1^20,2*K.1^18,-2*K.1^16,2*K.1^14,2*K.1^26,2*K.1^30,-2*K.1^32,2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^6,-2*K.1^24,2*K.1^22,-2*K.1^20,2*K.1^24,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^10,-2*K.1^12,2*K.1^14,-2*K.1^16,-1*K.1^20,K.1^26,-1*K.1^28,K.1^18,K.1^22,K.1^14,-1*K.1^16,-1*K.1^32,K.1^6,K.1^2,-1*K.1^24,K.1^10,-1*K.1^12,-1*K.1^8,K.1^30,-1*K.1^4,2*K.1^29,-2*K.1^3,-2*K.1^13,2*K.1,2*K.1^3,2*K.1^5,-2*K.1^27,-2*K.1^9,-2*K.1^5,-2*K.1^13,-2*K.1,2*K.1^21,-2*K.1^33,2*K.1^19,-2*K.1^29,2*K.1^23,2*K.1^25,-2*K.1^11,2*K.1^21,-2*K.1^21,2*K.1^13,2*K.1^31,2*K.1^23,2*K.1^29,-2*K.1^33,2*K.1,-2*K.1^15,-2*K.1^23,-2*K.1^15,2*K.1^9,2*K.1^27,-2*K.1^9,2*K.1^13,-2*K.1^31,2*K.1^5,2*K.1^33,-2*K.1^19,-2*K.1^25,2*K.1^11,-2*K.1^5,-2*K.1^3,-2*K.1,-2*K.1^7,2*K.1^7,2*K.1^11,2*K.1^3,2*K.1^15,-2*K.1^27,2*K.1^9,2*K.1^31,-2*K.1^21,2*K.1^27,-2*K.1^25,-2*K.1^23,2*K.1^19,-2*K.1^19,2*K.1^33,-2*K.1^7,2*K.1^25,-2*K.1^31,-2*K.1^11,-2*K.1^29,2*K.1^7,2*K.1^15,K.1^30,K.1^28,-1*K.1^26,K.1^8,-1*K.1^10,-1*K.1^12,-1*K.1^32,K.1^2,K.1^6,K.1^22,K.1^18,K.1^16,K.1^14,-1*K.1^4,K.1^26,-1*K.1^8,K.1^32,K.1^10,-1*K.1^2,-1*K.1^6,-1*K.1^10,-1*K.1^26,-1*K.1^22,K.1^28,K.1^4,K.1^8,K.1^24,K.1^20,-1*K.1^14,-1*K.1^14,K.1^4,-1*K.1^22,-1*K.1^30,K.1^12,K.1^24,-1*K.1^18,K.1^32,-1*K.1^30,K.1^20,-1*K.1^18,-1*K.1^2,K.1^12,K.1^16,-1*K.1^28,-1*K.1^6,-1*K.1^24,-1*K.1^20,-1*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^29,K.1^25,-1*K.1^13,K.1^33,-1*K.1^7,-1*K.1^29,-1*K.1^15,K.1^13,-1*K.1^27,-1*K.1^19,-1*K.1^33,-1*K.1^29,-1*K.1^25,-1*K.1^11,K.1^11,-1*K.1^7,K.1^19,-1*K.1^13,K.1^23,-1*K.1^11,K.1^25,K.1^3,K.1^29,-1*K.1,K.1^11,-1*K.1^21,K.1^23,K.1^3,K.1^15,-1*K.1^9,-1*K.1^15,-1*K.1^9,-1*K.1^21,K.1^9,K.1^7,-1*K.1^23,-1*K.1,K.1^31,K.1^27,-1*K.1^27,K.1^7,-1*K.1^33,K.1^5,-1*K.1^19,K.1^19,K.1^31,-1*K.1^31,K.1^5,K.1,-1*K.1^3,K.1^27,-1*K.1^25,-1*K.1^31,-1*K.1^5,-1*K.1^5,K.1^15,-1*K.1^23,K.1^13,K.1,K.1^21,-1*K.1^3,K.1^33,K.1^21,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-2*K.1^10,2*K.1^12,-2*K.1^2,-2*K.1^6,2*K.1^28,-2*K.1^30,-2*K.1^18,2*K.1^8,2*K.1^32,-2*K.1^26,-2*K.1^14,2*K.1^20,-2*K.1^22,2*K.1^24,2*K.1^4,2*K.1^16,-2*K.1^8,2*K.1^20,2*K.1^4,-2*K.1^22,-2*K.1^20,-2*K.1^32,-2*K.1^2,2*K.1^16,2*K.1^32,2*K.1^28,2*K.1^12,-2*K.1^30,-2*K.1^28,-2*K.1^24,-2*K.1^26,2*K.1^8,2*K.1^24,-2*K.1^16,-2*K.1^24,2*K.1^30,-2*K.1^14,2*K.1^6,2*K.1^14,2*K.1^22,2*K.1^30,-2*K.1^4,-2*K.1^12,-2*K.1^32,-2*K.1^16,-2*K.1^8,-2*K.1^18,2*K.1^26,2*K.1^18,2*K.1^10,2*K.1^2,-2*K.1^10,2*K.1^6,2*K.1^14,2*K.1^22,-2*K.1^6,2*K.1^26,2*K.1^18,2*K.1^10,2*K.1^2,-2*K.1^28,-2*K.1^20,-2*K.1^12,-2*K.1^4,K.1^22,-1*K.1^32,-1*K.1^24,K.1^30,K.1^14,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,K.1^26,K.1^6,-1*K.1^28,-1*K.1^20,K.1^2,-1*K.1^16,K.1^18,2*K.1^3,-2*K.1^5,2*K.1^33,-2*K.1^13,2*K.1^5,2*K.1^31,2*K.1^11,-2*K.1^15,-2*K.1^31,2*K.1^33,2*K.1^13,-2*K.1,2*K.1^21,2*K.1^9,-2*K.1^3,-2*K.1^27,2*K.1^19,2*K.1^7,-2*K.1,2*K.1,-2*K.1^33,2*K.1^29,-2*K.1^27,2*K.1^3,2*K.1^21,-2*K.1^13,-2*K.1^25,2*K.1^27,-2*K.1^25,2*K.1^15,-2*K.1^11,-2*K.1^15,-2*K.1^33,-2*K.1^29,2*K.1^31,-2*K.1^21,-2*K.1^9,-2*K.1^19,-2*K.1^7,-2*K.1^31,-2*K.1^5,2*K.1^13,2*K.1^23,-2*K.1^23,-2*K.1^7,2*K.1^5,2*K.1^25,2*K.1^11,2*K.1^15,2*K.1^29,2*K.1,-2*K.1^11,-2*K.1^19,2*K.1^27,2*K.1^9,-2*K.1^9,-2*K.1^21,2*K.1^23,2*K.1^19,-2*K.1^29,2*K.1^7,-2*K.1^3,-2*K.1^23,2*K.1^25,-1*K.1^16,K.1^24,K.1^32,-1*K.1^2,K.1^28,-1*K.1^20,-1*K.1^8,K.1^26,K.1^10,K.1^14,K.1^30,K.1^4,-1*K.1^12,K.1^18,-1*K.1^32,K.1^2,K.1^8,-1*K.1^28,-1*K.1^26,-1*K.1^10,K.1^28,K.1^32,-1*K.1^14,K.1^24,-1*K.1^18,-1*K.1^2,-1*K.1^6,-1*K.1^22,K.1^12,K.1^12,-1*K.1^18,-1*K.1^14,K.1^16,K.1^20,-1*K.1^6,-1*K.1^30,K.1^8,K.1^16,-1*K.1^22,-1*K.1^30,-1*K.1^26,K.1^20,K.1^4,-1*K.1^24,-1*K.1^10,K.1^6,K.1^22,-1*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3,K.1^19,K.1^33,-1*K.1^21,K.1^23,-1*K.1^3,-1*K.1^25,-1*K.1^33,K.1^11,-1*K.1^9,K.1^21,-1*K.1^3,-1*K.1^19,K.1^7,-1*K.1^7,K.1^23,K.1^9,K.1^33,-1*K.1^27,K.1^7,K.1^19,K.1^5,K.1^3,K.1^13,-1*K.1^7,K.1,-1*K.1^27,K.1^5,K.1^25,-1*K.1^15,-1*K.1^25,-1*K.1^15,K.1,K.1^15,-1*K.1^23,K.1^27,K.1^13,K.1^29,-1*K.1^11,K.1^11,-1*K.1^23,K.1^21,K.1^31,-1*K.1^9,K.1^9,K.1^29,-1*K.1^29,K.1^31,-1*K.1^13,-1*K.1^5,-1*K.1^11,-1*K.1^19,-1*K.1^29,-1*K.1^31,-1*K.1^31,K.1^25,K.1^27,-1*K.1^33,-1*K.1^13,-1*K.1,-1*K.1^5,-1*K.1^21,-1*K.1,K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,2*K.1^24,-2*K.1^22,2*K.1^32,2*K.1^28,-2*K.1^6,2*K.1^4,2*K.1^16,-2*K.1^26,-2*K.1^2,2*K.1^8,2*K.1^20,-2*K.1^14,2*K.1^12,-2*K.1^10,-2*K.1^30,-2*K.1^18,2*K.1^26,-2*K.1^14,-2*K.1^30,2*K.1^12,2*K.1^14,2*K.1^2,2*K.1^32,-2*K.1^18,-2*K.1^2,-2*K.1^6,-2*K.1^22,2*K.1^4,2*K.1^6,2*K.1^10,2*K.1^8,-2*K.1^26,-2*K.1^10,2*K.1^18,2*K.1^10,-2*K.1^4,2*K.1^20,-2*K.1^28,-2*K.1^20,-2*K.1^12,-2*K.1^4,2*K.1^30,2*K.1^22,2*K.1^2,2*K.1^18,2*K.1^26,2*K.1^16,-2*K.1^8,-2*K.1^16,-2*K.1^24,-2*K.1^32,2*K.1^24,-2*K.1^28,-2*K.1^20,-2*K.1^12,2*K.1^28,-2*K.1^8,-2*K.1^16,-2*K.1^24,-2*K.1^32,2*K.1^6,2*K.1^14,2*K.1^22,2*K.1^30,-1*K.1^12,K.1^2,K.1^10,-1*K.1^4,-1*K.1^20,K.1^22,K.1^30,K.1^26,-1*K.1^24,-1*K.1^8,-1*K.1^28,K.1^6,K.1^14,-1*K.1^32,K.1^18,-1*K.1^16,-2*K.1^31,2*K.1^29,-2*K.1,2*K.1^21,-2*K.1^29,-2*K.1^3,-2*K.1^23,2*K.1^19,2*K.1^3,-2*K.1,-2*K.1^21,2*K.1^33,-2*K.1^13,-2*K.1^25,2*K.1^31,2*K.1^7,-2*K.1^15,-2*K.1^27,2*K.1^33,-2*K.1^33,2*K.1,-2*K.1^5,2*K.1^7,-2*K.1^31,-2*K.1^13,2*K.1^21,2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1^19,2*K.1^23,2*K.1^19,2*K.1,2*K.1^5,-2*K.1^3,2*K.1^13,2*K.1^25,2*K.1^15,2*K.1^27,2*K.1^3,2*K.1^29,-2*K.1^21,-2*K.1^11,2*K.1^11,2*K.1^27,-2*K.1^29,-2*K.1^9,-2*K.1^23,-2*K.1^19,-2*K.1^5,-2*K.1^33,2*K.1^23,2*K.1^15,-2*K.1^7,-2*K.1^25,2*K.1^25,2*K.1^13,-2*K.1^11,-2*K.1^15,2*K.1^5,-2*K.1^27,2*K.1^31,2*K.1^11,-2*K.1^9,K.1^18,-1*K.1^10,-1*K.1^2,K.1^32,-1*K.1^6,K.1^14,K.1^26,-1*K.1^8,-1*K.1^24,-1*K.1^20,-1*K.1^4,-1*K.1^30,K.1^22,-1*K.1^16,K.1^2,-1*K.1^32,-1*K.1^26,K.1^6,K.1^8,K.1^24,-1*K.1^6,-1*K.1^2,K.1^20,-1*K.1^10,K.1^16,K.1^32,K.1^28,K.1^12,-1*K.1^22,-1*K.1^22,K.1^16,K.1^20,-1*K.1^18,-1*K.1^14,K.1^28,K.1^4,-1*K.1^26,-1*K.1^18,K.1^12,K.1^4,K.1^8,-1*K.1^14,-1*K.1^30,K.1^10,K.1^24,-1*K.1^28,-1*K.1^12,K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^31,-1*K.1^15,-1*K.1,K.1^13,-1*K.1^11,K.1^31,K.1^9,K.1,-1*K.1^23,K.1^25,-1*K.1^13,K.1^31,K.1^15,-1*K.1^27,K.1^27,-1*K.1^11,-1*K.1^25,-1*K.1,K.1^7,-1*K.1^27,-1*K.1^15,-1*K.1^29,-1*K.1^31,-1*K.1^21,K.1^27,-1*K.1^33,K.1^7,-1*K.1^29,-1*K.1^9,K.1^19,K.1^9,K.1^19,-1*K.1^33,-1*K.1^19,K.1^11,-1*K.1^7,-1*K.1^21,-1*K.1^5,K.1^23,-1*K.1^23,K.1^11,-1*K.1^13,-1*K.1^3,K.1^25,-1*K.1^25,-1*K.1^5,K.1^5,-1*K.1^3,K.1^21,K.1^29,K.1^23,K.1^15,K.1^5,K.1^3,K.1^3,-1*K.1^9,-1*K.1^7,K.1,K.1^21,K.1^33,K.1^29,K.1^13,K.1^33,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,2*K.1^24,-2*K.1^22,2*K.1^32,2*K.1^28,-2*K.1^6,2*K.1^4,2*K.1^16,-2*K.1^26,-2*K.1^2,2*K.1^8,2*K.1^20,-2*K.1^14,2*K.1^12,-2*K.1^10,-2*K.1^30,-2*K.1^18,2*K.1^26,-2*K.1^14,-2*K.1^30,2*K.1^12,2*K.1^14,2*K.1^2,2*K.1^32,-2*K.1^18,-2*K.1^2,-2*K.1^6,-2*K.1^22,2*K.1^4,2*K.1^6,2*K.1^10,2*K.1^8,-2*K.1^26,-2*K.1^10,2*K.1^18,2*K.1^10,-2*K.1^4,2*K.1^20,-2*K.1^28,-2*K.1^20,-2*K.1^12,-2*K.1^4,2*K.1^30,2*K.1^22,2*K.1^2,2*K.1^18,2*K.1^26,2*K.1^16,-2*K.1^8,-2*K.1^16,-2*K.1^24,-2*K.1^32,2*K.1^24,-2*K.1^28,-2*K.1^20,-2*K.1^12,2*K.1^28,-2*K.1^8,-2*K.1^16,-2*K.1^24,-2*K.1^32,2*K.1^6,2*K.1^14,2*K.1^22,2*K.1^30,-1*K.1^12,K.1^2,K.1^10,-1*K.1^4,-1*K.1^20,K.1^22,K.1^30,K.1^26,-1*K.1^24,-1*K.1^8,-1*K.1^28,K.1^6,K.1^14,-1*K.1^32,K.1^18,-1*K.1^16,2*K.1^31,-2*K.1^29,2*K.1,-2*K.1^21,2*K.1^29,2*K.1^3,2*K.1^23,-2*K.1^19,-2*K.1^3,2*K.1,2*K.1^21,-2*K.1^33,2*K.1^13,2*K.1^25,-2*K.1^31,-2*K.1^7,2*K.1^15,2*K.1^27,-2*K.1^33,2*K.1^33,-2*K.1,2*K.1^5,-2*K.1^7,2*K.1^31,2*K.1^13,-2*K.1^21,-2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1^19,-2*K.1^23,-2*K.1^19,-2*K.1,-2*K.1^5,2*K.1^3,-2*K.1^13,-2*K.1^25,-2*K.1^15,-2*K.1^27,-2*K.1^3,-2*K.1^29,2*K.1^21,2*K.1^11,-2*K.1^11,-2*K.1^27,2*K.1^29,2*K.1^9,2*K.1^23,2*K.1^19,2*K.1^5,2*K.1^33,-2*K.1^23,-2*K.1^15,2*K.1^7,2*K.1^25,-2*K.1^25,-2*K.1^13,2*K.1^11,2*K.1^15,-2*K.1^5,2*K.1^27,-2*K.1^31,-2*K.1^11,2*K.1^9,K.1^18,-1*K.1^10,-1*K.1^2,K.1^32,-1*K.1^6,K.1^14,K.1^26,-1*K.1^8,-1*K.1^24,-1*K.1^20,-1*K.1^4,-1*K.1^30,K.1^22,-1*K.1^16,K.1^2,-1*K.1^32,-1*K.1^26,K.1^6,K.1^8,K.1^24,-1*K.1^6,-1*K.1^2,K.1^20,-1*K.1^10,K.1^16,K.1^32,K.1^28,K.1^12,-1*K.1^22,-1*K.1^22,K.1^16,K.1^20,-1*K.1^18,-1*K.1^14,K.1^28,K.1^4,-1*K.1^26,-1*K.1^18,K.1^12,K.1^4,K.1^8,-1*K.1^14,-1*K.1^30,K.1^10,K.1^24,-1*K.1^28,-1*K.1^12,K.1^30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^31,K.1^15,K.1,-1*K.1^13,K.1^11,-1*K.1^31,-1*K.1^9,-1*K.1,K.1^23,-1*K.1^25,K.1^13,-1*K.1^31,-1*K.1^15,K.1^27,-1*K.1^27,K.1^11,K.1^25,K.1,-1*K.1^7,K.1^27,K.1^15,K.1^29,K.1^31,K.1^21,-1*K.1^27,K.1^33,-1*K.1^7,K.1^29,K.1^9,-1*K.1^19,-1*K.1^9,-1*K.1^19,K.1^33,K.1^19,-1*K.1^11,K.1^7,K.1^21,K.1^5,-1*K.1^23,K.1^23,-1*K.1^11,K.1^13,K.1^3,-1*K.1^25,K.1^25,K.1^5,-1*K.1^5,K.1^3,-1*K.1^21,-1*K.1^29,-1*K.1^23,-1*K.1^15,-1*K.1^5,-1*K.1^3,-1*K.1^3,K.1^9,K.1^7,-1*K.1,-1*K.1^21,-1*K.1^33,-1*K.1^29,-1*K.1^13,-1*K.1^33,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-2*K.1^10,2*K.1^12,-2*K.1^2,-2*K.1^6,2*K.1^28,-2*K.1^30,-2*K.1^18,2*K.1^8,2*K.1^32,-2*K.1^26,-2*K.1^14,2*K.1^20,-2*K.1^22,2*K.1^24,2*K.1^4,2*K.1^16,-2*K.1^8,2*K.1^20,2*K.1^4,-2*K.1^22,-2*K.1^20,-2*K.1^32,-2*K.1^2,2*K.1^16,2*K.1^32,2*K.1^28,2*K.1^12,-2*K.1^30,-2*K.1^28,-2*K.1^24,-2*K.1^26,2*K.1^8,2*K.1^24,-2*K.1^16,-2*K.1^24,2*K.1^30,-2*K.1^14,2*K.1^6,2*K.1^14,2*K.1^22,2*K.1^30,-2*K.1^4,-2*K.1^12,-2*K.1^32,-2*K.1^16,-2*K.1^8,-2*K.1^18,2*K.1^26,2*K.1^18,2*K.1^10,2*K.1^2,-2*K.1^10,2*K.1^6,2*K.1^14,2*K.1^22,-2*K.1^6,2*K.1^26,2*K.1^18,2*K.1^10,2*K.1^2,-2*K.1^28,-2*K.1^20,-2*K.1^12,-2*K.1^4,K.1^22,-1*K.1^32,-1*K.1^24,K.1^30,K.1^14,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^10,K.1^26,K.1^6,-1*K.1^28,-1*K.1^20,K.1^2,-1*K.1^16,K.1^18,-2*K.1^3,2*K.1^5,-2*K.1^33,2*K.1^13,-2*K.1^5,-2*K.1^31,-2*K.1^11,2*K.1^15,2*K.1^31,-2*K.1^33,-2*K.1^13,2*K.1,-2*K.1^21,-2*K.1^9,2*K.1^3,2*K.1^27,-2*K.1^19,-2*K.1^7,2*K.1,-2*K.1,2*K.1^33,-2*K.1^29,2*K.1^27,-2*K.1^3,-2*K.1^21,2*K.1^13,2*K.1^25,-2*K.1^27,2*K.1^25,-2*K.1^15,2*K.1^11,2*K.1^15,2*K.1^33,2*K.1^29,-2*K.1^31,2*K.1^21,2*K.1^9,2*K.1^19,2*K.1^7,2*K.1^31,2*K.1^5,-2*K.1^13,-2*K.1^23,2*K.1^23,2*K.1^7,-2*K.1^5,-2*K.1^25,-2*K.1^11,-2*K.1^15,-2*K.1^29,-2*K.1,2*K.1^11,2*K.1^19,-2*K.1^27,-2*K.1^9,2*K.1^9,2*K.1^21,-2*K.1^23,-2*K.1^19,2*K.1^29,-2*K.1^7,2*K.1^3,2*K.1^23,-2*K.1^25,-1*K.1^16,K.1^24,K.1^32,-1*K.1^2,K.1^28,-1*K.1^20,-1*K.1^8,K.1^26,K.1^10,K.1^14,K.1^30,K.1^4,-1*K.1^12,K.1^18,-1*K.1^32,K.1^2,K.1^8,-1*K.1^28,-1*K.1^26,-1*K.1^10,K.1^28,K.1^32,-1*K.1^14,K.1^24,-1*K.1^18,-1*K.1^2,-1*K.1^6,-1*K.1^22,K.1^12,K.1^12,-1*K.1^18,-1*K.1^14,K.1^16,K.1^20,-1*K.1^6,-1*K.1^30,K.1^8,K.1^16,-1*K.1^22,-1*K.1^30,-1*K.1^26,K.1^20,K.1^4,-1*K.1^24,-1*K.1^10,K.1^6,K.1^22,-1*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3,-1*K.1^19,-1*K.1^33,K.1^21,-1*K.1^23,K.1^3,K.1^25,K.1^33,-1*K.1^11,K.1^9,-1*K.1^21,K.1^3,K.1^19,-1*K.1^7,K.1^7,-1*K.1^23,-1*K.1^9,-1*K.1^33,K.1^27,-1*K.1^7,-1*K.1^19,-1*K.1^5,-1*K.1^3,-1*K.1^13,K.1^7,-1*K.1,K.1^27,-1*K.1^5,-1*K.1^25,K.1^15,K.1^25,K.1^15,-1*K.1,-1*K.1^15,K.1^23,-1*K.1^27,-1*K.1^13,-1*K.1^29,K.1^11,-1*K.1^11,K.1^23,-1*K.1^21,-1*K.1^31,K.1^9,-1*K.1^9,-1*K.1^29,K.1^29,-1*K.1^31,K.1^13,K.1^5,K.1^11,K.1^19,K.1^29,K.1^31,K.1^31,-1*K.1^25,-1*K.1^27,K.1^33,K.1^13,K.1,K.1^5,K.1^21,K.1,-1*K.1^15]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-2*K.1^14,-2*K.1^10,-2*K.1^30,-2*K.1^22,2*K.1^12,2*K.1^8,2*K.1^32,-2*K.1^18,2*K.1^4,2*K.1^16,-2*K.1^6,2*K.1^28,2*K.1^24,2*K.1^20,-2*K.1^26,-2*K.1^2,2*K.1^18,2*K.1^28,-2*K.1^26,2*K.1^24,-2*K.1^28,-2*K.1^4,-2*K.1^30,-2*K.1^2,2*K.1^4,2*K.1^12,-2*K.1^10,2*K.1^8,-2*K.1^12,-2*K.1^20,2*K.1^16,-2*K.1^18,2*K.1^20,2*K.1^2,-2*K.1^20,-2*K.1^8,-2*K.1^6,2*K.1^22,2*K.1^6,-2*K.1^24,-2*K.1^8,2*K.1^26,2*K.1^10,-2*K.1^4,2*K.1^2,2*K.1^18,2*K.1^32,-2*K.1^16,-2*K.1^32,2*K.1^14,2*K.1^30,-2*K.1^14,2*K.1^22,2*K.1^6,-2*K.1^24,-2*K.1^22,-2*K.1^16,-2*K.1^32,2*K.1^14,2*K.1^30,-2*K.1^12,-2*K.1^28,2*K.1^10,2*K.1^26,-1*K.1^24,-1*K.1^4,-1*K.1^20,-1*K.1^8,K.1^6,K.1^10,K.1^26,K.1^18,K.1^14,-1*K.1^16,K.1^22,-1*K.1^12,-1*K.1^28,K.1^30,K.1^2,-1*K.1^32,2*K.1^11,2*K.1^7,-2*K.1^19,-2*K.1^25,-2*K.1^7,2*K.1^23,-2*K.1^29,2*K.1^21,-2*K.1^23,-2*K.1^19,2*K.1^25,2*K.1^15,2*K.1^9,2*K.1^33,-2*K.1^11,-2*K.1^31,-2*K.1^13,2*K.1^3,2*K.1^15,-2*K.1^15,2*K.1^19,-2*K.1^27,-2*K.1^31,2*K.1^11,2*K.1^9,-2*K.1^25,-2*K.1,2*K.1^31,-2*K.1,-2*K.1^21,2*K.1^29,2*K.1^21,2*K.1^19,2*K.1^27,2*K.1^23,-2*K.1^9,-2*K.1^33,2*K.1^13,-2*K.1^3,-2*K.1^23,2*K.1^7,2*K.1^25,-2*K.1^5,2*K.1^5,-2*K.1^3,-2*K.1^7,2*K.1,-2*K.1^29,-2*K.1^21,-2*K.1^27,-2*K.1^15,2*K.1^29,2*K.1^13,2*K.1^31,2*K.1^33,-2*K.1^33,-2*K.1^9,-2*K.1^5,-2*K.1^13,2*K.1^27,2*K.1^3,-2*K.1^11,2*K.1^5,2*K.1,K.1^2,K.1^20,K.1^4,-1*K.1^30,K.1^12,-1*K.1^28,K.1^18,-1*K.1^16,K.1^14,K.1^6,-1*K.1^8,-1*K.1^26,K.1^10,-1*K.1^32,-1*K.1^4,K.1^30,-1*K.1^18,-1*K.1^12,K.1^16,-1*K.1^14,K.1^12,K.1^4,-1*K.1^6,K.1^20,K.1^32,-1*K.1^30,-1*K.1^22,K.1^24,-1*K.1^10,-1*K.1^10,K.1^32,-1*K.1^6,-1*K.1^2,K.1^28,-1*K.1^22,K.1^8,-1*K.1^18,-1*K.1^2,K.1^24,K.1^8,K.1^16,K.1^28,-1*K.1^26,-1*K.1^20,-1*K.1^14,K.1^22,-1*K.1^24,K.1^26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^11,-1*K.1^13,-1*K.1^19,-1*K.1^9,-1*K.1^5,-1*K.1^11,-1*K.1,K.1^19,-1*K.1^29,-1*K.1^33,K.1^9,-1*K.1^11,K.1^13,K.1^3,-1*K.1^3,-1*K.1^5,K.1^33,-1*K.1^19,-1*K.1^31,K.1^3,-1*K.1^13,-1*K.1^7,K.1^11,K.1^25,-1*K.1^3,-1*K.1^15,-1*K.1^31,-1*K.1^7,K.1,K.1^21,-1*K.1,K.1^21,-1*K.1^15,-1*K.1^21,K.1^5,K.1^31,K.1^25,-1*K.1^27,K.1^29,-1*K.1^29,K.1^5,K.1^9,K.1^23,-1*K.1^33,K.1^33,-1*K.1^27,K.1^27,K.1^23,-1*K.1^25,K.1^7,K.1^29,K.1^13,K.1^27,-1*K.1^23,-1*K.1^23,K.1,K.1^31,K.1^19,-1*K.1^25,K.1^15,K.1^7,-1*K.1^9,K.1^15,-1*K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,2*K.1^20,2*K.1^24,2*K.1^4,2*K.1^12,-2*K.1^22,-2*K.1^26,-2*K.1^2,2*K.1^16,-2*K.1^30,-2*K.1^18,2*K.1^28,-2*K.1^6,-2*K.1^10,-2*K.1^14,2*K.1^8,2*K.1^32,-2*K.1^16,-2*K.1^6,2*K.1^8,-2*K.1^10,2*K.1^6,2*K.1^30,2*K.1^4,2*K.1^32,-2*K.1^30,-2*K.1^22,2*K.1^24,-2*K.1^26,2*K.1^22,2*K.1^14,-2*K.1^18,2*K.1^16,-2*K.1^14,-2*K.1^32,2*K.1^14,2*K.1^26,2*K.1^28,-2*K.1^12,-2*K.1^28,2*K.1^10,2*K.1^26,-2*K.1^8,-2*K.1^24,2*K.1^30,-2*K.1^32,-2*K.1^16,-2*K.1^2,2*K.1^18,2*K.1^2,-2*K.1^20,-2*K.1^4,2*K.1^20,-2*K.1^12,-2*K.1^28,2*K.1^10,2*K.1^12,2*K.1^18,2*K.1^2,-2*K.1^20,-2*K.1^4,2*K.1^22,2*K.1^6,-2*K.1^24,-2*K.1^8,K.1^10,K.1^30,K.1^14,K.1^26,-1*K.1^28,-1*K.1^24,-1*K.1^8,-1*K.1^16,-1*K.1^20,K.1^18,-1*K.1^12,K.1^22,K.1^6,-1*K.1^4,-1*K.1^32,K.1^2,-2*K.1^23,-2*K.1^27,2*K.1^15,2*K.1^9,2*K.1^27,-2*K.1^11,2*K.1^5,-2*K.1^13,2*K.1^11,2*K.1^15,-2*K.1^9,-2*K.1^19,-2*K.1^25,-2*K.1,2*K.1^23,2*K.1^3,2*K.1^21,-2*K.1^31,-2*K.1^19,2*K.1^19,-2*K.1^15,2*K.1^7,2*K.1^3,-2*K.1^23,-2*K.1^25,2*K.1^9,2*K.1^33,-2*K.1^3,2*K.1^33,2*K.1^13,-2*K.1^5,-2*K.1^13,-2*K.1^15,-2*K.1^7,-2*K.1^11,2*K.1^25,2*K.1,-2*K.1^21,2*K.1^31,2*K.1^11,-2*K.1^27,-2*K.1^9,2*K.1^29,-2*K.1^29,2*K.1^31,2*K.1^27,-2*K.1^33,2*K.1^5,2*K.1^13,2*K.1^7,2*K.1^19,-2*K.1^5,-2*K.1^21,-2*K.1^3,-2*K.1,2*K.1,2*K.1^25,2*K.1^29,2*K.1^21,-2*K.1^7,-2*K.1^31,2*K.1^23,-2*K.1^29,-2*K.1^33,-1*K.1^32,-1*K.1^14,-1*K.1^30,K.1^4,-1*K.1^22,K.1^6,-1*K.1^16,K.1^18,-1*K.1^20,-1*K.1^28,K.1^26,K.1^8,-1*K.1^24,K.1^2,K.1^30,-1*K.1^4,K.1^16,K.1^22,-1*K.1^18,K.1^20,-1*K.1^22,-1*K.1^30,K.1^28,-1*K.1^14,-1*K.1^2,K.1^4,K.1^12,-1*K.1^10,K.1^24,K.1^24,-1*K.1^2,K.1^28,K.1^32,-1*K.1^6,K.1^12,-1*K.1^26,K.1^16,K.1^32,-1*K.1^10,-1*K.1^26,-1*K.1^18,-1*K.1^6,K.1^8,K.1^14,K.1^20,-1*K.1^12,K.1^10,-1*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^23,K.1^21,K.1^15,K.1^25,K.1^29,K.1^23,K.1^33,-1*K.1^15,K.1^5,K.1,-1*K.1^25,K.1^23,-1*K.1^21,-1*K.1^31,K.1^31,K.1^29,-1*K.1,K.1^15,K.1^3,-1*K.1^31,K.1^21,K.1^27,-1*K.1^23,-1*K.1^9,K.1^31,K.1^19,K.1^3,K.1^27,-1*K.1^33,-1*K.1^13,K.1^33,-1*K.1^13,K.1^19,K.1^13,-1*K.1^29,-1*K.1^3,-1*K.1^9,K.1^7,-1*K.1^5,K.1^5,-1*K.1^29,-1*K.1^25,-1*K.1^11,K.1,-1*K.1,K.1^7,-1*K.1^7,-1*K.1^11,K.1^9,-1*K.1^27,-1*K.1^5,-1*K.1^21,-1*K.1^7,K.1^11,K.1^11,-1*K.1^33,-1*K.1^3,-1*K.1^15,K.1^9,-1*K.1^19,-1*K.1^27,K.1^25,-1*K.1^19,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,2*K.1^20,2*K.1^24,2*K.1^4,2*K.1^12,-2*K.1^22,-2*K.1^26,-2*K.1^2,2*K.1^16,-2*K.1^30,-2*K.1^18,2*K.1^28,-2*K.1^6,-2*K.1^10,-2*K.1^14,2*K.1^8,2*K.1^32,-2*K.1^16,-2*K.1^6,2*K.1^8,-2*K.1^10,2*K.1^6,2*K.1^30,2*K.1^4,2*K.1^32,-2*K.1^30,-2*K.1^22,2*K.1^24,-2*K.1^26,2*K.1^22,2*K.1^14,-2*K.1^18,2*K.1^16,-2*K.1^14,-2*K.1^32,2*K.1^14,2*K.1^26,2*K.1^28,-2*K.1^12,-2*K.1^28,2*K.1^10,2*K.1^26,-2*K.1^8,-2*K.1^24,2*K.1^30,-2*K.1^32,-2*K.1^16,-2*K.1^2,2*K.1^18,2*K.1^2,-2*K.1^20,-2*K.1^4,2*K.1^20,-2*K.1^12,-2*K.1^28,2*K.1^10,2*K.1^12,2*K.1^18,2*K.1^2,-2*K.1^20,-2*K.1^4,2*K.1^22,2*K.1^6,-2*K.1^24,-2*K.1^8,K.1^10,K.1^30,K.1^14,K.1^26,-1*K.1^28,-1*K.1^24,-1*K.1^8,-1*K.1^16,-1*K.1^20,K.1^18,-1*K.1^12,K.1^22,K.1^6,-1*K.1^4,-1*K.1^32,K.1^2,2*K.1^23,2*K.1^27,-2*K.1^15,-2*K.1^9,-2*K.1^27,2*K.1^11,-2*K.1^5,2*K.1^13,-2*K.1^11,-2*K.1^15,2*K.1^9,2*K.1^19,2*K.1^25,2*K.1,-2*K.1^23,-2*K.1^3,-2*K.1^21,2*K.1^31,2*K.1^19,-2*K.1^19,2*K.1^15,-2*K.1^7,-2*K.1^3,2*K.1^23,2*K.1^25,-2*K.1^9,-2*K.1^33,2*K.1^3,-2*K.1^33,-2*K.1^13,2*K.1^5,2*K.1^13,2*K.1^15,2*K.1^7,2*K.1^11,-2*K.1^25,-2*K.1,2*K.1^21,-2*K.1^31,-2*K.1^11,2*K.1^27,2*K.1^9,-2*K.1^29,2*K.1^29,-2*K.1^31,-2*K.1^27,2*K.1^33,-2*K.1^5,-2*K.1^13,-2*K.1^7,-2*K.1^19,2*K.1^5,2*K.1^21,2*K.1^3,2*K.1,-2*K.1,-2*K.1^25,-2*K.1^29,-2*K.1^21,2*K.1^7,2*K.1^31,-2*K.1^23,2*K.1^29,2*K.1^33,-1*K.1^32,-1*K.1^14,-1*K.1^30,K.1^4,-1*K.1^22,K.1^6,-1*K.1^16,K.1^18,-1*K.1^20,-1*K.1^28,K.1^26,K.1^8,-1*K.1^24,K.1^2,K.1^30,-1*K.1^4,K.1^16,K.1^22,-1*K.1^18,K.1^20,-1*K.1^22,-1*K.1^30,K.1^28,-1*K.1^14,-1*K.1^2,K.1^4,K.1^12,-1*K.1^10,K.1^24,K.1^24,-1*K.1^2,K.1^28,K.1^32,-1*K.1^6,K.1^12,-1*K.1^26,K.1^16,K.1^32,-1*K.1^10,-1*K.1^26,-1*K.1^18,-1*K.1^6,K.1^8,K.1^14,K.1^20,-1*K.1^12,K.1^10,-1*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^23,-1*K.1^21,-1*K.1^15,-1*K.1^25,-1*K.1^29,-1*K.1^23,-1*K.1^33,K.1^15,-1*K.1^5,-1*K.1,K.1^25,-1*K.1^23,K.1^21,K.1^31,-1*K.1^31,-1*K.1^29,K.1,-1*K.1^15,-1*K.1^3,K.1^31,-1*K.1^21,-1*K.1^27,K.1^23,K.1^9,-1*K.1^31,-1*K.1^19,-1*K.1^3,-1*K.1^27,K.1^33,K.1^13,-1*K.1^33,K.1^13,-1*K.1^19,-1*K.1^13,K.1^29,K.1^3,K.1^9,-1*K.1^7,K.1^5,-1*K.1^5,K.1^29,K.1^25,K.1^11,-1*K.1,K.1,-1*K.1^7,K.1^7,K.1^11,-1*K.1^9,K.1^27,K.1^5,K.1^21,K.1^7,-1*K.1^11,-1*K.1^11,K.1^33,K.1^3,K.1^15,-1*K.1^9,K.1^19,K.1^27,-1*K.1^25,K.1^19,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-2*K.1^14,-2*K.1^10,-2*K.1^30,-2*K.1^22,2*K.1^12,2*K.1^8,2*K.1^32,-2*K.1^18,2*K.1^4,2*K.1^16,-2*K.1^6,2*K.1^28,2*K.1^24,2*K.1^20,-2*K.1^26,-2*K.1^2,2*K.1^18,2*K.1^28,-2*K.1^26,2*K.1^24,-2*K.1^28,-2*K.1^4,-2*K.1^30,-2*K.1^2,2*K.1^4,2*K.1^12,-2*K.1^10,2*K.1^8,-2*K.1^12,-2*K.1^20,2*K.1^16,-2*K.1^18,2*K.1^20,2*K.1^2,-2*K.1^20,-2*K.1^8,-2*K.1^6,2*K.1^22,2*K.1^6,-2*K.1^24,-2*K.1^8,2*K.1^26,2*K.1^10,-2*K.1^4,2*K.1^2,2*K.1^18,2*K.1^32,-2*K.1^16,-2*K.1^32,2*K.1^14,2*K.1^30,-2*K.1^14,2*K.1^22,2*K.1^6,-2*K.1^24,-2*K.1^22,-2*K.1^16,-2*K.1^32,2*K.1^14,2*K.1^30,-2*K.1^12,-2*K.1^28,2*K.1^10,2*K.1^26,-1*K.1^24,-1*K.1^4,-1*K.1^20,-1*K.1^8,K.1^6,K.1^10,K.1^26,K.1^18,K.1^14,-1*K.1^16,K.1^22,-1*K.1^12,-1*K.1^28,K.1^30,K.1^2,-1*K.1^32,-2*K.1^11,-2*K.1^7,2*K.1^19,2*K.1^25,2*K.1^7,-2*K.1^23,2*K.1^29,-2*K.1^21,2*K.1^23,2*K.1^19,-2*K.1^25,-2*K.1^15,-2*K.1^9,-2*K.1^33,2*K.1^11,2*K.1^31,2*K.1^13,-2*K.1^3,-2*K.1^15,2*K.1^15,-2*K.1^19,2*K.1^27,2*K.1^31,-2*K.1^11,-2*K.1^9,2*K.1^25,2*K.1,-2*K.1^31,2*K.1,2*K.1^21,-2*K.1^29,-2*K.1^21,-2*K.1^19,-2*K.1^27,-2*K.1^23,2*K.1^9,2*K.1^33,-2*K.1^13,2*K.1^3,2*K.1^23,-2*K.1^7,-2*K.1^25,2*K.1^5,-2*K.1^5,2*K.1^3,2*K.1^7,-2*K.1,2*K.1^29,2*K.1^21,2*K.1^27,2*K.1^15,-2*K.1^29,-2*K.1^13,-2*K.1^31,-2*K.1^33,2*K.1^33,2*K.1^9,2*K.1^5,2*K.1^13,-2*K.1^27,-2*K.1^3,2*K.1^11,-2*K.1^5,-2*K.1,K.1^2,K.1^20,K.1^4,-1*K.1^30,K.1^12,-1*K.1^28,K.1^18,-1*K.1^16,K.1^14,K.1^6,-1*K.1^8,-1*K.1^26,K.1^10,-1*K.1^32,-1*K.1^4,K.1^30,-1*K.1^18,-1*K.1^12,K.1^16,-1*K.1^14,K.1^12,K.1^4,-1*K.1^6,K.1^20,K.1^32,-1*K.1^30,-1*K.1^22,K.1^24,-1*K.1^10,-1*K.1^10,K.1^32,-1*K.1^6,-1*K.1^2,K.1^28,-1*K.1^22,K.1^8,-1*K.1^18,-1*K.1^2,K.1^24,K.1^8,K.1^16,K.1^28,-1*K.1^26,-1*K.1^20,-1*K.1^14,K.1^22,-1*K.1^24,K.1^26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^11,K.1^13,K.1^19,K.1^9,K.1^5,K.1^11,K.1,-1*K.1^19,K.1^29,K.1^33,-1*K.1^9,K.1^11,-1*K.1^13,-1*K.1^3,K.1^3,K.1^5,-1*K.1^33,K.1^19,K.1^31,-1*K.1^3,K.1^13,K.1^7,-1*K.1^11,-1*K.1^25,K.1^3,K.1^15,K.1^31,K.1^7,-1*K.1,-1*K.1^21,K.1,-1*K.1^21,K.1^15,K.1^21,-1*K.1^5,-1*K.1^31,-1*K.1^25,K.1^27,-1*K.1^29,K.1^29,-1*K.1^5,-1*K.1^9,-1*K.1^23,K.1^33,-1*K.1^33,K.1^27,-1*K.1^27,-1*K.1^23,K.1^25,-1*K.1^7,-1*K.1^29,-1*K.1^13,-1*K.1^27,K.1^23,K.1^23,-1*K.1,-1*K.1^31,-1*K.1^19,K.1^25,-1*K.1^15,-1*K.1^7,K.1^9,-1*K.1^15,K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-2*K.1^18,2*K.1^8,2*K.1^24,2*K.1^4,-2*K.1^30,2*K.1^20,2*K.1^12,2*K.1^28,-2*K.1^10,-2*K.1^6,2*K.1^32,-2*K.1^2,-2*K.1^26,2*K.1^16,-2*K.1^14,-2*K.1^22,-2*K.1^28,-2*K.1^2,-2*K.1^14,-2*K.1^26,2*K.1^2,2*K.1^10,2*K.1^24,-2*K.1^22,-2*K.1^10,-2*K.1^30,2*K.1^8,2*K.1^20,2*K.1^30,-2*K.1^16,-2*K.1^6,2*K.1^28,2*K.1^16,2*K.1^22,-2*K.1^16,-2*K.1^20,2*K.1^32,-2*K.1^4,-2*K.1^32,2*K.1^26,-2*K.1^20,2*K.1^14,-2*K.1^8,2*K.1^10,2*K.1^22,-2*K.1^28,2*K.1^12,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^18,-2*K.1^4,-2*K.1^32,2*K.1^26,2*K.1^4,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^30,2*K.1^2,-2*K.1^8,2*K.1^14,K.1^26,K.1^10,-1*K.1^16,-1*K.1^20,-1*K.1^32,-1*K.1^8,K.1^14,-1*K.1^28,K.1^18,K.1^6,-1*K.1^4,K.1^30,K.1^2,-1*K.1^24,K.1^22,-1*K.1^12,2*K.1^19,-2*K.1^9,2*K.1^5,2*K.1^3,2*K.1^9,2*K.1^15,-2*K.1^13,-2*K.1^27,-2*K.1^15,2*K.1^5,-2*K.1^3,-2*K.1^29,-2*K.1^31,-2*K.1^23,-2*K.1^19,2*K.1,2*K.1^7,-2*K.1^33,-2*K.1^29,2*K.1^29,-2*K.1^5,2*K.1^25,2*K.1,2*K.1^19,-2*K.1^31,2*K.1^3,2*K.1^11,-2*K.1,2*K.1^11,2*K.1^27,2*K.1^13,-2*K.1^27,-2*K.1^5,-2*K.1^25,2*K.1^15,2*K.1^31,2*K.1^23,-2*K.1^7,2*K.1^33,-2*K.1^15,-2*K.1^9,-2*K.1^3,-2*K.1^21,2*K.1^21,2*K.1^33,2*K.1^9,-2*K.1^11,-2*K.1^13,2*K.1^27,2*K.1^25,2*K.1^29,2*K.1^13,-2*K.1^7,-2*K.1,-2*K.1^23,2*K.1^23,2*K.1^31,-2*K.1^21,2*K.1^7,-2*K.1^25,-2*K.1^33,-2*K.1^19,2*K.1^21,-2*K.1^11,K.1^22,K.1^16,-1*K.1^10,K.1^24,-1*K.1^30,K.1^2,-1*K.1^28,K.1^6,K.1^18,-1*K.1^32,-1*K.1^20,-1*K.1^14,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^24,K.1^28,K.1^30,-1*K.1^6,-1*K.1^18,-1*K.1^30,-1*K.1^10,K.1^32,K.1^16,K.1^12,K.1^24,K.1^4,-1*K.1^26,K.1^8,K.1^8,K.1^12,K.1^32,-1*K.1^22,-1*K.1^2,K.1^4,K.1^20,K.1^28,-1*K.1^22,-1*K.1^26,K.1^20,-1*K.1^6,-1*K.1^2,-1*K.1^14,-1*K.1^16,-1*K.1^18,-1*K.1^4,K.1^26,K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^19,K.1^7,K.1^5,K.1^31,-1*K.1^21,-1*K.1^19,K.1^11,-1*K.1^5,-1*K.1^13,K.1^23,-1*K.1^31,-1*K.1^19,-1*K.1^7,-1*K.1^33,K.1^33,-1*K.1^21,-1*K.1^23,K.1^5,K.1,-1*K.1^33,K.1^7,K.1^9,K.1^19,-1*K.1^3,K.1^33,K.1^29,K.1,K.1^9,-1*K.1^11,-1*K.1^27,K.1^11,-1*K.1^27,K.1^29,K.1^27,K.1^21,-1*K.1,-1*K.1^3,K.1^25,K.1^13,-1*K.1^13,K.1^21,-1*K.1^31,K.1^15,K.1^23,-1*K.1^23,K.1^25,-1*K.1^25,K.1^15,K.1^3,-1*K.1^9,K.1^13,-1*K.1^7,-1*K.1^25,-1*K.1^15,-1*K.1^15,-1*K.1^11,-1*K.1,-1*K.1^5,K.1^3,-1*K.1^29,-1*K.1^9,K.1^31,-1*K.1^29,K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,2*K.1^16,-2*K.1^26,-2*K.1^10,-2*K.1^30,2*K.1^4,-2*K.1^14,-2*K.1^22,-2*K.1^6,2*K.1^24,2*K.1^28,-2*K.1^2,2*K.1^32,2*K.1^8,-2*K.1^18,2*K.1^20,2*K.1^12,2*K.1^6,2*K.1^32,2*K.1^20,2*K.1^8,-2*K.1^32,-2*K.1^24,-2*K.1^10,2*K.1^12,2*K.1^24,2*K.1^4,-2*K.1^26,-2*K.1^14,-2*K.1^4,2*K.1^18,2*K.1^28,-2*K.1^6,-2*K.1^18,-2*K.1^12,2*K.1^18,2*K.1^14,-2*K.1^2,2*K.1^30,2*K.1^2,-2*K.1^8,2*K.1^14,-2*K.1^20,2*K.1^26,-2*K.1^24,-2*K.1^12,2*K.1^6,-2*K.1^22,-2*K.1^28,2*K.1^22,-2*K.1^16,2*K.1^10,2*K.1^16,2*K.1^30,2*K.1^2,-2*K.1^8,-2*K.1^30,-2*K.1^28,2*K.1^22,-2*K.1^16,2*K.1^10,-2*K.1^4,-2*K.1^32,2*K.1^26,-2*K.1^20,-1*K.1^8,-1*K.1^24,K.1^18,K.1^14,K.1^2,K.1^26,-1*K.1^20,K.1^6,-1*K.1^16,-1*K.1^28,K.1^30,-1*K.1^4,-1*K.1^32,K.1^10,-1*K.1^12,K.1^22,-2*K.1^15,2*K.1^25,-2*K.1^29,-2*K.1^31,-2*K.1^25,-2*K.1^19,2*K.1^21,2*K.1^7,2*K.1^19,-2*K.1^29,2*K.1^31,2*K.1^5,2*K.1^3,2*K.1^11,2*K.1^15,-2*K.1^33,-2*K.1^27,2*K.1,2*K.1^5,-2*K.1^5,2*K.1^29,-2*K.1^9,-2*K.1^33,-2*K.1^15,2*K.1^3,-2*K.1^31,-2*K.1^23,2*K.1^33,-2*K.1^23,-2*K.1^7,-2*K.1^21,2*K.1^7,2*K.1^29,2*K.1^9,-2*K.1^19,-2*K.1^3,-2*K.1^11,2*K.1^27,-2*K.1,2*K.1^19,2*K.1^25,2*K.1^31,2*K.1^13,-2*K.1^13,-2*K.1,-2*K.1^25,2*K.1^23,2*K.1^21,-2*K.1^7,-2*K.1^9,-2*K.1^5,-2*K.1^21,2*K.1^27,2*K.1^33,2*K.1^11,-2*K.1^11,-2*K.1^3,2*K.1^13,-2*K.1^27,2*K.1^9,2*K.1,2*K.1^15,-2*K.1^13,2*K.1^23,-1*K.1^12,-1*K.1^18,K.1^24,-1*K.1^10,K.1^4,-1*K.1^32,K.1^6,-1*K.1^28,-1*K.1^16,K.1^2,K.1^14,K.1^20,K.1^26,K.1^22,-1*K.1^24,K.1^10,-1*K.1^6,-1*K.1^4,K.1^28,K.1^16,K.1^4,K.1^24,-1*K.1^2,-1*K.1^18,-1*K.1^22,-1*K.1^10,-1*K.1^30,K.1^8,-1*K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^12,K.1^32,-1*K.1^30,-1*K.1^14,-1*K.1^6,K.1^12,K.1^8,-1*K.1^14,K.1^28,K.1^32,K.1^20,K.1^18,K.1^16,K.1^30,-1*K.1^8,-1*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^15,-1*K.1^27,-1*K.1^29,-1*K.1^3,K.1^13,K.1^15,-1*K.1^23,K.1^29,K.1^21,-1*K.1^11,K.1^3,K.1^15,K.1^27,K.1,-1*K.1,K.1^13,K.1^11,-1*K.1^29,-1*K.1^33,K.1,-1*K.1^27,-1*K.1^25,-1*K.1^15,K.1^31,-1*K.1,-1*K.1^5,-1*K.1^33,-1*K.1^25,K.1^23,K.1^7,-1*K.1^23,K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^13,K.1^33,K.1^31,-1*K.1^9,-1*K.1^21,K.1^21,-1*K.1^13,K.1^3,-1*K.1^19,-1*K.1^11,K.1^11,-1*K.1^9,K.1^9,-1*K.1^19,-1*K.1^31,K.1^25,-1*K.1^21,K.1^27,K.1^9,K.1^19,K.1^19,K.1^23,K.1^33,K.1^29,-1*K.1^31,K.1^5,K.1^25,-1*K.1^3,K.1^5,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,2*K.1^16,-2*K.1^26,-2*K.1^10,-2*K.1^30,2*K.1^4,-2*K.1^14,-2*K.1^22,-2*K.1^6,2*K.1^24,2*K.1^28,-2*K.1^2,2*K.1^32,2*K.1^8,-2*K.1^18,2*K.1^20,2*K.1^12,2*K.1^6,2*K.1^32,2*K.1^20,2*K.1^8,-2*K.1^32,-2*K.1^24,-2*K.1^10,2*K.1^12,2*K.1^24,2*K.1^4,-2*K.1^26,-2*K.1^14,-2*K.1^4,2*K.1^18,2*K.1^28,-2*K.1^6,-2*K.1^18,-2*K.1^12,2*K.1^18,2*K.1^14,-2*K.1^2,2*K.1^30,2*K.1^2,-2*K.1^8,2*K.1^14,-2*K.1^20,2*K.1^26,-2*K.1^24,-2*K.1^12,2*K.1^6,-2*K.1^22,-2*K.1^28,2*K.1^22,-2*K.1^16,2*K.1^10,2*K.1^16,2*K.1^30,2*K.1^2,-2*K.1^8,-2*K.1^30,-2*K.1^28,2*K.1^22,-2*K.1^16,2*K.1^10,-2*K.1^4,-2*K.1^32,2*K.1^26,-2*K.1^20,-1*K.1^8,-1*K.1^24,K.1^18,K.1^14,K.1^2,K.1^26,-1*K.1^20,K.1^6,-1*K.1^16,-1*K.1^28,K.1^30,-1*K.1^4,-1*K.1^32,K.1^10,-1*K.1^12,K.1^22,2*K.1^15,-2*K.1^25,2*K.1^29,2*K.1^31,2*K.1^25,2*K.1^19,-2*K.1^21,-2*K.1^7,-2*K.1^19,2*K.1^29,-2*K.1^31,-2*K.1^5,-2*K.1^3,-2*K.1^11,-2*K.1^15,2*K.1^33,2*K.1^27,-2*K.1,-2*K.1^5,2*K.1^5,-2*K.1^29,2*K.1^9,2*K.1^33,2*K.1^15,-2*K.1^3,2*K.1^31,2*K.1^23,-2*K.1^33,2*K.1^23,2*K.1^7,2*K.1^21,-2*K.1^7,-2*K.1^29,-2*K.1^9,2*K.1^19,2*K.1^3,2*K.1^11,-2*K.1^27,2*K.1,-2*K.1^19,-2*K.1^25,-2*K.1^31,-2*K.1^13,2*K.1^13,2*K.1,2*K.1^25,-2*K.1^23,-2*K.1^21,2*K.1^7,2*K.1^9,2*K.1^5,2*K.1^21,-2*K.1^27,-2*K.1^33,-2*K.1^11,2*K.1^11,2*K.1^3,-2*K.1^13,2*K.1^27,-2*K.1^9,-2*K.1,-2*K.1^15,2*K.1^13,-2*K.1^23,-1*K.1^12,-1*K.1^18,K.1^24,-1*K.1^10,K.1^4,-1*K.1^32,K.1^6,-1*K.1^28,-1*K.1^16,K.1^2,K.1^14,K.1^20,K.1^26,K.1^22,-1*K.1^24,K.1^10,-1*K.1^6,-1*K.1^4,K.1^28,K.1^16,K.1^4,K.1^24,-1*K.1^2,-1*K.1^18,-1*K.1^22,-1*K.1^10,-1*K.1^30,K.1^8,-1*K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^12,K.1^32,-1*K.1^30,-1*K.1^14,-1*K.1^6,K.1^12,K.1^8,-1*K.1^14,K.1^28,K.1^32,K.1^20,K.1^18,K.1^16,K.1^30,-1*K.1^8,-1*K.1^20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^15,K.1^27,K.1^29,K.1^3,-1*K.1^13,-1*K.1^15,K.1^23,-1*K.1^29,-1*K.1^21,K.1^11,-1*K.1^3,-1*K.1^15,-1*K.1^27,-1*K.1,K.1,-1*K.1^13,-1*K.1^11,K.1^29,K.1^33,-1*K.1,K.1^27,K.1^25,K.1^15,-1*K.1^31,K.1,K.1^5,K.1^33,K.1^25,-1*K.1^23,-1*K.1^7,K.1^23,-1*K.1^7,K.1^5,K.1^7,K.1^13,-1*K.1^33,-1*K.1^31,K.1^9,K.1^21,-1*K.1^21,K.1^13,-1*K.1^3,K.1^19,K.1^11,-1*K.1^11,K.1^9,-1*K.1^9,K.1^19,K.1^31,-1*K.1^25,K.1^21,-1*K.1^27,-1*K.1^9,-1*K.1^19,-1*K.1^19,-1*K.1^23,-1*K.1^33,-1*K.1^29,K.1^31,-1*K.1^5,-1*K.1^25,K.1^3,-1*K.1^5,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-2*K.1^18,2*K.1^8,2*K.1^24,2*K.1^4,-2*K.1^30,2*K.1^20,2*K.1^12,2*K.1^28,-2*K.1^10,-2*K.1^6,2*K.1^32,-2*K.1^2,-2*K.1^26,2*K.1^16,-2*K.1^14,-2*K.1^22,-2*K.1^28,-2*K.1^2,-2*K.1^14,-2*K.1^26,2*K.1^2,2*K.1^10,2*K.1^24,-2*K.1^22,-2*K.1^10,-2*K.1^30,2*K.1^8,2*K.1^20,2*K.1^30,-2*K.1^16,-2*K.1^6,2*K.1^28,2*K.1^16,2*K.1^22,-2*K.1^16,-2*K.1^20,2*K.1^32,-2*K.1^4,-2*K.1^32,2*K.1^26,-2*K.1^20,2*K.1^14,-2*K.1^8,2*K.1^10,2*K.1^22,-2*K.1^28,2*K.1^12,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,-2*K.1^18,-2*K.1^4,-2*K.1^32,2*K.1^26,2*K.1^4,2*K.1^6,-2*K.1^12,2*K.1^18,-2*K.1^24,2*K.1^30,2*K.1^2,-2*K.1^8,2*K.1^14,K.1^26,K.1^10,-1*K.1^16,-1*K.1^20,-1*K.1^32,-1*K.1^8,K.1^14,-1*K.1^28,K.1^18,K.1^6,-1*K.1^4,K.1^30,K.1^2,-1*K.1^24,K.1^22,-1*K.1^12,-2*K.1^19,2*K.1^9,-2*K.1^5,-2*K.1^3,-2*K.1^9,-2*K.1^15,2*K.1^13,2*K.1^27,2*K.1^15,-2*K.1^5,2*K.1^3,2*K.1^29,2*K.1^31,2*K.1^23,2*K.1^19,-2*K.1,-2*K.1^7,2*K.1^33,2*K.1^29,-2*K.1^29,2*K.1^5,-2*K.1^25,-2*K.1,-2*K.1^19,2*K.1^31,-2*K.1^3,-2*K.1^11,2*K.1,-2*K.1^11,-2*K.1^27,-2*K.1^13,2*K.1^27,2*K.1^5,2*K.1^25,-2*K.1^15,-2*K.1^31,-2*K.1^23,2*K.1^7,-2*K.1^33,2*K.1^15,2*K.1^9,2*K.1^3,2*K.1^21,-2*K.1^21,-2*K.1^33,-2*K.1^9,2*K.1^11,2*K.1^13,-2*K.1^27,-2*K.1^25,-2*K.1^29,-2*K.1^13,2*K.1^7,2*K.1,2*K.1^23,-2*K.1^23,-2*K.1^31,2*K.1^21,-2*K.1^7,2*K.1^25,2*K.1^33,2*K.1^19,-2*K.1^21,2*K.1^11,K.1^22,K.1^16,-1*K.1^10,K.1^24,-1*K.1^30,K.1^2,-1*K.1^28,K.1^6,K.1^18,-1*K.1^32,-1*K.1^20,-1*K.1^14,-1*K.1^8,-1*K.1^12,K.1^10,-1*K.1^24,K.1^28,K.1^30,-1*K.1^6,-1*K.1^18,-1*K.1^30,-1*K.1^10,K.1^32,K.1^16,K.1^12,K.1^24,K.1^4,-1*K.1^26,K.1^8,K.1^8,K.1^12,K.1^32,-1*K.1^22,-1*K.1^2,K.1^4,K.1^20,K.1^28,-1*K.1^22,-1*K.1^26,K.1^20,-1*K.1^6,-1*K.1^2,-1*K.1^14,-1*K.1^16,-1*K.1^18,-1*K.1^4,K.1^26,K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^19,-1*K.1^7,-1*K.1^5,-1*K.1^31,K.1^21,K.1^19,-1*K.1^11,K.1^5,K.1^13,-1*K.1^23,K.1^31,K.1^19,K.1^7,K.1^33,-1*K.1^33,K.1^21,K.1^23,-1*K.1^5,-1*K.1,K.1^33,-1*K.1^7,-1*K.1^9,-1*K.1^19,K.1^3,-1*K.1^33,-1*K.1^29,-1*K.1,-1*K.1^9,K.1^11,K.1^27,-1*K.1^11,K.1^27,-1*K.1^29,-1*K.1^27,-1*K.1^21,K.1,K.1^3,-1*K.1^25,-1*K.1^13,K.1^13,-1*K.1^21,K.1^31,-1*K.1^15,-1*K.1^23,K.1^23,-1*K.1^25,K.1^25,-1*K.1^15,-1*K.1^3,K.1^9,-1*K.1^13,K.1^7,K.1^25,K.1^15,K.1^15,K.1^11,K.1,K.1^5,-1*K.1^3,K.1^29,K.1^9,-1*K.1^31,K.1^29,-1*K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-2*K.1^22,-2*K.1^6,-2*K.1^18,2*K.1^20,-2*K.1^14,2*K.1^32,-2*K.1^26,2*K.1^4,2*K.1^16,-2*K.1^30,2*K.1^24,-2*K.1^10,2*K.1^28,2*K.1^12,-2*K.1^2,2*K.1^8,-2*K.1^4,-2*K.1^10,-2*K.1^2,2*K.1^28,2*K.1^10,-2*K.1^16,-2*K.1^18,2*K.1^8,2*K.1^16,-2*K.1^14,-2*K.1^6,2*K.1^32,2*K.1^14,-2*K.1^12,-2*K.1^30,2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^12,-2*K.1^32,2*K.1^24,-2*K.1^20,-2*K.1^24,-2*K.1^28,-2*K.1^32,2*K.1^2,2*K.1^6,-2*K.1^16,-2*K.1^8,-2*K.1^4,-2*K.1^26,2*K.1^30,2*K.1^26,2*K.1^22,2*K.1^18,-2*K.1^22,-2*K.1^20,-2*K.1^24,-2*K.1^28,2*K.1^20,2*K.1^30,2*K.1^26,2*K.1^22,2*K.1^18,2*K.1^14,2*K.1^10,2*K.1^6,2*K.1^2,-1*K.1^28,-1*K.1^16,-1*K.1^12,-1*K.1^32,-1*K.1^24,K.1^6,K.1^2,-1*K.1^4,K.1^22,K.1^30,-1*K.1^20,K.1^14,K.1^10,K.1^18,-1*K.1^8,K.1^26,2*K.1^27,2*K.1^11,2*K.1^25,2*K.1^15,-2*K.1^11,2*K.1^7,2*K.1^31,2*K.1^33,-2*K.1^7,2*K.1^25,-2*K.1^15,-2*K.1^9,-2*K.1^19,2*K.1^13,-2*K.1^27,2*K.1^5,-2*K.1,-2*K.1^29,-2*K.1^9,2*K.1^9,-2*K.1^25,-2*K.1^23,2*K.1^5,2*K.1^27,-2*K.1^19,2*K.1^15,-2*K.1^21,-2*K.1^5,-2*K.1^21,-2*K.1^33,-2*K.1^31,2*K.1^33,-2*K.1^25,2*K.1^23,2*K.1^7,2*K.1^19,-2*K.1^13,2*K.1,2*K.1^29,-2*K.1^7,2*K.1^11,-2*K.1^15,2*K.1^3,-2*K.1^3,2*K.1^29,-2*K.1^11,2*K.1^21,2*K.1^31,-2*K.1^33,-2*K.1^23,2*K.1^9,-2*K.1^31,2*K.1,-2*K.1^5,2*K.1^13,-2*K.1^13,2*K.1^19,2*K.1^3,-2*K.1,2*K.1^23,-2*K.1^29,-2*K.1^27,-2*K.1^3,2*K.1^21,-1*K.1^8,K.1^12,K.1^16,-1*K.1^18,-1*K.1^14,K.1^10,-1*K.1^4,K.1^30,K.1^22,-1*K.1^24,-1*K.1^32,-1*K.1^2,K.1^6,K.1^26,-1*K.1^16,K.1^18,K.1^4,K.1^14,-1*K.1^30,-1*K.1^22,-1*K.1^14,K.1^16,K.1^24,K.1^12,-1*K.1^26,-1*K.1^18,K.1^20,K.1^28,-1*K.1^6,-1*K.1^6,-1*K.1^26,K.1^24,K.1^8,-1*K.1^10,K.1^20,K.1^32,K.1^4,K.1^8,K.1^28,K.1^32,-1*K.1^30,-1*K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^22,-1*K.1^20,-1*K.1^28,K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^27,-1*K.1,K.1^25,K.1^19,K.1^3,-1*K.1^27,-1*K.1^21,-1*K.1^25,K.1^31,-1*K.1^13,-1*K.1^19,-1*K.1^27,K.1,-1*K.1^29,K.1^29,K.1^3,K.1^13,K.1^25,K.1^5,-1*K.1^29,-1*K.1,-1*K.1^11,K.1^27,-1*K.1^15,K.1^29,K.1^9,K.1^5,-1*K.1^11,K.1^21,K.1^33,-1*K.1^21,K.1^33,K.1^9,-1*K.1^33,-1*K.1^3,-1*K.1^5,-1*K.1^15,-1*K.1^23,-1*K.1^31,K.1^31,-1*K.1^3,-1*K.1^19,K.1^7,-1*K.1^13,K.1^13,-1*K.1^23,K.1^23,K.1^7,K.1^15,K.1^11,-1*K.1^31,K.1,K.1^23,-1*K.1^7,-1*K.1^7,K.1^21,-1*K.1^5,-1*K.1^25,K.1^15,-1*K.1^9,K.1^11,K.1^19,-1*K.1^9,-1*K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,2*K.1^12,2*K.1^28,2*K.1^16,-2*K.1^14,2*K.1^20,-2*K.1^2,2*K.1^8,-2*K.1^30,-2*K.1^18,2*K.1^4,-2*K.1^10,2*K.1^24,-2*K.1^6,-2*K.1^22,2*K.1^32,-2*K.1^26,2*K.1^30,2*K.1^24,2*K.1^32,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^16,-2*K.1^26,-2*K.1^18,2*K.1^20,2*K.1^28,-2*K.1^2,-2*K.1^20,2*K.1^22,2*K.1^4,-2*K.1^30,-2*K.1^22,2*K.1^26,2*K.1^22,2*K.1^2,-2*K.1^10,2*K.1^14,2*K.1^10,2*K.1^6,2*K.1^2,-2*K.1^32,-2*K.1^28,2*K.1^18,2*K.1^26,2*K.1^30,2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^16,2*K.1^12,2*K.1^14,2*K.1^10,2*K.1^6,-2*K.1^14,-2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^16,-2*K.1^20,-2*K.1^24,-2*K.1^28,-2*K.1^32,K.1^6,K.1^18,K.1^22,K.1^2,K.1^10,-1*K.1^28,-1*K.1^32,K.1^30,-1*K.1^12,-1*K.1^4,K.1^14,-1*K.1^20,-1*K.1^24,-1*K.1^16,K.1^26,-1*K.1^8,-2*K.1^7,-2*K.1^23,-2*K.1^9,-2*K.1^19,2*K.1^23,-2*K.1^27,-2*K.1^3,-2*K.1,2*K.1^27,-2*K.1^9,2*K.1^19,2*K.1^25,2*K.1^15,-2*K.1^21,2*K.1^7,-2*K.1^29,2*K.1^33,2*K.1^5,2*K.1^25,-2*K.1^25,2*K.1^9,2*K.1^11,-2*K.1^29,-2*K.1^7,2*K.1^15,-2*K.1^19,2*K.1^13,2*K.1^29,2*K.1^13,2*K.1,2*K.1^3,-2*K.1,2*K.1^9,-2*K.1^11,-2*K.1^27,-2*K.1^15,2*K.1^21,-2*K.1^33,-2*K.1^5,2*K.1^27,-2*K.1^23,2*K.1^19,-2*K.1^31,2*K.1^31,-2*K.1^5,2*K.1^23,-2*K.1^13,-2*K.1^3,2*K.1,2*K.1^11,-2*K.1^25,2*K.1^3,-2*K.1^33,2*K.1^29,-2*K.1^21,2*K.1^21,-2*K.1^15,-2*K.1^31,2*K.1^33,-2*K.1^11,2*K.1^5,2*K.1^7,2*K.1^31,-2*K.1^13,K.1^26,-1*K.1^22,-1*K.1^18,K.1^16,K.1^20,-1*K.1^24,K.1^30,-1*K.1^4,-1*K.1^12,K.1^10,K.1^2,K.1^32,-1*K.1^28,-1*K.1^8,K.1^18,-1*K.1^16,-1*K.1^30,-1*K.1^20,K.1^4,K.1^12,K.1^20,-1*K.1^18,-1*K.1^10,-1*K.1^22,K.1^8,K.1^16,-1*K.1^14,-1*K.1^6,K.1^28,K.1^28,K.1^8,-1*K.1^10,-1*K.1^26,K.1^24,-1*K.1^14,-1*K.1^2,-1*K.1^30,-1*K.1^26,-1*K.1^6,-1*K.1^2,K.1^4,K.1^24,K.1^32,K.1^22,K.1^12,K.1^14,K.1^6,-1*K.1^32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^7,K.1^33,-1*K.1^9,-1*K.1^15,-1*K.1^31,K.1^7,K.1^13,K.1^9,-1*K.1^3,K.1^21,K.1^15,K.1^7,-1*K.1^33,K.1^5,-1*K.1^5,-1*K.1^31,-1*K.1^21,-1*K.1^9,-1*K.1^29,K.1^5,K.1^33,K.1^23,-1*K.1^7,K.1^19,-1*K.1^5,-1*K.1^25,-1*K.1^29,K.1^23,-1*K.1^13,-1*K.1,K.1^13,-1*K.1,-1*K.1^25,K.1,K.1^31,K.1^29,K.1^19,K.1^11,K.1^3,-1*K.1^3,K.1^31,K.1^15,-1*K.1^27,K.1^21,-1*K.1^21,K.1^11,-1*K.1^11,-1*K.1^27,-1*K.1^19,-1*K.1^23,K.1^3,-1*K.1^33,-1*K.1^11,K.1^27,K.1^27,-1*K.1^13,K.1^29,K.1^9,-1*K.1^19,K.1^25,-1*K.1^23,-1*K.1^15,K.1^25,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,2*K.1^12,2*K.1^28,2*K.1^16,-2*K.1^14,2*K.1^20,-2*K.1^2,2*K.1^8,-2*K.1^30,-2*K.1^18,2*K.1^4,-2*K.1^10,2*K.1^24,-2*K.1^6,-2*K.1^22,2*K.1^32,-2*K.1^26,2*K.1^30,2*K.1^24,2*K.1^32,-2*K.1^6,-2*K.1^24,2*K.1^18,2*K.1^16,-2*K.1^26,-2*K.1^18,2*K.1^20,2*K.1^28,-2*K.1^2,-2*K.1^20,2*K.1^22,2*K.1^4,-2*K.1^30,-2*K.1^22,2*K.1^26,2*K.1^22,2*K.1^2,-2*K.1^10,2*K.1^14,2*K.1^10,2*K.1^6,2*K.1^2,-2*K.1^32,-2*K.1^28,2*K.1^18,2*K.1^26,2*K.1^30,2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^16,2*K.1^12,2*K.1^14,2*K.1^10,2*K.1^6,-2*K.1^14,-2*K.1^4,-2*K.1^8,-2*K.1^12,-2*K.1^16,-2*K.1^20,-2*K.1^24,-2*K.1^28,-2*K.1^32,K.1^6,K.1^18,K.1^22,K.1^2,K.1^10,-1*K.1^28,-1*K.1^32,K.1^30,-1*K.1^12,-1*K.1^4,K.1^14,-1*K.1^20,-1*K.1^24,-1*K.1^16,K.1^26,-1*K.1^8,2*K.1^7,2*K.1^23,2*K.1^9,2*K.1^19,-2*K.1^23,2*K.1^27,2*K.1^3,2*K.1,-2*K.1^27,2*K.1^9,-2*K.1^19,-2*K.1^25,-2*K.1^15,2*K.1^21,-2*K.1^7,2*K.1^29,-2*K.1^33,-2*K.1^5,-2*K.1^25,2*K.1^25,-2*K.1^9,-2*K.1^11,2*K.1^29,2*K.1^7,-2*K.1^15,2*K.1^19,-2*K.1^13,-2*K.1^29,-2*K.1^13,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^9,2*K.1^11,2*K.1^27,2*K.1^15,-2*K.1^21,2*K.1^33,2*K.1^5,-2*K.1^27,2*K.1^23,-2*K.1^19,2*K.1^31,-2*K.1^31,2*K.1^5,-2*K.1^23,2*K.1^13,2*K.1^3,-2*K.1,-2*K.1^11,2*K.1^25,-2*K.1^3,2*K.1^33,-2*K.1^29,2*K.1^21,-2*K.1^21,2*K.1^15,2*K.1^31,-2*K.1^33,2*K.1^11,-2*K.1^5,-2*K.1^7,-2*K.1^31,2*K.1^13,K.1^26,-1*K.1^22,-1*K.1^18,K.1^16,K.1^20,-1*K.1^24,K.1^30,-1*K.1^4,-1*K.1^12,K.1^10,K.1^2,K.1^32,-1*K.1^28,-1*K.1^8,K.1^18,-1*K.1^16,-1*K.1^30,-1*K.1^20,K.1^4,K.1^12,K.1^20,-1*K.1^18,-1*K.1^10,-1*K.1^22,K.1^8,K.1^16,-1*K.1^14,-1*K.1^6,K.1^28,K.1^28,K.1^8,-1*K.1^10,-1*K.1^26,K.1^24,-1*K.1^14,-1*K.1^2,-1*K.1^30,-1*K.1^26,-1*K.1^6,-1*K.1^2,K.1^4,K.1^24,K.1^32,K.1^22,K.1^12,K.1^14,K.1^6,-1*K.1^32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^7,-1*K.1^33,K.1^9,K.1^15,K.1^31,-1*K.1^7,-1*K.1^13,-1*K.1^9,K.1^3,-1*K.1^21,-1*K.1^15,-1*K.1^7,K.1^33,-1*K.1^5,K.1^5,K.1^31,K.1^21,K.1^9,K.1^29,-1*K.1^5,-1*K.1^33,-1*K.1^23,K.1^7,-1*K.1^19,K.1^5,K.1^25,K.1^29,-1*K.1^23,K.1^13,K.1,-1*K.1^13,K.1,K.1^25,-1*K.1,-1*K.1^31,-1*K.1^29,-1*K.1^19,-1*K.1^11,-1*K.1^3,K.1^3,-1*K.1^31,-1*K.1^15,K.1^27,-1*K.1^21,K.1^21,-1*K.1^11,K.1^11,K.1^27,K.1^19,K.1^23,-1*K.1^3,K.1^33,K.1^11,-1*K.1^27,-1*K.1^27,K.1^13,-1*K.1^29,-1*K.1^9,K.1^19,-1*K.1^25,K.1^23,K.1^15,-1*K.1^25,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-2*K.1^22,-2*K.1^6,-2*K.1^18,2*K.1^20,-2*K.1^14,2*K.1^32,-2*K.1^26,2*K.1^4,2*K.1^16,-2*K.1^30,2*K.1^24,-2*K.1^10,2*K.1^28,2*K.1^12,-2*K.1^2,2*K.1^8,-2*K.1^4,-2*K.1^10,-2*K.1^2,2*K.1^28,2*K.1^10,-2*K.1^16,-2*K.1^18,2*K.1^8,2*K.1^16,-2*K.1^14,-2*K.1^6,2*K.1^32,2*K.1^14,-2*K.1^12,-2*K.1^30,2*K.1^4,2*K.1^12,-2*K.1^8,-2*K.1^12,-2*K.1^32,2*K.1^24,-2*K.1^20,-2*K.1^24,-2*K.1^28,-2*K.1^32,2*K.1^2,2*K.1^6,-2*K.1^16,-2*K.1^8,-2*K.1^4,-2*K.1^26,2*K.1^30,2*K.1^26,2*K.1^22,2*K.1^18,-2*K.1^22,-2*K.1^20,-2*K.1^24,-2*K.1^28,2*K.1^20,2*K.1^30,2*K.1^26,2*K.1^22,2*K.1^18,2*K.1^14,2*K.1^10,2*K.1^6,2*K.1^2,-1*K.1^28,-1*K.1^16,-1*K.1^12,-1*K.1^32,-1*K.1^24,K.1^6,K.1^2,-1*K.1^4,K.1^22,K.1^30,-1*K.1^20,K.1^14,K.1^10,K.1^18,-1*K.1^8,K.1^26,-2*K.1^27,-2*K.1^11,-2*K.1^25,-2*K.1^15,2*K.1^11,-2*K.1^7,-2*K.1^31,-2*K.1^33,2*K.1^7,-2*K.1^25,2*K.1^15,2*K.1^9,2*K.1^19,-2*K.1^13,2*K.1^27,-2*K.1^5,2*K.1,2*K.1^29,2*K.1^9,-2*K.1^9,2*K.1^25,2*K.1^23,-2*K.1^5,-2*K.1^27,2*K.1^19,-2*K.1^15,2*K.1^21,2*K.1^5,2*K.1^21,2*K.1^33,2*K.1^31,-2*K.1^33,2*K.1^25,-2*K.1^23,-2*K.1^7,-2*K.1^19,2*K.1^13,-2*K.1,-2*K.1^29,2*K.1^7,-2*K.1^11,2*K.1^15,-2*K.1^3,2*K.1^3,-2*K.1^29,2*K.1^11,-2*K.1^21,-2*K.1^31,2*K.1^33,2*K.1^23,-2*K.1^9,2*K.1^31,-2*K.1,2*K.1^5,-2*K.1^13,2*K.1^13,-2*K.1^19,-2*K.1^3,2*K.1,-2*K.1^23,2*K.1^29,2*K.1^27,2*K.1^3,-2*K.1^21,-1*K.1^8,K.1^12,K.1^16,-1*K.1^18,-1*K.1^14,K.1^10,-1*K.1^4,K.1^30,K.1^22,-1*K.1^24,-1*K.1^32,-1*K.1^2,K.1^6,K.1^26,-1*K.1^16,K.1^18,K.1^4,K.1^14,-1*K.1^30,-1*K.1^22,-1*K.1^14,K.1^16,K.1^24,K.1^12,-1*K.1^26,-1*K.1^18,K.1^20,K.1^28,-1*K.1^6,-1*K.1^6,-1*K.1^26,K.1^24,K.1^8,-1*K.1^10,K.1^20,K.1^32,K.1^4,K.1^8,K.1^28,K.1^32,-1*K.1^30,-1*K.1^10,-1*K.1^2,-1*K.1^12,-1*K.1^22,-1*K.1^20,-1*K.1^28,K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^27,K.1,-1*K.1^25,-1*K.1^19,-1*K.1^3,K.1^27,K.1^21,K.1^25,-1*K.1^31,K.1^13,K.1^19,K.1^27,-1*K.1,K.1^29,-1*K.1^29,-1*K.1^3,-1*K.1^13,-1*K.1^25,-1*K.1^5,K.1^29,K.1,K.1^11,-1*K.1^27,K.1^15,-1*K.1^29,-1*K.1^9,-1*K.1^5,K.1^11,-1*K.1^21,-1*K.1^33,K.1^21,-1*K.1^33,-1*K.1^9,K.1^33,K.1^3,K.1^5,K.1^15,K.1^23,K.1^31,-1*K.1^31,K.1^3,K.1^19,-1*K.1^7,K.1^13,-1*K.1^13,K.1^23,-1*K.1^23,-1*K.1^7,-1*K.1^15,-1*K.1^11,K.1^31,-1*K.1,-1*K.1^23,K.1^7,K.1^7,-1*K.1^21,K.1^5,K.1^25,-1*K.1^15,K.1^9,-1*K.1^11,-1*K.1^19,K.1^9,K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-2*K.1^26,2*K.1^4,2*K.1^12,-2*K.1^2,2*K.1^32,-2*K.1^10,-2*K.1^6,-2*K.1^14,-2*K.1^22,2*K.1^20,2*K.1^16,-2*K.1^18,-2*K.1^30,2*K.1^8,2*K.1^24,2*K.1^28,2*K.1^14,-2*K.1^18,2*K.1^24,-2*K.1^30,2*K.1^18,2*K.1^22,2*K.1^12,2*K.1^28,-2*K.1^22,2*K.1^32,2*K.1^4,-2*K.1^10,-2*K.1^32,-2*K.1^8,2*K.1^20,-2*K.1^14,2*K.1^8,-2*K.1^28,-2*K.1^8,2*K.1^10,2*K.1^16,2*K.1^2,-2*K.1^16,2*K.1^30,2*K.1^10,-2*K.1^24,-2*K.1^4,2*K.1^22,-2*K.1^28,2*K.1^14,-2*K.1^6,-2*K.1^20,2*K.1^6,2*K.1^26,-2*K.1^12,-2*K.1^26,2*K.1^2,-2*K.1^16,2*K.1^30,-2*K.1^2,-2*K.1^20,2*K.1^6,2*K.1^26,-2*K.1^12,-2*K.1^32,2*K.1^18,-2*K.1^4,-2*K.1^24,K.1^30,K.1^22,-1*K.1^8,K.1^10,-1*K.1^16,-1*K.1^4,-1*K.1^24,K.1^14,K.1^26,-1*K.1^20,K.1^2,-1*K.1^32,K.1^18,-1*K.1^12,-1*K.1^28,K.1^6,-2*K.1,-2*K.1^13,-2*K.1^11,2*K.1^27,2*K.1^13,-2*K.1^33,2*K.1^15,2*K.1^5,2*K.1^33,-2*K.1^11,-2*K.1^27,2*K.1^23,-2*K.1^7,-2*K.1^3,2*K.1,2*K.1^9,-2*K.1^29,-2*K.1^25,2*K.1^23,-2*K.1^23,2*K.1^11,2*K.1^21,2*K.1^9,-2*K.1,-2*K.1^7,2*K.1^27,2*K.1^31,-2*K.1^9,2*K.1^31,-2*K.1^5,-2*K.1^15,2*K.1^5,2*K.1^11,-2*K.1^21,-2*K.1^33,2*K.1^7,2*K.1^3,2*K.1^29,2*K.1^25,2*K.1^33,-2*K.1^13,-2*K.1^27,2*K.1^19,-2*K.1^19,2*K.1^25,2*K.1^13,-2*K.1^31,2*K.1^15,-2*K.1^5,2*K.1^21,-2*K.1^23,-2*K.1^15,2*K.1^29,-2*K.1^9,-2*K.1^3,2*K.1^3,2*K.1^7,2*K.1^19,-2*K.1^29,-2*K.1^21,-2*K.1^25,2*K.1,-2*K.1^19,-2*K.1^31,-1*K.1^28,K.1^8,-1*K.1^22,K.1^12,K.1^32,K.1^18,K.1^14,-1*K.1^20,K.1^26,-1*K.1^16,K.1^10,K.1^24,-1*K.1^4,K.1^6,K.1^22,-1*K.1^12,-1*K.1^14,-1*K.1^32,K.1^20,-1*K.1^26,K.1^32,-1*K.1^22,K.1^16,K.1^8,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^30,K.1^4,K.1^4,-1*K.1^6,K.1^16,K.1^28,-1*K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^14,K.1^28,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^18,K.1^24,-1*K.1^8,-1*K.1^26,K.1^2,K.1^30,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^29,-1*K.1^11,K.1^7,K.1^19,K.1,K.1^31,K.1^11,K.1^15,K.1^3,-1*K.1^7,K.1,K.1^29,-1*K.1^25,K.1^25,K.1^19,-1*K.1^3,-1*K.1^11,K.1^9,-1*K.1^25,-1*K.1^29,K.1^13,-1*K.1,-1*K.1^27,K.1^25,-1*K.1^23,K.1^9,K.1^13,-1*K.1^31,K.1^5,K.1^31,K.1^5,-1*K.1^23,-1*K.1^5,-1*K.1^19,-1*K.1^9,-1*K.1^27,K.1^21,-1*K.1^15,K.1^15,-1*K.1^19,-1*K.1^7,-1*K.1^33,K.1^3,-1*K.1^3,K.1^21,-1*K.1^21,-1*K.1^33,K.1^27,-1*K.1^13,-1*K.1^15,K.1^29,-1*K.1^21,K.1^33,K.1^33,-1*K.1^31,-1*K.1^9,K.1^11,K.1^27,K.1^23,-1*K.1^13,K.1^7,K.1^23,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,2*K.1^8,-2*K.1^30,-2*K.1^22,2*K.1^32,-2*K.1^2,2*K.1^24,2*K.1^28,2*K.1^20,2*K.1^12,-2*K.1^14,-2*K.1^18,2*K.1^16,2*K.1^4,-2*K.1^26,-2*K.1^10,-2*K.1^6,-2*K.1^20,2*K.1^16,-2*K.1^10,2*K.1^4,-2*K.1^16,-2*K.1^12,-2*K.1^22,-2*K.1^6,2*K.1^12,-2*K.1^2,-2*K.1^30,2*K.1^24,2*K.1^2,2*K.1^26,-2*K.1^14,2*K.1^20,-2*K.1^26,2*K.1^6,2*K.1^26,-2*K.1^24,-2*K.1^18,-2*K.1^32,2*K.1^18,-2*K.1^4,-2*K.1^24,2*K.1^10,2*K.1^30,-2*K.1^12,2*K.1^6,-2*K.1^20,2*K.1^28,2*K.1^14,-2*K.1^28,-2*K.1^8,2*K.1^22,2*K.1^8,-2*K.1^32,2*K.1^18,-2*K.1^4,2*K.1^32,2*K.1^14,-2*K.1^28,-2*K.1^8,2*K.1^22,2*K.1^2,-2*K.1^16,2*K.1^30,2*K.1^10,-1*K.1^4,-1*K.1^12,K.1^26,-1*K.1^24,K.1^18,K.1^30,K.1^10,-1*K.1^20,-1*K.1^8,K.1^14,-1*K.1^32,K.1^2,-1*K.1^16,K.1^22,K.1^6,-1*K.1^28,2*K.1^33,2*K.1^21,2*K.1^23,-2*K.1^7,-2*K.1^21,2*K.1,-2*K.1^19,-2*K.1^29,-2*K.1,2*K.1^23,2*K.1^7,-2*K.1^11,2*K.1^27,2*K.1^31,-2*K.1^33,-2*K.1^25,2*K.1^5,2*K.1^9,-2*K.1^11,2*K.1^11,-2*K.1^23,-2*K.1^13,-2*K.1^25,2*K.1^33,2*K.1^27,-2*K.1^7,-2*K.1^3,2*K.1^25,-2*K.1^3,2*K.1^29,2*K.1^19,-2*K.1^29,-2*K.1^23,2*K.1^13,2*K.1,-2*K.1^27,-2*K.1^31,-2*K.1^5,-2*K.1^9,-2*K.1,2*K.1^21,2*K.1^7,-2*K.1^15,2*K.1^15,-2*K.1^9,-2*K.1^21,2*K.1^3,-2*K.1^19,2*K.1^29,-2*K.1^13,2*K.1^11,2*K.1^19,-2*K.1^5,2*K.1^25,2*K.1^31,-2*K.1^31,-2*K.1^27,-2*K.1^15,2*K.1^5,2*K.1^13,2*K.1^9,-2*K.1^33,2*K.1^15,2*K.1^3,K.1^6,-1*K.1^26,K.1^12,-1*K.1^22,-1*K.1^2,-1*K.1^16,-1*K.1^20,K.1^14,-1*K.1^8,K.1^18,-1*K.1^24,-1*K.1^10,K.1^30,-1*K.1^28,-1*K.1^12,K.1^22,K.1^20,K.1^2,-1*K.1^14,K.1^8,-1*K.1^2,K.1^12,-1*K.1^18,-1*K.1^26,K.1^28,-1*K.1^22,K.1^32,K.1^4,-1*K.1^30,-1*K.1^30,K.1^28,-1*K.1^18,-1*K.1^6,K.1^16,K.1^32,K.1^24,K.1^20,-1*K.1^6,K.1^4,K.1^24,-1*K.1^14,K.1^16,-1*K.1^10,K.1^26,K.1^8,-1*K.1^32,-1*K.1^4,K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^33,K.1^5,K.1^23,-1*K.1^27,-1*K.1^15,-1*K.1^33,-1*K.1^3,-1*K.1^23,-1*K.1^19,-1*K.1^31,K.1^27,-1*K.1^33,-1*K.1^5,K.1^9,-1*K.1^9,-1*K.1^15,K.1^31,K.1^23,-1*K.1^25,K.1^9,K.1^5,-1*K.1^21,K.1^33,K.1^7,-1*K.1^9,K.1^11,-1*K.1^25,-1*K.1^21,K.1^3,-1*K.1^29,-1*K.1^3,-1*K.1^29,K.1^11,K.1^29,K.1^15,K.1^25,K.1^7,-1*K.1^13,K.1^19,-1*K.1^19,K.1^15,K.1^27,K.1,-1*K.1^31,K.1^31,-1*K.1^13,K.1^13,K.1,-1*K.1^7,K.1^21,K.1^19,-1*K.1^5,K.1^13,-1*K.1,-1*K.1,K.1^3,K.1^25,-1*K.1^23,-1*K.1^7,-1*K.1^11,K.1^21,-1*K.1^27,-1*K.1^11,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,2*K.1^8,-2*K.1^30,-2*K.1^22,2*K.1^32,-2*K.1^2,2*K.1^24,2*K.1^28,2*K.1^20,2*K.1^12,-2*K.1^14,-2*K.1^18,2*K.1^16,2*K.1^4,-2*K.1^26,-2*K.1^10,-2*K.1^6,-2*K.1^20,2*K.1^16,-2*K.1^10,2*K.1^4,-2*K.1^16,-2*K.1^12,-2*K.1^22,-2*K.1^6,2*K.1^12,-2*K.1^2,-2*K.1^30,2*K.1^24,2*K.1^2,2*K.1^26,-2*K.1^14,2*K.1^20,-2*K.1^26,2*K.1^6,2*K.1^26,-2*K.1^24,-2*K.1^18,-2*K.1^32,2*K.1^18,-2*K.1^4,-2*K.1^24,2*K.1^10,2*K.1^30,-2*K.1^12,2*K.1^6,-2*K.1^20,2*K.1^28,2*K.1^14,-2*K.1^28,-2*K.1^8,2*K.1^22,2*K.1^8,-2*K.1^32,2*K.1^18,-2*K.1^4,2*K.1^32,2*K.1^14,-2*K.1^28,-2*K.1^8,2*K.1^22,2*K.1^2,-2*K.1^16,2*K.1^30,2*K.1^10,-1*K.1^4,-1*K.1^12,K.1^26,-1*K.1^24,K.1^18,K.1^30,K.1^10,-1*K.1^20,-1*K.1^8,K.1^14,-1*K.1^32,K.1^2,-1*K.1^16,K.1^22,K.1^6,-1*K.1^28,-2*K.1^33,-2*K.1^21,-2*K.1^23,2*K.1^7,2*K.1^21,-2*K.1,2*K.1^19,2*K.1^29,2*K.1,-2*K.1^23,-2*K.1^7,2*K.1^11,-2*K.1^27,-2*K.1^31,2*K.1^33,2*K.1^25,-2*K.1^5,-2*K.1^9,2*K.1^11,-2*K.1^11,2*K.1^23,2*K.1^13,2*K.1^25,-2*K.1^33,-2*K.1^27,2*K.1^7,2*K.1^3,-2*K.1^25,2*K.1^3,-2*K.1^29,-2*K.1^19,2*K.1^29,2*K.1^23,-2*K.1^13,-2*K.1,2*K.1^27,2*K.1^31,2*K.1^5,2*K.1^9,2*K.1,-2*K.1^21,-2*K.1^7,2*K.1^15,-2*K.1^15,2*K.1^9,2*K.1^21,-2*K.1^3,2*K.1^19,-2*K.1^29,2*K.1^13,-2*K.1^11,-2*K.1^19,2*K.1^5,-2*K.1^25,-2*K.1^31,2*K.1^31,2*K.1^27,2*K.1^15,-2*K.1^5,-2*K.1^13,-2*K.1^9,2*K.1^33,-2*K.1^15,-2*K.1^3,K.1^6,-1*K.1^26,K.1^12,-1*K.1^22,-1*K.1^2,-1*K.1^16,-1*K.1^20,K.1^14,-1*K.1^8,K.1^18,-1*K.1^24,-1*K.1^10,K.1^30,-1*K.1^28,-1*K.1^12,K.1^22,K.1^20,K.1^2,-1*K.1^14,K.1^8,-1*K.1^2,K.1^12,-1*K.1^18,-1*K.1^26,K.1^28,-1*K.1^22,K.1^32,K.1^4,-1*K.1^30,-1*K.1^30,K.1^28,-1*K.1^18,-1*K.1^6,K.1^16,K.1^32,K.1^24,K.1^20,-1*K.1^6,K.1^4,K.1^24,-1*K.1^14,K.1^16,-1*K.1^10,K.1^26,K.1^8,-1*K.1^32,-1*K.1^4,K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^33,-1*K.1^5,-1*K.1^23,K.1^27,K.1^15,K.1^33,K.1^3,K.1^23,K.1^19,K.1^31,-1*K.1^27,K.1^33,K.1^5,-1*K.1^9,K.1^9,K.1^15,-1*K.1^31,-1*K.1^23,K.1^25,-1*K.1^9,-1*K.1^5,K.1^21,-1*K.1^33,-1*K.1^7,K.1^9,-1*K.1^11,K.1^25,K.1^21,-1*K.1^3,K.1^29,K.1^3,K.1^29,-1*K.1^11,-1*K.1^29,-1*K.1^15,-1*K.1^25,-1*K.1^7,K.1^13,-1*K.1^19,K.1^19,-1*K.1^15,-1*K.1^27,-1*K.1,K.1^31,-1*K.1^31,K.1^13,-1*K.1^13,-1*K.1,K.1^7,-1*K.1^21,-1*K.1^19,K.1^5,-1*K.1^13,K.1,K.1,-1*K.1^3,-1*K.1^25,K.1^23,K.1^7,K.1^11,-1*K.1^21,K.1^27,K.1^11,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-2*K.1^26,2*K.1^4,2*K.1^12,-2*K.1^2,2*K.1^32,-2*K.1^10,-2*K.1^6,-2*K.1^14,-2*K.1^22,2*K.1^20,2*K.1^16,-2*K.1^18,-2*K.1^30,2*K.1^8,2*K.1^24,2*K.1^28,2*K.1^14,-2*K.1^18,2*K.1^24,-2*K.1^30,2*K.1^18,2*K.1^22,2*K.1^12,2*K.1^28,-2*K.1^22,2*K.1^32,2*K.1^4,-2*K.1^10,-2*K.1^32,-2*K.1^8,2*K.1^20,-2*K.1^14,2*K.1^8,-2*K.1^28,-2*K.1^8,2*K.1^10,2*K.1^16,2*K.1^2,-2*K.1^16,2*K.1^30,2*K.1^10,-2*K.1^24,-2*K.1^4,2*K.1^22,-2*K.1^28,2*K.1^14,-2*K.1^6,-2*K.1^20,2*K.1^6,2*K.1^26,-2*K.1^12,-2*K.1^26,2*K.1^2,-2*K.1^16,2*K.1^30,-2*K.1^2,-2*K.1^20,2*K.1^6,2*K.1^26,-2*K.1^12,-2*K.1^32,2*K.1^18,-2*K.1^4,-2*K.1^24,K.1^30,K.1^22,-1*K.1^8,K.1^10,-1*K.1^16,-1*K.1^4,-1*K.1^24,K.1^14,K.1^26,-1*K.1^20,K.1^2,-1*K.1^32,K.1^18,-1*K.1^12,-1*K.1^28,K.1^6,2*K.1,2*K.1^13,2*K.1^11,-2*K.1^27,-2*K.1^13,2*K.1^33,-2*K.1^15,-2*K.1^5,-2*K.1^33,2*K.1^11,2*K.1^27,-2*K.1^23,2*K.1^7,2*K.1^3,-2*K.1,-2*K.1^9,2*K.1^29,2*K.1^25,-2*K.1^23,2*K.1^23,-2*K.1^11,-2*K.1^21,-2*K.1^9,2*K.1,2*K.1^7,-2*K.1^27,-2*K.1^31,2*K.1^9,-2*K.1^31,2*K.1^5,2*K.1^15,-2*K.1^5,-2*K.1^11,2*K.1^21,2*K.1^33,-2*K.1^7,-2*K.1^3,-2*K.1^29,-2*K.1^25,-2*K.1^33,2*K.1^13,2*K.1^27,-2*K.1^19,2*K.1^19,-2*K.1^25,-2*K.1^13,2*K.1^31,-2*K.1^15,2*K.1^5,-2*K.1^21,2*K.1^23,2*K.1^15,-2*K.1^29,2*K.1^9,2*K.1^3,-2*K.1^3,-2*K.1^7,-2*K.1^19,2*K.1^29,2*K.1^21,2*K.1^25,-2*K.1,2*K.1^19,2*K.1^31,-1*K.1^28,K.1^8,-1*K.1^22,K.1^12,K.1^32,K.1^18,K.1^14,-1*K.1^20,K.1^26,-1*K.1^16,K.1^10,K.1^24,-1*K.1^4,K.1^6,K.1^22,-1*K.1^12,-1*K.1^14,-1*K.1^32,K.1^20,-1*K.1^26,K.1^32,-1*K.1^22,K.1^16,K.1^8,-1*K.1^6,K.1^12,-1*K.1^2,-1*K.1^30,K.1^4,K.1^4,-1*K.1^6,K.1^16,K.1^28,-1*K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^14,K.1^28,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^18,K.1^24,-1*K.1^8,-1*K.1^26,K.1^2,K.1^30,-1*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1,K.1^29,K.1^11,-1*K.1^7,-1*K.1^19,-1*K.1,-1*K.1^31,-1*K.1^11,-1*K.1^15,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^29,K.1^25,-1*K.1^25,-1*K.1^19,K.1^3,K.1^11,-1*K.1^9,K.1^25,K.1^29,-1*K.1^13,K.1,K.1^27,-1*K.1^25,K.1^23,-1*K.1^9,-1*K.1^13,K.1^31,-1*K.1^5,-1*K.1^31,-1*K.1^5,K.1^23,K.1^5,K.1^19,K.1^9,K.1^27,-1*K.1^21,K.1^15,-1*K.1^15,K.1^19,K.1^7,K.1^33,-1*K.1^3,K.1^3,-1*K.1^21,K.1^21,K.1^33,-1*K.1^27,K.1^13,K.1^15,-1*K.1^29,K.1^21,-1*K.1^33,-1*K.1^33,K.1^31,K.1^9,-1*K.1^11,-1*K.1^27,-1*K.1^23,K.1^13,-1*K.1^7,-1*K.1^23,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,-2*K.1^30,-2*K.1^2,-2*K.1^6,-2*K.1^18,2*K.1^16,-2*K.1^22,2*K.1^20,2*K.1^24,2*K.1^28,-2*K.1^10,2*K.1^8,-2*K.1^26,2*K.1^32,2*K.1^4,2*K.1^12,-2*K.1^14,-2*K.1^24,-2*K.1^26,2*K.1^12,2*K.1^32,2*K.1^26,-2*K.1^28,-2*K.1^6,-2*K.1^14,2*K.1^28,2*K.1^16,-2*K.1^2,-2*K.1^22,-2*K.1^16,-2*K.1^4,-2*K.1^10,2*K.1^24,2*K.1^4,2*K.1^14,-2*K.1^4,2*K.1^22,2*K.1^8,2*K.1^18,-2*K.1^8,-2*K.1^32,2*K.1^22,-2*K.1^12,2*K.1^2,-2*K.1^28,2*K.1^14,-2*K.1^24,2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^30,2*K.1^6,-2*K.1^30,2*K.1^18,-2*K.1^8,-2*K.1^32,-2*K.1^18,2*K.1^10,-2*K.1^20,2*K.1^30,2*K.1^6,-2*K.1^16,2*K.1^26,2*K.1^2,-2*K.1^12,-1*K.1^32,-1*K.1^28,-1*K.1^4,K.1^22,-1*K.1^8,K.1^2,-1*K.1^12,-1*K.1^24,K.1^30,K.1^10,K.1^18,-1*K.1^16,K.1^26,K.1^6,K.1^14,-1*K.1^20,-2*K.1^9,2*K.1^15,-2*K.1^31,-2*K.1^5,-2*K.1^15,-2*K.1^25,-2*K.1^33,-2*K.1^11,2*K.1^25,-2*K.1^31,2*K.1^5,2*K.1^3,2*K.1^29,-2*K.1^27,2*K.1^9,2*K.1^13,2*K.1^23,-2*K.1^21,2*K.1^3,-2*K.1^3,2*K.1^31,-2*K.1^19,2*K.1^13,-2*K.1^9,2*K.1^29,-2*K.1^5,2*K.1^7,-2*K.1^13,2*K.1^7,2*K.1^11,2*K.1^33,-2*K.1^11,2*K.1^31,2*K.1^19,-2*K.1^25,-2*K.1^29,2*K.1^27,-2*K.1^23,2*K.1^21,2*K.1^25,2*K.1^15,2*K.1^5,-2*K.1,2*K.1,2*K.1^21,-2*K.1^15,-2*K.1^7,-2*K.1^33,2*K.1^11,-2*K.1^19,-2*K.1^3,2*K.1^33,-2*K.1^23,-2*K.1^13,-2*K.1^27,2*K.1^27,-2*K.1^29,-2*K.1,2*K.1^23,2*K.1^19,-2*K.1^21,2*K.1^9,2*K.1,-2*K.1^7,K.1^14,K.1^4,K.1^28,-1*K.1^6,K.1^16,K.1^26,-1*K.1^24,K.1^10,K.1^30,-1*K.1^8,K.1^22,K.1^12,K.1^2,-1*K.1^20,-1*K.1^28,K.1^6,K.1^24,-1*K.1^16,-1*K.1^10,-1*K.1^30,K.1^16,K.1^28,K.1^8,K.1^4,K.1^20,-1*K.1^6,-1*K.1^18,K.1^32,-1*K.1^2,-1*K.1^2,K.1^20,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^18,-1*K.1^22,K.1^24,-1*K.1^14,K.1^32,-1*K.1^22,-1*K.1^10,-1*K.1^26,K.1^12,-1*K.1^4,-1*K.1^30,K.1^18,-1*K.1^32,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^9,K.1^23,-1*K.1^31,-1*K.1^29,-1*K.1,K.1^9,K.1^7,K.1^31,-1*K.1^33,K.1^27,K.1^29,K.1^9,-1*K.1^23,-1*K.1^21,K.1^21,-1*K.1,-1*K.1^27,-1*K.1^31,K.1^13,-1*K.1^21,K.1^23,-1*K.1^15,-1*K.1^9,K.1^5,K.1^21,-1*K.1^3,K.1^13,-1*K.1^15,-1*K.1^7,-1*K.1^11,K.1^7,-1*K.1^11,-1*K.1^3,K.1^11,K.1,-1*K.1^13,K.1^5,-1*K.1^19,K.1^33,-1*K.1^33,K.1,K.1^29,-1*K.1^25,K.1^27,-1*K.1^27,-1*K.1^19,K.1^19,-1*K.1^25,-1*K.1^5,K.1^15,K.1^33,-1*K.1^23,K.1^19,K.1^25,K.1^25,-1*K.1^7,-1*K.1^13,K.1^31,-1*K.1^5,K.1^3,K.1^15,-1*K.1^29,K.1^3,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,2*K.1^4,2*K.1^32,2*K.1^28,2*K.1^16,-2*K.1^18,2*K.1^12,-2*K.1^14,-2*K.1^10,-2*K.1^6,2*K.1^24,-2*K.1^26,2*K.1^8,-2*K.1^2,-2*K.1^30,-2*K.1^22,2*K.1^20,2*K.1^10,2*K.1^8,-2*K.1^22,-2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^28,2*K.1^20,-2*K.1^6,-2*K.1^18,2*K.1^32,2*K.1^12,2*K.1^18,2*K.1^30,2*K.1^24,-2*K.1^10,-2*K.1^30,-2*K.1^20,2*K.1^30,-2*K.1^12,-2*K.1^26,-2*K.1^16,2*K.1^26,2*K.1^2,-2*K.1^12,2*K.1^22,-2*K.1^32,2*K.1^6,-2*K.1^20,2*K.1^10,-2*K.1^14,-2*K.1^24,2*K.1^14,-2*K.1^4,-2*K.1^28,2*K.1^4,-2*K.1^16,2*K.1^26,2*K.1^2,2*K.1^16,-2*K.1^24,2*K.1^14,-2*K.1^4,-2*K.1^28,2*K.1^18,-2*K.1^8,-2*K.1^32,2*K.1^22,K.1^2,K.1^6,K.1^30,-1*K.1^12,K.1^26,-1*K.1^32,K.1^22,K.1^10,-1*K.1^4,-1*K.1^24,-1*K.1^16,K.1^18,-1*K.1^8,-1*K.1^28,-1*K.1^20,K.1^14,2*K.1^25,-2*K.1^19,2*K.1^3,2*K.1^29,2*K.1^19,2*K.1^9,2*K.1,2*K.1^23,-2*K.1^9,2*K.1^3,-2*K.1^29,-2*K.1^31,-2*K.1^5,2*K.1^7,-2*K.1^25,-2*K.1^21,-2*K.1^11,2*K.1^13,-2*K.1^31,2*K.1^31,-2*K.1^3,2*K.1^15,-2*K.1^21,2*K.1^25,-2*K.1^5,2*K.1^29,-2*K.1^27,2*K.1^21,-2*K.1^27,-2*K.1^23,-2*K.1,2*K.1^23,-2*K.1^3,-2*K.1^15,2*K.1^9,2*K.1^5,-2*K.1^7,2*K.1^11,-2*K.1^13,-2*K.1^9,-2*K.1^19,-2*K.1^29,2*K.1^33,-2*K.1^33,-2*K.1^13,2*K.1^19,2*K.1^27,2*K.1,-2*K.1^23,2*K.1^15,2*K.1^31,-2*K.1,2*K.1^11,2*K.1^21,2*K.1^7,-2*K.1^7,2*K.1^5,2*K.1^33,-2*K.1^11,-2*K.1^15,2*K.1^13,-2*K.1^25,-2*K.1^33,2*K.1^27,-1*K.1^20,-1*K.1^30,-1*K.1^6,K.1^28,-1*K.1^18,-1*K.1^8,K.1^10,-1*K.1^24,-1*K.1^4,K.1^26,-1*K.1^12,-1*K.1^22,-1*K.1^32,K.1^14,K.1^6,-1*K.1^28,-1*K.1^10,K.1^18,K.1^24,K.1^4,-1*K.1^18,-1*K.1^6,-1*K.1^26,-1*K.1^30,-1*K.1^14,K.1^28,K.1^16,-1*K.1^2,K.1^32,K.1^32,-1*K.1^14,-1*K.1^26,K.1^20,K.1^8,K.1^16,K.1^12,-1*K.1^10,K.1^20,-1*K.1^2,K.1^12,K.1^24,K.1^8,-1*K.1^22,K.1^30,K.1^4,-1*K.1^16,K.1^2,K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^25,-1*K.1^11,K.1^3,K.1^5,K.1^33,-1*K.1^25,-1*K.1^27,-1*K.1^3,K.1,-1*K.1^7,-1*K.1^5,-1*K.1^25,K.1^11,K.1^13,-1*K.1^13,K.1^33,K.1^7,K.1^3,-1*K.1^21,K.1^13,-1*K.1^11,K.1^19,K.1^25,-1*K.1^29,-1*K.1^13,K.1^31,-1*K.1^21,K.1^19,K.1^27,K.1^23,-1*K.1^27,K.1^23,K.1^31,-1*K.1^23,-1*K.1^33,K.1^21,-1*K.1^29,K.1^15,-1*K.1,K.1,-1*K.1^33,-1*K.1^5,K.1^9,-1*K.1^7,K.1^7,K.1^15,-1*K.1^15,K.1^9,K.1^29,-1*K.1^19,-1*K.1,K.1^11,-1*K.1^15,-1*K.1^9,-1*K.1^9,K.1^27,K.1^21,-1*K.1^3,K.1^29,-1*K.1^31,-1*K.1^19,K.1^5,-1*K.1^31,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,-2*K.1^17,2*K.1^17,2*K.1^17,-2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,-1*K.1^17,-1*K.1^17,K.1^17,K.1^17,2*K.1^4,2*K.1^32,2*K.1^28,2*K.1^16,-2*K.1^18,2*K.1^12,-2*K.1^14,-2*K.1^10,-2*K.1^6,2*K.1^24,-2*K.1^26,2*K.1^8,-2*K.1^2,-2*K.1^30,-2*K.1^22,2*K.1^20,2*K.1^10,2*K.1^8,-2*K.1^22,-2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^28,2*K.1^20,-2*K.1^6,-2*K.1^18,2*K.1^32,2*K.1^12,2*K.1^18,2*K.1^30,2*K.1^24,-2*K.1^10,-2*K.1^30,-2*K.1^20,2*K.1^30,-2*K.1^12,-2*K.1^26,-2*K.1^16,2*K.1^26,2*K.1^2,-2*K.1^12,2*K.1^22,-2*K.1^32,2*K.1^6,-2*K.1^20,2*K.1^10,-2*K.1^14,-2*K.1^24,2*K.1^14,-2*K.1^4,-2*K.1^28,2*K.1^4,-2*K.1^16,2*K.1^26,2*K.1^2,2*K.1^16,-2*K.1^24,2*K.1^14,-2*K.1^4,-2*K.1^28,2*K.1^18,-2*K.1^8,-2*K.1^32,2*K.1^22,K.1^2,K.1^6,K.1^30,-1*K.1^12,K.1^26,-1*K.1^32,K.1^22,K.1^10,-1*K.1^4,-1*K.1^24,-1*K.1^16,K.1^18,-1*K.1^8,-1*K.1^28,-1*K.1^20,K.1^14,-2*K.1^25,2*K.1^19,-2*K.1^3,-2*K.1^29,-2*K.1^19,-2*K.1^9,-2*K.1,-2*K.1^23,2*K.1^9,-2*K.1^3,2*K.1^29,2*K.1^31,2*K.1^5,-2*K.1^7,2*K.1^25,2*K.1^21,2*K.1^11,-2*K.1^13,2*K.1^31,-2*K.1^31,2*K.1^3,-2*K.1^15,2*K.1^21,-2*K.1^25,2*K.1^5,-2*K.1^29,2*K.1^27,-2*K.1^21,2*K.1^27,2*K.1^23,2*K.1,-2*K.1^23,2*K.1^3,2*K.1^15,-2*K.1^9,-2*K.1^5,2*K.1^7,-2*K.1^11,2*K.1^13,2*K.1^9,2*K.1^19,2*K.1^29,-2*K.1^33,2*K.1^33,2*K.1^13,-2*K.1^19,-2*K.1^27,-2*K.1,2*K.1^23,-2*K.1^15,-2*K.1^31,2*K.1,-2*K.1^11,-2*K.1^21,-2*K.1^7,2*K.1^7,-2*K.1^5,-2*K.1^33,2*K.1^11,2*K.1^15,-2*K.1^13,2*K.1^25,2*K.1^33,-2*K.1^27,-1*K.1^20,-1*K.1^30,-1*K.1^6,K.1^28,-1*K.1^18,-1*K.1^8,K.1^10,-1*K.1^24,-1*K.1^4,K.1^26,-1*K.1^12,-1*K.1^22,-1*K.1^32,K.1^14,K.1^6,-1*K.1^28,-1*K.1^10,K.1^18,K.1^24,K.1^4,-1*K.1^18,-1*K.1^6,-1*K.1^26,-1*K.1^30,-1*K.1^14,K.1^28,K.1^16,-1*K.1^2,K.1^32,K.1^32,-1*K.1^14,-1*K.1^26,K.1^20,K.1^8,K.1^16,K.1^12,-1*K.1^10,K.1^20,-1*K.1^2,K.1^12,K.1^24,K.1^8,-1*K.1^22,K.1^30,K.1^4,-1*K.1^16,K.1^2,K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^25,K.1^11,-1*K.1^3,-1*K.1^5,-1*K.1^33,K.1^25,K.1^27,K.1^3,-1*K.1,K.1^7,K.1^5,K.1^25,-1*K.1^11,-1*K.1^13,K.1^13,-1*K.1^33,-1*K.1^7,-1*K.1^3,K.1^21,-1*K.1^13,K.1^11,-1*K.1^19,-1*K.1^25,K.1^29,K.1^13,-1*K.1^31,K.1^21,-1*K.1^19,-1*K.1^27,-1*K.1^23,K.1^27,-1*K.1^23,-1*K.1^31,K.1^23,K.1^33,-1*K.1^21,K.1^29,-1*K.1^15,K.1,-1*K.1,K.1^33,K.1^5,-1*K.1^9,K.1^7,-1*K.1^7,-1*K.1^15,K.1^15,-1*K.1^9,-1*K.1^29,K.1^19,K.1,-1*K.1^11,K.1^15,K.1^9,K.1^9,-1*K.1^27,-1*K.1^21,K.1^3,-1*K.1^29,K.1^31,K.1^19,-1*K.1^5,K.1^31,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(68: Sparse := true); S := [ K |2,2,-2,-2,-1,2*K.1^17,-2*K.1^17,-2*K.1^17,2*K.1^17,-1,1,1,0,0,0,0,0,0,0,0,K.1^17,K.1^17,-1*K.1^17,-1*K.1^17,-2*K.1^30,-2*K.1^2,-2*K.1^6,-2*K.1^18,2*K.1^16,-2*K.1^22,2*K.1^20,2*K.1^24,2*K.1^28,-2*K.1^10,2*K.1^8,-2*K.1^26,2*K.1^32,2*K.1^4,2*K.1^12,-2*K.1^14,-2*K.1^24,-2*K.1^26,2*K.1^12,2*K.1^32,2*K.1^26,-2*K.1^28,-2*K.1^6,-2*K.1^14,2*K.1^28,2*K.1^16,-2*K.1^2,-2*K.1^22,-2*K.1^16,-2*K.1^4,-2*K.1^10,2*K.1^24,2*K.1^4,2*K.1^14,-2*K.1^4,2*K.1^22,2*K.1^8,2*K.1^18,-2*K.1^8,-2*K.1^32,2*K.1^22,-2*K.1^12,2*K.1^2,-2*K.1^28,2*K.1^14,-2*K.1^24,2*K.1^20,2*K.1^10,-2*K.1^20,2*K.1^30,2*K.1^6,-2*K.1^30,2*K.1^18,-2*K.1^8,-2*K.1^32,-2*K.1^18,2*K.1^10,-2*K.1^20,2*K.1^30,2*K.1^6,-2*K.1^16,2*K.1^26,2*K.1^2,-2*K.1^12,-1*K.1^32,-1*K.1^28,-1*K.1^4,K.1^22,-1*K.1^8,K.1^2,-1*K.1^12,-1*K.1^24,K.1^30,K.1^10,K.1^18,-1*K.1^16,K.1^26,K.1^6,K.1^14,-1*K.1^20,2*K.1^9,-2*K.1^15,2*K.1^31,2*K.1^5,2*K.1^15,2*K.1^25,2*K.1^33,2*K.1^11,-2*K.1^25,2*K.1^31,-2*K.1^5,-2*K.1^3,-2*K.1^29,2*K.1^27,-2*K.1^9,-2*K.1^13,-2*K.1^23,2*K.1^21,-2*K.1^3,2*K.1^3,-2*K.1^31,2*K.1^19,-2*K.1^13,2*K.1^9,-2*K.1^29,2*K.1^5,-2*K.1^7,2*K.1^13,-2*K.1^7,-2*K.1^11,-2*K.1^33,2*K.1^11,-2*K.1^31,-2*K.1^19,2*K.1^25,2*K.1^29,-2*K.1^27,2*K.1^23,-2*K.1^21,-2*K.1^25,-2*K.1^15,-2*K.1^5,2*K.1,-2*K.1,-2*K.1^21,2*K.1^15,2*K.1^7,2*K.1^33,-2*K.1^11,2*K.1^19,2*K.1^3,-2*K.1^33,2*K.1^23,2*K.1^13,2*K.1^27,-2*K.1^27,2*K.1^29,2*K.1,-2*K.1^23,-2*K.1^19,2*K.1^21,-2*K.1^9,-2*K.1,2*K.1^7,K.1^14,K.1^4,K.1^28,-1*K.1^6,K.1^16,K.1^26,-1*K.1^24,K.1^10,K.1^30,-1*K.1^8,K.1^22,K.1^12,K.1^2,-1*K.1^20,-1*K.1^28,K.1^6,K.1^24,-1*K.1^16,-1*K.1^10,-1*K.1^30,K.1^16,K.1^28,K.1^8,K.1^4,K.1^20,-1*K.1^6,-1*K.1^18,K.1^32,-1*K.1^2,-1*K.1^2,K.1^20,K.1^8,-1*K.1^14,-1*K.1^26,-1*K.1^18,-1*K.1^22,K.1^24,-1*K.1^14,K.1^32,-1*K.1^22,-1*K.1^10,-1*K.1^26,K.1^12,-1*K.1^4,-1*K.1^30,K.1^18,-1*K.1^32,-1*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1^9,-1*K.1^23,K.1^31,K.1^29,K.1,-1*K.1^9,-1*K.1^7,-1*K.1^31,K.1^33,-1*K.1^27,-1*K.1^29,-1*K.1^9,K.1^23,K.1^21,-1*K.1^21,K.1,K.1^27,K.1^31,-1*K.1^13,K.1^21,-1*K.1^23,K.1^15,K.1^9,-1*K.1^5,-1*K.1^21,K.1^3,-1*K.1^13,K.1^15,K.1^7,K.1^11,-1*K.1^7,K.1^11,K.1^3,-1*K.1^11,-1*K.1,K.1^13,-1*K.1^5,K.1^19,-1*K.1^33,K.1^33,-1*K.1,-1*K.1^29,K.1^25,-1*K.1^27,K.1^27,K.1^19,-1*K.1^19,K.1^25,K.1^5,-1*K.1^15,-1*K.1^33,K.1^23,-1*K.1^19,-1*K.1^25,-1*K.1^25,K.1^7,K.1^13,-1*K.1^31,K.1^5,-1*K.1^3,-1*K.1^15,K.1^29,-1*K.1^3,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_816_54:= KnownIrreducibles(CR);