/* Group 800.48 downloaded from the LMFDB on 14 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, -2, -2, -2, -2, -2, -5, -5, 5629, 36, 58, 102, 250]); a,b,c := Explode([GPC.1, GPC.2, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "b4", "c", "c2", "c10"]); GPerm := PermutationGroup< 37 | (1,2,3,4)(5,6,8,10,7,9,11,12), (1,2)(3,4)(5,7)(6,9)(8,11)(10,12), (13,37,32,27,22,17,36,31,26,21,16,35,30,25,20,15,34,29,24,19,14,33,28,23,18), (1,3)(2,4), (1,3)(2,4)(5,8,7,11)(6,10,9,12), (13,17,16,15,14)(18,22,21,20,19)(23,27,26,25,24)(28,32,31,30,29)(33,37,36,35,34), (5,7)(6,9)(8,11)(10,12) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_800_48 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^25>,< 2, 1, b^4*c^25>,< 2, 1, b^4>,< 2, 2, a>,< 2, 2, a*b^4>,< 4, 1, b^2>,< 4, 1, b^6>,< 4, 1, b^2*c^25>,< 4, 1, b^6*c^25>,< 4, 2, a*b^2>,< 4, 2, a*b^6>,< 5, 1, c^10>,< 5, 1, c^40>,< 5, 1, c^20>,< 5, 1, c^30>,< 8, 2, b>,< 8, 2, b^7>,< 8, 2, b^3>,< 8, 2, b^5>,< 8, 2, a*b>,< 8, 2, a*b^7*c^25>,< 8, 2, a*b^3*c^25>,< 8, 2, a*b^5>,< 10, 1, c^5>,< 10, 1, c^45>,< 10, 1, c^15>,< 10, 1, c^35>,< 10, 1, b^4*c^5>,< 10, 1, b^4*c^45>,< 10, 1, b^4*c^15>,< 10, 1, b^4*c^35>,< 10, 1, b^4*c^20>,< 10, 1, b^4*c^30>,< 10, 1, b^4*c^10>,< 10, 1, b^4*c^40>,< 10, 2, a*c^10>,< 10, 2, a*c^40>,< 10, 2, a*c^30>,< 10, 2, a*c^20>,< 10, 2, a*b^4*c^10>,< 10, 2, a*b^4*c^40>,< 10, 2, a*b^4*c^30>,< 10, 2, a*b^4*c^20>,< 20, 1, b^2*c^20>,< 20, 1, b^6*c^30>,< 20, 1, b^6*c^10>,< 20, 1, b^2*c^40>,< 20, 1, b^6*c^40>,< 20, 1, b^2*c^10>,< 20, 1, b^2*c^30>,< 20, 1, b^6*c^20>,< 20, 1, b^2*c^45>,< 20, 1, b^6*c^5>,< 20, 1, b^6*c^35>,< 20, 1, b^2*c^15>,< 20, 1, b^6*c^15>,< 20, 1, b^2*c^35>,< 20, 1, b^2*c^5>,< 20, 1, b^6*c^45>,< 20, 2, a*b^2*c^10>,< 20, 2, a*b^6*c^40>,< 20, 2, a*b^6*c^30>,< 20, 2, a*b^2*c^20>,< 20, 2, a*b^6*c^20>,< 20, 2, a*b^2*c^30>,< 20, 2, a*b^2*c^40>,< 20, 2, a*b^6*c^10>,< 25, 1, c^2>,< 25, 1, c^48>,< 25, 1, c^4>,< 25, 1, c^46>,< 25, 1, c^6>,< 25, 1, c^44>,< 25, 1, c^8>,< 25, 1, c^42>,< 25, 1, c^12>,< 25, 1, c^38>,< 25, 1, c^14>,< 25, 1, c^36>,< 25, 1, c^16>,< 25, 1, c^34>,< 25, 1, c^18>,< 25, 1, c^32>,< 25, 1, c^22>,< 25, 1, c^28>,< 25, 1, c^24>,< 25, 1, c^26>,< 40, 2, b^5*c^10>,< 40, 2, b^3*c^40>,< 40, 2, b^7*c^30>,< 40, 2, b*c^20>,< 40, 2, b^3*c^20>,< 40, 2, b^5*c^30>,< 40, 2, b^5*c^40>,< 40, 2, b^3*c^10>,< 40, 2, b^7*c^10>,< 40, 2, b*c^40>,< 40, 2, b*c^30>,< 40, 2, b^7*c^20>,< 40, 2, b^5*c^20>,< 40, 2, b^3*c^30>,< 40, 2, b^7*c^40>,< 40, 2, b*c^10>,< 40, 2, a*b^5*c^10>,< 40, 2, a*b^3*c^15>,< 40, 2, a*b^7*c^5>,< 40, 2, a*b*c^20>,< 40, 2, a*b^3*c^45>,< 40, 2, a*b^5*c^30>,< 40, 2, a*b^5*c^40>,< 40, 2, a*b^3*c^35>,< 40, 2, a*b^7*c^35>,< 40, 2, a*b*c^40>,< 40, 2, a*b*c^30>,< 40, 2, a*b^7*c^45>,< 40, 2, a*b^5*c^20>,< 40, 2, a*b^3*c^5>,< 40, 2, a*b^7*c^15>,< 40, 2, a*b*c^10>,< 50, 1, c>,< 50, 1, c^49>,< 50, 1, c^3>,< 50, 1, c^47>,< 50, 1, c^7>,< 50, 1, c^43>,< 50, 1, c^9>,< 50, 1, c^41>,< 50, 1, c^11>,< 50, 1, c^39>,< 50, 1, c^13>,< 50, 1, c^37>,< 50, 1, c^17>,< 50, 1, c^33>,< 50, 1, c^19>,< 50, 1, c^31>,< 50, 1, c^21>,< 50, 1, c^29>,< 50, 1, c^23>,< 50, 1, c^27>,< 50, 1, b^4*c>,< 50, 1, b^4*c^49>,< 50, 1, b^4*c^3>,< 50, 1, b^4*c^47>,< 50, 1, b^4*c^7>,< 50, 1, b^4*c^43>,< 50, 1, b^4*c^9>,< 50, 1, b^4*c^41>,< 50, 1, b^4*c^11>,< 50, 1, b^4*c^39>,< 50, 1, b^4*c^13>,< 50, 1, b^4*c^37>,< 50, 1, b^4*c^17>,< 50, 1, b^4*c^33>,< 50, 1, b^4*c^19>,< 50, 1, b^4*c^31>,< 50, 1, b^4*c^21>,< 50, 1, b^4*c^29>,< 50, 1, b^4*c^23>,< 50, 1, b^4*c^27>,< 50, 1, b^4*c^4>,< 50, 1, b^4*c^46>,< 50, 1, b^4*c^12>,< 50, 1, b^4*c^38>,< 50, 1, b^4*c^28>,< 50, 1, b^4*c^22>,< 50, 1, b^4*c^36>,< 50, 1, b^4*c^14>,< 50, 1, b^4*c^44>,< 50, 1, b^4*c^6>,< 50, 1, b^4*c^2>,< 50, 1, b^4*c^48>,< 50, 1, b^4*c^18>,< 50, 1, b^4*c^32>,< 50, 1, b^4*c^26>,< 50, 1, b^4*c^24>,< 50, 1, b^4*c^34>,< 50, 1, b^4*c^16>,< 50, 1, b^4*c^42>,< 50, 1, b^4*c^8>,< 50, 2, a*c^2>,< 50, 2, a*c^48>,< 50, 2, a*c^6>,< 50, 2, a*c^44>,< 50, 2, a*c^14>,< 50, 2, a*c^11>,< 50, 2, a*c^18>,< 50, 2, a*c^32>,< 50, 2, a*c^22>,< 50, 2, a*c^3>,< 50, 2, a*c>,< 50, 2, a*c^24>,< 50, 2, a*c^34>,< 50, 2, a*c^16>,< 50, 2, a*c^38>,< 50, 2, a*c^12>,< 50, 2, a*c^42>,< 50, 2, a*c^8>,< 50, 2, a*c^21>,< 50, 2, a*c^4>,< 50, 2, a*b^4*c^2>,< 50, 2, a*b^4*c^48>,< 50, 2, a*b^4*c^6>,< 50, 2, a*b^4*c^44>,< 50, 2, a*b^4*c^14>,< 50, 2, a*b^4*c^11>,< 50, 2, a*b^4*c^18>,< 50, 2, a*b^4*c^32>,< 50, 2, a*b^4*c^22>,< 50, 2, a*b^4*c^3>,< 50, 2, a*b^4*c>,< 50, 2, a*b^4*c^24>,< 50, 2, a*b^4*c^34>,< 50, 2, a*b^4*c^16>,< 50, 2, a*b^4*c^38>,< 50, 2, a*b^4*c^12>,< 50, 2, a*b^4*c^42>,< 50, 2, a*b^4*c^8>,< 50, 2, a*b^4*c^21>,< 50, 2, a*b^4*c^4>,< 100, 1, b^2*c^4>,< 100, 1, b^6*c^46>,< 100, 1, b^6*c^12>,< 100, 1, b^2*c^38>,< 100, 1, b^6*c^28>,< 100, 1, b^2*c^22>,< 100, 1, b^2*c^36>,< 100, 1, b^6*c^14>,< 100, 1, b^6*c^44>,< 100, 1, b^2*c^6>,< 100, 1, b^2*c^2>,< 100, 1, b^6*c^48>,< 100, 1, b^2*c^18>,< 100, 1, b^6*c^32>,< 100, 1, b^6*c^26>,< 100, 1, b^2*c^24>,< 100, 1, b^2*c^34>,< 100, 1, b^6*c^16>,< 100, 1, b^6*c^42>,< 100, 1, b^2*c^8>,< 100, 1, b^6*c^8>,< 100, 1, b^2*c^42>,< 100, 1, b^2*c^16>,< 100, 1, b^6*c^34>,< 100, 1, b^6*c^24>,< 100, 1, b^2*c^26>,< 100, 1, b^2*c^32>,< 100, 1, b^6*c^18>,< 100, 1, b^2*c^48>,< 100, 1, b^6*c^2>,< 100, 1, b^6*c^6>,< 100, 1, b^2*c^44>,< 100, 1, b^2*c^14>,< 100, 1, b^6*c^36>,< 100, 1, b^6*c^22>,< 100, 1, b^2*c^28>,< 100, 1, b^6*c^38>,< 100, 1, b^2*c^12>,< 100, 1, b^2*c^46>,< 100, 1, b^6*c^4>,< 100, 1, b^2*c^29>,< 100, 1, b^6*c^21>,< 100, 1, b^6*c^37>,< 100, 1, b^2*c^13>,< 100, 1, b^6*c^3>,< 100, 1, b^2*c^47>,< 100, 1, b^2*c^11>,< 100, 1, b^6*c^39>,< 100, 1, b^6*c^19>,< 100, 1, b^2*c^31>,< 100, 1, b^2*c^27>,< 100, 1, b^6*c^23>,< 100, 1, b^2*c^43>,< 100, 1, b^6*c^7>,< 100, 1, b^6*c>,< 100, 1, b^2*c^49>,< 100, 1, b^2*c^9>,< 100, 1, b^6*c^41>,< 100, 1, b^6*c^17>,< 100, 1, b^2*c^33>,< 100, 1, b^6*c^33>,< 100, 1, b^2*c^17>,< 100, 1, b^2*c^41>,< 100, 1, b^6*c^9>,< 100, 1, b^6*c^49>,< 100, 1, b^2*c>,< 100, 1, b^2*c^7>,< 100, 1, b^6*c^43>,< 100, 1, b^2*c^23>,< 100, 1, b^6*c^27>,< 100, 1, b^6*c^31>,< 100, 1, b^2*c^19>,< 100, 1, b^2*c^39>,< 100, 1, b^6*c^11>,< 100, 1, b^6*c^47>,< 100, 1, b^2*c^3>,< 100, 1, b^6*c^13>,< 100, 1, b^2*c^37>,< 100, 1, b^2*c^21>,< 100, 1, b^6*c^29>,< 100, 2, a*b^2*c^2>,< 100, 2, a*b^6*c^48>,< 100, 2, a*b^6*c^6>,< 100, 2, a*b^2*c^44>,< 100, 2, a*b^6*c^14>,< 100, 2, a*b^2*c^11>,< 100, 2, a*b^2*c^18>,< 100, 2, a*b^6*c^32>,< 100, 2, a*b^6*c^22>,< 100, 2, a*b^2*c^3>,< 100, 2, a*b^2*c>,< 100, 2, a*b^6*c^24>,< 100, 2, a*b^2*c^34>,< 100, 2, a*b^6*c^16>,< 100, 2, a*b^6*c^38>,< 100, 2, a*b^2*c^12>,< 100, 2, a*b^2*c^42>,< 100, 2, a*b^6*c^8>,< 100, 2, a*b^6*c^21>,< 100, 2, a*b^2*c^4>,< 100, 2, a*b^6*c^4>,< 100, 2, a*b^2*c^21>,< 100, 2, a*b^2*c^8>,< 100, 2, a*b^6*c^42>,< 100, 2, a*b^6*c^12>,< 100, 2, a*b^2*c^38>,< 100, 2, a*b^2*c^16>,< 100, 2, a*b^6*c^34>,< 100, 2, a*b^2*c^24>,< 100, 2, a*b^6*c>,< 100, 2, a*b^6*c^3>,< 100, 2, a*b^2*c^22>,< 100, 2, a*b^2*c^32>,< 100, 2, a*b^6*c^18>,< 100, 2, a*b^6*c^11>,< 100, 2, a*b^2*c^14>,< 100, 2, a*b^6*c^44>,< 100, 2, a*b^2*c^6>,< 100, 2, a*b^2*c^48>,< 100, 2, a*b^6*c^2>,< 200, 2, b*c^2>,< 200, 2, b^7*c^48>,< 200, 2, b^3*c^6>,< 200, 2, b^5*c^44>,< 200, 2, b^7*c^14>,< 200, 2, b*c^11>,< 200, 2, b*c^18>,< 200, 2, b^7*c^32>,< 200, 2, b^3*c^22>,< 200, 2, b^5*c^3>,< 200, 2, b^5*c>,< 200, 2, b^3*c^24>,< 200, 2, b*c^34>,< 200, 2, b^7*c^16>,< 200, 2, b^3*c^38>,< 200, 2, b^5*c^12>,< 200, 2, b^5*c^42>,< 200, 2, b^3*c^8>,< 200, 2, b^7*c^21>,< 200, 2, b*c^4>,< 200, 2, b^3*c^4>,< 200, 2, b^5*c^21>,< 200, 2, b^5*c^8>,< 200, 2, b^3*c^42>,< 200, 2, b^7*c^12>,< 200, 2, b*c^38>,< 200, 2, b*c^16>,< 200, 2, b^7*c^34>,< 200, 2, b^5*c^24>,< 200, 2, b^3*c>,< 200, 2, b^7*c^3>,< 200, 2, b*c^22>,< 200, 2, b*c^32>,< 200, 2, b^7*c^18>,< 200, 2, b^3*c^11>,< 200, 2, b^5*c^14>,< 200, 2, b^7*c^44>,< 200, 2, b*c^6>,< 200, 2, b*c^48>,< 200, 2, b^7*c^2>,< 200, 2, b^3*c^2>,< 200, 2, b^5*c^48>,< 200, 2, b^5*c^6>,< 200, 2, b^3*c^44>,< 200, 2, b*c^14>,< 200, 2, b^7*c^11>,< 200, 2, b^3*c^18>,< 200, 2, b^5*c^32>,< 200, 2, b^5*c^22>,< 200, 2, b^3*c^3>,< 200, 2, b^7*c>,< 200, 2, b*c^24>,< 200, 2, b^3*c^34>,< 200, 2, b^5*c^16>,< 200, 2, b^5*c^38>,< 200, 2, b^3*c^12>,< 200, 2, b^7*c^42>,< 200, 2, b*c^8>,< 200, 2, b*c^21>,< 200, 2, b^7*c^4>,< 200, 2, b^5*c^4>,< 200, 2, b^3*c^21>,< 200, 2, b^7*c^8>,< 200, 2, b*c^42>,< 200, 2, b*c^12>,< 200, 2, b^7*c^38>,< 200, 2, b^3*c^16>,< 200, 2, b^5*c^34>,< 200, 2, b^7*c^24>,< 200, 2, b*c>,< 200, 2, b*c^3>,< 200, 2, b^7*c^22>,< 200, 2, b^3*c^32>,< 200, 2, b^5*c^18>,< 200, 2, b^5*c^11>,< 200, 2, b^3*c^14>,< 200, 2, b*c^44>,< 200, 2, b^7*c^6>,< 200, 2, b^3*c^48>,< 200, 2, b^5*c^2>,< 200, 2, a*b*c^2>,< 200, 2, a*b^7*c^48>,< 200, 2, a*b^3*c^6>,< 200, 2, a*b^5*c^44>,< 200, 2, a*b^7*c^14>,< 200, 2, a*b*c^11>,< 200, 2, a*b*c^18>,< 200, 2, a*b^7*c^32>,< 200, 2, a*b^3*c^22>,< 200, 2, a*b^5*c^3>,< 200, 2, a*b^5*c>,< 200, 2, a*b^3*c^24>,< 200, 2, a*b*c^34>,< 200, 2, a*b^7*c^16>,< 200, 2, a*b^3*c^38>,< 200, 2, a*b^5*c^12>,< 200, 2, a*b^5*c^42>,< 200, 2, a*b^3*c^8>,< 200, 2, a*b^7*c^21>,< 200, 2, a*b*c^4>,< 200, 2, a*b^3*c^4>,< 200, 2, a*b^5*c^21>,< 200, 2, a*b^5*c^8>,< 200, 2, a*b^3*c^42>,< 200, 2, a*b^7*c^12>,< 200, 2, a*b*c^38>,< 200, 2, a*b*c^16>,< 200, 2, a*b^7*c^34>,< 200, 2, a*b^5*c^24>,< 200, 2, a*b^3*c>,< 200, 2, a*b^7*c^3>,< 200, 2, a*b*c^22>,< 200, 2, a*b*c^32>,< 200, 2, a*b^7*c^18>,< 200, 2, a*b^3*c^11>,< 200, 2, a*b^5*c^14>,< 200, 2, a*b^7*c^44>,< 200, 2, a*b*c^6>,< 200, 2, a*b*c^48>,< 200, 2, a*b^7*c^2>,< 200, 2, a*b^3*c^2>,< 200, 2, a*b^5*c^48>,< 200, 2, a*b^5*c^6>,< 200, 2, a*b^3*c^44>,< 200, 2, a*b*c^14>,< 200, 2, a*b^7*c^11>,< 200, 2, a*b^3*c^18>,< 200, 2, a*b^5*c^32>,< 200, 2, a*b^5*c^22>,< 200, 2, a*b^3*c^3>,< 200, 2, a*b^7*c>,< 200, 2, a*b*c^24>,< 200, 2, a*b^3*c^34>,< 200, 2, a*b^5*c^16>,< 200, 2, a*b^5*c^38>,< 200, 2, a*b^3*c^12>,< 200, 2, a*b^7*c^42>,< 200, 2, a*b*c^8>,< 200, 2, a*b*c^21>,< 200, 2, a*b^7*c^4>,< 200, 2, a*b^5*c^4>,< 200, 2, a*b^3*c^21>,< 200, 2, a*b^7*c^8>,< 200, 2, a*b*c^42>,< 200, 2, a*b*c^12>,< 200, 2, a*b^7*c^38>,< 200, 2, a*b^3*c^16>,< 200, 2, a*b^5*c^34>,< 200, 2, a*b^7*c^24>,< 200, 2, a*b*c>,< 200, 2, a*b*c^3>,< 200, 2, a*b^7*c^22>,< 200, 2, a*b^3*c^32>,< 200, 2, a*b^5*c^18>,< 200, 2, a*b^5*c^11>,< 200, 2, a*b^3*c^14>,< 200, 2, a*b*c^44>,< 200, 2, a*b^7*c^6>,< 200, 2, a*b^3*c^48>,< 200, 2, a*b^5*c^2>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1,K.1,K.1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1^2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1,K.1^2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1,K.1^2,K.1,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^2,K.1^-2,K.1,K.1^2,K.1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1,K.1^-1,K.1,K.1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1,K.1^-1,K.1,K.1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1,K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,1,1,1,K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,K.1^3,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1,K.1^3,K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,1,1,1,-1*K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,-1*K.1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,1,1,1,1,-1*K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,-1*K.1^3,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1,-1*K.1,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,1,1,1,1,K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,K.1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^3,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1^3,K.1,K.1,-1*K.1,K.1^3,K.1,K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,1,1,1,K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1^3,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1^3,K.1,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,1,1,1,-1*K.1,K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1,K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,K.1,K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1^3,-1*K.1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^3,K.1^3,K.1,-1*K.1^3,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,K.1^3,K.1^3,-1*K.1^3,K.1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,1,1,1,1,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1,K.1^3,K.1,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1^3,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1,K.1,K.1^3,-1*K.1,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1,K.1,-1*K.1,K.1^3,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,1,1,1,1,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1,K.1^3,K.1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,K.1,K.1^3,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,1,1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1,K.1,K.1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1,-1*K.1^2,-1*K.1^-1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1,K.1^-1,K.1,-1*K.1^2,-1*K.1^2,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-1,K.1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-1,-1*K.1^2,K.1,K.1^2,K.1^-2,K.1^-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1,K.1,K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,K.1^-1,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1,K.1^2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,1,1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1,K.1^2,K.1,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^2,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1,K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^2,K.1,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1,K.1,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,K.1^2,K.1^2,K.1^2,K.1,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1,-1*K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^-1,K.1^2,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^-2,K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,1,1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,K.1,K.1^2,K.1^-2,K.1,K.1^2,K.1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^-2,-1*K.1,-1*K.1^2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,K.1^2,K.1^-2,-1*K.1,-1*K.1,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^2,K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^2,K.1^2,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1^2,-1*K.1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-2,K.1^-2,K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,K.1^2,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1,-1*K.1,K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1,1,1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^-2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^-2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1,K.1^-2,K.1^2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1,K.1,K.1,K.1,-1*K.1^-2,K.1^-2,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,K.1,K.1,K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,-1*K.1^-1,K.1^2,K.1^-1,K.1,K.1,K.1^2,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^2,K.1^2,K.1,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,-1,1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1,K.1,K.1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^-1,K.1,K.1^-1,K.1^2,-1*K.1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-1,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1,K.1^-2,K.1^2,K.1^-1,K.1,-1*K.1^2,K.1^-2,K.1^2,K.1^2,K.1^2,-1*K.1,K.1^2,K.1^-1,-1*K.1^-2,K.1^-1,K.1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,-1*K.1,K.1^2,K.1^2,K.1^-2,-1*K.1^2,K.1^2,K.1^-1,-1*K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,-1*K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,-1*K.1,K.1^2,K.1^-1,K.1,K.1^-1,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1,K.1^2,K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,K.1,-1*K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,-1*K.1^-2,-1*K.1^2,K.1,K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1^-1,K.1^2,K.1^-2,-1*K.1^2,K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1^-1,K.1,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1^2,-1*K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1,K.1^2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,-1,1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1,K.1^2,K.1,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,K.1,K.1^-1,K.1,K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1,-1*K.1^2,K.1,K.1^-2,-1*K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,-1*K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-2,-1*K.1^-1,K.1^-2,K.1,-1*K.1^2,K.1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^-1,K.1^-2,K.1^-2,K.1^2,-1*K.1^-2,K.1^-2,K.1,-1*K.1,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,-1*K.1^-1,K.1^-2,K.1,K.1^-1,K.1,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1,-1*K.1,-1*K.1^-2,K.1^2,K.1,K.1^-1,K.1,-1*K.1^2,-1*K.1^-2,K.1^-1,K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1,K.1^-2,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^-2,-1*K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,-1,1,K.1,K.1^2,K.1^-2,K.1,K.1^2,K.1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1^2,K.1^-2,K.1^2,K.1,-1*K.1^-2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^2,-1*K.1^-1,K.1^2,K.1,-1*K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,-1*K.1,K.1^-1,K.1,K.1,K.1,-1*K.1^-2,K.1,K.1^2,-1*K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-2,K.1,K.1,K.1^-1,-1*K.1,K.1,K.1^2,-1*K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,-1*K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1,K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,K.1^-2,-1*K.1,K.1^-1,K.1^-2,K.1^2,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1,K.1^-2,K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^2,K.1,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^2,K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1,K.1,-1*K.1,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,-1,1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,K.1^-2,K.1^2,K.1^-2,K.1^-1,-1*K.1^2,K.1^-1,K.1,K.1,K.1,K.1^2,K.1^2,K.1^-2,-1*K.1,K.1^-2,K.1^-1,-1*K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^2,K.1^-1,K.1^-2,-1*K.1,K.1^-2,K.1^2,K.1^2,K.1,K.1,K.1,K.1,-1*K.1^2,K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1^-2,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,-1*K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-1,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,K.1^2,-1*K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,-1*K.1,-1*K.1^-1,K.1^2,K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^-2,K.1^-1,K.1,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1,-1*K.1,K.1^-2,K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1^-1,K.1^-1,-1*K.1^-1,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1^-1,K.1^-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,K.1^-1,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1,K.1,K.1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^2,K.1,K.1^2,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1,K.1^2,K.1,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^2,K.1,K.1^2,K.1^2,K.1,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-2,K.1,K.1,K.1,K.1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-1,K.1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^2,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^2,K.1^-2,K.1,K.1^2,K.1,K.1,K.1^2,K.1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-1,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-1,K.1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1,K.1^-1,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1,K.1,K.1,K.1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^-2,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1,K.1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^-2,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^2,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1,K.1^-2,K.1,K.1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^-1,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^-1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1,K.1^2,K.1^-1,K.1^2,K.1,K.1^2,K.1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1^2,K.1^-2,K.1^2,K.1^2,K.1,K.1^2,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1,K.1^-2,K.1^2,K.1,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,K.1,K.1,K.1^2,K.1^2,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-2,K.1^-2,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^2,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1,K.1^7,-1*K.1,K.1^9,K.1,K.1^3,-1*K.1^9,K.1^3,K.1^7,-1*K.1^7,-1*K.1^7,K.1^9,K.1^9,-1*K.1,K.1^7,-1*K.1,K.1^3,-1*K.1^9,K.1^7,-1*K.1^3,-1*K.1,-1*K.1^9,K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^9,K.1^3,-1*K.1,K.1^7,-1*K.1,K.1^9,K.1^9,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,-1*K.1^9,K.1^3,-1*K.1^3,K.1^7,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^9,K.1^9,-1*K.1^7,-1*K.1^7,-1*K.1,K.1^3,-1*K.1^9,K.1^3,K.1,K.1^9,-1*K.1,K.1^3,-1*K.1^9,-1*K.1,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^3,K.1,-1*K.1^9,K.1,K.1^9,-1*K.1,-1*K.1^3,K.1,-1*K.1^9,-1*K.1^9,K.1,-1*K.1^7,-1*K.1,K.1^9,-1*K.1^9,K.1^3,K.1^7,K.1^9,K.1,K.1^3,K.1^3,-1*K.1^7,-1*K.1^7,K.1^3,K.1^9,K.1^9,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^9,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1,K.1,-1*K.1^3,-1*K.1^7,K.1,K.1^9,-1*K.1,K.1^7,-1*K.1^3,-1*K.1^9,K.1,-1*K.1^7,K.1^7,K.1^7,K.1,-1*K.1^9,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^9,K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^9,K.1,K.1,-1*K.1^3,K.1^7,K.1^3,-1*K.1^9,K.1^9,K.1^7,-1*K.1^7,K.1,-1*K.1^9,-1*K.1^9,-1*K.1,-1*K.1^3,-1*K.1,K.1^9,K.1,-1*K.1^9,K.1,-1*K.1^7,K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,K.1^4,K.1^8,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^4,K.1^4,K.1^9,-1*K.1^3,K.1^9,-1*K.1,-1*K.1^9,-1*K.1^7,K.1,-1*K.1^7,-1*K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^9,-1*K.1^3,K.1^9,-1*K.1^7,K.1,-1*K.1^3,K.1^7,K.1^9,K.1,-1*K.1^7,-1*K.1^3,K.1^7,K.1^7,-1*K.1^7,K.1,-1*K.1^7,K.1^9,-1*K.1^3,K.1^9,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,K.1^9,-1*K.1^7,K.1,-1*K.1^7,-1*K.1^9,-1*K.1,K.1^9,-1*K.1^7,K.1,K.1^9,-1*K.1,K.1^7,K.1^7,-1*K.1,-1*K.1^7,K.1^7,-1*K.1^9,K.1,-1*K.1^9,-1*K.1,K.1^9,K.1^7,-1*K.1^9,K.1,K.1,-1*K.1^9,K.1^3,K.1^9,-1*K.1,K.1,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1^9,-1*K.1^7,-1*K.1^7,K.1^3,K.1^3,-1*K.1^7,-1*K.1,-1*K.1,K.1^9,K.1^7,K.1^9,K.1^7,-1*K.1^9,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,K.1^7,K.1^3,-1*K.1^9,-1*K.1,K.1^9,-1*K.1^3,K.1^7,K.1,-1*K.1^9,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^9,K.1,-1*K.1^9,K.1^7,K.1^9,K.1^7,K.1^9,K.1^7,-1*K.1,-1*K.1^7,K.1^3,K.1^3,K.1,-1*K.1^9,-1*K.1^9,K.1^7,-1*K.1^3,-1*K.1^7,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^9,K.1,K.1,K.1^9,K.1^7,K.1^9,-1*K.1,-1*K.1^9,K.1,-1*K.1^9,K.1^3,-1*K.1^7,-1*K.1,K.1^7,K.1^7,K.1^7,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,K.1^8,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,K.1^4,K.1^8,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^8,-1*K.1^6,K.1^4,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^9,K.1^3,-1*K.1^9,K.1,K.1^9,K.1^7,-1*K.1,K.1^7,K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^9,K.1^3,-1*K.1^9,K.1^7,-1*K.1,K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1,K.1^7,K.1^3,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1,K.1^7,-1*K.1^9,K.1^3,-1*K.1^9,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1^7,-1*K.1^7,K.1^3,K.1^7,K.1^7,-1*K.1^9,K.1^9,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^9,K.1^7,-1*K.1,K.1^7,K.1^9,K.1,-1*K.1^9,K.1^7,-1*K.1,-1*K.1^9,K.1,-1*K.1^7,-1*K.1^7,K.1,K.1^7,-1*K.1^7,K.1^9,-1*K.1,K.1^9,K.1,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1,-1*K.1,K.1^9,-1*K.1^3,-1*K.1^9,K.1,-1*K.1,K.1^7,K.1^3,K.1,K.1^9,K.1^7,K.1^7,-1*K.1^3,-1*K.1^3,K.1^7,K.1,K.1,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^9,K.1^9,-1*K.1^7,-1*K.1^3,K.1^9,K.1,-1*K.1^9,K.1^3,-1*K.1^7,-1*K.1,K.1^9,-1*K.1^3,K.1^3,K.1^3,K.1^9,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^7,K.1,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^9,K.1^9,-1*K.1^7,K.1^3,K.1^7,-1*K.1,K.1,K.1^3,-1*K.1^3,K.1^9,-1*K.1,-1*K.1,-1*K.1^9,-1*K.1^7,-1*K.1^9,K.1,K.1^9,-1*K.1,K.1^9,-1*K.1^3,K.1^7,K.1,-1*K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1,-1*K.1^7,K.1,-1*K.1^9,-1*K.1,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^7,K.1^7,K.1^7,-1*K.1^9,-1*K.1^9,K.1,-1*K.1^7,K.1,-1*K.1^3,K.1^9,-1*K.1^7,K.1^3,K.1,K.1^9,-1*K.1^3,-1*K.1^7,K.1^3,K.1^3,-1*K.1^3,K.1^9,-1*K.1^3,K.1,-1*K.1^7,K.1,-1*K.1^9,-1*K.1^9,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,K.1^9,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^9,-1*K.1^9,K.1^7,K.1^7,K.1,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1,-1*K.1^9,K.1,-1*K.1^3,K.1^9,K.1,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1,K.1^9,-1*K.1,-1*K.1^9,K.1,K.1^3,-1*K.1,K.1^9,K.1^9,-1*K.1,K.1^7,K.1,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^7,K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1^9,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1,-1*K.1,K.1^3,K.1^7,-1*K.1,-1*K.1^9,K.1,-1*K.1^7,K.1^3,K.1^9,-1*K.1,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1,K.1^9,-1*K.1,K.1^3,K.1,K.1^3,K.1,K.1^3,-1*K.1^9,-1*K.1^3,K.1^7,K.1^7,K.1^9,-1*K.1,-1*K.1,K.1^3,-1*K.1^7,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^7,K.1^7,-1*K.1,K.1^9,K.1^9,K.1,K.1^3,K.1,-1*K.1^9,-1*K.1,K.1^9,-1*K.1,K.1^7,-1*K.1^3,-1*K.1^9,K.1^3,K.1^3,K.1^3,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^4,K.1^8,-1*K.1^2,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^4,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,K.1^8,K.1^8,K.1^3,-1*K.1,K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1^9,K.1^7,-1*K.1^9,-1*K.1,K.1,K.1,-1*K.1^7,-1*K.1^7,K.1^3,-1*K.1,K.1^3,-1*K.1^9,K.1^7,-1*K.1,K.1^9,K.1^3,K.1^7,-1*K.1^9,-1*K.1,K.1^9,K.1^9,-1*K.1^9,K.1^7,-1*K.1^9,K.1^3,-1*K.1,K.1^3,-1*K.1^7,-1*K.1^7,K.1,K.1,-1*K.1,-1*K.1,K.1^7,-1*K.1^9,K.1^9,-1*K.1,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1^7,-1*K.1^7,K.1,K.1,K.1^3,-1*K.1^9,K.1^7,-1*K.1^9,-1*K.1^3,-1*K.1^7,K.1^3,-1*K.1^9,K.1^7,K.1^3,-1*K.1^7,K.1^9,K.1^9,-1*K.1^7,-1*K.1^9,K.1^9,-1*K.1^3,K.1^7,-1*K.1^3,-1*K.1^7,K.1^3,K.1^9,-1*K.1^3,K.1^7,K.1^7,-1*K.1^3,K.1,K.1^3,-1*K.1^7,K.1^7,-1*K.1^9,-1*K.1,-1*K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1,K.1,-1*K.1^9,-1*K.1^7,-1*K.1^7,K.1^3,K.1^9,K.1^3,K.1^9,-1*K.1^3,K.1^7,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^9,K.1,-1*K.1^3,-1*K.1^7,K.1^3,-1*K.1,K.1^9,K.1^7,-1*K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1^7,-1*K.1^3,K.1^9,K.1^3,K.1^9,K.1^3,K.1^9,-1*K.1^7,-1*K.1^9,K.1,K.1,K.1^7,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1,-1*K.1^9,K.1^7,-1*K.1^7,-1*K.1,K.1,-1*K.1^3,K.1^7,K.1^7,K.1^3,K.1^9,K.1^3,-1*K.1^7,-1*K.1^3,K.1^7,-1*K.1^3,K.1,-1*K.1^9,-1*K.1^7,K.1^9,K.1^9,K.1^9,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,K.1^4,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^8,-1*K.1^6,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^4,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,K.1^8,K.1^4,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^7,K.1^9,-1*K.1^7,K.1^3,K.1^7,K.1,-1*K.1^3,K.1,K.1^9,-1*K.1^9,-1*K.1^9,K.1^3,K.1^3,-1*K.1^7,K.1^9,-1*K.1^7,K.1,-1*K.1^3,K.1^9,-1*K.1,-1*K.1^7,-1*K.1^3,K.1,K.1^9,-1*K.1,-1*K.1,K.1,-1*K.1^3,K.1,-1*K.1^7,K.1^9,-1*K.1^7,K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,K.1^9,K.1^9,-1*K.1^3,K.1,-1*K.1,K.1^9,K.1,K.1,-1*K.1^7,K.1^7,-1*K.1^9,K.1^9,K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1,-1*K.1^3,K.1,K.1^7,K.1^3,-1*K.1^7,K.1,-1*K.1^3,-1*K.1^7,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1,K.1^7,-1*K.1^3,K.1^7,K.1^3,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^3,-1*K.1^3,K.1^7,-1*K.1^9,-1*K.1^7,K.1^3,-1*K.1^3,K.1,K.1^9,K.1^3,K.1^7,K.1,K.1,-1*K.1^9,-1*K.1^9,K.1,K.1^3,K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^3,-1*K.1^9,K.1^9,K.1^9,-1*K.1^9,K.1^7,K.1^7,-1*K.1,-1*K.1^9,K.1^7,K.1^3,-1*K.1^7,K.1^9,-1*K.1,-1*K.1^3,K.1^7,-1*K.1^9,K.1^9,K.1^9,K.1^7,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1,K.1^3,K.1,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1^7,K.1^7,-1*K.1,K.1^9,K.1,-1*K.1^3,K.1^3,K.1^9,-1*K.1^9,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^3,K.1^7,-1*K.1^3,K.1^7,-1*K.1^9,K.1,K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,K.1^4,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^8,-1*K.1^6,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^4,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,K.1^8,K.1^4,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^7,-1*K.1^9,K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1,K.1^3,-1*K.1,-1*K.1^9,K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,K.1^7,-1*K.1^9,K.1^7,-1*K.1,K.1^3,-1*K.1^9,K.1,K.1^7,K.1^3,-1*K.1,-1*K.1^9,K.1,K.1,-1*K.1,K.1^3,-1*K.1,K.1^7,-1*K.1^9,K.1^7,-1*K.1^3,-1*K.1^3,K.1^9,K.1^9,-1*K.1^9,-1*K.1^9,K.1^3,-1*K.1,K.1,-1*K.1^9,-1*K.1,-1*K.1,K.1^7,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^9,K.1^7,-1*K.1,K.1^3,-1*K.1,-1*K.1^7,-1*K.1^3,K.1^7,-1*K.1,K.1^3,K.1^7,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^3,K.1^7,K.1,-1*K.1^7,K.1^3,K.1^3,-1*K.1^7,K.1^9,K.1^7,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1,K.1^9,K.1^9,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^7,K.1,K.1^7,K.1,-1*K.1^7,K.1^3,K.1^9,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^7,-1*K.1^7,K.1,K.1^9,-1*K.1^7,-1*K.1^3,K.1^7,-1*K.1^9,K.1,K.1^3,-1*K.1^7,K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1^3,-1*K.1^7,K.1,K.1^7,K.1,K.1^7,K.1,-1*K.1^3,-1*K.1,K.1^9,K.1^9,K.1^3,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^9,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^9,K.1^9,-1*K.1^7,K.1^3,K.1^3,K.1^7,K.1,K.1^7,-1*K.1^3,-1*K.1^7,K.1^3,-1*K.1^7,K.1^9,-1*K.1,-1*K.1^3,K.1,K.1,K.1,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,K.1^4,K.1^8,-1*K.1^2,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^4,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^3,K.1,-1*K.1^3,K.1^7,K.1^3,K.1^9,-1*K.1^7,K.1^9,K.1,-1*K.1,-1*K.1,K.1^7,K.1^7,-1*K.1^3,K.1,-1*K.1^3,K.1^9,-1*K.1^7,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^7,K.1^9,K.1,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^7,K.1^9,-1*K.1^3,K.1,-1*K.1^3,K.1^7,K.1^7,-1*K.1,-1*K.1,K.1,K.1,-1*K.1^7,K.1^9,-1*K.1^9,K.1,K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1^7,K.1^7,-1*K.1,-1*K.1,-1*K.1^3,K.1^9,-1*K.1^7,K.1^9,K.1^3,K.1^7,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1^3,K.1^7,-1*K.1^9,-1*K.1^9,K.1^7,K.1^9,-1*K.1^9,K.1^3,-1*K.1^7,K.1^3,K.1^7,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^7,-1*K.1^7,K.1^3,-1*K.1,-1*K.1^3,K.1^7,-1*K.1^7,K.1^9,K.1,K.1^7,K.1^3,K.1^9,K.1^9,-1*K.1,-1*K.1,K.1^9,K.1^7,K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^7,-1*K.1,K.1,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^9,-1*K.1,K.1^3,K.1^7,-1*K.1^3,K.1,-1*K.1^9,-1*K.1^7,K.1^3,-1*K.1,K.1,K.1,K.1^3,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^9,K.1^7,K.1^9,-1*K.1,-1*K.1,-1*K.1^7,K.1^3,K.1^3,-1*K.1^9,K.1,K.1^9,-1*K.1^7,K.1^7,K.1,-1*K.1,K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^7,K.1^3,-1*K.1^7,K.1^3,-1*K.1,K.1^9,K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^6,K.1^6,K.1,-1*K.1^7,-1*K.1,K.1^9,K.1,K.1^3,K.1^9,K.1^3,K.1^7,-1*K.1^7,-1*K.1^7,K.1^9,K.1^9,-1*K.1,-1*K.1^7,-1*K.1,K.1^3,K.1^9,K.1^7,-1*K.1^3,-1*K.1,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,K.1^3,K.1^9,K.1^3,-1*K.1,-1*K.1^7,-1*K.1,K.1^9,K.1^9,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^9,K.1^3,-1*K.1^3,K.1^7,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^7,K.1^9,K.1^9,-1*K.1^7,-1*K.1^7,-1*K.1,K.1^3,K.1^9,K.1^3,K.1,K.1^9,-1*K.1,-1*K.1^3,-1*K.1^9,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1,K.1^9,-1*K.1,-1*K.1^9,K.1,K.1^3,K.1,-1*K.1^9,-1*K.1^9,K.1,K.1^7,K.1,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1^7,K.1^9,K.1,K.1^3,-1*K.1^3,K.1^7,K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1^9,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1,-1*K.1,K.1^3,-1*K.1^7,K.1,K.1^9,-1*K.1,-1*K.1^7,K.1^3,-1*K.1^9,K.1,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1,K.1^9,-1*K.1,K.1^3,K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^7,K.1^7,K.1^9,-1*K.1,K.1,-1*K.1^3,K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1^7,K.1,-1*K.1^9,-1*K.1^9,K.1,K.1^3,K.1,-1*K.1^9,-1*K.1,K.1^9,-1*K.1,K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,K.1^8,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,K.1^4,K.1^8,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^8,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^9,K.1^3,K.1^9,-1*K.1,-1*K.1^9,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^9,K.1^3,K.1^9,-1*K.1^7,-1*K.1,-1*K.1^3,K.1^7,K.1^9,K.1,K.1^7,-1*K.1^3,K.1^7,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^9,K.1^3,K.1^9,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^7,K.1^7,-1*K.1^3,K.1^7,-1*K.1^7,K.1^9,K.1^9,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1^3,K.1^9,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1^9,-1*K.1,K.1^9,K.1^7,K.1,-1*K.1^9,K.1,K.1^7,K.1^7,K.1,K.1^7,-1*K.1^7,K.1^9,-1*K.1,K.1^9,K.1,-1*K.1^9,-1*K.1^7,-1*K.1^9,K.1,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^9,K.1,K.1,K.1^7,-1*K.1^3,-1*K.1,-1*K.1^9,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1^3,K.1^7,K.1,K.1,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^9,K.1^9,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1,K.1^9,K.1^3,-1*K.1^7,K.1,-1*K.1^9,-1*K.1^3,K.1^3,K.1^3,K.1^9,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,K.1,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^9,K.1^7,-1*K.1^3,K.1^7,K.1,K.1,K.1^3,-1*K.1^3,-1*K.1^9,K.1,K.1,-1*K.1^9,-1*K.1^7,-1*K.1^9,K.1,K.1^9,-1*K.1,K.1^9,-1*K.1^3,K.1^7,K.1,K.1^7,K.1^7,-1*K.1^7,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^2,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,K.1^4,K.1^8,K.1^8,K.1^4,K.1^8,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,K.1^6,K.1^2,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,-1*K.1^8,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,-1*K.1^4,K.1^6,K.1^6,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^8,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^9,-1*K.1^3,-1*K.1^9,K.1,K.1^9,K.1^7,K.1,K.1^7,K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^9,K.1^7,K.1,K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^7,K.1^7,K.1,K.1^7,-1*K.1^9,-1*K.1^3,-1*K.1^9,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1,K.1^7,-1*K.1^7,K.1^3,-1*K.1^7,K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^9,K.1^7,K.1,K.1^7,K.1^9,K.1,-1*K.1^9,-1*K.1^7,-1*K.1,K.1^9,-1*K.1,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^7,-1*K.1^9,K.1,-1*K.1^9,-1*K.1,K.1^9,K.1^7,K.1^9,-1*K.1,-1*K.1,K.1^9,K.1^3,K.1^9,-1*K.1,-1*K.1,-1*K.1^7,K.1^3,K.1,K.1^9,K.1^7,-1*K.1^7,K.1^3,K.1^3,-1*K.1^7,-1*K.1,-1*K.1,K.1^9,K.1^7,K.1^9,K.1^7,-1*K.1^9,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^9,-1*K.1^9,K.1^7,-1*K.1^3,K.1^9,K.1,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1,K.1^9,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^9,K.1,-1*K.1^9,K.1^7,K.1^9,K.1^7,K.1^9,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^3,K.1^3,K.1,-1*K.1^9,K.1^9,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^3,K.1^3,K.1^9,-1*K.1,-1*K.1,K.1^9,K.1^7,K.1^9,-1*K.1,-1*K.1^9,K.1,-1*K.1^9,K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^2,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^8,-1*K.1^6,K.1^4,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^6,K.1^4,K.1^8,K.1^4,K.1^4,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^2,K.1^4,K.1^8,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^8,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^4,K.1^6,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1,K.1^7,K.1,-1*K.1^9,-1*K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^7,K.1^7,K.1^7,-1*K.1^9,-1*K.1^9,K.1,K.1^7,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^7,K.1^3,K.1,K.1^9,K.1^3,-1*K.1^7,K.1^3,K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1,K.1^7,K.1,-1*K.1^9,-1*K.1^9,K.1^7,K.1^7,-1*K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1^7,K.1^3,-1*K.1^3,K.1,K.1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,K.1^7,K.1^7,-1*K.1^9,-1*K.1^9,K.1^7,K.1^7,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1,-1*K.1^9,K.1,K.1^3,K.1^9,-1*K.1,K.1^9,K.1^3,K.1^3,K.1^9,K.1^3,-1*K.1^3,K.1,-1*K.1^9,K.1,K.1^9,-1*K.1,-1*K.1^3,-1*K.1,K.1^9,K.1^9,-1*K.1,-1*K.1^7,-1*K.1,K.1^9,K.1^9,K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^7,K.1^3,K.1^9,K.1^9,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^9,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,-1*K.1,K.1,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^9,K.1,K.1^7,-1*K.1^3,K.1^9,-1*K.1,-1*K.1^7,K.1^7,K.1^7,K.1,-1*K.1^9,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^9,K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^9,K.1,-1*K.1,K.1^3,-1*K.1^7,K.1^3,K.1^9,K.1^9,K.1^7,-1*K.1^7,-1*K.1,K.1^9,K.1^9,-1*K.1,-1*K.1^3,-1*K.1,K.1^9,K.1,-1*K.1^9,K.1,-1*K.1^7,K.1^3,K.1^9,K.1^3,K.1^3,-1*K.1^3,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^4,K.1^8,-1*K.1^2,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,K.1^8,K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^4,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^3,K.1,K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1,K.1,K.1,-1*K.1^7,-1*K.1^7,K.1^3,K.1,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1,K.1^9,K.1^3,K.1^7,K.1^9,-1*K.1,K.1^9,K.1^9,-1*K.1^9,-1*K.1^7,-1*K.1^9,K.1^3,K.1,K.1^3,-1*K.1^7,-1*K.1^7,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^7,-1*K.1^9,K.1^9,-1*K.1,K.1^9,-1*K.1^9,K.1^3,K.1^3,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1^7,-1*K.1^7,K.1,K.1,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^3,-1*K.1^7,K.1^3,K.1^9,K.1^7,-1*K.1^3,K.1^7,K.1^9,K.1^9,K.1^7,K.1^9,-1*K.1^9,K.1^3,-1*K.1^7,K.1^3,K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^7,K.1^7,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^7,K.1^7,K.1^9,-1*K.1,-1*K.1^7,-1*K.1^3,-1*K.1^9,K.1^9,-1*K.1,-1*K.1,K.1^9,K.1^7,K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^7,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^9,K.1,-1*K.1^3,-1*K.1^7,K.1^3,K.1,-1*K.1^9,K.1^7,-1*K.1^3,-1*K.1,K.1,K.1,K.1^3,-1*K.1^7,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^7,K.1^9,-1*K.1,-1*K.1,-1*K.1^7,K.1^3,-1*K.1^3,K.1^9,-1*K.1,K.1^9,K.1^7,K.1^7,K.1,-1*K.1,-1*K.1^3,K.1^7,K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^7,K.1^3,-1*K.1^7,K.1^3,-1*K.1,K.1^9,K.1^7,K.1^9,K.1^9,-1*K.1^9,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,K.1^4,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^8,-1*K.1^6,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^2,K.1^2,K.1^7,-1*K.1^9,-1*K.1^7,K.1^3,K.1^7,K.1,K.1^3,K.1,K.1^9,-1*K.1^9,-1*K.1^9,K.1^3,K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^7,K.1,K.1^3,K.1^9,-1*K.1,-1*K.1^7,-1*K.1^3,-1*K.1,K.1^9,-1*K.1,-1*K.1,K.1,K.1^3,K.1,-1*K.1^7,-1*K.1^9,-1*K.1^7,K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,K.1^9,K.1^9,K.1^3,K.1,-1*K.1,K.1^9,-1*K.1,K.1,-1*K.1^7,-1*K.1^7,-1*K.1^9,K.1^9,K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1,K.1^3,K.1,K.1^7,K.1^3,-1*K.1^7,-1*K.1,-1*K.1^3,K.1^7,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^3,K.1^7,K.1,K.1^7,-1*K.1^3,-1*K.1^3,K.1^7,K.1^9,K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^9,K.1^3,K.1^7,K.1,-1*K.1,K.1^9,K.1^9,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^7,K.1,K.1^7,K.1,-1*K.1^7,K.1^3,K.1^9,-1*K.1^9,-1*K.1^9,K.1^9,K.1^7,-1*K.1^7,K.1,-1*K.1^9,K.1^7,K.1^3,-1*K.1^7,-1*K.1^9,K.1,-1*K.1^3,K.1^7,K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1^3,-1*K.1^7,K.1,K.1^7,K.1,K.1^7,-1*K.1,-1*K.1^3,-1*K.1,K.1^9,K.1^9,K.1^3,-1*K.1^7,K.1^7,-1*K.1,K.1^9,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^9,K.1^9,K.1^7,-1*K.1^3,-1*K.1^3,K.1^7,K.1,K.1^7,-1*K.1^3,-1*K.1^7,K.1^3,-1*K.1^7,K.1^9,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^8,-1*K.1^2,K.1^4,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,-1*K.1^2,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^4,K.1^8,-1*K.1^6,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^2,-1*K.1^6,K.1^8,K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,K.1^4,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^2,-1*K.1^4,K.1^6,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^6,-1*K.1^4,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^4,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^6,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^4,-1*K.1^8,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^6,K.1^6,K.1^6,K.1^6,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^7,K.1^9,K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^9,K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,K.1^7,K.1^9,K.1^7,-1*K.1,-1*K.1^3,-1*K.1^9,K.1,K.1^7,K.1^3,K.1,-1*K.1^9,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^7,K.1^9,K.1^7,-1*K.1^3,-1*K.1^3,K.1^9,K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1,K.1,-1*K.1^9,K.1,-1*K.1,K.1^7,K.1^7,K.1^9,-1*K.1^9,-1*K.1^9,K.1^9,K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^9,K.1^7,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^3,K.1^7,K.1,K.1^3,-1*K.1^7,K.1^3,K.1,K.1,K.1^3,K.1,-1*K.1,K.1^7,-1*K.1^3,K.1^7,K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^3,K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^7,K.1^3,K.1^3,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1,K.1,-1*K.1^9,-1*K.1^9,K.1,K.1^3,K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^3,-1*K.1^9,K.1^9,K.1^9,-1*K.1^9,-1*K.1^7,K.1^7,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^3,K.1^7,K.1^9,-1*K.1,K.1^3,-1*K.1^7,-1*K.1^9,K.1^9,K.1^9,K.1^7,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^7,-1*K.1,-1*K.1^7,K.1,K.1^3,K.1,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1^7,K.1,-1*K.1^9,K.1,K.1^3,K.1^3,K.1^9,-1*K.1^9,-1*K.1^7,K.1^3,K.1^3,-1*K.1^7,-1*K.1,-1*K.1^7,K.1^3,K.1^7,-1*K.1^3,K.1^7,-1*K.1^9,K.1,K.1^3,K.1,K.1,-1*K.1,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^6,-1*K.1^2,K.1^8,-1*K.1^6,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^4,K.1^8,-1*K.1^2,K.1^4,K.1^8,K.1^4,K.1^4,K.1^8,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^4,-1*K.1^2,K.1^8,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^4,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,K.1^8,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^8,K.1^8,K.1^8,-1*K.1^6,-1*K.1^6,K.1^8,K.1^8,-1*K.1^6,K.1^4,K.1^8,K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^6,K.1^8,-1*K.1^6,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^4,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,K.1^6,K.1^2,-1*K.1^4,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^4,K.1^6,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^8,K.1^2,K.1^2,K.1^6,K.1^2,K.1^6,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,K.1^6,-1*K.1^8,K.1^2,K.1^6,K.1^2,-1*K.1^4,-1*K.1^8,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^6,-1*K.1^8,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^6,K.1^2,-1*K.1^8,K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^6,K.1^2,K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^3,-1*K.1,-1*K.1^3,K.1^7,K.1^3,K.1^9,K.1^7,K.1^9,K.1,-1*K.1,-1*K.1,K.1^7,K.1^7,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^9,K.1^7,K.1,-1*K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^9,K.1,-1*K.1^9,-1*K.1^9,K.1^9,K.1^7,K.1^9,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^7,K.1^7,-1*K.1,-1*K.1,K.1,K.1,K.1^7,K.1^9,-1*K.1^9,K.1,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1^7,K.1^7,-1*K.1,-1*K.1,-1*K.1^3,K.1^9,K.1^7,K.1^9,K.1^3,K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^7,-1*K.1^9,K.1^9,-1*K.1^3,K.1^7,-1*K.1^3,-1*K.1^7,K.1^3,K.1^9,K.1^3,-1*K.1^7,-1*K.1^7,K.1^3,K.1,K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^9,K.1,K.1^7,K.1^3,K.1^9,-1*K.1^9,K.1,K.1,-1*K.1^9,-1*K.1^7,-1*K.1^7,K.1^3,K.1^9,K.1^3,K.1^9,-1*K.1^3,K.1^7,K.1,-1*K.1,-1*K.1,K.1,K.1^3,-1*K.1^3,K.1^9,-1*K.1,K.1^3,K.1^7,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^7,K.1^3,K.1,-1*K.1,-1*K.1,-1*K.1^3,K.1^7,-1*K.1^3,K.1^9,K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^9,K.1,K.1,K.1^7,-1*K.1^3,K.1^3,-1*K.1^9,K.1,-1*K.1^9,-1*K.1^7,-1*K.1^7,-1*K.1,K.1,K.1^3,-1*K.1^7,-1*K.1^7,K.1^3,K.1^9,K.1^3,-1*K.1^7,-1*K.1^3,K.1^7,-1*K.1^3,K.1,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,1,1,1,K.1^15,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,K.1^16,K.1^16,K.1^16,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^15,K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^16,-1*K.1^12,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^8,K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^8,K.1^12,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,K.1^16,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,-1*K.1^16,-1*K.1^12,K.1^12,K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^16,K.1^14,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,K.1^14,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,-1*K.1^14,K.1^18,K.1^6,K.1^18,-1*K.1^14,K.1^18,K.1^14,-1*K.1^6,-1*K.1^14,K.1^18,K.1^6,-1*K.1^6,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^2,K.1^18,K.1^18,-1*K.1^14,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,K.1^2,-1*K.1^14,K.1^2,-1*K.1^18,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^14,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^14,K.1^18,K.1^2,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^14,-1*K.1^18,K.1^18,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^17,-1*K.1^9,-1*K.1^7,K.1^13,K.1^17,K.1^11,K.1^13,-1*K.1^11,-1*K.1^19,-1*K.1^9,K.1^9,-1*K.1^13,-1*K.1^13,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^11,K.1^13,K.1^19,-1*K.1,K.1^7,-1*K.1^3,-1*K.1,K.1^19,-1*K.1,-1*K.1,K.1^11,K.1^13,-1*K.1^11,K.1^7,-1*K.1^9,-1*K.1^7,K.1^13,-1*K.1^13,K.1^9,-1*K.1^9,-1*K.1^19,-1*K.1^19,K.1^13,K.1^11,-1*K.1,K.1^19,-1*K.1,-1*K.1^11,K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^19,-1*K.1^19,-1*K.1^9,-1*K.1^9,K.1^9,-1*K.1^13,-1*K.1^13,K.1^9,-1*K.1^9,K.1^7,-1*K.1^11,K.1^13,K.1^11,K.1^17,K.1^13,-1*K.1^7,-1*K.1,-1*K.1^3,-1*K.1^17,K.1^3,K.1,K.1,K.1^3,K.1,-1*K.1^11,K.1^7,-1*K.1^13,-1*K.1^7,-1*K.1^3,K.1^17,K.1^11,-1*K.1^17,K.1^3,K.1^3,-1*K.1^17,K.1^19,K.1^17,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^19,K.1^13,K.1^17,K.1^11,K.1,-1*K.1^19,-1*K.1^19,K.1,K.1^3,-1*K.1^3,K.1^17,K.1^11,-1*K.1^17,-1*K.1^11,K.1^7,-1*K.1^13,K.1^19,K.1^9,K.1^9,K.1^19,-1*K.1^17,K.1^7,-1*K.1^11,K.1^9,K.1^17,K.1^13,-1*K.1^7,-1*K.1^9,-1*K.1^11,K.1^3,-1*K.1^17,K.1^19,K.1^9,K.1^9,-1*K.1^7,-1*K.1^13,K.1^7,-1*K.1^11,-1*K.1^17,K.1^11,K.1^17,K.1,K.1^3,K.1,-1*K.1^19,-1*K.1^19,-1*K.1^13,-1*K.1^7,K.1^17,-1*K.1,K.1^19,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^9,K.1^19,-1*K.1^17,K.1^3,K.1^3,-1*K.1^17,K.1^11,K.1^17,-1*K.1^3,-1*K.1^7,-1*K.1^13,K.1^7,-1*K.1^19,K.1,K.1^3,K.1,K.1,K.1^11,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,1,1,1,-1*K.1^5,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^16,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^12,K.1^8,K.1^16,K.1^5,-1*K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^4,K.1^8,K.1^12,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^16,K.1^16,K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^16,K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^4,K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^16,K.1^8,K.1^16,K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^12,K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^14,K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^14,K.1^6,-1*K.1^2,-1*K.1^14,K.1^14,K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,K.1^18,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,K.1^6,-1*K.1^18,K.1^2,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^2,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,K.1^3,K.1^11,K.1^13,-1*K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^7,K.1^9,K.1,K.1^11,-1*K.1^11,K.1^7,K.1^7,K.1^13,K.1^11,-1*K.1^13,K.1^9,-1*K.1^7,-1*K.1,K.1^19,-1*K.1^13,K.1^17,K.1^19,-1*K.1,K.1^19,K.1^19,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^13,K.1^11,K.1^13,-1*K.1^7,K.1^7,-1*K.1^11,K.1^11,K.1,K.1,-1*K.1^7,-1*K.1^9,K.1^19,-1*K.1,K.1^19,K.1^9,-1*K.1^13,K.1^13,K.1^11,K.1,K.1,K.1^11,K.1^11,-1*K.1^11,K.1^7,K.1^7,-1*K.1^11,K.1^11,-1*K.1^13,K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^3,-1*K.1^7,K.1^13,K.1^19,K.1^17,K.1^3,-1*K.1^17,-1*K.1^19,-1*K.1^19,-1*K.1^17,-1*K.1^19,K.1^9,-1*K.1^13,K.1^7,K.1^13,K.1^17,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^17,-1*K.1^17,K.1^3,-1*K.1,-1*K.1^3,K.1^17,K.1^17,K.1^19,-1*K.1,-1*K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^19,K.1,K.1,-1*K.1^19,-1*K.1^17,K.1^17,-1*K.1^3,-1*K.1^9,K.1^3,K.1^9,-1*K.1^13,K.1^7,-1*K.1,-1*K.1^11,-1*K.1^11,-1*K.1,K.1^3,-1*K.1^13,K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^7,K.1^13,K.1^11,K.1^9,-1*K.1^17,K.1^3,-1*K.1,-1*K.1^11,-1*K.1^11,K.1^13,K.1^7,-1*K.1^13,K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^19,-1*K.1^17,-1*K.1^19,K.1,K.1,K.1^7,K.1^13,-1*K.1^3,K.1^19,-1*K.1,K.1^19,K.1^17,K.1^17,-1*K.1^11,-1*K.1,K.1^3,-1*K.1^17,-1*K.1^17,K.1^3,-1*K.1^9,-1*K.1^3,K.1^17,K.1^13,K.1^7,-1*K.1^13,K.1,-1*K.1^19,-1*K.1^17,-1*K.1^19,-1*K.1^19,-1*K.1^9,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,1,1,1,K.1^15,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^16,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^12,K.1^8,K.1^16,-1*K.1^15,K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,-1*K.1^4,K.1^8,K.1^12,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^16,K.1^16,K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^16,K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^4,K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^16,K.1^8,K.1^16,K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^12,K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^14,-1*K.1^18,K.1^6,K.1^14,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,-1*K.1^6,K.1^2,K.1^14,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^14,-1*K.1^6,K.1^2,K.1^14,-1*K.1^14,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^18,K.1^2,K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,K.1^18,-1*K.1^6,K.1^18,-1*K.1^2,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^6,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^6,K.1^2,K.1^18,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^6,-1*K.1^2,K.1^2,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^13,-1*K.1,K.1^3,-1*K.1^17,-1*K.1^13,K.1^19,-1*K.1^17,-1*K.1^19,-1*K.1^11,-1*K.1,K.1,K.1^17,K.1^17,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^19,-1*K.1^17,K.1^11,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1^9,K.1^11,-1*K.1^9,-1*K.1^9,K.1^19,-1*K.1^17,-1*K.1^19,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^17,K.1^17,K.1,-1*K.1,-1*K.1^11,-1*K.1^11,-1*K.1^17,K.1^19,-1*K.1^9,K.1^11,-1*K.1^9,-1*K.1^19,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^11,-1*K.1^11,-1*K.1,-1*K.1,K.1,K.1^17,K.1^17,K.1,-1*K.1,-1*K.1^3,-1*K.1^19,-1*K.1^17,K.1^19,-1*K.1^13,-1*K.1^17,K.1^3,-1*K.1^9,K.1^7,K.1^13,-1*K.1^7,K.1^9,K.1^9,-1*K.1^7,K.1^9,-1*K.1^19,-1*K.1^3,K.1^17,K.1^3,K.1^7,-1*K.1^13,K.1^19,K.1^13,-1*K.1^7,-1*K.1^7,K.1^13,K.1^11,-1*K.1^13,K.1^7,K.1^7,-1*K.1^9,K.1^11,-1*K.1^17,-1*K.1^13,K.1^19,K.1^9,-1*K.1^11,-1*K.1^11,K.1^9,-1*K.1^7,K.1^7,-1*K.1^13,K.1^19,K.1^13,-1*K.1^19,-1*K.1^3,K.1^17,K.1^11,K.1,K.1,K.1^11,K.1^13,-1*K.1^3,-1*K.1^19,K.1,-1*K.1^13,-1*K.1^17,K.1^3,-1*K.1,-1*K.1^19,-1*K.1^7,K.1^13,K.1^11,K.1,K.1,K.1^3,K.1^17,-1*K.1^3,-1*K.1^19,K.1^13,K.1^19,-1*K.1^13,K.1^9,-1*K.1^7,K.1^9,-1*K.1^11,-1*K.1^11,K.1^17,K.1^3,-1*K.1^13,-1*K.1^9,K.1^11,-1*K.1^9,K.1^7,K.1^7,K.1,K.1^11,K.1^13,-1*K.1^7,-1*K.1^7,K.1^13,K.1^19,-1*K.1^13,K.1^7,K.1^3,K.1^17,-1*K.1^3,-1*K.1^11,K.1^9,-1*K.1^7,K.1^9,K.1^9,K.1^19,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,1,1,1,-1*K.1^5,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,K.1^16,K.1^16,K.1^16,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^4,K.1^5,-1*K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,K.1^5,K.1^15,-1*K.1^5,K.1^16,-1*K.1^12,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^8,K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^8,K.1^12,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,K.1^16,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,-1*K.1^16,-1*K.1^12,K.1^12,K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^16,-1*K.1^14,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^18,-1*K.1^14,K.1^6,K.1^14,-1*K.1^18,-1*K.1^6,K.1^6,K.1^18,-1*K.1^18,K.1^14,K.1^14,K.1^18,K.1^18,K.1^18,K.1^2,-1*K.1^18,-1*K.1^18,K.1^14,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,K.1^14,-1*K.1^2,K.1^18,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^14,K.1^18,-1*K.1^18,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^7,K.1^19,-1*K.1^17,K.1^3,K.1^7,-1*K.1,K.1^3,K.1,K.1^9,K.1^19,-1*K.1^19,-1*K.1^3,-1*K.1^3,-1*K.1^17,K.1^19,K.1^17,K.1,K.1^3,-1*K.1^9,K.1^11,K.1^17,-1*K.1^13,K.1^11,-1*K.1^9,K.1^11,K.1^11,-1*K.1,K.1^3,K.1,K.1^17,K.1^19,-1*K.1^17,K.1^3,-1*K.1^3,-1*K.1^19,K.1^19,K.1^9,K.1^9,K.1^3,-1*K.1,K.1^11,-1*K.1^9,K.1^11,K.1,K.1^17,-1*K.1^17,K.1^19,K.1^9,K.1^9,K.1^19,K.1^19,-1*K.1^19,-1*K.1^3,-1*K.1^3,-1*K.1^19,K.1^19,K.1^17,K.1,K.1^3,-1*K.1,K.1^7,K.1^3,-1*K.1^17,K.1^11,-1*K.1^13,-1*K.1^7,K.1^13,-1*K.1^11,-1*K.1^11,K.1^13,-1*K.1^11,K.1,K.1^17,-1*K.1^3,-1*K.1^17,-1*K.1^13,K.1^7,-1*K.1,-1*K.1^7,K.1^13,K.1^13,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^13,-1*K.1^13,K.1^11,-1*K.1^9,K.1^3,K.1^7,-1*K.1,-1*K.1^11,K.1^9,K.1^9,-1*K.1^11,K.1^13,-1*K.1^13,K.1^7,-1*K.1,-1*K.1^7,K.1,K.1^17,-1*K.1^3,-1*K.1^9,-1*K.1^19,-1*K.1^19,-1*K.1^9,-1*K.1^7,K.1^17,K.1,-1*K.1^19,K.1^7,K.1^3,-1*K.1^17,K.1^19,K.1,K.1^13,-1*K.1^7,-1*K.1^9,-1*K.1^19,-1*K.1^19,-1*K.1^17,-1*K.1^3,K.1^17,K.1,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^11,K.1^13,-1*K.1^11,K.1^9,K.1^9,-1*K.1^3,-1*K.1^17,K.1^7,K.1^11,-1*K.1^9,K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1^19,-1*K.1^9,-1*K.1^7,K.1^13,K.1^13,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^13,-1*K.1^17,-1*K.1^3,K.1^17,K.1^9,-1*K.1^11,K.1^13,-1*K.1^11,-1*K.1^11,-1*K.1,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,1,1,1,K.1^15,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^12,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^12,-1*K.1^15,K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^8,K.1^16,K.1^4,-1*K.1^8,K.1^16,K.1^8,K.1^8,K.1^16,-1*K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^16,K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^16,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^12,K.1^16,K.1^16,K.1^12,-1*K.1^8,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^2,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^18,K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^14,-1*K.1^2,K.1^18,K.1^2,-1*K.1^14,-1*K.1^18,K.1^18,K.1^14,-1*K.1^14,K.1^2,K.1^2,K.1^14,K.1^14,K.1^14,K.1^6,-1*K.1^14,-1*K.1^14,K.1^2,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,K.1^2,-1*K.1^6,K.1^14,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^14,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,K.1^14,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1,-1*K.1^17,K.1^11,-1*K.1^9,K.1,K.1^3,-1*K.1^9,-1*K.1^3,K.1^7,-1*K.1^17,K.1^17,K.1^9,K.1^9,K.1^11,-1*K.1^17,-1*K.1^11,-1*K.1^3,-1*K.1^9,-1*K.1^7,K.1^13,-1*K.1^11,-1*K.1^19,K.1^13,-1*K.1^7,K.1^13,K.1^13,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^17,K.1^11,-1*K.1^9,K.1^9,K.1^17,-1*K.1^17,K.1^7,K.1^7,-1*K.1^9,K.1^3,K.1^13,-1*K.1^7,K.1^13,-1*K.1^3,-1*K.1^11,K.1^11,-1*K.1^17,K.1^7,K.1^7,-1*K.1^17,-1*K.1^17,K.1^17,K.1^9,K.1^9,K.1^17,-1*K.1^17,-1*K.1^11,-1*K.1^3,-1*K.1^9,K.1^3,K.1,-1*K.1^9,K.1^11,K.1^13,-1*K.1^19,-1*K.1,K.1^19,-1*K.1^13,-1*K.1^13,K.1^19,-1*K.1^13,-1*K.1^3,-1*K.1^11,K.1^9,K.1^11,-1*K.1^19,K.1,K.1^3,-1*K.1,K.1^19,K.1^19,-1*K.1,-1*K.1^7,K.1,-1*K.1^19,-1*K.1^19,K.1^13,-1*K.1^7,-1*K.1^9,K.1,K.1^3,-1*K.1^13,K.1^7,K.1^7,-1*K.1^13,K.1^19,-1*K.1^19,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^11,K.1^9,-1*K.1^7,K.1^17,K.1^17,-1*K.1^7,-1*K.1,-1*K.1^11,-1*K.1^3,K.1^17,K.1,-1*K.1^9,K.1^11,-1*K.1^17,-1*K.1^3,K.1^19,-1*K.1,-1*K.1^7,K.1^17,K.1^17,K.1^11,K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1,K.1^3,K.1,-1*K.1^13,K.1^19,-1*K.1^13,K.1^7,K.1^7,K.1^9,K.1^11,K.1,K.1^13,-1*K.1^7,K.1^13,-1*K.1^19,-1*K.1^19,K.1^17,-1*K.1^7,-1*K.1,K.1^19,K.1^19,-1*K.1,K.1^3,K.1,-1*K.1^19,K.1^11,K.1^9,-1*K.1^11,K.1^7,-1*K.1^13,K.1^19,-1*K.1^13,-1*K.1^13,K.1^3,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,1,1,1,-1*K.1^5,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^8,K.1^16,-1*K.1^4,K.1^8,K.1^5,-1*K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,K.1^12,K.1^16,K.1^4,-1*K.1^16,K.1^12,K.1^16,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^8,K.1^16,K.1^12,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,-1*K.1^12,K.1^16,K.1^16,K.1^8,K.1^8,-1*K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^16,-1*K.1^16,K.1^8,K.1^8,K.1^16,K.1^16,-1*K.1^12,K.1^18,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^2,-1*K.1^14,K.1^18,K.1^2,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,-1*K.1^18,K.1^6,K.1^2,K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^2,-1*K.1^18,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^14,K.1^6,K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,K.1^14,-1*K.1^18,K.1^14,-1*K.1^6,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^18,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^18,K.1^6,K.1^14,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^18,-1*K.1^6,K.1^6,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^19,K.1^3,-1*K.1^9,K.1^11,-1*K.1^19,-1*K.1^17,K.1^11,K.1^17,-1*K.1^13,K.1^3,-1*K.1^3,-1*K.1^11,-1*K.1^11,-1*K.1^9,K.1^3,K.1^9,K.1^17,K.1^11,K.1^13,-1*K.1^7,K.1^9,K.1,-1*K.1^7,K.1^13,-1*K.1^7,-1*K.1^7,-1*K.1^17,K.1^11,K.1^17,K.1^9,K.1^3,-1*K.1^9,K.1^11,-1*K.1^11,-1*K.1^3,K.1^3,-1*K.1^13,-1*K.1^13,K.1^11,-1*K.1^17,-1*K.1^7,K.1^13,-1*K.1^7,K.1^17,K.1^9,-1*K.1^9,K.1^3,-1*K.1^13,-1*K.1^13,K.1^3,K.1^3,-1*K.1^3,-1*K.1^11,-1*K.1^11,-1*K.1^3,K.1^3,K.1^9,K.1^17,K.1^11,-1*K.1^17,-1*K.1^19,K.1^11,-1*K.1^9,-1*K.1^7,K.1,K.1^19,-1*K.1,K.1^7,K.1^7,-1*K.1,K.1^7,K.1^17,K.1^9,-1*K.1^11,-1*K.1^9,K.1,-1*K.1^19,-1*K.1^17,K.1^19,-1*K.1,-1*K.1,K.1^19,K.1^13,-1*K.1^19,K.1,K.1,-1*K.1^7,K.1^13,K.1^11,-1*K.1^19,-1*K.1^17,K.1^7,-1*K.1^13,-1*K.1^13,K.1^7,-1*K.1,K.1,-1*K.1^19,-1*K.1^17,K.1^19,K.1^17,K.1^9,-1*K.1^11,K.1^13,-1*K.1^3,-1*K.1^3,K.1^13,K.1^19,K.1^9,K.1^17,-1*K.1^3,-1*K.1^19,K.1^11,-1*K.1^9,K.1^3,K.1^17,-1*K.1,K.1^19,K.1^13,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^11,K.1^9,K.1^17,K.1^19,-1*K.1^17,-1*K.1^19,K.1^7,-1*K.1,K.1^7,-1*K.1^13,-1*K.1^13,-1*K.1^11,-1*K.1^9,-1*K.1^19,-1*K.1^7,K.1^13,-1*K.1^7,K.1,K.1,-1*K.1^3,K.1^13,K.1^19,-1*K.1,-1*K.1,K.1^19,-1*K.1^17,-1*K.1^19,K.1,-1*K.1^9,-1*K.1^11,K.1^9,-1*K.1^13,K.1^7,-1*K.1,K.1^7,K.1^7,-1*K.1^17,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,1,1,1,K.1^15,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^8,K.1^16,-1*K.1^4,K.1^8,-1*K.1^15,K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,K.1^12,K.1^16,K.1^4,-1*K.1^16,K.1^12,K.1^16,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^8,K.1^16,K.1^12,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,-1*K.1^12,K.1^16,K.1^16,K.1^8,K.1^8,-1*K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^16,-1*K.1^16,K.1^8,K.1^8,K.1^16,K.1^16,-1*K.1^12,-1*K.1^18,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^2,K.1^18,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,K.1^18,K.1^18,K.1^6,K.1^6,K.1^6,K.1^14,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^14,K.1^6,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^18,K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^9,K.1^13,K.1^19,-1*K.1,K.1^9,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^3,K.1^13,-1*K.1^13,K.1,K.1,K.1^19,K.1^13,-1*K.1^19,K.1^7,-1*K.1,K.1^3,-1*K.1^17,-1*K.1^19,-1*K.1^11,-1*K.1^17,K.1^3,-1*K.1^17,-1*K.1^17,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^19,K.1^13,K.1^19,-1*K.1,K.1,-1*K.1^13,K.1^13,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^17,K.1^3,-1*K.1^17,K.1^7,-1*K.1^19,K.1^19,K.1^13,-1*K.1^3,-1*K.1^3,K.1^13,K.1^13,-1*K.1^13,K.1,K.1,-1*K.1^13,K.1^13,-1*K.1^19,K.1^7,-1*K.1,-1*K.1^7,K.1^9,-1*K.1,K.1^19,-1*K.1^17,-1*K.1^11,-1*K.1^9,K.1^11,K.1^17,K.1^17,K.1^11,K.1^17,K.1^7,-1*K.1^19,K.1,K.1^19,-1*K.1^11,K.1^9,-1*K.1^7,-1*K.1^9,K.1^11,K.1^11,-1*K.1^9,K.1^3,K.1^9,-1*K.1^11,-1*K.1^11,-1*K.1^17,K.1^3,-1*K.1,K.1^9,-1*K.1^7,K.1^17,-1*K.1^3,-1*K.1^3,K.1^17,K.1^11,-1*K.1^11,K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^19,K.1,K.1^3,-1*K.1^13,-1*K.1^13,K.1^3,-1*K.1^9,-1*K.1^19,K.1^7,-1*K.1^13,K.1^9,-1*K.1,K.1^19,K.1^13,K.1^7,K.1^11,-1*K.1^9,K.1^3,-1*K.1^13,-1*K.1^13,K.1^19,K.1,-1*K.1^19,K.1^7,-1*K.1^9,-1*K.1^7,K.1^9,K.1^17,K.1^11,K.1^17,-1*K.1^3,-1*K.1^3,K.1,K.1^19,K.1^9,-1*K.1^17,K.1^3,-1*K.1^17,-1*K.1^11,-1*K.1^11,-1*K.1^13,K.1^3,-1*K.1^9,K.1^11,K.1^11,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^11,K.1^19,K.1,-1*K.1^19,-1*K.1^3,K.1^17,K.1^11,K.1^17,K.1^17,-1*K.1^7,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,1,1,1,-1*K.1^5,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^12,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^12,K.1^5,-1*K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,K.1^5,K.1^15,-1*K.1^5,K.1^8,K.1^16,K.1^4,-1*K.1^8,K.1^16,K.1^8,K.1^8,K.1^16,-1*K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^16,K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^16,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^12,K.1^16,K.1^16,K.1^12,-1*K.1^8,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^8,K.1^2,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,K.1^2,K.1^18,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,-1*K.1^2,K.1^14,K.1^18,K.1^14,-1*K.1^2,K.1^14,K.1^2,-1*K.1^18,-1*K.1^2,K.1^14,K.1^18,-1*K.1^18,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^6,K.1^14,K.1^14,-1*K.1^2,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,K.1^6,-1*K.1^2,K.1^6,-1*K.1^14,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,K.1^14,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^14,K.1^6,-1*K.1^14,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^2,-1*K.1^14,K.1^14,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^11,-1*K.1^7,-1*K.1,K.1^19,-1*K.1^11,K.1^13,K.1^19,-1*K.1^13,K.1^17,-1*K.1^7,K.1^7,-1*K.1^19,-1*K.1^19,-1*K.1,-1*K.1^7,K.1,-1*K.1^13,K.1^19,-1*K.1^17,K.1^3,K.1,K.1^9,K.1^3,-1*K.1^17,K.1^3,K.1^3,K.1^13,K.1^19,-1*K.1^13,K.1,-1*K.1^7,-1*K.1,K.1^19,-1*K.1^19,K.1^7,-1*K.1^7,K.1^17,K.1^17,K.1^19,K.1^13,K.1^3,-1*K.1^17,K.1^3,-1*K.1^13,K.1,-1*K.1,-1*K.1^7,K.1^17,K.1^17,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^19,-1*K.1^19,K.1^7,-1*K.1^7,K.1,-1*K.1^13,K.1^19,K.1^13,-1*K.1^11,K.1^19,-1*K.1,K.1^3,K.1^9,K.1^11,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^13,K.1,-1*K.1^19,-1*K.1,K.1^9,-1*K.1^11,K.1^13,K.1^11,-1*K.1^9,-1*K.1^9,K.1^11,-1*K.1^17,-1*K.1^11,K.1^9,K.1^9,K.1^3,-1*K.1^17,K.1^19,-1*K.1^11,K.1^13,-1*K.1^3,K.1^17,K.1^17,-1*K.1^3,-1*K.1^9,K.1^9,-1*K.1^11,K.1^13,K.1^11,-1*K.1^13,K.1,-1*K.1^19,-1*K.1^17,K.1^7,K.1^7,-1*K.1^17,K.1^11,K.1,-1*K.1^13,K.1^7,-1*K.1^11,K.1^19,-1*K.1,-1*K.1^7,-1*K.1^13,-1*K.1^9,K.1^11,-1*K.1^17,K.1^7,K.1^7,-1*K.1,-1*K.1^19,K.1,-1*K.1^13,K.1^11,K.1^13,-1*K.1^11,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^17,K.1^17,-1*K.1^19,-1*K.1,-1*K.1^11,K.1^3,-1*K.1^17,K.1^3,K.1^9,K.1^9,K.1^7,-1*K.1^17,K.1^11,-1*K.1^9,-1*K.1^9,K.1^11,K.1^13,-1*K.1^11,K.1^9,-1*K.1,-1*K.1^19,K.1,K.1^17,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^13,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,1,1,1,-1*K.1^15,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,K.1^16,K.1^16,K.1^16,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^4,K.1^15,-1*K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5,-1*K.1^15,K.1^16,-1*K.1^12,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^8,K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^8,K.1^12,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,K.1^16,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,-1*K.1^16,-1*K.1^12,K.1^12,K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^16,K.1^14,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,K.1^14,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,-1*K.1^14,K.1^18,K.1^6,K.1^18,-1*K.1^14,K.1^18,K.1^14,-1*K.1^6,-1*K.1^14,K.1^18,K.1^6,-1*K.1^6,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^2,K.1^18,K.1^18,-1*K.1^14,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,K.1^2,-1*K.1^14,K.1^2,-1*K.1^18,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^14,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^14,K.1^18,K.1^2,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^14,-1*K.1^18,K.1^18,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^17,K.1^9,K.1^7,-1*K.1^13,-1*K.1^17,-1*K.1^11,-1*K.1^13,K.1^11,K.1^19,K.1^9,-1*K.1^9,K.1^13,K.1^13,K.1^7,K.1^9,-1*K.1^7,K.1^11,-1*K.1^13,-1*K.1^19,K.1,-1*K.1^7,K.1^3,K.1,-1*K.1^19,K.1,K.1,-1*K.1^11,-1*K.1^13,K.1^11,-1*K.1^7,K.1^9,K.1^7,-1*K.1^13,K.1^13,-1*K.1^9,K.1^9,K.1^19,K.1^19,-1*K.1^13,-1*K.1^11,K.1,-1*K.1^19,K.1,K.1^11,-1*K.1^7,K.1^7,K.1^9,K.1^19,K.1^19,K.1^9,K.1^9,-1*K.1^9,K.1^13,K.1^13,-1*K.1^9,K.1^9,-1*K.1^7,K.1^11,-1*K.1^13,-1*K.1^11,-1*K.1^17,-1*K.1^13,K.1^7,K.1,K.1^3,K.1^17,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^11,-1*K.1^7,K.1^13,K.1^7,K.1^3,-1*K.1^17,-1*K.1^11,K.1^17,-1*K.1^3,-1*K.1^3,K.1^17,-1*K.1^19,-1*K.1^17,K.1^3,K.1^3,K.1,-1*K.1^19,-1*K.1^13,-1*K.1^17,-1*K.1^11,-1*K.1,K.1^19,K.1^19,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^17,-1*K.1^11,K.1^17,K.1^11,-1*K.1^7,K.1^13,-1*K.1^19,-1*K.1^9,-1*K.1^9,-1*K.1^19,K.1^17,-1*K.1^7,K.1^11,-1*K.1^9,-1*K.1^17,-1*K.1^13,K.1^7,K.1^9,K.1^11,-1*K.1^3,K.1^17,-1*K.1^19,-1*K.1^9,-1*K.1^9,K.1^7,K.1^13,-1*K.1^7,K.1^11,K.1^17,-1*K.1^11,-1*K.1^17,-1*K.1,-1*K.1^3,-1*K.1,K.1^19,K.1^19,K.1^13,K.1^7,-1*K.1^17,K.1,-1*K.1^19,K.1,K.1^3,K.1^3,-1*K.1^9,-1*K.1^19,K.1^17,-1*K.1^3,-1*K.1^3,K.1^17,-1*K.1^11,-1*K.1^17,K.1^3,K.1^7,K.1^13,-1*K.1^7,K.1^19,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^11,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,1,1,1,K.1^5,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^16,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^12,K.1^8,K.1^16,-1*K.1^5,K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^4,K.1^8,K.1^12,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^16,K.1^16,K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^16,K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^4,K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^16,K.1^8,K.1^16,K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^12,K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^6,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^14,K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^14,K.1^6,-1*K.1^2,-1*K.1^14,K.1^14,K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,K.1^18,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,K.1^6,-1*K.1^18,K.1^2,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^2,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^3,-1*K.1^11,-1*K.1^13,K.1^7,K.1^3,K.1^9,K.1^7,-1*K.1^9,-1*K.1,-1*K.1^11,K.1^11,-1*K.1^7,-1*K.1^7,-1*K.1^13,-1*K.1^11,K.1^13,-1*K.1^9,K.1^7,K.1,-1*K.1^19,K.1^13,-1*K.1^17,-1*K.1^19,K.1,-1*K.1^19,-1*K.1^19,K.1^9,K.1^7,-1*K.1^9,K.1^13,-1*K.1^11,-1*K.1^13,K.1^7,-1*K.1^7,K.1^11,-1*K.1^11,-1*K.1,-1*K.1,K.1^7,K.1^9,-1*K.1^19,K.1,-1*K.1^19,-1*K.1^9,K.1^13,-1*K.1^13,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^11,-1*K.1^11,K.1^11,-1*K.1^7,-1*K.1^7,K.1^11,-1*K.1^11,K.1^13,-1*K.1^9,K.1^7,K.1^9,K.1^3,K.1^7,-1*K.1^13,-1*K.1^19,-1*K.1^17,-1*K.1^3,K.1^17,K.1^19,K.1^19,K.1^17,K.1^19,-1*K.1^9,K.1^13,-1*K.1^7,-1*K.1^13,-1*K.1^17,K.1^3,K.1^9,-1*K.1^3,K.1^17,K.1^17,-1*K.1^3,K.1,K.1^3,-1*K.1^17,-1*K.1^17,-1*K.1^19,K.1,K.1^7,K.1^3,K.1^9,K.1^19,-1*K.1,-1*K.1,K.1^19,K.1^17,-1*K.1^17,K.1^3,K.1^9,-1*K.1^3,-1*K.1^9,K.1^13,-1*K.1^7,K.1,K.1^11,K.1^11,K.1,-1*K.1^3,K.1^13,-1*K.1^9,K.1^11,K.1^3,K.1^7,-1*K.1^13,-1*K.1^11,-1*K.1^9,K.1^17,-1*K.1^3,K.1,K.1^11,K.1^11,-1*K.1^13,-1*K.1^7,K.1^13,-1*K.1^9,-1*K.1^3,K.1^9,K.1^3,K.1^19,K.1^17,K.1^19,-1*K.1,-1*K.1,-1*K.1^7,-1*K.1^13,K.1^3,-1*K.1^19,K.1,-1*K.1^19,-1*K.1^17,-1*K.1^17,K.1^11,K.1,-1*K.1^3,K.1^17,K.1^17,-1*K.1^3,K.1^9,K.1^3,-1*K.1^17,-1*K.1^13,-1*K.1^7,K.1^13,-1*K.1,K.1^19,K.1^17,K.1^19,K.1^19,K.1^9,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,1,1,1,-1*K.1^15,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^16,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^12,K.1^8,K.1^16,K.1^15,-1*K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^4,K.1^8,K.1^12,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^16,K.1^16,K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^16,K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^4,K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^16,K.1^8,K.1^16,K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,-1*K.1^12,K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^6,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^14,-1*K.1^18,K.1^6,K.1^14,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,-1*K.1^6,K.1^2,K.1^14,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^14,-1*K.1^6,K.1^2,K.1^14,-1*K.1^14,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^18,K.1^2,K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,K.1^18,-1*K.1^6,K.1^18,-1*K.1^2,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^6,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^6,K.1^2,K.1^18,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^6,-1*K.1^2,K.1^2,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^13,K.1,-1*K.1^3,K.1^17,K.1^13,-1*K.1^19,K.1^17,K.1^19,K.1^11,K.1,-1*K.1,-1*K.1^17,-1*K.1^17,-1*K.1^3,K.1,K.1^3,K.1^19,K.1^17,-1*K.1^11,K.1^9,K.1^3,-1*K.1^7,K.1^9,-1*K.1^11,K.1^9,K.1^9,-1*K.1^19,K.1^17,K.1^19,K.1^3,K.1,-1*K.1^3,K.1^17,-1*K.1^17,-1*K.1,K.1,K.1^11,K.1^11,K.1^17,-1*K.1^19,K.1^9,-1*K.1^11,K.1^9,K.1^19,K.1^3,-1*K.1^3,K.1,K.1^11,K.1^11,K.1,K.1,-1*K.1,-1*K.1^17,-1*K.1^17,-1*K.1,K.1,K.1^3,K.1^19,K.1^17,-1*K.1^19,K.1^13,K.1^17,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1^13,K.1^7,-1*K.1^9,-1*K.1^9,K.1^7,-1*K.1^9,K.1^19,K.1^3,-1*K.1^17,-1*K.1^3,-1*K.1^7,K.1^13,-1*K.1^19,-1*K.1^13,K.1^7,K.1^7,-1*K.1^13,-1*K.1^11,K.1^13,-1*K.1^7,-1*K.1^7,K.1^9,-1*K.1^11,K.1^17,K.1^13,-1*K.1^19,-1*K.1^9,K.1^11,K.1^11,-1*K.1^9,K.1^7,-1*K.1^7,K.1^13,-1*K.1^19,-1*K.1^13,K.1^19,K.1^3,-1*K.1^17,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^11,-1*K.1^13,K.1^3,K.1^19,-1*K.1,K.1^13,K.1^17,-1*K.1^3,K.1,K.1^19,K.1^7,-1*K.1^13,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^17,K.1^3,K.1^19,-1*K.1^13,-1*K.1^19,K.1^13,-1*K.1^9,K.1^7,-1*K.1^9,K.1^11,K.1^11,-1*K.1^17,-1*K.1^3,K.1^13,K.1^9,-1*K.1^11,K.1^9,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1^11,-1*K.1^13,K.1^7,K.1^7,-1*K.1^13,-1*K.1^19,K.1^13,-1*K.1^7,-1*K.1^3,-1*K.1^17,K.1^3,K.1^11,-1*K.1^9,K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^19,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,1,1,1,K.1^5,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,K.1^16,K.1^16,K.1^16,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^5,K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^16,-1*K.1^12,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^8,K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^8,K.1^12,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,K.1^16,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,-1*K.1^16,-1*K.1^12,K.1^12,K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^16,-1*K.1^14,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^18,-1*K.1^14,K.1^6,K.1^14,-1*K.1^18,-1*K.1^6,K.1^6,K.1^18,-1*K.1^18,K.1^14,K.1^14,K.1^18,K.1^18,K.1^18,K.1^2,-1*K.1^18,-1*K.1^18,K.1^14,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,K.1^14,-1*K.1^2,K.1^18,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^14,K.1^18,-1*K.1^18,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^7,-1*K.1^19,K.1^17,-1*K.1^3,-1*K.1^7,K.1,-1*K.1^3,-1*K.1,-1*K.1^9,-1*K.1^19,K.1^19,K.1^3,K.1^3,K.1^17,-1*K.1^19,-1*K.1^17,-1*K.1,-1*K.1^3,K.1^9,-1*K.1^11,-1*K.1^17,K.1^13,-1*K.1^11,K.1^9,-1*K.1^11,-1*K.1^11,K.1,-1*K.1^3,-1*K.1,-1*K.1^17,-1*K.1^19,K.1^17,-1*K.1^3,K.1^3,K.1^19,-1*K.1^19,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1,-1*K.1^11,K.1^9,-1*K.1^11,-1*K.1,-1*K.1^17,K.1^17,-1*K.1^19,-1*K.1^9,-1*K.1^9,-1*K.1^19,-1*K.1^19,K.1^19,K.1^3,K.1^3,K.1^19,-1*K.1^19,-1*K.1^17,-1*K.1,-1*K.1^3,K.1,-1*K.1^7,-1*K.1^3,K.1^17,-1*K.1^11,K.1^13,K.1^7,-1*K.1^13,K.1^11,K.1^11,-1*K.1^13,K.1^11,-1*K.1,-1*K.1^17,K.1^3,K.1^17,K.1^13,-1*K.1^7,K.1,K.1^7,-1*K.1^13,-1*K.1^13,K.1^7,K.1^9,-1*K.1^7,K.1^13,K.1^13,-1*K.1^11,K.1^9,-1*K.1^3,-1*K.1^7,K.1,K.1^11,-1*K.1^9,-1*K.1^9,K.1^11,-1*K.1^13,K.1^13,-1*K.1^7,K.1,K.1^7,-1*K.1,-1*K.1^17,K.1^3,K.1^9,K.1^19,K.1^19,K.1^9,K.1^7,-1*K.1^17,-1*K.1,K.1^19,-1*K.1^7,-1*K.1^3,K.1^17,-1*K.1^19,-1*K.1,-1*K.1^13,K.1^7,K.1^9,K.1^19,K.1^19,K.1^17,K.1^3,-1*K.1^17,-1*K.1,K.1^7,K.1,-1*K.1^7,K.1^11,-1*K.1^13,K.1^11,-1*K.1^9,-1*K.1^9,K.1^3,K.1^17,-1*K.1^7,-1*K.1^11,K.1^9,-1*K.1^11,K.1^13,K.1^13,K.1^19,K.1^9,K.1^7,-1*K.1^13,-1*K.1^13,K.1^7,K.1,-1*K.1^7,K.1^13,K.1^17,K.1^3,-1*K.1^17,-1*K.1^9,K.1^11,-1*K.1^13,K.1^11,K.1^11,K.1,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,1,1,1,-1*K.1^15,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^12,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^12,K.1^15,-1*K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5,-1*K.1^15,K.1^8,K.1^16,K.1^4,-1*K.1^8,K.1^16,K.1^8,K.1^8,K.1^16,-1*K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^16,K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^16,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^12,K.1^16,K.1^16,K.1^12,-1*K.1^8,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^2,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^18,K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^14,-1*K.1^2,K.1^18,K.1^2,-1*K.1^14,-1*K.1^18,K.1^18,K.1^14,-1*K.1^14,K.1^2,K.1^2,K.1^14,K.1^14,K.1^14,K.1^6,-1*K.1^14,-1*K.1^14,K.1^2,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,K.1^2,-1*K.1^6,K.1^14,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^14,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,K.1^14,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1,K.1^17,-1*K.1^11,K.1^9,-1*K.1,-1*K.1^3,K.1^9,K.1^3,-1*K.1^7,K.1^17,-1*K.1^17,-1*K.1^9,-1*K.1^9,-1*K.1^11,K.1^17,K.1^11,K.1^3,K.1^9,K.1^7,-1*K.1^13,K.1^11,K.1^19,-1*K.1^13,K.1^7,-1*K.1^13,-1*K.1^13,-1*K.1^3,K.1^9,K.1^3,K.1^11,K.1^17,-1*K.1^11,K.1^9,-1*K.1^9,-1*K.1^17,K.1^17,-1*K.1^7,-1*K.1^7,K.1^9,-1*K.1^3,-1*K.1^13,K.1^7,-1*K.1^13,K.1^3,K.1^11,-1*K.1^11,K.1^17,-1*K.1^7,-1*K.1^7,K.1^17,K.1^17,-1*K.1^17,-1*K.1^9,-1*K.1^9,-1*K.1^17,K.1^17,K.1^11,K.1^3,K.1^9,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^11,-1*K.1^13,K.1^19,K.1,-1*K.1^19,K.1^13,K.1^13,-1*K.1^19,K.1^13,K.1^3,K.1^11,-1*K.1^9,-1*K.1^11,K.1^19,-1*K.1,-1*K.1^3,K.1,-1*K.1^19,-1*K.1^19,K.1,K.1^7,-1*K.1,K.1^19,K.1^19,-1*K.1^13,K.1^7,K.1^9,-1*K.1,-1*K.1^3,K.1^13,-1*K.1^7,-1*K.1^7,K.1^13,-1*K.1^19,K.1^19,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^11,-1*K.1^9,K.1^7,-1*K.1^17,-1*K.1^17,K.1^7,K.1,K.1^11,K.1^3,-1*K.1^17,-1*K.1,K.1^9,-1*K.1^11,K.1^17,K.1^3,-1*K.1^19,K.1,K.1^7,-1*K.1^17,-1*K.1^17,-1*K.1^11,-1*K.1^9,K.1^11,K.1^3,K.1,-1*K.1^3,-1*K.1,K.1^13,-1*K.1^19,K.1^13,-1*K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^11,-1*K.1,-1*K.1^13,K.1^7,-1*K.1^13,K.1^19,K.1^19,-1*K.1^17,K.1^7,K.1,-1*K.1^19,-1*K.1^19,K.1,-1*K.1^3,-1*K.1,K.1^19,-1*K.1^11,-1*K.1^9,K.1^11,-1*K.1^7,K.1^13,-1*K.1^19,K.1^13,K.1^13,-1*K.1^3,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,1,1,1,K.1^5,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^8,K.1^16,-1*K.1^4,K.1^8,-1*K.1^5,K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,K.1^12,K.1^16,K.1^4,-1*K.1^16,K.1^12,K.1^16,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^8,K.1^16,K.1^12,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,-1*K.1^12,K.1^16,K.1^16,K.1^8,K.1^8,-1*K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^16,-1*K.1^16,K.1^8,K.1^8,K.1^16,K.1^16,-1*K.1^12,K.1^18,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^2,-1*K.1^14,K.1^18,K.1^2,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,-1*K.1^18,K.1^6,K.1^2,K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^2,-1*K.1^18,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^14,K.1^6,K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,K.1^14,-1*K.1^18,K.1^14,-1*K.1^6,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^18,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^18,K.1^6,K.1^14,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^18,-1*K.1^6,K.1^6,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^19,-1*K.1^3,K.1^9,-1*K.1^11,K.1^19,K.1^17,-1*K.1^11,-1*K.1^17,K.1^13,-1*K.1^3,K.1^3,K.1^11,K.1^11,K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^17,-1*K.1^11,-1*K.1^13,K.1^7,-1*K.1^9,-1*K.1,K.1^7,-1*K.1^13,K.1^7,K.1^7,K.1^17,-1*K.1^11,-1*K.1^17,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^11,K.1^11,K.1^3,-1*K.1^3,K.1^13,K.1^13,-1*K.1^11,K.1^17,K.1^7,-1*K.1^13,K.1^7,-1*K.1^17,-1*K.1^9,K.1^9,-1*K.1^3,K.1^13,K.1^13,-1*K.1^3,-1*K.1^3,K.1^3,K.1^11,K.1^11,K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^17,-1*K.1^11,K.1^17,K.1^19,-1*K.1^11,K.1^9,K.1^7,-1*K.1,-1*K.1^19,K.1,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^7,-1*K.1^17,-1*K.1^9,K.1^11,K.1^9,-1*K.1,K.1^19,K.1^17,-1*K.1^19,K.1,K.1,-1*K.1^19,-1*K.1^13,K.1^19,-1*K.1,-1*K.1,K.1^7,-1*K.1^13,-1*K.1^11,K.1^19,K.1^17,-1*K.1^7,K.1^13,K.1^13,-1*K.1^7,K.1,-1*K.1,K.1^19,K.1^17,-1*K.1^19,-1*K.1^17,-1*K.1^9,K.1^11,-1*K.1^13,K.1^3,K.1^3,-1*K.1^13,-1*K.1^19,-1*K.1^9,-1*K.1^17,K.1^3,K.1^19,-1*K.1^11,K.1^9,-1*K.1^3,-1*K.1^17,K.1,-1*K.1^19,-1*K.1^13,K.1^3,K.1^3,K.1^9,K.1^11,-1*K.1^9,-1*K.1^17,-1*K.1^19,K.1^17,K.1^19,-1*K.1^7,K.1,-1*K.1^7,K.1^13,K.1^13,K.1^11,K.1^9,K.1^19,K.1^7,-1*K.1^13,K.1^7,-1*K.1,-1*K.1,K.1^3,-1*K.1^13,-1*K.1^19,K.1,K.1,-1*K.1^19,K.1^17,K.1^19,-1*K.1,K.1^9,K.1^11,-1*K.1^9,K.1^13,-1*K.1^7,K.1,-1*K.1^7,-1*K.1^7,K.1^17,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,1,1,1,1,-1*K.1^15,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^8,K.1^16,-1*K.1^4,K.1^8,K.1^15,-1*K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,K.1^12,K.1^16,K.1^4,-1*K.1^16,K.1^12,K.1^16,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^8,K.1^16,K.1^12,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^4,-1*K.1^12,K.1^16,K.1^16,K.1^8,K.1^8,-1*K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^12,-1*K.1^4,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^16,-1*K.1^16,K.1^8,K.1^8,K.1^16,K.1^16,-1*K.1^12,-1*K.1^18,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^2,K.1^18,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,K.1^18,K.1^18,K.1^6,K.1^6,K.1^6,K.1^14,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^14,K.1^6,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^18,K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,K.1^9,-1*K.1^13,-1*K.1^19,K.1,-1*K.1^9,K.1^7,K.1,-1*K.1^7,K.1^3,-1*K.1^13,K.1^13,-1*K.1,-1*K.1,-1*K.1^19,-1*K.1^13,K.1^19,-1*K.1^7,K.1,-1*K.1^3,K.1^17,K.1^19,K.1^11,K.1^17,-1*K.1^3,K.1^17,K.1^17,K.1^7,K.1,-1*K.1^7,K.1^19,-1*K.1^13,-1*K.1^19,K.1,-1*K.1,K.1^13,-1*K.1^13,K.1^3,K.1^3,K.1,K.1^7,K.1^17,-1*K.1^3,K.1^17,-1*K.1^7,K.1^19,-1*K.1^19,-1*K.1^13,K.1^3,K.1^3,-1*K.1^13,-1*K.1^13,K.1^13,-1*K.1,-1*K.1,K.1^13,-1*K.1^13,K.1^19,-1*K.1^7,K.1,K.1^7,-1*K.1^9,K.1,-1*K.1^19,K.1^17,K.1^11,K.1^9,-1*K.1^11,-1*K.1^17,-1*K.1^17,-1*K.1^11,-1*K.1^17,-1*K.1^7,K.1^19,-1*K.1,-1*K.1^19,K.1^11,-1*K.1^9,K.1^7,K.1^9,-1*K.1^11,-1*K.1^11,K.1^9,-1*K.1^3,-1*K.1^9,K.1^11,K.1^11,K.1^17,-1*K.1^3,K.1,-1*K.1^9,K.1^7,-1*K.1^17,K.1^3,K.1^3,-1*K.1^17,-1*K.1^11,K.1^11,-1*K.1^9,K.1^7,K.1^9,-1*K.1^7,K.1^19,-1*K.1,-1*K.1^3,K.1^13,K.1^13,-1*K.1^3,K.1^9,K.1^19,-1*K.1^7,K.1^13,-1*K.1^9,K.1,-1*K.1^19,-1*K.1^13,-1*K.1^7,-1*K.1^11,K.1^9,-1*K.1^3,K.1^13,K.1^13,-1*K.1^19,-1*K.1,K.1^19,-1*K.1^7,K.1^9,K.1^7,-1*K.1^9,-1*K.1^17,-1*K.1^11,-1*K.1^17,K.1^3,K.1^3,-1*K.1,-1*K.1^19,-1*K.1^9,K.1^17,-1*K.1^3,K.1^17,K.1^11,K.1^11,K.1^13,-1*K.1^3,K.1^9,-1*K.1^11,-1*K.1^11,K.1^9,K.1^7,-1*K.1^9,K.1^11,-1*K.1^19,-1*K.1,K.1^19,K.1^3,-1*K.1^17,-1*K.1^11,-1*K.1^17,-1*K.1^17,K.1^7,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,1,1,1,1,K.1^5,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^12,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^12,-1*K.1^5,K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^8,K.1^16,K.1^4,-1*K.1^8,K.1^16,K.1^8,K.1^8,K.1^16,-1*K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^16,K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^16,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^12,K.1^16,K.1^16,K.1^12,-1*K.1^8,K.1^16,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^8,K.1^2,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,K.1^2,K.1^18,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,-1*K.1^2,K.1^14,K.1^18,K.1^14,-1*K.1^2,K.1^14,K.1^2,-1*K.1^18,-1*K.1^2,K.1^14,K.1^18,-1*K.1^18,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^6,K.1^14,K.1^14,-1*K.1^2,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,K.1^6,-1*K.1^2,K.1^6,-1*K.1^14,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,K.1^14,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^14,K.1^6,-1*K.1^14,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^2,-1*K.1^14,K.1^14,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^11,K.1^7,K.1,-1*K.1^19,K.1^11,-1*K.1^13,-1*K.1^19,K.1^13,-1*K.1^17,K.1^7,-1*K.1^7,K.1^19,K.1^19,K.1,K.1^7,-1*K.1,K.1^13,-1*K.1^19,K.1^17,-1*K.1^3,-1*K.1,-1*K.1^9,-1*K.1^3,K.1^17,-1*K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1^19,K.1^13,-1*K.1,K.1^7,K.1,-1*K.1^19,K.1^19,-1*K.1^7,K.1^7,-1*K.1^17,-1*K.1^17,-1*K.1^19,-1*K.1^13,-1*K.1^3,K.1^17,-1*K.1^3,K.1^13,-1*K.1,K.1,K.1^7,-1*K.1^17,-1*K.1^17,K.1^7,K.1^7,-1*K.1^7,K.1^19,K.1^19,-1*K.1^7,K.1^7,-1*K.1,K.1^13,-1*K.1^19,-1*K.1^13,K.1^11,-1*K.1^19,K.1,-1*K.1^3,-1*K.1^9,-1*K.1^11,K.1^9,K.1^3,K.1^3,K.1^9,K.1^3,K.1^13,-1*K.1,K.1^19,K.1,-1*K.1^9,K.1^11,-1*K.1^13,-1*K.1^11,K.1^9,K.1^9,-1*K.1^11,K.1^17,K.1^11,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1^17,-1*K.1^19,K.1^11,-1*K.1^13,K.1^3,-1*K.1^17,-1*K.1^17,K.1^3,K.1^9,-1*K.1^9,K.1^11,-1*K.1^13,-1*K.1^11,K.1^13,-1*K.1,K.1^19,K.1^17,-1*K.1^7,-1*K.1^7,K.1^17,-1*K.1^11,-1*K.1,K.1^13,-1*K.1^7,K.1^11,-1*K.1^19,K.1,K.1^7,K.1^13,K.1^9,-1*K.1^11,K.1^17,-1*K.1^7,-1*K.1^7,K.1,K.1^19,-1*K.1,K.1^13,-1*K.1^11,-1*K.1^13,K.1^11,K.1^3,K.1^9,K.1^3,-1*K.1^17,-1*K.1^17,K.1^19,K.1,K.1^11,-1*K.1^3,K.1^17,-1*K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1^17,-1*K.1^11,K.1^9,K.1^9,-1*K.1^11,-1*K.1^13,K.1^11,-1*K.1^9,K.1,K.1^19,-1*K.1,-1*K.1^17,K.1^3,K.1^9,K.1^3,K.1^3,-1*K.1^13,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,1,1,1,K.1^15,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,K.1^16,K.1^16,K.1^16,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^4,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^16,-1*K.1^12,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^8,K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^8,K.1^12,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,K.1^16,K.1^12,-1*K.1^12,-1*K.1^12,K.1^16,K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,K.1^14,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,K.1^14,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,-1*K.1^14,K.1^18,K.1^6,K.1^18,-1*K.1^14,K.1^18,K.1^14,-1*K.1^6,-1*K.1^14,K.1^18,K.1^6,-1*K.1^6,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^2,K.1^18,K.1^18,-1*K.1^14,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,K.1^2,-1*K.1^14,K.1^2,-1*K.1^18,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^14,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^14,K.1^18,-1*K.1^18,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^17,K.1^9,-1*K.1^7,K.1^13,K.1^17,K.1^11,-1*K.1^13,-1*K.1^11,-1*K.1^19,-1*K.1^9,K.1^9,-1*K.1^13,-1*K.1^13,-1*K.1^7,K.1^9,K.1^7,-1*K.1^11,-1*K.1^13,K.1^19,-1*K.1,K.1^7,-1*K.1^3,K.1,K.1^19,-1*K.1,-1*K.1,K.1^11,-1*K.1^13,-1*K.1^11,K.1^7,K.1^9,-1*K.1^7,K.1^13,-1*K.1^13,K.1^9,-1*K.1^9,-1*K.1^19,-1*K.1^19,-1*K.1^13,K.1^11,-1*K.1,K.1^19,K.1,-1*K.1^11,K.1^7,K.1^7,-1*K.1^9,-1*K.1^19,-1*K.1^19,-1*K.1^9,K.1^9,K.1^9,-1*K.1^13,-1*K.1^13,K.1^9,-1*K.1^9,K.1^7,-1*K.1^11,-1*K.1^13,K.1^11,K.1^17,K.1^13,-1*K.1^7,K.1,-1*K.1^3,K.1^17,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^11,-1*K.1^7,K.1^13,K.1^7,K.1^3,-1*K.1^17,-1*K.1^11,-1*K.1^17,K.1^3,K.1^3,-1*K.1^17,-1*K.1^19,-1*K.1^17,K.1^3,-1*K.1^3,K.1,K.1^19,K.1^13,K.1^17,K.1^11,-1*K.1,K.1^19,K.1^19,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^17,-1*K.1^11,K.1^17,K.1^11,-1*K.1^7,K.1^13,-1*K.1^19,-1*K.1^9,-1*K.1^9,-1*K.1^19,-1*K.1^17,-1*K.1^7,K.1^11,K.1^9,K.1^17,K.1^13,-1*K.1^7,K.1^9,K.1^11,K.1^3,-1*K.1^17,-1*K.1^19,-1*K.1^9,-1*K.1^9,K.1^7,K.1^13,-1*K.1^7,K.1^11,K.1^17,-1*K.1^11,-1*K.1^17,K.1,-1*K.1^3,-1*K.1,K.1^19,K.1^19,K.1^13,K.1^7,K.1^17,-1*K.1,K.1^19,K.1,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^19,-1*K.1^17,K.1^3,K.1^3,K.1^17,-1*K.1^11,-1*K.1^17,K.1^3,K.1^7,K.1^13,-1*K.1^7,K.1^19,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^11,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,1,1,1,-1*K.1^5,K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^16,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^12,K.1^8,K.1^16,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^4,K.1^8,K.1^12,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^16,K.1^16,K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^16,K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^12,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^12,-1*K.1^16,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,-1*K.1^8,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,-1*K.1^6,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^14,K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^14,K.1^6,-1*K.1^2,-1*K.1^14,K.1^14,K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,K.1^18,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,K.1^6,-1*K.1^18,K.1^2,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^6,K.1^2,K.1^18,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^6,-1*K.1^2,K.1^2,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^3,-1*K.1^11,K.1^13,-1*K.1^7,-1*K.1^3,-1*K.1^9,K.1^7,K.1^9,K.1,K.1^11,-1*K.1^11,K.1^7,K.1^7,K.1^13,-1*K.1^11,-1*K.1^13,K.1^9,K.1^7,-1*K.1,K.1^19,-1*K.1^13,K.1^17,-1*K.1^19,-1*K.1,K.1^19,K.1^19,-1*K.1^9,K.1^7,K.1^9,-1*K.1^13,-1*K.1^11,K.1^13,-1*K.1^7,K.1^7,-1*K.1^11,K.1^11,K.1,K.1,K.1^7,-1*K.1^9,K.1^19,-1*K.1,-1*K.1^19,K.1^9,-1*K.1^13,-1*K.1^13,K.1^11,K.1,K.1,K.1^11,-1*K.1^11,-1*K.1^11,K.1^7,K.1^7,-1*K.1^11,K.1^11,-1*K.1^13,K.1^9,K.1^7,-1*K.1^9,-1*K.1^3,-1*K.1^7,K.1^13,-1*K.1^19,K.1^17,-1*K.1^3,K.1^17,-1*K.1^19,-1*K.1^19,K.1^17,K.1^19,-1*K.1^9,K.1^13,-1*K.1^7,-1*K.1^13,-1*K.1^17,K.1^3,K.1^9,K.1^3,-1*K.1^17,-1*K.1^17,K.1^3,K.1,K.1^3,-1*K.1^17,K.1^17,-1*K.1^19,-1*K.1,-1*K.1^7,-1*K.1^3,-1*K.1^9,K.1^19,-1*K.1,-1*K.1,K.1^19,K.1^17,-1*K.1^17,K.1^3,K.1^9,-1*K.1^3,-1*K.1^9,K.1^13,-1*K.1^7,K.1,K.1^11,K.1^11,K.1,K.1^3,K.1^13,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^7,K.1^13,-1*K.1^11,-1*K.1^9,-1*K.1^17,K.1^3,K.1,K.1^11,K.1^11,-1*K.1^13,-1*K.1^7,K.1^13,-1*K.1^9,-1*K.1^3,K.1^9,K.1^3,-1*K.1^19,K.1^17,K.1^19,-1*K.1,-1*K.1,-1*K.1^7,-1*K.1^13,-1*K.1^3,K.1^19,-1*K.1,-1*K.1^19,K.1^17,-1*K.1^17,K.1^11,K.1,K.1^3,-1*K.1^17,-1*K.1^17,-1*K.1^3,K.1^9,K.1^3,-1*K.1^17,-1*K.1^13,-1*K.1^7,K.1^13,-1*K.1,K.1^19,K.1^17,-1*K.1^19,-1*K.1^19,K.1^9,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,1,1,1,K.1^15,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^16,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^12,K.1^8,K.1^16,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,-1*K.1^4,K.1^8,K.1^12,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^16,K.1^16,K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^16,K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^12,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^12,-1*K.1^16,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,-1*K.1^8,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,K.1^6,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^14,-1*K.1^18,K.1^6,K.1^14,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,-1*K.1^6,K.1^2,K.1^14,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^14,-1*K.1^6,K.1^2,K.1^14,-1*K.1^14,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^18,K.1^2,K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,K.1^18,-1*K.1^6,K.1^18,-1*K.1^2,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^6,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^13,K.1,K.1^3,-1*K.1^17,-1*K.1^13,K.1^19,K.1^17,-1*K.1^19,-1*K.1^11,-1*K.1,K.1,K.1^17,K.1^17,K.1^3,K.1,-1*K.1^3,-1*K.1^19,K.1^17,K.1^11,-1*K.1^9,-1*K.1^3,K.1^7,K.1^9,K.1^11,-1*K.1^9,-1*K.1^9,K.1^19,K.1^17,-1*K.1^19,-1*K.1^3,K.1,K.1^3,-1*K.1^17,K.1^17,K.1,-1*K.1,-1*K.1^11,-1*K.1^11,K.1^17,K.1^19,-1*K.1^9,K.1^11,K.1^9,-1*K.1^19,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^11,-1*K.1^11,-1*K.1,K.1,K.1,K.1^17,K.1^17,K.1,-1*K.1,-1*K.1^3,-1*K.1^19,K.1^17,K.1^19,-1*K.1^13,-1*K.1^17,K.1^3,K.1^9,K.1^7,-1*K.1^13,K.1^7,K.1^9,K.1^9,K.1^7,-1*K.1^9,K.1^19,K.1^3,-1*K.1^17,-1*K.1^3,-1*K.1^7,K.1^13,-1*K.1^19,K.1^13,-1*K.1^7,-1*K.1^7,K.1^13,-1*K.1^11,K.1^13,-1*K.1^7,K.1^7,K.1^9,K.1^11,-1*K.1^17,-1*K.1^13,K.1^19,-1*K.1^9,K.1^11,K.1^11,-1*K.1^9,K.1^7,-1*K.1^7,K.1^13,-1*K.1^19,-1*K.1^13,K.1^19,K.1^3,-1*K.1^17,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^11,K.1^13,K.1^3,K.1^19,K.1,-1*K.1^13,-1*K.1^17,K.1^3,K.1,K.1^19,-1*K.1^7,K.1^13,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^17,K.1^3,K.1^19,-1*K.1^13,-1*K.1^19,K.1^13,K.1^9,K.1^7,-1*K.1^9,K.1^11,K.1^11,-1*K.1^17,-1*K.1^3,-1*K.1^13,-1*K.1^9,K.1^11,K.1^9,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^11,K.1^13,-1*K.1^7,-1*K.1^7,-1*K.1^13,-1*K.1^19,K.1^13,-1*K.1^7,-1*K.1^3,-1*K.1^17,K.1^3,K.1^11,-1*K.1^9,K.1^7,K.1^9,K.1^9,-1*K.1^19,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,1,1,1,-1*K.1^5,K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,K.1^16,K.1^16,K.1^16,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,K.1^16,-1*K.1^12,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^8,K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^8,K.1^12,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,K.1^16,K.1^12,-1*K.1^12,-1*K.1^12,K.1^16,K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^14,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^18,-1*K.1^14,K.1^6,K.1^14,-1*K.1^18,-1*K.1^6,K.1^6,K.1^18,-1*K.1^18,K.1^14,K.1^14,K.1^18,K.1^18,K.1^18,K.1^2,-1*K.1^18,-1*K.1^18,K.1^14,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,K.1^14,-1*K.1^2,K.1^18,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^14,K.1^18,K.1^2,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^14,-1*K.1^18,K.1^18,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^7,-1*K.1^19,-1*K.1^17,K.1^3,K.1^7,-1*K.1,-1*K.1^3,K.1,K.1^9,K.1^19,-1*K.1^19,-1*K.1^3,-1*K.1^3,-1*K.1^17,-1*K.1^19,K.1^17,K.1,-1*K.1^3,-1*K.1^9,K.1^11,K.1^17,-1*K.1^13,-1*K.1^11,-1*K.1^9,K.1^11,K.1^11,-1*K.1,-1*K.1^3,K.1,K.1^17,-1*K.1^19,-1*K.1^17,K.1^3,-1*K.1^3,-1*K.1^19,K.1^19,K.1^9,K.1^9,-1*K.1^3,-1*K.1,K.1^11,-1*K.1^9,-1*K.1^11,K.1,K.1^17,K.1^17,K.1^19,K.1^9,K.1^9,K.1^19,-1*K.1^19,-1*K.1^19,-1*K.1^3,-1*K.1^3,-1*K.1^19,K.1^19,K.1^17,K.1,-1*K.1^3,-1*K.1,K.1^7,K.1^3,-1*K.1^17,-1*K.1^11,-1*K.1^13,K.1^7,-1*K.1^13,-1*K.1^11,-1*K.1^11,-1*K.1^13,K.1^11,-1*K.1,-1*K.1^17,K.1^3,K.1^17,K.1^13,-1*K.1^7,K.1,-1*K.1^7,K.1^13,K.1^13,-1*K.1^7,K.1^9,-1*K.1^7,K.1^13,-1*K.1^13,-1*K.1^11,-1*K.1^9,K.1^3,K.1^7,-1*K.1,K.1^11,-1*K.1^9,-1*K.1^9,K.1^11,-1*K.1^13,K.1^13,-1*K.1^7,K.1,K.1^7,-1*K.1,-1*K.1^17,K.1^3,K.1^9,K.1^19,K.1^19,K.1^9,-1*K.1^7,-1*K.1^17,-1*K.1,-1*K.1^19,K.1^7,K.1^3,-1*K.1^17,-1*K.1^19,-1*K.1,K.1^13,-1*K.1^7,K.1^9,K.1^19,K.1^19,K.1^17,K.1^3,-1*K.1^17,-1*K.1,K.1^7,K.1,-1*K.1^7,-1*K.1^11,-1*K.1^13,K.1^11,-1*K.1^9,-1*K.1^9,K.1^3,K.1^17,K.1^7,K.1^11,-1*K.1^9,-1*K.1^11,-1*K.1^13,K.1^13,K.1^19,K.1^9,-1*K.1^7,K.1^13,K.1^13,K.1^7,K.1,-1*K.1^7,K.1^13,K.1^17,K.1^3,-1*K.1^17,-1*K.1^9,K.1^11,-1*K.1^13,-1*K.1^11,-1*K.1^11,K.1,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,1,1,1,K.1^15,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^12,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^12,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^8,K.1^16,K.1^4,-1*K.1^8,K.1^16,K.1^8,K.1^8,K.1^16,-1*K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^16,K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^12,K.1^8,K.1^8,K.1^16,K.1^16,-1*K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,-1*K.1^2,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^18,K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^14,-1*K.1^2,K.1^18,K.1^2,-1*K.1^14,-1*K.1^18,K.1^18,K.1^14,-1*K.1^14,K.1^2,K.1^2,K.1^14,K.1^14,K.1^14,K.1^6,-1*K.1^14,-1*K.1^14,K.1^2,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,K.1^2,-1*K.1^6,K.1^14,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,K.1^14,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^14,K.1^6,-1*K.1^14,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^2,-1*K.1^14,K.1^14,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1,K.1^17,K.1^11,-1*K.1^9,K.1,K.1^3,K.1^9,-1*K.1^3,K.1^7,-1*K.1^17,K.1^17,K.1^9,K.1^9,K.1^11,K.1^17,-1*K.1^11,-1*K.1^3,K.1^9,-1*K.1^7,K.1^13,-1*K.1^11,-1*K.1^19,-1*K.1^13,-1*K.1^7,K.1^13,K.1^13,K.1^3,K.1^9,-1*K.1^3,-1*K.1^11,K.1^17,K.1^11,-1*K.1^9,K.1^9,K.1^17,-1*K.1^17,K.1^7,K.1^7,K.1^9,K.1^3,K.1^13,-1*K.1^7,-1*K.1^13,-1*K.1^3,-1*K.1^11,-1*K.1^11,-1*K.1^17,K.1^7,K.1^7,-1*K.1^17,K.1^17,K.1^17,K.1^9,K.1^9,K.1^17,-1*K.1^17,-1*K.1^11,-1*K.1^3,K.1^9,K.1^3,K.1,-1*K.1^9,K.1^11,-1*K.1^13,-1*K.1^19,K.1,-1*K.1^19,-1*K.1^13,-1*K.1^13,-1*K.1^19,K.1^13,K.1^3,K.1^11,-1*K.1^9,-1*K.1^11,K.1^19,-1*K.1,-1*K.1^3,-1*K.1,K.1^19,K.1^19,-1*K.1,K.1^7,-1*K.1,K.1^19,-1*K.1^19,-1*K.1^13,-1*K.1^7,-1*K.1^9,K.1,K.1^3,K.1^13,-1*K.1^7,-1*K.1^7,K.1^13,-1*K.1^19,K.1^19,-1*K.1,-1*K.1^3,K.1,K.1^3,K.1^11,-1*K.1^9,K.1^7,-1*K.1^17,-1*K.1^17,K.1^7,-1*K.1,K.1^11,K.1^3,K.1^17,K.1,-1*K.1^9,K.1^11,K.1^17,K.1^3,K.1^19,-1*K.1,K.1^7,-1*K.1^17,-1*K.1^17,-1*K.1^11,-1*K.1^9,K.1^11,K.1^3,K.1,-1*K.1^3,-1*K.1,-1*K.1^13,-1*K.1^19,K.1^13,-1*K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^11,K.1,K.1^13,-1*K.1^7,-1*K.1^13,-1*K.1^19,K.1^19,-1*K.1^17,K.1^7,-1*K.1,K.1^19,K.1^19,K.1,-1*K.1^3,-1*K.1,K.1^19,-1*K.1^11,-1*K.1^9,K.1^11,-1*K.1^7,K.1^13,-1*K.1^19,-1*K.1^13,-1*K.1^13,-1*K.1^3,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,1,1,1,-1*K.1^5,K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^8,K.1^16,-1*K.1^4,K.1^8,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,K.1^12,K.1^16,K.1^4,-1*K.1^16,K.1^12,K.1^16,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^8,K.1^16,K.1^12,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^16,K.1^12,K.1^12,K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,K.1^18,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^2,-1*K.1^14,K.1^18,K.1^2,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,-1*K.1^18,K.1^6,K.1^2,K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^2,-1*K.1^18,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^14,K.1^6,K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,K.1^14,-1*K.1^18,K.1^14,-1*K.1^6,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^18,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^18,K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^19,-1*K.1^3,-1*K.1^9,K.1^11,-1*K.1^19,-1*K.1^17,-1*K.1^11,K.1^17,-1*K.1^13,K.1^3,-1*K.1^3,-1*K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^3,K.1^9,K.1^17,-1*K.1^11,K.1^13,-1*K.1^7,K.1^9,K.1,K.1^7,K.1^13,-1*K.1^7,-1*K.1^7,-1*K.1^17,-1*K.1^11,K.1^17,K.1^9,-1*K.1^3,-1*K.1^9,K.1^11,-1*K.1^11,-1*K.1^3,K.1^3,-1*K.1^13,-1*K.1^13,-1*K.1^11,-1*K.1^17,-1*K.1^7,K.1^13,K.1^7,K.1^17,K.1^9,K.1^9,K.1^3,-1*K.1^13,-1*K.1^13,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^11,-1*K.1^11,-1*K.1^3,K.1^3,K.1^9,K.1^17,-1*K.1^11,-1*K.1^17,-1*K.1^19,K.1^11,-1*K.1^9,K.1^7,K.1,-1*K.1^19,K.1,K.1^7,K.1^7,K.1,-1*K.1^7,-1*K.1^17,-1*K.1^9,K.1^11,K.1^9,-1*K.1,K.1^19,K.1^17,K.1^19,-1*K.1,-1*K.1,K.1^19,-1*K.1^13,K.1^19,-1*K.1,K.1,K.1^7,K.1^13,K.1^11,-1*K.1^19,-1*K.1^17,-1*K.1^7,K.1^13,K.1^13,-1*K.1^7,K.1,-1*K.1,K.1^19,K.1^17,-1*K.1^19,-1*K.1^17,-1*K.1^9,K.1^11,-1*K.1^13,K.1^3,K.1^3,-1*K.1^13,K.1^19,-1*K.1^9,-1*K.1^17,-1*K.1^3,-1*K.1^19,K.1^11,-1*K.1^9,-1*K.1^3,-1*K.1^17,-1*K.1,K.1^19,-1*K.1^13,K.1^3,K.1^3,K.1^9,K.1^11,-1*K.1^9,-1*K.1^17,-1*K.1^19,K.1^17,K.1^19,K.1^7,K.1,-1*K.1^7,K.1^13,K.1^13,K.1^11,K.1^9,-1*K.1^19,-1*K.1^7,K.1^13,K.1^7,K.1,-1*K.1,K.1^3,-1*K.1^13,K.1^19,-1*K.1,-1*K.1,-1*K.1^19,K.1^17,K.1^19,-1*K.1,K.1^9,K.1^11,-1*K.1^9,K.1^13,-1*K.1^7,K.1,K.1^7,K.1^7,K.1^17,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,1,1,1,K.1^15,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^15,K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^8,K.1^16,-1*K.1^4,K.1^8,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,K.1^12,K.1^16,K.1^4,-1*K.1^16,K.1^12,K.1^16,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^8,K.1^16,K.1^12,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^16,K.1^12,K.1^12,K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,-1*K.1^18,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^2,K.1^18,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,K.1^18,K.1^18,K.1^6,K.1^6,K.1^6,K.1^14,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^14,K.1^6,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^18,K.1^6,K.1^14,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^18,-1*K.1^6,K.1^6,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^9,-1*K.1^13,K.1^19,-1*K.1,K.1^9,-1*K.1^7,K.1,K.1^7,-1*K.1^3,K.1^13,-1*K.1^13,K.1,K.1,K.1^19,-1*K.1^13,-1*K.1^19,K.1^7,K.1,K.1^3,-1*K.1^17,-1*K.1^19,-1*K.1^11,K.1^17,K.1^3,-1*K.1^17,-1*K.1^17,-1*K.1^7,K.1,K.1^7,-1*K.1^19,-1*K.1^13,K.1^19,-1*K.1,K.1,-1*K.1^13,K.1^13,-1*K.1^3,-1*K.1^3,K.1,-1*K.1^7,-1*K.1^17,K.1^3,K.1^17,K.1^7,-1*K.1^19,-1*K.1^19,K.1^13,-1*K.1^3,-1*K.1^3,K.1^13,-1*K.1^13,-1*K.1^13,K.1,K.1,-1*K.1^13,K.1^13,-1*K.1^19,K.1^7,K.1,-1*K.1^7,K.1^9,-1*K.1,K.1^19,K.1^17,-1*K.1^11,K.1^9,-1*K.1^11,K.1^17,K.1^17,-1*K.1^11,-1*K.1^17,-1*K.1^7,K.1^19,-1*K.1,-1*K.1^19,K.1^11,-1*K.1^9,K.1^7,-1*K.1^9,K.1^11,K.1^11,-1*K.1^9,-1*K.1^3,-1*K.1^9,K.1^11,-1*K.1^11,K.1^17,K.1^3,-1*K.1,K.1^9,-1*K.1^7,-1*K.1^17,K.1^3,K.1^3,-1*K.1^17,-1*K.1^11,K.1^11,-1*K.1^9,K.1^7,K.1^9,-1*K.1^7,K.1^19,-1*K.1,-1*K.1^3,K.1^13,K.1^13,-1*K.1^3,-1*K.1^9,K.1^19,-1*K.1^7,-1*K.1^13,K.1^9,-1*K.1,K.1^19,-1*K.1^13,-1*K.1^7,K.1^11,-1*K.1^9,-1*K.1^3,K.1^13,K.1^13,-1*K.1^19,-1*K.1,K.1^19,-1*K.1^7,K.1^9,K.1^7,-1*K.1^9,K.1^17,-1*K.1^11,-1*K.1^17,K.1^3,K.1^3,-1*K.1,-1*K.1^19,K.1^9,-1*K.1^17,K.1^3,K.1^17,-1*K.1^11,K.1^11,K.1^13,-1*K.1^3,-1*K.1^9,K.1^11,K.1^11,K.1^9,K.1^7,-1*K.1^9,K.1^11,-1*K.1^19,-1*K.1,K.1^19,K.1^3,-1*K.1^17,-1*K.1^11,K.1^17,K.1^17,K.1^7,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,1,1,1,-1*K.1^5,K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^12,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^12,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,K.1^8,K.1^16,K.1^4,-1*K.1^8,K.1^16,K.1^8,K.1^8,K.1^16,-1*K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^16,K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^12,K.1^8,K.1^8,K.1^16,K.1^16,-1*K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,K.1^2,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,K.1^2,K.1^18,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,-1*K.1^2,K.1^14,K.1^18,K.1^14,-1*K.1^2,K.1^14,K.1^2,-1*K.1^18,-1*K.1^2,K.1^14,K.1^18,-1*K.1^18,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^6,K.1^14,K.1^14,-1*K.1^2,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,K.1^6,-1*K.1^2,K.1^6,-1*K.1^14,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,K.1^14,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^11,K.1^7,-1*K.1,K.1^19,-1*K.1^11,K.1^13,-1*K.1^19,-1*K.1^13,K.1^17,-1*K.1^7,K.1^7,-1*K.1^19,-1*K.1^19,-1*K.1,K.1^7,K.1,-1*K.1^13,-1*K.1^19,-1*K.1^17,K.1^3,K.1,K.1^9,-1*K.1^3,-1*K.1^17,K.1^3,K.1^3,K.1^13,-1*K.1^19,-1*K.1^13,K.1,K.1^7,-1*K.1,K.1^19,-1*K.1^19,K.1^7,-1*K.1^7,K.1^17,K.1^17,-1*K.1^19,K.1^13,K.1^3,-1*K.1^17,-1*K.1^3,-1*K.1^13,K.1,K.1,-1*K.1^7,K.1^17,K.1^17,-1*K.1^7,K.1^7,K.1^7,-1*K.1^19,-1*K.1^19,K.1^7,-1*K.1^7,K.1,-1*K.1^13,-1*K.1^19,K.1^13,-1*K.1^11,K.1^19,-1*K.1,-1*K.1^3,K.1^9,-1*K.1^11,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,K.1^13,-1*K.1,K.1^19,K.1,-1*K.1^9,K.1^11,-1*K.1^13,K.1^11,-1*K.1^9,-1*K.1^9,K.1^11,K.1^17,K.1^11,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^17,K.1^19,-1*K.1^11,K.1^13,K.1^3,-1*K.1^17,-1*K.1^17,K.1^3,K.1^9,-1*K.1^9,K.1^11,-1*K.1^13,-1*K.1^11,K.1^13,-1*K.1,K.1^19,K.1^17,-1*K.1^7,-1*K.1^7,K.1^17,K.1^11,-1*K.1,K.1^13,K.1^7,-1*K.1^11,K.1^19,-1*K.1,K.1^7,K.1^13,-1*K.1^9,K.1^11,K.1^17,-1*K.1^7,-1*K.1^7,K.1,K.1^19,-1*K.1,K.1^13,-1*K.1^11,-1*K.1^13,K.1^11,-1*K.1^3,K.1^9,K.1^3,-1*K.1^17,-1*K.1^17,K.1^19,K.1,-1*K.1^11,K.1^3,-1*K.1^17,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^7,K.1^17,K.1^11,-1*K.1^9,-1*K.1^9,-1*K.1^11,-1*K.1^13,K.1^11,-1*K.1^9,K.1,K.1^19,-1*K.1,-1*K.1^17,K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^13,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,1,1,1,-1*K.1^15,K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,K.1^16,K.1^16,K.1^16,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^4,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,K.1^16,-1*K.1^12,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^8,K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^8,K.1^12,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,K.1^16,K.1^12,-1*K.1^12,-1*K.1^12,K.1^16,K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,K.1^14,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,K.1^14,K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,-1*K.1^14,K.1^18,K.1^6,K.1^18,-1*K.1^14,K.1^18,K.1^14,-1*K.1^6,-1*K.1^14,K.1^18,K.1^6,-1*K.1^6,-1*K.1^18,K.1^18,-1*K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^2,K.1^18,K.1^18,-1*K.1^14,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,K.1^2,-1*K.1^14,K.1^2,-1*K.1^18,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^14,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^14,K.1^18,-1*K.1^18,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^17,-1*K.1^9,K.1^7,-1*K.1^13,-1*K.1^17,-1*K.1^11,K.1^13,K.1^11,K.1^19,K.1^9,-1*K.1^9,K.1^13,K.1^13,K.1^7,-1*K.1^9,-1*K.1^7,K.1^11,K.1^13,-1*K.1^19,K.1,-1*K.1^7,K.1^3,-1*K.1,-1*K.1^19,K.1,K.1,-1*K.1^11,K.1^13,K.1^11,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^13,K.1^13,-1*K.1^9,K.1^9,K.1^19,K.1^19,K.1^13,-1*K.1^11,K.1,-1*K.1^19,-1*K.1,K.1^11,-1*K.1^7,-1*K.1^7,K.1^9,K.1^19,K.1^19,K.1^9,-1*K.1^9,-1*K.1^9,K.1^13,K.1^13,-1*K.1^9,K.1^9,-1*K.1^7,K.1^11,K.1^13,-1*K.1^11,-1*K.1^17,-1*K.1^13,K.1^7,-1*K.1,K.1^3,-1*K.1^17,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^11,K.1^7,-1*K.1^13,-1*K.1^7,-1*K.1^3,K.1^17,K.1^11,K.1^17,-1*K.1^3,-1*K.1^3,K.1^17,K.1^19,K.1^17,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^19,-1*K.1^13,-1*K.1^17,-1*K.1^11,K.1,-1*K.1^19,-1*K.1^19,K.1,K.1^3,-1*K.1^3,K.1^17,K.1^11,-1*K.1^17,-1*K.1^11,K.1^7,-1*K.1^13,K.1^19,K.1^9,K.1^9,K.1^19,K.1^17,K.1^7,-1*K.1^11,-1*K.1^9,-1*K.1^17,-1*K.1^13,K.1^7,-1*K.1^9,-1*K.1^11,-1*K.1^3,K.1^17,K.1^19,K.1^9,K.1^9,-1*K.1^7,-1*K.1^13,K.1^7,-1*K.1^11,-1*K.1^17,K.1^11,K.1^17,-1*K.1,K.1^3,K.1,-1*K.1^19,-1*K.1^19,-1*K.1^13,-1*K.1^7,-1*K.1^17,K.1,-1*K.1^19,-1*K.1,K.1^3,-1*K.1^3,K.1^9,K.1^19,K.1^17,-1*K.1^3,-1*K.1^3,-1*K.1^17,K.1^11,K.1^17,-1*K.1^3,-1*K.1^7,-1*K.1^13,K.1^7,-1*K.1^19,K.1,K.1^3,-1*K.1,-1*K.1,K.1^11,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,1,1,1,K.1^5,-1*K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^16,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^12,K.1^8,K.1^16,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,-1*K.1^4,K.1^8,K.1^12,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^16,K.1^16,K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^16,K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^12,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^12,-1*K.1^16,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,-1*K.1^8,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,-1*K.1^6,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^14,K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^14,K.1^6,-1*K.1^2,-1*K.1^14,K.1^14,K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^2,K.1^2,K.1^2,K.1^18,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,K.1^6,-1*K.1^18,K.1^2,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^6,K.1^2,K.1^18,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^6,-1*K.1^2,K.1^2,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^3,K.1^11,-1*K.1^13,K.1^7,K.1^3,K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1,-1*K.1^11,K.1^11,-1*K.1^7,-1*K.1^7,-1*K.1^13,K.1^11,K.1^13,-1*K.1^9,-1*K.1^7,K.1,-1*K.1^19,K.1^13,-1*K.1^17,K.1^19,K.1,-1*K.1^19,-1*K.1^19,K.1^9,-1*K.1^7,-1*K.1^9,K.1^13,K.1^11,-1*K.1^13,K.1^7,-1*K.1^7,K.1^11,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^7,K.1^9,-1*K.1^19,K.1,K.1^19,-1*K.1^9,K.1^13,K.1^13,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^11,K.1^11,K.1^11,-1*K.1^7,-1*K.1^7,K.1^11,-1*K.1^11,K.1^13,-1*K.1^9,-1*K.1^7,K.1^9,K.1^3,K.1^7,-1*K.1^13,K.1^19,-1*K.1^17,K.1^3,-1*K.1^17,K.1^19,K.1^19,-1*K.1^17,-1*K.1^19,K.1^9,-1*K.1^13,K.1^7,K.1^13,K.1^17,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^17,K.1^17,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^17,-1*K.1^17,K.1^19,K.1,K.1^7,K.1^3,K.1^9,-1*K.1^19,K.1,K.1,-1*K.1^19,-1*K.1^17,K.1^17,-1*K.1^3,-1*K.1^9,K.1^3,K.1^9,-1*K.1^13,K.1^7,-1*K.1,-1*K.1^11,-1*K.1^11,-1*K.1,-1*K.1^3,-1*K.1^13,K.1^9,K.1^11,K.1^3,K.1^7,-1*K.1^13,K.1^11,K.1^9,K.1^17,-1*K.1^3,-1*K.1,-1*K.1^11,-1*K.1^11,K.1^13,K.1^7,-1*K.1^13,K.1^9,K.1^3,-1*K.1^9,-1*K.1^3,K.1^19,-1*K.1^17,-1*K.1^19,K.1,K.1,K.1^7,K.1^13,K.1^3,-1*K.1^19,K.1,K.1^19,-1*K.1^17,K.1^17,-1*K.1^11,-1*K.1,-1*K.1^3,K.1^17,K.1^17,K.1^3,-1*K.1^9,-1*K.1^3,K.1^17,K.1^13,K.1^7,-1*K.1^13,K.1,-1*K.1^19,-1*K.1^17,K.1^19,K.1^19,-1*K.1^9,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,1,1,1,-1*K.1^15,K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^16,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^12,K.1^8,K.1^16,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^4,K.1^8,K.1^12,K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^16,K.1^16,K.1^4,-1*K.1^12,-1*K.1^8,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,K.1^12,K.1^16,-1*K.1^12,K.1^4,K.1^16,K.1^16,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^12,-1*K.1^12,K.1^8,K.1^4,K.1^12,K.1^12,-1*K.1^16,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,-1*K.1^8,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^4,K.1^4,-1*K.1^12,-1*K.1^12,K.1^4,K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,K.1^6,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,K.1^14,-1*K.1^18,K.1^6,K.1^14,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,-1*K.1^6,K.1^2,K.1^14,K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^14,-1*K.1^6,K.1^2,K.1^14,-1*K.1^14,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^18,K.1^2,K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,K.1^18,-1*K.1^6,K.1^18,-1*K.1^2,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^6,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,K.1^13,-1*K.1,-1*K.1^3,K.1^17,K.1^13,-1*K.1^19,-1*K.1^17,K.1^19,K.1^11,K.1,-1*K.1,-1*K.1^17,-1*K.1^17,-1*K.1^3,-1*K.1,K.1^3,K.1^19,-1*K.1^17,-1*K.1^11,K.1^9,K.1^3,-1*K.1^7,-1*K.1^9,-1*K.1^11,K.1^9,K.1^9,-1*K.1^19,-1*K.1^17,K.1^19,K.1^3,-1*K.1,-1*K.1^3,K.1^17,-1*K.1^17,-1*K.1,K.1,K.1^11,K.1^11,-1*K.1^17,-1*K.1^19,K.1^9,-1*K.1^11,-1*K.1^9,K.1^19,K.1^3,K.1^3,K.1,K.1^11,K.1^11,K.1,-1*K.1,-1*K.1,-1*K.1^17,-1*K.1^17,-1*K.1,K.1,K.1^3,K.1^19,-1*K.1^17,-1*K.1^19,K.1^13,K.1^17,-1*K.1^3,-1*K.1^9,-1*K.1^7,K.1^13,-1*K.1^7,-1*K.1^9,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^19,-1*K.1^3,K.1^17,K.1^3,K.1^7,-1*K.1^13,K.1^19,-1*K.1^13,K.1^7,K.1^7,-1*K.1^13,K.1^11,-1*K.1^13,K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^11,K.1^17,K.1^13,-1*K.1^19,K.1^9,-1*K.1^11,-1*K.1^11,K.1^9,-1*K.1^7,K.1^7,-1*K.1^13,K.1^19,K.1^13,-1*K.1^19,-1*K.1^3,K.1^17,K.1^11,K.1,K.1,K.1^11,-1*K.1^13,-1*K.1^3,-1*K.1^19,-1*K.1,K.1^13,K.1^17,-1*K.1^3,-1*K.1,-1*K.1^19,K.1^7,-1*K.1^13,K.1^11,K.1,K.1,K.1^3,K.1^17,-1*K.1^3,-1*K.1^19,K.1^13,K.1^19,-1*K.1^13,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^11,-1*K.1^11,K.1^17,K.1^3,K.1^13,K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^7,K.1^7,K.1,K.1^11,-1*K.1^13,K.1^7,K.1^7,K.1^13,K.1^19,-1*K.1^13,K.1^7,K.1^3,K.1^17,-1*K.1^3,-1*K.1^11,K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^9,K.1^19,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,1,1,1,K.1^5,-1*K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^8,K.1^16,K.1^8,K.1^8,K.1^8,K.1^16,K.1^16,K.1^16,K.1^16,-1*K.1^4,K.1^8,-1*K.1^12,-1*K.1^4,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^16,-1*K.1^12,-1*K.1^8,-1*K.1^16,-1*K.1^12,K.1^16,K.1^16,-1*K.1^12,-1*K.1^16,-1*K.1^8,K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^16,K.1^8,K.1^12,-1*K.1^8,-1*K.1^16,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^8,-1*K.1^16,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^4,K.1^12,K.1^4,K.1^12,K.1^12,K.1^4,K.1^16,-1*K.1^8,-1*K.1^16,-1*K.1^8,K.1^8,-1*K.1^12,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^4,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^4,-1*K.1^4,K.1^12,K.1^12,-1*K.1^4,K.1^16,K.1^12,-1*K.1^12,-1*K.1^12,K.1^16,K.1^16,-1*K.1^4,K.1^12,K.1^4,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^8,K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^14,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^18,-1*K.1^14,K.1^6,K.1^14,-1*K.1^18,-1*K.1^6,K.1^6,K.1^18,-1*K.1^18,K.1^14,K.1^14,K.1^18,K.1^18,K.1^18,K.1^2,-1*K.1^18,-1*K.1^18,K.1^14,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,K.1^14,-1*K.1^2,K.1^18,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^14,K.1^18,K.1^2,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^14,-1*K.1^18,K.1^18,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^7,K.1^19,K.1^17,-1*K.1^3,-1*K.1^7,K.1,K.1^3,-1*K.1,-1*K.1^9,-1*K.1^19,K.1^19,K.1^3,K.1^3,K.1^17,K.1^19,-1*K.1^17,-1*K.1,K.1^3,K.1^9,-1*K.1^11,-1*K.1^17,K.1^13,K.1^11,K.1^9,-1*K.1^11,-1*K.1^11,K.1,K.1^3,-1*K.1,-1*K.1^17,K.1^19,K.1^17,-1*K.1^3,K.1^3,K.1^19,-1*K.1^19,-1*K.1^9,-1*K.1^9,K.1^3,K.1,-1*K.1^11,K.1^9,K.1^11,-1*K.1,-1*K.1^17,-1*K.1^17,-1*K.1^19,-1*K.1^9,-1*K.1^9,-1*K.1^19,K.1^19,K.1^19,K.1^3,K.1^3,K.1^19,-1*K.1^19,-1*K.1^17,-1*K.1,K.1^3,K.1,-1*K.1^7,-1*K.1^3,K.1^17,K.1^11,K.1^13,-1*K.1^7,K.1^13,K.1^11,K.1^11,K.1^13,-1*K.1^11,K.1,K.1^17,-1*K.1^3,-1*K.1^17,-1*K.1^13,K.1^7,-1*K.1,K.1^7,-1*K.1^13,-1*K.1^13,K.1^7,-1*K.1^9,K.1^7,-1*K.1^13,K.1^13,K.1^11,K.1^9,-1*K.1^3,-1*K.1^7,K.1,-1*K.1^11,K.1^9,K.1^9,-1*K.1^11,K.1^13,-1*K.1^13,K.1^7,-1*K.1,-1*K.1^7,K.1,K.1^17,-1*K.1^3,-1*K.1^9,-1*K.1^19,-1*K.1^19,-1*K.1^9,K.1^7,K.1^17,K.1,K.1^19,-1*K.1^7,-1*K.1^3,K.1^17,K.1^19,K.1,-1*K.1^13,K.1^7,-1*K.1^9,-1*K.1^19,-1*K.1^19,-1*K.1^17,-1*K.1^3,K.1^17,K.1,-1*K.1^7,-1*K.1,K.1^7,K.1^11,K.1^13,-1*K.1^11,K.1^9,K.1^9,-1*K.1^3,-1*K.1^17,-1*K.1^7,-1*K.1^11,K.1^9,K.1^11,K.1^13,-1*K.1^13,-1*K.1^19,-1*K.1^9,K.1^7,-1*K.1^13,-1*K.1^13,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^13,-1*K.1^17,-1*K.1^3,K.1^17,K.1^9,-1*K.1^11,K.1^13,K.1^11,K.1^11,-1*K.1,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,1,1,1,-1*K.1^15,K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^12,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^12,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,K.1^8,K.1^16,K.1^4,-1*K.1^8,K.1^16,K.1^8,K.1^8,K.1^16,-1*K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^16,K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^12,K.1^8,K.1^8,K.1^16,K.1^16,-1*K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,-1*K.1^2,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^18,K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^14,-1*K.1^2,K.1^18,K.1^2,-1*K.1^14,-1*K.1^18,K.1^18,K.1^14,-1*K.1^14,K.1^2,K.1^2,K.1^14,K.1^14,K.1^14,K.1^6,-1*K.1^14,-1*K.1^14,K.1^2,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,K.1^2,-1*K.1^6,K.1^14,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,K.1^14,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^14,K.1^6,-1*K.1^14,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^2,-1*K.1^14,K.1^14,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1,-1*K.1^17,-1*K.1^11,K.1^9,-1*K.1,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^7,K.1^17,-1*K.1^17,-1*K.1^9,-1*K.1^9,-1*K.1^11,-1*K.1^17,K.1^11,K.1^3,-1*K.1^9,K.1^7,-1*K.1^13,K.1^11,K.1^19,K.1^13,K.1^7,-1*K.1^13,-1*K.1^13,-1*K.1^3,-1*K.1^9,K.1^3,K.1^11,-1*K.1^17,-1*K.1^11,K.1^9,-1*K.1^9,-1*K.1^17,K.1^17,-1*K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^3,-1*K.1^13,K.1^7,K.1^13,K.1^3,K.1^11,K.1^11,K.1^17,-1*K.1^7,-1*K.1^7,K.1^17,-1*K.1^17,-1*K.1^17,-1*K.1^9,-1*K.1^9,-1*K.1^17,K.1^17,K.1^11,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^11,K.1^13,K.1^19,-1*K.1,K.1^19,K.1^13,K.1^13,K.1^19,-1*K.1^13,-1*K.1^3,-1*K.1^11,K.1^9,K.1^11,-1*K.1^19,K.1,K.1^3,K.1,-1*K.1^19,-1*K.1^19,K.1,-1*K.1^7,K.1,-1*K.1^19,K.1^19,K.1^13,K.1^7,K.1^9,-1*K.1,-1*K.1^3,-1*K.1^13,K.1^7,K.1^7,-1*K.1^13,K.1^19,-1*K.1^19,K.1,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^11,K.1^9,-1*K.1^7,K.1^17,K.1^17,-1*K.1^7,K.1,-1*K.1^11,-1*K.1^3,-1*K.1^17,-1*K.1,K.1^9,-1*K.1^11,-1*K.1^17,-1*K.1^3,-1*K.1^19,K.1,-1*K.1^7,K.1^17,K.1^17,K.1^11,K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1,K.1^3,K.1,K.1^13,K.1^19,-1*K.1^13,K.1^7,K.1^7,K.1^9,K.1^11,-1*K.1,-1*K.1^13,K.1^7,K.1^13,K.1^19,-1*K.1^19,K.1^17,-1*K.1^7,K.1,-1*K.1^19,-1*K.1^19,-1*K.1,K.1^3,K.1,-1*K.1^19,K.1^11,K.1^9,-1*K.1^11,K.1^7,-1*K.1^13,K.1^19,K.1^13,K.1^13,K.1^3,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,1,1,1,K.1^5,-1*K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^8,K.1^16,-1*K.1^4,K.1^8,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,K.1^12,K.1^16,K.1^4,-1*K.1^16,K.1^12,K.1^16,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^8,K.1^16,K.1^12,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^16,K.1^12,K.1^12,K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,K.1^18,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^2,-1*K.1^14,K.1^18,K.1^2,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,-1*K.1^18,K.1^6,K.1^2,K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^2,-1*K.1^18,K.1^6,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^14,K.1^6,K.1^6,-1*K.1^18,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,K.1^6,K.1^14,-1*K.1^18,K.1^14,-1*K.1^6,K.1^18,-1*K.1^6,K.1^2,-1*K.1^14,K.1^18,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^18,K.1^18,-1*K.1^14,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^18,K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,K.1^19,K.1^3,K.1^9,-1*K.1^11,K.1^19,K.1^17,K.1^11,-1*K.1^17,K.1^13,-1*K.1^3,K.1^3,K.1^11,K.1^11,K.1^9,K.1^3,-1*K.1^9,-1*K.1^17,K.1^11,-1*K.1^13,K.1^7,-1*K.1^9,-1*K.1,-1*K.1^7,-1*K.1^13,K.1^7,K.1^7,K.1^17,K.1^11,-1*K.1^17,-1*K.1^9,K.1^3,K.1^9,-1*K.1^11,K.1^11,K.1^3,-1*K.1^3,K.1^13,K.1^13,K.1^11,K.1^17,K.1^7,-1*K.1^13,-1*K.1^7,-1*K.1^17,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1^13,K.1^13,-1*K.1^3,K.1^3,K.1^3,K.1^11,K.1^11,K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^17,K.1^11,K.1^17,K.1^19,-1*K.1^11,K.1^9,-1*K.1^7,-1*K.1,K.1^19,-1*K.1,-1*K.1^7,-1*K.1^7,-1*K.1,K.1^7,K.1^17,K.1^9,-1*K.1^11,-1*K.1^9,K.1,-1*K.1^19,-1*K.1^17,-1*K.1^19,K.1,K.1,-1*K.1^19,K.1^13,-1*K.1^19,K.1,-1*K.1,-1*K.1^7,-1*K.1^13,-1*K.1^11,K.1^19,K.1^17,K.1^7,-1*K.1^13,-1*K.1^13,K.1^7,-1*K.1,K.1,-1*K.1^19,-1*K.1^17,K.1^19,K.1^17,K.1^9,-1*K.1^11,K.1^13,-1*K.1^3,-1*K.1^3,K.1^13,-1*K.1^19,K.1^9,K.1^17,K.1^3,K.1^19,-1*K.1^11,K.1^9,K.1^3,K.1^17,K.1,-1*K.1^19,K.1^13,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^11,K.1^9,K.1^17,K.1^19,-1*K.1^17,-1*K.1^19,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^13,-1*K.1^13,-1*K.1^11,-1*K.1^9,K.1^19,K.1^7,-1*K.1^13,-1*K.1^7,-1*K.1,K.1,-1*K.1^3,K.1^13,-1*K.1^19,K.1,K.1,K.1^19,-1*K.1^17,-1*K.1^19,K.1,-1*K.1^9,-1*K.1^11,K.1^9,-1*K.1^13,K.1^7,-1*K.1,-1*K.1^7,-1*K.1^7,-1*K.1^17,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,1,1,1,1,-1*K.1^15,K.1^15,K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^12,-1*K.1^12,K.1^8,K.1^16,-1*K.1^4,K.1^8,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^5,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,-1*K.1^5,K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,K.1^5,K.1^5,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^12,-1*K.1^4,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,K.1^12,K.1^16,K.1^4,-1*K.1^16,K.1^12,K.1^16,-1*K.1^16,-1*K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^8,K.1^16,K.1^12,K.1^8,K.1^8,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,K.1^16,-1*K.1^4,K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^4,K.1^4,K.1^8,K.1^8,K.1^4,K.1^4,K.1^8,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^16,K.1^12,K.1^12,K.1^16,K.1^16,K.1^12,-1*K.1^16,K.1^16,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,-1*K.1^18,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^2,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,K.1^6,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,K.1^18,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^2,K.1^18,-1*K.1^6,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,K.1^18,K.1^18,K.1^6,K.1^6,K.1^6,K.1^14,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^14,K.1^18,-1*K.1^14,K.1^6,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,-1*K.1^18,-1*K.1^14,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^18,K.1^14,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^14,K.1^14,K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^18,K.1^6,K.1^14,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^18,-1*K.1^6,K.1^6,K.1^14,-1*K.1^14,-1*K.1^14,K.1^14,-1*K.1^9,K.1^13,-1*K.1^19,K.1,-1*K.1^9,K.1^7,-1*K.1,-1*K.1^7,K.1^3,-1*K.1^13,K.1^13,-1*K.1,-1*K.1,-1*K.1^19,K.1^13,K.1^19,-1*K.1^7,-1*K.1,-1*K.1^3,K.1^17,K.1^19,K.1^11,-1*K.1^17,-1*K.1^3,K.1^17,K.1^17,K.1^7,-1*K.1,-1*K.1^7,K.1^19,K.1^13,-1*K.1^19,K.1,-1*K.1,K.1^13,-1*K.1^13,K.1^3,K.1^3,-1*K.1,K.1^7,K.1^17,-1*K.1^3,-1*K.1^17,-1*K.1^7,K.1^19,K.1^19,-1*K.1^13,K.1^3,K.1^3,-1*K.1^13,K.1^13,K.1^13,-1*K.1,-1*K.1,K.1^13,-1*K.1^13,K.1^19,-1*K.1^7,-1*K.1,K.1^7,-1*K.1^9,K.1,-1*K.1^19,-1*K.1^17,K.1^11,-1*K.1^9,K.1^11,-1*K.1^17,-1*K.1^17,K.1^11,K.1^17,K.1^7,-1*K.1^19,K.1,K.1^19,-1*K.1^11,K.1^9,-1*K.1^7,K.1^9,-1*K.1^11,-1*K.1^11,K.1^9,K.1^3,K.1^9,-1*K.1^11,K.1^11,-1*K.1^17,-1*K.1^3,K.1,-1*K.1^9,K.1^7,K.1^17,-1*K.1^3,-1*K.1^3,K.1^17,K.1^11,-1*K.1^11,K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^19,K.1,K.1^3,-1*K.1^13,-1*K.1^13,K.1^3,K.1^9,-1*K.1^19,K.1^7,K.1^13,-1*K.1^9,K.1,-1*K.1^19,K.1^13,K.1^7,-1*K.1^11,K.1^9,K.1^3,-1*K.1^13,-1*K.1^13,K.1^19,K.1,-1*K.1^19,K.1^7,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^17,K.1^11,K.1^17,-1*K.1^3,-1*K.1^3,K.1,K.1^19,-1*K.1^9,K.1^17,-1*K.1^3,-1*K.1^17,K.1^11,-1*K.1^11,-1*K.1^13,K.1^3,K.1^9,-1*K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^7,K.1^9,-1*K.1^11,K.1^19,K.1,-1*K.1^19,-1*K.1^3,K.1^17,K.1^11,-1*K.1^17,-1*K.1^17,-1*K.1^7,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(40: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,1,1,1,1,K.1^5,-1*K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^10,-1*K.1^10,K.1^10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^12,K.1^16,-1*K.1^12,K.1^16,K.1^16,K.1^16,-1*K.1^12,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,K.1^8,K.1^8,-1*K.1^12,-1*K.1^4,K.1^16,-1*K.1^12,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^15,K.1^5,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^15,K.1^5,-1*K.1^5,-1*K.1^5,K.1^15,K.1^5,K.1^8,K.1^16,K.1^4,-1*K.1^8,K.1^16,K.1^8,K.1^8,K.1^16,-1*K.1^8,K.1^4,K.1^8,K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^4,-1*K.1^16,K.1^4,-1*K.1^8,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^12,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,K.1^12,-1*K.1^16,K.1^12,-1*K.1^16,-1*K.1^16,K.1^12,K.1^8,K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^16,-1*K.1^8,K.1^4,K.1^4,K.1^12,K.1^12,-1*K.1^12,K.1^8,K.1^8,K.1^16,K.1^16,-1*K.1^16,-1*K.1^12,-1*K.1^12,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,-1*K.1^16,K.1^16,K.1^16,K.1^8,K.1^8,-1*K.1^12,-1*K.1^16,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^4,-1*K.1^4,-1*K.1^8,K.1^4,-1*K.1^4,K.1^12,K.1^12,K.1^4,K.1^4,-1*K.1^8,K.1^2,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,K.1^2,K.1^18,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^14,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^2,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,-1*K.1^2,K.1^14,K.1^18,K.1^14,-1*K.1^2,K.1^14,K.1^2,-1*K.1^18,-1*K.1^2,K.1^14,K.1^18,-1*K.1^18,-1*K.1^14,K.1^14,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^6,K.1^14,K.1^14,-1*K.1^2,K.1^14,-1*K.1^2,K.1^6,-1*K.1^18,-1*K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^2,K.1^14,K.1^6,-1*K.1^2,K.1^6,-1*K.1^14,K.1^2,-1*K.1^14,K.1^18,-1*K.1^6,K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^6,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^18,K.1^18,-1*K.1^18,-1*K.1^18,-1*K.1^14,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,K.1^2,-1*K.1^14,-1*K.1^6,K.1^14,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,K.1^18,-1*K.1^18,-1*K.1^18,K.1^18,K.1^18,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^11,-1*K.1^7,K.1,-1*K.1^19,K.1^11,-1*K.1^13,K.1^19,K.1^13,-1*K.1^17,K.1^7,-1*K.1^7,K.1^19,K.1^19,K.1,-1*K.1^7,-1*K.1,K.1^13,K.1^19,K.1^17,-1*K.1^3,-1*K.1,-1*K.1^9,K.1^3,K.1^17,-1*K.1^3,-1*K.1^3,-1*K.1^13,K.1^19,K.1^13,-1*K.1,-1*K.1^7,K.1,-1*K.1^19,K.1^19,-1*K.1^7,K.1^7,-1*K.1^17,-1*K.1^17,K.1^19,-1*K.1^13,-1*K.1^3,K.1^17,K.1^3,K.1^13,-1*K.1,-1*K.1,K.1^7,-1*K.1^17,-1*K.1^17,K.1^7,-1*K.1^7,-1*K.1^7,K.1^19,K.1^19,-1*K.1^7,K.1^7,-1*K.1,K.1^13,K.1^19,-1*K.1^13,K.1^11,-1*K.1^19,K.1,K.1^3,-1*K.1^9,K.1^11,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^13,K.1,-1*K.1^19,-1*K.1,K.1^9,-1*K.1^11,K.1^13,-1*K.1^11,K.1^9,K.1^9,-1*K.1^11,-1*K.1^17,-1*K.1^11,K.1^9,-1*K.1^9,K.1^3,K.1^17,-1*K.1^19,K.1^11,-1*K.1^13,-1*K.1^3,K.1^17,K.1^17,-1*K.1^3,-1*K.1^9,K.1^9,-1*K.1^11,K.1^13,K.1^11,-1*K.1^13,K.1,-1*K.1^19,-1*K.1^17,K.1^7,K.1^7,-1*K.1^17,-1*K.1^11,K.1,-1*K.1^13,-1*K.1^7,K.1^11,-1*K.1^19,K.1,-1*K.1^7,-1*K.1^13,K.1^9,-1*K.1^11,-1*K.1^17,K.1^7,K.1^7,-1*K.1,-1*K.1^19,K.1,-1*K.1^13,K.1^11,K.1^13,-1*K.1^11,K.1^3,-1*K.1^9,-1*K.1^3,K.1^17,K.1^17,-1*K.1^19,-1*K.1,K.1^11,-1*K.1^3,K.1^17,K.1^3,-1*K.1^9,K.1^9,K.1^7,-1*K.1^17,-1*K.1^11,K.1^9,K.1^9,K.1^11,K.1^13,-1*K.1^11,K.1^9,-1*K.1,-1*K.1^19,K.1,K.1^17,-1*K.1^3,-1*K.1^9,K.1^3,K.1^3,K.1^13,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-10,K.1^10,K.1^5,K.1^-5,1,1,1,1,1,1,1,1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-11,K.1^7,K.1^-1,K.1^12,K.1^-3,K.1^-8,K.1^-6,K.1^-7,K.1^11,K.1^3,K.1^-12,K.1^8,K.1,K.1^-9,K.1^6,K.1^-4,K.1^4,K.1^-2,K.1^2,K.1^9,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^-10,K.1^6,K.1^-8,K.1^-2,K.1^-4,K.1^12,K.1,K.1^-9,K.1^2,K.1^11,K.1^8,K.1^11,K.1^8,K.1^4,K.1^-1,K.1^6,K.1^3,K.1^2,K.1^-12,K.1^11,K.1^-2,K.1^3,K.1^-7,K.1^-12,K.1^-4,K.1^-2,K.1^-11,K.1^-7,K.1^-9,K.1^9,K.1^-6,K.1,K.1^-9,K.1^-8,K.1^-8,K.1^-1,K.1^2,K.1^-1,K.1^-3,K.1^-3,K.1^-6,K.1^-6,K.1^8,K.1^-3,K.1^6,K.1^-12,K.1^7,K.1^4,K.1^4,K.1^12,K.1^-11,K.1^-11,K.1^12,K.1^9,K.1^7,K.1^7,K.1^9,K.1^-4,K.1^-7,K.1,K.1^3,K.1^3,K.1^-3,K.1^-9,K.1^8,K.1^-7,K.1^9,K.1^-6,K.1^-6,K.1^11,K.1^-4,K.1^12,K.1^7,K.1^7,K.1^9,K.1^-1,K.1^-8,K.1^2,K.1^-11,K.1^-9,K.1^-3,K.1^-8,K.1^2,K.1^6,K.1,K.1^4,K.1^12,K.1^4,K.1^-2,K.1^6,K.1^-4,K.1^8,K.1^-7,K.1^11,K.1^-12,K.1^-12,K.1^-11,K.1^-1,K.1^3,K.1^-2,K.1,K.1^-11,K.1^-2,K.1^-6,K.1^-3,K.1,K.1,K.1^-8,K.1^-1,K.1^-9,K.1^-3,K.1^7,K.1^12,K.1^2,K.1^8,K.1^4,K.1^12,K.1^6,K.1^3,K.1^-11,K.1^-9,K.1,K.1^6,K.1^6,K.1^11,K.1^-8,K.1^-1,K.1^-7,K.1^9,K.1^8,K.1^11,K.1^-2,K.1^-6,K.1^8,K.1^4,K.1,K.1^4,K.1^-12,K.1^-4,K.1^-9,K.1^3,K.1^-2,K.1^-6,K.1^-11,K.1^-7,K.1^-12,K.1^-12,K.1^2,K.1^3,K.1^-7,K.1^-1,K.1^3,K.1^-11,K.1^7,K.1^-4,K.1^-4,K.1^-9,K.1^11,K.1^6,K.1^-3,K.1^4,K.1^-12,K.1^-8,K.1^9,K.1^7,K.1^-2,K.1^-1,K.1^-7,K.1^-4,K.1^-3,K.1^-6,K.1^12,K.1^2,K.1^2,K.1^-8,K.1^12,K.1^9,K.1^9,K.1^7,K.1^11,K.1^8,K.1^-12,K.1^-9,K.1,K.1^11,K.1,K.1^6,K.1^-12,K.1^-1,K.1^-11,K.1^-7,K.1^8,K.1^4,K.1^-6,K.1^-3,K.1^7,K.1^-8,K.1^7,K.1^12,K.1^-6,K.1^-7,K.1^-3,K.1^3,K.1^4,K.1^-11,K.1^-2,K.1^8,K.1^-1,K.1^9,K.1^6,K.1^-4,K.1^11,K.1^-4,K.1^-9,K.1^9,K.1^-2,K.1^3,K.1^12,K.1^2,K.1^-8,K.1^2,K.1^2,K.1^9,K.1^2,K.1^8,K.1^7,K.1^11,K.1^-7,K.1^-9,K.1^-6,K.1^-1,K.1^-11,K.1^-7,K.1^-12,K.1^-3,K.1^4,K.1^-8,K.1^-4,K.1^-12,K.1^9,K.1,K.1^-3,K.1^-12,K.1^-4,K.1^-11,K.1^-4,K.1^-9,K.1^-9,K.1^-2,K.1^11,K.1^2,K.1^-11,K.1^7,K.1^3,K.1^3,K.1^4,K.1^-11,K.1^4,K.1^9,K.1^3,K.1^-4,K.1^11,K.1^-1,K.1^6,K.1^6,K.1^7,K.1^-3,K.1^-6,K.1^-1,K.1^-11,K.1^4,K.1^-6,K.1^9,K.1^-2,K.1^8,K.1^-1,K.1^9,K.1^12,K.1,K.1^8,K.1,K.1^-8,K.1^-2,K.1^12,K.1^-9,K.1^-7,K.1^12,K.1^-12,K.1^-4,K.1^11,K.1^-2,K.1^-9,K.1^-9,K.1^2,K.1^8,K.1^2,K.1^8,K.1^2,K.1^-9,K.1^12,K.1^-2,K.1^8,K.1^2,K.1^9,K.1^12,K.1^-2,K.1^8,K.1,K.1^-6,K.1^-12,K.1^2,K.1^6,K.1^6,K.1^4,K.1^-11,K.1^-4,K.1^3,K.1^3,K.1^7,K.1^11,K.1^7,K.1^11,K.1^7,K.1^3,K.1^-6,K.1^-1,K.1^-11,K.1^4,K.1^-3,K.1^-3,K.1^-4,K.1^-6,K.1^-3,K.1^-7,K.1^-8,K.1^-1,K.1^6,K.1^3,K.1^7,K.1^-11,K.1^4,K.1^9,K.1^12,K.1^-7,K.1^-8,K.1,K.1^-8,K.1^-4,K.1^-3,K.1^-9,K.1^-7,K.1^11,K.1^-1,K.1^-6,K.1^-12,K.1^7,K.1^12,K.1^6,K.1^4,K.1^11,K.1^-2,K.1^-12,K.1^-6,K.1^-1,K.1^-8,K.1^-7,K.1^-12,K.1^-3,K.1,K.1^-8,K.1^-7,K.1^-8,K.1^-2,K.1^12,K.1^9,K.1,K.1^8,K.1,K.1^6,K.1^6,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^10,K.1^-10,K.1^-5,K.1^5,1,1,1,1,1,1,1,1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^11,K.1^-7,K.1,K.1^-12,K.1^3,K.1^8,K.1^6,K.1^7,K.1^-11,K.1^-3,K.1^12,K.1^-8,K.1^-1,K.1^9,K.1^-6,K.1^4,K.1^-4,K.1^2,K.1^-2,K.1^-9,K.1^5,K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^10,K.1^-6,K.1^8,K.1^2,K.1^4,K.1^-12,K.1^-1,K.1^9,K.1^-2,K.1^-11,K.1^-8,K.1^-11,K.1^-8,K.1^-4,K.1,K.1^-6,K.1^-3,K.1^-2,K.1^12,K.1^-11,K.1^2,K.1^-3,K.1^7,K.1^12,K.1^4,K.1^2,K.1^11,K.1^7,K.1^9,K.1^-9,K.1^6,K.1^-1,K.1^9,K.1^8,K.1^8,K.1,K.1^-2,K.1,K.1^3,K.1^3,K.1^6,K.1^6,K.1^-8,K.1^3,K.1^-6,K.1^12,K.1^-7,K.1^-4,K.1^-4,K.1^-12,K.1^11,K.1^11,K.1^-12,K.1^-9,K.1^-7,K.1^-7,K.1^-9,K.1^4,K.1^7,K.1^-1,K.1^-3,K.1^-3,K.1^3,K.1^9,K.1^-8,K.1^7,K.1^-9,K.1^6,K.1^6,K.1^-11,K.1^4,K.1^-12,K.1^-7,K.1^-7,K.1^-9,K.1,K.1^8,K.1^-2,K.1^11,K.1^9,K.1^3,K.1^8,K.1^-2,K.1^-6,K.1^-1,K.1^-4,K.1^-12,K.1^-4,K.1^2,K.1^-6,K.1^4,K.1^-8,K.1^7,K.1^-11,K.1^12,K.1^12,K.1^11,K.1,K.1^-3,K.1^2,K.1^-1,K.1^11,K.1^2,K.1^6,K.1^3,K.1^-1,K.1^-1,K.1^8,K.1,K.1^9,K.1^3,K.1^-7,K.1^-12,K.1^-2,K.1^-8,K.1^-4,K.1^-12,K.1^-6,K.1^-3,K.1^11,K.1^9,K.1^-1,K.1^-6,K.1^-6,K.1^-11,K.1^8,K.1,K.1^7,K.1^-9,K.1^-8,K.1^-11,K.1^2,K.1^6,K.1^-8,K.1^-4,K.1^-1,K.1^-4,K.1^12,K.1^4,K.1^9,K.1^-3,K.1^2,K.1^6,K.1^11,K.1^7,K.1^12,K.1^12,K.1^-2,K.1^-3,K.1^7,K.1,K.1^-3,K.1^11,K.1^-7,K.1^4,K.1^4,K.1^9,K.1^-11,K.1^-6,K.1^3,K.1^-4,K.1^12,K.1^8,K.1^-9,K.1^-7,K.1^2,K.1,K.1^7,K.1^4,K.1^3,K.1^6,K.1^-12,K.1^-2,K.1^-2,K.1^8,K.1^-12,K.1^-9,K.1^-9,K.1^-7,K.1^-11,K.1^-8,K.1^12,K.1^9,K.1^-1,K.1^-11,K.1^-1,K.1^-6,K.1^12,K.1,K.1^11,K.1^7,K.1^-8,K.1^-4,K.1^6,K.1^3,K.1^-7,K.1^8,K.1^-7,K.1^-12,K.1^6,K.1^7,K.1^3,K.1^-3,K.1^-4,K.1^11,K.1^2,K.1^-8,K.1,K.1^-9,K.1^-6,K.1^4,K.1^-11,K.1^4,K.1^9,K.1^-9,K.1^2,K.1^-3,K.1^-12,K.1^-2,K.1^8,K.1^-2,K.1^-2,K.1^-9,K.1^-2,K.1^-8,K.1^-7,K.1^-11,K.1^7,K.1^9,K.1^6,K.1,K.1^11,K.1^7,K.1^12,K.1^3,K.1^-4,K.1^8,K.1^4,K.1^12,K.1^-9,K.1^-1,K.1^3,K.1^12,K.1^4,K.1^11,K.1^4,K.1^9,K.1^9,K.1^2,K.1^-11,K.1^-2,K.1^11,K.1^-7,K.1^-3,K.1^-3,K.1^-4,K.1^11,K.1^-4,K.1^-9,K.1^-3,K.1^4,K.1^-11,K.1,K.1^-6,K.1^-6,K.1^-7,K.1^3,K.1^6,K.1,K.1^11,K.1^-4,K.1^6,K.1^-9,K.1^2,K.1^-8,K.1,K.1^-9,K.1^-12,K.1^-1,K.1^-8,K.1^-1,K.1^8,K.1^2,K.1^-12,K.1^9,K.1^7,K.1^-12,K.1^12,K.1^4,K.1^-11,K.1^2,K.1^9,K.1^9,K.1^-2,K.1^-8,K.1^-2,K.1^-8,K.1^-2,K.1^9,K.1^-12,K.1^2,K.1^-8,K.1^-2,K.1^-9,K.1^-12,K.1^2,K.1^-8,K.1^-1,K.1^6,K.1^12,K.1^-2,K.1^-6,K.1^-6,K.1^-4,K.1^11,K.1^4,K.1^-3,K.1^-3,K.1^-7,K.1^-11,K.1^-7,K.1^-11,K.1^-7,K.1^-3,K.1^6,K.1,K.1^11,K.1^-4,K.1^3,K.1^3,K.1^4,K.1^6,K.1^3,K.1^7,K.1^8,K.1,K.1^-6,K.1^-3,K.1^-7,K.1^11,K.1^-4,K.1^-9,K.1^-12,K.1^7,K.1^8,K.1^-1,K.1^8,K.1^4,K.1^3,K.1^9,K.1^7,K.1^-11,K.1,K.1^6,K.1^12,K.1^-7,K.1^-12,K.1^-6,K.1^-4,K.1^-11,K.1^2,K.1^12,K.1^6,K.1,K.1^8,K.1^7,K.1^12,K.1^3,K.1^-1,K.1^8,K.1^7,K.1^8,K.1^2,K.1^-12,K.1^-9,K.1^-1,K.1^-8,K.1^-1,K.1^-6,K.1^-6,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-10,K.1^10,K.1^5,K.1^-5,1,1,1,1,1,1,1,1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^9,K.1^-8,K.1^-6,K.1^-3,K.1^7,K.1^2,K.1^-11,K.1^8,K.1^-9,K.1^-7,K.1^3,K.1^-2,K.1^6,K.1^-4,K.1^11,K.1,K.1^-1,K.1^-12,K.1^12,K.1^4,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^-10,K.1^11,K.1^2,K.1^-12,K.1,K.1^-3,K.1^6,K.1^-4,K.1^12,K.1^-9,K.1^-2,K.1^-9,K.1^-2,K.1^-1,K.1^-6,K.1^11,K.1^-7,K.1^12,K.1^3,K.1^-9,K.1^-12,K.1^-7,K.1^8,K.1^3,K.1,K.1^-12,K.1^9,K.1^8,K.1^-4,K.1^4,K.1^-11,K.1^6,K.1^-4,K.1^2,K.1^2,K.1^-6,K.1^12,K.1^-6,K.1^7,K.1^7,K.1^-11,K.1^-11,K.1^-2,K.1^7,K.1^11,K.1^3,K.1^-8,K.1^-1,K.1^-1,K.1^-3,K.1^9,K.1^9,K.1^-3,K.1^4,K.1^-8,K.1^-8,K.1^4,K.1,K.1^8,K.1^6,K.1^-7,K.1^-7,K.1^7,K.1^-4,K.1^-2,K.1^8,K.1^4,K.1^-11,K.1^-11,K.1^-9,K.1,K.1^-3,K.1^-8,K.1^-8,K.1^4,K.1^-6,K.1^2,K.1^12,K.1^9,K.1^-4,K.1^7,K.1^2,K.1^12,K.1^11,K.1^6,K.1^-1,K.1^-3,K.1^-1,K.1^-12,K.1^11,K.1,K.1^-2,K.1^8,K.1^-9,K.1^3,K.1^3,K.1^9,K.1^-6,K.1^-7,K.1^-12,K.1^6,K.1^9,K.1^-12,K.1^-11,K.1^7,K.1^6,K.1^6,K.1^2,K.1^-6,K.1^-4,K.1^7,K.1^-8,K.1^-3,K.1^12,K.1^-2,K.1^-1,K.1^-3,K.1^11,K.1^-7,K.1^9,K.1^-4,K.1^6,K.1^11,K.1^11,K.1^-9,K.1^2,K.1^-6,K.1^8,K.1^4,K.1^-2,K.1^-9,K.1^-12,K.1^-11,K.1^-2,K.1^-1,K.1^6,K.1^-1,K.1^3,K.1,K.1^-4,K.1^-7,K.1^-12,K.1^-11,K.1^9,K.1^8,K.1^3,K.1^3,K.1^12,K.1^-7,K.1^8,K.1^-6,K.1^-7,K.1^9,K.1^-8,K.1,K.1,K.1^-4,K.1^-9,K.1^11,K.1^7,K.1^-1,K.1^3,K.1^2,K.1^4,K.1^-8,K.1^-12,K.1^-6,K.1^8,K.1,K.1^7,K.1^-11,K.1^-3,K.1^12,K.1^12,K.1^2,K.1^-3,K.1^4,K.1^4,K.1^-8,K.1^-9,K.1^-2,K.1^3,K.1^-4,K.1^6,K.1^-9,K.1^6,K.1^11,K.1^3,K.1^-6,K.1^9,K.1^8,K.1^-2,K.1^-1,K.1^-11,K.1^7,K.1^-8,K.1^2,K.1^-8,K.1^-3,K.1^-11,K.1^8,K.1^7,K.1^-7,K.1^-1,K.1^9,K.1^-12,K.1^-2,K.1^-6,K.1^4,K.1^11,K.1,K.1^-9,K.1,K.1^-4,K.1^4,K.1^-12,K.1^-7,K.1^-3,K.1^12,K.1^2,K.1^12,K.1^12,K.1^4,K.1^12,K.1^-2,K.1^-8,K.1^-9,K.1^8,K.1^-4,K.1^-11,K.1^-6,K.1^9,K.1^8,K.1^3,K.1^7,K.1^-1,K.1^2,K.1,K.1^3,K.1^4,K.1^6,K.1^7,K.1^3,K.1,K.1^9,K.1,K.1^-4,K.1^-4,K.1^-12,K.1^-9,K.1^12,K.1^9,K.1^-8,K.1^-7,K.1^-7,K.1^-1,K.1^9,K.1^-1,K.1^4,K.1^-7,K.1,K.1^-9,K.1^-6,K.1^11,K.1^11,K.1^-8,K.1^7,K.1^-11,K.1^-6,K.1^9,K.1^-1,K.1^-11,K.1^4,K.1^-12,K.1^-2,K.1^-6,K.1^4,K.1^-3,K.1^6,K.1^-2,K.1^6,K.1^2,K.1^-12,K.1^-3,K.1^-4,K.1^8,K.1^-3,K.1^3,K.1,K.1^-9,K.1^-12,K.1^-4,K.1^-4,K.1^12,K.1^-2,K.1^12,K.1^-2,K.1^12,K.1^-4,K.1^-3,K.1^-12,K.1^-2,K.1^12,K.1^4,K.1^-3,K.1^-12,K.1^-2,K.1^6,K.1^-11,K.1^3,K.1^12,K.1^11,K.1^11,K.1^-1,K.1^9,K.1,K.1^-7,K.1^-7,K.1^-8,K.1^-9,K.1^-8,K.1^-9,K.1^-8,K.1^-7,K.1^-11,K.1^-6,K.1^9,K.1^-1,K.1^7,K.1^7,K.1,K.1^-11,K.1^7,K.1^8,K.1^2,K.1^-6,K.1^11,K.1^-7,K.1^-8,K.1^9,K.1^-1,K.1^4,K.1^-3,K.1^8,K.1^2,K.1^6,K.1^2,K.1,K.1^7,K.1^-4,K.1^8,K.1^-9,K.1^-6,K.1^-11,K.1^3,K.1^-8,K.1^-3,K.1^11,K.1^-1,K.1^-9,K.1^-12,K.1^3,K.1^-11,K.1^-6,K.1^2,K.1^8,K.1^3,K.1^7,K.1^6,K.1^2,K.1^8,K.1^2,K.1^-12,K.1^-3,K.1^4,K.1^6,K.1^-2,K.1^6,K.1^11,K.1^11,K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^10,K.1^-10,K.1^-5,K.1^5,1,1,1,1,1,1,1,1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-9,K.1^8,K.1^6,K.1^3,K.1^-7,K.1^-2,K.1^11,K.1^-8,K.1^9,K.1^7,K.1^-3,K.1^2,K.1^-6,K.1^4,K.1^-11,K.1^-1,K.1,K.1^12,K.1^-12,K.1^-4,K.1^5,K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^10,K.1^-11,K.1^-2,K.1^12,K.1^-1,K.1^3,K.1^-6,K.1^4,K.1^-12,K.1^9,K.1^2,K.1^9,K.1^2,K.1,K.1^6,K.1^-11,K.1^7,K.1^-12,K.1^-3,K.1^9,K.1^12,K.1^7,K.1^-8,K.1^-3,K.1^-1,K.1^12,K.1^-9,K.1^-8,K.1^4,K.1^-4,K.1^11,K.1^-6,K.1^4,K.1^-2,K.1^-2,K.1^6,K.1^-12,K.1^6,K.1^-7,K.1^-7,K.1^11,K.1^11,K.1^2,K.1^-7,K.1^-11,K.1^-3,K.1^8,K.1,K.1,K.1^3,K.1^-9,K.1^-9,K.1^3,K.1^-4,K.1^8,K.1^8,K.1^-4,K.1^-1,K.1^-8,K.1^-6,K.1^7,K.1^7,K.1^-7,K.1^4,K.1^2,K.1^-8,K.1^-4,K.1^11,K.1^11,K.1^9,K.1^-1,K.1^3,K.1^8,K.1^8,K.1^-4,K.1^6,K.1^-2,K.1^-12,K.1^-9,K.1^4,K.1^-7,K.1^-2,K.1^-12,K.1^-11,K.1^-6,K.1,K.1^3,K.1,K.1^12,K.1^-11,K.1^-1,K.1^2,K.1^-8,K.1^9,K.1^-3,K.1^-3,K.1^-9,K.1^6,K.1^7,K.1^12,K.1^-6,K.1^-9,K.1^12,K.1^11,K.1^-7,K.1^-6,K.1^-6,K.1^-2,K.1^6,K.1^4,K.1^-7,K.1^8,K.1^3,K.1^-12,K.1^2,K.1,K.1^3,K.1^-11,K.1^7,K.1^-9,K.1^4,K.1^-6,K.1^-11,K.1^-11,K.1^9,K.1^-2,K.1^6,K.1^-8,K.1^-4,K.1^2,K.1^9,K.1^12,K.1^11,K.1^2,K.1,K.1^-6,K.1,K.1^-3,K.1^-1,K.1^4,K.1^7,K.1^12,K.1^11,K.1^-9,K.1^-8,K.1^-3,K.1^-3,K.1^-12,K.1^7,K.1^-8,K.1^6,K.1^7,K.1^-9,K.1^8,K.1^-1,K.1^-1,K.1^4,K.1^9,K.1^-11,K.1^-7,K.1,K.1^-3,K.1^-2,K.1^-4,K.1^8,K.1^12,K.1^6,K.1^-8,K.1^-1,K.1^-7,K.1^11,K.1^3,K.1^-12,K.1^-12,K.1^-2,K.1^3,K.1^-4,K.1^-4,K.1^8,K.1^9,K.1^2,K.1^-3,K.1^4,K.1^-6,K.1^9,K.1^-6,K.1^-11,K.1^-3,K.1^6,K.1^-9,K.1^-8,K.1^2,K.1,K.1^11,K.1^-7,K.1^8,K.1^-2,K.1^8,K.1^3,K.1^11,K.1^-8,K.1^-7,K.1^7,K.1,K.1^-9,K.1^12,K.1^2,K.1^6,K.1^-4,K.1^-11,K.1^-1,K.1^9,K.1^-1,K.1^4,K.1^-4,K.1^12,K.1^7,K.1^3,K.1^-12,K.1^-2,K.1^-12,K.1^-12,K.1^-4,K.1^-12,K.1^2,K.1^8,K.1^9,K.1^-8,K.1^4,K.1^11,K.1^6,K.1^-9,K.1^-8,K.1^-3,K.1^-7,K.1,K.1^-2,K.1^-1,K.1^-3,K.1^-4,K.1^-6,K.1^-7,K.1^-3,K.1^-1,K.1^-9,K.1^-1,K.1^4,K.1^4,K.1^12,K.1^9,K.1^-12,K.1^-9,K.1^8,K.1^7,K.1^7,K.1,K.1^-9,K.1,K.1^-4,K.1^7,K.1^-1,K.1^9,K.1^6,K.1^-11,K.1^-11,K.1^8,K.1^-7,K.1^11,K.1^6,K.1^-9,K.1,K.1^11,K.1^-4,K.1^12,K.1^2,K.1^6,K.1^-4,K.1^3,K.1^-6,K.1^2,K.1^-6,K.1^-2,K.1^12,K.1^3,K.1^4,K.1^-8,K.1^3,K.1^-3,K.1^-1,K.1^9,K.1^12,K.1^4,K.1^4,K.1^-12,K.1^2,K.1^-12,K.1^2,K.1^-12,K.1^4,K.1^3,K.1^12,K.1^2,K.1^-12,K.1^-4,K.1^3,K.1^12,K.1^2,K.1^-6,K.1^11,K.1^-3,K.1^-12,K.1^-11,K.1^-11,K.1,K.1^-9,K.1^-1,K.1^7,K.1^7,K.1^8,K.1^9,K.1^8,K.1^9,K.1^8,K.1^7,K.1^11,K.1^6,K.1^-9,K.1,K.1^-7,K.1^-7,K.1^-1,K.1^11,K.1^-7,K.1^-8,K.1^-2,K.1^6,K.1^-11,K.1^7,K.1^8,K.1^-9,K.1,K.1^-4,K.1^3,K.1^-8,K.1^-2,K.1^-6,K.1^-2,K.1^-1,K.1^-7,K.1^4,K.1^-8,K.1^9,K.1^6,K.1^11,K.1^-3,K.1^8,K.1^3,K.1^-11,K.1,K.1^9,K.1^12,K.1^-3,K.1^11,K.1^6,K.1^-2,K.1^-8,K.1^-3,K.1^-7,K.1^-6,K.1^-2,K.1^-8,K.1^-2,K.1^12,K.1^3,K.1^-4,K.1^-6,K.1^2,K.1^-6,K.1^-11,K.1^-11,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-10,K.1^10,K.1^5,K.1^-5,1,1,1,1,1,1,1,1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-6,K.1^-3,K.1^4,K.1^2,K.1^12,K.1^7,K.1^-1,K.1^3,K.1^6,K.1^-12,K.1^-2,K.1^-7,K.1^-4,K.1^11,K.1,K.1^-9,K.1^9,K.1^8,K.1^-8,K.1^-11,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^-10,K.1,K.1^7,K.1^8,K.1^-9,K.1^2,K.1^-4,K.1^11,K.1^-8,K.1^6,K.1^-7,K.1^6,K.1^-7,K.1^9,K.1^4,K.1,K.1^-12,K.1^-8,K.1^-2,K.1^6,K.1^8,K.1^-12,K.1^3,K.1^-2,K.1^-9,K.1^8,K.1^-6,K.1^3,K.1^11,K.1^-11,K.1^-1,K.1^-4,K.1^11,K.1^7,K.1^7,K.1^4,K.1^-8,K.1^4,K.1^12,K.1^12,K.1^-1,K.1^-1,K.1^-7,K.1^12,K.1,K.1^-2,K.1^-3,K.1^9,K.1^9,K.1^2,K.1^-6,K.1^-6,K.1^2,K.1^-11,K.1^-3,K.1^-3,K.1^-11,K.1^-9,K.1^3,K.1^-4,K.1^-12,K.1^-12,K.1^12,K.1^11,K.1^-7,K.1^3,K.1^-11,K.1^-1,K.1^-1,K.1^6,K.1^-9,K.1^2,K.1^-3,K.1^-3,K.1^-11,K.1^4,K.1^7,K.1^-8,K.1^-6,K.1^11,K.1^12,K.1^7,K.1^-8,K.1,K.1^-4,K.1^9,K.1^2,K.1^9,K.1^8,K.1,K.1^-9,K.1^-7,K.1^3,K.1^6,K.1^-2,K.1^-2,K.1^-6,K.1^4,K.1^-12,K.1^8,K.1^-4,K.1^-6,K.1^8,K.1^-1,K.1^12,K.1^-4,K.1^-4,K.1^7,K.1^4,K.1^11,K.1^12,K.1^-3,K.1^2,K.1^-8,K.1^-7,K.1^9,K.1^2,K.1,K.1^-12,K.1^-6,K.1^11,K.1^-4,K.1,K.1,K.1^6,K.1^7,K.1^4,K.1^3,K.1^-11,K.1^-7,K.1^6,K.1^8,K.1^-1,K.1^-7,K.1^9,K.1^-4,K.1^9,K.1^-2,K.1^-9,K.1^11,K.1^-12,K.1^8,K.1^-1,K.1^-6,K.1^3,K.1^-2,K.1^-2,K.1^-8,K.1^-12,K.1^3,K.1^4,K.1^-12,K.1^-6,K.1^-3,K.1^-9,K.1^-9,K.1^11,K.1^6,K.1,K.1^12,K.1^9,K.1^-2,K.1^7,K.1^-11,K.1^-3,K.1^8,K.1^4,K.1^3,K.1^-9,K.1^12,K.1^-1,K.1^2,K.1^-8,K.1^-8,K.1^7,K.1^2,K.1^-11,K.1^-11,K.1^-3,K.1^6,K.1^-7,K.1^-2,K.1^11,K.1^-4,K.1^6,K.1^-4,K.1,K.1^-2,K.1^4,K.1^-6,K.1^3,K.1^-7,K.1^9,K.1^-1,K.1^12,K.1^-3,K.1^7,K.1^-3,K.1^2,K.1^-1,K.1^3,K.1^12,K.1^-12,K.1^9,K.1^-6,K.1^8,K.1^-7,K.1^4,K.1^-11,K.1,K.1^-9,K.1^6,K.1^-9,K.1^11,K.1^-11,K.1^8,K.1^-12,K.1^2,K.1^-8,K.1^7,K.1^-8,K.1^-8,K.1^-11,K.1^-8,K.1^-7,K.1^-3,K.1^6,K.1^3,K.1^11,K.1^-1,K.1^4,K.1^-6,K.1^3,K.1^-2,K.1^12,K.1^9,K.1^7,K.1^-9,K.1^-2,K.1^-11,K.1^-4,K.1^12,K.1^-2,K.1^-9,K.1^-6,K.1^-9,K.1^11,K.1^11,K.1^8,K.1^6,K.1^-8,K.1^-6,K.1^-3,K.1^-12,K.1^-12,K.1^9,K.1^-6,K.1^9,K.1^-11,K.1^-12,K.1^-9,K.1^6,K.1^4,K.1,K.1,K.1^-3,K.1^12,K.1^-1,K.1^4,K.1^-6,K.1^9,K.1^-1,K.1^-11,K.1^8,K.1^-7,K.1^4,K.1^-11,K.1^2,K.1^-4,K.1^-7,K.1^-4,K.1^7,K.1^8,K.1^2,K.1^11,K.1^3,K.1^2,K.1^-2,K.1^-9,K.1^6,K.1^8,K.1^11,K.1^11,K.1^-8,K.1^-7,K.1^-8,K.1^-7,K.1^-8,K.1^11,K.1^2,K.1^8,K.1^-7,K.1^-8,K.1^-11,K.1^2,K.1^8,K.1^-7,K.1^-4,K.1^-1,K.1^-2,K.1^-8,K.1,K.1,K.1^9,K.1^-6,K.1^-9,K.1^-12,K.1^-12,K.1^-3,K.1^6,K.1^-3,K.1^6,K.1^-3,K.1^-12,K.1^-1,K.1^4,K.1^-6,K.1^9,K.1^12,K.1^12,K.1^-9,K.1^-1,K.1^12,K.1^3,K.1^7,K.1^4,K.1,K.1^-12,K.1^-3,K.1^-6,K.1^9,K.1^-11,K.1^2,K.1^3,K.1^7,K.1^-4,K.1^7,K.1^-9,K.1^12,K.1^11,K.1^3,K.1^6,K.1^4,K.1^-1,K.1^-2,K.1^-3,K.1^2,K.1,K.1^9,K.1^6,K.1^8,K.1^-2,K.1^-1,K.1^4,K.1^7,K.1^3,K.1^-2,K.1^12,K.1^-4,K.1^7,K.1^3,K.1^7,K.1^8,K.1^2,K.1^-11,K.1^-4,K.1^-7,K.1^-4,K.1,K.1,K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^10,K.1^-10,K.1^-5,K.1^5,1,1,1,1,1,1,1,1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^6,K.1^3,K.1^-4,K.1^-2,K.1^-12,K.1^-7,K.1,K.1^-3,K.1^-6,K.1^12,K.1^2,K.1^7,K.1^4,K.1^-11,K.1^-1,K.1^9,K.1^-9,K.1^-8,K.1^8,K.1^11,K.1^5,K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^10,K.1^-1,K.1^-7,K.1^-8,K.1^9,K.1^-2,K.1^4,K.1^-11,K.1^8,K.1^-6,K.1^7,K.1^-6,K.1^7,K.1^-9,K.1^-4,K.1^-1,K.1^12,K.1^8,K.1^2,K.1^-6,K.1^-8,K.1^12,K.1^-3,K.1^2,K.1^9,K.1^-8,K.1^6,K.1^-3,K.1^-11,K.1^11,K.1,K.1^4,K.1^-11,K.1^-7,K.1^-7,K.1^-4,K.1^8,K.1^-4,K.1^-12,K.1^-12,K.1,K.1,K.1^7,K.1^-12,K.1^-1,K.1^2,K.1^3,K.1^-9,K.1^-9,K.1^-2,K.1^6,K.1^6,K.1^-2,K.1^11,K.1^3,K.1^3,K.1^11,K.1^9,K.1^-3,K.1^4,K.1^12,K.1^12,K.1^-12,K.1^-11,K.1^7,K.1^-3,K.1^11,K.1,K.1,K.1^-6,K.1^9,K.1^-2,K.1^3,K.1^3,K.1^11,K.1^-4,K.1^-7,K.1^8,K.1^6,K.1^-11,K.1^-12,K.1^-7,K.1^8,K.1^-1,K.1^4,K.1^-9,K.1^-2,K.1^-9,K.1^-8,K.1^-1,K.1^9,K.1^7,K.1^-3,K.1^-6,K.1^2,K.1^2,K.1^6,K.1^-4,K.1^12,K.1^-8,K.1^4,K.1^6,K.1^-8,K.1,K.1^-12,K.1^4,K.1^4,K.1^-7,K.1^-4,K.1^-11,K.1^-12,K.1^3,K.1^-2,K.1^8,K.1^7,K.1^-9,K.1^-2,K.1^-1,K.1^12,K.1^6,K.1^-11,K.1^4,K.1^-1,K.1^-1,K.1^-6,K.1^-7,K.1^-4,K.1^-3,K.1^11,K.1^7,K.1^-6,K.1^-8,K.1,K.1^7,K.1^-9,K.1^4,K.1^-9,K.1^2,K.1^9,K.1^-11,K.1^12,K.1^-8,K.1,K.1^6,K.1^-3,K.1^2,K.1^2,K.1^8,K.1^12,K.1^-3,K.1^-4,K.1^12,K.1^6,K.1^3,K.1^9,K.1^9,K.1^-11,K.1^-6,K.1^-1,K.1^-12,K.1^-9,K.1^2,K.1^-7,K.1^11,K.1^3,K.1^-8,K.1^-4,K.1^-3,K.1^9,K.1^-12,K.1,K.1^-2,K.1^8,K.1^8,K.1^-7,K.1^-2,K.1^11,K.1^11,K.1^3,K.1^-6,K.1^7,K.1^2,K.1^-11,K.1^4,K.1^-6,K.1^4,K.1^-1,K.1^2,K.1^-4,K.1^6,K.1^-3,K.1^7,K.1^-9,K.1,K.1^-12,K.1^3,K.1^-7,K.1^3,K.1^-2,K.1,K.1^-3,K.1^-12,K.1^12,K.1^-9,K.1^6,K.1^-8,K.1^7,K.1^-4,K.1^11,K.1^-1,K.1^9,K.1^-6,K.1^9,K.1^-11,K.1^11,K.1^-8,K.1^12,K.1^-2,K.1^8,K.1^-7,K.1^8,K.1^8,K.1^11,K.1^8,K.1^7,K.1^3,K.1^-6,K.1^-3,K.1^-11,K.1,K.1^-4,K.1^6,K.1^-3,K.1^2,K.1^-12,K.1^-9,K.1^-7,K.1^9,K.1^2,K.1^11,K.1^4,K.1^-12,K.1^2,K.1^9,K.1^6,K.1^9,K.1^-11,K.1^-11,K.1^-8,K.1^-6,K.1^8,K.1^6,K.1^3,K.1^12,K.1^12,K.1^-9,K.1^6,K.1^-9,K.1^11,K.1^12,K.1^9,K.1^-6,K.1^-4,K.1^-1,K.1^-1,K.1^3,K.1^-12,K.1,K.1^-4,K.1^6,K.1^-9,K.1,K.1^11,K.1^-8,K.1^7,K.1^-4,K.1^11,K.1^-2,K.1^4,K.1^7,K.1^4,K.1^-7,K.1^-8,K.1^-2,K.1^-11,K.1^-3,K.1^-2,K.1^2,K.1^9,K.1^-6,K.1^-8,K.1^-11,K.1^-11,K.1^8,K.1^7,K.1^8,K.1^7,K.1^8,K.1^-11,K.1^-2,K.1^-8,K.1^7,K.1^8,K.1^11,K.1^-2,K.1^-8,K.1^7,K.1^4,K.1,K.1^2,K.1^8,K.1^-1,K.1^-1,K.1^-9,K.1^6,K.1^9,K.1^12,K.1^12,K.1^3,K.1^-6,K.1^3,K.1^-6,K.1^3,K.1^12,K.1,K.1^-4,K.1^6,K.1^-9,K.1^-12,K.1^-12,K.1^9,K.1,K.1^-12,K.1^-3,K.1^-7,K.1^-4,K.1^-1,K.1^12,K.1^3,K.1^6,K.1^-9,K.1^11,K.1^-2,K.1^-3,K.1^-7,K.1^4,K.1^-7,K.1^9,K.1^-12,K.1^-11,K.1^-3,K.1^-6,K.1^-4,K.1,K.1^2,K.1^3,K.1^-2,K.1^-1,K.1^-9,K.1^-6,K.1^-8,K.1^2,K.1,K.1^-4,K.1^-7,K.1^-3,K.1^2,K.1^-12,K.1^4,K.1^-7,K.1^-3,K.1^-7,K.1^-8,K.1^-2,K.1^11,K.1^4,K.1^7,K.1^4,K.1^-1,K.1^-1,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-10,K.1^10,K.1^5,K.1^-5,1,1,1,1,1,1,1,1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^4,K.1^2,K.1^-11,K.1^7,K.1^-8,K.1^12,K.1^9,K.1^-2,K.1^-4,K.1^8,K.1^-7,K.1^-12,K.1^11,K.1,K.1^-9,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^-1,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^-10,K.1^-9,K.1^12,K.1^3,K.1^6,K.1^7,K.1^11,K.1,K.1^-3,K.1^-4,K.1^-12,K.1^-4,K.1^-12,K.1^-6,K.1^-11,K.1^-9,K.1^8,K.1^-3,K.1^-7,K.1^-4,K.1^3,K.1^8,K.1^-2,K.1^-7,K.1^6,K.1^3,K.1^4,K.1^-2,K.1,K.1^-1,K.1^9,K.1^11,K.1,K.1^12,K.1^12,K.1^-11,K.1^-3,K.1^-11,K.1^-8,K.1^-8,K.1^9,K.1^9,K.1^-12,K.1^-8,K.1^-9,K.1^-7,K.1^2,K.1^-6,K.1^-6,K.1^7,K.1^4,K.1^4,K.1^7,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^6,K.1^-2,K.1^11,K.1^8,K.1^8,K.1^-8,K.1,K.1^-12,K.1^-2,K.1^-1,K.1^9,K.1^9,K.1^-4,K.1^6,K.1^7,K.1^2,K.1^2,K.1^-1,K.1^-11,K.1^12,K.1^-3,K.1^4,K.1,K.1^-8,K.1^12,K.1^-3,K.1^-9,K.1^11,K.1^-6,K.1^7,K.1^-6,K.1^3,K.1^-9,K.1^6,K.1^-12,K.1^-2,K.1^-4,K.1^-7,K.1^-7,K.1^4,K.1^-11,K.1^8,K.1^3,K.1^11,K.1^4,K.1^3,K.1^9,K.1^-8,K.1^11,K.1^11,K.1^12,K.1^-11,K.1,K.1^-8,K.1^2,K.1^7,K.1^-3,K.1^-12,K.1^-6,K.1^7,K.1^-9,K.1^8,K.1^4,K.1,K.1^11,K.1^-9,K.1^-9,K.1^-4,K.1^12,K.1^-11,K.1^-2,K.1^-1,K.1^-12,K.1^-4,K.1^3,K.1^9,K.1^-12,K.1^-6,K.1^11,K.1^-6,K.1^-7,K.1^6,K.1,K.1^8,K.1^3,K.1^9,K.1^4,K.1^-2,K.1^-7,K.1^-7,K.1^-3,K.1^8,K.1^-2,K.1^-11,K.1^8,K.1^4,K.1^2,K.1^6,K.1^6,K.1,K.1^-4,K.1^-9,K.1^-8,K.1^-6,K.1^-7,K.1^12,K.1^-1,K.1^2,K.1^3,K.1^-11,K.1^-2,K.1^6,K.1^-8,K.1^9,K.1^7,K.1^-3,K.1^-3,K.1^12,K.1^7,K.1^-1,K.1^-1,K.1^2,K.1^-4,K.1^-12,K.1^-7,K.1,K.1^11,K.1^-4,K.1^11,K.1^-9,K.1^-7,K.1^-11,K.1^4,K.1^-2,K.1^-12,K.1^-6,K.1^9,K.1^-8,K.1^2,K.1^12,K.1^2,K.1^7,K.1^9,K.1^-2,K.1^-8,K.1^8,K.1^-6,K.1^4,K.1^3,K.1^-12,K.1^-11,K.1^-1,K.1^-9,K.1^6,K.1^-4,K.1^6,K.1,K.1^-1,K.1^3,K.1^8,K.1^7,K.1^-3,K.1^12,K.1^-3,K.1^-3,K.1^-1,K.1^-3,K.1^-12,K.1^2,K.1^-4,K.1^-2,K.1,K.1^9,K.1^-11,K.1^4,K.1^-2,K.1^-7,K.1^-8,K.1^-6,K.1^12,K.1^6,K.1^-7,K.1^-1,K.1^11,K.1^-8,K.1^-7,K.1^6,K.1^4,K.1^6,K.1,K.1,K.1^3,K.1^-4,K.1^-3,K.1^4,K.1^2,K.1^8,K.1^8,K.1^-6,K.1^4,K.1^-6,K.1^-1,K.1^8,K.1^6,K.1^-4,K.1^-11,K.1^-9,K.1^-9,K.1^2,K.1^-8,K.1^9,K.1^-11,K.1^4,K.1^-6,K.1^9,K.1^-1,K.1^3,K.1^-12,K.1^-11,K.1^-1,K.1^7,K.1^11,K.1^-12,K.1^11,K.1^12,K.1^3,K.1^7,K.1,K.1^-2,K.1^7,K.1^-7,K.1^6,K.1^-4,K.1^3,K.1,K.1,K.1^-3,K.1^-12,K.1^-3,K.1^-12,K.1^-3,K.1,K.1^7,K.1^3,K.1^-12,K.1^-3,K.1^-1,K.1^7,K.1^3,K.1^-12,K.1^11,K.1^9,K.1^-7,K.1^-3,K.1^-9,K.1^-9,K.1^-6,K.1^4,K.1^6,K.1^8,K.1^8,K.1^2,K.1^-4,K.1^2,K.1^-4,K.1^2,K.1^8,K.1^9,K.1^-11,K.1^4,K.1^-6,K.1^-8,K.1^-8,K.1^6,K.1^9,K.1^-8,K.1^-2,K.1^12,K.1^-11,K.1^-9,K.1^8,K.1^2,K.1^4,K.1^-6,K.1^-1,K.1^7,K.1^-2,K.1^12,K.1^11,K.1^12,K.1^6,K.1^-8,K.1,K.1^-2,K.1^-4,K.1^-11,K.1^9,K.1^-7,K.1^2,K.1^7,K.1^-9,K.1^-6,K.1^-4,K.1^3,K.1^-7,K.1^9,K.1^-11,K.1^12,K.1^-2,K.1^-7,K.1^-8,K.1^11,K.1^12,K.1^-2,K.1^12,K.1^3,K.1^7,K.1^-1,K.1^11,K.1^-12,K.1^11,K.1^-9,K.1^-9,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^10,K.1^-10,K.1^-5,K.1^5,1,1,1,1,1,1,1,1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-4,K.1^-2,K.1^11,K.1^-7,K.1^8,K.1^-12,K.1^-9,K.1^2,K.1^4,K.1^-8,K.1^7,K.1^12,K.1^-11,K.1^-1,K.1^9,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1,K.1^5,K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^10,K.1^9,K.1^-12,K.1^-3,K.1^-6,K.1^-7,K.1^-11,K.1^-1,K.1^3,K.1^4,K.1^12,K.1^4,K.1^12,K.1^6,K.1^11,K.1^9,K.1^-8,K.1^3,K.1^7,K.1^4,K.1^-3,K.1^-8,K.1^2,K.1^7,K.1^-6,K.1^-3,K.1^-4,K.1^2,K.1^-1,K.1,K.1^-9,K.1^-11,K.1^-1,K.1^-12,K.1^-12,K.1^11,K.1^3,K.1^11,K.1^8,K.1^8,K.1^-9,K.1^-9,K.1^12,K.1^8,K.1^9,K.1^7,K.1^-2,K.1^6,K.1^6,K.1^-7,K.1^-4,K.1^-4,K.1^-7,K.1,K.1^-2,K.1^-2,K.1,K.1^-6,K.1^2,K.1^-11,K.1^-8,K.1^-8,K.1^8,K.1^-1,K.1^12,K.1^2,K.1,K.1^-9,K.1^-9,K.1^4,K.1^-6,K.1^-7,K.1^-2,K.1^-2,K.1,K.1^11,K.1^-12,K.1^3,K.1^-4,K.1^-1,K.1^8,K.1^-12,K.1^3,K.1^9,K.1^-11,K.1^6,K.1^-7,K.1^6,K.1^-3,K.1^9,K.1^-6,K.1^12,K.1^2,K.1^4,K.1^7,K.1^7,K.1^-4,K.1^11,K.1^-8,K.1^-3,K.1^-11,K.1^-4,K.1^-3,K.1^-9,K.1^8,K.1^-11,K.1^-11,K.1^-12,K.1^11,K.1^-1,K.1^8,K.1^-2,K.1^-7,K.1^3,K.1^12,K.1^6,K.1^-7,K.1^9,K.1^-8,K.1^-4,K.1^-1,K.1^-11,K.1^9,K.1^9,K.1^4,K.1^-12,K.1^11,K.1^2,K.1,K.1^12,K.1^4,K.1^-3,K.1^-9,K.1^12,K.1^6,K.1^-11,K.1^6,K.1^7,K.1^-6,K.1^-1,K.1^-8,K.1^-3,K.1^-9,K.1^-4,K.1^2,K.1^7,K.1^7,K.1^3,K.1^-8,K.1^2,K.1^11,K.1^-8,K.1^-4,K.1^-2,K.1^-6,K.1^-6,K.1^-1,K.1^4,K.1^9,K.1^8,K.1^6,K.1^7,K.1^-12,K.1,K.1^-2,K.1^-3,K.1^11,K.1^2,K.1^-6,K.1^8,K.1^-9,K.1^-7,K.1^3,K.1^3,K.1^-12,K.1^-7,K.1,K.1,K.1^-2,K.1^4,K.1^12,K.1^7,K.1^-1,K.1^-11,K.1^4,K.1^-11,K.1^9,K.1^7,K.1^11,K.1^-4,K.1^2,K.1^12,K.1^6,K.1^-9,K.1^8,K.1^-2,K.1^-12,K.1^-2,K.1^-7,K.1^-9,K.1^2,K.1^8,K.1^-8,K.1^6,K.1^-4,K.1^-3,K.1^12,K.1^11,K.1,K.1^9,K.1^-6,K.1^4,K.1^-6,K.1^-1,K.1,K.1^-3,K.1^-8,K.1^-7,K.1^3,K.1^-12,K.1^3,K.1^3,K.1,K.1^3,K.1^12,K.1^-2,K.1^4,K.1^2,K.1^-1,K.1^-9,K.1^11,K.1^-4,K.1^2,K.1^7,K.1^8,K.1^6,K.1^-12,K.1^-6,K.1^7,K.1,K.1^-11,K.1^8,K.1^7,K.1^-6,K.1^-4,K.1^-6,K.1^-1,K.1^-1,K.1^-3,K.1^4,K.1^3,K.1^-4,K.1^-2,K.1^-8,K.1^-8,K.1^6,K.1^-4,K.1^6,K.1,K.1^-8,K.1^-6,K.1^4,K.1^11,K.1^9,K.1^9,K.1^-2,K.1^8,K.1^-9,K.1^11,K.1^-4,K.1^6,K.1^-9,K.1,K.1^-3,K.1^12,K.1^11,K.1,K.1^-7,K.1^-11,K.1^12,K.1^-11,K.1^-12,K.1^-3,K.1^-7,K.1^-1,K.1^2,K.1^-7,K.1^7,K.1^-6,K.1^4,K.1^-3,K.1^-1,K.1^-1,K.1^3,K.1^12,K.1^3,K.1^12,K.1^3,K.1^-1,K.1^-7,K.1^-3,K.1^12,K.1^3,K.1,K.1^-7,K.1^-3,K.1^12,K.1^-11,K.1^-9,K.1^7,K.1^3,K.1^9,K.1^9,K.1^6,K.1^-4,K.1^-6,K.1^-8,K.1^-8,K.1^-2,K.1^4,K.1^-2,K.1^4,K.1^-2,K.1^-8,K.1^-9,K.1^11,K.1^-4,K.1^6,K.1^8,K.1^8,K.1^-6,K.1^-9,K.1^8,K.1^2,K.1^-12,K.1^11,K.1^9,K.1^-8,K.1^-2,K.1^-4,K.1^6,K.1,K.1^-7,K.1^2,K.1^-12,K.1^-11,K.1^-12,K.1^-6,K.1^8,K.1^-1,K.1^2,K.1^4,K.1^11,K.1^-9,K.1^7,K.1^-2,K.1^-7,K.1^9,K.1^6,K.1^4,K.1^-3,K.1^7,K.1^-9,K.1^11,K.1^-12,K.1^2,K.1^7,K.1^8,K.1^-11,K.1^-12,K.1^2,K.1^-12,K.1^-3,K.1^-7,K.1,K.1^-11,K.1^12,K.1^-11,K.1^9,K.1^9,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-10,K.1^10,K.1^5,K.1^-5,1,1,1,1,1,1,1,1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-1,K.1^12,K.1^9,K.1^-8,K.1^2,K.1^-3,K.1^4,K.1^-12,K.1,K.1^-2,K.1^8,K.1^3,K.1^-9,K.1^6,K.1^-4,K.1^11,K.1^-11,K.1^-7,K.1^7,K.1^-6,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^-10,K.1^-4,K.1^-3,K.1^-7,K.1^11,K.1^-8,K.1^-9,K.1^6,K.1^7,K.1,K.1^3,K.1,K.1^3,K.1^-11,K.1^9,K.1^-4,K.1^-2,K.1^7,K.1^8,K.1,K.1^-7,K.1^-2,K.1^-12,K.1^8,K.1^11,K.1^-7,K.1^-1,K.1^-12,K.1^6,K.1^-6,K.1^4,K.1^-9,K.1^6,K.1^-3,K.1^-3,K.1^9,K.1^7,K.1^9,K.1^2,K.1^2,K.1^4,K.1^4,K.1^3,K.1^2,K.1^-4,K.1^8,K.1^12,K.1^-11,K.1^-11,K.1^-8,K.1^-1,K.1^-1,K.1^-8,K.1^-6,K.1^12,K.1^12,K.1^-6,K.1^11,K.1^-12,K.1^-9,K.1^-2,K.1^-2,K.1^2,K.1^6,K.1^3,K.1^-12,K.1^-6,K.1^4,K.1^4,K.1,K.1^11,K.1^-8,K.1^12,K.1^12,K.1^-6,K.1^9,K.1^-3,K.1^7,K.1^-1,K.1^6,K.1^2,K.1^-3,K.1^7,K.1^-4,K.1^-9,K.1^-11,K.1^-8,K.1^-11,K.1^-7,K.1^-4,K.1^11,K.1^3,K.1^-12,K.1,K.1^8,K.1^8,K.1^-1,K.1^9,K.1^-2,K.1^-7,K.1^-9,K.1^-1,K.1^-7,K.1^4,K.1^2,K.1^-9,K.1^-9,K.1^-3,K.1^9,K.1^6,K.1^2,K.1^12,K.1^-8,K.1^7,K.1^3,K.1^-11,K.1^-8,K.1^-4,K.1^-2,K.1^-1,K.1^6,K.1^-9,K.1^-4,K.1^-4,K.1,K.1^-3,K.1^9,K.1^-12,K.1^-6,K.1^3,K.1,K.1^-7,K.1^4,K.1^3,K.1^-11,K.1^-9,K.1^-11,K.1^8,K.1^11,K.1^6,K.1^-2,K.1^-7,K.1^4,K.1^-1,K.1^-12,K.1^8,K.1^8,K.1^7,K.1^-2,K.1^-12,K.1^9,K.1^-2,K.1^-1,K.1^12,K.1^11,K.1^11,K.1^6,K.1,K.1^-4,K.1^2,K.1^-11,K.1^8,K.1^-3,K.1^-6,K.1^12,K.1^-7,K.1^9,K.1^-12,K.1^11,K.1^2,K.1^4,K.1^-8,K.1^7,K.1^7,K.1^-3,K.1^-8,K.1^-6,K.1^-6,K.1^12,K.1,K.1^3,K.1^8,K.1^6,K.1^-9,K.1,K.1^-9,K.1^-4,K.1^8,K.1^9,K.1^-1,K.1^-12,K.1^3,K.1^-11,K.1^4,K.1^2,K.1^12,K.1^-3,K.1^12,K.1^-8,K.1^4,K.1^-12,K.1^2,K.1^-2,K.1^-11,K.1^-1,K.1^-7,K.1^3,K.1^9,K.1^-6,K.1^-4,K.1^11,K.1,K.1^11,K.1^6,K.1^-6,K.1^-7,K.1^-2,K.1^-8,K.1^7,K.1^-3,K.1^7,K.1^7,K.1^-6,K.1^7,K.1^3,K.1^12,K.1,K.1^-12,K.1^6,K.1^4,K.1^9,K.1^-1,K.1^-12,K.1^8,K.1^2,K.1^-11,K.1^-3,K.1^11,K.1^8,K.1^-6,K.1^-9,K.1^2,K.1^8,K.1^11,K.1^-1,K.1^11,K.1^6,K.1^6,K.1^-7,K.1,K.1^7,K.1^-1,K.1^12,K.1^-2,K.1^-2,K.1^-11,K.1^-1,K.1^-11,K.1^-6,K.1^-2,K.1^11,K.1,K.1^9,K.1^-4,K.1^-4,K.1^12,K.1^2,K.1^4,K.1^9,K.1^-1,K.1^-11,K.1^4,K.1^-6,K.1^-7,K.1^3,K.1^9,K.1^-6,K.1^-8,K.1^-9,K.1^3,K.1^-9,K.1^-3,K.1^-7,K.1^-8,K.1^6,K.1^-12,K.1^-8,K.1^8,K.1^11,K.1,K.1^-7,K.1^6,K.1^6,K.1^7,K.1^3,K.1^7,K.1^3,K.1^7,K.1^6,K.1^-8,K.1^-7,K.1^3,K.1^7,K.1^-6,K.1^-8,K.1^-7,K.1^3,K.1^-9,K.1^4,K.1^8,K.1^7,K.1^-4,K.1^-4,K.1^-11,K.1^-1,K.1^11,K.1^-2,K.1^-2,K.1^12,K.1,K.1^12,K.1,K.1^12,K.1^-2,K.1^4,K.1^9,K.1^-1,K.1^-11,K.1^2,K.1^2,K.1^11,K.1^4,K.1^2,K.1^-12,K.1^-3,K.1^9,K.1^-4,K.1^-2,K.1^12,K.1^-1,K.1^-11,K.1^-6,K.1^-8,K.1^-12,K.1^-3,K.1^-9,K.1^-3,K.1^11,K.1^2,K.1^6,K.1^-12,K.1,K.1^9,K.1^4,K.1^8,K.1^12,K.1^-8,K.1^-4,K.1^-11,K.1,K.1^-7,K.1^8,K.1^4,K.1^9,K.1^-3,K.1^-12,K.1^8,K.1^2,K.1^-9,K.1^-3,K.1^-12,K.1^-3,K.1^-7,K.1^-8,K.1^-6,K.1^-9,K.1^3,K.1^-9,K.1^-4,K.1^-4,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^10,K.1^-10,K.1^-5,K.1^5,1,1,1,1,1,1,1,1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1,K.1^-12,K.1^-9,K.1^8,K.1^-2,K.1^3,K.1^-4,K.1^12,K.1^-1,K.1^2,K.1^-8,K.1^-3,K.1^9,K.1^-6,K.1^4,K.1^-11,K.1^11,K.1^7,K.1^-7,K.1^6,K.1^5,K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^10,K.1^4,K.1^3,K.1^7,K.1^-11,K.1^8,K.1^9,K.1^-6,K.1^-7,K.1^-1,K.1^-3,K.1^-1,K.1^-3,K.1^11,K.1^-9,K.1^4,K.1^2,K.1^-7,K.1^-8,K.1^-1,K.1^7,K.1^2,K.1^12,K.1^-8,K.1^-11,K.1^7,K.1,K.1^12,K.1^-6,K.1^6,K.1^-4,K.1^9,K.1^-6,K.1^3,K.1^3,K.1^-9,K.1^-7,K.1^-9,K.1^-2,K.1^-2,K.1^-4,K.1^-4,K.1^-3,K.1^-2,K.1^4,K.1^-8,K.1^-12,K.1^11,K.1^11,K.1^8,K.1,K.1,K.1^8,K.1^6,K.1^-12,K.1^-12,K.1^6,K.1^-11,K.1^12,K.1^9,K.1^2,K.1^2,K.1^-2,K.1^-6,K.1^-3,K.1^12,K.1^6,K.1^-4,K.1^-4,K.1^-1,K.1^-11,K.1^8,K.1^-12,K.1^-12,K.1^6,K.1^-9,K.1^3,K.1^-7,K.1,K.1^-6,K.1^-2,K.1^3,K.1^-7,K.1^4,K.1^9,K.1^11,K.1^8,K.1^11,K.1^7,K.1^4,K.1^-11,K.1^-3,K.1^12,K.1^-1,K.1^-8,K.1^-8,K.1,K.1^-9,K.1^2,K.1^7,K.1^9,K.1,K.1^7,K.1^-4,K.1^-2,K.1^9,K.1^9,K.1^3,K.1^-9,K.1^-6,K.1^-2,K.1^-12,K.1^8,K.1^-7,K.1^-3,K.1^11,K.1^8,K.1^4,K.1^2,K.1,K.1^-6,K.1^9,K.1^4,K.1^4,K.1^-1,K.1^3,K.1^-9,K.1^12,K.1^6,K.1^-3,K.1^-1,K.1^7,K.1^-4,K.1^-3,K.1^11,K.1^9,K.1^11,K.1^-8,K.1^-11,K.1^-6,K.1^2,K.1^7,K.1^-4,K.1,K.1^12,K.1^-8,K.1^-8,K.1^-7,K.1^2,K.1^12,K.1^-9,K.1^2,K.1,K.1^-12,K.1^-11,K.1^-11,K.1^-6,K.1^-1,K.1^4,K.1^-2,K.1^11,K.1^-8,K.1^3,K.1^6,K.1^-12,K.1^7,K.1^-9,K.1^12,K.1^-11,K.1^-2,K.1^-4,K.1^8,K.1^-7,K.1^-7,K.1^3,K.1^8,K.1^6,K.1^6,K.1^-12,K.1^-1,K.1^-3,K.1^-8,K.1^-6,K.1^9,K.1^-1,K.1^9,K.1^4,K.1^-8,K.1^-9,K.1,K.1^12,K.1^-3,K.1^11,K.1^-4,K.1^-2,K.1^-12,K.1^3,K.1^-12,K.1^8,K.1^-4,K.1^12,K.1^-2,K.1^2,K.1^11,K.1,K.1^7,K.1^-3,K.1^-9,K.1^6,K.1^4,K.1^-11,K.1^-1,K.1^-11,K.1^-6,K.1^6,K.1^7,K.1^2,K.1^8,K.1^-7,K.1^3,K.1^-7,K.1^-7,K.1^6,K.1^-7,K.1^-3,K.1^-12,K.1^-1,K.1^12,K.1^-6,K.1^-4,K.1^-9,K.1,K.1^12,K.1^-8,K.1^-2,K.1^11,K.1^3,K.1^-11,K.1^-8,K.1^6,K.1^9,K.1^-2,K.1^-8,K.1^-11,K.1,K.1^-11,K.1^-6,K.1^-6,K.1^7,K.1^-1,K.1^-7,K.1,K.1^-12,K.1^2,K.1^2,K.1^11,K.1,K.1^11,K.1^6,K.1^2,K.1^-11,K.1^-1,K.1^-9,K.1^4,K.1^4,K.1^-12,K.1^-2,K.1^-4,K.1^-9,K.1,K.1^11,K.1^-4,K.1^6,K.1^7,K.1^-3,K.1^-9,K.1^6,K.1^8,K.1^9,K.1^-3,K.1^9,K.1^3,K.1^7,K.1^8,K.1^-6,K.1^12,K.1^8,K.1^-8,K.1^-11,K.1^-1,K.1^7,K.1^-6,K.1^-6,K.1^-7,K.1^-3,K.1^-7,K.1^-3,K.1^-7,K.1^-6,K.1^8,K.1^7,K.1^-3,K.1^-7,K.1^6,K.1^8,K.1^7,K.1^-3,K.1^9,K.1^-4,K.1^-8,K.1^-7,K.1^4,K.1^4,K.1^11,K.1,K.1^-11,K.1^2,K.1^2,K.1^-12,K.1^-1,K.1^-12,K.1^-1,K.1^-12,K.1^2,K.1^-4,K.1^-9,K.1,K.1^11,K.1^-2,K.1^-2,K.1^-11,K.1^-4,K.1^-2,K.1^12,K.1^3,K.1^-9,K.1^4,K.1^2,K.1^-12,K.1,K.1^11,K.1^6,K.1^8,K.1^12,K.1^3,K.1^9,K.1^3,K.1^-11,K.1^-2,K.1^-6,K.1^12,K.1^-1,K.1^-9,K.1^-4,K.1^-8,K.1^-12,K.1^8,K.1^4,K.1^11,K.1^-1,K.1^7,K.1^-8,K.1^-4,K.1^-9,K.1^3,K.1^12,K.1^-8,K.1^-2,K.1^9,K.1^3,K.1^12,K.1^3,K.1^7,K.1^8,K.1^6,K.1^9,K.1^-3,K.1^9,K.1^4,K.1^4,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^5,K.1^-10,K.1^10,1,1,1,1,1,1,1,1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^12,K.1^6,K.1^-8,K.1^-4,K.1,K.1^11,K.1^2,K.1^-6,K.1^-12,K.1^-1,K.1^4,K.1^-11,K.1^8,K.1^3,K.1^-2,K.1^-7,K.1^7,K.1^9,K.1^-9,K.1^-3,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-5,K.1^-2,K.1^11,K.1^9,K.1^-7,K.1^-4,K.1^8,K.1^3,K.1^-9,K.1^-12,K.1^-11,K.1^-12,K.1^-11,K.1^7,K.1^-8,K.1^-2,K.1^-1,K.1^-9,K.1^4,K.1^-12,K.1^9,K.1^-1,K.1^-6,K.1^4,K.1^-7,K.1^9,K.1^12,K.1^-6,K.1^3,K.1^-3,K.1^2,K.1^8,K.1^3,K.1^11,K.1^11,K.1^-8,K.1^-9,K.1^-8,K.1,K.1,K.1^2,K.1^2,K.1^-11,K.1,K.1^-2,K.1^4,K.1^6,K.1^7,K.1^7,K.1^-4,K.1^12,K.1^12,K.1^-4,K.1^-3,K.1^6,K.1^6,K.1^-3,K.1^-7,K.1^-6,K.1^8,K.1^-1,K.1^-1,K.1,K.1^3,K.1^-11,K.1^-6,K.1^-3,K.1^2,K.1^2,K.1^-12,K.1^-7,K.1^-4,K.1^6,K.1^6,K.1^-3,K.1^-8,K.1^11,K.1^-9,K.1^12,K.1^3,K.1,K.1^11,K.1^-9,K.1^-2,K.1^8,K.1^7,K.1^-4,K.1^7,K.1^9,K.1^-2,K.1^-7,K.1^-11,K.1^-6,K.1^-12,K.1^4,K.1^4,K.1^12,K.1^-8,K.1^-1,K.1^9,K.1^8,K.1^12,K.1^9,K.1^2,K.1,K.1^8,K.1^8,K.1^11,K.1^-8,K.1^3,K.1,K.1^6,K.1^-4,K.1^-9,K.1^-11,K.1^7,K.1^-4,K.1^-2,K.1^-1,K.1^12,K.1^3,K.1^8,K.1^-2,K.1^-2,K.1^-12,K.1^11,K.1^-8,K.1^-6,K.1^-3,K.1^-11,K.1^-12,K.1^9,K.1^2,K.1^-11,K.1^7,K.1^8,K.1^7,K.1^4,K.1^-7,K.1^3,K.1^-1,K.1^9,K.1^2,K.1^12,K.1^-6,K.1^4,K.1^4,K.1^-9,K.1^-1,K.1^-6,K.1^-8,K.1^-1,K.1^12,K.1^6,K.1^-7,K.1^-7,K.1^3,K.1^-12,K.1^-2,K.1,K.1^7,K.1^4,K.1^11,K.1^-3,K.1^6,K.1^9,K.1^-8,K.1^-6,K.1^-7,K.1,K.1^2,K.1^-4,K.1^-9,K.1^-9,K.1^11,K.1^-4,K.1^-3,K.1^-3,K.1^6,K.1^-12,K.1^-11,K.1^4,K.1^3,K.1^8,K.1^-12,K.1^8,K.1^-2,K.1^4,K.1^-8,K.1^12,K.1^-6,K.1^-11,K.1^7,K.1^2,K.1,K.1^6,K.1^11,K.1^6,K.1^-4,K.1^2,K.1^-6,K.1,K.1^-1,K.1^7,K.1^12,K.1^9,K.1^-11,K.1^-8,K.1^-3,K.1^-2,K.1^-7,K.1^-12,K.1^-7,K.1^3,K.1^-3,K.1^9,K.1^-1,K.1^-4,K.1^-9,K.1^11,K.1^-9,K.1^-9,K.1^-3,K.1^-9,K.1^-11,K.1^6,K.1^-12,K.1^-6,K.1^3,K.1^2,K.1^-8,K.1^12,K.1^-6,K.1^4,K.1,K.1^7,K.1^11,K.1^-7,K.1^4,K.1^-3,K.1^8,K.1,K.1^4,K.1^-7,K.1^12,K.1^-7,K.1^3,K.1^3,K.1^9,K.1^-12,K.1^-9,K.1^12,K.1^6,K.1^-1,K.1^-1,K.1^7,K.1^12,K.1^7,K.1^-3,K.1^-1,K.1^-7,K.1^-12,K.1^-8,K.1^-2,K.1^-2,K.1^6,K.1,K.1^2,K.1^-8,K.1^12,K.1^7,K.1^2,K.1^-3,K.1^9,K.1^-11,K.1^-8,K.1^-3,K.1^-4,K.1^8,K.1^-11,K.1^8,K.1^11,K.1^9,K.1^-4,K.1^3,K.1^-6,K.1^-4,K.1^4,K.1^-7,K.1^-12,K.1^9,K.1^3,K.1^3,K.1^-9,K.1^-11,K.1^-9,K.1^-11,K.1^-9,K.1^3,K.1^-4,K.1^9,K.1^-11,K.1^-9,K.1^-3,K.1^-4,K.1^9,K.1^-11,K.1^8,K.1^2,K.1^4,K.1^-9,K.1^-2,K.1^-2,K.1^7,K.1^12,K.1^-7,K.1^-1,K.1^-1,K.1^6,K.1^-12,K.1^6,K.1^-12,K.1^6,K.1^-1,K.1^2,K.1^-8,K.1^12,K.1^7,K.1,K.1,K.1^-7,K.1^2,K.1,K.1^-6,K.1^11,K.1^-8,K.1^-2,K.1^-1,K.1^6,K.1^12,K.1^7,K.1^-3,K.1^-4,K.1^-6,K.1^11,K.1^8,K.1^11,K.1^-7,K.1,K.1^3,K.1^-6,K.1^-12,K.1^-8,K.1^2,K.1^4,K.1^6,K.1^-4,K.1^-2,K.1^7,K.1^-12,K.1^9,K.1^4,K.1^2,K.1^-8,K.1^11,K.1^-6,K.1^4,K.1,K.1^8,K.1^11,K.1^-6,K.1^11,K.1^9,K.1^-4,K.1^-3,K.1^8,K.1^-11,K.1^8,K.1^-2,K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-5,K.1^10,K.1^-10,1,1,1,1,1,1,1,1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^-12,K.1^-6,K.1^8,K.1^4,K.1^-1,K.1^-11,K.1^-2,K.1^6,K.1^12,K.1,K.1^-4,K.1^11,K.1^-8,K.1^-3,K.1^2,K.1^7,K.1^-7,K.1^-9,K.1^9,K.1^3,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^5,K.1^2,K.1^-11,K.1^-9,K.1^7,K.1^4,K.1^-8,K.1^-3,K.1^9,K.1^12,K.1^11,K.1^12,K.1^11,K.1^-7,K.1^8,K.1^2,K.1,K.1^9,K.1^-4,K.1^12,K.1^-9,K.1,K.1^6,K.1^-4,K.1^7,K.1^-9,K.1^-12,K.1^6,K.1^-3,K.1^3,K.1^-2,K.1^-8,K.1^-3,K.1^-11,K.1^-11,K.1^8,K.1^9,K.1^8,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^11,K.1^-1,K.1^2,K.1^-4,K.1^-6,K.1^-7,K.1^-7,K.1^4,K.1^-12,K.1^-12,K.1^4,K.1^3,K.1^-6,K.1^-6,K.1^3,K.1^7,K.1^6,K.1^-8,K.1,K.1,K.1^-1,K.1^-3,K.1^11,K.1^6,K.1^3,K.1^-2,K.1^-2,K.1^12,K.1^7,K.1^4,K.1^-6,K.1^-6,K.1^3,K.1^8,K.1^-11,K.1^9,K.1^-12,K.1^-3,K.1^-1,K.1^-11,K.1^9,K.1^2,K.1^-8,K.1^-7,K.1^4,K.1^-7,K.1^-9,K.1^2,K.1^7,K.1^11,K.1^6,K.1^12,K.1^-4,K.1^-4,K.1^-12,K.1^8,K.1,K.1^-9,K.1^-8,K.1^-12,K.1^-9,K.1^-2,K.1^-1,K.1^-8,K.1^-8,K.1^-11,K.1^8,K.1^-3,K.1^-1,K.1^-6,K.1^4,K.1^9,K.1^11,K.1^-7,K.1^4,K.1^2,K.1,K.1^-12,K.1^-3,K.1^-8,K.1^2,K.1^2,K.1^12,K.1^-11,K.1^8,K.1^6,K.1^3,K.1^11,K.1^12,K.1^-9,K.1^-2,K.1^11,K.1^-7,K.1^-8,K.1^-7,K.1^-4,K.1^7,K.1^-3,K.1,K.1^-9,K.1^-2,K.1^-12,K.1^6,K.1^-4,K.1^-4,K.1^9,K.1,K.1^6,K.1^8,K.1,K.1^-12,K.1^-6,K.1^7,K.1^7,K.1^-3,K.1^12,K.1^2,K.1^-1,K.1^-7,K.1^-4,K.1^-11,K.1^3,K.1^-6,K.1^-9,K.1^8,K.1^6,K.1^7,K.1^-1,K.1^-2,K.1^4,K.1^9,K.1^9,K.1^-11,K.1^4,K.1^3,K.1^3,K.1^-6,K.1^12,K.1^11,K.1^-4,K.1^-3,K.1^-8,K.1^12,K.1^-8,K.1^2,K.1^-4,K.1^8,K.1^-12,K.1^6,K.1^11,K.1^-7,K.1^-2,K.1^-1,K.1^-6,K.1^-11,K.1^-6,K.1^4,K.1^-2,K.1^6,K.1^-1,K.1,K.1^-7,K.1^-12,K.1^-9,K.1^11,K.1^8,K.1^3,K.1^2,K.1^7,K.1^12,K.1^7,K.1^-3,K.1^3,K.1^-9,K.1,K.1^4,K.1^9,K.1^-11,K.1^9,K.1^9,K.1^3,K.1^9,K.1^11,K.1^-6,K.1^12,K.1^6,K.1^-3,K.1^-2,K.1^8,K.1^-12,K.1^6,K.1^-4,K.1^-1,K.1^-7,K.1^-11,K.1^7,K.1^-4,K.1^3,K.1^-8,K.1^-1,K.1^-4,K.1^7,K.1^-12,K.1^7,K.1^-3,K.1^-3,K.1^-9,K.1^12,K.1^9,K.1^-12,K.1^-6,K.1,K.1,K.1^-7,K.1^-12,K.1^-7,K.1^3,K.1,K.1^7,K.1^12,K.1^8,K.1^2,K.1^2,K.1^-6,K.1^-1,K.1^-2,K.1^8,K.1^-12,K.1^-7,K.1^-2,K.1^3,K.1^-9,K.1^11,K.1^8,K.1^3,K.1^4,K.1^-8,K.1^11,K.1^-8,K.1^-11,K.1^-9,K.1^4,K.1^-3,K.1^6,K.1^4,K.1^-4,K.1^7,K.1^12,K.1^-9,K.1^-3,K.1^-3,K.1^9,K.1^11,K.1^9,K.1^11,K.1^9,K.1^-3,K.1^4,K.1^-9,K.1^11,K.1^9,K.1^3,K.1^4,K.1^-9,K.1^11,K.1^-8,K.1^-2,K.1^-4,K.1^9,K.1^2,K.1^2,K.1^-7,K.1^-12,K.1^7,K.1,K.1,K.1^-6,K.1^12,K.1^-6,K.1^12,K.1^-6,K.1,K.1^-2,K.1^8,K.1^-12,K.1^-7,K.1^-1,K.1^-1,K.1^7,K.1^-2,K.1^-1,K.1^6,K.1^-11,K.1^8,K.1^2,K.1,K.1^-6,K.1^-12,K.1^-7,K.1^3,K.1^4,K.1^6,K.1^-11,K.1^-8,K.1^-11,K.1^7,K.1^-1,K.1^-3,K.1^6,K.1^12,K.1^8,K.1^-2,K.1^-4,K.1^-6,K.1^4,K.1^2,K.1^-7,K.1^12,K.1^-9,K.1^-4,K.1^-2,K.1^8,K.1^-11,K.1^6,K.1^-4,K.1^-1,K.1^-8,K.1^-11,K.1^6,K.1^-11,K.1^-9,K.1^4,K.1^3,K.1^-8,K.1^11,K.1^-8,K.1^2,K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^5,K.1^-10,K.1^10,1,1,1,1,1,1,1,1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-8,K.1^-4,K.1^-3,K.1^11,K.1^-9,K.1,K.1^7,K.1^4,K.1^8,K.1^9,K.1^-11,K.1^-1,K.1^3,K.1^-2,K.1^-7,K.1^-12,K.1^12,K.1^-6,K.1^6,K.1^2,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-5,K.1^-7,K.1,K.1^-6,K.1^-12,K.1^11,K.1^3,K.1^-2,K.1^6,K.1^8,K.1^-1,K.1^8,K.1^-1,K.1^12,K.1^-3,K.1^-7,K.1^9,K.1^6,K.1^-11,K.1^8,K.1^-6,K.1^9,K.1^4,K.1^-11,K.1^-12,K.1^-6,K.1^-8,K.1^4,K.1^-2,K.1^2,K.1^7,K.1^3,K.1^-2,K.1,K.1,K.1^-3,K.1^6,K.1^-3,K.1^-9,K.1^-9,K.1^7,K.1^7,K.1^-1,K.1^-9,K.1^-7,K.1^-11,K.1^-4,K.1^12,K.1^12,K.1^11,K.1^-8,K.1^-8,K.1^11,K.1^2,K.1^-4,K.1^-4,K.1^2,K.1^-12,K.1^4,K.1^3,K.1^9,K.1^9,K.1^-9,K.1^-2,K.1^-1,K.1^4,K.1^2,K.1^7,K.1^7,K.1^8,K.1^-12,K.1^11,K.1^-4,K.1^-4,K.1^2,K.1^-3,K.1,K.1^6,K.1^-8,K.1^-2,K.1^-9,K.1,K.1^6,K.1^-7,K.1^3,K.1^12,K.1^11,K.1^12,K.1^-6,K.1^-7,K.1^-12,K.1^-1,K.1^4,K.1^8,K.1^-11,K.1^-11,K.1^-8,K.1^-3,K.1^9,K.1^-6,K.1^3,K.1^-8,K.1^-6,K.1^7,K.1^-9,K.1^3,K.1^3,K.1,K.1^-3,K.1^-2,K.1^-9,K.1^-4,K.1^11,K.1^6,K.1^-1,K.1^12,K.1^11,K.1^-7,K.1^9,K.1^-8,K.1^-2,K.1^3,K.1^-7,K.1^-7,K.1^8,K.1,K.1^-3,K.1^4,K.1^2,K.1^-1,K.1^8,K.1^-6,K.1^7,K.1^-1,K.1^12,K.1^3,K.1^12,K.1^-11,K.1^-12,K.1^-2,K.1^9,K.1^-6,K.1^7,K.1^-8,K.1^4,K.1^-11,K.1^-11,K.1^6,K.1^9,K.1^4,K.1^-3,K.1^9,K.1^-8,K.1^-4,K.1^-12,K.1^-12,K.1^-2,K.1^8,K.1^-7,K.1^-9,K.1^12,K.1^-11,K.1,K.1^2,K.1^-4,K.1^-6,K.1^-3,K.1^4,K.1^-12,K.1^-9,K.1^7,K.1^11,K.1^6,K.1^6,K.1,K.1^11,K.1^2,K.1^2,K.1^-4,K.1^8,K.1^-1,K.1^-11,K.1^-2,K.1^3,K.1^8,K.1^3,K.1^-7,K.1^-11,K.1^-3,K.1^-8,K.1^4,K.1^-1,K.1^12,K.1^7,K.1^-9,K.1^-4,K.1,K.1^-4,K.1^11,K.1^7,K.1^4,K.1^-9,K.1^9,K.1^12,K.1^-8,K.1^-6,K.1^-1,K.1^-3,K.1^2,K.1^-7,K.1^-12,K.1^8,K.1^-12,K.1^-2,K.1^2,K.1^-6,K.1^9,K.1^11,K.1^6,K.1,K.1^6,K.1^6,K.1^2,K.1^6,K.1^-1,K.1^-4,K.1^8,K.1^4,K.1^-2,K.1^7,K.1^-3,K.1^-8,K.1^4,K.1^-11,K.1^-9,K.1^12,K.1,K.1^-12,K.1^-11,K.1^2,K.1^3,K.1^-9,K.1^-11,K.1^-12,K.1^-8,K.1^-12,K.1^-2,K.1^-2,K.1^-6,K.1^8,K.1^6,K.1^-8,K.1^-4,K.1^9,K.1^9,K.1^12,K.1^-8,K.1^12,K.1^2,K.1^9,K.1^-12,K.1^8,K.1^-3,K.1^-7,K.1^-7,K.1^-4,K.1^-9,K.1^7,K.1^-3,K.1^-8,K.1^12,K.1^7,K.1^2,K.1^-6,K.1^-1,K.1^-3,K.1^2,K.1^11,K.1^3,K.1^-1,K.1^3,K.1,K.1^-6,K.1^11,K.1^-2,K.1^4,K.1^11,K.1^-11,K.1^-12,K.1^8,K.1^-6,K.1^-2,K.1^-2,K.1^6,K.1^-1,K.1^6,K.1^-1,K.1^6,K.1^-2,K.1^11,K.1^-6,K.1^-1,K.1^6,K.1^2,K.1^11,K.1^-6,K.1^-1,K.1^3,K.1^7,K.1^-11,K.1^6,K.1^-7,K.1^-7,K.1^12,K.1^-8,K.1^-12,K.1^9,K.1^9,K.1^-4,K.1^8,K.1^-4,K.1^8,K.1^-4,K.1^9,K.1^7,K.1^-3,K.1^-8,K.1^12,K.1^-9,K.1^-9,K.1^-12,K.1^7,K.1^-9,K.1^4,K.1,K.1^-3,K.1^-7,K.1^9,K.1^-4,K.1^-8,K.1^12,K.1^2,K.1^11,K.1^4,K.1,K.1^3,K.1,K.1^-12,K.1^-9,K.1^-2,K.1^4,K.1^8,K.1^-3,K.1^7,K.1^-11,K.1^-4,K.1^11,K.1^-7,K.1^12,K.1^8,K.1^-6,K.1^-11,K.1^7,K.1^-3,K.1,K.1^4,K.1^-11,K.1^-9,K.1^3,K.1,K.1^4,K.1,K.1^-6,K.1^11,K.1^2,K.1^3,K.1^-1,K.1^3,K.1^-7,K.1^-7,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-5,K.1^10,K.1^-10,1,1,1,1,1,1,1,1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^8,K.1^4,K.1^3,K.1^-11,K.1^9,K.1^-1,K.1^-7,K.1^-4,K.1^-8,K.1^-9,K.1^11,K.1,K.1^-3,K.1^2,K.1^7,K.1^12,K.1^-12,K.1^6,K.1^-6,K.1^-2,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^5,K.1^7,K.1^-1,K.1^6,K.1^12,K.1^-11,K.1^-3,K.1^2,K.1^-6,K.1^-8,K.1,K.1^-8,K.1,K.1^-12,K.1^3,K.1^7,K.1^-9,K.1^-6,K.1^11,K.1^-8,K.1^6,K.1^-9,K.1^-4,K.1^11,K.1^12,K.1^6,K.1^8,K.1^-4,K.1^2,K.1^-2,K.1^-7,K.1^-3,K.1^2,K.1^-1,K.1^-1,K.1^3,K.1^-6,K.1^3,K.1^9,K.1^9,K.1^-7,K.1^-7,K.1,K.1^9,K.1^7,K.1^11,K.1^4,K.1^-12,K.1^-12,K.1^-11,K.1^8,K.1^8,K.1^-11,K.1^-2,K.1^4,K.1^4,K.1^-2,K.1^12,K.1^-4,K.1^-3,K.1^-9,K.1^-9,K.1^9,K.1^2,K.1,K.1^-4,K.1^-2,K.1^-7,K.1^-7,K.1^-8,K.1^12,K.1^-11,K.1^4,K.1^4,K.1^-2,K.1^3,K.1^-1,K.1^-6,K.1^8,K.1^2,K.1^9,K.1^-1,K.1^-6,K.1^7,K.1^-3,K.1^-12,K.1^-11,K.1^-12,K.1^6,K.1^7,K.1^12,K.1,K.1^-4,K.1^-8,K.1^11,K.1^11,K.1^8,K.1^3,K.1^-9,K.1^6,K.1^-3,K.1^8,K.1^6,K.1^-7,K.1^9,K.1^-3,K.1^-3,K.1^-1,K.1^3,K.1^2,K.1^9,K.1^4,K.1^-11,K.1^-6,K.1,K.1^-12,K.1^-11,K.1^7,K.1^-9,K.1^8,K.1^2,K.1^-3,K.1^7,K.1^7,K.1^-8,K.1^-1,K.1^3,K.1^-4,K.1^-2,K.1,K.1^-8,K.1^6,K.1^-7,K.1,K.1^-12,K.1^-3,K.1^-12,K.1^11,K.1^12,K.1^2,K.1^-9,K.1^6,K.1^-7,K.1^8,K.1^-4,K.1^11,K.1^11,K.1^-6,K.1^-9,K.1^-4,K.1^3,K.1^-9,K.1^8,K.1^4,K.1^12,K.1^12,K.1^2,K.1^-8,K.1^7,K.1^9,K.1^-12,K.1^11,K.1^-1,K.1^-2,K.1^4,K.1^6,K.1^3,K.1^-4,K.1^12,K.1^9,K.1^-7,K.1^-11,K.1^-6,K.1^-6,K.1^-1,K.1^-11,K.1^-2,K.1^-2,K.1^4,K.1^-8,K.1,K.1^11,K.1^2,K.1^-3,K.1^-8,K.1^-3,K.1^7,K.1^11,K.1^3,K.1^8,K.1^-4,K.1,K.1^-12,K.1^-7,K.1^9,K.1^4,K.1^-1,K.1^4,K.1^-11,K.1^-7,K.1^-4,K.1^9,K.1^-9,K.1^-12,K.1^8,K.1^6,K.1,K.1^3,K.1^-2,K.1^7,K.1^12,K.1^-8,K.1^12,K.1^2,K.1^-2,K.1^6,K.1^-9,K.1^-11,K.1^-6,K.1^-1,K.1^-6,K.1^-6,K.1^-2,K.1^-6,K.1,K.1^4,K.1^-8,K.1^-4,K.1^2,K.1^-7,K.1^3,K.1^8,K.1^-4,K.1^11,K.1^9,K.1^-12,K.1^-1,K.1^12,K.1^11,K.1^-2,K.1^-3,K.1^9,K.1^11,K.1^12,K.1^8,K.1^12,K.1^2,K.1^2,K.1^6,K.1^-8,K.1^-6,K.1^8,K.1^4,K.1^-9,K.1^-9,K.1^-12,K.1^8,K.1^-12,K.1^-2,K.1^-9,K.1^12,K.1^-8,K.1^3,K.1^7,K.1^7,K.1^4,K.1^9,K.1^-7,K.1^3,K.1^8,K.1^-12,K.1^-7,K.1^-2,K.1^6,K.1,K.1^3,K.1^-2,K.1^-11,K.1^-3,K.1,K.1^-3,K.1^-1,K.1^6,K.1^-11,K.1^2,K.1^-4,K.1^-11,K.1^11,K.1^12,K.1^-8,K.1^6,K.1^2,K.1^2,K.1^-6,K.1,K.1^-6,K.1,K.1^-6,K.1^2,K.1^-11,K.1^6,K.1,K.1^-6,K.1^-2,K.1^-11,K.1^6,K.1,K.1^-3,K.1^-7,K.1^11,K.1^-6,K.1^7,K.1^7,K.1^-12,K.1^8,K.1^12,K.1^-9,K.1^-9,K.1^4,K.1^-8,K.1^4,K.1^-8,K.1^4,K.1^-9,K.1^-7,K.1^3,K.1^8,K.1^-12,K.1^9,K.1^9,K.1^12,K.1^-7,K.1^9,K.1^-4,K.1^-1,K.1^3,K.1^7,K.1^-9,K.1^4,K.1^8,K.1^-12,K.1^-2,K.1^-11,K.1^-4,K.1^-1,K.1^-3,K.1^-1,K.1^12,K.1^9,K.1^2,K.1^-4,K.1^-8,K.1^3,K.1^-7,K.1^11,K.1^4,K.1^-11,K.1^7,K.1^-12,K.1^-8,K.1^6,K.1^11,K.1^-7,K.1^3,K.1^-1,K.1^-4,K.1^11,K.1^9,K.1^-3,K.1^-1,K.1^-4,K.1^-1,K.1^6,K.1^-11,K.1^-2,K.1^-3,K.1,K.1^-3,K.1^7,K.1^7,K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^5,K.1^-10,K.1^10,1,1,1,1,1,1,1,1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^7,K.1^-9,K.1^12,K.1^6,K.1^11,K.1^-4,K.1^-3,K.1^9,K.1^-7,K.1^-11,K.1^-6,K.1^4,K.1^-12,K.1^8,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-8,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-5,K.1^3,K.1^-4,K.1^-1,K.1^-2,K.1^6,K.1^-12,K.1^8,K.1,K.1^-7,K.1^4,K.1^-7,K.1^4,K.1^2,K.1^12,K.1^3,K.1^-11,K.1,K.1^-6,K.1^-7,K.1^-1,K.1^-11,K.1^9,K.1^-6,K.1^-2,K.1^-1,K.1^7,K.1^9,K.1^8,K.1^-8,K.1^-3,K.1^-12,K.1^8,K.1^-4,K.1^-4,K.1^12,K.1,K.1^12,K.1^11,K.1^11,K.1^-3,K.1^-3,K.1^4,K.1^11,K.1^3,K.1^-6,K.1^-9,K.1^2,K.1^2,K.1^6,K.1^7,K.1^7,K.1^6,K.1^-8,K.1^-9,K.1^-9,K.1^-8,K.1^-2,K.1^9,K.1^-12,K.1^-11,K.1^-11,K.1^11,K.1^8,K.1^4,K.1^9,K.1^-8,K.1^-3,K.1^-3,K.1^-7,K.1^-2,K.1^6,K.1^-9,K.1^-9,K.1^-8,K.1^12,K.1^-4,K.1,K.1^7,K.1^8,K.1^11,K.1^-4,K.1,K.1^3,K.1^-12,K.1^2,K.1^6,K.1^2,K.1^-1,K.1^3,K.1^-2,K.1^4,K.1^9,K.1^-7,K.1^-6,K.1^-6,K.1^7,K.1^12,K.1^-11,K.1^-1,K.1^-12,K.1^7,K.1^-1,K.1^-3,K.1^11,K.1^-12,K.1^-12,K.1^-4,K.1^12,K.1^8,K.1^11,K.1^-9,K.1^6,K.1,K.1^4,K.1^2,K.1^6,K.1^3,K.1^-11,K.1^7,K.1^8,K.1^-12,K.1^3,K.1^3,K.1^-7,K.1^-4,K.1^12,K.1^9,K.1^-8,K.1^4,K.1^-7,K.1^-1,K.1^-3,K.1^4,K.1^2,K.1^-12,K.1^2,K.1^-6,K.1^-2,K.1^8,K.1^-11,K.1^-1,K.1^-3,K.1^7,K.1^9,K.1^-6,K.1^-6,K.1,K.1^-11,K.1^9,K.1^12,K.1^-11,K.1^7,K.1^-9,K.1^-2,K.1^-2,K.1^8,K.1^-7,K.1^3,K.1^11,K.1^2,K.1^-6,K.1^-4,K.1^-8,K.1^-9,K.1^-1,K.1^12,K.1^9,K.1^-2,K.1^11,K.1^-3,K.1^6,K.1,K.1,K.1^-4,K.1^6,K.1^-8,K.1^-8,K.1^-9,K.1^-7,K.1^4,K.1^-6,K.1^8,K.1^-12,K.1^-7,K.1^-12,K.1^3,K.1^-6,K.1^12,K.1^7,K.1^9,K.1^4,K.1^2,K.1^-3,K.1^11,K.1^-9,K.1^-4,K.1^-9,K.1^6,K.1^-3,K.1^9,K.1^11,K.1^-11,K.1^2,K.1^7,K.1^-1,K.1^4,K.1^12,K.1^-8,K.1^3,K.1^-2,K.1^-7,K.1^-2,K.1^8,K.1^-8,K.1^-1,K.1^-11,K.1^6,K.1,K.1^-4,K.1,K.1,K.1^-8,K.1,K.1^4,K.1^-9,K.1^-7,K.1^9,K.1^8,K.1^-3,K.1^12,K.1^7,K.1^9,K.1^-6,K.1^11,K.1^2,K.1^-4,K.1^-2,K.1^-6,K.1^-8,K.1^-12,K.1^11,K.1^-6,K.1^-2,K.1^7,K.1^-2,K.1^8,K.1^8,K.1^-1,K.1^-7,K.1,K.1^7,K.1^-9,K.1^-11,K.1^-11,K.1^2,K.1^7,K.1^2,K.1^-8,K.1^-11,K.1^-2,K.1^-7,K.1^12,K.1^3,K.1^3,K.1^-9,K.1^11,K.1^-3,K.1^12,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^-1,K.1^4,K.1^12,K.1^-8,K.1^6,K.1^-12,K.1^4,K.1^-12,K.1^-4,K.1^-1,K.1^6,K.1^8,K.1^9,K.1^6,K.1^-6,K.1^-2,K.1^-7,K.1^-1,K.1^8,K.1^8,K.1,K.1^4,K.1,K.1^4,K.1,K.1^8,K.1^6,K.1^-1,K.1^4,K.1,K.1^-8,K.1^6,K.1^-1,K.1^4,K.1^-12,K.1^-3,K.1^-6,K.1,K.1^3,K.1^3,K.1^2,K.1^7,K.1^-2,K.1^-11,K.1^-11,K.1^-9,K.1^-7,K.1^-9,K.1^-7,K.1^-9,K.1^-11,K.1^-3,K.1^12,K.1^7,K.1^2,K.1^11,K.1^11,K.1^-2,K.1^-3,K.1^11,K.1^9,K.1^-4,K.1^12,K.1^3,K.1^-11,K.1^-9,K.1^7,K.1^2,K.1^-8,K.1^6,K.1^9,K.1^-4,K.1^-12,K.1^-4,K.1^-2,K.1^11,K.1^8,K.1^9,K.1^-7,K.1^12,K.1^-3,K.1^-6,K.1^-9,K.1^6,K.1^3,K.1^2,K.1^-7,K.1^-1,K.1^-6,K.1^-3,K.1^12,K.1^-4,K.1^9,K.1^-6,K.1^11,K.1^-12,K.1^-4,K.1^9,K.1^-4,K.1^-1,K.1^6,K.1^-8,K.1^-12,K.1^4,K.1^-12,K.1^3,K.1^3,K.1^-11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-5,K.1^10,K.1^-10,1,1,1,1,1,1,1,1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^-7,K.1^9,K.1^-12,K.1^-6,K.1^-11,K.1^4,K.1^3,K.1^-9,K.1^7,K.1^11,K.1^6,K.1^-4,K.1^12,K.1^-8,K.1^-3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^8,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^5,K.1^-3,K.1^4,K.1,K.1^2,K.1^-6,K.1^12,K.1^-8,K.1^-1,K.1^7,K.1^-4,K.1^7,K.1^-4,K.1^-2,K.1^-12,K.1^-3,K.1^11,K.1^-1,K.1^6,K.1^7,K.1,K.1^11,K.1^-9,K.1^6,K.1^2,K.1,K.1^-7,K.1^-9,K.1^-8,K.1^8,K.1^3,K.1^12,K.1^-8,K.1^4,K.1^4,K.1^-12,K.1^-1,K.1^-12,K.1^-11,K.1^-11,K.1^3,K.1^3,K.1^-4,K.1^-11,K.1^-3,K.1^6,K.1^9,K.1^-2,K.1^-2,K.1^-6,K.1^-7,K.1^-7,K.1^-6,K.1^8,K.1^9,K.1^9,K.1^8,K.1^2,K.1^-9,K.1^12,K.1^11,K.1^11,K.1^-11,K.1^-8,K.1^-4,K.1^-9,K.1^8,K.1^3,K.1^3,K.1^7,K.1^2,K.1^-6,K.1^9,K.1^9,K.1^8,K.1^-12,K.1^4,K.1^-1,K.1^-7,K.1^-8,K.1^-11,K.1^4,K.1^-1,K.1^-3,K.1^12,K.1^-2,K.1^-6,K.1^-2,K.1,K.1^-3,K.1^2,K.1^-4,K.1^-9,K.1^7,K.1^6,K.1^6,K.1^-7,K.1^-12,K.1^11,K.1,K.1^12,K.1^-7,K.1,K.1^3,K.1^-11,K.1^12,K.1^12,K.1^4,K.1^-12,K.1^-8,K.1^-11,K.1^9,K.1^-6,K.1^-1,K.1^-4,K.1^-2,K.1^-6,K.1^-3,K.1^11,K.1^-7,K.1^-8,K.1^12,K.1^-3,K.1^-3,K.1^7,K.1^4,K.1^-12,K.1^-9,K.1^8,K.1^-4,K.1^7,K.1,K.1^3,K.1^-4,K.1^-2,K.1^12,K.1^-2,K.1^6,K.1^2,K.1^-8,K.1^11,K.1,K.1^3,K.1^-7,K.1^-9,K.1^6,K.1^6,K.1^-1,K.1^11,K.1^-9,K.1^-12,K.1^11,K.1^-7,K.1^9,K.1^2,K.1^2,K.1^-8,K.1^7,K.1^-3,K.1^-11,K.1^-2,K.1^6,K.1^4,K.1^8,K.1^9,K.1,K.1^-12,K.1^-9,K.1^2,K.1^-11,K.1^3,K.1^-6,K.1^-1,K.1^-1,K.1^4,K.1^-6,K.1^8,K.1^8,K.1^9,K.1^7,K.1^-4,K.1^6,K.1^-8,K.1^12,K.1^7,K.1^12,K.1^-3,K.1^6,K.1^-12,K.1^-7,K.1^-9,K.1^-4,K.1^-2,K.1^3,K.1^-11,K.1^9,K.1^4,K.1^9,K.1^-6,K.1^3,K.1^-9,K.1^-11,K.1^11,K.1^-2,K.1^-7,K.1,K.1^-4,K.1^-12,K.1^8,K.1^-3,K.1^2,K.1^7,K.1^2,K.1^-8,K.1^8,K.1,K.1^11,K.1^-6,K.1^-1,K.1^4,K.1^-1,K.1^-1,K.1^8,K.1^-1,K.1^-4,K.1^9,K.1^7,K.1^-9,K.1^-8,K.1^3,K.1^-12,K.1^-7,K.1^-9,K.1^6,K.1^-11,K.1^-2,K.1^4,K.1^2,K.1^6,K.1^8,K.1^12,K.1^-11,K.1^6,K.1^2,K.1^-7,K.1^2,K.1^-8,K.1^-8,K.1,K.1^7,K.1^-1,K.1^-7,K.1^9,K.1^11,K.1^11,K.1^-2,K.1^-7,K.1^-2,K.1^8,K.1^11,K.1^2,K.1^7,K.1^-12,K.1^-3,K.1^-3,K.1^9,K.1^-11,K.1^3,K.1^-12,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1,K.1^-4,K.1^-12,K.1^8,K.1^-6,K.1^12,K.1^-4,K.1^12,K.1^4,K.1,K.1^-6,K.1^-8,K.1^-9,K.1^-6,K.1^6,K.1^2,K.1^7,K.1,K.1^-8,K.1^-8,K.1^-1,K.1^-4,K.1^-1,K.1^-4,K.1^-1,K.1^-8,K.1^-6,K.1,K.1^-4,K.1^-1,K.1^8,K.1^-6,K.1,K.1^-4,K.1^12,K.1^3,K.1^6,K.1^-1,K.1^-3,K.1^-3,K.1^-2,K.1^-7,K.1^2,K.1^11,K.1^11,K.1^9,K.1^7,K.1^9,K.1^7,K.1^9,K.1^11,K.1^3,K.1^-12,K.1^-7,K.1^-2,K.1^-11,K.1^-11,K.1^2,K.1^3,K.1^-11,K.1^-9,K.1^4,K.1^-12,K.1^-3,K.1^11,K.1^9,K.1^-7,K.1^-2,K.1^8,K.1^-6,K.1^-9,K.1^4,K.1^12,K.1^4,K.1^2,K.1^-11,K.1^-8,K.1^-9,K.1^7,K.1^-12,K.1^3,K.1^6,K.1^9,K.1^-6,K.1^-3,K.1^-2,K.1^7,K.1,K.1^6,K.1^3,K.1^-12,K.1^4,K.1^-9,K.1^6,K.1^-11,K.1^12,K.1^4,K.1^-9,K.1^4,K.1,K.1^-6,K.1^8,K.1^12,K.1^-4,K.1^12,K.1^-3,K.1^-3,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^5,K.1^-10,K.1^10,1,1,1,1,1,1,1,1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-3,K.1^11,K.1^2,K.1,K.1^6,K.1^-9,K.1^12,K.1^-11,K.1^3,K.1^-6,K.1^-1,K.1^9,K.1^-2,K.1^-7,K.1^-12,K.1^8,K.1^-8,K.1^4,K.1^-4,K.1^7,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-5,K.1^-12,K.1^-9,K.1^4,K.1^8,K.1,K.1^-2,K.1^-7,K.1^-4,K.1^3,K.1^9,K.1^3,K.1^9,K.1^-8,K.1^2,K.1^-12,K.1^-6,K.1^-4,K.1^-1,K.1^3,K.1^4,K.1^-6,K.1^-11,K.1^-1,K.1^8,K.1^4,K.1^-3,K.1^-11,K.1^-7,K.1^7,K.1^12,K.1^-2,K.1^-7,K.1^-9,K.1^-9,K.1^2,K.1^-4,K.1^2,K.1^6,K.1^6,K.1^12,K.1^12,K.1^9,K.1^6,K.1^-12,K.1^-1,K.1^11,K.1^-8,K.1^-8,K.1,K.1^-3,K.1^-3,K.1,K.1^7,K.1^11,K.1^11,K.1^7,K.1^8,K.1^-11,K.1^-2,K.1^-6,K.1^-6,K.1^6,K.1^-7,K.1^9,K.1^-11,K.1^7,K.1^12,K.1^12,K.1^3,K.1^8,K.1,K.1^11,K.1^11,K.1^7,K.1^2,K.1^-9,K.1^-4,K.1^-3,K.1^-7,K.1^6,K.1^-9,K.1^-4,K.1^-12,K.1^-2,K.1^-8,K.1,K.1^-8,K.1^4,K.1^-12,K.1^8,K.1^9,K.1^-11,K.1^3,K.1^-1,K.1^-1,K.1^-3,K.1^2,K.1^-6,K.1^4,K.1^-2,K.1^-3,K.1^4,K.1^12,K.1^6,K.1^-2,K.1^-2,K.1^-9,K.1^2,K.1^-7,K.1^6,K.1^11,K.1,K.1^-4,K.1^9,K.1^-8,K.1,K.1^-12,K.1^-6,K.1^-3,K.1^-7,K.1^-2,K.1^-12,K.1^-12,K.1^3,K.1^-9,K.1^2,K.1^-11,K.1^7,K.1^9,K.1^3,K.1^4,K.1^12,K.1^9,K.1^-8,K.1^-2,K.1^-8,K.1^-1,K.1^8,K.1^-7,K.1^-6,K.1^4,K.1^12,K.1^-3,K.1^-11,K.1^-1,K.1^-1,K.1^-4,K.1^-6,K.1^-11,K.1^2,K.1^-6,K.1^-3,K.1^11,K.1^8,K.1^8,K.1^-7,K.1^3,K.1^-12,K.1^6,K.1^-8,K.1^-1,K.1^-9,K.1^7,K.1^11,K.1^4,K.1^2,K.1^-11,K.1^8,K.1^6,K.1^12,K.1,K.1^-4,K.1^-4,K.1^-9,K.1,K.1^7,K.1^7,K.1^11,K.1^3,K.1^9,K.1^-1,K.1^-7,K.1^-2,K.1^3,K.1^-2,K.1^-12,K.1^-1,K.1^2,K.1^-3,K.1^-11,K.1^9,K.1^-8,K.1^12,K.1^6,K.1^11,K.1^-9,K.1^11,K.1,K.1^12,K.1^-11,K.1^6,K.1^-6,K.1^-8,K.1^-3,K.1^4,K.1^9,K.1^2,K.1^7,K.1^-12,K.1^8,K.1^3,K.1^8,K.1^-7,K.1^7,K.1^4,K.1^-6,K.1,K.1^-4,K.1^-9,K.1^-4,K.1^-4,K.1^7,K.1^-4,K.1^9,K.1^11,K.1^3,K.1^-11,K.1^-7,K.1^12,K.1^2,K.1^-3,K.1^-11,K.1^-1,K.1^6,K.1^-8,K.1^-9,K.1^8,K.1^-1,K.1^7,K.1^-2,K.1^6,K.1^-1,K.1^8,K.1^-3,K.1^8,K.1^-7,K.1^-7,K.1^4,K.1^3,K.1^-4,K.1^-3,K.1^11,K.1^-6,K.1^-6,K.1^-8,K.1^-3,K.1^-8,K.1^7,K.1^-6,K.1^8,K.1^3,K.1^2,K.1^-12,K.1^-12,K.1^11,K.1^6,K.1^12,K.1^2,K.1^-3,K.1^-8,K.1^12,K.1^7,K.1^4,K.1^9,K.1^2,K.1^7,K.1,K.1^-2,K.1^9,K.1^-2,K.1^-9,K.1^4,K.1,K.1^-7,K.1^-11,K.1,K.1^-1,K.1^8,K.1^3,K.1^4,K.1^-7,K.1^-7,K.1^-4,K.1^9,K.1^-4,K.1^9,K.1^-4,K.1^-7,K.1,K.1^4,K.1^9,K.1^-4,K.1^7,K.1,K.1^4,K.1^9,K.1^-2,K.1^12,K.1^-1,K.1^-4,K.1^-12,K.1^-12,K.1^-8,K.1^-3,K.1^8,K.1^-6,K.1^-6,K.1^11,K.1^3,K.1^11,K.1^3,K.1^11,K.1^-6,K.1^12,K.1^2,K.1^-3,K.1^-8,K.1^6,K.1^6,K.1^8,K.1^12,K.1^6,K.1^-11,K.1^-9,K.1^2,K.1^-12,K.1^-6,K.1^11,K.1^-3,K.1^-8,K.1^7,K.1,K.1^-11,K.1^-9,K.1^-2,K.1^-9,K.1^8,K.1^6,K.1^-7,K.1^-11,K.1^3,K.1^2,K.1^12,K.1^-1,K.1^11,K.1,K.1^-12,K.1^-8,K.1^3,K.1^4,K.1^-1,K.1^12,K.1^2,K.1^-9,K.1^-11,K.1^-1,K.1^6,K.1^-2,K.1^-9,K.1^-11,K.1^-9,K.1^4,K.1,K.1^7,K.1^-2,K.1^9,K.1^-2,K.1^-12,K.1^-12,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-5,K.1^10,K.1^-10,1,1,1,1,1,1,1,1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^3,K.1^-11,K.1^-2,K.1^-1,K.1^-6,K.1^9,K.1^-12,K.1^11,K.1^-3,K.1^6,K.1,K.1^-9,K.1^2,K.1^7,K.1^12,K.1^-8,K.1^8,K.1^-4,K.1^4,K.1^-7,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^5,K.1^12,K.1^9,K.1^-4,K.1^-8,K.1^-1,K.1^2,K.1^7,K.1^4,K.1^-3,K.1^-9,K.1^-3,K.1^-9,K.1^8,K.1^-2,K.1^12,K.1^6,K.1^4,K.1,K.1^-3,K.1^-4,K.1^6,K.1^11,K.1,K.1^-8,K.1^-4,K.1^3,K.1^11,K.1^7,K.1^-7,K.1^-12,K.1^2,K.1^7,K.1^9,K.1^9,K.1^-2,K.1^4,K.1^-2,K.1^-6,K.1^-6,K.1^-12,K.1^-12,K.1^-9,K.1^-6,K.1^12,K.1,K.1^-11,K.1^8,K.1^8,K.1^-1,K.1^3,K.1^3,K.1^-1,K.1^-7,K.1^-11,K.1^-11,K.1^-7,K.1^-8,K.1^11,K.1^2,K.1^6,K.1^6,K.1^-6,K.1^7,K.1^-9,K.1^11,K.1^-7,K.1^-12,K.1^-12,K.1^-3,K.1^-8,K.1^-1,K.1^-11,K.1^-11,K.1^-7,K.1^-2,K.1^9,K.1^4,K.1^3,K.1^7,K.1^-6,K.1^9,K.1^4,K.1^12,K.1^2,K.1^8,K.1^-1,K.1^8,K.1^-4,K.1^12,K.1^-8,K.1^-9,K.1^11,K.1^-3,K.1,K.1,K.1^3,K.1^-2,K.1^6,K.1^-4,K.1^2,K.1^3,K.1^-4,K.1^-12,K.1^-6,K.1^2,K.1^2,K.1^9,K.1^-2,K.1^7,K.1^-6,K.1^-11,K.1^-1,K.1^4,K.1^-9,K.1^8,K.1^-1,K.1^12,K.1^6,K.1^3,K.1^7,K.1^2,K.1^12,K.1^12,K.1^-3,K.1^9,K.1^-2,K.1^11,K.1^-7,K.1^-9,K.1^-3,K.1^-4,K.1^-12,K.1^-9,K.1^8,K.1^2,K.1^8,K.1,K.1^-8,K.1^7,K.1^6,K.1^-4,K.1^-12,K.1^3,K.1^11,K.1,K.1,K.1^4,K.1^6,K.1^11,K.1^-2,K.1^6,K.1^3,K.1^-11,K.1^-8,K.1^-8,K.1^7,K.1^-3,K.1^12,K.1^-6,K.1^8,K.1,K.1^9,K.1^-7,K.1^-11,K.1^-4,K.1^-2,K.1^11,K.1^-8,K.1^-6,K.1^-12,K.1^-1,K.1^4,K.1^4,K.1^9,K.1^-1,K.1^-7,K.1^-7,K.1^-11,K.1^-3,K.1^-9,K.1,K.1^7,K.1^2,K.1^-3,K.1^2,K.1^12,K.1,K.1^-2,K.1^3,K.1^11,K.1^-9,K.1^8,K.1^-12,K.1^-6,K.1^-11,K.1^9,K.1^-11,K.1^-1,K.1^-12,K.1^11,K.1^-6,K.1^6,K.1^8,K.1^3,K.1^-4,K.1^-9,K.1^-2,K.1^-7,K.1^12,K.1^-8,K.1^-3,K.1^-8,K.1^7,K.1^-7,K.1^-4,K.1^6,K.1^-1,K.1^4,K.1^9,K.1^4,K.1^4,K.1^-7,K.1^4,K.1^-9,K.1^-11,K.1^-3,K.1^11,K.1^7,K.1^-12,K.1^-2,K.1^3,K.1^11,K.1,K.1^-6,K.1^8,K.1^9,K.1^-8,K.1,K.1^-7,K.1^2,K.1^-6,K.1,K.1^-8,K.1^3,K.1^-8,K.1^7,K.1^7,K.1^-4,K.1^-3,K.1^4,K.1^3,K.1^-11,K.1^6,K.1^6,K.1^8,K.1^3,K.1^8,K.1^-7,K.1^6,K.1^-8,K.1^-3,K.1^-2,K.1^12,K.1^12,K.1^-11,K.1^-6,K.1^-12,K.1^-2,K.1^3,K.1^8,K.1^-12,K.1^-7,K.1^-4,K.1^-9,K.1^-2,K.1^-7,K.1^-1,K.1^2,K.1^-9,K.1^2,K.1^9,K.1^-4,K.1^-1,K.1^7,K.1^11,K.1^-1,K.1,K.1^-8,K.1^-3,K.1^-4,K.1^7,K.1^7,K.1^4,K.1^-9,K.1^4,K.1^-9,K.1^4,K.1^7,K.1^-1,K.1^-4,K.1^-9,K.1^4,K.1^-7,K.1^-1,K.1^-4,K.1^-9,K.1^2,K.1^-12,K.1,K.1^4,K.1^12,K.1^12,K.1^8,K.1^3,K.1^-8,K.1^6,K.1^6,K.1^-11,K.1^-3,K.1^-11,K.1^-3,K.1^-11,K.1^6,K.1^-12,K.1^-2,K.1^3,K.1^8,K.1^-6,K.1^-6,K.1^-8,K.1^-12,K.1^-6,K.1^11,K.1^9,K.1^-2,K.1^12,K.1^6,K.1^-11,K.1^3,K.1^8,K.1^-7,K.1^-1,K.1^11,K.1^9,K.1^2,K.1^9,K.1^-8,K.1^-6,K.1^7,K.1^11,K.1^-3,K.1^-2,K.1^-12,K.1,K.1^-11,K.1^-1,K.1^12,K.1^8,K.1^-3,K.1^-4,K.1,K.1^-12,K.1^-2,K.1^9,K.1^11,K.1,K.1^-6,K.1^2,K.1^9,K.1^11,K.1^9,K.1^-4,K.1^-1,K.1^-7,K.1^2,K.1^-9,K.1^2,K.1^12,K.1^12,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^5,K.1^-10,K.1^10,1,1,1,1,1,1,1,1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^2,K.1,K.1^7,K.1^-9,K.1^-4,K.1^6,K.1^-8,K.1^-1,K.1^-2,K.1^4,K.1^9,K.1^-6,K.1^-7,K.1^-12,K.1^8,K.1^3,K.1^-3,K.1^-11,K.1^11,K.1^12,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-5,K.1^8,K.1^6,K.1^-11,K.1^3,K.1^-9,K.1^-7,K.1^-12,K.1^11,K.1^-2,K.1^-6,K.1^-2,K.1^-6,K.1^-3,K.1^7,K.1^8,K.1^4,K.1^11,K.1^9,K.1^-2,K.1^-11,K.1^4,K.1^-1,K.1^9,K.1^3,K.1^-11,K.1^2,K.1^-1,K.1^-12,K.1^12,K.1^-8,K.1^-7,K.1^-12,K.1^6,K.1^6,K.1^7,K.1^11,K.1^7,K.1^-4,K.1^-4,K.1^-8,K.1^-8,K.1^-6,K.1^-4,K.1^8,K.1^9,K.1,K.1^-3,K.1^-3,K.1^-9,K.1^2,K.1^2,K.1^-9,K.1^12,K.1,K.1,K.1^12,K.1^3,K.1^-1,K.1^-7,K.1^4,K.1^4,K.1^-4,K.1^-12,K.1^-6,K.1^-1,K.1^12,K.1^-8,K.1^-8,K.1^-2,K.1^3,K.1^-9,K.1,K.1,K.1^12,K.1^7,K.1^6,K.1^11,K.1^2,K.1^-12,K.1^-4,K.1^6,K.1^11,K.1^8,K.1^-7,K.1^-3,K.1^-9,K.1^-3,K.1^-11,K.1^8,K.1^3,K.1^-6,K.1^-1,K.1^-2,K.1^9,K.1^9,K.1^2,K.1^7,K.1^4,K.1^-11,K.1^-7,K.1^2,K.1^-11,K.1^-8,K.1^-4,K.1^-7,K.1^-7,K.1^6,K.1^7,K.1^-12,K.1^-4,K.1,K.1^-9,K.1^11,K.1^-6,K.1^-3,K.1^-9,K.1^8,K.1^4,K.1^2,K.1^-12,K.1^-7,K.1^8,K.1^8,K.1^-2,K.1^6,K.1^7,K.1^-1,K.1^12,K.1^-6,K.1^-2,K.1^-11,K.1^-8,K.1^-6,K.1^-3,K.1^-7,K.1^-3,K.1^9,K.1^3,K.1^-12,K.1^4,K.1^-11,K.1^-8,K.1^2,K.1^-1,K.1^9,K.1^9,K.1^11,K.1^4,K.1^-1,K.1^7,K.1^4,K.1^2,K.1,K.1^3,K.1^3,K.1^-12,K.1^-2,K.1^8,K.1^-4,K.1^-3,K.1^9,K.1^6,K.1^12,K.1,K.1^-11,K.1^7,K.1^-1,K.1^3,K.1^-4,K.1^-8,K.1^-9,K.1^11,K.1^11,K.1^6,K.1^-9,K.1^12,K.1^12,K.1,K.1^-2,K.1^-6,K.1^9,K.1^-12,K.1^-7,K.1^-2,K.1^-7,K.1^8,K.1^9,K.1^7,K.1^2,K.1^-1,K.1^-6,K.1^-3,K.1^-8,K.1^-4,K.1,K.1^6,K.1,K.1^-9,K.1^-8,K.1^-1,K.1^-4,K.1^4,K.1^-3,K.1^2,K.1^-11,K.1^-6,K.1^7,K.1^12,K.1^8,K.1^3,K.1^-2,K.1^3,K.1^-12,K.1^12,K.1^-11,K.1^4,K.1^-9,K.1^11,K.1^6,K.1^11,K.1^11,K.1^12,K.1^11,K.1^-6,K.1,K.1^-2,K.1^-1,K.1^-12,K.1^-8,K.1^7,K.1^2,K.1^-1,K.1^9,K.1^-4,K.1^-3,K.1^6,K.1^3,K.1^9,K.1^12,K.1^-7,K.1^-4,K.1^9,K.1^3,K.1^2,K.1^3,K.1^-12,K.1^-12,K.1^-11,K.1^-2,K.1^11,K.1^2,K.1,K.1^4,K.1^4,K.1^-3,K.1^2,K.1^-3,K.1^12,K.1^4,K.1^3,K.1^-2,K.1^7,K.1^8,K.1^8,K.1,K.1^-4,K.1^-8,K.1^7,K.1^2,K.1^-3,K.1^-8,K.1^12,K.1^-11,K.1^-6,K.1^7,K.1^12,K.1^-9,K.1^-7,K.1^-6,K.1^-7,K.1^6,K.1^-11,K.1^-9,K.1^-12,K.1^-1,K.1^-9,K.1^9,K.1^3,K.1^-2,K.1^-11,K.1^-12,K.1^-12,K.1^11,K.1^-6,K.1^11,K.1^-6,K.1^11,K.1^-12,K.1^-9,K.1^-11,K.1^-6,K.1^11,K.1^12,K.1^-9,K.1^-11,K.1^-6,K.1^-7,K.1^-8,K.1^9,K.1^11,K.1^8,K.1^8,K.1^-3,K.1^2,K.1^3,K.1^4,K.1^4,K.1,K.1^-2,K.1,K.1^-2,K.1,K.1^4,K.1^-8,K.1^7,K.1^2,K.1^-3,K.1^-4,K.1^-4,K.1^3,K.1^-8,K.1^-4,K.1^-1,K.1^6,K.1^7,K.1^8,K.1^4,K.1,K.1^2,K.1^-3,K.1^12,K.1^-9,K.1^-1,K.1^6,K.1^-7,K.1^6,K.1^3,K.1^-4,K.1^-12,K.1^-1,K.1^-2,K.1^7,K.1^-8,K.1^9,K.1,K.1^-9,K.1^8,K.1^-3,K.1^-2,K.1^-11,K.1^9,K.1^-8,K.1^7,K.1^6,K.1^-1,K.1^9,K.1^-4,K.1^-7,K.1^6,K.1^-1,K.1^6,K.1^-11,K.1^-9,K.1^12,K.1^-7,K.1^-6,K.1^-7,K.1^8,K.1^8,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-5,K.1^10,K.1^-10,1,1,1,1,1,1,1,1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^-2,K.1^-1,K.1^-7,K.1^9,K.1^4,K.1^-6,K.1^8,K.1,K.1^2,K.1^-4,K.1^-9,K.1^6,K.1^7,K.1^12,K.1^-8,K.1^-3,K.1^3,K.1^11,K.1^-11,K.1^-12,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^5,K.1^-8,K.1^-6,K.1^11,K.1^-3,K.1^9,K.1^7,K.1^12,K.1^-11,K.1^2,K.1^6,K.1^2,K.1^6,K.1^3,K.1^-7,K.1^-8,K.1^-4,K.1^-11,K.1^-9,K.1^2,K.1^11,K.1^-4,K.1,K.1^-9,K.1^-3,K.1^11,K.1^-2,K.1,K.1^12,K.1^-12,K.1^8,K.1^7,K.1^12,K.1^-6,K.1^-6,K.1^-7,K.1^-11,K.1^-7,K.1^4,K.1^4,K.1^8,K.1^8,K.1^6,K.1^4,K.1^-8,K.1^-9,K.1^-1,K.1^3,K.1^3,K.1^9,K.1^-2,K.1^-2,K.1^9,K.1^-12,K.1^-1,K.1^-1,K.1^-12,K.1^-3,K.1,K.1^7,K.1^-4,K.1^-4,K.1^4,K.1^12,K.1^6,K.1,K.1^-12,K.1^8,K.1^8,K.1^2,K.1^-3,K.1^9,K.1^-1,K.1^-1,K.1^-12,K.1^-7,K.1^-6,K.1^-11,K.1^-2,K.1^12,K.1^4,K.1^-6,K.1^-11,K.1^-8,K.1^7,K.1^3,K.1^9,K.1^3,K.1^11,K.1^-8,K.1^-3,K.1^6,K.1,K.1^2,K.1^-9,K.1^-9,K.1^-2,K.1^-7,K.1^-4,K.1^11,K.1^7,K.1^-2,K.1^11,K.1^8,K.1^4,K.1^7,K.1^7,K.1^-6,K.1^-7,K.1^12,K.1^4,K.1^-1,K.1^9,K.1^-11,K.1^6,K.1^3,K.1^9,K.1^-8,K.1^-4,K.1^-2,K.1^12,K.1^7,K.1^-8,K.1^-8,K.1^2,K.1^-6,K.1^-7,K.1,K.1^-12,K.1^6,K.1^2,K.1^11,K.1^8,K.1^6,K.1^3,K.1^7,K.1^3,K.1^-9,K.1^-3,K.1^12,K.1^-4,K.1^11,K.1^8,K.1^-2,K.1,K.1^-9,K.1^-9,K.1^-11,K.1^-4,K.1,K.1^-7,K.1^-4,K.1^-2,K.1^-1,K.1^-3,K.1^-3,K.1^12,K.1^2,K.1^-8,K.1^4,K.1^3,K.1^-9,K.1^-6,K.1^-12,K.1^-1,K.1^11,K.1^-7,K.1,K.1^-3,K.1^4,K.1^8,K.1^9,K.1^-11,K.1^-11,K.1^-6,K.1^9,K.1^-12,K.1^-12,K.1^-1,K.1^2,K.1^6,K.1^-9,K.1^12,K.1^7,K.1^2,K.1^7,K.1^-8,K.1^-9,K.1^-7,K.1^-2,K.1,K.1^6,K.1^3,K.1^8,K.1^4,K.1^-1,K.1^-6,K.1^-1,K.1^9,K.1^8,K.1,K.1^4,K.1^-4,K.1^3,K.1^-2,K.1^11,K.1^6,K.1^-7,K.1^-12,K.1^-8,K.1^-3,K.1^2,K.1^-3,K.1^12,K.1^-12,K.1^11,K.1^-4,K.1^9,K.1^-11,K.1^-6,K.1^-11,K.1^-11,K.1^-12,K.1^-11,K.1^6,K.1^-1,K.1^2,K.1,K.1^12,K.1^8,K.1^-7,K.1^-2,K.1,K.1^-9,K.1^4,K.1^3,K.1^-6,K.1^-3,K.1^-9,K.1^-12,K.1^7,K.1^4,K.1^-9,K.1^-3,K.1^-2,K.1^-3,K.1^12,K.1^12,K.1^11,K.1^2,K.1^-11,K.1^-2,K.1^-1,K.1^-4,K.1^-4,K.1^3,K.1^-2,K.1^3,K.1^-12,K.1^-4,K.1^-3,K.1^2,K.1^-7,K.1^-8,K.1^-8,K.1^-1,K.1^4,K.1^8,K.1^-7,K.1^-2,K.1^3,K.1^8,K.1^-12,K.1^11,K.1^6,K.1^-7,K.1^-12,K.1^9,K.1^7,K.1^6,K.1^7,K.1^-6,K.1^11,K.1^9,K.1^12,K.1,K.1^9,K.1^-9,K.1^-3,K.1^2,K.1^11,K.1^12,K.1^12,K.1^-11,K.1^6,K.1^-11,K.1^6,K.1^-11,K.1^12,K.1^9,K.1^11,K.1^6,K.1^-11,K.1^-12,K.1^9,K.1^11,K.1^6,K.1^7,K.1^8,K.1^-9,K.1^-11,K.1^-8,K.1^-8,K.1^3,K.1^-2,K.1^-3,K.1^-4,K.1^-4,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-4,K.1^8,K.1^-7,K.1^-2,K.1^3,K.1^4,K.1^4,K.1^-3,K.1^8,K.1^4,K.1,K.1^-6,K.1^-7,K.1^-8,K.1^-4,K.1^-1,K.1^-2,K.1^3,K.1^-12,K.1^9,K.1,K.1^-6,K.1^7,K.1^-6,K.1^-3,K.1^4,K.1^12,K.1,K.1^2,K.1^-7,K.1^8,K.1^-9,K.1^-1,K.1^9,K.1^-8,K.1^3,K.1^2,K.1^11,K.1^-9,K.1^8,K.1^-7,K.1^-6,K.1,K.1^-9,K.1^4,K.1^7,K.1^-6,K.1,K.1^-6,K.1^11,K.1^9,K.1^-12,K.1^7,K.1^6,K.1^7,K.1^-8,K.1^-8,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-10,K.1^10,K.1^5,K.1^-5,-1,-1,-1,-1,1,1,1,1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,K.1^-11,K.1^7,K.1^-1,K.1^12,K.1^-3,K.1^-8,K.1^-6,K.1^-7,K.1^11,K.1^3,K.1^-12,K.1^8,K.1,K.1^-9,K.1^6,K.1^-4,K.1^4,K.1^-2,K.1^2,K.1^9,K.1^-5,K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^10,K.1^5,-1*K.1^-10,K.1^-5,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^10,K.1^-5,-1*K.1^-5,K.1^10,K.1^-10,K.1^10,-1*K.1^5,-1*K.1^-5,K.1^-10,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^10,K.1^5,-1*K.1^-10,K.1^-10,-1*K.1^-10,K.1^6,K.1^-8,K.1^-2,K.1^-4,K.1^12,K.1,K.1^-9,K.1^2,K.1^11,K.1^8,K.1^11,K.1^8,K.1^4,K.1^-1,K.1^6,K.1^3,K.1^2,K.1^-12,K.1^11,K.1^-2,K.1^3,K.1^-7,K.1^-12,K.1^-4,K.1^-2,K.1^-11,K.1^-7,K.1^-9,K.1^9,K.1^-6,K.1,K.1^-9,K.1^-8,K.1^-8,K.1^-1,K.1^2,K.1^-1,K.1^-3,K.1^-3,K.1^-6,K.1^-6,K.1^8,K.1^-3,K.1^6,K.1^-12,K.1^7,K.1^4,K.1^4,K.1^12,K.1^-11,K.1^-11,K.1^12,K.1^9,K.1^7,K.1^7,K.1^9,K.1^-4,K.1^-7,K.1,K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^8,-1*K.1^-7,-1*K.1^9,-1*K.1^-6,-1*K.1^-6,-1*K.1^11,-1*K.1^-4,-1*K.1^12,-1*K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^-1,-1*K.1^-8,-1*K.1^2,-1*K.1^-11,-1*K.1^-9,-1*K.1^-3,-1*K.1^-8,-1*K.1^2,-1*K.1^6,-1*K.1,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^-2,-1*K.1^6,-1*K.1^-4,-1*K.1^8,-1*K.1^-7,-1*K.1^11,-1*K.1^-12,-1*K.1^-12,-1*K.1^-11,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1,K.1^-11,K.1^-2,K.1^-6,K.1^-3,K.1,K.1,K.1^-8,K.1^-1,K.1^-9,K.1^-3,K.1^7,K.1^12,K.1^2,K.1^8,K.1^4,K.1^12,K.1^6,K.1^3,K.1^-11,K.1^-9,K.1,K.1^6,K.1^6,K.1^11,K.1^-8,K.1^-1,K.1^-7,K.1^9,K.1^8,K.1^11,K.1^-2,K.1^-6,K.1^8,K.1^4,K.1,K.1^4,K.1^-12,K.1^-4,K.1^-9,K.1^3,K.1^-2,K.1^-6,K.1^-11,K.1^-7,K.1^-12,K.1^-12,K.1^2,K.1^3,K.1^-7,K.1^-1,K.1^3,K.1^-11,K.1^7,K.1^-4,K.1^-4,K.1^-9,K.1^11,K.1^6,K.1^-3,K.1^4,K.1^-12,K.1^-8,K.1^9,K.1^7,K.1^-2,K.1^-1,K.1^-7,K.1^-4,K.1^-3,K.1^-6,K.1^12,K.1^2,K.1^2,K.1^-8,K.1^12,K.1^9,K.1^9,K.1^7,K.1^11,K.1^8,-1*K.1^-12,-1*K.1^-9,-1*K.1,-1*K.1^11,-1*K.1,-1*K.1^6,-1*K.1^-12,-1*K.1^-1,-1*K.1^-11,-1*K.1^-7,-1*K.1^8,-1*K.1^4,-1*K.1^-6,-1*K.1^-3,-1*K.1^7,-1*K.1^-8,-1*K.1^7,-1*K.1^12,-1*K.1^-6,-1*K.1^-7,-1*K.1^-3,-1*K.1^3,-1*K.1^4,-1*K.1^-11,-1*K.1^-2,-1*K.1^8,-1*K.1^-1,-1*K.1^9,-1*K.1^6,-1*K.1^-4,-1*K.1^11,-1*K.1^-4,-1*K.1^-9,-1*K.1^9,-1*K.1^-2,-1*K.1^3,-1*K.1^12,-1*K.1^2,-1*K.1^-8,-1*K.1^2,K.1^2,K.1^9,-1*K.1^2,-1*K.1^8,-1*K.1^7,-1*K.1^11,K.1^-7,-1*K.1^-9,-1*K.1^-6,-1*K.1^-1,-1*K.1^-11,-1*K.1^-7,-1*K.1^-12,-1*K.1^-3,K.1^4,-1*K.1^-8,-1*K.1^-4,K.1^-12,-1*K.1^9,-1*K.1,-1*K.1^-3,-1*K.1^-12,K.1^-4,-1*K.1^-11,-1*K.1^-4,-1*K.1^-9,-1*K.1^-9,K.1^-2,-1*K.1^11,-1*K.1^2,K.1^-11,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^4,-1*K.1^-11,-1*K.1^4,-1*K.1^9,K.1^3,-1*K.1^-4,-1*K.1^11,-1*K.1^-1,K.1^6,-1*K.1^6,-1*K.1^7,K.1^-3,-1*K.1^-6,-1*K.1^-1,-1*K.1^-11,-1*K.1^4,K.1^-6,-1*K.1^9,-1*K.1^-2,-1*K.1^8,-1*K.1^-1,-1*K.1^9,-1*K.1^12,-1*K.1,K.1^8,-1*K.1,-1*K.1^-8,-1*K.1^-2,-1*K.1^12,K.1^-9,-1*K.1^-7,K.1^12,K.1^-12,-1*K.1^-4,-1*K.1^11,K.1^-2,K.1^-9,K.1^-9,K.1^2,K.1^8,K.1^2,K.1^8,K.1^2,K.1^-9,-1*K.1^12,-1*K.1^-2,-1*K.1^8,-1*K.1^2,K.1^9,K.1^12,K.1^-2,-1*K.1^8,K.1,-1*K.1^-6,-1*K.1^-12,-1*K.1^2,-1*K.1^6,K.1^6,K.1^4,K.1^-11,K.1^-4,K.1^3,K.1^3,K.1^7,K.1^11,K.1^7,K.1^11,K.1^7,K.1^3,K.1^-6,K.1^-1,K.1^-11,K.1^4,-1*K.1^-3,K.1^-3,K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1^-7,-1*K.1^-8,K.1^-1,K.1^6,-1*K.1^3,-1*K.1^7,K.1^-11,K.1^4,K.1^9,K.1^12,K.1^-7,K.1^-8,K.1,K.1^-8,K.1^-4,K.1^-3,-1*K.1^-9,K.1^-7,K.1^11,K.1^-1,K.1^-6,K.1^-12,K.1^7,-1*K.1^12,-1*K.1^6,-1*K.1^4,K.1^11,-1*K.1^-2,K.1^-12,K.1^-6,K.1^-1,-1*K.1^-8,-1*K.1^-7,-1*K.1^-12,K.1^-3,K.1,K.1^-8,K.1^-7,K.1^-8,K.1^-2,K.1^12,K.1^9,K.1,K.1^8,-1*K.1,-1*K.1^6,K.1^6,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^-10,K.1^-5,K.1^5,-1,-1,-1,-1,1,1,1,1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^11,K.1^-7,K.1,K.1^-12,K.1^3,K.1^8,K.1^6,K.1^7,K.1^-11,K.1^-3,K.1^12,K.1^-8,K.1^-1,K.1^9,K.1^-6,K.1^4,K.1^-4,K.1^2,K.1^-2,K.1^-9,K.1^5,K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,K.1^-5,-1*K.1^10,K.1^5,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,K.1^-5,K.1^-10,K.1^5,-1*K.1^5,K.1^-10,K.1^10,K.1^-10,-1*K.1^-5,-1*K.1^5,K.1^10,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^-10,K.1^-5,-1*K.1^10,K.1^10,-1*K.1^10,K.1^-6,K.1^8,K.1^2,K.1^4,K.1^-12,K.1^-1,K.1^9,K.1^-2,K.1^-11,K.1^-8,K.1^-11,K.1^-8,K.1^-4,K.1,K.1^-6,K.1^-3,K.1^-2,K.1^12,K.1^-11,K.1^2,K.1^-3,K.1^7,K.1^12,K.1^4,K.1^2,K.1^11,K.1^7,K.1^9,K.1^-9,K.1^6,K.1^-1,K.1^9,K.1^8,K.1^8,K.1,K.1^-2,K.1,K.1^3,K.1^3,K.1^6,K.1^6,K.1^-8,K.1^3,K.1^-6,K.1^12,K.1^-7,K.1^-4,K.1^-4,K.1^-12,K.1^11,K.1^11,K.1^-12,K.1^-9,K.1^-7,K.1^-7,K.1^-9,K.1^4,K.1^7,K.1^-1,K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^-8,-1*K.1^7,-1*K.1^-9,-1*K.1^6,-1*K.1^6,-1*K.1^-11,-1*K.1^4,-1*K.1^-12,-1*K.1^-7,-1*K.1^-7,-1*K.1^-9,-1*K.1,-1*K.1^8,-1*K.1^-2,-1*K.1^11,-1*K.1^9,-1*K.1^3,-1*K.1^8,-1*K.1^-2,-1*K.1^-6,-1*K.1^-1,-1*K.1^-4,-1*K.1^-12,-1*K.1^-4,-1*K.1^2,-1*K.1^-6,-1*K.1^4,-1*K.1^-8,-1*K.1^7,-1*K.1^-11,-1*K.1^12,-1*K.1^12,-1*K.1^11,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,K.1^11,K.1^2,K.1^6,K.1^3,K.1^-1,K.1^-1,K.1^8,K.1,K.1^9,K.1^3,K.1^-7,K.1^-12,K.1^-2,K.1^-8,K.1^-4,K.1^-12,K.1^-6,K.1^-3,K.1^11,K.1^9,K.1^-1,K.1^-6,K.1^-6,K.1^-11,K.1^8,K.1,K.1^7,K.1^-9,K.1^-8,K.1^-11,K.1^2,K.1^6,K.1^-8,K.1^-4,K.1^-1,K.1^-4,K.1^12,K.1^4,K.1^9,K.1^-3,K.1^2,K.1^6,K.1^11,K.1^7,K.1^12,K.1^12,K.1^-2,K.1^-3,K.1^7,K.1,K.1^-3,K.1^11,K.1^-7,K.1^4,K.1^4,K.1^9,K.1^-11,K.1^-6,K.1^3,K.1^-4,K.1^12,K.1^8,K.1^-9,K.1^-7,K.1^2,K.1,K.1^7,K.1^4,K.1^3,K.1^6,K.1^-12,K.1^-2,K.1^-2,K.1^8,K.1^-12,K.1^-9,K.1^-9,K.1^-7,K.1^-11,K.1^-8,-1*K.1^12,-1*K.1^9,-1*K.1^-1,-1*K.1^-11,-1*K.1^-1,-1*K.1^-6,-1*K.1^12,-1*K.1,-1*K.1^11,-1*K.1^7,-1*K.1^-8,-1*K.1^-4,-1*K.1^6,-1*K.1^3,-1*K.1^-7,-1*K.1^8,-1*K.1^-7,-1*K.1^-12,-1*K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1^-3,-1*K.1^-4,-1*K.1^11,-1*K.1^2,-1*K.1^-8,-1*K.1,-1*K.1^-9,-1*K.1^-6,-1*K.1^4,-1*K.1^-11,-1*K.1^4,-1*K.1^9,-1*K.1^-9,-1*K.1^2,-1*K.1^-3,-1*K.1^-12,-1*K.1^-2,-1*K.1^8,-1*K.1^-2,K.1^-2,K.1^-9,-1*K.1^-2,-1*K.1^-8,-1*K.1^-7,-1*K.1^-11,K.1^7,-1*K.1^9,-1*K.1^6,-1*K.1,-1*K.1^11,-1*K.1^7,-1*K.1^12,-1*K.1^3,K.1^-4,-1*K.1^8,-1*K.1^4,K.1^12,-1*K.1^-9,-1*K.1^-1,-1*K.1^3,-1*K.1^12,K.1^4,-1*K.1^11,-1*K.1^4,-1*K.1^9,-1*K.1^9,K.1^2,-1*K.1^-11,-1*K.1^-2,K.1^11,-1*K.1^-7,-1*K.1^-3,-1*K.1^-3,-1*K.1^-4,-1*K.1^11,-1*K.1^-4,-1*K.1^-9,K.1^-3,-1*K.1^4,-1*K.1^-11,-1*K.1,K.1^-6,-1*K.1^-6,-1*K.1^-7,K.1^3,-1*K.1^6,-1*K.1,-1*K.1^11,-1*K.1^-4,K.1^6,-1*K.1^-9,-1*K.1^2,-1*K.1^-8,-1*K.1,-1*K.1^-9,-1*K.1^-12,-1*K.1^-1,K.1^-8,-1*K.1^-1,-1*K.1^8,-1*K.1^2,-1*K.1^-12,K.1^9,-1*K.1^7,K.1^-12,K.1^12,-1*K.1^4,-1*K.1^-11,K.1^2,K.1^9,K.1^9,K.1^-2,K.1^-8,K.1^-2,K.1^-8,K.1^-2,K.1^9,-1*K.1^-12,-1*K.1^2,-1*K.1^-8,-1*K.1^-2,K.1^-9,K.1^-12,K.1^2,-1*K.1^-8,K.1^-1,-1*K.1^6,-1*K.1^12,-1*K.1^-2,-1*K.1^-6,K.1^-6,K.1^-4,K.1^11,K.1^4,K.1^-3,K.1^-3,K.1^-7,K.1^-11,K.1^-7,K.1^-11,K.1^-7,K.1^-3,K.1^6,K.1,K.1^11,K.1^-4,-1*K.1^3,K.1^3,K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^7,-1*K.1^8,K.1,K.1^-6,-1*K.1^-3,-1*K.1^-7,K.1^11,K.1^-4,K.1^-9,K.1^-12,K.1^7,K.1^8,K.1^-1,K.1^8,K.1^4,K.1^3,-1*K.1^9,K.1^7,K.1^-11,K.1,K.1^6,K.1^12,K.1^-7,-1*K.1^-12,-1*K.1^-6,-1*K.1^-4,K.1^-11,-1*K.1^2,K.1^12,K.1^6,K.1,-1*K.1^8,-1*K.1^7,-1*K.1^12,K.1^3,K.1^-1,K.1^8,K.1^7,K.1^8,K.1^2,K.1^-12,K.1^-9,K.1^-1,K.1^-8,-1*K.1^-1,-1*K.1^-6,K.1^-6,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-10,K.1^10,K.1^5,K.1^-5,-1,-1,-1,-1,1,1,1,1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,K.1^9,K.1^-8,K.1^-6,K.1^-3,K.1^7,K.1^2,K.1^-11,K.1^8,K.1^-9,K.1^-7,K.1^3,K.1^-2,K.1^6,K.1^-4,K.1^11,K.1,K.1^-1,K.1^-12,K.1^12,K.1^4,K.1^-5,K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^10,K.1^5,-1*K.1^-10,K.1^-5,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^10,K.1^-5,-1*K.1^-5,K.1^10,K.1^-10,K.1^10,-1*K.1^5,-1*K.1^-5,K.1^-10,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^10,K.1^5,-1*K.1^-10,K.1^-10,-1*K.1^-10,K.1^11,K.1^2,K.1^-12,K.1,K.1^-3,K.1^6,K.1^-4,K.1^12,K.1^-9,K.1^-2,K.1^-9,K.1^-2,K.1^-1,K.1^-6,K.1^11,K.1^-7,K.1^12,K.1^3,K.1^-9,K.1^-12,K.1^-7,K.1^8,K.1^3,K.1,K.1^-12,K.1^9,K.1^8,K.1^-4,K.1^4,K.1^-11,K.1^6,K.1^-4,K.1^2,K.1^2,K.1^-6,K.1^12,K.1^-6,K.1^7,K.1^7,K.1^-11,K.1^-11,K.1^-2,K.1^7,K.1^11,K.1^3,K.1^-8,K.1^-1,K.1^-1,K.1^-3,K.1^9,K.1^9,K.1^-3,K.1^4,K.1^-8,K.1^-8,K.1^4,K.1,K.1^8,K.1^6,K.1^-7,-1*K.1^-7,-1*K.1^7,-1*K.1^-4,-1*K.1^-2,-1*K.1^8,-1*K.1^4,-1*K.1^-11,-1*K.1^-11,-1*K.1^-9,-1*K.1,-1*K.1^-3,-1*K.1^-8,-1*K.1^-8,-1*K.1^4,-1*K.1^-6,-1*K.1^2,-1*K.1^12,-1*K.1^9,-1*K.1^-4,-1*K.1^7,-1*K.1^2,-1*K.1^12,-1*K.1^11,-1*K.1^6,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-12,-1*K.1^11,-1*K.1,-1*K.1^-2,-1*K.1^8,-1*K.1^-9,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^-6,-1*K.1^-7,-1*K.1^-12,-1*K.1^6,K.1^9,K.1^-12,K.1^-11,K.1^7,K.1^6,K.1^6,K.1^2,K.1^-6,K.1^-4,K.1^7,K.1^-8,K.1^-3,K.1^12,K.1^-2,K.1^-1,K.1^-3,K.1^11,K.1^-7,K.1^9,K.1^-4,K.1^6,K.1^11,K.1^11,K.1^-9,K.1^2,K.1^-6,K.1^8,K.1^4,K.1^-2,K.1^-9,K.1^-12,K.1^-11,K.1^-2,K.1^-1,K.1^6,K.1^-1,K.1^3,K.1,K.1^-4,K.1^-7,K.1^-12,K.1^-11,K.1^9,K.1^8,K.1^3,K.1^3,K.1^12,K.1^-7,K.1^8,K.1^-6,K.1^-7,K.1^9,K.1^-8,K.1,K.1,K.1^-4,K.1^-9,K.1^11,K.1^7,K.1^-1,K.1^3,K.1^2,K.1^4,K.1^-8,K.1^-12,K.1^-6,K.1^8,K.1,K.1^7,K.1^-11,K.1^-3,K.1^12,K.1^12,K.1^2,K.1^-3,K.1^4,K.1^4,K.1^-8,K.1^-9,K.1^-2,-1*K.1^3,-1*K.1^-4,-1*K.1^6,-1*K.1^-9,-1*K.1^6,-1*K.1^11,-1*K.1^3,-1*K.1^-6,-1*K.1^9,-1*K.1^8,-1*K.1^-2,-1*K.1^-1,-1*K.1^-11,-1*K.1^7,-1*K.1^-8,-1*K.1^2,-1*K.1^-8,-1*K.1^-3,-1*K.1^-11,-1*K.1^8,-1*K.1^7,-1*K.1^-7,-1*K.1^-1,-1*K.1^9,-1*K.1^-12,-1*K.1^-2,-1*K.1^-6,-1*K.1^4,-1*K.1^11,-1*K.1,-1*K.1^-9,-1*K.1,-1*K.1^-4,-1*K.1^4,-1*K.1^-12,-1*K.1^-7,-1*K.1^-3,-1*K.1^12,-1*K.1^2,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,-1*K.1^-2,-1*K.1^-8,-1*K.1^-9,K.1^8,-1*K.1^-4,-1*K.1^-11,-1*K.1^-6,-1*K.1^9,-1*K.1^8,-1*K.1^3,-1*K.1^7,K.1^-1,-1*K.1^2,-1*K.1,K.1^3,-1*K.1^4,-1*K.1^6,-1*K.1^7,-1*K.1^3,K.1,-1*K.1^9,-1*K.1,-1*K.1^-4,-1*K.1^-4,K.1^-12,-1*K.1^-9,-1*K.1^12,K.1^9,-1*K.1^-8,-1*K.1^-7,-1*K.1^-7,-1*K.1^-1,-1*K.1^9,-1*K.1^-1,-1*K.1^4,K.1^-7,-1*K.1,-1*K.1^-9,-1*K.1^-6,K.1^11,-1*K.1^11,-1*K.1^-8,K.1^7,-1*K.1^-11,-1*K.1^-6,-1*K.1^9,-1*K.1^-1,K.1^-11,-1*K.1^4,-1*K.1^-12,-1*K.1^-2,-1*K.1^-6,-1*K.1^4,-1*K.1^-3,-1*K.1^6,K.1^-2,-1*K.1^6,-1*K.1^2,-1*K.1^-12,-1*K.1^-3,K.1^-4,-1*K.1^8,K.1^-3,K.1^3,-1*K.1,-1*K.1^-9,K.1^-12,K.1^-4,K.1^-4,K.1^12,K.1^-2,K.1^12,K.1^-2,K.1^12,K.1^-4,-1*K.1^-3,-1*K.1^-12,-1*K.1^-2,-1*K.1^12,K.1^4,K.1^-3,K.1^-12,-1*K.1^-2,K.1^6,-1*K.1^-11,-1*K.1^3,-1*K.1^12,-1*K.1^11,K.1^11,K.1^-1,K.1^9,K.1,K.1^-7,K.1^-7,K.1^-8,K.1^-9,K.1^-8,K.1^-9,K.1^-8,K.1^-7,K.1^-11,K.1^-6,K.1^9,K.1^-1,-1*K.1^7,K.1^7,K.1,-1*K.1^-11,-1*K.1^7,-1*K.1^8,-1*K.1^2,K.1^-6,K.1^11,-1*K.1^-7,-1*K.1^-8,K.1^9,K.1^-1,K.1^4,K.1^-3,K.1^8,K.1^2,K.1^6,K.1^2,K.1,K.1^7,-1*K.1^-4,K.1^8,K.1^-9,K.1^-6,K.1^-11,K.1^3,K.1^-8,-1*K.1^-3,-1*K.1^11,-1*K.1^-1,K.1^-9,-1*K.1^-12,K.1^3,K.1^-11,K.1^-6,-1*K.1^2,-1*K.1^8,-1*K.1^3,K.1^7,K.1^6,K.1^2,K.1^8,K.1^2,K.1^-12,K.1^-3,K.1^4,K.1^6,K.1^-2,-1*K.1^6,-1*K.1^11,K.1^11,-1*K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^-10,K.1^-5,K.1^5,-1,-1,-1,-1,1,1,1,1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^-9,K.1^8,K.1^6,K.1^3,K.1^-7,K.1^-2,K.1^11,K.1^-8,K.1^9,K.1^7,K.1^-3,K.1^2,K.1^-6,K.1^4,K.1^-11,K.1^-1,K.1,K.1^12,K.1^-12,K.1^-4,K.1^5,K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,K.1^-5,-1*K.1^10,K.1^5,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,K.1^-5,K.1^-10,K.1^5,-1*K.1^5,K.1^-10,K.1^10,K.1^-10,-1*K.1^-5,-1*K.1^5,K.1^10,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^-10,K.1^-5,-1*K.1^10,K.1^10,-1*K.1^10,K.1^-11,K.1^-2,K.1^12,K.1^-1,K.1^3,K.1^-6,K.1^4,K.1^-12,K.1^9,K.1^2,K.1^9,K.1^2,K.1,K.1^6,K.1^-11,K.1^7,K.1^-12,K.1^-3,K.1^9,K.1^12,K.1^7,K.1^-8,K.1^-3,K.1^-1,K.1^12,K.1^-9,K.1^-8,K.1^4,K.1^-4,K.1^11,K.1^-6,K.1^4,K.1^-2,K.1^-2,K.1^6,K.1^-12,K.1^6,K.1^-7,K.1^-7,K.1^11,K.1^11,K.1^2,K.1^-7,K.1^-11,K.1^-3,K.1^8,K.1,K.1,K.1^3,K.1^-9,K.1^-9,K.1^3,K.1^-4,K.1^8,K.1^8,K.1^-4,K.1^-1,K.1^-8,K.1^-6,K.1^7,-1*K.1^7,-1*K.1^-7,-1*K.1^4,-1*K.1^2,-1*K.1^-8,-1*K.1^-4,-1*K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^-1,-1*K.1^3,-1*K.1^8,-1*K.1^8,-1*K.1^-4,-1*K.1^6,-1*K.1^-2,-1*K.1^-12,-1*K.1^-9,-1*K.1^4,-1*K.1^-7,-1*K.1^-2,-1*K.1^-12,-1*K.1^-11,-1*K.1^-6,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^12,-1*K.1^-11,-1*K.1^-1,-1*K.1^2,-1*K.1^-8,-1*K.1^9,-1*K.1^-3,-1*K.1^-3,-1*K.1^-9,-1*K.1^6,-1*K.1^7,-1*K.1^12,-1*K.1^-6,K.1^-9,K.1^12,K.1^11,K.1^-7,K.1^-6,K.1^-6,K.1^-2,K.1^6,K.1^4,K.1^-7,K.1^8,K.1^3,K.1^-12,K.1^2,K.1,K.1^3,K.1^-11,K.1^7,K.1^-9,K.1^4,K.1^-6,K.1^-11,K.1^-11,K.1^9,K.1^-2,K.1^6,K.1^-8,K.1^-4,K.1^2,K.1^9,K.1^12,K.1^11,K.1^2,K.1,K.1^-6,K.1,K.1^-3,K.1^-1,K.1^4,K.1^7,K.1^12,K.1^11,K.1^-9,K.1^-8,K.1^-3,K.1^-3,K.1^-12,K.1^7,K.1^-8,K.1^6,K.1^7,K.1^-9,K.1^8,K.1^-1,K.1^-1,K.1^4,K.1^9,K.1^-11,K.1^-7,K.1,K.1^-3,K.1^-2,K.1^-4,K.1^8,K.1^12,K.1^6,K.1^-8,K.1^-1,K.1^-7,K.1^11,K.1^3,K.1^-12,K.1^-12,K.1^-2,K.1^3,K.1^-4,K.1^-4,K.1^8,K.1^9,K.1^2,-1*K.1^-3,-1*K.1^4,-1*K.1^-6,-1*K.1^9,-1*K.1^-6,-1*K.1^-11,-1*K.1^-3,-1*K.1^6,-1*K.1^-9,-1*K.1^-8,-1*K.1^2,-1*K.1,-1*K.1^11,-1*K.1^-7,-1*K.1^8,-1*K.1^-2,-1*K.1^8,-1*K.1^3,-1*K.1^11,-1*K.1^-8,-1*K.1^-7,-1*K.1^7,-1*K.1,-1*K.1^-9,-1*K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^-4,-1*K.1^-11,-1*K.1^-1,-1*K.1^9,-1*K.1^-1,-1*K.1^4,-1*K.1^-4,-1*K.1^12,-1*K.1^7,-1*K.1^3,-1*K.1^-12,-1*K.1^-2,-1*K.1^-12,K.1^-12,K.1^-4,-1*K.1^-12,-1*K.1^2,-1*K.1^8,-1*K.1^9,K.1^-8,-1*K.1^4,-1*K.1^11,-1*K.1^6,-1*K.1^-9,-1*K.1^-8,-1*K.1^-3,-1*K.1^-7,K.1,-1*K.1^-2,-1*K.1^-1,K.1^-3,-1*K.1^-4,-1*K.1^-6,-1*K.1^-7,-1*K.1^-3,K.1^-1,-1*K.1^-9,-1*K.1^-1,-1*K.1^4,-1*K.1^4,K.1^12,-1*K.1^9,-1*K.1^-12,K.1^-9,-1*K.1^8,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1^-9,-1*K.1,-1*K.1^-4,K.1^7,-1*K.1^-1,-1*K.1^9,-1*K.1^6,K.1^-11,-1*K.1^-11,-1*K.1^8,K.1^-7,-1*K.1^11,-1*K.1^6,-1*K.1^-9,-1*K.1,K.1^11,-1*K.1^-4,-1*K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^-4,-1*K.1^3,-1*K.1^-6,K.1^2,-1*K.1^-6,-1*K.1^-2,-1*K.1^12,-1*K.1^3,K.1^4,-1*K.1^-8,K.1^3,K.1^-3,-1*K.1^-1,-1*K.1^9,K.1^12,K.1^4,K.1^4,K.1^-12,K.1^2,K.1^-12,K.1^2,K.1^-12,K.1^4,-1*K.1^3,-1*K.1^12,-1*K.1^2,-1*K.1^-12,K.1^-4,K.1^3,K.1^12,-1*K.1^2,K.1^-6,-1*K.1^11,-1*K.1^-3,-1*K.1^-12,-1*K.1^-11,K.1^-11,K.1,K.1^-9,K.1^-1,K.1^7,K.1^7,K.1^8,K.1^9,K.1^8,K.1^9,K.1^8,K.1^7,K.1^11,K.1^6,K.1^-9,K.1,-1*K.1^-7,K.1^-7,K.1^-1,-1*K.1^11,-1*K.1^-7,-1*K.1^-8,-1*K.1^-2,K.1^6,K.1^-11,-1*K.1^7,-1*K.1^8,K.1^-9,K.1,K.1^-4,K.1^3,K.1^-8,K.1^-2,K.1^-6,K.1^-2,K.1^-1,K.1^-7,-1*K.1^4,K.1^-8,K.1^9,K.1^6,K.1^11,K.1^-3,K.1^8,-1*K.1^3,-1*K.1^-11,-1*K.1,K.1^9,-1*K.1^12,K.1^-3,K.1^11,K.1^6,-1*K.1^-2,-1*K.1^-8,-1*K.1^-3,K.1^-7,K.1^-6,K.1^-2,K.1^-8,K.1^-2,K.1^12,K.1^3,K.1^-4,K.1^-6,K.1^2,-1*K.1^-6,-1*K.1^-11,K.1^-11,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-10,K.1^10,K.1^5,K.1^-5,-1,-1,-1,-1,1,1,1,1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,K.1^-6,K.1^-3,K.1^4,K.1^2,K.1^12,K.1^7,K.1^-1,K.1^3,K.1^6,K.1^-12,K.1^-2,K.1^-7,K.1^-4,K.1^11,K.1,K.1^-9,K.1^9,K.1^8,K.1^-8,K.1^-11,K.1^-5,K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^10,K.1^5,-1*K.1^-10,K.1^-5,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^10,K.1^-5,-1*K.1^-5,K.1^10,K.1^-10,K.1^10,-1*K.1^5,-1*K.1^-5,K.1^-10,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^10,K.1^5,-1*K.1^-10,K.1^-10,-1*K.1^-10,K.1,K.1^7,K.1^8,K.1^-9,K.1^2,K.1^-4,K.1^11,K.1^-8,K.1^6,K.1^-7,K.1^6,K.1^-7,K.1^9,K.1^4,K.1,K.1^-12,K.1^-8,K.1^-2,K.1^6,K.1^8,K.1^-12,K.1^3,K.1^-2,K.1^-9,K.1^8,K.1^-6,K.1^3,K.1^11,K.1^-11,K.1^-1,K.1^-4,K.1^11,K.1^7,K.1^7,K.1^4,K.1^-8,K.1^4,K.1^12,K.1^12,K.1^-1,K.1^-1,K.1^-7,K.1^12,K.1,K.1^-2,K.1^-3,K.1^9,K.1^9,K.1^2,K.1^-6,K.1^-6,K.1^2,K.1^-11,K.1^-3,K.1^-3,K.1^-11,K.1^-9,K.1^3,K.1^-4,K.1^-12,-1*K.1^-12,-1*K.1^12,-1*K.1^11,-1*K.1^-7,-1*K.1^3,-1*K.1^-11,-1*K.1^-1,-1*K.1^-1,-1*K.1^6,-1*K.1^-9,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-11,-1*K.1^4,-1*K.1^7,-1*K.1^-8,-1*K.1^-6,-1*K.1^11,-1*K.1^12,-1*K.1^7,-1*K.1^-8,-1*K.1,-1*K.1^-4,-1*K.1^9,-1*K.1^2,-1*K.1^9,-1*K.1^8,-1*K.1,-1*K.1^-9,-1*K.1^-7,-1*K.1^3,-1*K.1^6,-1*K.1^-2,-1*K.1^-2,-1*K.1^-6,-1*K.1^4,-1*K.1^-12,-1*K.1^8,-1*K.1^-4,K.1^-6,K.1^8,K.1^-1,K.1^12,K.1^-4,K.1^-4,K.1^7,K.1^4,K.1^11,K.1^12,K.1^-3,K.1^2,K.1^-8,K.1^-7,K.1^9,K.1^2,K.1,K.1^-12,K.1^-6,K.1^11,K.1^-4,K.1,K.1,K.1^6,K.1^7,K.1^4,K.1^3,K.1^-11,K.1^-7,K.1^6,K.1^8,K.1^-1,K.1^-7,K.1^9,K.1^-4,K.1^9,K.1^-2,K.1^-9,K.1^11,K.1^-12,K.1^8,K.1^-1,K.1^-6,K.1^3,K.1^-2,K.1^-2,K.1^-8,K.1^-12,K.1^3,K.1^4,K.1^-12,K.1^-6,K.1^-3,K.1^-9,K.1^-9,K.1^11,K.1^6,K.1,K.1^12,K.1^9,K.1^-2,K.1^7,K.1^-11,K.1^-3,K.1^8,K.1^4,K.1^3,K.1^-9,K.1^12,K.1^-1,K.1^2,K.1^-8,K.1^-8,K.1^7,K.1^2,K.1^-11,K.1^-11,K.1^-3,K.1^6,K.1^-7,-1*K.1^-2,-1*K.1^11,-1*K.1^-4,-1*K.1^6,-1*K.1^-4,-1*K.1,-1*K.1^-2,-1*K.1^4,-1*K.1^-6,-1*K.1^3,-1*K.1^-7,-1*K.1^9,-1*K.1^-1,-1*K.1^12,-1*K.1^-3,-1*K.1^7,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^12,-1*K.1^-12,-1*K.1^9,-1*K.1^-6,-1*K.1^8,-1*K.1^-7,-1*K.1^4,-1*K.1^-11,-1*K.1,-1*K.1^-9,-1*K.1^6,-1*K.1^-9,-1*K.1^11,-1*K.1^-11,-1*K.1^8,-1*K.1^-12,-1*K.1^2,-1*K.1^-8,-1*K.1^7,-1*K.1^-8,K.1^-8,K.1^-11,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1^6,K.1^3,-1*K.1^11,-1*K.1^-1,-1*K.1^4,-1*K.1^-6,-1*K.1^3,-1*K.1^-2,-1*K.1^12,K.1^9,-1*K.1^7,-1*K.1^-9,K.1^-2,-1*K.1^-11,-1*K.1^-4,-1*K.1^12,-1*K.1^-2,K.1^-9,-1*K.1^-6,-1*K.1^-9,-1*K.1^11,-1*K.1^11,K.1^8,-1*K.1^6,-1*K.1^-8,K.1^-6,-1*K.1^-3,-1*K.1^-12,-1*K.1^-12,-1*K.1^9,-1*K.1^-6,-1*K.1^9,-1*K.1^-11,K.1^-12,-1*K.1^-9,-1*K.1^6,-1*K.1^4,K.1,-1*K.1,-1*K.1^-3,K.1^12,-1*K.1^-1,-1*K.1^4,-1*K.1^-6,-1*K.1^9,K.1^-1,-1*K.1^-11,-1*K.1^8,-1*K.1^-7,-1*K.1^4,-1*K.1^-11,-1*K.1^2,-1*K.1^-4,K.1^-7,-1*K.1^-4,-1*K.1^7,-1*K.1^8,-1*K.1^2,K.1^11,-1*K.1^3,K.1^2,K.1^-2,-1*K.1^-9,-1*K.1^6,K.1^8,K.1^11,K.1^11,K.1^-8,K.1^-7,K.1^-8,K.1^-7,K.1^-8,K.1^11,-1*K.1^2,-1*K.1^8,-1*K.1^-7,-1*K.1^-8,K.1^-11,K.1^2,K.1^8,-1*K.1^-7,K.1^-4,-1*K.1^-1,-1*K.1^-2,-1*K.1^-8,-1*K.1,K.1,K.1^9,K.1^-6,K.1^-9,K.1^-12,K.1^-12,K.1^-3,K.1^6,K.1^-3,K.1^6,K.1^-3,K.1^-12,K.1^-1,K.1^4,K.1^-6,K.1^9,-1*K.1^12,K.1^12,K.1^-9,-1*K.1^-1,-1*K.1^12,-1*K.1^3,-1*K.1^7,K.1^4,K.1,-1*K.1^-12,-1*K.1^-3,K.1^-6,K.1^9,K.1^-11,K.1^2,K.1^3,K.1^7,K.1^-4,K.1^7,K.1^-9,K.1^12,-1*K.1^11,K.1^3,K.1^6,K.1^4,K.1^-1,K.1^-2,K.1^-3,-1*K.1^2,-1*K.1,-1*K.1^9,K.1^6,-1*K.1^8,K.1^-2,K.1^-1,K.1^4,-1*K.1^7,-1*K.1^3,-1*K.1^-2,K.1^12,K.1^-4,K.1^7,K.1^3,K.1^7,K.1^8,K.1^2,K.1^-11,K.1^-4,K.1^-7,-1*K.1^-4,-1*K.1,K.1,-1*K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^-10,K.1^-5,K.1^5,-1,-1,-1,-1,1,1,1,1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^6,K.1^3,K.1^-4,K.1^-2,K.1^-12,K.1^-7,K.1,K.1^-3,K.1^-6,K.1^12,K.1^2,K.1^7,K.1^4,K.1^-11,K.1^-1,K.1^9,K.1^-9,K.1^-8,K.1^8,K.1^11,K.1^5,K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,K.1^-5,-1*K.1^10,K.1^5,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,K.1^-5,K.1^-10,K.1^5,-1*K.1^5,K.1^-10,K.1^10,K.1^-10,-1*K.1^-5,-1*K.1^5,K.1^10,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^-10,K.1^-5,-1*K.1^10,K.1^10,-1*K.1^10,K.1^-1,K.1^-7,K.1^-8,K.1^9,K.1^-2,K.1^4,K.1^-11,K.1^8,K.1^-6,K.1^7,K.1^-6,K.1^7,K.1^-9,K.1^-4,K.1^-1,K.1^12,K.1^8,K.1^2,K.1^-6,K.1^-8,K.1^12,K.1^-3,K.1^2,K.1^9,K.1^-8,K.1^6,K.1^-3,K.1^-11,K.1^11,K.1,K.1^4,K.1^-11,K.1^-7,K.1^-7,K.1^-4,K.1^8,K.1^-4,K.1^-12,K.1^-12,K.1,K.1,K.1^7,K.1^-12,K.1^-1,K.1^2,K.1^3,K.1^-9,K.1^-9,K.1^-2,K.1^6,K.1^6,K.1^-2,K.1^11,K.1^3,K.1^3,K.1^11,K.1^9,K.1^-3,K.1^4,K.1^12,-1*K.1^12,-1*K.1^-12,-1*K.1^-11,-1*K.1^7,-1*K.1^-3,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^-6,-1*K.1^9,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1^11,-1*K.1^-4,-1*K.1^-7,-1*K.1^8,-1*K.1^6,-1*K.1^-11,-1*K.1^-12,-1*K.1^-7,-1*K.1^8,-1*K.1^-1,-1*K.1^4,-1*K.1^-9,-1*K.1^-2,-1*K.1^-9,-1*K.1^-8,-1*K.1^-1,-1*K.1^9,-1*K.1^7,-1*K.1^-3,-1*K.1^-6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^-4,-1*K.1^12,-1*K.1^-8,-1*K.1^4,K.1^6,K.1^-8,K.1,K.1^-12,K.1^4,K.1^4,K.1^-7,K.1^-4,K.1^-11,K.1^-12,K.1^3,K.1^-2,K.1^8,K.1^7,K.1^-9,K.1^-2,K.1^-1,K.1^12,K.1^6,K.1^-11,K.1^4,K.1^-1,K.1^-1,K.1^-6,K.1^-7,K.1^-4,K.1^-3,K.1^11,K.1^7,K.1^-6,K.1^-8,K.1,K.1^7,K.1^-9,K.1^4,K.1^-9,K.1^2,K.1^9,K.1^-11,K.1^12,K.1^-8,K.1,K.1^6,K.1^-3,K.1^2,K.1^2,K.1^8,K.1^12,K.1^-3,K.1^-4,K.1^12,K.1^6,K.1^3,K.1^9,K.1^9,K.1^-11,K.1^-6,K.1^-1,K.1^-12,K.1^-9,K.1^2,K.1^-7,K.1^11,K.1^3,K.1^-8,K.1^-4,K.1^-3,K.1^9,K.1^-12,K.1,K.1^-2,K.1^8,K.1^8,K.1^-7,K.1^-2,K.1^11,K.1^11,K.1^3,K.1^-6,K.1^7,-1*K.1^2,-1*K.1^-11,-1*K.1^4,-1*K.1^-6,-1*K.1^4,-1*K.1^-1,-1*K.1^2,-1*K.1^-4,-1*K.1^6,-1*K.1^-3,-1*K.1^7,-1*K.1^-9,-1*K.1,-1*K.1^-12,-1*K.1^3,-1*K.1^-7,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^-12,-1*K.1^12,-1*K.1^-9,-1*K.1^6,-1*K.1^-8,-1*K.1^7,-1*K.1^-4,-1*K.1^11,-1*K.1^-1,-1*K.1^9,-1*K.1^-6,-1*K.1^9,-1*K.1^-11,-1*K.1^11,-1*K.1^-8,-1*K.1^12,-1*K.1^-2,-1*K.1^8,-1*K.1^-7,-1*K.1^8,K.1^8,K.1^11,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^-6,K.1^-3,-1*K.1^-11,-1*K.1,-1*K.1^-4,-1*K.1^6,-1*K.1^-3,-1*K.1^2,-1*K.1^-12,K.1^-9,-1*K.1^-7,-1*K.1^9,K.1^2,-1*K.1^11,-1*K.1^4,-1*K.1^-12,-1*K.1^2,K.1^9,-1*K.1^6,-1*K.1^9,-1*K.1^-11,-1*K.1^-11,K.1^-8,-1*K.1^-6,-1*K.1^8,K.1^6,-1*K.1^3,-1*K.1^12,-1*K.1^12,-1*K.1^-9,-1*K.1^6,-1*K.1^-9,-1*K.1^11,K.1^12,-1*K.1^9,-1*K.1^-6,-1*K.1^-4,K.1^-1,-1*K.1^-1,-1*K.1^3,K.1^-12,-1*K.1,-1*K.1^-4,-1*K.1^6,-1*K.1^-9,K.1,-1*K.1^11,-1*K.1^-8,-1*K.1^7,-1*K.1^-4,-1*K.1^11,-1*K.1^-2,-1*K.1^4,K.1^7,-1*K.1^4,-1*K.1^-7,-1*K.1^-8,-1*K.1^-2,K.1^-11,-1*K.1^-3,K.1^-2,K.1^2,-1*K.1^9,-1*K.1^-6,K.1^-8,K.1^-11,K.1^-11,K.1^8,K.1^7,K.1^8,K.1^7,K.1^8,K.1^-11,-1*K.1^-2,-1*K.1^-8,-1*K.1^7,-1*K.1^8,K.1^11,K.1^-2,K.1^-8,-1*K.1^7,K.1^4,-1*K.1,-1*K.1^2,-1*K.1^8,-1*K.1^-1,K.1^-1,K.1^-9,K.1^6,K.1^9,K.1^12,K.1^12,K.1^3,K.1^-6,K.1^3,K.1^-6,K.1^3,K.1^12,K.1,K.1^-4,K.1^6,K.1^-9,-1*K.1^-12,K.1^-12,K.1^9,-1*K.1,-1*K.1^-12,-1*K.1^-3,-1*K.1^-7,K.1^-4,K.1^-1,-1*K.1^12,-1*K.1^3,K.1^6,K.1^-9,K.1^11,K.1^-2,K.1^-3,K.1^-7,K.1^4,K.1^-7,K.1^9,K.1^-12,-1*K.1^-11,K.1^-3,K.1^-6,K.1^-4,K.1,K.1^2,K.1^3,-1*K.1^-2,-1*K.1^-1,-1*K.1^-9,K.1^-6,-1*K.1^-8,K.1^2,K.1,K.1^-4,-1*K.1^-7,-1*K.1^-3,-1*K.1^2,K.1^-12,K.1^4,K.1^-7,K.1^-3,K.1^-7,K.1^-8,K.1^-2,K.1^11,K.1^4,K.1^7,-1*K.1^4,-1*K.1^-1,K.1^-1,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-10,K.1^10,K.1^5,K.1^-5,-1,-1,-1,-1,1,1,1,1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,K.1^4,K.1^2,K.1^-11,K.1^7,K.1^-8,K.1^12,K.1^9,K.1^-2,K.1^-4,K.1^8,K.1^-7,K.1^-12,K.1^11,K.1,K.1^-9,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^-1,K.1^-5,K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^10,K.1^5,-1*K.1^-10,K.1^-5,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^10,K.1^-5,-1*K.1^-5,K.1^10,K.1^-10,K.1^10,-1*K.1^5,-1*K.1^-5,K.1^-10,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^10,K.1^5,-1*K.1^-10,K.1^-10,-1*K.1^-10,K.1^-9,K.1^12,K.1^3,K.1^6,K.1^7,K.1^11,K.1,K.1^-3,K.1^-4,K.1^-12,K.1^-4,K.1^-12,K.1^-6,K.1^-11,K.1^-9,K.1^8,K.1^-3,K.1^-7,K.1^-4,K.1^3,K.1^8,K.1^-2,K.1^-7,K.1^6,K.1^3,K.1^4,K.1^-2,K.1,K.1^-1,K.1^9,K.1^11,K.1,K.1^12,K.1^12,K.1^-11,K.1^-3,K.1^-11,K.1^-8,K.1^-8,K.1^9,K.1^9,K.1^-12,K.1^-8,K.1^-9,K.1^-7,K.1^2,K.1^-6,K.1^-6,K.1^7,K.1^4,K.1^4,K.1^7,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^6,K.1^-2,K.1^11,K.1^8,-1*K.1^8,-1*K.1^-8,-1*K.1,-1*K.1^-12,-1*K.1^-2,-1*K.1^-1,-1*K.1^9,-1*K.1^9,-1*K.1^-4,-1*K.1^6,-1*K.1^7,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-11,-1*K.1^12,-1*K.1^-3,-1*K.1^4,-1*K.1,-1*K.1^-8,-1*K.1^12,-1*K.1^-3,-1*K.1^-9,-1*K.1^11,-1*K.1^-6,-1*K.1^7,-1*K.1^-6,-1*K.1^3,-1*K.1^-9,-1*K.1^6,-1*K.1^-12,-1*K.1^-2,-1*K.1^-4,-1*K.1^-7,-1*K.1^-7,-1*K.1^4,-1*K.1^-11,-1*K.1^8,-1*K.1^3,-1*K.1^11,K.1^4,K.1^3,K.1^9,K.1^-8,K.1^11,K.1^11,K.1^12,K.1^-11,K.1,K.1^-8,K.1^2,K.1^7,K.1^-3,K.1^-12,K.1^-6,K.1^7,K.1^-9,K.1^8,K.1^4,K.1,K.1^11,K.1^-9,K.1^-9,K.1^-4,K.1^12,K.1^-11,K.1^-2,K.1^-1,K.1^-12,K.1^-4,K.1^3,K.1^9,K.1^-12,K.1^-6,K.1^11,K.1^-6,K.1^-7,K.1^6,K.1,K.1^8,K.1^3,K.1^9,K.1^4,K.1^-2,K.1^-7,K.1^-7,K.1^-3,K.1^8,K.1^-2,K.1^-11,K.1^8,K.1^4,K.1^2,K.1^6,K.1^6,K.1,K.1^-4,K.1^-9,K.1^-8,K.1^-6,K.1^-7,K.1^12,K.1^-1,K.1^2,K.1^3,K.1^-11,K.1^-2,K.1^6,K.1^-8,K.1^9,K.1^7,K.1^-3,K.1^-3,K.1^12,K.1^7,K.1^-1,K.1^-1,K.1^2,K.1^-4,K.1^-12,-1*K.1^-7,-1*K.1,-1*K.1^11,-1*K.1^-4,-1*K.1^11,-1*K.1^-9,-1*K.1^-7,-1*K.1^-11,-1*K.1^4,-1*K.1^-2,-1*K.1^-12,-1*K.1^-6,-1*K.1^9,-1*K.1^-8,-1*K.1^2,-1*K.1^12,-1*K.1^2,-1*K.1^7,-1*K.1^9,-1*K.1^-2,-1*K.1^-8,-1*K.1^8,-1*K.1^-6,-1*K.1^4,-1*K.1^3,-1*K.1^-12,-1*K.1^-11,-1*K.1^-1,-1*K.1^-9,-1*K.1^6,-1*K.1^-4,-1*K.1^6,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^8,-1*K.1^7,-1*K.1^-3,-1*K.1^12,-1*K.1^-3,K.1^-3,K.1^-1,-1*K.1^-3,-1*K.1^-12,-1*K.1^2,-1*K.1^-4,K.1^-2,-1*K.1,-1*K.1^9,-1*K.1^-11,-1*K.1^4,-1*K.1^-2,-1*K.1^-7,-1*K.1^-8,K.1^-6,-1*K.1^12,-1*K.1^6,K.1^-7,-1*K.1^-1,-1*K.1^11,-1*K.1^-8,-1*K.1^-7,K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1,-1*K.1,K.1^3,-1*K.1^-4,-1*K.1^-3,K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^-6,-1*K.1^4,-1*K.1^-6,-1*K.1^-1,K.1^8,-1*K.1^6,-1*K.1^-4,-1*K.1^-11,K.1^-9,-1*K.1^-9,-1*K.1^2,K.1^-8,-1*K.1^9,-1*K.1^-11,-1*K.1^4,-1*K.1^-6,K.1^9,-1*K.1^-1,-1*K.1^3,-1*K.1^-12,-1*K.1^-11,-1*K.1^-1,-1*K.1^7,-1*K.1^11,K.1^-12,-1*K.1^11,-1*K.1^12,-1*K.1^3,-1*K.1^7,K.1,-1*K.1^-2,K.1^7,K.1^-7,-1*K.1^6,-1*K.1^-4,K.1^3,K.1,K.1,K.1^-3,K.1^-12,K.1^-3,K.1^-12,K.1^-3,K.1,-1*K.1^7,-1*K.1^3,-1*K.1^-12,-1*K.1^-3,K.1^-1,K.1^7,K.1^3,-1*K.1^-12,K.1^11,-1*K.1^9,-1*K.1^-7,-1*K.1^-3,-1*K.1^-9,K.1^-9,K.1^-6,K.1^4,K.1^6,K.1^8,K.1^8,K.1^2,K.1^-4,K.1^2,K.1^-4,K.1^2,K.1^8,K.1^9,K.1^-11,K.1^4,K.1^-6,-1*K.1^-8,K.1^-8,K.1^6,-1*K.1^9,-1*K.1^-8,-1*K.1^-2,-1*K.1^12,K.1^-11,K.1^-9,-1*K.1^8,-1*K.1^2,K.1^4,K.1^-6,K.1^-1,K.1^7,K.1^-2,K.1^12,K.1^11,K.1^12,K.1^6,K.1^-8,-1*K.1,K.1^-2,K.1^-4,K.1^-11,K.1^9,K.1^-7,K.1^2,-1*K.1^7,-1*K.1^-9,-1*K.1^-6,K.1^-4,-1*K.1^3,K.1^-7,K.1^9,K.1^-11,-1*K.1^12,-1*K.1^-2,-1*K.1^-7,K.1^-8,K.1^11,K.1^12,K.1^-2,K.1^12,K.1^3,K.1^7,K.1^-1,K.1^11,K.1^-12,-1*K.1^11,-1*K.1^-9,K.1^-9,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^-10,K.1^-5,K.1^5,-1,-1,-1,-1,1,1,1,1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^-4,K.1^-2,K.1^11,K.1^-7,K.1^8,K.1^-12,K.1^-9,K.1^2,K.1^4,K.1^-8,K.1^7,K.1^12,K.1^-11,K.1^-1,K.1^9,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1,K.1^5,K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,K.1^-5,-1*K.1^10,K.1^5,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,K.1^-5,K.1^-10,K.1^5,-1*K.1^5,K.1^-10,K.1^10,K.1^-10,-1*K.1^-5,-1*K.1^5,K.1^10,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^-10,K.1^-5,-1*K.1^10,K.1^10,-1*K.1^10,K.1^9,K.1^-12,K.1^-3,K.1^-6,K.1^-7,K.1^-11,K.1^-1,K.1^3,K.1^4,K.1^12,K.1^4,K.1^12,K.1^6,K.1^11,K.1^9,K.1^-8,K.1^3,K.1^7,K.1^4,K.1^-3,K.1^-8,K.1^2,K.1^7,K.1^-6,K.1^-3,K.1^-4,K.1^2,K.1^-1,K.1,K.1^-9,K.1^-11,K.1^-1,K.1^-12,K.1^-12,K.1^11,K.1^3,K.1^11,K.1^8,K.1^8,K.1^-9,K.1^-9,K.1^12,K.1^8,K.1^9,K.1^7,K.1^-2,K.1^6,K.1^6,K.1^-7,K.1^-4,K.1^-4,K.1^-7,K.1,K.1^-2,K.1^-2,K.1,K.1^-6,K.1^2,K.1^-11,K.1^-8,-1*K.1^-8,-1*K.1^8,-1*K.1^-1,-1*K.1^12,-1*K.1^2,-1*K.1,-1*K.1^-9,-1*K.1^-9,-1*K.1^4,-1*K.1^-6,-1*K.1^-7,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^11,-1*K.1^-12,-1*K.1^3,-1*K.1^-4,-1*K.1^-1,-1*K.1^8,-1*K.1^-12,-1*K.1^3,-1*K.1^9,-1*K.1^-11,-1*K.1^6,-1*K.1^-7,-1*K.1^6,-1*K.1^-3,-1*K.1^9,-1*K.1^-6,-1*K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^7,-1*K.1^7,-1*K.1^-4,-1*K.1^11,-1*K.1^-8,-1*K.1^-3,-1*K.1^-11,K.1^-4,K.1^-3,K.1^-9,K.1^8,K.1^-11,K.1^-11,K.1^-12,K.1^11,K.1^-1,K.1^8,K.1^-2,K.1^-7,K.1^3,K.1^12,K.1^6,K.1^-7,K.1^9,K.1^-8,K.1^-4,K.1^-1,K.1^-11,K.1^9,K.1^9,K.1^4,K.1^-12,K.1^11,K.1^2,K.1,K.1^12,K.1^4,K.1^-3,K.1^-9,K.1^12,K.1^6,K.1^-11,K.1^6,K.1^7,K.1^-6,K.1^-1,K.1^-8,K.1^-3,K.1^-9,K.1^-4,K.1^2,K.1^7,K.1^7,K.1^3,K.1^-8,K.1^2,K.1^11,K.1^-8,K.1^-4,K.1^-2,K.1^-6,K.1^-6,K.1^-1,K.1^4,K.1^9,K.1^8,K.1^6,K.1^7,K.1^-12,K.1,K.1^-2,K.1^-3,K.1^11,K.1^2,K.1^-6,K.1^8,K.1^-9,K.1^-7,K.1^3,K.1^3,K.1^-12,K.1^-7,K.1,K.1,K.1^-2,K.1^4,K.1^12,-1*K.1^7,-1*K.1^-1,-1*K.1^-11,-1*K.1^4,-1*K.1^-11,-1*K.1^9,-1*K.1^7,-1*K.1^11,-1*K.1^-4,-1*K.1^2,-1*K.1^12,-1*K.1^6,-1*K.1^-9,-1*K.1^8,-1*K.1^-2,-1*K.1^-12,-1*K.1^-2,-1*K.1^-7,-1*K.1^-9,-1*K.1^2,-1*K.1^8,-1*K.1^-8,-1*K.1^6,-1*K.1^-4,-1*K.1^-3,-1*K.1^12,-1*K.1^11,-1*K.1,-1*K.1^9,-1*K.1^-6,-1*K.1^4,-1*K.1^-6,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-8,-1*K.1^-7,-1*K.1^3,-1*K.1^-12,-1*K.1^3,K.1^3,K.1,-1*K.1^3,-1*K.1^12,-1*K.1^-2,-1*K.1^4,K.1^2,-1*K.1^-1,-1*K.1^-9,-1*K.1^11,-1*K.1^-4,-1*K.1^2,-1*K.1^7,-1*K.1^8,K.1^6,-1*K.1^-12,-1*K.1^-6,K.1^7,-1*K.1,-1*K.1^-11,-1*K.1^8,-1*K.1^7,K.1^-6,-1*K.1^-4,-1*K.1^-6,-1*K.1^-1,-1*K.1^-1,K.1^-3,-1*K.1^4,-1*K.1^3,K.1^-4,-1*K.1^-2,-1*K.1^-8,-1*K.1^-8,-1*K.1^6,-1*K.1^-4,-1*K.1^6,-1*K.1,K.1^-8,-1*K.1^-6,-1*K.1^4,-1*K.1^11,K.1^9,-1*K.1^9,-1*K.1^-2,K.1^8,-1*K.1^-9,-1*K.1^11,-1*K.1^-4,-1*K.1^6,K.1^-9,-1*K.1,-1*K.1^-3,-1*K.1^12,-1*K.1^11,-1*K.1,-1*K.1^-7,-1*K.1^-11,K.1^12,-1*K.1^-11,-1*K.1^-12,-1*K.1^-3,-1*K.1^-7,K.1^-1,-1*K.1^2,K.1^-7,K.1^7,-1*K.1^-6,-1*K.1^4,K.1^-3,K.1^-1,K.1^-1,K.1^3,K.1^12,K.1^3,K.1^12,K.1^3,K.1^-1,-1*K.1^-7,-1*K.1^-3,-1*K.1^12,-1*K.1^3,K.1,K.1^-7,K.1^-3,-1*K.1^12,K.1^-11,-1*K.1^-9,-1*K.1^7,-1*K.1^3,-1*K.1^9,K.1^9,K.1^6,K.1^-4,K.1^-6,K.1^-8,K.1^-8,K.1^-2,K.1^4,K.1^-2,K.1^4,K.1^-2,K.1^-8,K.1^-9,K.1^11,K.1^-4,K.1^6,-1*K.1^8,K.1^8,K.1^-6,-1*K.1^-9,-1*K.1^8,-1*K.1^2,-1*K.1^-12,K.1^11,K.1^9,-1*K.1^-8,-1*K.1^-2,K.1^-4,K.1^6,K.1,K.1^-7,K.1^2,K.1^-12,K.1^-11,K.1^-12,K.1^-6,K.1^8,-1*K.1^-1,K.1^2,K.1^4,K.1^11,K.1^-9,K.1^7,K.1^-2,-1*K.1^-7,-1*K.1^9,-1*K.1^6,K.1^4,-1*K.1^-3,K.1^7,K.1^-9,K.1^11,-1*K.1^-12,-1*K.1^2,-1*K.1^7,K.1^8,K.1^-11,K.1^-12,K.1^2,K.1^-12,K.1^-3,K.1^-7,K.1,K.1^-11,K.1^12,-1*K.1^-11,-1*K.1^9,K.1^9,-1*K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-10,K.1^10,K.1^5,K.1^-5,-1,-1,-1,-1,1,1,1,1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,K.1^-1,K.1^12,K.1^9,K.1^-8,K.1^2,K.1^-3,K.1^4,K.1^-12,K.1,K.1^-2,K.1^8,K.1^3,K.1^-9,K.1^6,K.1^-4,K.1^11,K.1^-11,K.1^-7,K.1^7,K.1^-6,K.1^-5,K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^10,K.1^5,-1*K.1^-10,K.1^-5,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^5,K.1^5,K.1^10,K.1^-5,-1*K.1^-5,K.1^10,K.1^-10,K.1^10,-1*K.1^5,-1*K.1^-5,K.1^-10,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^10,K.1^5,-1*K.1^-10,K.1^-10,-1*K.1^-10,K.1^-4,K.1^-3,K.1^-7,K.1^11,K.1^-8,K.1^-9,K.1^6,K.1^7,K.1,K.1^3,K.1,K.1^3,K.1^-11,K.1^9,K.1^-4,K.1^-2,K.1^7,K.1^8,K.1,K.1^-7,K.1^-2,K.1^-12,K.1^8,K.1^11,K.1^-7,K.1^-1,K.1^-12,K.1^6,K.1^-6,K.1^4,K.1^-9,K.1^6,K.1^-3,K.1^-3,K.1^9,K.1^7,K.1^9,K.1^2,K.1^2,K.1^4,K.1^4,K.1^3,K.1^2,K.1^-4,K.1^8,K.1^12,K.1^-11,K.1^-11,K.1^-8,K.1^-1,K.1^-1,K.1^-8,K.1^-6,K.1^12,K.1^12,K.1^-6,K.1^11,K.1^-12,K.1^-9,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^6,-1*K.1^3,-1*K.1^-12,-1*K.1^-6,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1^11,-1*K.1^-8,-1*K.1^12,-1*K.1^12,-1*K.1^-6,-1*K.1^9,-1*K.1^-3,-1*K.1^7,-1*K.1^-1,-1*K.1^6,-1*K.1^2,-1*K.1^-3,-1*K.1^7,-1*K.1^-4,-1*K.1^-9,-1*K.1^-11,-1*K.1^-8,-1*K.1^-11,-1*K.1^-7,-1*K.1^-4,-1*K.1^11,-1*K.1^3,-1*K.1^-12,-1*K.1,-1*K.1^8,-1*K.1^8,-1*K.1^-1,-1*K.1^9,-1*K.1^-2,-1*K.1^-7,-1*K.1^-9,K.1^-1,K.1^-7,K.1^4,K.1^2,K.1^-9,K.1^-9,K.1^-3,K.1^9,K.1^6,K.1^2,K.1^12,K.1^-8,K.1^7,K.1^3,K.1^-11,K.1^-8,K.1^-4,K.1^-2,K.1^-1,K.1^6,K.1^-9,K.1^-4,K.1^-4,K.1,K.1^-3,K.1^9,K.1^-12,K.1^-6,K.1^3,K.1,K.1^-7,K.1^4,K.1^3,K.1^-11,K.1^-9,K.1^-11,K.1^8,K.1^11,K.1^6,K.1^-2,K.1^-7,K.1^4,K.1^-1,K.1^-12,K.1^8,K.1^8,K.1^7,K.1^-2,K.1^-12,K.1^9,K.1^-2,K.1^-1,K.1^12,K.1^11,K.1^11,K.1^6,K.1,K.1^-4,K.1^2,K.1^-11,K.1^8,K.1^-3,K.1^-6,K.1^12,K.1^-7,K.1^9,K.1^-12,K.1^11,K.1^2,K.1^4,K.1^-8,K.1^7,K.1^7,K.1^-3,K.1^-8,K.1^-6,K.1^-6,K.1^12,K.1,K.1^3,-1*K.1^8,-1*K.1^6,-1*K.1^-9,-1*K.1,-1*K.1^-9,-1*K.1^-4,-1*K.1^8,-1*K.1^9,-1*K.1^-1,-1*K.1^-12,-1*K.1^3,-1*K.1^-11,-1*K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^-3,-1*K.1^12,-1*K.1^-8,-1*K.1^4,-1*K.1^-12,-1*K.1^2,-1*K.1^-2,-1*K.1^-11,-1*K.1^-1,-1*K.1^-7,-1*K.1^3,-1*K.1^9,-1*K.1^-6,-1*K.1^-4,-1*K.1^11,-1*K.1,-1*K.1^11,-1*K.1^6,-1*K.1^-6,-1*K.1^-7,-1*K.1^-2,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,-1*K.1^7,K.1^7,K.1^-6,-1*K.1^7,-1*K.1^3,-1*K.1^12,-1*K.1,K.1^-12,-1*K.1^6,-1*K.1^4,-1*K.1^9,-1*K.1^-1,-1*K.1^-12,-1*K.1^8,-1*K.1^2,K.1^-11,-1*K.1^-3,-1*K.1^11,K.1^8,-1*K.1^-6,-1*K.1^-9,-1*K.1^2,-1*K.1^8,K.1^11,-1*K.1^-1,-1*K.1^11,-1*K.1^6,-1*K.1^6,K.1^-7,-1*K.1,-1*K.1^7,K.1^-1,-1*K.1^12,-1*K.1^-2,-1*K.1^-2,-1*K.1^-11,-1*K.1^-1,-1*K.1^-11,-1*K.1^-6,K.1^-2,-1*K.1^11,-1*K.1,-1*K.1^9,K.1^-4,-1*K.1^-4,-1*K.1^12,K.1^2,-1*K.1^4,-1*K.1^9,-1*K.1^-1,-1*K.1^-11,K.1^4,-1*K.1^-6,-1*K.1^-7,-1*K.1^3,-1*K.1^9,-1*K.1^-6,-1*K.1^-8,-1*K.1^-9,K.1^3,-1*K.1^-9,-1*K.1^-3,-1*K.1^-7,-1*K.1^-8,K.1^6,-1*K.1^-12,K.1^-8,K.1^8,-1*K.1^11,-1*K.1,K.1^-7,K.1^6,K.1^6,K.1^7,K.1^3,K.1^7,K.1^3,K.1^7,K.1^6,-1*K.1^-8,-1*K.1^-7,-1*K.1^3,-1*K.1^7,K.1^-6,K.1^-8,K.1^-7,-1*K.1^3,K.1^-9,-1*K.1^4,-1*K.1^8,-1*K.1^7,-1*K.1^-4,K.1^-4,K.1^-11,K.1^-1,K.1^11,K.1^-2,K.1^-2,K.1^12,K.1,K.1^12,K.1,K.1^12,K.1^-2,K.1^4,K.1^9,K.1^-1,K.1^-11,-1*K.1^2,K.1^2,K.1^11,-1*K.1^4,-1*K.1^2,-1*K.1^-12,-1*K.1^-3,K.1^9,K.1^-4,-1*K.1^-2,-1*K.1^12,K.1^-1,K.1^-11,K.1^-6,K.1^-8,K.1^-12,K.1^-3,K.1^-9,K.1^-3,K.1^11,K.1^2,-1*K.1^6,K.1^-12,K.1,K.1^9,K.1^4,K.1^8,K.1^12,-1*K.1^-8,-1*K.1^-4,-1*K.1^-11,K.1,-1*K.1^-7,K.1^8,K.1^4,K.1^9,-1*K.1^-3,-1*K.1^-12,-1*K.1^8,K.1^2,K.1^-9,K.1^-3,K.1^-12,K.1^-3,K.1^-7,K.1^-8,K.1^-6,K.1^-9,K.1^3,-1*K.1^-9,-1*K.1^-4,K.1^-4,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^-10,K.1^-5,K.1^5,-1,-1,-1,-1,1,1,1,1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,K.1,K.1^-12,K.1^-9,K.1^8,K.1^-2,K.1^3,K.1^-4,K.1^12,K.1^-1,K.1^2,K.1^-8,K.1^-3,K.1^9,K.1^-6,K.1^4,K.1^-11,K.1^11,K.1^7,K.1^-7,K.1^6,K.1^5,K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,K.1^-5,-1*K.1^10,K.1^5,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,K.1^-5,K.1^-10,K.1^5,-1*K.1^5,K.1^-10,K.1^10,K.1^-10,-1*K.1^-5,-1*K.1^5,K.1^10,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^-10,K.1^-5,-1*K.1^10,K.1^10,-1*K.1^10,K.1^4,K.1^3,K.1^7,K.1^-11,K.1^8,K.1^9,K.1^-6,K.1^-7,K.1^-1,K.1^-3,K.1^-1,K.1^-3,K.1^11,K.1^-9,K.1^4,K.1^2,K.1^-7,K.1^-8,K.1^-1,K.1^7,K.1^2,K.1^12,K.1^-8,K.1^-11,K.1^7,K.1,K.1^12,K.1^-6,K.1^6,K.1^-4,K.1^9,K.1^-6,K.1^3,K.1^3,K.1^-9,K.1^-7,K.1^-9,K.1^-2,K.1^-2,K.1^-4,K.1^-4,K.1^-3,K.1^-2,K.1^4,K.1^-8,K.1^-12,K.1^11,K.1^11,K.1^8,K.1,K.1,K.1^8,K.1^6,K.1^-12,K.1^-12,K.1^6,K.1^-11,K.1^12,K.1^9,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,-1*K.1^-3,-1*K.1^12,-1*K.1^6,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^-11,-1*K.1^8,-1*K.1^-12,-1*K.1^-12,-1*K.1^6,-1*K.1^-9,-1*K.1^3,-1*K.1^-7,-1*K.1,-1*K.1^-6,-1*K.1^-2,-1*K.1^3,-1*K.1^-7,-1*K.1^4,-1*K.1^9,-1*K.1^11,-1*K.1^8,-1*K.1^11,-1*K.1^7,-1*K.1^4,-1*K.1^-11,-1*K.1^-3,-1*K.1^12,-1*K.1^-1,-1*K.1^-8,-1*K.1^-8,-1*K.1,-1*K.1^-9,-1*K.1^2,-1*K.1^7,-1*K.1^9,K.1,K.1^7,K.1^-4,K.1^-2,K.1^9,K.1^9,K.1^3,K.1^-9,K.1^-6,K.1^-2,K.1^-12,K.1^8,K.1^-7,K.1^-3,K.1^11,K.1^8,K.1^4,K.1^2,K.1,K.1^-6,K.1^9,K.1^4,K.1^4,K.1^-1,K.1^3,K.1^-9,K.1^12,K.1^6,K.1^-3,K.1^-1,K.1^7,K.1^-4,K.1^-3,K.1^11,K.1^9,K.1^11,K.1^-8,K.1^-11,K.1^-6,K.1^2,K.1^7,K.1^-4,K.1,K.1^12,K.1^-8,K.1^-8,K.1^-7,K.1^2,K.1^12,K.1^-9,K.1^2,K.1,K.1^-12,K.1^-11,K.1^-11,K.1^-6,K.1^-1,K.1^4,K.1^-2,K.1^11,K.1^-8,K.1^3,K.1^6,K.1^-12,K.1^7,K.1^-9,K.1^12,K.1^-11,K.1^-2,K.1^-4,K.1^8,K.1^-7,K.1^-7,K.1^3,K.1^8,K.1^6,K.1^6,K.1^-12,K.1^-1,K.1^-3,-1*K.1^-8,-1*K.1^-6,-1*K.1^9,-1*K.1^-1,-1*K.1^9,-1*K.1^4,-1*K.1^-8,-1*K.1^-9,-1*K.1,-1*K.1^12,-1*K.1^-3,-1*K.1^11,-1*K.1^-4,-1*K.1^-2,-1*K.1^-12,-1*K.1^3,-1*K.1^-12,-1*K.1^8,-1*K.1^-4,-1*K.1^12,-1*K.1^-2,-1*K.1^2,-1*K.1^11,-1*K.1,-1*K.1^7,-1*K.1^-3,-1*K.1^-9,-1*K.1^6,-1*K.1^4,-1*K.1^-11,-1*K.1^-1,-1*K.1^-11,-1*K.1^-6,-1*K.1^6,-1*K.1^7,-1*K.1^2,-1*K.1^8,-1*K.1^-7,-1*K.1^3,-1*K.1^-7,K.1^-7,K.1^6,-1*K.1^-7,-1*K.1^-3,-1*K.1^-12,-1*K.1^-1,K.1^12,-1*K.1^-6,-1*K.1^-4,-1*K.1^-9,-1*K.1,-1*K.1^12,-1*K.1^-8,-1*K.1^-2,K.1^11,-1*K.1^3,-1*K.1^-11,K.1^-8,-1*K.1^6,-1*K.1^9,-1*K.1^-2,-1*K.1^-8,K.1^-11,-1*K.1,-1*K.1^-11,-1*K.1^-6,-1*K.1^-6,K.1^7,-1*K.1^-1,-1*K.1^-7,K.1,-1*K.1^-12,-1*K.1^2,-1*K.1^2,-1*K.1^11,-1*K.1,-1*K.1^11,-1*K.1^6,K.1^2,-1*K.1^-11,-1*K.1^-1,-1*K.1^-9,K.1^4,-1*K.1^4,-1*K.1^-12,K.1^-2,-1*K.1^-4,-1*K.1^-9,-1*K.1,-1*K.1^11,K.1^-4,-1*K.1^6,-1*K.1^7,-1*K.1^-3,-1*K.1^-9,-1*K.1^6,-1*K.1^8,-1*K.1^9,K.1^-3,-1*K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^8,K.1^-6,-1*K.1^12,K.1^8,K.1^-8,-1*K.1^-11,-1*K.1^-1,K.1^7,K.1^-6,K.1^-6,K.1^-7,K.1^-3,K.1^-7,K.1^-3,K.1^-7,K.1^-6,-1*K.1^8,-1*K.1^7,-1*K.1^-3,-1*K.1^-7,K.1^6,K.1^8,K.1^7,-1*K.1^-3,K.1^9,-1*K.1^-4,-1*K.1^-8,-1*K.1^-7,-1*K.1^4,K.1^4,K.1^11,K.1,K.1^-11,K.1^2,K.1^2,K.1^-12,K.1^-1,K.1^-12,K.1^-1,K.1^-12,K.1^2,K.1^-4,K.1^-9,K.1,K.1^11,-1*K.1^-2,K.1^-2,K.1^-11,-1*K.1^-4,-1*K.1^-2,-1*K.1^12,-1*K.1^3,K.1^-9,K.1^4,-1*K.1^2,-1*K.1^-12,K.1,K.1^11,K.1^6,K.1^8,K.1^12,K.1^3,K.1^9,K.1^3,K.1^-11,K.1^-2,-1*K.1^-6,K.1^12,K.1^-1,K.1^-9,K.1^-4,K.1^-8,K.1^-12,-1*K.1^8,-1*K.1^4,-1*K.1^11,K.1^-1,-1*K.1^7,K.1^-8,K.1^-4,K.1^-9,-1*K.1^3,-1*K.1^12,-1*K.1^-8,K.1^-2,K.1^9,K.1^3,K.1^12,K.1^3,K.1^7,K.1^8,K.1^6,K.1^9,K.1^-3,-1*K.1^9,-1*K.1^4,K.1^4,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-5,K.1^5,K.1^-10,K.1^10,-1,-1,-1,-1,1,1,1,1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,K.1^12,K.1^6,K.1^-8,K.1^-4,K.1,K.1^11,K.1^2,K.1^-6,K.1^-12,K.1^-1,K.1^4,K.1^-11,K.1^8,K.1^3,K.1^-2,K.1^-7,K.1^7,K.1^9,K.1^-9,K.1^-3,K.1^10,K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^5,K.1^-10,-1*K.1^-5,K.1^10,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-10,K.1^-10,K.1^5,K.1^10,-1*K.1^10,K.1^5,K.1^-5,K.1^5,-1*K.1^-10,-1*K.1^10,K.1^-5,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^5,K.1^-10,-1*K.1^-5,K.1^-5,-1*K.1^-5,K.1^-2,K.1^11,K.1^9,K.1^-7,K.1^-4,K.1^8,K.1^3,K.1^-9,K.1^-12,K.1^-11,K.1^-12,K.1^-11,K.1^7,K.1^-8,K.1^-2,K.1^-1,K.1^-9,K.1^4,K.1^-12,K.1^9,K.1^-1,K.1^-6,K.1^4,K.1^-7,K.1^9,K.1^12,K.1^-6,K.1^3,K.1^-3,K.1^2,K.1^8,K.1^3,K.1^11,K.1^11,K.1^-8,K.1^-9,K.1^-8,K.1,K.1,K.1^2,K.1^2,K.1^-11,K.1,K.1^-2,K.1^4,K.1^6,K.1^7,K.1^7,K.1^-4,K.1^12,K.1^12,K.1^-4,K.1^-3,K.1^6,K.1^6,K.1^-3,K.1^-7,K.1^-6,K.1^8,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-11,-1*K.1^-6,-1*K.1^-3,-1*K.1^2,-1*K.1^2,-1*K.1^-12,-1*K.1^-7,-1*K.1^-4,-1*K.1^6,-1*K.1^6,-1*K.1^-3,-1*K.1^-8,-1*K.1^11,-1*K.1^-9,-1*K.1^12,-1*K.1^3,-1*K.1,-1*K.1^11,-1*K.1^-9,-1*K.1^-2,-1*K.1^8,-1*K.1^7,-1*K.1^-4,-1*K.1^7,-1*K.1^9,-1*K.1^-2,-1*K.1^-7,-1*K.1^-11,-1*K.1^-6,-1*K.1^-12,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^-8,-1*K.1^-1,-1*K.1^9,-1*K.1^8,K.1^12,K.1^9,K.1^2,K.1,K.1^8,K.1^8,K.1^11,K.1^-8,K.1^3,K.1,K.1^6,K.1^-4,K.1^-9,K.1^-11,K.1^7,K.1^-4,K.1^-2,K.1^-1,K.1^12,K.1^3,K.1^8,K.1^-2,K.1^-2,K.1^-12,K.1^11,K.1^-8,K.1^-6,K.1^-3,K.1^-11,K.1^-12,K.1^9,K.1^2,K.1^-11,K.1^7,K.1^8,K.1^7,K.1^4,K.1^-7,K.1^3,K.1^-1,K.1^9,K.1^2,K.1^12,K.1^-6,K.1^4,K.1^4,K.1^-9,K.1^-1,K.1^-6,K.1^-8,K.1^-1,K.1^12,K.1^6,K.1^-7,K.1^-7,K.1^3,K.1^-12,K.1^-2,K.1,K.1^7,K.1^4,K.1^11,K.1^-3,K.1^6,K.1^9,K.1^-8,K.1^-6,K.1^-7,K.1,K.1^2,K.1^-4,K.1^-9,K.1^-9,K.1^11,K.1^-4,K.1^-3,K.1^-3,K.1^6,K.1^-12,K.1^-11,-1*K.1^4,-1*K.1^3,-1*K.1^8,-1*K.1^-12,-1*K.1^8,-1*K.1^-2,-1*K.1^4,-1*K.1^-8,-1*K.1^12,-1*K.1^-6,-1*K.1^-11,-1*K.1^7,-1*K.1^2,-1*K.1,-1*K.1^6,-1*K.1^11,-1*K.1^6,-1*K.1^-4,-1*K.1^2,-1*K.1^-6,-1*K.1,-1*K.1^-1,-1*K.1^7,-1*K.1^12,-1*K.1^9,-1*K.1^-11,-1*K.1^-8,-1*K.1^-3,-1*K.1^-2,-1*K.1^-7,-1*K.1^-12,-1*K.1^-7,-1*K.1^3,-1*K.1^-3,-1*K.1^9,-1*K.1^-1,-1*K.1^-4,-1*K.1^-9,-1*K.1^11,-1*K.1^-9,K.1^-9,K.1^-3,-1*K.1^-9,-1*K.1^-11,-1*K.1^6,-1*K.1^-12,K.1^-6,-1*K.1^3,-1*K.1^2,-1*K.1^-8,-1*K.1^12,-1*K.1^-6,-1*K.1^4,-1*K.1,K.1^7,-1*K.1^11,-1*K.1^-7,K.1^4,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^4,K.1^-7,-1*K.1^12,-1*K.1^-7,-1*K.1^3,-1*K.1^3,K.1^9,-1*K.1^-12,-1*K.1^-9,K.1^12,-1*K.1^6,-1*K.1^-1,-1*K.1^-1,-1*K.1^7,-1*K.1^12,-1*K.1^7,-1*K.1^-3,K.1^-1,-1*K.1^-7,-1*K.1^-12,-1*K.1^-8,K.1^-2,-1*K.1^-2,-1*K.1^6,K.1,-1*K.1^2,-1*K.1^-8,-1*K.1^12,-1*K.1^7,K.1^2,-1*K.1^-3,-1*K.1^9,-1*K.1^-11,-1*K.1^-8,-1*K.1^-3,-1*K.1^-4,-1*K.1^8,K.1^-11,-1*K.1^8,-1*K.1^11,-1*K.1^9,-1*K.1^-4,K.1^3,-1*K.1^-6,K.1^-4,K.1^4,-1*K.1^-7,-1*K.1^-12,K.1^9,K.1^3,K.1^3,K.1^-9,K.1^-11,K.1^-9,K.1^-11,K.1^-9,K.1^3,-1*K.1^-4,-1*K.1^9,-1*K.1^-11,-1*K.1^-9,K.1^-3,K.1^-4,K.1^9,-1*K.1^-11,K.1^8,-1*K.1^2,-1*K.1^4,-1*K.1^-9,-1*K.1^-2,K.1^-2,K.1^7,K.1^12,K.1^-7,K.1^-1,K.1^-1,K.1^6,K.1^-12,K.1^6,K.1^-12,K.1^6,K.1^-1,K.1^2,K.1^-8,K.1^12,K.1^7,-1*K.1,K.1,K.1^-7,-1*K.1^2,-1*K.1,-1*K.1^-6,-1*K.1^11,K.1^-8,K.1^-2,-1*K.1^-1,-1*K.1^6,K.1^12,K.1^7,K.1^-3,K.1^-4,K.1^-6,K.1^11,K.1^8,K.1^11,K.1^-7,K.1,-1*K.1^3,K.1^-6,K.1^-12,K.1^-8,K.1^2,K.1^4,K.1^6,-1*K.1^-4,-1*K.1^-2,-1*K.1^7,K.1^-12,-1*K.1^9,K.1^4,K.1^2,K.1^-8,-1*K.1^11,-1*K.1^-6,-1*K.1^4,K.1,K.1^8,K.1^11,K.1^-6,K.1^11,K.1^9,K.1^-4,K.1^-3,K.1^8,K.1^-11,-1*K.1^8,-1*K.1^-2,K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^5,K.1^-5,K.1^10,K.1^-10,-1,-1,-1,-1,1,1,1,1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^-12,K.1^-6,K.1^8,K.1^4,K.1^-1,K.1^-11,K.1^-2,K.1^6,K.1^12,K.1,K.1^-4,K.1^11,K.1^-8,K.1^-3,K.1^2,K.1^7,K.1^-7,K.1^-9,K.1^9,K.1^3,K.1^-10,K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,K.1^10,-1*K.1^5,K.1^-10,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^-5,K.1^-10,-1*K.1^-10,K.1^-5,K.1^5,K.1^-5,-1*K.1^10,-1*K.1^-10,K.1^5,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^-5,K.1^10,-1*K.1^5,K.1^5,-1*K.1^5,K.1^2,K.1^-11,K.1^-9,K.1^7,K.1^4,K.1^-8,K.1^-3,K.1^9,K.1^12,K.1^11,K.1^12,K.1^11,K.1^-7,K.1^8,K.1^2,K.1,K.1^9,K.1^-4,K.1^12,K.1^-9,K.1,K.1^6,K.1^-4,K.1^7,K.1^-9,K.1^-12,K.1^6,K.1^-3,K.1^3,K.1^-2,K.1^-8,K.1^-3,K.1^-11,K.1^-11,K.1^8,K.1^9,K.1^8,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^11,K.1^-1,K.1^2,K.1^-4,K.1^-6,K.1^-7,K.1^-7,K.1^4,K.1^-12,K.1^-12,K.1^4,K.1^3,K.1^-6,K.1^-6,K.1^3,K.1^7,K.1^6,K.1^-8,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^11,-1*K.1^6,-1*K.1^3,-1*K.1^-2,-1*K.1^-2,-1*K.1^12,-1*K.1^7,-1*K.1^4,-1*K.1^-6,-1*K.1^-6,-1*K.1^3,-1*K.1^8,-1*K.1^-11,-1*K.1^9,-1*K.1^-12,-1*K.1^-3,-1*K.1^-1,-1*K.1^-11,-1*K.1^9,-1*K.1^2,-1*K.1^-8,-1*K.1^-7,-1*K.1^4,-1*K.1^-7,-1*K.1^-9,-1*K.1^2,-1*K.1^7,-1*K.1^11,-1*K.1^6,-1*K.1^12,-1*K.1^-4,-1*K.1^-4,-1*K.1^-12,-1*K.1^8,-1*K.1,-1*K.1^-9,-1*K.1^-8,K.1^-12,K.1^-9,K.1^-2,K.1^-1,K.1^-8,K.1^-8,K.1^-11,K.1^8,K.1^-3,K.1^-1,K.1^-6,K.1^4,K.1^9,K.1^11,K.1^-7,K.1^4,K.1^2,K.1,K.1^-12,K.1^-3,K.1^-8,K.1^2,K.1^2,K.1^12,K.1^-11,K.1^8,K.1^6,K.1^3,K.1^11,K.1^12,K.1^-9,K.1^-2,K.1^11,K.1^-7,K.1^-8,K.1^-7,K.1^-4,K.1^7,K.1^-3,K.1,K.1^-9,K.1^-2,K.1^-12,K.1^6,K.1^-4,K.1^-4,K.1^9,K.1,K.1^6,K.1^8,K.1,K.1^-12,K.1^-6,K.1^7,K.1^7,K.1^-3,K.1^12,K.1^2,K.1^-1,K.1^-7,K.1^-4,K.1^-11,K.1^3,K.1^-6,K.1^-9,K.1^8,K.1^6,K.1^7,K.1^-1,K.1^-2,K.1^4,K.1^9,K.1^9,K.1^-11,K.1^4,K.1^3,K.1^3,K.1^-6,K.1^12,K.1^11,-1*K.1^-4,-1*K.1^-3,-1*K.1^-8,-1*K.1^12,-1*K.1^-8,-1*K.1^2,-1*K.1^-4,-1*K.1^8,-1*K.1^-12,-1*K.1^6,-1*K.1^11,-1*K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^-6,-1*K.1^-11,-1*K.1^-6,-1*K.1^4,-1*K.1^-2,-1*K.1^6,-1*K.1^-1,-1*K.1,-1*K.1^-7,-1*K.1^-12,-1*K.1^-9,-1*K.1^11,-1*K.1^8,-1*K.1^3,-1*K.1^2,-1*K.1^7,-1*K.1^12,-1*K.1^7,-1*K.1^-3,-1*K.1^3,-1*K.1^-9,-1*K.1,-1*K.1^4,-1*K.1^9,-1*K.1^-11,-1*K.1^9,K.1^9,K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^-6,-1*K.1^12,K.1^6,-1*K.1^-3,-1*K.1^-2,-1*K.1^8,-1*K.1^-12,-1*K.1^6,-1*K.1^-4,-1*K.1^-1,K.1^-7,-1*K.1^-11,-1*K.1^7,K.1^-4,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1^-4,K.1^7,-1*K.1^-12,-1*K.1^7,-1*K.1^-3,-1*K.1^-3,K.1^-9,-1*K.1^12,-1*K.1^9,K.1^-12,-1*K.1^-6,-1*K.1,-1*K.1,-1*K.1^-7,-1*K.1^-12,-1*K.1^-7,-1*K.1^3,K.1,-1*K.1^7,-1*K.1^12,-1*K.1^8,K.1^2,-1*K.1^2,-1*K.1^-6,K.1^-1,-1*K.1^-2,-1*K.1^8,-1*K.1^-12,-1*K.1^-7,K.1^-2,-1*K.1^3,-1*K.1^-9,-1*K.1^11,-1*K.1^8,-1*K.1^3,-1*K.1^4,-1*K.1^-8,K.1^11,-1*K.1^-8,-1*K.1^-11,-1*K.1^-9,-1*K.1^4,K.1^-3,-1*K.1^6,K.1^4,K.1^-4,-1*K.1^7,-1*K.1^12,K.1^-9,K.1^-3,K.1^-3,K.1^9,K.1^11,K.1^9,K.1^11,K.1^9,K.1^-3,-1*K.1^4,-1*K.1^-9,-1*K.1^11,-1*K.1^9,K.1^3,K.1^4,K.1^-9,-1*K.1^11,K.1^-8,-1*K.1^-2,-1*K.1^-4,-1*K.1^9,-1*K.1^2,K.1^2,K.1^-7,K.1^-12,K.1^7,K.1,K.1,K.1^-6,K.1^12,K.1^-6,K.1^12,K.1^-6,K.1,K.1^-2,K.1^8,K.1^-12,K.1^-7,-1*K.1^-1,K.1^-1,K.1^7,-1*K.1^-2,-1*K.1^-1,-1*K.1^6,-1*K.1^-11,K.1^8,K.1^2,-1*K.1,-1*K.1^-6,K.1^-12,K.1^-7,K.1^3,K.1^4,K.1^6,K.1^-11,K.1^-8,K.1^-11,K.1^7,K.1^-1,-1*K.1^-3,K.1^6,K.1^12,K.1^8,K.1^-2,K.1^-4,K.1^-6,-1*K.1^4,-1*K.1^2,-1*K.1^-7,K.1^12,-1*K.1^-9,K.1^-4,K.1^-2,K.1^8,-1*K.1^-11,-1*K.1^6,-1*K.1^-4,K.1^-1,K.1^-8,K.1^-11,K.1^6,K.1^-11,K.1^-9,K.1^4,K.1^3,K.1^-8,K.1^11,-1*K.1^-8,-1*K.1^2,K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-5,K.1^5,K.1^-10,K.1^10,-1,-1,-1,-1,1,1,1,1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,K.1^-8,K.1^-4,K.1^-3,K.1^11,K.1^-9,K.1,K.1^7,K.1^4,K.1^8,K.1^9,K.1^-11,K.1^-1,K.1^3,K.1^-2,K.1^-7,K.1^-12,K.1^12,K.1^-6,K.1^6,K.1^2,K.1^10,K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^5,K.1^-10,-1*K.1^-5,K.1^10,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-10,K.1^-10,K.1^5,K.1^10,-1*K.1^10,K.1^5,K.1^-5,K.1^5,-1*K.1^-10,-1*K.1^10,K.1^-5,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^5,K.1^-10,-1*K.1^-5,K.1^-5,-1*K.1^-5,K.1^-7,K.1,K.1^-6,K.1^-12,K.1^11,K.1^3,K.1^-2,K.1^6,K.1^8,K.1^-1,K.1^8,K.1^-1,K.1^12,K.1^-3,K.1^-7,K.1^9,K.1^6,K.1^-11,K.1^8,K.1^-6,K.1^9,K.1^4,K.1^-11,K.1^-12,K.1^-6,K.1^-8,K.1^4,K.1^-2,K.1^2,K.1^7,K.1^3,K.1^-2,K.1,K.1,K.1^-3,K.1^6,K.1^-3,K.1^-9,K.1^-9,K.1^7,K.1^7,K.1^-1,K.1^-9,K.1^-7,K.1^-11,K.1^-4,K.1^12,K.1^12,K.1^11,K.1^-8,K.1^-8,K.1^11,K.1^2,K.1^-4,K.1^-4,K.1^2,K.1^-12,K.1^4,K.1^3,K.1^9,-1*K.1^9,-1*K.1^-9,-1*K.1^-2,-1*K.1^-1,-1*K.1^4,-1*K.1^2,-1*K.1^7,-1*K.1^7,-1*K.1^8,-1*K.1^-12,-1*K.1^11,-1*K.1^-4,-1*K.1^-4,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^6,-1*K.1^-8,-1*K.1^-2,-1*K.1^-9,-1*K.1,-1*K.1^6,-1*K.1^-7,-1*K.1^3,-1*K.1^12,-1*K.1^11,-1*K.1^12,-1*K.1^-6,-1*K.1^-7,-1*K.1^-12,-1*K.1^-1,-1*K.1^4,-1*K.1^8,-1*K.1^-11,-1*K.1^-11,-1*K.1^-8,-1*K.1^-3,-1*K.1^9,-1*K.1^-6,-1*K.1^3,K.1^-8,K.1^-6,K.1^7,K.1^-9,K.1^3,K.1^3,K.1,K.1^-3,K.1^-2,K.1^-9,K.1^-4,K.1^11,K.1^6,K.1^-1,K.1^12,K.1^11,K.1^-7,K.1^9,K.1^-8,K.1^-2,K.1^3,K.1^-7,K.1^-7,K.1^8,K.1,K.1^-3,K.1^4,K.1^2,K.1^-1,K.1^8,K.1^-6,K.1^7,K.1^-1,K.1^12,K.1^3,K.1^12,K.1^-11,K.1^-12,K.1^-2,K.1^9,K.1^-6,K.1^7,K.1^-8,K.1^4,K.1^-11,K.1^-11,K.1^6,K.1^9,K.1^4,K.1^-3,K.1^9,K.1^-8,K.1^-4,K.1^-12,K.1^-12,K.1^-2,K.1^8,K.1^-7,K.1^-9,K.1^12,K.1^-11,K.1,K.1^2,K.1^-4,K.1^-6,K.1^-3,K.1^4,K.1^-12,K.1^-9,K.1^7,K.1^11,K.1^6,K.1^6,K.1,K.1^11,K.1^2,K.1^2,K.1^-4,K.1^8,K.1^-1,-1*K.1^-11,-1*K.1^-2,-1*K.1^3,-1*K.1^8,-1*K.1^3,-1*K.1^-7,-1*K.1^-11,-1*K.1^-3,-1*K.1^-8,-1*K.1^4,-1*K.1^-1,-1*K.1^12,-1*K.1^7,-1*K.1^-9,-1*K.1^-4,-1*K.1,-1*K.1^-4,-1*K.1^11,-1*K.1^7,-1*K.1^4,-1*K.1^-9,-1*K.1^9,-1*K.1^12,-1*K.1^-8,-1*K.1^-6,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^-7,-1*K.1^-12,-1*K.1^8,-1*K.1^-12,-1*K.1^-2,-1*K.1^2,-1*K.1^-6,-1*K.1^9,-1*K.1^11,-1*K.1^6,-1*K.1,-1*K.1^6,K.1^6,K.1^2,-1*K.1^6,-1*K.1^-1,-1*K.1^-4,-1*K.1^8,K.1^4,-1*K.1^-2,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^4,-1*K.1^-11,-1*K.1^-9,K.1^12,-1*K.1,-1*K.1^-12,K.1^-11,-1*K.1^2,-1*K.1^3,-1*K.1^-9,-1*K.1^-11,K.1^-12,-1*K.1^-8,-1*K.1^-12,-1*K.1^-2,-1*K.1^-2,K.1^-6,-1*K.1^8,-1*K.1^6,K.1^-8,-1*K.1^-4,-1*K.1^9,-1*K.1^9,-1*K.1^12,-1*K.1^-8,-1*K.1^12,-1*K.1^2,K.1^9,-1*K.1^-12,-1*K.1^8,-1*K.1^-3,K.1^-7,-1*K.1^-7,-1*K.1^-4,K.1^-9,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^12,K.1^7,-1*K.1^2,-1*K.1^-6,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^11,-1*K.1^3,K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-6,-1*K.1^11,K.1^-2,-1*K.1^4,K.1^11,K.1^-11,-1*K.1^-12,-1*K.1^8,K.1^-6,K.1^-2,K.1^-2,K.1^6,K.1^-1,K.1^6,K.1^-1,K.1^6,K.1^-2,-1*K.1^11,-1*K.1^-6,-1*K.1^-1,-1*K.1^6,K.1^2,K.1^11,K.1^-6,-1*K.1^-1,K.1^3,-1*K.1^7,-1*K.1^-11,-1*K.1^6,-1*K.1^-7,K.1^-7,K.1^12,K.1^-8,K.1^-12,K.1^9,K.1^9,K.1^-4,K.1^8,K.1^-4,K.1^8,K.1^-4,K.1^9,K.1^7,K.1^-3,K.1^-8,K.1^12,-1*K.1^-9,K.1^-9,K.1^-12,-1*K.1^7,-1*K.1^-9,-1*K.1^4,-1*K.1,K.1^-3,K.1^-7,-1*K.1^9,-1*K.1^-4,K.1^-8,K.1^12,K.1^2,K.1^11,K.1^4,K.1,K.1^3,K.1,K.1^-12,K.1^-9,-1*K.1^-2,K.1^4,K.1^8,K.1^-3,K.1^7,K.1^-11,K.1^-4,-1*K.1^11,-1*K.1^-7,-1*K.1^12,K.1^8,-1*K.1^-6,K.1^-11,K.1^7,K.1^-3,-1*K.1,-1*K.1^4,-1*K.1^-11,K.1^-9,K.1^3,K.1,K.1^4,K.1,K.1^-6,K.1^11,K.1^2,K.1^3,K.1^-1,-1*K.1^3,-1*K.1^-7,K.1^-7,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^5,K.1^-5,K.1^10,K.1^-10,-1,-1,-1,-1,1,1,1,1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^8,K.1^4,K.1^3,K.1^-11,K.1^9,K.1^-1,K.1^-7,K.1^-4,K.1^-8,K.1^-9,K.1^11,K.1,K.1^-3,K.1^2,K.1^7,K.1^12,K.1^-12,K.1^6,K.1^-6,K.1^-2,K.1^-10,K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,K.1^10,-1*K.1^5,K.1^-10,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^-5,K.1^-10,-1*K.1^-10,K.1^-5,K.1^5,K.1^-5,-1*K.1^10,-1*K.1^-10,K.1^5,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^-5,K.1^10,-1*K.1^5,K.1^5,-1*K.1^5,K.1^7,K.1^-1,K.1^6,K.1^12,K.1^-11,K.1^-3,K.1^2,K.1^-6,K.1^-8,K.1,K.1^-8,K.1,K.1^-12,K.1^3,K.1^7,K.1^-9,K.1^-6,K.1^11,K.1^-8,K.1^6,K.1^-9,K.1^-4,K.1^11,K.1^12,K.1^6,K.1^8,K.1^-4,K.1^2,K.1^-2,K.1^-7,K.1^-3,K.1^2,K.1^-1,K.1^-1,K.1^3,K.1^-6,K.1^3,K.1^9,K.1^9,K.1^-7,K.1^-7,K.1,K.1^9,K.1^7,K.1^11,K.1^4,K.1^-12,K.1^-12,K.1^-11,K.1^8,K.1^8,K.1^-11,K.1^-2,K.1^4,K.1^4,K.1^-2,K.1^12,K.1^-4,K.1^-3,K.1^-9,-1*K.1^-9,-1*K.1^9,-1*K.1^2,-1*K.1,-1*K.1^-4,-1*K.1^-2,-1*K.1^-7,-1*K.1^-7,-1*K.1^-8,-1*K.1^12,-1*K.1^-11,-1*K.1^4,-1*K.1^4,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^-6,-1*K.1^8,-1*K.1^2,-1*K.1^9,-1*K.1^-1,-1*K.1^-6,-1*K.1^7,-1*K.1^-3,-1*K.1^-12,-1*K.1^-11,-1*K.1^-12,-1*K.1^6,-1*K.1^7,-1*K.1^12,-1*K.1,-1*K.1^-4,-1*K.1^-8,-1*K.1^11,-1*K.1^11,-1*K.1^8,-1*K.1^3,-1*K.1^-9,-1*K.1^6,-1*K.1^-3,K.1^8,K.1^6,K.1^-7,K.1^9,K.1^-3,K.1^-3,K.1^-1,K.1^3,K.1^2,K.1^9,K.1^4,K.1^-11,K.1^-6,K.1,K.1^-12,K.1^-11,K.1^7,K.1^-9,K.1^8,K.1^2,K.1^-3,K.1^7,K.1^7,K.1^-8,K.1^-1,K.1^3,K.1^-4,K.1^-2,K.1,K.1^-8,K.1^6,K.1^-7,K.1,K.1^-12,K.1^-3,K.1^-12,K.1^11,K.1^12,K.1^2,K.1^-9,K.1^6,K.1^-7,K.1^8,K.1^-4,K.1^11,K.1^11,K.1^-6,K.1^-9,K.1^-4,K.1^3,K.1^-9,K.1^8,K.1^4,K.1^12,K.1^12,K.1^2,K.1^-8,K.1^7,K.1^9,K.1^-12,K.1^11,K.1^-1,K.1^-2,K.1^4,K.1^6,K.1^3,K.1^-4,K.1^12,K.1^9,K.1^-7,K.1^-11,K.1^-6,K.1^-6,K.1^-1,K.1^-11,K.1^-2,K.1^-2,K.1^4,K.1^-8,K.1,-1*K.1^11,-1*K.1^2,-1*K.1^-3,-1*K.1^-8,-1*K.1^-3,-1*K.1^7,-1*K.1^11,-1*K.1^3,-1*K.1^8,-1*K.1^-4,-1*K.1,-1*K.1^-12,-1*K.1^-7,-1*K.1^9,-1*K.1^4,-1*K.1^-1,-1*K.1^4,-1*K.1^-11,-1*K.1^-7,-1*K.1^-4,-1*K.1^9,-1*K.1^-9,-1*K.1^-12,-1*K.1^8,-1*K.1^6,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^7,-1*K.1^12,-1*K.1^-8,-1*K.1^12,-1*K.1^2,-1*K.1^-2,-1*K.1^6,-1*K.1^-9,-1*K.1^-11,-1*K.1^-6,-1*K.1^-1,-1*K.1^-6,K.1^-6,K.1^-2,-1*K.1^-6,-1*K.1,-1*K.1^4,-1*K.1^-8,K.1^-4,-1*K.1^2,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-4,-1*K.1^11,-1*K.1^9,K.1^-12,-1*K.1^-1,-1*K.1^12,K.1^11,-1*K.1^-2,-1*K.1^-3,-1*K.1^9,-1*K.1^11,K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^-8,-1*K.1^-6,K.1^8,-1*K.1^4,-1*K.1^-9,-1*K.1^-9,-1*K.1^-12,-1*K.1^8,-1*K.1^-12,-1*K.1^-2,K.1^-9,-1*K.1^12,-1*K.1^-8,-1*K.1^3,K.1^7,-1*K.1^7,-1*K.1^4,K.1^9,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-12,K.1^-7,-1*K.1^-2,-1*K.1^6,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^-11,-1*K.1^-3,K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^6,-1*K.1^-11,K.1^2,-1*K.1^-4,K.1^-11,K.1^11,-1*K.1^12,-1*K.1^-8,K.1^6,K.1^2,K.1^2,K.1^-6,K.1,K.1^-6,K.1,K.1^-6,K.1^2,-1*K.1^-11,-1*K.1^6,-1*K.1,-1*K.1^-6,K.1^-2,K.1^-11,K.1^6,-1*K.1,K.1^-3,-1*K.1^-7,-1*K.1^11,-1*K.1^-6,-1*K.1^7,K.1^7,K.1^-12,K.1^8,K.1^12,K.1^-9,K.1^-9,K.1^4,K.1^-8,K.1^4,K.1^-8,K.1^4,K.1^-9,K.1^-7,K.1^3,K.1^8,K.1^-12,-1*K.1^9,K.1^9,K.1^12,-1*K.1^-7,-1*K.1^9,-1*K.1^-4,-1*K.1^-1,K.1^3,K.1^7,-1*K.1^-9,-1*K.1^4,K.1^8,K.1^-12,K.1^-2,K.1^-11,K.1^-4,K.1^-1,K.1^-3,K.1^-1,K.1^12,K.1^9,-1*K.1^2,K.1^-4,K.1^-8,K.1^3,K.1^-7,K.1^11,K.1^4,-1*K.1^-11,-1*K.1^7,-1*K.1^-12,K.1^-8,-1*K.1^6,K.1^11,K.1^-7,K.1^3,-1*K.1^-1,-1*K.1^-4,-1*K.1^11,K.1^9,K.1^-3,K.1^-1,K.1^-4,K.1^-1,K.1^6,K.1^-11,K.1^-2,K.1^-3,K.1,-1*K.1^-3,-1*K.1^7,K.1^7,-1*K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-5,K.1^5,K.1^-10,K.1^10,-1,-1,-1,-1,1,1,1,1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,K.1^7,K.1^-9,K.1^12,K.1^6,K.1^11,K.1^-4,K.1^-3,K.1^9,K.1^-7,K.1^-11,K.1^-6,K.1^4,K.1^-12,K.1^8,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-8,K.1^10,K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^5,K.1^-10,-1*K.1^-5,K.1^10,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-10,K.1^-10,K.1^5,K.1^10,-1*K.1^10,K.1^5,K.1^-5,K.1^5,-1*K.1^-10,-1*K.1^10,K.1^-5,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^5,K.1^-10,-1*K.1^-5,K.1^-5,-1*K.1^-5,K.1^3,K.1^-4,K.1^-1,K.1^-2,K.1^6,K.1^-12,K.1^8,K.1,K.1^-7,K.1^4,K.1^-7,K.1^4,K.1^2,K.1^12,K.1^3,K.1^-11,K.1,K.1^-6,K.1^-7,K.1^-1,K.1^-11,K.1^9,K.1^-6,K.1^-2,K.1^-1,K.1^7,K.1^9,K.1^8,K.1^-8,K.1^-3,K.1^-12,K.1^8,K.1^-4,K.1^-4,K.1^12,K.1,K.1^12,K.1^11,K.1^11,K.1^-3,K.1^-3,K.1^4,K.1^11,K.1^3,K.1^-6,K.1^-9,K.1^2,K.1^2,K.1^6,K.1^7,K.1^7,K.1^6,K.1^-8,K.1^-9,K.1^-9,K.1^-8,K.1^-2,K.1^9,K.1^-12,K.1^-11,-1*K.1^-11,-1*K.1^11,-1*K.1^8,-1*K.1^4,-1*K.1^9,-1*K.1^-8,-1*K.1^-3,-1*K.1^-3,-1*K.1^-7,-1*K.1^-2,-1*K.1^6,-1*K.1^-9,-1*K.1^-9,-1*K.1^-8,-1*K.1^12,-1*K.1^-4,-1*K.1,-1*K.1^7,-1*K.1^8,-1*K.1^11,-1*K.1^-4,-1*K.1,-1*K.1^3,-1*K.1^-12,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1^4,-1*K.1^9,-1*K.1^-7,-1*K.1^-6,-1*K.1^-6,-1*K.1^7,-1*K.1^12,-1*K.1^-11,-1*K.1^-1,-1*K.1^-12,K.1^7,K.1^-1,K.1^-3,K.1^11,K.1^-12,K.1^-12,K.1^-4,K.1^12,K.1^8,K.1^11,K.1^-9,K.1^6,K.1,K.1^4,K.1^2,K.1^6,K.1^3,K.1^-11,K.1^7,K.1^8,K.1^-12,K.1^3,K.1^3,K.1^-7,K.1^-4,K.1^12,K.1^9,K.1^-8,K.1^4,K.1^-7,K.1^-1,K.1^-3,K.1^4,K.1^2,K.1^-12,K.1^2,K.1^-6,K.1^-2,K.1^8,K.1^-11,K.1^-1,K.1^-3,K.1^7,K.1^9,K.1^-6,K.1^-6,K.1,K.1^-11,K.1^9,K.1^12,K.1^-11,K.1^7,K.1^-9,K.1^-2,K.1^-2,K.1^8,K.1^-7,K.1^3,K.1^11,K.1^2,K.1^-6,K.1^-4,K.1^-8,K.1^-9,K.1^-1,K.1^12,K.1^9,K.1^-2,K.1^11,K.1^-3,K.1^6,K.1,K.1,K.1^-4,K.1^6,K.1^-8,K.1^-8,K.1^-9,K.1^-7,K.1^4,-1*K.1^-6,-1*K.1^8,-1*K.1^-12,-1*K.1^-7,-1*K.1^-12,-1*K.1^3,-1*K.1^-6,-1*K.1^12,-1*K.1^7,-1*K.1^9,-1*K.1^4,-1*K.1^2,-1*K.1^-3,-1*K.1^11,-1*K.1^-9,-1*K.1^-4,-1*K.1^-9,-1*K.1^6,-1*K.1^-3,-1*K.1^9,-1*K.1^11,-1*K.1^-11,-1*K.1^2,-1*K.1^7,-1*K.1^-1,-1*K.1^4,-1*K.1^12,-1*K.1^-8,-1*K.1^3,-1*K.1^-2,-1*K.1^-7,-1*K.1^-2,-1*K.1^8,-1*K.1^-8,-1*K.1^-1,-1*K.1^-11,-1*K.1^6,-1*K.1,-1*K.1^-4,-1*K.1,K.1,K.1^-8,-1*K.1,-1*K.1^4,-1*K.1^-9,-1*K.1^-7,K.1^9,-1*K.1^8,-1*K.1^-3,-1*K.1^12,-1*K.1^7,-1*K.1^9,-1*K.1^-6,-1*K.1^11,K.1^2,-1*K.1^-4,-1*K.1^-2,K.1^-6,-1*K.1^-8,-1*K.1^-12,-1*K.1^11,-1*K.1^-6,K.1^-2,-1*K.1^7,-1*K.1^-2,-1*K.1^8,-1*K.1^8,K.1^-1,-1*K.1^-7,-1*K.1,K.1^7,-1*K.1^-9,-1*K.1^-11,-1*K.1^-11,-1*K.1^2,-1*K.1^7,-1*K.1^2,-1*K.1^-8,K.1^-11,-1*K.1^-2,-1*K.1^-7,-1*K.1^12,K.1^3,-1*K.1^3,-1*K.1^-9,K.1^11,-1*K.1^-3,-1*K.1^12,-1*K.1^7,-1*K.1^2,K.1^-3,-1*K.1^-8,-1*K.1^-1,-1*K.1^4,-1*K.1^12,-1*K.1^-8,-1*K.1^6,-1*K.1^-12,K.1^4,-1*K.1^-12,-1*K.1^-4,-1*K.1^-1,-1*K.1^6,K.1^8,-1*K.1^9,K.1^6,K.1^-6,-1*K.1^-2,-1*K.1^-7,K.1^-1,K.1^8,K.1^8,K.1,K.1^4,K.1,K.1^4,K.1,K.1^8,-1*K.1^6,-1*K.1^-1,-1*K.1^4,-1*K.1,K.1^-8,K.1^6,K.1^-1,-1*K.1^4,K.1^-12,-1*K.1^-3,-1*K.1^-6,-1*K.1,-1*K.1^3,K.1^3,K.1^2,K.1^7,K.1^-2,K.1^-11,K.1^-11,K.1^-9,K.1^-7,K.1^-9,K.1^-7,K.1^-9,K.1^-11,K.1^-3,K.1^12,K.1^7,K.1^2,-1*K.1^11,K.1^11,K.1^-2,-1*K.1^-3,-1*K.1^11,-1*K.1^9,-1*K.1^-4,K.1^12,K.1^3,-1*K.1^-11,-1*K.1^-9,K.1^7,K.1^2,K.1^-8,K.1^6,K.1^9,K.1^-4,K.1^-12,K.1^-4,K.1^-2,K.1^11,-1*K.1^8,K.1^9,K.1^-7,K.1^12,K.1^-3,K.1^-6,K.1^-9,-1*K.1^6,-1*K.1^3,-1*K.1^2,K.1^-7,-1*K.1^-1,K.1^-6,K.1^-3,K.1^12,-1*K.1^-4,-1*K.1^9,-1*K.1^-6,K.1^11,K.1^-12,K.1^-4,K.1^9,K.1^-4,K.1^-1,K.1^6,K.1^-8,K.1^-12,K.1^4,-1*K.1^-12,-1*K.1^3,K.1^3,-1*K.1^-11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^5,K.1^-5,K.1^10,K.1^-10,-1,-1,-1,-1,1,1,1,1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^-7,K.1^9,K.1^-12,K.1^-6,K.1^-11,K.1^4,K.1^3,K.1^-9,K.1^7,K.1^11,K.1^6,K.1^-4,K.1^12,K.1^-8,K.1^-3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^8,K.1^-10,K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,K.1^10,-1*K.1^5,K.1^-10,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^-5,K.1^-10,-1*K.1^-10,K.1^-5,K.1^5,K.1^-5,-1*K.1^10,-1*K.1^-10,K.1^5,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^-5,K.1^10,-1*K.1^5,K.1^5,-1*K.1^5,K.1^-3,K.1^4,K.1,K.1^2,K.1^-6,K.1^12,K.1^-8,K.1^-1,K.1^7,K.1^-4,K.1^7,K.1^-4,K.1^-2,K.1^-12,K.1^-3,K.1^11,K.1^-1,K.1^6,K.1^7,K.1,K.1^11,K.1^-9,K.1^6,K.1^2,K.1,K.1^-7,K.1^-9,K.1^-8,K.1^8,K.1^3,K.1^12,K.1^-8,K.1^4,K.1^4,K.1^-12,K.1^-1,K.1^-12,K.1^-11,K.1^-11,K.1^3,K.1^3,K.1^-4,K.1^-11,K.1^-3,K.1^6,K.1^9,K.1^-2,K.1^-2,K.1^-6,K.1^-7,K.1^-7,K.1^-6,K.1^8,K.1^9,K.1^9,K.1^8,K.1^2,K.1^-9,K.1^12,K.1^11,-1*K.1^11,-1*K.1^-11,-1*K.1^-8,-1*K.1^-4,-1*K.1^-9,-1*K.1^8,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^2,-1*K.1^-6,-1*K.1^9,-1*K.1^9,-1*K.1^8,-1*K.1^-12,-1*K.1^4,-1*K.1^-1,-1*K.1^-7,-1*K.1^-8,-1*K.1^-11,-1*K.1^4,-1*K.1^-1,-1*K.1^-3,-1*K.1^12,-1*K.1^-2,-1*K.1^-6,-1*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-4,-1*K.1^-9,-1*K.1^7,-1*K.1^6,-1*K.1^6,-1*K.1^-7,-1*K.1^-12,-1*K.1^11,-1*K.1,-1*K.1^12,K.1^-7,K.1,K.1^3,K.1^-11,K.1^12,K.1^12,K.1^4,K.1^-12,K.1^-8,K.1^-11,K.1^9,K.1^-6,K.1^-1,K.1^-4,K.1^-2,K.1^-6,K.1^-3,K.1^11,K.1^-7,K.1^-8,K.1^12,K.1^-3,K.1^-3,K.1^7,K.1^4,K.1^-12,K.1^-9,K.1^8,K.1^-4,K.1^7,K.1,K.1^3,K.1^-4,K.1^-2,K.1^12,K.1^-2,K.1^6,K.1^2,K.1^-8,K.1^11,K.1,K.1^3,K.1^-7,K.1^-9,K.1^6,K.1^6,K.1^-1,K.1^11,K.1^-9,K.1^-12,K.1^11,K.1^-7,K.1^9,K.1^2,K.1^2,K.1^-8,K.1^7,K.1^-3,K.1^-11,K.1^-2,K.1^6,K.1^4,K.1^8,K.1^9,K.1,K.1^-12,K.1^-9,K.1^2,K.1^-11,K.1^3,K.1^-6,K.1^-1,K.1^-1,K.1^4,K.1^-6,K.1^8,K.1^8,K.1^9,K.1^7,K.1^-4,-1*K.1^6,-1*K.1^-8,-1*K.1^12,-1*K.1^7,-1*K.1^12,-1*K.1^-3,-1*K.1^6,-1*K.1^-12,-1*K.1^-7,-1*K.1^-9,-1*K.1^-4,-1*K.1^-2,-1*K.1^3,-1*K.1^-11,-1*K.1^9,-1*K.1^4,-1*K.1^9,-1*K.1^-6,-1*K.1^3,-1*K.1^-9,-1*K.1^-11,-1*K.1^11,-1*K.1^-2,-1*K.1^-7,-1*K.1,-1*K.1^-4,-1*K.1^-12,-1*K.1^8,-1*K.1^-3,-1*K.1^2,-1*K.1^7,-1*K.1^2,-1*K.1^-8,-1*K.1^8,-1*K.1,-1*K.1^11,-1*K.1^-6,-1*K.1^-1,-1*K.1^4,-1*K.1^-1,K.1^-1,K.1^8,-1*K.1^-1,-1*K.1^-4,-1*K.1^9,-1*K.1^7,K.1^-9,-1*K.1^-8,-1*K.1^3,-1*K.1^-12,-1*K.1^-7,-1*K.1^-9,-1*K.1^6,-1*K.1^-11,K.1^-2,-1*K.1^4,-1*K.1^2,K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^-11,-1*K.1^6,K.1^2,-1*K.1^-7,-1*K.1^2,-1*K.1^-8,-1*K.1^-8,K.1,-1*K.1^7,-1*K.1^-1,K.1^-7,-1*K.1^9,-1*K.1^11,-1*K.1^11,-1*K.1^-2,-1*K.1^-7,-1*K.1^-2,-1*K.1^8,K.1^11,-1*K.1^2,-1*K.1^7,-1*K.1^-12,K.1^-3,-1*K.1^-3,-1*K.1^9,K.1^-11,-1*K.1^3,-1*K.1^-12,-1*K.1^-7,-1*K.1^-2,K.1^3,-1*K.1^8,-1*K.1,-1*K.1^-4,-1*K.1^-12,-1*K.1^8,-1*K.1^-6,-1*K.1^12,K.1^-4,-1*K.1^12,-1*K.1^4,-1*K.1,-1*K.1^-6,K.1^-8,-1*K.1^-9,K.1^-6,K.1^6,-1*K.1^2,-1*K.1^7,K.1,K.1^-8,K.1^-8,K.1^-1,K.1^-4,K.1^-1,K.1^-4,K.1^-1,K.1^-8,-1*K.1^-6,-1*K.1,-1*K.1^-4,-1*K.1^-1,K.1^8,K.1^-6,K.1,-1*K.1^-4,K.1^12,-1*K.1^3,-1*K.1^6,-1*K.1^-1,-1*K.1^-3,K.1^-3,K.1^-2,K.1^-7,K.1^2,K.1^11,K.1^11,K.1^9,K.1^7,K.1^9,K.1^7,K.1^9,K.1^11,K.1^3,K.1^-12,K.1^-7,K.1^-2,-1*K.1^-11,K.1^-11,K.1^2,-1*K.1^3,-1*K.1^-11,-1*K.1^-9,-1*K.1^4,K.1^-12,K.1^-3,-1*K.1^11,-1*K.1^9,K.1^-7,K.1^-2,K.1^8,K.1^-6,K.1^-9,K.1^4,K.1^12,K.1^4,K.1^2,K.1^-11,-1*K.1^-8,K.1^-9,K.1^7,K.1^-12,K.1^3,K.1^6,K.1^9,-1*K.1^-6,-1*K.1^-3,-1*K.1^-2,K.1^7,-1*K.1,K.1^6,K.1^3,K.1^-12,-1*K.1^4,-1*K.1^-9,-1*K.1^6,K.1^-11,K.1^12,K.1^4,K.1^-9,K.1^4,K.1,K.1^-6,K.1^8,K.1^12,K.1^-4,-1*K.1^12,-1*K.1^-3,K.1^-3,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-5,K.1^5,K.1^-10,K.1^10,-1,-1,-1,-1,1,1,1,1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,K.1^-3,K.1^11,K.1^2,K.1,K.1^6,K.1^-9,K.1^12,K.1^-11,K.1^3,K.1^-6,K.1^-1,K.1^9,K.1^-2,K.1^-7,K.1^-12,K.1^8,K.1^-8,K.1^4,K.1^-4,K.1^7,K.1^10,K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^5,K.1^-10,-1*K.1^-5,K.1^10,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-10,K.1^-10,K.1^5,K.1^10,-1*K.1^10,K.1^5,K.1^-5,K.1^5,-1*K.1^-10,-1*K.1^10,K.1^-5,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^5,K.1^-10,-1*K.1^-5,K.1^-5,-1*K.1^-5,K.1^-12,K.1^-9,K.1^4,K.1^8,K.1,K.1^-2,K.1^-7,K.1^-4,K.1^3,K.1^9,K.1^3,K.1^9,K.1^-8,K.1^2,K.1^-12,K.1^-6,K.1^-4,K.1^-1,K.1^3,K.1^4,K.1^-6,K.1^-11,K.1^-1,K.1^8,K.1^4,K.1^-3,K.1^-11,K.1^-7,K.1^7,K.1^12,K.1^-2,K.1^-7,K.1^-9,K.1^-9,K.1^2,K.1^-4,K.1^2,K.1^6,K.1^6,K.1^12,K.1^12,K.1^9,K.1^6,K.1^-12,K.1^-1,K.1^11,K.1^-8,K.1^-8,K.1,K.1^-3,K.1^-3,K.1,K.1^7,K.1^11,K.1^11,K.1^7,K.1^8,K.1^-11,K.1^-2,K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^-7,-1*K.1^9,-1*K.1^-11,-1*K.1^7,-1*K.1^12,-1*K.1^12,-1*K.1^3,-1*K.1^8,-1*K.1,-1*K.1^11,-1*K.1^11,-1*K.1^7,-1*K.1^2,-1*K.1^-9,-1*K.1^-4,-1*K.1^-3,-1*K.1^-7,-1*K.1^6,-1*K.1^-9,-1*K.1^-4,-1*K.1^-12,-1*K.1^-2,-1*K.1^-8,-1*K.1,-1*K.1^-8,-1*K.1^4,-1*K.1^-12,-1*K.1^8,-1*K.1^9,-1*K.1^-11,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^-6,-1*K.1^4,-1*K.1^-2,K.1^-3,K.1^4,K.1^12,K.1^6,K.1^-2,K.1^-2,K.1^-9,K.1^2,K.1^-7,K.1^6,K.1^11,K.1,K.1^-4,K.1^9,K.1^-8,K.1,K.1^-12,K.1^-6,K.1^-3,K.1^-7,K.1^-2,K.1^-12,K.1^-12,K.1^3,K.1^-9,K.1^2,K.1^-11,K.1^7,K.1^9,K.1^3,K.1^4,K.1^12,K.1^9,K.1^-8,K.1^-2,K.1^-8,K.1^-1,K.1^8,K.1^-7,K.1^-6,K.1^4,K.1^12,K.1^-3,K.1^-11,K.1^-1,K.1^-1,K.1^-4,K.1^-6,K.1^-11,K.1^2,K.1^-6,K.1^-3,K.1^11,K.1^8,K.1^8,K.1^-7,K.1^3,K.1^-12,K.1^6,K.1^-8,K.1^-1,K.1^-9,K.1^7,K.1^11,K.1^4,K.1^2,K.1^-11,K.1^8,K.1^6,K.1^12,K.1,K.1^-4,K.1^-4,K.1^-9,K.1,K.1^7,K.1^7,K.1^11,K.1^3,K.1^9,-1*K.1^-1,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1^-12,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^-11,-1*K.1^9,-1*K.1^-8,-1*K.1^12,-1*K.1^6,-1*K.1^11,-1*K.1^-9,-1*K.1^11,-1*K.1,-1*K.1^12,-1*K.1^-11,-1*K.1^6,-1*K.1^-6,-1*K.1^-8,-1*K.1^-3,-1*K.1^4,-1*K.1^9,-1*K.1^2,-1*K.1^7,-1*K.1^-12,-1*K.1^8,-1*K.1^3,-1*K.1^8,-1*K.1^-7,-1*K.1^7,-1*K.1^4,-1*K.1^-6,-1*K.1,-1*K.1^-4,-1*K.1^-9,-1*K.1^-4,K.1^-4,K.1^7,-1*K.1^-4,-1*K.1^9,-1*K.1^11,-1*K.1^3,K.1^-11,-1*K.1^-7,-1*K.1^12,-1*K.1^2,-1*K.1^-3,-1*K.1^-11,-1*K.1^-1,-1*K.1^6,K.1^-8,-1*K.1^-9,-1*K.1^8,K.1^-1,-1*K.1^7,-1*K.1^-2,-1*K.1^6,-1*K.1^-1,K.1^8,-1*K.1^-3,-1*K.1^8,-1*K.1^-7,-1*K.1^-7,K.1^4,-1*K.1^3,-1*K.1^-4,K.1^-3,-1*K.1^11,-1*K.1^-6,-1*K.1^-6,-1*K.1^-8,-1*K.1^-3,-1*K.1^-8,-1*K.1^7,K.1^-6,-1*K.1^8,-1*K.1^3,-1*K.1^2,K.1^-12,-1*K.1^-12,-1*K.1^11,K.1^6,-1*K.1^12,-1*K.1^2,-1*K.1^-3,-1*K.1^-8,K.1^12,-1*K.1^7,-1*K.1^4,-1*K.1^9,-1*K.1^2,-1*K.1^7,-1*K.1,-1*K.1^-2,K.1^9,-1*K.1^-2,-1*K.1^-9,-1*K.1^4,-1*K.1,K.1^-7,-1*K.1^-11,K.1,K.1^-1,-1*K.1^8,-1*K.1^3,K.1^4,K.1^-7,K.1^-7,K.1^-4,K.1^9,K.1^-4,K.1^9,K.1^-4,K.1^-7,-1*K.1,-1*K.1^4,-1*K.1^9,-1*K.1^-4,K.1^7,K.1,K.1^4,-1*K.1^9,K.1^-2,-1*K.1^12,-1*K.1^-1,-1*K.1^-4,-1*K.1^-12,K.1^-12,K.1^-8,K.1^-3,K.1^8,K.1^-6,K.1^-6,K.1^11,K.1^3,K.1^11,K.1^3,K.1^11,K.1^-6,K.1^12,K.1^2,K.1^-3,K.1^-8,-1*K.1^6,K.1^6,K.1^8,-1*K.1^12,-1*K.1^6,-1*K.1^-11,-1*K.1^-9,K.1^2,K.1^-12,-1*K.1^-6,-1*K.1^11,K.1^-3,K.1^-8,K.1^7,K.1,K.1^-11,K.1^-9,K.1^-2,K.1^-9,K.1^8,K.1^6,-1*K.1^-7,K.1^-11,K.1^3,K.1^2,K.1^12,K.1^-1,K.1^11,-1*K.1,-1*K.1^-12,-1*K.1^-8,K.1^3,-1*K.1^4,K.1^-1,K.1^12,K.1^2,-1*K.1^-9,-1*K.1^-11,-1*K.1^-1,K.1^6,K.1^-2,K.1^-9,K.1^-11,K.1^-9,K.1^4,K.1,K.1^7,K.1^-2,K.1^9,-1*K.1^-2,-1*K.1^-12,K.1^-12,-1*K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^5,K.1^-5,K.1^10,K.1^-10,-1,-1,-1,-1,1,1,1,1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^3,K.1^-11,K.1^-2,K.1^-1,K.1^-6,K.1^9,K.1^-12,K.1^11,K.1^-3,K.1^6,K.1,K.1^-9,K.1^2,K.1^7,K.1^12,K.1^-8,K.1^8,K.1^-4,K.1^4,K.1^-7,K.1^-10,K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,K.1^10,-1*K.1^5,K.1^-10,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^-5,K.1^-10,-1*K.1^-10,K.1^-5,K.1^5,K.1^-5,-1*K.1^10,-1*K.1^-10,K.1^5,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^-5,K.1^10,-1*K.1^5,K.1^5,-1*K.1^5,K.1^12,K.1^9,K.1^-4,K.1^-8,K.1^-1,K.1^2,K.1^7,K.1^4,K.1^-3,K.1^-9,K.1^-3,K.1^-9,K.1^8,K.1^-2,K.1^12,K.1^6,K.1^4,K.1,K.1^-3,K.1^-4,K.1^6,K.1^11,K.1,K.1^-8,K.1^-4,K.1^3,K.1^11,K.1^7,K.1^-7,K.1^-12,K.1^2,K.1^7,K.1^9,K.1^9,K.1^-2,K.1^4,K.1^-2,K.1^-6,K.1^-6,K.1^-12,K.1^-12,K.1^-9,K.1^-6,K.1^12,K.1,K.1^-11,K.1^8,K.1^8,K.1^-1,K.1^3,K.1^3,K.1^-1,K.1^-7,K.1^-11,K.1^-11,K.1^-7,K.1^-8,K.1^11,K.1^2,K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^7,-1*K.1^-9,-1*K.1^11,-1*K.1^-7,-1*K.1^-12,-1*K.1^-12,-1*K.1^-3,-1*K.1^-8,-1*K.1^-1,-1*K.1^-11,-1*K.1^-11,-1*K.1^-7,-1*K.1^-2,-1*K.1^9,-1*K.1^4,-1*K.1^3,-1*K.1^7,-1*K.1^-6,-1*K.1^9,-1*K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^8,-1*K.1^-1,-1*K.1^8,-1*K.1^-4,-1*K.1^12,-1*K.1^-8,-1*K.1^-9,-1*K.1^11,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^6,-1*K.1^-4,-1*K.1^2,K.1^3,K.1^-4,K.1^-12,K.1^-6,K.1^2,K.1^2,K.1^9,K.1^-2,K.1^7,K.1^-6,K.1^-11,K.1^-1,K.1^4,K.1^-9,K.1^8,K.1^-1,K.1^12,K.1^6,K.1^3,K.1^7,K.1^2,K.1^12,K.1^12,K.1^-3,K.1^9,K.1^-2,K.1^11,K.1^-7,K.1^-9,K.1^-3,K.1^-4,K.1^-12,K.1^-9,K.1^8,K.1^2,K.1^8,K.1,K.1^-8,K.1^7,K.1^6,K.1^-4,K.1^-12,K.1^3,K.1^11,K.1,K.1,K.1^4,K.1^6,K.1^11,K.1^-2,K.1^6,K.1^3,K.1^-11,K.1^-8,K.1^-8,K.1^7,K.1^-3,K.1^12,K.1^-6,K.1^8,K.1,K.1^9,K.1^-7,K.1^-11,K.1^-4,K.1^-2,K.1^11,K.1^-8,K.1^-6,K.1^-12,K.1^-1,K.1^4,K.1^4,K.1^9,K.1^-1,K.1^-7,K.1^-7,K.1^-11,K.1^-3,K.1^-9,-1*K.1,-1*K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^12,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^11,-1*K.1^-9,-1*K.1^8,-1*K.1^-12,-1*K.1^-6,-1*K.1^-11,-1*K.1^9,-1*K.1^-11,-1*K.1^-1,-1*K.1^-12,-1*K.1^11,-1*K.1^-6,-1*K.1^6,-1*K.1^8,-1*K.1^3,-1*K.1^-4,-1*K.1^-9,-1*K.1^-2,-1*K.1^-7,-1*K.1^12,-1*K.1^-8,-1*K.1^-3,-1*K.1^-8,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,-1*K.1^6,-1*K.1^-1,-1*K.1^4,-1*K.1^9,-1*K.1^4,K.1^4,K.1^-7,-1*K.1^4,-1*K.1^-9,-1*K.1^-11,-1*K.1^-3,K.1^11,-1*K.1^7,-1*K.1^-12,-1*K.1^-2,-1*K.1^3,-1*K.1^11,-1*K.1,-1*K.1^-6,K.1^8,-1*K.1^9,-1*K.1^-8,K.1,-1*K.1^-7,-1*K.1^2,-1*K.1^-6,-1*K.1,K.1^-8,-1*K.1^3,-1*K.1^-8,-1*K.1^7,-1*K.1^7,K.1^-4,-1*K.1^-3,-1*K.1^4,K.1^3,-1*K.1^-11,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^3,-1*K.1^8,-1*K.1^-7,K.1^6,-1*K.1^-8,-1*K.1^-3,-1*K.1^-2,K.1^12,-1*K.1^12,-1*K.1^-11,K.1^-6,-1*K.1^-12,-1*K.1^-2,-1*K.1^3,-1*K.1^8,K.1^-12,-1*K.1^-7,-1*K.1^-4,-1*K.1^-9,-1*K.1^-2,-1*K.1^-7,-1*K.1^-1,-1*K.1^2,K.1^-9,-1*K.1^2,-1*K.1^9,-1*K.1^-4,-1*K.1^-1,K.1^7,-1*K.1^11,K.1^-1,K.1,-1*K.1^-8,-1*K.1^-3,K.1^-4,K.1^7,K.1^7,K.1^4,K.1^-9,K.1^4,K.1^-9,K.1^4,K.1^7,-1*K.1^-1,-1*K.1^-4,-1*K.1^-9,-1*K.1^4,K.1^-7,K.1^-1,K.1^-4,-1*K.1^-9,K.1^2,-1*K.1^-12,-1*K.1,-1*K.1^4,-1*K.1^12,K.1^12,K.1^8,K.1^3,K.1^-8,K.1^6,K.1^6,K.1^-11,K.1^-3,K.1^-11,K.1^-3,K.1^-11,K.1^6,K.1^-12,K.1^-2,K.1^3,K.1^8,-1*K.1^-6,K.1^-6,K.1^-8,-1*K.1^-12,-1*K.1^-6,-1*K.1^11,-1*K.1^9,K.1^-2,K.1^12,-1*K.1^6,-1*K.1^-11,K.1^3,K.1^8,K.1^-7,K.1^-1,K.1^11,K.1^9,K.1^2,K.1^9,K.1^-8,K.1^-6,-1*K.1^7,K.1^11,K.1^-3,K.1^-2,K.1^-12,K.1,K.1^-11,-1*K.1^-1,-1*K.1^12,-1*K.1^8,K.1^-3,-1*K.1^-4,K.1,K.1^-12,K.1^-2,-1*K.1^9,-1*K.1^11,-1*K.1,K.1^-6,K.1^2,K.1^9,K.1^11,K.1^9,K.1^-4,K.1^-1,K.1^-7,K.1^2,K.1^-9,-1*K.1^2,-1*K.1^12,K.1^12,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-5,K.1^5,K.1^-10,K.1^10,-1,-1,-1,-1,1,1,1,1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,K.1^2,K.1,K.1^7,K.1^-9,K.1^-4,K.1^6,K.1^-8,K.1^-1,K.1^-2,K.1^4,K.1^9,K.1^-6,K.1^-7,K.1^-12,K.1^8,K.1^3,K.1^-3,K.1^-11,K.1^11,K.1^12,K.1^10,K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^5,K.1^-10,-1*K.1^-5,K.1^10,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-10,K.1^-10,K.1^5,K.1^10,-1*K.1^10,K.1^5,K.1^-5,K.1^5,-1*K.1^-10,-1*K.1^10,K.1^-5,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^5,K.1^-10,-1*K.1^-5,K.1^-5,-1*K.1^-5,K.1^8,K.1^6,K.1^-11,K.1^3,K.1^-9,K.1^-7,K.1^-12,K.1^11,K.1^-2,K.1^-6,K.1^-2,K.1^-6,K.1^-3,K.1^7,K.1^8,K.1^4,K.1^11,K.1^9,K.1^-2,K.1^-11,K.1^4,K.1^-1,K.1^9,K.1^3,K.1^-11,K.1^2,K.1^-1,K.1^-12,K.1^12,K.1^-8,K.1^-7,K.1^-12,K.1^6,K.1^6,K.1^7,K.1^11,K.1^7,K.1^-4,K.1^-4,K.1^-8,K.1^-8,K.1^-6,K.1^-4,K.1^8,K.1^9,K.1,K.1^-3,K.1^-3,K.1^-9,K.1^2,K.1^2,K.1^-9,K.1^12,K.1,K.1,K.1^12,K.1^3,K.1^-1,K.1^-7,K.1^4,-1*K.1^4,-1*K.1^-4,-1*K.1^-12,-1*K.1^-6,-1*K.1^-1,-1*K.1^12,-1*K.1^-8,-1*K.1^-8,-1*K.1^-2,-1*K.1^3,-1*K.1^-9,-1*K.1,-1*K.1,-1*K.1^12,-1*K.1^7,-1*K.1^6,-1*K.1^11,-1*K.1^2,-1*K.1^-12,-1*K.1^-4,-1*K.1^6,-1*K.1^11,-1*K.1^8,-1*K.1^-7,-1*K.1^-3,-1*K.1^-9,-1*K.1^-3,-1*K.1^-11,-1*K.1^8,-1*K.1^3,-1*K.1^-6,-1*K.1^-1,-1*K.1^-2,-1*K.1^9,-1*K.1^9,-1*K.1^2,-1*K.1^7,-1*K.1^4,-1*K.1^-11,-1*K.1^-7,K.1^2,K.1^-11,K.1^-8,K.1^-4,K.1^-7,K.1^-7,K.1^6,K.1^7,K.1^-12,K.1^-4,K.1,K.1^-9,K.1^11,K.1^-6,K.1^-3,K.1^-9,K.1^8,K.1^4,K.1^2,K.1^-12,K.1^-7,K.1^8,K.1^8,K.1^-2,K.1^6,K.1^7,K.1^-1,K.1^12,K.1^-6,K.1^-2,K.1^-11,K.1^-8,K.1^-6,K.1^-3,K.1^-7,K.1^-3,K.1^9,K.1^3,K.1^-12,K.1^4,K.1^-11,K.1^-8,K.1^2,K.1^-1,K.1^9,K.1^9,K.1^11,K.1^4,K.1^-1,K.1^7,K.1^4,K.1^2,K.1,K.1^3,K.1^3,K.1^-12,K.1^-2,K.1^8,K.1^-4,K.1^-3,K.1^9,K.1^6,K.1^12,K.1,K.1^-11,K.1^7,K.1^-1,K.1^3,K.1^-4,K.1^-8,K.1^-9,K.1^11,K.1^11,K.1^6,K.1^-9,K.1^12,K.1^12,K.1,K.1^-2,K.1^-6,-1*K.1^9,-1*K.1^-12,-1*K.1^-7,-1*K.1^-2,-1*K.1^-7,-1*K.1^8,-1*K.1^9,-1*K.1^7,-1*K.1^2,-1*K.1^-1,-1*K.1^-6,-1*K.1^-3,-1*K.1^-8,-1*K.1^-4,-1*K.1,-1*K.1^6,-1*K.1,-1*K.1^-9,-1*K.1^-8,-1*K.1^-1,-1*K.1^-4,-1*K.1^4,-1*K.1^-3,-1*K.1^2,-1*K.1^-11,-1*K.1^-6,-1*K.1^7,-1*K.1^12,-1*K.1^8,-1*K.1^3,-1*K.1^-2,-1*K.1^3,-1*K.1^-12,-1*K.1^12,-1*K.1^-11,-1*K.1^4,-1*K.1^-9,-1*K.1^11,-1*K.1^6,-1*K.1^11,K.1^11,K.1^12,-1*K.1^11,-1*K.1^-6,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^-12,-1*K.1^-8,-1*K.1^7,-1*K.1^2,-1*K.1^-1,-1*K.1^9,-1*K.1^-4,K.1^-3,-1*K.1^6,-1*K.1^3,K.1^9,-1*K.1^12,-1*K.1^-7,-1*K.1^-4,-1*K.1^9,K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^-12,-1*K.1^-12,K.1^-11,-1*K.1^-2,-1*K.1^11,K.1^2,-1*K.1,-1*K.1^4,-1*K.1^4,-1*K.1^-3,-1*K.1^2,-1*K.1^-3,-1*K.1^12,K.1^4,-1*K.1^3,-1*K.1^-2,-1*K.1^7,K.1^8,-1*K.1^8,-1*K.1,K.1^-4,-1*K.1^-8,-1*K.1^7,-1*K.1^2,-1*K.1^-3,K.1^-8,-1*K.1^12,-1*K.1^-11,-1*K.1^-6,-1*K.1^7,-1*K.1^12,-1*K.1^-9,-1*K.1^-7,K.1^-6,-1*K.1^-7,-1*K.1^6,-1*K.1^-11,-1*K.1^-9,K.1^-12,-1*K.1^-1,K.1^-9,K.1^9,-1*K.1^3,-1*K.1^-2,K.1^-11,K.1^-12,K.1^-12,K.1^11,K.1^-6,K.1^11,K.1^-6,K.1^11,K.1^-12,-1*K.1^-9,-1*K.1^-11,-1*K.1^-6,-1*K.1^11,K.1^12,K.1^-9,K.1^-11,-1*K.1^-6,K.1^-7,-1*K.1^-8,-1*K.1^9,-1*K.1^11,-1*K.1^8,K.1^8,K.1^-3,K.1^2,K.1^3,K.1^4,K.1^4,K.1,K.1^-2,K.1,K.1^-2,K.1,K.1^4,K.1^-8,K.1^7,K.1^2,K.1^-3,-1*K.1^-4,K.1^-4,K.1^3,-1*K.1^-8,-1*K.1^-4,-1*K.1^-1,-1*K.1^6,K.1^7,K.1^8,-1*K.1^4,-1*K.1,K.1^2,K.1^-3,K.1^12,K.1^-9,K.1^-1,K.1^6,K.1^-7,K.1^6,K.1^3,K.1^-4,-1*K.1^-12,K.1^-1,K.1^-2,K.1^7,K.1^-8,K.1^9,K.1,-1*K.1^-9,-1*K.1^8,-1*K.1^-3,K.1^-2,-1*K.1^-11,K.1^9,K.1^-8,K.1^7,-1*K.1^6,-1*K.1^-1,-1*K.1^9,K.1^-4,K.1^-7,K.1^6,K.1^-1,K.1^6,K.1^-11,K.1^-9,K.1^12,K.1^-7,K.1^-6,-1*K.1^-7,-1*K.1^8,K.1^8,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^5,K.1^-5,K.1^10,K.1^-10,-1,-1,-1,-1,1,1,1,1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^-2,K.1^-1,K.1^-7,K.1^9,K.1^4,K.1^-6,K.1^8,K.1,K.1^2,K.1^-4,K.1^-9,K.1^6,K.1^7,K.1^12,K.1^-8,K.1^-3,K.1^3,K.1^11,K.1^-11,K.1^-12,K.1^-10,K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,K.1^10,-1*K.1^5,K.1^-10,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^10,K.1^10,K.1^-5,K.1^-10,-1*K.1^-10,K.1^-5,K.1^5,K.1^-5,-1*K.1^10,-1*K.1^-10,K.1^5,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^-5,K.1^10,-1*K.1^5,K.1^5,-1*K.1^5,K.1^-8,K.1^-6,K.1^11,K.1^-3,K.1^9,K.1^7,K.1^12,K.1^-11,K.1^2,K.1^6,K.1^2,K.1^6,K.1^3,K.1^-7,K.1^-8,K.1^-4,K.1^-11,K.1^-9,K.1^2,K.1^11,K.1^-4,K.1,K.1^-9,K.1^-3,K.1^11,K.1^-2,K.1,K.1^12,K.1^-12,K.1^8,K.1^7,K.1^12,K.1^-6,K.1^-6,K.1^-7,K.1^-11,K.1^-7,K.1^4,K.1^4,K.1^8,K.1^8,K.1^6,K.1^4,K.1^-8,K.1^-9,K.1^-1,K.1^3,K.1^3,K.1^9,K.1^-2,K.1^-2,K.1^9,K.1^-12,K.1^-1,K.1^-1,K.1^-12,K.1^-3,K.1,K.1^7,K.1^-4,-1*K.1^-4,-1*K.1^4,-1*K.1^12,-1*K.1^6,-1*K.1,-1*K.1^-12,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^-3,-1*K.1^9,-1*K.1^-1,-1*K.1^-1,-1*K.1^-12,-1*K.1^-7,-1*K.1^-6,-1*K.1^-11,-1*K.1^-2,-1*K.1^12,-1*K.1^4,-1*K.1^-6,-1*K.1^-11,-1*K.1^-8,-1*K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^-8,-1*K.1^-3,-1*K.1^6,-1*K.1,-1*K.1^2,-1*K.1^-9,-1*K.1^-9,-1*K.1^-2,-1*K.1^-7,-1*K.1^-4,-1*K.1^11,-1*K.1^7,K.1^-2,K.1^11,K.1^8,K.1^4,K.1^7,K.1^7,K.1^-6,K.1^-7,K.1^12,K.1^4,K.1^-1,K.1^9,K.1^-11,K.1^6,K.1^3,K.1^9,K.1^-8,K.1^-4,K.1^-2,K.1^12,K.1^7,K.1^-8,K.1^-8,K.1^2,K.1^-6,K.1^-7,K.1,K.1^-12,K.1^6,K.1^2,K.1^11,K.1^8,K.1^6,K.1^3,K.1^7,K.1^3,K.1^-9,K.1^-3,K.1^12,K.1^-4,K.1^11,K.1^8,K.1^-2,K.1,K.1^-9,K.1^-9,K.1^-11,K.1^-4,K.1,K.1^-7,K.1^-4,K.1^-2,K.1^-1,K.1^-3,K.1^-3,K.1^12,K.1^2,K.1^-8,K.1^4,K.1^3,K.1^-9,K.1^-6,K.1^-12,K.1^-1,K.1^11,K.1^-7,K.1,K.1^-3,K.1^4,K.1^8,K.1^9,K.1^-11,K.1^-11,K.1^-6,K.1^9,K.1^-12,K.1^-12,K.1^-1,K.1^2,K.1^6,-1*K.1^-9,-1*K.1^12,-1*K.1^7,-1*K.1^2,-1*K.1^7,-1*K.1^-8,-1*K.1^-9,-1*K.1^-7,-1*K.1^-2,-1*K.1,-1*K.1^6,-1*K.1^3,-1*K.1^8,-1*K.1^4,-1*K.1^-1,-1*K.1^-6,-1*K.1^-1,-1*K.1^9,-1*K.1^8,-1*K.1,-1*K.1^4,-1*K.1^-4,-1*K.1^3,-1*K.1^-2,-1*K.1^11,-1*K.1^6,-1*K.1^-7,-1*K.1^-12,-1*K.1^-8,-1*K.1^-3,-1*K.1^2,-1*K.1^-3,-1*K.1^12,-1*K.1^-12,-1*K.1^11,-1*K.1^-4,-1*K.1^9,-1*K.1^-11,-1*K.1^-6,-1*K.1^-11,K.1^-11,K.1^-12,-1*K.1^-11,-1*K.1^6,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^12,-1*K.1^8,-1*K.1^-7,-1*K.1^-2,-1*K.1,-1*K.1^-9,-1*K.1^4,K.1^3,-1*K.1^-6,-1*K.1^-3,K.1^-9,-1*K.1^-12,-1*K.1^7,-1*K.1^4,-1*K.1^-9,K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^12,-1*K.1^12,K.1^11,-1*K.1^2,-1*K.1^-11,K.1^-2,-1*K.1^-1,-1*K.1^-4,-1*K.1^-4,-1*K.1^3,-1*K.1^-2,-1*K.1^3,-1*K.1^-12,K.1^-4,-1*K.1^-3,-1*K.1^2,-1*K.1^-7,K.1^-8,-1*K.1^-8,-1*K.1^-1,K.1^4,-1*K.1^8,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,K.1^8,-1*K.1^-12,-1*K.1^11,-1*K.1^6,-1*K.1^-7,-1*K.1^-12,-1*K.1^9,-1*K.1^7,K.1^6,-1*K.1^7,-1*K.1^-6,-1*K.1^11,-1*K.1^9,K.1^12,-1*K.1,K.1^9,K.1^-9,-1*K.1^-3,-1*K.1^2,K.1^11,K.1^12,K.1^12,K.1^-11,K.1^6,K.1^-11,K.1^6,K.1^-11,K.1^12,-1*K.1^9,-1*K.1^11,-1*K.1^6,-1*K.1^-11,K.1^-12,K.1^9,K.1^11,-1*K.1^6,K.1^7,-1*K.1^8,-1*K.1^-9,-1*K.1^-11,-1*K.1^-8,K.1^-8,K.1^3,K.1^-2,K.1^-3,K.1^-4,K.1^-4,K.1^-1,K.1^2,K.1^-1,K.1^2,K.1^-1,K.1^-4,K.1^8,K.1^-7,K.1^-2,K.1^3,-1*K.1^4,K.1^4,K.1^-3,-1*K.1^8,-1*K.1^4,-1*K.1,-1*K.1^-6,K.1^-7,K.1^-8,-1*K.1^-4,-1*K.1^-1,K.1^-2,K.1^3,K.1^-12,K.1^9,K.1,K.1^-6,K.1^7,K.1^-6,K.1^-3,K.1^4,-1*K.1^12,K.1,K.1^2,K.1^-7,K.1^8,K.1^-9,K.1^-1,-1*K.1^9,-1*K.1^-8,-1*K.1^3,K.1^2,-1*K.1^11,K.1^-9,K.1^8,K.1^-7,-1*K.1^-6,-1*K.1,-1*K.1^-9,K.1^4,K.1^7,K.1^-6,K.1,K.1^-6,K.1^11,K.1^9,K.1^-12,K.1^7,K.1^6,-1*K.1^7,-1*K.1^-8,K.1^-8,-1*K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-10,K.1^10,K.1^5,K.1^-5,1,1,1,1,-1,-1,-1,-1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,K.1^-11,K.1^7,K.1^-1,K.1^12,K.1^-3,K.1^-8,K.1^-6,K.1^-7,K.1^11,K.1^3,K.1^-12,K.1^8,K.1,K.1^-9,K.1^6,K.1^-4,K.1^4,K.1^-2,K.1^2,K.1^9,-1*K.1^-5,-1*K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^10,-1*K.1^5,K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^-5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^10,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,K.1^10,K.1^10,-1*K.1^5,K.1^-10,-1*K.1^-10,K.1^-10,K.1^6,K.1^-8,K.1^-2,K.1^-4,K.1^12,K.1,K.1^-9,K.1^2,K.1^11,K.1^8,K.1^11,K.1^8,K.1^4,K.1^-1,K.1^6,K.1^3,K.1^2,K.1^-12,K.1^11,K.1^-2,K.1^3,K.1^-7,K.1^-12,K.1^-4,K.1^-2,K.1^-11,K.1^-7,K.1^-9,K.1^9,K.1^-6,K.1,K.1^-9,K.1^-8,K.1^-8,K.1^-1,K.1^2,K.1^-1,K.1^-3,K.1^-3,K.1^-6,K.1^-6,K.1^8,K.1^-3,K.1^6,K.1^-12,K.1^7,K.1^4,K.1^4,K.1^12,K.1^-11,K.1^-11,K.1^12,K.1^9,K.1^7,K.1^7,K.1^9,K.1^-4,K.1^-7,K.1,K.1^3,-1*K.1^3,-1*K.1^-3,-1*K.1^-9,-1*K.1^8,-1*K.1^-7,-1*K.1^9,-1*K.1^-6,-1*K.1^-6,-1*K.1^11,-1*K.1^-4,-1*K.1^12,-1*K.1^7,-1*K.1^7,-1*K.1^9,-1*K.1^-1,-1*K.1^-8,-1*K.1^2,-1*K.1^-11,-1*K.1^-9,-1*K.1^-3,-1*K.1^-8,-1*K.1^2,-1*K.1^6,-1*K.1,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^-2,-1*K.1^6,-1*K.1^-4,-1*K.1^8,-1*K.1^-7,-1*K.1^11,-1*K.1^-12,-1*K.1^-12,-1*K.1^-11,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1,K.1^-11,K.1^-2,K.1^-6,K.1^-3,K.1,K.1,K.1^-8,K.1^-1,K.1^-9,K.1^-3,K.1^7,K.1^12,K.1^2,K.1^8,K.1^4,K.1^12,K.1^6,K.1^3,K.1^-11,K.1^-9,K.1,K.1^6,K.1^6,K.1^11,K.1^-8,K.1^-1,K.1^-7,K.1^9,K.1^8,K.1^11,K.1^-2,K.1^-6,K.1^8,K.1^4,K.1,K.1^4,K.1^-12,K.1^-4,K.1^-9,K.1^3,K.1^-2,K.1^-6,K.1^-11,K.1^-7,K.1^-12,K.1^-12,K.1^2,K.1^3,K.1^-7,K.1^-1,K.1^3,K.1^-11,K.1^7,K.1^-4,K.1^-4,K.1^-9,K.1^11,K.1^6,K.1^-3,K.1^4,K.1^-12,K.1^-8,K.1^9,K.1^7,K.1^-2,K.1^-1,K.1^-7,K.1^-4,K.1^-3,K.1^-6,K.1^12,K.1^2,K.1^2,K.1^-8,K.1^12,K.1^9,K.1^9,K.1^7,K.1^11,K.1^8,-1*K.1^-12,-1*K.1^-9,-1*K.1,-1*K.1^11,-1*K.1,-1*K.1^6,-1*K.1^-12,-1*K.1^-1,-1*K.1^-11,-1*K.1^-7,-1*K.1^8,-1*K.1^4,-1*K.1^-6,-1*K.1^-3,-1*K.1^7,-1*K.1^-8,-1*K.1^7,-1*K.1^12,-1*K.1^-6,-1*K.1^-7,-1*K.1^-3,-1*K.1^3,-1*K.1^4,-1*K.1^-11,-1*K.1^-2,-1*K.1^8,-1*K.1^-1,-1*K.1^9,-1*K.1^6,-1*K.1^-4,-1*K.1^11,-1*K.1^-4,-1*K.1^-9,-1*K.1^9,-1*K.1^-2,-1*K.1^3,-1*K.1^12,-1*K.1^2,-1*K.1^-8,-1*K.1^2,-1*K.1^2,-1*K.1^9,K.1^2,K.1^8,K.1^7,K.1^11,-1*K.1^-7,K.1^-9,K.1^-6,K.1^-1,K.1^-11,K.1^-7,K.1^-12,K.1^-3,-1*K.1^4,K.1^-8,K.1^-4,-1*K.1^-12,K.1^9,K.1,K.1^-3,K.1^-12,-1*K.1^-4,K.1^-11,K.1^-4,K.1^-9,K.1^-9,-1*K.1^-2,K.1^11,K.1^2,-1*K.1^-11,K.1^7,K.1^3,K.1^3,K.1^4,K.1^-11,K.1^4,K.1^9,-1*K.1^3,K.1^-4,K.1^11,K.1^-1,-1*K.1^6,K.1^6,K.1^7,-1*K.1^-3,K.1^-6,K.1^-1,K.1^-11,K.1^4,-1*K.1^-6,K.1^9,K.1^-2,K.1^8,K.1^-1,K.1^9,K.1^12,K.1,-1*K.1^8,K.1,K.1^-8,K.1^-2,K.1^12,-1*K.1^-9,K.1^-7,-1*K.1^12,-1*K.1^-12,K.1^-4,K.1^11,-1*K.1^-2,-1*K.1^-9,-1*K.1^-9,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^-9,K.1^12,K.1^-2,K.1^8,K.1^2,-1*K.1^9,-1*K.1^12,-1*K.1^-2,K.1^8,-1*K.1,K.1^-6,K.1^-12,K.1^2,K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^-11,-1*K.1^-4,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^3,-1*K.1^-6,-1*K.1^-1,-1*K.1^-11,-1*K.1^4,K.1^-3,-1*K.1^-3,-1*K.1^-4,K.1^-6,K.1^-3,K.1^-7,K.1^-8,-1*K.1^-1,-1*K.1^6,K.1^3,K.1^7,-1*K.1^-11,-1*K.1^4,-1*K.1^9,-1*K.1^12,-1*K.1^-7,-1*K.1^-8,-1*K.1,-1*K.1^-8,-1*K.1^-4,-1*K.1^-3,K.1^-9,-1*K.1^-7,-1*K.1^11,-1*K.1^-1,-1*K.1^-6,-1*K.1^-12,-1*K.1^7,K.1^12,K.1^6,K.1^4,-1*K.1^11,K.1^-2,-1*K.1^-12,-1*K.1^-6,-1*K.1^-1,K.1^-8,K.1^-7,K.1^-12,-1*K.1^-3,-1*K.1,-1*K.1^-8,-1*K.1^-7,-1*K.1^-8,-1*K.1^-2,-1*K.1^12,-1*K.1^9,-1*K.1,-1*K.1^8,K.1,K.1^6,-1*K.1^6,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^-10,K.1^-5,K.1^5,1,1,1,1,-1,-1,-1,-1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^11,K.1^-7,K.1,K.1^-12,K.1^3,K.1^8,K.1^6,K.1^7,K.1^-11,K.1^-3,K.1^12,K.1^-8,K.1^-1,K.1^9,K.1^-6,K.1^4,K.1^-4,K.1^2,K.1^-2,K.1^-9,-1*K.1^5,-1*K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^-10,-1*K.1^-5,K.1^10,-1*K.1^5,-1*K.1^-10,K.1^5,K.1^-5,K.1^-5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-10,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-5,K.1^-10,K.1^-10,-1*K.1^-5,K.1^10,-1*K.1^10,K.1^10,K.1^-6,K.1^8,K.1^2,K.1^4,K.1^-12,K.1^-1,K.1^9,K.1^-2,K.1^-11,K.1^-8,K.1^-11,K.1^-8,K.1^-4,K.1,K.1^-6,K.1^-3,K.1^-2,K.1^12,K.1^-11,K.1^2,K.1^-3,K.1^7,K.1^12,K.1^4,K.1^2,K.1^11,K.1^7,K.1^9,K.1^-9,K.1^6,K.1^-1,K.1^9,K.1^8,K.1^8,K.1,K.1^-2,K.1,K.1^3,K.1^3,K.1^6,K.1^6,K.1^-8,K.1^3,K.1^-6,K.1^12,K.1^-7,K.1^-4,K.1^-4,K.1^-12,K.1^11,K.1^11,K.1^-12,K.1^-9,K.1^-7,K.1^-7,K.1^-9,K.1^4,K.1^7,K.1^-1,K.1^-3,-1*K.1^-3,-1*K.1^3,-1*K.1^9,-1*K.1^-8,-1*K.1^7,-1*K.1^-9,-1*K.1^6,-1*K.1^6,-1*K.1^-11,-1*K.1^4,-1*K.1^-12,-1*K.1^-7,-1*K.1^-7,-1*K.1^-9,-1*K.1,-1*K.1^8,-1*K.1^-2,-1*K.1^11,-1*K.1^9,-1*K.1^3,-1*K.1^8,-1*K.1^-2,-1*K.1^-6,-1*K.1^-1,-1*K.1^-4,-1*K.1^-12,-1*K.1^-4,-1*K.1^2,-1*K.1^-6,-1*K.1^4,-1*K.1^-8,-1*K.1^7,-1*K.1^-11,-1*K.1^12,-1*K.1^12,-1*K.1^11,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,K.1^11,K.1^2,K.1^6,K.1^3,K.1^-1,K.1^-1,K.1^8,K.1,K.1^9,K.1^3,K.1^-7,K.1^-12,K.1^-2,K.1^-8,K.1^-4,K.1^-12,K.1^-6,K.1^-3,K.1^11,K.1^9,K.1^-1,K.1^-6,K.1^-6,K.1^-11,K.1^8,K.1,K.1^7,K.1^-9,K.1^-8,K.1^-11,K.1^2,K.1^6,K.1^-8,K.1^-4,K.1^-1,K.1^-4,K.1^12,K.1^4,K.1^9,K.1^-3,K.1^2,K.1^6,K.1^11,K.1^7,K.1^12,K.1^12,K.1^-2,K.1^-3,K.1^7,K.1,K.1^-3,K.1^11,K.1^-7,K.1^4,K.1^4,K.1^9,K.1^-11,K.1^-6,K.1^3,K.1^-4,K.1^12,K.1^8,K.1^-9,K.1^-7,K.1^2,K.1,K.1^7,K.1^4,K.1^3,K.1^6,K.1^-12,K.1^-2,K.1^-2,K.1^8,K.1^-12,K.1^-9,K.1^-9,K.1^-7,K.1^-11,K.1^-8,-1*K.1^12,-1*K.1^9,-1*K.1^-1,-1*K.1^-11,-1*K.1^-1,-1*K.1^-6,-1*K.1^12,-1*K.1,-1*K.1^11,-1*K.1^7,-1*K.1^-8,-1*K.1^-4,-1*K.1^6,-1*K.1^3,-1*K.1^-7,-1*K.1^8,-1*K.1^-7,-1*K.1^-12,-1*K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1^-3,-1*K.1^-4,-1*K.1^11,-1*K.1^2,-1*K.1^-8,-1*K.1,-1*K.1^-9,-1*K.1^-6,-1*K.1^4,-1*K.1^-11,-1*K.1^4,-1*K.1^9,-1*K.1^-9,-1*K.1^2,-1*K.1^-3,-1*K.1^-12,-1*K.1^-2,-1*K.1^8,-1*K.1^-2,-1*K.1^-2,-1*K.1^-9,K.1^-2,K.1^-8,K.1^-7,K.1^-11,-1*K.1^7,K.1^9,K.1^6,K.1,K.1^11,K.1^7,K.1^12,K.1^3,-1*K.1^-4,K.1^8,K.1^4,-1*K.1^12,K.1^-9,K.1^-1,K.1^3,K.1^12,-1*K.1^4,K.1^11,K.1^4,K.1^9,K.1^9,-1*K.1^2,K.1^-11,K.1^-2,-1*K.1^11,K.1^-7,K.1^-3,K.1^-3,K.1^-4,K.1^11,K.1^-4,K.1^-9,-1*K.1^-3,K.1^4,K.1^-11,K.1,-1*K.1^-6,K.1^-6,K.1^-7,-1*K.1^3,K.1^6,K.1,K.1^11,K.1^-4,-1*K.1^6,K.1^-9,K.1^2,K.1^-8,K.1,K.1^-9,K.1^-12,K.1^-1,-1*K.1^-8,K.1^-1,K.1^8,K.1^2,K.1^-12,-1*K.1^9,K.1^7,-1*K.1^-12,-1*K.1^12,K.1^4,K.1^-11,-1*K.1^2,-1*K.1^9,-1*K.1^9,-1*K.1^-2,-1*K.1^-8,-1*K.1^-2,-1*K.1^-8,-1*K.1^-2,-1*K.1^9,K.1^-12,K.1^2,K.1^-8,K.1^-2,-1*K.1^-9,-1*K.1^-12,-1*K.1^2,K.1^-8,-1*K.1^-1,K.1^6,K.1^12,K.1^-2,K.1^-6,-1*K.1^-6,-1*K.1^-4,-1*K.1^11,-1*K.1^4,-1*K.1^-3,-1*K.1^-3,-1*K.1^-7,-1*K.1^-11,-1*K.1^-7,-1*K.1^-11,-1*K.1^-7,-1*K.1^-3,-1*K.1^6,-1*K.1,-1*K.1^11,-1*K.1^-4,K.1^3,-1*K.1^3,-1*K.1^4,K.1^6,K.1^3,K.1^7,K.1^8,-1*K.1,-1*K.1^-6,K.1^-3,K.1^-7,-1*K.1^11,-1*K.1^-4,-1*K.1^-9,-1*K.1^-12,-1*K.1^7,-1*K.1^8,-1*K.1^-1,-1*K.1^8,-1*K.1^4,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1^-11,-1*K.1,-1*K.1^6,-1*K.1^12,-1*K.1^-7,K.1^-12,K.1^-6,K.1^-4,-1*K.1^-11,K.1^2,-1*K.1^12,-1*K.1^6,-1*K.1,K.1^8,K.1^7,K.1^12,-1*K.1^3,-1*K.1^-1,-1*K.1^8,-1*K.1^7,-1*K.1^8,-1*K.1^2,-1*K.1^-12,-1*K.1^-9,-1*K.1^-1,-1*K.1^-8,K.1^-1,K.1^-6,-1*K.1^-6,K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-10,K.1^10,K.1^5,K.1^-5,1,1,1,1,-1,-1,-1,-1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,K.1^9,K.1^-8,K.1^-6,K.1^-3,K.1^7,K.1^2,K.1^-11,K.1^8,K.1^-9,K.1^-7,K.1^3,K.1^-2,K.1^6,K.1^-4,K.1^11,K.1,K.1^-1,K.1^-12,K.1^12,K.1^4,-1*K.1^-5,-1*K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^10,-1*K.1^5,K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^-5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^10,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,K.1^10,K.1^10,-1*K.1^5,K.1^-10,-1*K.1^-10,K.1^-10,K.1^11,K.1^2,K.1^-12,K.1,K.1^-3,K.1^6,K.1^-4,K.1^12,K.1^-9,K.1^-2,K.1^-9,K.1^-2,K.1^-1,K.1^-6,K.1^11,K.1^-7,K.1^12,K.1^3,K.1^-9,K.1^-12,K.1^-7,K.1^8,K.1^3,K.1,K.1^-12,K.1^9,K.1^8,K.1^-4,K.1^4,K.1^-11,K.1^6,K.1^-4,K.1^2,K.1^2,K.1^-6,K.1^12,K.1^-6,K.1^7,K.1^7,K.1^-11,K.1^-11,K.1^-2,K.1^7,K.1^11,K.1^3,K.1^-8,K.1^-1,K.1^-1,K.1^-3,K.1^9,K.1^9,K.1^-3,K.1^4,K.1^-8,K.1^-8,K.1^4,K.1,K.1^8,K.1^6,K.1^-7,-1*K.1^-7,-1*K.1^7,-1*K.1^-4,-1*K.1^-2,-1*K.1^8,-1*K.1^4,-1*K.1^-11,-1*K.1^-11,-1*K.1^-9,-1*K.1,-1*K.1^-3,-1*K.1^-8,-1*K.1^-8,-1*K.1^4,-1*K.1^-6,-1*K.1^2,-1*K.1^12,-1*K.1^9,-1*K.1^-4,-1*K.1^7,-1*K.1^2,-1*K.1^12,-1*K.1^11,-1*K.1^6,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^-12,-1*K.1^11,-1*K.1,-1*K.1^-2,-1*K.1^8,-1*K.1^-9,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^-6,-1*K.1^-7,-1*K.1^-12,-1*K.1^6,K.1^9,K.1^-12,K.1^-11,K.1^7,K.1^6,K.1^6,K.1^2,K.1^-6,K.1^-4,K.1^7,K.1^-8,K.1^-3,K.1^12,K.1^-2,K.1^-1,K.1^-3,K.1^11,K.1^-7,K.1^9,K.1^-4,K.1^6,K.1^11,K.1^11,K.1^-9,K.1^2,K.1^-6,K.1^8,K.1^4,K.1^-2,K.1^-9,K.1^-12,K.1^-11,K.1^-2,K.1^-1,K.1^6,K.1^-1,K.1^3,K.1,K.1^-4,K.1^-7,K.1^-12,K.1^-11,K.1^9,K.1^8,K.1^3,K.1^3,K.1^12,K.1^-7,K.1^8,K.1^-6,K.1^-7,K.1^9,K.1^-8,K.1,K.1,K.1^-4,K.1^-9,K.1^11,K.1^7,K.1^-1,K.1^3,K.1^2,K.1^4,K.1^-8,K.1^-12,K.1^-6,K.1^8,K.1,K.1^7,K.1^-11,K.1^-3,K.1^12,K.1^12,K.1^2,K.1^-3,K.1^4,K.1^4,K.1^-8,K.1^-9,K.1^-2,-1*K.1^3,-1*K.1^-4,-1*K.1^6,-1*K.1^-9,-1*K.1^6,-1*K.1^11,-1*K.1^3,-1*K.1^-6,-1*K.1^9,-1*K.1^8,-1*K.1^-2,-1*K.1^-1,-1*K.1^-11,-1*K.1^7,-1*K.1^-8,-1*K.1^2,-1*K.1^-8,-1*K.1^-3,-1*K.1^-11,-1*K.1^8,-1*K.1^7,-1*K.1^-7,-1*K.1^-1,-1*K.1^9,-1*K.1^-12,-1*K.1^-2,-1*K.1^-6,-1*K.1^4,-1*K.1^11,-1*K.1,-1*K.1^-9,-1*K.1,-1*K.1^-4,-1*K.1^4,-1*K.1^-12,-1*K.1^-7,-1*K.1^-3,-1*K.1^12,-1*K.1^2,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,K.1^-2,K.1^-8,K.1^-9,-1*K.1^8,K.1^-4,K.1^-11,K.1^-6,K.1^9,K.1^8,K.1^3,K.1^7,-1*K.1^-1,K.1^2,K.1,-1*K.1^3,K.1^4,K.1^6,K.1^7,K.1^3,-1*K.1,K.1^9,K.1,K.1^-4,K.1^-4,-1*K.1^-12,K.1^-9,K.1^12,-1*K.1^9,K.1^-8,K.1^-7,K.1^-7,K.1^-1,K.1^9,K.1^-1,K.1^4,-1*K.1^-7,K.1,K.1^-9,K.1^-6,-1*K.1^11,K.1^11,K.1^-8,-1*K.1^7,K.1^-11,K.1^-6,K.1^9,K.1^-1,-1*K.1^-11,K.1^4,K.1^-12,K.1^-2,K.1^-6,K.1^4,K.1^-3,K.1^6,-1*K.1^-2,K.1^6,K.1^2,K.1^-12,K.1^-3,-1*K.1^-4,K.1^8,-1*K.1^-3,-1*K.1^3,K.1,K.1^-9,-1*K.1^-12,-1*K.1^-4,-1*K.1^-4,-1*K.1^12,-1*K.1^-2,-1*K.1^12,-1*K.1^-2,-1*K.1^12,-1*K.1^-4,K.1^-3,K.1^-12,K.1^-2,K.1^12,-1*K.1^4,-1*K.1^-3,-1*K.1^-12,K.1^-2,-1*K.1^6,K.1^-11,K.1^3,K.1^12,K.1^11,-1*K.1^11,-1*K.1^-1,-1*K.1^9,-1*K.1,-1*K.1^-7,-1*K.1^-7,-1*K.1^-8,-1*K.1^-9,-1*K.1^-8,-1*K.1^-9,-1*K.1^-8,-1*K.1^-7,-1*K.1^-11,-1*K.1^-6,-1*K.1^9,-1*K.1^-1,K.1^7,-1*K.1^7,-1*K.1,K.1^-11,K.1^7,K.1^8,K.1^2,-1*K.1^-6,-1*K.1^11,K.1^-7,K.1^-8,-1*K.1^9,-1*K.1^-1,-1*K.1^4,-1*K.1^-3,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1,-1*K.1^7,K.1^-4,-1*K.1^8,-1*K.1^-9,-1*K.1^-6,-1*K.1^-11,-1*K.1^3,-1*K.1^-8,K.1^-3,K.1^11,K.1^-1,-1*K.1^-9,K.1^-12,-1*K.1^3,-1*K.1^-11,-1*K.1^-6,K.1^2,K.1^8,K.1^3,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^-12,-1*K.1^-3,-1*K.1^4,-1*K.1^6,-1*K.1^-2,K.1^6,K.1^11,-1*K.1^11,K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^-10,K.1^-5,K.1^5,1,1,1,1,-1,-1,-1,-1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^-9,K.1^8,K.1^6,K.1^3,K.1^-7,K.1^-2,K.1^11,K.1^-8,K.1^9,K.1^7,K.1^-3,K.1^2,K.1^-6,K.1^4,K.1^-11,K.1^-1,K.1,K.1^12,K.1^-12,K.1^-4,-1*K.1^5,-1*K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^-10,-1*K.1^-5,K.1^10,-1*K.1^5,-1*K.1^-10,K.1^5,K.1^-5,K.1^-5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-10,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-5,K.1^-10,K.1^-10,-1*K.1^-5,K.1^10,-1*K.1^10,K.1^10,K.1^-11,K.1^-2,K.1^12,K.1^-1,K.1^3,K.1^-6,K.1^4,K.1^-12,K.1^9,K.1^2,K.1^9,K.1^2,K.1,K.1^6,K.1^-11,K.1^7,K.1^-12,K.1^-3,K.1^9,K.1^12,K.1^7,K.1^-8,K.1^-3,K.1^-1,K.1^12,K.1^-9,K.1^-8,K.1^4,K.1^-4,K.1^11,K.1^-6,K.1^4,K.1^-2,K.1^-2,K.1^6,K.1^-12,K.1^6,K.1^-7,K.1^-7,K.1^11,K.1^11,K.1^2,K.1^-7,K.1^-11,K.1^-3,K.1^8,K.1,K.1,K.1^3,K.1^-9,K.1^-9,K.1^3,K.1^-4,K.1^8,K.1^8,K.1^-4,K.1^-1,K.1^-8,K.1^-6,K.1^7,-1*K.1^7,-1*K.1^-7,-1*K.1^4,-1*K.1^2,-1*K.1^-8,-1*K.1^-4,-1*K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^-1,-1*K.1^3,-1*K.1^8,-1*K.1^8,-1*K.1^-4,-1*K.1^6,-1*K.1^-2,-1*K.1^-12,-1*K.1^-9,-1*K.1^4,-1*K.1^-7,-1*K.1^-2,-1*K.1^-12,-1*K.1^-11,-1*K.1^-6,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^12,-1*K.1^-11,-1*K.1^-1,-1*K.1^2,-1*K.1^-8,-1*K.1^9,-1*K.1^-3,-1*K.1^-3,-1*K.1^-9,-1*K.1^6,-1*K.1^7,-1*K.1^12,-1*K.1^-6,K.1^-9,K.1^12,K.1^11,K.1^-7,K.1^-6,K.1^-6,K.1^-2,K.1^6,K.1^4,K.1^-7,K.1^8,K.1^3,K.1^-12,K.1^2,K.1,K.1^3,K.1^-11,K.1^7,K.1^-9,K.1^4,K.1^-6,K.1^-11,K.1^-11,K.1^9,K.1^-2,K.1^6,K.1^-8,K.1^-4,K.1^2,K.1^9,K.1^12,K.1^11,K.1^2,K.1,K.1^-6,K.1,K.1^-3,K.1^-1,K.1^4,K.1^7,K.1^12,K.1^11,K.1^-9,K.1^-8,K.1^-3,K.1^-3,K.1^-12,K.1^7,K.1^-8,K.1^6,K.1^7,K.1^-9,K.1^8,K.1^-1,K.1^-1,K.1^4,K.1^9,K.1^-11,K.1^-7,K.1,K.1^-3,K.1^-2,K.1^-4,K.1^8,K.1^12,K.1^6,K.1^-8,K.1^-1,K.1^-7,K.1^11,K.1^3,K.1^-12,K.1^-12,K.1^-2,K.1^3,K.1^-4,K.1^-4,K.1^8,K.1^9,K.1^2,-1*K.1^-3,-1*K.1^4,-1*K.1^-6,-1*K.1^9,-1*K.1^-6,-1*K.1^-11,-1*K.1^-3,-1*K.1^6,-1*K.1^-9,-1*K.1^-8,-1*K.1^2,-1*K.1,-1*K.1^11,-1*K.1^-7,-1*K.1^8,-1*K.1^-2,-1*K.1^8,-1*K.1^3,-1*K.1^11,-1*K.1^-8,-1*K.1^-7,-1*K.1^7,-1*K.1,-1*K.1^-9,-1*K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^-4,-1*K.1^-11,-1*K.1^-1,-1*K.1^9,-1*K.1^-1,-1*K.1^4,-1*K.1^-4,-1*K.1^12,-1*K.1^7,-1*K.1^3,-1*K.1^-12,-1*K.1^-2,-1*K.1^-12,-1*K.1^-12,-1*K.1^-4,K.1^-12,K.1^2,K.1^8,K.1^9,-1*K.1^-8,K.1^4,K.1^11,K.1^6,K.1^-9,K.1^-8,K.1^-3,K.1^-7,-1*K.1,K.1^-2,K.1^-1,-1*K.1^-3,K.1^-4,K.1^-6,K.1^-7,K.1^-3,-1*K.1^-1,K.1^-9,K.1^-1,K.1^4,K.1^4,-1*K.1^12,K.1^9,K.1^-12,-1*K.1^-9,K.1^8,K.1^7,K.1^7,K.1,K.1^-9,K.1,K.1^-4,-1*K.1^7,K.1^-1,K.1^9,K.1^6,-1*K.1^-11,K.1^-11,K.1^8,-1*K.1^-7,K.1^11,K.1^6,K.1^-9,K.1,-1*K.1^11,K.1^-4,K.1^12,K.1^2,K.1^6,K.1^-4,K.1^3,K.1^-6,-1*K.1^2,K.1^-6,K.1^-2,K.1^12,K.1^3,-1*K.1^4,K.1^-8,-1*K.1^3,-1*K.1^-3,K.1^-1,K.1^9,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^-12,-1*K.1^2,-1*K.1^-12,-1*K.1^2,-1*K.1^-12,-1*K.1^4,K.1^3,K.1^12,K.1^2,K.1^-12,-1*K.1^-4,-1*K.1^3,-1*K.1^12,K.1^2,-1*K.1^-6,K.1^11,K.1^-3,K.1^-12,K.1^-11,-1*K.1^-11,-1*K.1,-1*K.1^-9,-1*K.1^-1,-1*K.1^7,-1*K.1^7,-1*K.1^8,-1*K.1^9,-1*K.1^8,-1*K.1^9,-1*K.1^8,-1*K.1^7,-1*K.1^11,-1*K.1^6,-1*K.1^-9,-1*K.1,K.1^-7,-1*K.1^-7,-1*K.1^-1,K.1^11,K.1^-7,K.1^-8,K.1^-2,-1*K.1^6,-1*K.1^-11,K.1^7,K.1^8,-1*K.1^-9,-1*K.1,-1*K.1^-4,-1*K.1^3,-1*K.1^-8,-1*K.1^-2,-1*K.1^-6,-1*K.1^-2,-1*K.1^-1,-1*K.1^-7,K.1^4,-1*K.1^-8,-1*K.1^9,-1*K.1^6,-1*K.1^11,-1*K.1^-3,-1*K.1^8,K.1^3,K.1^-11,K.1,-1*K.1^9,K.1^12,-1*K.1^-3,-1*K.1^11,-1*K.1^6,K.1^-2,K.1^-8,K.1^-3,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-8,-1*K.1^-2,-1*K.1^12,-1*K.1^3,-1*K.1^-4,-1*K.1^-6,-1*K.1^2,K.1^-6,K.1^-11,-1*K.1^-11,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-10,K.1^10,K.1^5,K.1^-5,1,1,1,1,-1,-1,-1,-1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,K.1^-6,K.1^-3,K.1^4,K.1^2,K.1^12,K.1^7,K.1^-1,K.1^3,K.1^6,K.1^-12,K.1^-2,K.1^-7,K.1^-4,K.1^11,K.1,K.1^-9,K.1^9,K.1^8,K.1^-8,K.1^-11,-1*K.1^-5,-1*K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^10,-1*K.1^5,K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^-5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^10,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,K.1^10,K.1^10,-1*K.1^5,K.1^-10,-1*K.1^-10,K.1^-10,K.1,K.1^7,K.1^8,K.1^-9,K.1^2,K.1^-4,K.1^11,K.1^-8,K.1^6,K.1^-7,K.1^6,K.1^-7,K.1^9,K.1^4,K.1,K.1^-12,K.1^-8,K.1^-2,K.1^6,K.1^8,K.1^-12,K.1^3,K.1^-2,K.1^-9,K.1^8,K.1^-6,K.1^3,K.1^11,K.1^-11,K.1^-1,K.1^-4,K.1^11,K.1^7,K.1^7,K.1^4,K.1^-8,K.1^4,K.1^12,K.1^12,K.1^-1,K.1^-1,K.1^-7,K.1^12,K.1,K.1^-2,K.1^-3,K.1^9,K.1^9,K.1^2,K.1^-6,K.1^-6,K.1^2,K.1^-11,K.1^-3,K.1^-3,K.1^-11,K.1^-9,K.1^3,K.1^-4,K.1^-12,-1*K.1^-12,-1*K.1^12,-1*K.1^11,-1*K.1^-7,-1*K.1^3,-1*K.1^-11,-1*K.1^-1,-1*K.1^-1,-1*K.1^6,-1*K.1^-9,-1*K.1^2,-1*K.1^-3,-1*K.1^-3,-1*K.1^-11,-1*K.1^4,-1*K.1^7,-1*K.1^-8,-1*K.1^-6,-1*K.1^11,-1*K.1^12,-1*K.1^7,-1*K.1^-8,-1*K.1,-1*K.1^-4,-1*K.1^9,-1*K.1^2,-1*K.1^9,-1*K.1^8,-1*K.1,-1*K.1^-9,-1*K.1^-7,-1*K.1^3,-1*K.1^6,-1*K.1^-2,-1*K.1^-2,-1*K.1^-6,-1*K.1^4,-1*K.1^-12,-1*K.1^8,-1*K.1^-4,K.1^-6,K.1^8,K.1^-1,K.1^12,K.1^-4,K.1^-4,K.1^7,K.1^4,K.1^11,K.1^12,K.1^-3,K.1^2,K.1^-8,K.1^-7,K.1^9,K.1^2,K.1,K.1^-12,K.1^-6,K.1^11,K.1^-4,K.1,K.1,K.1^6,K.1^7,K.1^4,K.1^3,K.1^-11,K.1^-7,K.1^6,K.1^8,K.1^-1,K.1^-7,K.1^9,K.1^-4,K.1^9,K.1^-2,K.1^-9,K.1^11,K.1^-12,K.1^8,K.1^-1,K.1^-6,K.1^3,K.1^-2,K.1^-2,K.1^-8,K.1^-12,K.1^3,K.1^4,K.1^-12,K.1^-6,K.1^-3,K.1^-9,K.1^-9,K.1^11,K.1^6,K.1,K.1^12,K.1^9,K.1^-2,K.1^7,K.1^-11,K.1^-3,K.1^8,K.1^4,K.1^3,K.1^-9,K.1^12,K.1^-1,K.1^2,K.1^-8,K.1^-8,K.1^7,K.1^2,K.1^-11,K.1^-11,K.1^-3,K.1^6,K.1^-7,-1*K.1^-2,-1*K.1^11,-1*K.1^-4,-1*K.1^6,-1*K.1^-4,-1*K.1,-1*K.1^-2,-1*K.1^4,-1*K.1^-6,-1*K.1^3,-1*K.1^-7,-1*K.1^9,-1*K.1^-1,-1*K.1^12,-1*K.1^-3,-1*K.1^7,-1*K.1^-3,-1*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^12,-1*K.1^-12,-1*K.1^9,-1*K.1^-6,-1*K.1^8,-1*K.1^-7,-1*K.1^4,-1*K.1^-11,-1*K.1,-1*K.1^-9,-1*K.1^6,-1*K.1^-9,-1*K.1^11,-1*K.1^-11,-1*K.1^8,-1*K.1^-12,-1*K.1^2,-1*K.1^-8,-1*K.1^7,-1*K.1^-8,-1*K.1^-8,-1*K.1^-11,K.1^-8,K.1^-7,K.1^-3,K.1^6,-1*K.1^3,K.1^11,K.1^-1,K.1^4,K.1^-6,K.1^3,K.1^-2,K.1^12,-1*K.1^9,K.1^7,K.1^-9,-1*K.1^-2,K.1^-11,K.1^-4,K.1^12,K.1^-2,-1*K.1^-9,K.1^-6,K.1^-9,K.1^11,K.1^11,-1*K.1^8,K.1^6,K.1^-8,-1*K.1^-6,K.1^-3,K.1^-12,K.1^-12,K.1^9,K.1^-6,K.1^9,K.1^-11,-1*K.1^-12,K.1^-9,K.1^6,K.1^4,-1*K.1,K.1,K.1^-3,-1*K.1^12,K.1^-1,K.1^4,K.1^-6,K.1^9,-1*K.1^-1,K.1^-11,K.1^8,K.1^-7,K.1^4,K.1^-11,K.1^2,K.1^-4,-1*K.1^-7,K.1^-4,K.1^7,K.1^8,K.1^2,-1*K.1^11,K.1^3,-1*K.1^2,-1*K.1^-2,K.1^-9,K.1^6,-1*K.1^8,-1*K.1^11,-1*K.1^11,-1*K.1^-8,-1*K.1^-7,-1*K.1^-8,-1*K.1^-7,-1*K.1^-8,-1*K.1^11,K.1^2,K.1^8,K.1^-7,K.1^-8,-1*K.1^-11,-1*K.1^2,-1*K.1^8,K.1^-7,-1*K.1^-4,K.1^-1,K.1^-2,K.1^-8,K.1,-1*K.1,-1*K.1^9,-1*K.1^-6,-1*K.1^-9,-1*K.1^-12,-1*K.1^-12,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^-12,-1*K.1^-1,-1*K.1^4,-1*K.1^-6,-1*K.1^9,K.1^12,-1*K.1^12,-1*K.1^-9,K.1^-1,K.1^12,K.1^3,K.1^7,-1*K.1^4,-1*K.1,K.1^-12,K.1^-3,-1*K.1^-6,-1*K.1^9,-1*K.1^-11,-1*K.1^2,-1*K.1^3,-1*K.1^7,-1*K.1^-4,-1*K.1^7,-1*K.1^-9,-1*K.1^12,K.1^11,-1*K.1^3,-1*K.1^6,-1*K.1^4,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,K.1^2,K.1,K.1^9,-1*K.1^6,K.1^8,-1*K.1^-2,-1*K.1^-1,-1*K.1^4,K.1^7,K.1^3,K.1^-2,-1*K.1^12,-1*K.1^-4,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^8,-1*K.1^2,-1*K.1^-11,-1*K.1^-4,-1*K.1^-7,K.1^-4,K.1,-1*K.1,K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^-10,K.1^-5,K.1^5,1,1,1,1,-1,-1,-1,-1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^6,K.1^3,K.1^-4,K.1^-2,K.1^-12,K.1^-7,K.1,K.1^-3,K.1^-6,K.1^12,K.1^2,K.1^7,K.1^4,K.1^-11,K.1^-1,K.1^9,K.1^-9,K.1^-8,K.1^8,K.1^11,-1*K.1^5,-1*K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^-10,-1*K.1^-5,K.1^10,-1*K.1^5,-1*K.1^-10,K.1^5,K.1^-5,K.1^-5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-10,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-5,K.1^-10,K.1^-10,-1*K.1^-5,K.1^10,-1*K.1^10,K.1^10,K.1^-1,K.1^-7,K.1^-8,K.1^9,K.1^-2,K.1^4,K.1^-11,K.1^8,K.1^-6,K.1^7,K.1^-6,K.1^7,K.1^-9,K.1^-4,K.1^-1,K.1^12,K.1^8,K.1^2,K.1^-6,K.1^-8,K.1^12,K.1^-3,K.1^2,K.1^9,K.1^-8,K.1^6,K.1^-3,K.1^-11,K.1^11,K.1,K.1^4,K.1^-11,K.1^-7,K.1^-7,K.1^-4,K.1^8,K.1^-4,K.1^-12,K.1^-12,K.1,K.1,K.1^7,K.1^-12,K.1^-1,K.1^2,K.1^3,K.1^-9,K.1^-9,K.1^-2,K.1^6,K.1^6,K.1^-2,K.1^11,K.1^3,K.1^3,K.1^11,K.1^9,K.1^-3,K.1^4,K.1^12,-1*K.1^12,-1*K.1^-12,-1*K.1^-11,-1*K.1^7,-1*K.1^-3,-1*K.1^11,-1*K.1,-1*K.1,-1*K.1^-6,-1*K.1^9,-1*K.1^-2,-1*K.1^3,-1*K.1^3,-1*K.1^11,-1*K.1^-4,-1*K.1^-7,-1*K.1^8,-1*K.1^6,-1*K.1^-11,-1*K.1^-12,-1*K.1^-7,-1*K.1^8,-1*K.1^-1,-1*K.1^4,-1*K.1^-9,-1*K.1^-2,-1*K.1^-9,-1*K.1^-8,-1*K.1^-1,-1*K.1^9,-1*K.1^7,-1*K.1^-3,-1*K.1^-6,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^-4,-1*K.1^12,-1*K.1^-8,-1*K.1^4,K.1^6,K.1^-8,K.1,K.1^-12,K.1^4,K.1^4,K.1^-7,K.1^-4,K.1^-11,K.1^-12,K.1^3,K.1^-2,K.1^8,K.1^7,K.1^-9,K.1^-2,K.1^-1,K.1^12,K.1^6,K.1^-11,K.1^4,K.1^-1,K.1^-1,K.1^-6,K.1^-7,K.1^-4,K.1^-3,K.1^11,K.1^7,K.1^-6,K.1^-8,K.1,K.1^7,K.1^-9,K.1^4,K.1^-9,K.1^2,K.1^9,K.1^-11,K.1^12,K.1^-8,K.1,K.1^6,K.1^-3,K.1^2,K.1^2,K.1^8,K.1^12,K.1^-3,K.1^-4,K.1^12,K.1^6,K.1^3,K.1^9,K.1^9,K.1^-11,K.1^-6,K.1^-1,K.1^-12,K.1^-9,K.1^2,K.1^-7,K.1^11,K.1^3,K.1^-8,K.1^-4,K.1^-3,K.1^9,K.1^-12,K.1,K.1^-2,K.1^8,K.1^8,K.1^-7,K.1^-2,K.1^11,K.1^11,K.1^3,K.1^-6,K.1^7,-1*K.1^2,-1*K.1^-11,-1*K.1^4,-1*K.1^-6,-1*K.1^4,-1*K.1^-1,-1*K.1^2,-1*K.1^-4,-1*K.1^6,-1*K.1^-3,-1*K.1^7,-1*K.1^-9,-1*K.1,-1*K.1^-12,-1*K.1^3,-1*K.1^-7,-1*K.1^3,-1*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^-12,-1*K.1^12,-1*K.1^-9,-1*K.1^6,-1*K.1^-8,-1*K.1^7,-1*K.1^-4,-1*K.1^11,-1*K.1^-1,-1*K.1^9,-1*K.1^-6,-1*K.1^9,-1*K.1^-11,-1*K.1^11,-1*K.1^-8,-1*K.1^12,-1*K.1^-2,-1*K.1^8,-1*K.1^-7,-1*K.1^8,-1*K.1^8,-1*K.1^11,K.1^8,K.1^7,K.1^3,K.1^-6,-1*K.1^-3,K.1^-11,K.1,K.1^-4,K.1^6,K.1^-3,K.1^2,K.1^-12,-1*K.1^-9,K.1^-7,K.1^9,-1*K.1^2,K.1^11,K.1^4,K.1^-12,K.1^2,-1*K.1^9,K.1^6,K.1^9,K.1^-11,K.1^-11,-1*K.1^-8,K.1^-6,K.1^8,-1*K.1^6,K.1^3,K.1^12,K.1^12,K.1^-9,K.1^6,K.1^-9,K.1^11,-1*K.1^12,K.1^9,K.1^-6,K.1^-4,-1*K.1^-1,K.1^-1,K.1^3,-1*K.1^-12,K.1,K.1^-4,K.1^6,K.1^-9,-1*K.1,K.1^11,K.1^-8,K.1^7,K.1^-4,K.1^11,K.1^-2,K.1^4,-1*K.1^7,K.1^4,K.1^-7,K.1^-8,K.1^-2,-1*K.1^-11,K.1^-3,-1*K.1^-2,-1*K.1^2,K.1^9,K.1^-6,-1*K.1^-8,-1*K.1^-11,-1*K.1^-11,-1*K.1^8,-1*K.1^7,-1*K.1^8,-1*K.1^7,-1*K.1^8,-1*K.1^-11,K.1^-2,K.1^-8,K.1^7,K.1^8,-1*K.1^11,-1*K.1^-2,-1*K.1^-8,K.1^7,-1*K.1^4,K.1,K.1^2,K.1^8,K.1^-1,-1*K.1^-1,-1*K.1^-9,-1*K.1^6,-1*K.1^9,-1*K.1^12,-1*K.1^12,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^12,-1*K.1,-1*K.1^-4,-1*K.1^6,-1*K.1^-9,K.1^-12,-1*K.1^-12,-1*K.1^9,K.1,K.1^-12,K.1^-3,K.1^-7,-1*K.1^-4,-1*K.1^-1,K.1^12,K.1^3,-1*K.1^6,-1*K.1^-9,-1*K.1^11,-1*K.1^-2,-1*K.1^-3,-1*K.1^-7,-1*K.1^4,-1*K.1^-7,-1*K.1^9,-1*K.1^-12,K.1^-11,-1*K.1^-3,-1*K.1^-6,-1*K.1^-4,-1*K.1,-1*K.1^2,-1*K.1^3,K.1^-2,K.1^-1,K.1^-9,-1*K.1^-6,K.1^-8,-1*K.1^2,-1*K.1,-1*K.1^-4,K.1^-7,K.1^-3,K.1^2,-1*K.1^-12,-1*K.1^4,-1*K.1^-7,-1*K.1^-3,-1*K.1^-7,-1*K.1^-8,-1*K.1^-2,-1*K.1^11,-1*K.1^4,-1*K.1^7,K.1^4,K.1^-1,-1*K.1^-1,K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-10,K.1^10,K.1^5,K.1^-5,1,1,1,1,-1,-1,-1,-1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,K.1^4,K.1^2,K.1^-11,K.1^7,K.1^-8,K.1^12,K.1^9,K.1^-2,K.1^-4,K.1^8,K.1^-7,K.1^-12,K.1^11,K.1,K.1^-9,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^-1,-1*K.1^-5,-1*K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^10,-1*K.1^5,K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^-5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^10,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,K.1^10,K.1^10,-1*K.1^5,K.1^-10,-1*K.1^-10,K.1^-10,K.1^-9,K.1^12,K.1^3,K.1^6,K.1^7,K.1^11,K.1,K.1^-3,K.1^-4,K.1^-12,K.1^-4,K.1^-12,K.1^-6,K.1^-11,K.1^-9,K.1^8,K.1^-3,K.1^-7,K.1^-4,K.1^3,K.1^8,K.1^-2,K.1^-7,K.1^6,K.1^3,K.1^4,K.1^-2,K.1,K.1^-1,K.1^9,K.1^11,K.1,K.1^12,K.1^12,K.1^-11,K.1^-3,K.1^-11,K.1^-8,K.1^-8,K.1^9,K.1^9,K.1^-12,K.1^-8,K.1^-9,K.1^-7,K.1^2,K.1^-6,K.1^-6,K.1^7,K.1^4,K.1^4,K.1^7,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^6,K.1^-2,K.1^11,K.1^8,-1*K.1^8,-1*K.1^-8,-1*K.1,-1*K.1^-12,-1*K.1^-2,-1*K.1^-1,-1*K.1^9,-1*K.1^9,-1*K.1^-4,-1*K.1^6,-1*K.1^7,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-11,-1*K.1^12,-1*K.1^-3,-1*K.1^4,-1*K.1,-1*K.1^-8,-1*K.1^12,-1*K.1^-3,-1*K.1^-9,-1*K.1^11,-1*K.1^-6,-1*K.1^7,-1*K.1^-6,-1*K.1^3,-1*K.1^-9,-1*K.1^6,-1*K.1^-12,-1*K.1^-2,-1*K.1^-4,-1*K.1^-7,-1*K.1^-7,-1*K.1^4,-1*K.1^-11,-1*K.1^8,-1*K.1^3,-1*K.1^11,K.1^4,K.1^3,K.1^9,K.1^-8,K.1^11,K.1^11,K.1^12,K.1^-11,K.1,K.1^-8,K.1^2,K.1^7,K.1^-3,K.1^-12,K.1^-6,K.1^7,K.1^-9,K.1^8,K.1^4,K.1,K.1^11,K.1^-9,K.1^-9,K.1^-4,K.1^12,K.1^-11,K.1^-2,K.1^-1,K.1^-12,K.1^-4,K.1^3,K.1^9,K.1^-12,K.1^-6,K.1^11,K.1^-6,K.1^-7,K.1^6,K.1,K.1^8,K.1^3,K.1^9,K.1^4,K.1^-2,K.1^-7,K.1^-7,K.1^-3,K.1^8,K.1^-2,K.1^-11,K.1^8,K.1^4,K.1^2,K.1^6,K.1^6,K.1,K.1^-4,K.1^-9,K.1^-8,K.1^-6,K.1^-7,K.1^12,K.1^-1,K.1^2,K.1^3,K.1^-11,K.1^-2,K.1^6,K.1^-8,K.1^9,K.1^7,K.1^-3,K.1^-3,K.1^12,K.1^7,K.1^-1,K.1^-1,K.1^2,K.1^-4,K.1^-12,-1*K.1^-7,-1*K.1,-1*K.1^11,-1*K.1^-4,-1*K.1^11,-1*K.1^-9,-1*K.1^-7,-1*K.1^-11,-1*K.1^4,-1*K.1^-2,-1*K.1^-12,-1*K.1^-6,-1*K.1^9,-1*K.1^-8,-1*K.1^2,-1*K.1^12,-1*K.1^2,-1*K.1^7,-1*K.1^9,-1*K.1^-2,-1*K.1^-8,-1*K.1^8,-1*K.1^-6,-1*K.1^4,-1*K.1^3,-1*K.1^-12,-1*K.1^-11,-1*K.1^-1,-1*K.1^-9,-1*K.1^6,-1*K.1^-4,-1*K.1^6,-1*K.1,-1*K.1^-1,-1*K.1^3,-1*K.1^8,-1*K.1^7,-1*K.1^-3,-1*K.1^12,-1*K.1^-3,-1*K.1^-3,-1*K.1^-1,K.1^-3,K.1^-12,K.1^2,K.1^-4,-1*K.1^-2,K.1,K.1^9,K.1^-11,K.1^4,K.1^-2,K.1^-7,K.1^-8,-1*K.1^-6,K.1^12,K.1^6,-1*K.1^-7,K.1^-1,K.1^11,K.1^-8,K.1^-7,-1*K.1^6,K.1^4,K.1^6,K.1,K.1,-1*K.1^3,K.1^-4,K.1^-3,-1*K.1^4,K.1^2,K.1^8,K.1^8,K.1^-6,K.1^4,K.1^-6,K.1^-1,-1*K.1^8,K.1^6,K.1^-4,K.1^-11,-1*K.1^-9,K.1^-9,K.1^2,-1*K.1^-8,K.1^9,K.1^-11,K.1^4,K.1^-6,-1*K.1^9,K.1^-1,K.1^3,K.1^-12,K.1^-11,K.1^-1,K.1^7,K.1^11,-1*K.1^-12,K.1^11,K.1^12,K.1^3,K.1^7,-1*K.1,K.1^-2,-1*K.1^7,-1*K.1^-7,K.1^6,K.1^-4,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^-12,-1*K.1^-3,-1*K.1^-12,-1*K.1^-3,-1*K.1,K.1^7,K.1^3,K.1^-12,K.1^-3,-1*K.1^-1,-1*K.1^7,-1*K.1^3,K.1^-12,-1*K.1^11,K.1^9,K.1^-7,K.1^-3,K.1^-9,-1*K.1^-9,-1*K.1^-6,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^-4,-1*K.1^2,-1*K.1^-4,-1*K.1^2,-1*K.1^8,-1*K.1^9,-1*K.1^-11,-1*K.1^4,-1*K.1^-6,K.1^-8,-1*K.1^-8,-1*K.1^6,K.1^9,K.1^-8,K.1^-2,K.1^12,-1*K.1^-11,-1*K.1^-9,K.1^8,K.1^2,-1*K.1^4,-1*K.1^-6,-1*K.1^-1,-1*K.1^7,-1*K.1^-2,-1*K.1^12,-1*K.1^11,-1*K.1^12,-1*K.1^6,-1*K.1^-8,K.1,-1*K.1^-2,-1*K.1^-4,-1*K.1^-11,-1*K.1^9,-1*K.1^-7,-1*K.1^2,K.1^7,K.1^-9,K.1^-6,-1*K.1^-4,K.1^3,-1*K.1^-7,-1*K.1^9,-1*K.1^-11,K.1^12,K.1^-2,K.1^-7,-1*K.1^-8,-1*K.1^11,-1*K.1^12,-1*K.1^-2,-1*K.1^12,-1*K.1^3,-1*K.1^7,-1*K.1^-1,-1*K.1^11,-1*K.1^-12,K.1^11,K.1^-9,-1*K.1^-9,K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^-10,K.1^-5,K.1^5,1,1,1,1,-1,-1,-1,-1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^-4,K.1^-2,K.1^11,K.1^-7,K.1^8,K.1^-12,K.1^-9,K.1^2,K.1^4,K.1^-8,K.1^7,K.1^12,K.1^-11,K.1^-1,K.1^9,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1,-1*K.1^5,-1*K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^-10,-1*K.1^-5,K.1^10,-1*K.1^5,-1*K.1^-10,K.1^5,K.1^-5,K.1^-5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-10,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-5,K.1^-10,K.1^-10,-1*K.1^-5,K.1^10,-1*K.1^10,K.1^10,K.1^9,K.1^-12,K.1^-3,K.1^-6,K.1^-7,K.1^-11,K.1^-1,K.1^3,K.1^4,K.1^12,K.1^4,K.1^12,K.1^6,K.1^11,K.1^9,K.1^-8,K.1^3,K.1^7,K.1^4,K.1^-3,K.1^-8,K.1^2,K.1^7,K.1^-6,K.1^-3,K.1^-4,K.1^2,K.1^-1,K.1,K.1^-9,K.1^-11,K.1^-1,K.1^-12,K.1^-12,K.1^11,K.1^3,K.1^11,K.1^8,K.1^8,K.1^-9,K.1^-9,K.1^12,K.1^8,K.1^9,K.1^7,K.1^-2,K.1^6,K.1^6,K.1^-7,K.1^-4,K.1^-4,K.1^-7,K.1,K.1^-2,K.1^-2,K.1,K.1^-6,K.1^2,K.1^-11,K.1^-8,-1*K.1^-8,-1*K.1^8,-1*K.1^-1,-1*K.1^12,-1*K.1^2,-1*K.1,-1*K.1^-9,-1*K.1^-9,-1*K.1^4,-1*K.1^-6,-1*K.1^-7,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^11,-1*K.1^-12,-1*K.1^3,-1*K.1^-4,-1*K.1^-1,-1*K.1^8,-1*K.1^-12,-1*K.1^3,-1*K.1^9,-1*K.1^-11,-1*K.1^6,-1*K.1^-7,-1*K.1^6,-1*K.1^-3,-1*K.1^9,-1*K.1^-6,-1*K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^7,-1*K.1^7,-1*K.1^-4,-1*K.1^11,-1*K.1^-8,-1*K.1^-3,-1*K.1^-11,K.1^-4,K.1^-3,K.1^-9,K.1^8,K.1^-11,K.1^-11,K.1^-12,K.1^11,K.1^-1,K.1^8,K.1^-2,K.1^-7,K.1^3,K.1^12,K.1^6,K.1^-7,K.1^9,K.1^-8,K.1^-4,K.1^-1,K.1^-11,K.1^9,K.1^9,K.1^4,K.1^-12,K.1^11,K.1^2,K.1,K.1^12,K.1^4,K.1^-3,K.1^-9,K.1^12,K.1^6,K.1^-11,K.1^6,K.1^7,K.1^-6,K.1^-1,K.1^-8,K.1^-3,K.1^-9,K.1^-4,K.1^2,K.1^7,K.1^7,K.1^3,K.1^-8,K.1^2,K.1^11,K.1^-8,K.1^-4,K.1^-2,K.1^-6,K.1^-6,K.1^-1,K.1^4,K.1^9,K.1^8,K.1^6,K.1^7,K.1^-12,K.1,K.1^-2,K.1^-3,K.1^11,K.1^2,K.1^-6,K.1^8,K.1^-9,K.1^-7,K.1^3,K.1^3,K.1^-12,K.1^-7,K.1,K.1,K.1^-2,K.1^4,K.1^12,-1*K.1^7,-1*K.1^-1,-1*K.1^-11,-1*K.1^4,-1*K.1^-11,-1*K.1^9,-1*K.1^7,-1*K.1^11,-1*K.1^-4,-1*K.1^2,-1*K.1^12,-1*K.1^6,-1*K.1^-9,-1*K.1^8,-1*K.1^-2,-1*K.1^-12,-1*K.1^-2,-1*K.1^-7,-1*K.1^-9,-1*K.1^2,-1*K.1^8,-1*K.1^-8,-1*K.1^6,-1*K.1^-4,-1*K.1^-3,-1*K.1^12,-1*K.1^11,-1*K.1,-1*K.1^9,-1*K.1^-6,-1*K.1^4,-1*K.1^-6,-1*K.1^-1,-1*K.1,-1*K.1^-3,-1*K.1^-8,-1*K.1^-7,-1*K.1^3,-1*K.1^-12,-1*K.1^3,-1*K.1^3,-1*K.1,K.1^3,K.1^12,K.1^-2,K.1^4,-1*K.1^2,K.1^-1,K.1^-9,K.1^11,K.1^-4,K.1^2,K.1^7,K.1^8,-1*K.1^6,K.1^-12,K.1^-6,-1*K.1^7,K.1,K.1^-11,K.1^8,K.1^7,-1*K.1^-6,K.1^-4,K.1^-6,K.1^-1,K.1^-1,-1*K.1^-3,K.1^4,K.1^3,-1*K.1^-4,K.1^-2,K.1^-8,K.1^-8,K.1^6,K.1^-4,K.1^6,K.1,-1*K.1^-8,K.1^-6,K.1^4,K.1^11,-1*K.1^9,K.1^9,K.1^-2,-1*K.1^8,K.1^-9,K.1^11,K.1^-4,K.1^6,-1*K.1^-9,K.1,K.1^-3,K.1^12,K.1^11,K.1,K.1^-7,K.1^-11,-1*K.1^12,K.1^-11,K.1^-12,K.1^-3,K.1^-7,-1*K.1^-1,K.1^2,-1*K.1^-7,-1*K.1^7,K.1^-6,K.1^4,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^12,-1*K.1^3,-1*K.1^12,-1*K.1^3,-1*K.1^-1,K.1^-7,K.1^-3,K.1^12,K.1^3,-1*K.1,-1*K.1^-7,-1*K.1^-3,K.1^12,-1*K.1^-11,K.1^-9,K.1^7,K.1^3,K.1^9,-1*K.1^9,-1*K.1^6,-1*K.1^-4,-1*K.1^-6,-1*K.1^-8,-1*K.1^-8,-1*K.1^-2,-1*K.1^4,-1*K.1^-2,-1*K.1^4,-1*K.1^-2,-1*K.1^-8,-1*K.1^-9,-1*K.1^11,-1*K.1^-4,-1*K.1^6,K.1^8,-1*K.1^8,-1*K.1^-6,K.1^-9,K.1^8,K.1^2,K.1^-12,-1*K.1^11,-1*K.1^9,K.1^-8,K.1^-2,-1*K.1^-4,-1*K.1^6,-1*K.1,-1*K.1^-7,-1*K.1^2,-1*K.1^-12,-1*K.1^-11,-1*K.1^-12,-1*K.1^-6,-1*K.1^8,K.1^-1,-1*K.1^2,-1*K.1^4,-1*K.1^11,-1*K.1^-9,-1*K.1^7,-1*K.1^-2,K.1^-7,K.1^9,K.1^6,-1*K.1^4,K.1^-3,-1*K.1^7,-1*K.1^-9,-1*K.1^11,K.1^-12,K.1^2,K.1^7,-1*K.1^8,-1*K.1^-11,-1*K.1^-12,-1*K.1^2,-1*K.1^-12,-1*K.1^-3,-1*K.1^-7,-1*K.1,-1*K.1^-11,-1*K.1^12,K.1^-11,K.1^9,-1*K.1^9,K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-10,K.1^10,K.1^5,K.1^-5,1,1,1,1,-1,-1,-1,-1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,K.1^-1,K.1^12,K.1^9,K.1^-8,K.1^2,K.1^-3,K.1^4,K.1^-12,K.1,K.1^-2,K.1^8,K.1^3,K.1^-9,K.1^6,K.1^-4,K.1^11,K.1^-11,K.1^-7,K.1^7,K.1^-6,-1*K.1^-5,-1*K.1^-10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^10,-1*K.1^5,K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^-5,K.1^5,K.1^5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^10,K.1^5,K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,K.1^10,K.1^10,-1*K.1^5,K.1^-10,-1*K.1^-10,K.1^-10,K.1^-4,K.1^-3,K.1^-7,K.1^11,K.1^-8,K.1^-9,K.1^6,K.1^7,K.1,K.1^3,K.1,K.1^3,K.1^-11,K.1^9,K.1^-4,K.1^-2,K.1^7,K.1^8,K.1,K.1^-7,K.1^-2,K.1^-12,K.1^8,K.1^11,K.1^-7,K.1^-1,K.1^-12,K.1^6,K.1^-6,K.1^4,K.1^-9,K.1^6,K.1^-3,K.1^-3,K.1^9,K.1^7,K.1^9,K.1^2,K.1^2,K.1^4,K.1^4,K.1^3,K.1^2,K.1^-4,K.1^8,K.1^12,K.1^-11,K.1^-11,K.1^-8,K.1^-1,K.1^-1,K.1^-8,K.1^-6,K.1^12,K.1^12,K.1^-6,K.1^11,K.1^-12,K.1^-9,K.1^-2,-1*K.1^-2,-1*K.1^2,-1*K.1^6,-1*K.1^3,-1*K.1^-12,-1*K.1^-6,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1^11,-1*K.1^-8,-1*K.1^12,-1*K.1^12,-1*K.1^-6,-1*K.1^9,-1*K.1^-3,-1*K.1^7,-1*K.1^-1,-1*K.1^6,-1*K.1^2,-1*K.1^-3,-1*K.1^7,-1*K.1^-4,-1*K.1^-9,-1*K.1^-11,-1*K.1^-8,-1*K.1^-11,-1*K.1^-7,-1*K.1^-4,-1*K.1^11,-1*K.1^3,-1*K.1^-12,-1*K.1,-1*K.1^8,-1*K.1^8,-1*K.1^-1,-1*K.1^9,-1*K.1^-2,-1*K.1^-7,-1*K.1^-9,K.1^-1,K.1^-7,K.1^4,K.1^2,K.1^-9,K.1^-9,K.1^-3,K.1^9,K.1^6,K.1^2,K.1^12,K.1^-8,K.1^7,K.1^3,K.1^-11,K.1^-8,K.1^-4,K.1^-2,K.1^-1,K.1^6,K.1^-9,K.1^-4,K.1^-4,K.1,K.1^-3,K.1^9,K.1^-12,K.1^-6,K.1^3,K.1,K.1^-7,K.1^4,K.1^3,K.1^-11,K.1^-9,K.1^-11,K.1^8,K.1^11,K.1^6,K.1^-2,K.1^-7,K.1^4,K.1^-1,K.1^-12,K.1^8,K.1^8,K.1^7,K.1^-2,K.1^-12,K.1^9,K.1^-2,K.1^-1,K.1^12,K.1^11,K.1^11,K.1^6,K.1,K.1^-4,K.1^2,K.1^-11,K.1^8,K.1^-3,K.1^-6,K.1^12,K.1^-7,K.1^9,K.1^-12,K.1^11,K.1^2,K.1^4,K.1^-8,K.1^7,K.1^7,K.1^-3,K.1^-8,K.1^-6,K.1^-6,K.1^12,K.1,K.1^3,-1*K.1^8,-1*K.1^6,-1*K.1^-9,-1*K.1,-1*K.1^-9,-1*K.1^-4,-1*K.1^8,-1*K.1^9,-1*K.1^-1,-1*K.1^-12,-1*K.1^3,-1*K.1^-11,-1*K.1^4,-1*K.1^2,-1*K.1^12,-1*K.1^-3,-1*K.1^12,-1*K.1^-8,-1*K.1^4,-1*K.1^-12,-1*K.1^2,-1*K.1^-2,-1*K.1^-11,-1*K.1^-1,-1*K.1^-7,-1*K.1^3,-1*K.1^9,-1*K.1^-6,-1*K.1^-4,-1*K.1^11,-1*K.1,-1*K.1^11,-1*K.1^6,-1*K.1^-6,-1*K.1^-7,-1*K.1^-2,-1*K.1^-8,-1*K.1^7,-1*K.1^-3,-1*K.1^7,-1*K.1^7,-1*K.1^-6,K.1^7,K.1^3,K.1^12,K.1,-1*K.1^-12,K.1^6,K.1^4,K.1^9,K.1^-1,K.1^-12,K.1^8,K.1^2,-1*K.1^-11,K.1^-3,K.1^11,-1*K.1^8,K.1^-6,K.1^-9,K.1^2,K.1^8,-1*K.1^11,K.1^-1,K.1^11,K.1^6,K.1^6,-1*K.1^-7,K.1,K.1^7,-1*K.1^-1,K.1^12,K.1^-2,K.1^-2,K.1^-11,K.1^-1,K.1^-11,K.1^-6,-1*K.1^-2,K.1^11,K.1,K.1^9,-1*K.1^-4,K.1^-4,K.1^12,-1*K.1^2,K.1^4,K.1^9,K.1^-1,K.1^-11,-1*K.1^4,K.1^-6,K.1^-7,K.1^3,K.1^9,K.1^-6,K.1^-8,K.1^-9,-1*K.1^3,K.1^-9,K.1^-3,K.1^-7,K.1^-8,-1*K.1^6,K.1^-12,-1*K.1^-8,-1*K.1^8,K.1^11,K.1,-1*K.1^-7,-1*K.1^6,-1*K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^6,K.1^-8,K.1^-7,K.1^3,K.1^7,-1*K.1^-6,-1*K.1^-8,-1*K.1^-7,K.1^3,-1*K.1^-9,K.1^4,K.1^8,K.1^7,K.1^-4,-1*K.1^-4,-1*K.1^-11,-1*K.1^-1,-1*K.1^11,-1*K.1^-2,-1*K.1^-2,-1*K.1^12,-1*K.1,-1*K.1^12,-1*K.1,-1*K.1^12,-1*K.1^-2,-1*K.1^4,-1*K.1^9,-1*K.1^-1,-1*K.1^-11,K.1^2,-1*K.1^2,-1*K.1^11,K.1^4,K.1^2,K.1^-12,K.1^-3,-1*K.1^9,-1*K.1^-4,K.1^-2,K.1^12,-1*K.1^-1,-1*K.1^-11,-1*K.1^-6,-1*K.1^-8,-1*K.1^-12,-1*K.1^-3,-1*K.1^-9,-1*K.1^-3,-1*K.1^11,-1*K.1^2,K.1^6,-1*K.1^-12,-1*K.1,-1*K.1^9,-1*K.1^4,-1*K.1^8,-1*K.1^12,K.1^-8,K.1^-4,K.1^-11,-1*K.1,K.1^-7,-1*K.1^8,-1*K.1^4,-1*K.1^9,K.1^-3,K.1^-12,K.1^8,-1*K.1^2,-1*K.1^-9,-1*K.1^-3,-1*K.1^-12,-1*K.1^-3,-1*K.1^-7,-1*K.1^-8,-1*K.1^-6,-1*K.1^-9,-1*K.1^3,K.1^-9,K.1^-4,-1*K.1^-4,K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^10,K.1^-10,K.1^-5,K.1^5,1,1,1,1,-1,-1,-1,-1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,K.1,K.1^-12,K.1^-9,K.1^8,K.1^-2,K.1^3,K.1^-4,K.1^12,K.1^-1,K.1^2,K.1^-8,K.1^-3,K.1^9,K.1^-6,K.1^4,K.1^-11,K.1^11,K.1^7,K.1^-7,K.1^6,-1*K.1^5,-1*K.1^10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^-10,-1*K.1^-5,K.1^10,-1*K.1^5,-1*K.1^-10,K.1^5,K.1^-5,K.1^-5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-10,K.1^-5,K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-5,K.1^-10,K.1^-10,-1*K.1^-5,K.1^10,-1*K.1^10,K.1^10,K.1^4,K.1^3,K.1^7,K.1^-11,K.1^8,K.1^9,K.1^-6,K.1^-7,K.1^-1,K.1^-3,K.1^-1,K.1^-3,K.1^11,K.1^-9,K.1^4,K.1^2,K.1^-7,K.1^-8,K.1^-1,K.1^7,K.1^2,K.1^12,K.1^-8,K.1^-11,K.1^7,K.1,K.1^12,K.1^-6,K.1^6,K.1^-4,K.1^9,K.1^-6,K.1^3,K.1^3,K.1^-9,K.1^-7,K.1^-9,K.1^-2,K.1^-2,K.1^-4,K.1^-4,K.1^-3,K.1^-2,K.1^4,K.1^-8,K.1^-12,K.1^11,K.1^11,K.1^8,K.1,K.1,K.1^8,K.1^6,K.1^-12,K.1^-12,K.1^6,K.1^-11,K.1^12,K.1^9,K.1^2,-1*K.1^2,-1*K.1^-2,-1*K.1^-6,-1*K.1^-3,-1*K.1^12,-1*K.1^6,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^-11,-1*K.1^8,-1*K.1^-12,-1*K.1^-12,-1*K.1^6,-1*K.1^-9,-1*K.1^3,-1*K.1^-7,-1*K.1,-1*K.1^-6,-1*K.1^-2,-1*K.1^3,-1*K.1^-7,-1*K.1^4,-1*K.1^9,-1*K.1^11,-1*K.1^8,-1*K.1^11,-1*K.1^7,-1*K.1^4,-1*K.1^-11,-1*K.1^-3,-1*K.1^12,-1*K.1^-1,-1*K.1^-8,-1*K.1^-8,-1*K.1,-1*K.1^-9,-1*K.1^2,-1*K.1^7,-1*K.1^9,K.1,K.1^7,K.1^-4,K.1^-2,K.1^9,K.1^9,K.1^3,K.1^-9,K.1^-6,K.1^-2,K.1^-12,K.1^8,K.1^-7,K.1^-3,K.1^11,K.1^8,K.1^4,K.1^2,K.1,K.1^-6,K.1^9,K.1^4,K.1^4,K.1^-1,K.1^3,K.1^-9,K.1^12,K.1^6,K.1^-3,K.1^-1,K.1^7,K.1^-4,K.1^-3,K.1^11,K.1^9,K.1^11,K.1^-8,K.1^-11,K.1^-6,K.1^2,K.1^7,K.1^-4,K.1,K.1^12,K.1^-8,K.1^-8,K.1^-7,K.1^2,K.1^12,K.1^-9,K.1^2,K.1,K.1^-12,K.1^-11,K.1^-11,K.1^-6,K.1^-1,K.1^4,K.1^-2,K.1^11,K.1^-8,K.1^3,K.1^6,K.1^-12,K.1^7,K.1^-9,K.1^12,K.1^-11,K.1^-2,K.1^-4,K.1^8,K.1^-7,K.1^-7,K.1^3,K.1^8,K.1^6,K.1^6,K.1^-12,K.1^-1,K.1^-3,-1*K.1^-8,-1*K.1^-6,-1*K.1^9,-1*K.1^-1,-1*K.1^9,-1*K.1^4,-1*K.1^-8,-1*K.1^-9,-1*K.1,-1*K.1^12,-1*K.1^-3,-1*K.1^11,-1*K.1^-4,-1*K.1^-2,-1*K.1^-12,-1*K.1^3,-1*K.1^-12,-1*K.1^8,-1*K.1^-4,-1*K.1^12,-1*K.1^-2,-1*K.1^2,-1*K.1^11,-1*K.1,-1*K.1^7,-1*K.1^-3,-1*K.1^-9,-1*K.1^6,-1*K.1^4,-1*K.1^-11,-1*K.1^-1,-1*K.1^-11,-1*K.1^-6,-1*K.1^6,-1*K.1^7,-1*K.1^2,-1*K.1^8,-1*K.1^-7,-1*K.1^3,-1*K.1^-7,-1*K.1^-7,-1*K.1^6,K.1^-7,K.1^-3,K.1^-12,K.1^-1,-1*K.1^12,K.1^-6,K.1^-4,K.1^-9,K.1,K.1^12,K.1^-8,K.1^-2,-1*K.1^11,K.1^3,K.1^-11,-1*K.1^-8,K.1^6,K.1^9,K.1^-2,K.1^-8,-1*K.1^-11,K.1,K.1^-11,K.1^-6,K.1^-6,-1*K.1^7,K.1^-1,K.1^-7,-1*K.1,K.1^-12,K.1^2,K.1^2,K.1^11,K.1,K.1^11,K.1^6,-1*K.1^2,K.1^-11,K.1^-1,K.1^-9,-1*K.1^4,K.1^4,K.1^-12,-1*K.1^-2,K.1^-4,K.1^-9,K.1,K.1^11,-1*K.1^-4,K.1^6,K.1^7,K.1^-3,K.1^-9,K.1^6,K.1^8,K.1^9,-1*K.1^-3,K.1^9,K.1^3,K.1^7,K.1^8,-1*K.1^-6,K.1^12,-1*K.1^8,-1*K.1^-8,K.1^-11,K.1^-1,-1*K.1^7,-1*K.1^-6,-1*K.1^-6,-1*K.1^-7,-1*K.1^-3,-1*K.1^-7,-1*K.1^-3,-1*K.1^-7,-1*K.1^-6,K.1^8,K.1^7,K.1^-3,K.1^-7,-1*K.1^6,-1*K.1^8,-1*K.1^7,K.1^-3,-1*K.1^9,K.1^-4,K.1^-8,K.1^-7,K.1^4,-1*K.1^4,-1*K.1^11,-1*K.1,-1*K.1^-11,-1*K.1^2,-1*K.1^2,-1*K.1^-12,-1*K.1^-1,-1*K.1^-12,-1*K.1^-1,-1*K.1^-12,-1*K.1^2,-1*K.1^-4,-1*K.1^-9,-1*K.1,-1*K.1^11,K.1^-2,-1*K.1^-2,-1*K.1^-11,K.1^-4,K.1^-2,K.1^12,K.1^3,-1*K.1^-9,-1*K.1^4,K.1^2,K.1^-12,-1*K.1,-1*K.1^11,-1*K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^-11,-1*K.1^-2,K.1^-6,-1*K.1^12,-1*K.1^-1,-1*K.1^-9,-1*K.1^-4,-1*K.1^-8,-1*K.1^-12,K.1^8,K.1^4,K.1^11,-1*K.1^-1,K.1^7,-1*K.1^-8,-1*K.1^-4,-1*K.1^-9,K.1^3,K.1^12,K.1^-8,-1*K.1^-2,-1*K.1^9,-1*K.1^3,-1*K.1^12,-1*K.1^3,-1*K.1^7,-1*K.1^8,-1*K.1^6,-1*K.1^9,-1*K.1^-3,K.1^9,K.1^4,-1*K.1^4,K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-5,K.1^5,K.1^-10,K.1^10,1,1,1,1,-1,-1,-1,-1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,K.1^12,K.1^6,K.1^-8,K.1^-4,K.1,K.1^11,K.1^2,K.1^-6,K.1^-12,K.1^-1,K.1^4,K.1^-11,K.1^8,K.1^3,K.1^-2,K.1^-7,K.1^7,K.1^9,K.1^-9,K.1^-3,-1*K.1^10,-1*K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^5,-1*K.1^-10,K.1^-5,-1*K.1^10,-1*K.1^5,K.1^10,K.1^-10,K.1^-10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^5,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,K.1^5,K.1^5,-1*K.1^-10,K.1^-5,-1*K.1^-5,K.1^-5,K.1^-2,K.1^11,K.1^9,K.1^-7,K.1^-4,K.1^8,K.1^3,K.1^-9,K.1^-12,K.1^-11,K.1^-12,K.1^-11,K.1^7,K.1^-8,K.1^-2,K.1^-1,K.1^-9,K.1^4,K.1^-12,K.1^9,K.1^-1,K.1^-6,K.1^4,K.1^-7,K.1^9,K.1^12,K.1^-6,K.1^3,K.1^-3,K.1^2,K.1^8,K.1^3,K.1^11,K.1^11,K.1^-8,K.1^-9,K.1^-8,K.1,K.1,K.1^2,K.1^2,K.1^-11,K.1,K.1^-2,K.1^4,K.1^6,K.1^7,K.1^7,K.1^-4,K.1^12,K.1^12,K.1^-4,K.1^-3,K.1^6,K.1^6,K.1^-3,K.1^-7,K.1^-6,K.1^8,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^3,-1*K.1^-11,-1*K.1^-6,-1*K.1^-3,-1*K.1^2,-1*K.1^2,-1*K.1^-12,-1*K.1^-7,-1*K.1^-4,-1*K.1^6,-1*K.1^6,-1*K.1^-3,-1*K.1^-8,-1*K.1^11,-1*K.1^-9,-1*K.1^12,-1*K.1^3,-1*K.1,-1*K.1^11,-1*K.1^-9,-1*K.1^-2,-1*K.1^8,-1*K.1^7,-1*K.1^-4,-1*K.1^7,-1*K.1^9,-1*K.1^-2,-1*K.1^-7,-1*K.1^-11,-1*K.1^-6,-1*K.1^-12,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^-8,-1*K.1^-1,-1*K.1^9,-1*K.1^8,K.1^12,K.1^9,K.1^2,K.1,K.1^8,K.1^8,K.1^11,K.1^-8,K.1^3,K.1,K.1^6,K.1^-4,K.1^-9,K.1^-11,K.1^7,K.1^-4,K.1^-2,K.1^-1,K.1^12,K.1^3,K.1^8,K.1^-2,K.1^-2,K.1^-12,K.1^11,K.1^-8,K.1^-6,K.1^-3,K.1^-11,K.1^-12,K.1^9,K.1^2,K.1^-11,K.1^7,K.1^8,K.1^7,K.1^4,K.1^-7,K.1^3,K.1^-1,K.1^9,K.1^2,K.1^12,K.1^-6,K.1^4,K.1^4,K.1^-9,K.1^-1,K.1^-6,K.1^-8,K.1^-1,K.1^12,K.1^6,K.1^-7,K.1^-7,K.1^3,K.1^-12,K.1^-2,K.1,K.1^7,K.1^4,K.1^11,K.1^-3,K.1^6,K.1^9,K.1^-8,K.1^-6,K.1^-7,K.1,K.1^2,K.1^-4,K.1^-9,K.1^-9,K.1^11,K.1^-4,K.1^-3,K.1^-3,K.1^6,K.1^-12,K.1^-11,-1*K.1^4,-1*K.1^3,-1*K.1^8,-1*K.1^-12,-1*K.1^8,-1*K.1^-2,-1*K.1^4,-1*K.1^-8,-1*K.1^12,-1*K.1^-6,-1*K.1^-11,-1*K.1^7,-1*K.1^2,-1*K.1,-1*K.1^6,-1*K.1^11,-1*K.1^6,-1*K.1^-4,-1*K.1^2,-1*K.1^-6,-1*K.1,-1*K.1^-1,-1*K.1^7,-1*K.1^12,-1*K.1^9,-1*K.1^-11,-1*K.1^-8,-1*K.1^-3,-1*K.1^-2,-1*K.1^-7,-1*K.1^-12,-1*K.1^-7,-1*K.1^3,-1*K.1^-3,-1*K.1^9,-1*K.1^-1,-1*K.1^-4,-1*K.1^-9,-1*K.1^11,-1*K.1^-9,-1*K.1^-9,-1*K.1^-3,K.1^-9,K.1^-11,K.1^6,K.1^-12,-1*K.1^-6,K.1^3,K.1^2,K.1^-8,K.1^12,K.1^-6,K.1^4,K.1,-1*K.1^7,K.1^11,K.1^-7,-1*K.1^4,K.1^-3,K.1^8,K.1,K.1^4,-1*K.1^-7,K.1^12,K.1^-7,K.1^3,K.1^3,-1*K.1^9,K.1^-12,K.1^-9,-1*K.1^12,K.1^6,K.1^-1,K.1^-1,K.1^7,K.1^12,K.1^7,K.1^-3,-1*K.1^-1,K.1^-7,K.1^-12,K.1^-8,-1*K.1^-2,K.1^-2,K.1^6,-1*K.1,K.1^2,K.1^-8,K.1^12,K.1^7,-1*K.1^2,K.1^-3,K.1^9,K.1^-11,K.1^-8,K.1^-3,K.1^-4,K.1^8,-1*K.1^-11,K.1^8,K.1^11,K.1^9,K.1^-4,-1*K.1^3,K.1^-6,-1*K.1^-4,-1*K.1^4,K.1^-7,K.1^-12,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^-9,-1*K.1^-11,-1*K.1^-9,-1*K.1^-11,-1*K.1^-9,-1*K.1^3,K.1^-4,K.1^9,K.1^-11,K.1^-9,-1*K.1^-3,-1*K.1^-4,-1*K.1^9,K.1^-11,-1*K.1^8,K.1^2,K.1^4,K.1^-9,K.1^-2,-1*K.1^-2,-1*K.1^7,-1*K.1^12,-1*K.1^-7,-1*K.1^-1,-1*K.1^-1,-1*K.1^6,-1*K.1^-12,-1*K.1^6,-1*K.1^-12,-1*K.1^6,-1*K.1^-1,-1*K.1^2,-1*K.1^-8,-1*K.1^12,-1*K.1^7,K.1,-1*K.1,-1*K.1^-7,K.1^2,K.1,K.1^-6,K.1^11,-1*K.1^-8,-1*K.1^-2,K.1^-1,K.1^6,-1*K.1^12,-1*K.1^7,-1*K.1^-3,-1*K.1^-4,-1*K.1^-6,-1*K.1^11,-1*K.1^8,-1*K.1^11,-1*K.1^-7,-1*K.1,K.1^3,-1*K.1^-6,-1*K.1^-12,-1*K.1^-8,-1*K.1^2,-1*K.1^4,-1*K.1^6,K.1^-4,K.1^-2,K.1^7,-1*K.1^-12,K.1^9,-1*K.1^4,-1*K.1^2,-1*K.1^-8,K.1^11,K.1^-6,K.1^4,-1*K.1,-1*K.1^8,-1*K.1^11,-1*K.1^-6,-1*K.1^11,-1*K.1^9,-1*K.1^-4,-1*K.1^-3,-1*K.1^8,-1*K.1^-11,K.1^8,K.1^-2,-1*K.1^-2,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^5,K.1^-5,K.1^10,K.1^-10,1,1,1,1,-1,-1,-1,-1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^-12,K.1^-6,K.1^8,K.1^4,K.1^-1,K.1^-11,K.1^-2,K.1^6,K.1^12,K.1,K.1^-4,K.1^11,K.1^-8,K.1^-3,K.1^2,K.1^7,K.1^-7,K.1^-9,K.1^9,K.1^3,-1*K.1^-10,-1*K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-5,-1*K.1^10,K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^-10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^10,K.1^-5,K.1^-5,-1*K.1^10,K.1^5,-1*K.1^5,K.1^5,K.1^2,K.1^-11,K.1^-9,K.1^7,K.1^4,K.1^-8,K.1^-3,K.1^9,K.1^12,K.1^11,K.1^12,K.1^11,K.1^-7,K.1^8,K.1^2,K.1,K.1^9,K.1^-4,K.1^12,K.1^-9,K.1,K.1^6,K.1^-4,K.1^7,K.1^-9,K.1^-12,K.1^6,K.1^-3,K.1^3,K.1^-2,K.1^-8,K.1^-3,K.1^-11,K.1^-11,K.1^8,K.1^9,K.1^8,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^11,K.1^-1,K.1^2,K.1^-4,K.1^-6,K.1^-7,K.1^-7,K.1^4,K.1^-12,K.1^-12,K.1^4,K.1^3,K.1^-6,K.1^-6,K.1^3,K.1^7,K.1^6,K.1^-8,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-3,-1*K.1^11,-1*K.1^6,-1*K.1^3,-1*K.1^-2,-1*K.1^-2,-1*K.1^12,-1*K.1^7,-1*K.1^4,-1*K.1^-6,-1*K.1^-6,-1*K.1^3,-1*K.1^8,-1*K.1^-11,-1*K.1^9,-1*K.1^-12,-1*K.1^-3,-1*K.1^-1,-1*K.1^-11,-1*K.1^9,-1*K.1^2,-1*K.1^-8,-1*K.1^-7,-1*K.1^4,-1*K.1^-7,-1*K.1^-9,-1*K.1^2,-1*K.1^7,-1*K.1^11,-1*K.1^6,-1*K.1^12,-1*K.1^-4,-1*K.1^-4,-1*K.1^-12,-1*K.1^8,-1*K.1,-1*K.1^-9,-1*K.1^-8,K.1^-12,K.1^-9,K.1^-2,K.1^-1,K.1^-8,K.1^-8,K.1^-11,K.1^8,K.1^-3,K.1^-1,K.1^-6,K.1^4,K.1^9,K.1^11,K.1^-7,K.1^4,K.1^2,K.1,K.1^-12,K.1^-3,K.1^-8,K.1^2,K.1^2,K.1^12,K.1^-11,K.1^8,K.1^6,K.1^3,K.1^11,K.1^12,K.1^-9,K.1^-2,K.1^11,K.1^-7,K.1^-8,K.1^-7,K.1^-4,K.1^7,K.1^-3,K.1,K.1^-9,K.1^-2,K.1^-12,K.1^6,K.1^-4,K.1^-4,K.1^9,K.1,K.1^6,K.1^8,K.1,K.1^-12,K.1^-6,K.1^7,K.1^7,K.1^-3,K.1^12,K.1^2,K.1^-1,K.1^-7,K.1^-4,K.1^-11,K.1^3,K.1^-6,K.1^-9,K.1^8,K.1^6,K.1^7,K.1^-1,K.1^-2,K.1^4,K.1^9,K.1^9,K.1^-11,K.1^4,K.1^3,K.1^3,K.1^-6,K.1^12,K.1^11,-1*K.1^-4,-1*K.1^-3,-1*K.1^-8,-1*K.1^12,-1*K.1^-8,-1*K.1^2,-1*K.1^-4,-1*K.1^8,-1*K.1^-12,-1*K.1^6,-1*K.1^11,-1*K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^-6,-1*K.1^-11,-1*K.1^-6,-1*K.1^4,-1*K.1^-2,-1*K.1^6,-1*K.1^-1,-1*K.1,-1*K.1^-7,-1*K.1^-12,-1*K.1^-9,-1*K.1^11,-1*K.1^8,-1*K.1^3,-1*K.1^2,-1*K.1^7,-1*K.1^12,-1*K.1^7,-1*K.1^-3,-1*K.1^3,-1*K.1^-9,-1*K.1,-1*K.1^4,-1*K.1^9,-1*K.1^-11,-1*K.1^9,-1*K.1^9,-1*K.1^3,K.1^9,K.1^11,K.1^-6,K.1^12,-1*K.1^6,K.1^-3,K.1^-2,K.1^8,K.1^-12,K.1^6,K.1^-4,K.1^-1,-1*K.1^-7,K.1^-11,K.1^7,-1*K.1^-4,K.1^3,K.1^-8,K.1^-1,K.1^-4,-1*K.1^7,K.1^-12,K.1^7,K.1^-3,K.1^-3,-1*K.1^-9,K.1^12,K.1^9,-1*K.1^-12,K.1^-6,K.1,K.1,K.1^-7,K.1^-12,K.1^-7,K.1^3,-1*K.1,K.1^7,K.1^12,K.1^8,-1*K.1^2,K.1^2,K.1^-6,-1*K.1^-1,K.1^-2,K.1^8,K.1^-12,K.1^-7,-1*K.1^-2,K.1^3,K.1^-9,K.1^11,K.1^8,K.1^3,K.1^4,K.1^-8,-1*K.1^11,K.1^-8,K.1^-11,K.1^-9,K.1^4,-1*K.1^-3,K.1^6,-1*K.1^4,-1*K.1^-4,K.1^7,K.1^12,-1*K.1^-9,-1*K.1^-3,-1*K.1^-3,-1*K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^-3,K.1^4,K.1^-9,K.1^11,K.1^9,-1*K.1^3,-1*K.1^4,-1*K.1^-9,K.1^11,-1*K.1^-8,K.1^-2,K.1^-4,K.1^9,K.1^2,-1*K.1^2,-1*K.1^-7,-1*K.1^-12,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^-6,-1*K.1^12,-1*K.1^-6,-1*K.1^12,-1*K.1^-6,-1*K.1,-1*K.1^-2,-1*K.1^8,-1*K.1^-12,-1*K.1^-7,K.1^-1,-1*K.1^-1,-1*K.1^7,K.1^-2,K.1^-1,K.1^6,K.1^-11,-1*K.1^8,-1*K.1^2,K.1,K.1^-6,-1*K.1^-12,-1*K.1^-7,-1*K.1^3,-1*K.1^4,-1*K.1^6,-1*K.1^-11,-1*K.1^-8,-1*K.1^-11,-1*K.1^7,-1*K.1^-1,K.1^-3,-1*K.1^6,-1*K.1^12,-1*K.1^8,-1*K.1^-2,-1*K.1^-4,-1*K.1^-6,K.1^4,K.1^2,K.1^-7,-1*K.1^12,K.1^-9,-1*K.1^-4,-1*K.1^-2,-1*K.1^8,K.1^-11,K.1^6,K.1^-4,-1*K.1^-1,-1*K.1^-8,-1*K.1^-11,-1*K.1^6,-1*K.1^-11,-1*K.1^-9,-1*K.1^4,-1*K.1^3,-1*K.1^-8,-1*K.1^11,K.1^-8,K.1^2,-1*K.1^2,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-5,K.1^5,K.1^-10,K.1^10,1,1,1,1,-1,-1,-1,-1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,K.1^-8,K.1^-4,K.1^-3,K.1^11,K.1^-9,K.1,K.1^7,K.1^4,K.1^8,K.1^9,K.1^-11,K.1^-1,K.1^3,K.1^-2,K.1^-7,K.1^-12,K.1^12,K.1^-6,K.1^6,K.1^2,-1*K.1^10,-1*K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^5,-1*K.1^-10,K.1^-5,-1*K.1^10,-1*K.1^5,K.1^10,K.1^-10,K.1^-10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^5,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,K.1^5,K.1^5,-1*K.1^-10,K.1^-5,-1*K.1^-5,K.1^-5,K.1^-7,K.1,K.1^-6,K.1^-12,K.1^11,K.1^3,K.1^-2,K.1^6,K.1^8,K.1^-1,K.1^8,K.1^-1,K.1^12,K.1^-3,K.1^-7,K.1^9,K.1^6,K.1^-11,K.1^8,K.1^-6,K.1^9,K.1^4,K.1^-11,K.1^-12,K.1^-6,K.1^-8,K.1^4,K.1^-2,K.1^2,K.1^7,K.1^3,K.1^-2,K.1,K.1,K.1^-3,K.1^6,K.1^-3,K.1^-9,K.1^-9,K.1^7,K.1^7,K.1^-1,K.1^-9,K.1^-7,K.1^-11,K.1^-4,K.1^12,K.1^12,K.1^11,K.1^-8,K.1^-8,K.1^11,K.1^2,K.1^-4,K.1^-4,K.1^2,K.1^-12,K.1^4,K.1^3,K.1^9,-1*K.1^9,-1*K.1^-9,-1*K.1^-2,-1*K.1^-1,-1*K.1^4,-1*K.1^2,-1*K.1^7,-1*K.1^7,-1*K.1^8,-1*K.1^-12,-1*K.1^11,-1*K.1^-4,-1*K.1^-4,-1*K.1^2,-1*K.1^-3,-1*K.1,-1*K.1^6,-1*K.1^-8,-1*K.1^-2,-1*K.1^-9,-1*K.1,-1*K.1^6,-1*K.1^-7,-1*K.1^3,-1*K.1^12,-1*K.1^11,-1*K.1^12,-1*K.1^-6,-1*K.1^-7,-1*K.1^-12,-1*K.1^-1,-1*K.1^4,-1*K.1^8,-1*K.1^-11,-1*K.1^-11,-1*K.1^-8,-1*K.1^-3,-1*K.1^9,-1*K.1^-6,-1*K.1^3,K.1^-8,K.1^-6,K.1^7,K.1^-9,K.1^3,K.1^3,K.1,K.1^-3,K.1^-2,K.1^-9,K.1^-4,K.1^11,K.1^6,K.1^-1,K.1^12,K.1^11,K.1^-7,K.1^9,K.1^-8,K.1^-2,K.1^3,K.1^-7,K.1^-7,K.1^8,K.1,K.1^-3,K.1^4,K.1^2,K.1^-1,K.1^8,K.1^-6,K.1^7,K.1^-1,K.1^12,K.1^3,K.1^12,K.1^-11,K.1^-12,K.1^-2,K.1^9,K.1^-6,K.1^7,K.1^-8,K.1^4,K.1^-11,K.1^-11,K.1^6,K.1^9,K.1^4,K.1^-3,K.1^9,K.1^-8,K.1^-4,K.1^-12,K.1^-12,K.1^-2,K.1^8,K.1^-7,K.1^-9,K.1^12,K.1^-11,K.1,K.1^2,K.1^-4,K.1^-6,K.1^-3,K.1^4,K.1^-12,K.1^-9,K.1^7,K.1^11,K.1^6,K.1^6,K.1,K.1^11,K.1^2,K.1^2,K.1^-4,K.1^8,K.1^-1,-1*K.1^-11,-1*K.1^-2,-1*K.1^3,-1*K.1^8,-1*K.1^3,-1*K.1^-7,-1*K.1^-11,-1*K.1^-3,-1*K.1^-8,-1*K.1^4,-1*K.1^-1,-1*K.1^12,-1*K.1^7,-1*K.1^-9,-1*K.1^-4,-1*K.1,-1*K.1^-4,-1*K.1^11,-1*K.1^7,-1*K.1^4,-1*K.1^-9,-1*K.1^9,-1*K.1^12,-1*K.1^-8,-1*K.1^-6,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^-7,-1*K.1^-12,-1*K.1^8,-1*K.1^-12,-1*K.1^-2,-1*K.1^2,-1*K.1^-6,-1*K.1^9,-1*K.1^11,-1*K.1^6,-1*K.1,-1*K.1^6,-1*K.1^6,-1*K.1^2,K.1^6,K.1^-1,K.1^-4,K.1^8,-1*K.1^4,K.1^-2,K.1^7,K.1^-3,K.1^-8,K.1^4,K.1^-11,K.1^-9,-1*K.1^12,K.1,K.1^-12,-1*K.1^-11,K.1^2,K.1^3,K.1^-9,K.1^-11,-1*K.1^-12,K.1^-8,K.1^-12,K.1^-2,K.1^-2,-1*K.1^-6,K.1^8,K.1^6,-1*K.1^-8,K.1^-4,K.1^9,K.1^9,K.1^12,K.1^-8,K.1^12,K.1^2,-1*K.1^9,K.1^-12,K.1^8,K.1^-3,-1*K.1^-7,K.1^-7,K.1^-4,-1*K.1^-9,K.1^7,K.1^-3,K.1^-8,K.1^12,-1*K.1^7,K.1^2,K.1^-6,K.1^-1,K.1^-3,K.1^2,K.1^11,K.1^3,-1*K.1^-1,K.1^3,K.1,K.1^-6,K.1^11,-1*K.1^-2,K.1^4,-1*K.1^11,-1*K.1^-11,K.1^-12,K.1^8,-1*K.1^-6,-1*K.1^-2,-1*K.1^-2,-1*K.1^6,-1*K.1^-1,-1*K.1^6,-1*K.1^-1,-1*K.1^6,-1*K.1^-2,K.1^11,K.1^-6,K.1^-1,K.1^6,-1*K.1^2,-1*K.1^11,-1*K.1^-6,K.1^-1,-1*K.1^3,K.1^7,K.1^-11,K.1^6,K.1^-7,-1*K.1^-7,-1*K.1^12,-1*K.1^-8,-1*K.1^-12,-1*K.1^9,-1*K.1^9,-1*K.1^-4,-1*K.1^8,-1*K.1^-4,-1*K.1^8,-1*K.1^-4,-1*K.1^9,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^12,K.1^-9,-1*K.1^-9,-1*K.1^-12,K.1^7,K.1^-9,K.1^4,K.1,-1*K.1^-3,-1*K.1^-7,K.1^9,K.1^-4,-1*K.1^-8,-1*K.1^12,-1*K.1^2,-1*K.1^11,-1*K.1^4,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-12,-1*K.1^-9,K.1^-2,-1*K.1^4,-1*K.1^8,-1*K.1^-3,-1*K.1^7,-1*K.1^-11,-1*K.1^-4,K.1^11,K.1^-7,K.1^12,-1*K.1^8,K.1^-6,-1*K.1^-11,-1*K.1^7,-1*K.1^-3,K.1,K.1^4,K.1^-11,-1*K.1^-9,-1*K.1^3,-1*K.1,-1*K.1^4,-1*K.1,-1*K.1^-6,-1*K.1^11,-1*K.1^2,-1*K.1^3,-1*K.1^-1,K.1^3,K.1^-7,-1*K.1^-7,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^5,K.1^-5,K.1^10,K.1^-10,1,1,1,1,-1,-1,-1,-1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^8,K.1^4,K.1^3,K.1^-11,K.1^9,K.1^-1,K.1^-7,K.1^-4,K.1^-8,K.1^-9,K.1^11,K.1,K.1^-3,K.1^2,K.1^7,K.1^12,K.1^-12,K.1^6,K.1^-6,K.1^-2,-1*K.1^-10,-1*K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-5,-1*K.1^10,K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^-10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^10,K.1^-5,K.1^-5,-1*K.1^10,K.1^5,-1*K.1^5,K.1^5,K.1^7,K.1^-1,K.1^6,K.1^12,K.1^-11,K.1^-3,K.1^2,K.1^-6,K.1^-8,K.1,K.1^-8,K.1,K.1^-12,K.1^3,K.1^7,K.1^-9,K.1^-6,K.1^11,K.1^-8,K.1^6,K.1^-9,K.1^-4,K.1^11,K.1^12,K.1^6,K.1^8,K.1^-4,K.1^2,K.1^-2,K.1^-7,K.1^-3,K.1^2,K.1^-1,K.1^-1,K.1^3,K.1^-6,K.1^3,K.1^9,K.1^9,K.1^-7,K.1^-7,K.1,K.1^9,K.1^7,K.1^11,K.1^4,K.1^-12,K.1^-12,K.1^-11,K.1^8,K.1^8,K.1^-11,K.1^-2,K.1^4,K.1^4,K.1^-2,K.1^12,K.1^-4,K.1^-3,K.1^-9,-1*K.1^-9,-1*K.1^9,-1*K.1^2,-1*K.1,-1*K.1^-4,-1*K.1^-2,-1*K.1^-7,-1*K.1^-7,-1*K.1^-8,-1*K.1^12,-1*K.1^-11,-1*K.1^4,-1*K.1^4,-1*K.1^-2,-1*K.1^3,-1*K.1^-1,-1*K.1^-6,-1*K.1^8,-1*K.1^2,-1*K.1^9,-1*K.1^-1,-1*K.1^-6,-1*K.1^7,-1*K.1^-3,-1*K.1^-12,-1*K.1^-11,-1*K.1^-12,-1*K.1^6,-1*K.1^7,-1*K.1^12,-1*K.1,-1*K.1^-4,-1*K.1^-8,-1*K.1^11,-1*K.1^11,-1*K.1^8,-1*K.1^3,-1*K.1^-9,-1*K.1^6,-1*K.1^-3,K.1^8,K.1^6,K.1^-7,K.1^9,K.1^-3,K.1^-3,K.1^-1,K.1^3,K.1^2,K.1^9,K.1^4,K.1^-11,K.1^-6,K.1,K.1^-12,K.1^-11,K.1^7,K.1^-9,K.1^8,K.1^2,K.1^-3,K.1^7,K.1^7,K.1^-8,K.1^-1,K.1^3,K.1^-4,K.1^-2,K.1,K.1^-8,K.1^6,K.1^-7,K.1,K.1^-12,K.1^-3,K.1^-12,K.1^11,K.1^12,K.1^2,K.1^-9,K.1^6,K.1^-7,K.1^8,K.1^-4,K.1^11,K.1^11,K.1^-6,K.1^-9,K.1^-4,K.1^3,K.1^-9,K.1^8,K.1^4,K.1^12,K.1^12,K.1^2,K.1^-8,K.1^7,K.1^9,K.1^-12,K.1^11,K.1^-1,K.1^-2,K.1^4,K.1^6,K.1^3,K.1^-4,K.1^12,K.1^9,K.1^-7,K.1^-11,K.1^-6,K.1^-6,K.1^-1,K.1^-11,K.1^-2,K.1^-2,K.1^4,K.1^-8,K.1,-1*K.1^11,-1*K.1^2,-1*K.1^-3,-1*K.1^-8,-1*K.1^-3,-1*K.1^7,-1*K.1^11,-1*K.1^3,-1*K.1^8,-1*K.1^-4,-1*K.1,-1*K.1^-12,-1*K.1^-7,-1*K.1^9,-1*K.1^4,-1*K.1^-1,-1*K.1^4,-1*K.1^-11,-1*K.1^-7,-1*K.1^-4,-1*K.1^9,-1*K.1^-9,-1*K.1^-12,-1*K.1^8,-1*K.1^6,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^7,-1*K.1^12,-1*K.1^-8,-1*K.1^12,-1*K.1^2,-1*K.1^-2,-1*K.1^6,-1*K.1^-9,-1*K.1^-11,-1*K.1^-6,-1*K.1^-1,-1*K.1^-6,-1*K.1^-6,-1*K.1^-2,K.1^-6,K.1,K.1^4,K.1^-8,-1*K.1^-4,K.1^2,K.1^-7,K.1^3,K.1^8,K.1^-4,K.1^11,K.1^9,-1*K.1^-12,K.1^-1,K.1^12,-1*K.1^11,K.1^-2,K.1^-3,K.1^9,K.1^11,-1*K.1^12,K.1^8,K.1^12,K.1^2,K.1^2,-1*K.1^6,K.1^-8,K.1^-6,-1*K.1^8,K.1^4,K.1^-9,K.1^-9,K.1^-12,K.1^8,K.1^-12,K.1^-2,-1*K.1^-9,K.1^12,K.1^-8,K.1^3,-1*K.1^7,K.1^7,K.1^4,-1*K.1^9,K.1^-7,K.1^3,K.1^8,K.1^-12,-1*K.1^-7,K.1^-2,K.1^6,K.1,K.1^3,K.1^-2,K.1^-11,K.1^-3,-1*K.1,K.1^-3,K.1^-1,K.1^6,K.1^-11,-1*K.1^2,K.1^-4,-1*K.1^-11,-1*K.1^11,K.1^12,K.1^-8,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^-6,-1*K.1,-1*K.1^-6,-1*K.1,-1*K.1^-6,-1*K.1^2,K.1^-11,K.1^6,K.1,K.1^-6,-1*K.1^-2,-1*K.1^-11,-1*K.1^6,K.1,-1*K.1^-3,K.1^-7,K.1^11,K.1^-6,K.1^7,-1*K.1^7,-1*K.1^-12,-1*K.1^8,-1*K.1^12,-1*K.1^-9,-1*K.1^-9,-1*K.1^4,-1*K.1^-8,-1*K.1^4,-1*K.1^-8,-1*K.1^4,-1*K.1^-9,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-12,K.1^9,-1*K.1^9,-1*K.1^12,K.1^-7,K.1^9,K.1^-4,K.1^-1,-1*K.1^3,-1*K.1^7,K.1^-9,K.1^4,-1*K.1^8,-1*K.1^-12,-1*K.1^-2,-1*K.1^-11,-1*K.1^-4,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^12,-1*K.1^9,K.1^2,-1*K.1^-4,-1*K.1^-8,-1*K.1^3,-1*K.1^-7,-1*K.1^11,-1*K.1^4,K.1^-11,K.1^7,K.1^-12,-1*K.1^-8,K.1^6,-1*K.1^11,-1*K.1^-7,-1*K.1^3,K.1^-1,K.1^-4,K.1^11,-1*K.1^9,-1*K.1^-3,-1*K.1^-1,-1*K.1^-4,-1*K.1^-1,-1*K.1^6,-1*K.1^-11,-1*K.1^-2,-1*K.1^-3,-1*K.1,K.1^-3,K.1^7,-1*K.1^7,K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-5,K.1^5,K.1^-10,K.1^10,1,1,1,1,-1,-1,-1,-1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,K.1^7,K.1^-9,K.1^12,K.1^6,K.1^11,K.1^-4,K.1^-3,K.1^9,K.1^-7,K.1^-11,K.1^-6,K.1^4,K.1^-12,K.1^8,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-8,-1*K.1^10,-1*K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^5,-1*K.1^-10,K.1^-5,-1*K.1^10,-1*K.1^5,K.1^10,K.1^-10,K.1^-10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^5,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,K.1^5,K.1^5,-1*K.1^-10,K.1^-5,-1*K.1^-5,K.1^-5,K.1^3,K.1^-4,K.1^-1,K.1^-2,K.1^6,K.1^-12,K.1^8,K.1,K.1^-7,K.1^4,K.1^-7,K.1^4,K.1^2,K.1^12,K.1^3,K.1^-11,K.1,K.1^-6,K.1^-7,K.1^-1,K.1^-11,K.1^9,K.1^-6,K.1^-2,K.1^-1,K.1^7,K.1^9,K.1^8,K.1^-8,K.1^-3,K.1^-12,K.1^8,K.1^-4,K.1^-4,K.1^12,K.1,K.1^12,K.1^11,K.1^11,K.1^-3,K.1^-3,K.1^4,K.1^11,K.1^3,K.1^-6,K.1^-9,K.1^2,K.1^2,K.1^6,K.1^7,K.1^7,K.1^6,K.1^-8,K.1^-9,K.1^-9,K.1^-8,K.1^-2,K.1^9,K.1^-12,K.1^-11,-1*K.1^-11,-1*K.1^11,-1*K.1^8,-1*K.1^4,-1*K.1^9,-1*K.1^-8,-1*K.1^-3,-1*K.1^-3,-1*K.1^-7,-1*K.1^-2,-1*K.1^6,-1*K.1^-9,-1*K.1^-9,-1*K.1^-8,-1*K.1^12,-1*K.1^-4,-1*K.1,-1*K.1^7,-1*K.1^8,-1*K.1^11,-1*K.1^-4,-1*K.1,-1*K.1^3,-1*K.1^-12,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^-1,-1*K.1^3,-1*K.1^-2,-1*K.1^4,-1*K.1^9,-1*K.1^-7,-1*K.1^-6,-1*K.1^-6,-1*K.1^7,-1*K.1^12,-1*K.1^-11,-1*K.1^-1,-1*K.1^-12,K.1^7,K.1^-1,K.1^-3,K.1^11,K.1^-12,K.1^-12,K.1^-4,K.1^12,K.1^8,K.1^11,K.1^-9,K.1^6,K.1,K.1^4,K.1^2,K.1^6,K.1^3,K.1^-11,K.1^7,K.1^8,K.1^-12,K.1^3,K.1^3,K.1^-7,K.1^-4,K.1^12,K.1^9,K.1^-8,K.1^4,K.1^-7,K.1^-1,K.1^-3,K.1^4,K.1^2,K.1^-12,K.1^2,K.1^-6,K.1^-2,K.1^8,K.1^-11,K.1^-1,K.1^-3,K.1^7,K.1^9,K.1^-6,K.1^-6,K.1,K.1^-11,K.1^9,K.1^12,K.1^-11,K.1^7,K.1^-9,K.1^-2,K.1^-2,K.1^8,K.1^-7,K.1^3,K.1^11,K.1^2,K.1^-6,K.1^-4,K.1^-8,K.1^-9,K.1^-1,K.1^12,K.1^9,K.1^-2,K.1^11,K.1^-3,K.1^6,K.1,K.1,K.1^-4,K.1^6,K.1^-8,K.1^-8,K.1^-9,K.1^-7,K.1^4,-1*K.1^-6,-1*K.1^8,-1*K.1^-12,-1*K.1^-7,-1*K.1^-12,-1*K.1^3,-1*K.1^-6,-1*K.1^12,-1*K.1^7,-1*K.1^9,-1*K.1^4,-1*K.1^2,-1*K.1^-3,-1*K.1^11,-1*K.1^-9,-1*K.1^-4,-1*K.1^-9,-1*K.1^6,-1*K.1^-3,-1*K.1^9,-1*K.1^11,-1*K.1^-11,-1*K.1^2,-1*K.1^7,-1*K.1^-1,-1*K.1^4,-1*K.1^12,-1*K.1^-8,-1*K.1^3,-1*K.1^-2,-1*K.1^-7,-1*K.1^-2,-1*K.1^8,-1*K.1^-8,-1*K.1^-1,-1*K.1^-11,-1*K.1^6,-1*K.1,-1*K.1^-4,-1*K.1,-1*K.1,-1*K.1^-8,K.1,K.1^4,K.1^-9,K.1^-7,-1*K.1^9,K.1^8,K.1^-3,K.1^12,K.1^7,K.1^9,K.1^-6,K.1^11,-1*K.1^2,K.1^-4,K.1^-2,-1*K.1^-6,K.1^-8,K.1^-12,K.1^11,K.1^-6,-1*K.1^-2,K.1^7,K.1^-2,K.1^8,K.1^8,-1*K.1^-1,K.1^-7,K.1,-1*K.1^7,K.1^-9,K.1^-11,K.1^-11,K.1^2,K.1^7,K.1^2,K.1^-8,-1*K.1^-11,K.1^-2,K.1^-7,K.1^12,-1*K.1^3,K.1^3,K.1^-9,-1*K.1^11,K.1^-3,K.1^12,K.1^7,K.1^2,-1*K.1^-3,K.1^-8,K.1^-1,K.1^4,K.1^12,K.1^-8,K.1^6,K.1^-12,-1*K.1^4,K.1^-12,K.1^-4,K.1^-1,K.1^6,-1*K.1^8,K.1^9,-1*K.1^6,-1*K.1^-6,K.1^-2,K.1^-7,-1*K.1^-1,-1*K.1^8,-1*K.1^8,-1*K.1,-1*K.1^4,-1*K.1,-1*K.1^4,-1*K.1,-1*K.1^8,K.1^6,K.1^-1,K.1^4,K.1,-1*K.1^-8,-1*K.1^6,-1*K.1^-1,K.1^4,-1*K.1^-12,K.1^-3,K.1^-6,K.1,K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^7,-1*K.1^-2,-1*K.1^-11,-1*K.1^-11,-1*K.1^-9,-1*K.1^-7,-1*K.1^-9,-1*K.1^-7,-1*K.1^-9,-1*K.1^-11,-1*K.1^-3,-1*K.1^12,-1*K.1^7,-1*K.1^2,K.1^11,-1*K.1^11,-1*K.1^-2,K.1^-3,K.1^11,K.1^9,K.1^-4,-1*K.1^12,-1*K.1^3,K.1^-11,K.1^-9,-1*K.1^7,-1*K.1^2,-1*K.1^-8,-1*K.1^6,-1*K.1^9,-1*K.1^-4,-1*K.1^-12,-1*K.1^-4,-1*K.1^-2,-1*K.1^11,K.1^8,-1*K.1^9,-1*K.1^-7,-1*K.1^12,-1*K.1^-3,-1*K.1^-6,-1*K.1^-9,K.1^6,K.1^3,K.1^2,-1*K.1^-7,K.1^-1,-1*K.1^-6,-1*K.1^-3,-1*K.1^12,K.1^-4,K.1^9,K.1^-6,-1*K.1^11,-1*K.1^-12,-1*K.1^-4,-1*K.1^9,-1*K.1^-4,-1*K.1^-1,-1*K.1^6,-1*K.1^-8,-1*K.1^-12,-1*K.1^4,K.1^-12,K.1^3,-1*K.1^3,K.1^-11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^5,K.1^-5,K.1^10,K.1^-10,1,1,1,1,-1,-1,-1,-1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^-7,K.1^9,K.1^-12,K.1^-6,K.1^-11,K.1^4,K.1^3,K.1^-9,K.1^7,K.1^11,K.1^6,K.1^-4,K.1^12,K.1^-8,K.1^-3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^8,-1*K.1^-10,-1*K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-5,-1*K.1^10,K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^-10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^10,K.1^-5,K.1^-5,-1*K.1^10,K.1^5,-1*K.1^5,K.1^5,K.1^-3,K.1^4,K.1,K.1^2,K.1^-6,K.1^12,K.1^-8,K.1^-1,K.1^7,K.1^-4,K.1^7,K.1^-4,K.1^-2,K.1^-12,K.1^-3,K.1^11,K.1^-1,K.1^6,K.1^7,K.1,K.1^11,K.1^-9,K.1^6,K.1^2,K.1,K.1^-7,K.1^-9,K.1^-8,K.1^8,K.1^3,K.1^12,K.1^-8,K.1^4,K.1^4,K.1^-12,K.1^-1,K.1^-12,K.1^-11,K.1^-11,K.1^3,K.1^3,K.1^-4,K.1^-11,K.1^-3,K.1^6,K.1^9,K.1^-2,K.1^-2,K.1^-6,K.1^-7,K.1^-7,K.1^-6,K.1^8,K.1^9,K.1^9,K.1^8,K.1^2,K.1^-9,K.1^12,K.1^11,-1*K.1^11,-1*K.1^-11,-1*K.1^-8,-1*K.1^-4,-1*K.1^-9,-1*K.1^8,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^2,-1*K.1^-6,-1*K.1^9,-1*K.1^9,-1*K.1^8,-1*K.1^-12,-1*K.1^4,-1*K.1^-1,-1*K.1^-7,-1*K.1^-8,-1*K.1^-11,-1*K.1^4,-1*K.1^-1,-1*K.1^-3,-1*K.1^12,-1*K.1^-2,-1*K.1^-6,-1*K.1^-2,-1*K.1,-1*K.1^-3,-1*K.1^2,-1*K.1^-4,-1*K.1^-9,-1*K.1^7,-1*K.1^6,-1*K.1^6,-1*K.1^-7,-1*K.1^-12,-1*K.1^11,-1*K.1,-1*K.1^12,K.1^-7,K.1,K.1^3,K.1^-11,K.1^12,K.1^12,K.1^4,K.1^-12,K.1^-8,K.1^-11,K.1^9,K.1^-6,K.1^-1,K.1^-4,K.1^-2,K.1^-6,K.1^-3,K.1^11,K.1^-7,K.1^-8,K.1^12,K.1^-3,K.1^-3,K.1^7,K.1^4,K.1^-12,K.1^-9,K.1^8,K.1^-4,K.1^7,K.1,K.1^3,K.1^-4,K.1^-2,K.1^12,K.1^-2,K.1^6,K.1^2,K.1^-8,K.1^11,K.1,K.1^3,K.1^-7,K.1^-9,K.1^6,K.1^6,K.1^-1,K.1^11,K.1^-9,K.1^-12,K.1^11,K.1^-7,K.1^9,K.1^2,K.1^2,K.1^-8,K.1^7,K.1^-3,K.1^-11,K.1^-2,K.1^6,K.1^4,K.1^8,K.1^9,K.1,K.1^-12,K.1^-9,K.1^2,K.1^-11,K.1^3,K.1^-6,K.1^-1,K.1^-1,K.1^4,K.1^-6,K.1^8,K.1^8,K.1^9,K.1^7,K.1^-4,-1*K.1^6,-1*K.1^-8,-1*K.1^12,-1*K.1^7,-1*K.1^12,-1*K.1^-3,-1*K.1^6,-1*K.1^-12,-1*K.1^-7,-1*K.1^-9,-1*K.1^-4,-1*K.1^-2,-1*K.1^3,-1*K.1^-11,-1*K.1^9,-1*K.1^4,-1*K.1^9,-1*K.1^-6,-1*K.1^3,-1*K.1^-9,-1*K.1^-11,-1*K.1^11,-1*K.1^-2,-1*K.1^-7,-1*K.1,-1*K.1^-4,-1*K.1^-12,-1*K.1^8,-1*K.1^-3,-1*K.1^2,-1*K.1^7,-1*K.1^2,-1*K.1^-8,-1*K.1^8,-1*K.1,-1*K.1^11,-1*K.1^-6,-1*K.1^-1,-1*K.1^4,-1*K.1^-1,-1*K.1^-1,-1*K.1^8,K.1^-1,K.1^-4,K.1^9,K.1^7,-1*K.1^-9,K.1^-8,K.1^3,K.1^-12,K.1^-7,K.1^-9,K.1^6,K.1^-11,-1*K.1^-2,K.1^4,K.1^2,-1*K.1^6,K.1^8,K.1^12,K.1^-11,K.1^6,-1*K.1^2,K.1^-7,K.1^2,K.1^-8,K.1^-8,-1*K.1,K.1^7,K.1^-1,-1*K.1^-7,K.1^9,K.1^11,K.1^11,K.1^-2,K.1^-7,K.1^-2,K.1^8,-1*K.1^11,K.1^2,K.1^7,K.1^-12,-1*K.1^-3,K.1^-3,K.1^9,-1*K.1^-11,K.1^3,K.1^-12,K.1^-7,K.1^-2,-1*K.1^3,K.1^8,K.1,K.1^-4,K.1^-12,K.1^8,K.1^-6,K.1^12,-1*K.1^-4,K.1^12,K.1^4,K.1,K.1^-6,-1*K.1^-8,K.1^-9,-1*K.1^-6,-1*K.1^6,K.1^2,K.1^7,-1*K.1,-1*K.1^-8,-1*K.1^-8,-1*K.1^-1,-1*K.1^-4,-1*K.1^-1,-1*K.1^-4,-1*K.1^-1,-1*K.1^-8,K.1^-6,K.1,K.1^-4,K.1^-1,-1*K.1^8,-1*K.1^-6,-1*K.1,K.1^-4,-1*K.1^12,K.1^3,K.1^6,K.1^-1,K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-7,-1*K.1^2,-1*K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^-12,-1*K.1^-7,-1*K.1^-2,K.1^-11,-1*K.1^-11,-1*K.1^2,K.1^3,K.1^-11,K.1^-9,K.1^4,-1*K.1^-12,-1*K.1^-3,K.1^11,K.1^9,-1*K.1^-7,-1*K.1^-2,-1*K.1^8,-1*K.1^-6,-1*K.1^-9,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^2,-1*K.1^-11,K.1^-8,-1*K.1^-9,-1*K.1^7,-1*K.1^-12,-1*K.1^3,-1*K.1^6,-1*K.1^9,K.1^-6,K.1^-3,K.1^-2,-1*K.1^7,K.1,-1*K.1^6,-1*K.1^3,-1*K.1^-12,K.1^4,K.1^-9,K.1^6,-1*K.1^-11,-1*K.1^12,-1*K.1^4,-1*K.1^-9,-1*K.1^4,-1*K.1,-1*K.1^-6,-1*K.1^8,-1*K.1^12,-1*K.1^-4,K.1^12,K.1^-3,-1*K.1^-3,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-5,K.1^5,K.1^-10,K.1^10,1,1,1,1,-1,-1,-1,-1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,K.1^-3,K.1^11,K.1^2,K.1,K.1^6,K.1^-9,K.1^12,K.1^-11,K.1^3,K.1^-6,K.1^-1,K.1^9,K.1^-2,K.1^-7,K.1^-12,K.1^8,K.1^-8,K.1^4,K.1^-4,K.1^7,-1*K.1^10,-1*K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^5,-1*K.1^-10,K.1^-5,-1*K.1^10,-1*K.1^5,K.1^10,K.1^-10,K.1^-10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^5,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,K.1^5,K.1^5,-1*K.1^-10,K.1^-5,-1*K.1^-5,K.1^-5,K.1^-12,K.1^-9,K.1^4,K.1^8,K.1,K.1^-2,K.1^-7,K.1^-4,K.1^3,K.1^9,K.1^3,K.1^9,K.1^-8,K.1^2,K.1^-12,K.1^-6,K.1^-4,K.1^-1,K.1^3,K.1^4,K.1^-6,K.1^-11,K.1^-1,K.1^8,K.1^4,K.1^-3,K.1^-11,K.1^-7,K.1^7,K.1^12,K.1^-2,K.1^-7,K.1^-9,K.1^-9,K.1^2,K.1^-4,K.1^2,K.1^6,K.1^6,K.1^12,K.1^12,K.1^9,K.1^6,K.1^-12,K.1^-1,K.1^11,K.1^-8,K.1^-8,K.1,K.1^-3,K.1^-3,K.1,K.1^7,K.1^11,K.1^11,K.1^7,K.1^8,K.1^-11,K.1^-2,K.1^-6,-1*K.1^-6,-1*K.1^6,-1*K.1^-7,-1*K.1^9,-1*K.1^-11,-1*K.1^7,-1*K.1^12,-1*K.1^12,-1*K.1^3,-1*K.1^8,-1*K.1,-1*K.1^11,-1*K.1^11,-1*K.1^7,-1*K.1^2,-1*K.1^-9,-1*K.1^-4,-1*K.1^-3,-1*K.1^-7,-1*K.1^6,-1*K.1^-9,-1*K.1^-4,-1*K.1^-12,-1*K.1^-2,-1*K.1^-8,-1*K.1,-1*K.1^-8,-1*K.1^4,-1*K.1^-12,-1*K.1^8,-1*K.1^9,-1*K.1^-11,-1*K.1^3,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^-6,-1*K.1^4,-1*K.1^-2,K.1^-3,K.1^4,K.1^12,K.1^6,K.1^-2,K.1^-2,K.1^-9,K.1^2,K.1^-7,K.1^6,K.1^11,K.1,K.1^-4,K.1^9,K.1^-8,K.1,K.1^-12,K.1^-6,K.1^-3,K.1^-7,K.1^-2,K.1^-12,K.1^-12,K.1^3,K.1^-9,K.1^2,K.1^-11,K.1^7,K.1^9,K.1^3,K.1^4,K.1^12,K.1^9,K.1^-8,K.1^-2,K.1^-8,K.1^-1,K.1^8,K.1^-7,K.1^-6,K.1^4,K.1^12,K.1^-3,K.1^-11,K.1^-1,K.1^-1,K.1^-4,K.1^-6,K.1^-11,K.1^2,K.1^-6,K.1^-3,K.1^11,K.1^8,K.1^8,K.1^-7,K.1^3,K.1^-12,K.1^6,K.1^-8,K.1^-1,K.1^-9,K.1^7,K.1^11,K.1^4,K.1^2,K.1^-11,K.1^8,K.1^6,K.1^12,K.1,K.1^-4,K.1^-4,K.1^-9,K.1,K.1^7,K.1^7,K.1^11,K.1^3,K.1^9,-1*K.1^-1,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^-2,-1*K.1^-12,-1*K.1^-1,-1*K.1^2,-1*K.1^-3,-1*K.1^-11,-1*K.1^9,-1*K.1^-8,-1*K.1^12,-1*K.1^6,-1*K.1^11,-1*K.1^-9,-1*K.1^11,-1*K.1,-1*K.1^12,-1*K.1^-11,-1*K.1^6,-1*K.1^-6,-1*K.1^-8,-1*K.1^-3,-1*K.1^4,-1*K.1^9,-1*K.1^2,-1*K.1^7,-1*K.1^-12,-1*K.1^8,-1*K.1^3,-1*K.1^8,-1*K.1^-7,-1*K.1^7,-1*K.1^4,-1*K.1^-6,-1*K.1,-1*K.1^-4,-1*K.1^-9,-1*K.1^-4,-1*K.1^-4,-1*K.1^7,K.1^-4,K.1^9,K.1^11,K.1^3,-1*K.1^-11,K.1^-7,K.1^12,K.1^2,K.1^-3,K.1^-11,K.1^-1,K.1^6,-1*K.1^-8,K.1^-9,K.1^8,-1*K.1^-1,K.1^7,K.1^-2,K.1^6,K.1^-1,-1*K.1^8,K.1^-3,K.1^8,K.1^-7,K.1^-7,-1*K.1^4,K.1^3,K.1^-4,-1*K.1^-3,K.1^11,K.1^-6,K.1^-6,K.1^-8,K.1^-3,K.1^-8,K.1^7,-1*K.1^-6,K.1^8,K.1^3,K.1^2,-1*K.1^-12,K.1^-12,K.1^11,-1*K.1^6,K.1^12,K.1^2,K.1^-3,K.1^-8,-1*K.1^12,K.1^7,K.1^4,K.1^9,K.1^2,K.1^7,K.1,K.1^-2,-1*K.1^9,K.1^-2,K.1^-9,K.1^4,K.1,-1*K.1^-7,K.1^-11,-1*K.1,-1*K.1^-1,K.1^8,K.1^3,-1*K.1^4,-1*K.1^-7,-1*K.1^-7,-1*K.1^-4,-1*K.1^9,-1*K.1^-4,-1*K.1^9,-1*K.1^-4,-1*K.1^-7,K.1,K.1^4,K.1^9,K.1^-4,-1*K.1^7,-1*K.1,-1*K.1^4,K.1^9,-1*K.1^-2,K.1^12,K.1^-1,K.1^-4,K.1^-12,-1*K.1^-12,-1*K.1^-8,-1*K.1^-3,-1*K.1^8,-1*K.1^-6,-1*K.1^-6,-1*K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^-6,-1*K.1^12,-1*K.1^2,-1*K.1^-3,-1*K.1^-8,K.1^6,-1*K.1^6,-1*K.1^8,K.1^12,K.1^6,K.1^-11,K.1^-9,-1*K.1^2,-1*K.1^-12,K.1^-6,K.1^11,-1*K.1^-3,-1*K.1^-8,-1*K.1^7,-1*K.1,-1*K.1^-11,-1*K.1^-9,-1*K.1^-2,-1*K.1^-9,-1*K.1^8,-1*K.1^6,K.1^-7,-1*K.1^-11,-1*K.1^3,-1*K.1^2,-1*K.1^12,-1*K.1^-1,-1*K.1^11,K.1,K.1^-12,K.1^-8,-1*K.1^3,K.1^4,-1*K.1^-1,-1*K.1^12,-1*K.1^2,K.1^-9,K.1^-11,K.1^-1,-1*K.1^6,-1*K.1^-2,-1*K.1^-9,-1*K.1^-11,-1*K.1^-9,-1*K.1^4,-1*K.1,-1*K.1^7,-1*K.1^-2,-1*K.1^9,K.1^-2,K.1^-12,-1*K.1^-12,K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^5,K.1^-5,K.1^10,K.1^-10,1,1,1,1,-1,-1,-1,-1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^3,K.1^-11,K.1^-2,K.1^-1,K.1^-6,K.1^9,K.1^-12,K.1^11,K.1^-3,K.1^6,K.1,K.1^-9,K.1^2,K.1^7,K.1^12,K.1^-8,K.1^8,K.1^-4,K.1^4,K.1^-7,-1*K.1^-10,-1*K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-5,-1*K.1^10,K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^-10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^10,K.1^-5,K.1^-5,-1*K.1^10,K.1^5,-1*K.1^5,K.1^5,K.1^12,K.1^9,K.1^-4,K.1^-8,K.1^-1,K.1^2,K.1^7,K.1^4,K.1^-3,K.1^-9,K.1^-3,K.1^-9,K.1^8,K.1^-2,K.1^12,K.1^6,K.1^4,K.1,K.1^-3,K.1^-4,K.1^6,K.1^11,K.1,K.1^-8,K.1^-4,K.1^3,K.1^11,K.1^7,K.1^-7,K.1^-12,K.1^2,K.1^7,K.1^9,K.1^9,K.1^-2,K.1^4,K.1^-2,K.1^-6,K.1^-6,K.1^-12,K.1^-12,K.1^-9,K.1^-6,K.1^12,K.1,K.1^-11,K.1^8,K.1^8,K.1^-1,K.1^3,K.1^3,K.1^-1,K.1^-7,K.1^-11,K.1^-11,K.1^-7,K.1^-8,K.1^11,K.1^2,K.1^6,-1*K.1^6,-1*K.1^-6,-1*K.1^7,-1*K.1^-9,-1*K.1^11,-1*K.1^-7,-1*K.1^-12,-1*K.1^-12,-1*K.1^-3,-1*K.1^-8,-1*K.1^-1,-1*K.1^-11,-1*K.1^-11,-1*K.1^-7,-1*K.1^-2,-1*K.1^9,-1*K.1^4,-1*K.1^3,-1*K.1^7,-1*K.1^-6,-1*K.1^9,-1*K.1^4,-1*K.1^12,-1*K.1^2,-1*K.1^8,-1*K.1^-1,-1*K.1^8,-1*K.1^-4,-1*K.1^12,-1*K.1^-8,-1*K.1^-9,-1*K.1^11,-1*K.1^-3,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^6,-1*K.1^-4,-1*K.1^2,K.1^3,K.1^-4,K.1^-12,K.1^-6,K.1^2,K.1^2,K.1^9,K.1^-2,K.1^7,K.1^-6,K.1^-11,K.1^-1,K.1^4,K.1^-9,K.1^8,K.1^-1,K.1^12,K.1^6,K.1^3,K.1^7,K.1^2,K.1^12,K.1^12,K.1^-3,K.1^9,K.1^-2,K.1^11,K.1^-7,K.1^-9,K.1^-3,K.1^-4,K.1^-12,K.1^-9,K.1^8,K.1^2,K.1^8,K.1,K.1^-8,K.1^7,K.1^6,K.1^-4,K.1^-12,K.1^3,K.1^11,K.1,K.1,K.1^4,K.1^6,K.1^11,K.1^-2,K.1^6,K.1^3,K.1^-11,K.1^-8,K.1^-8,K.1^7,K.1^-3,K.1^12,K.1^-6,K.1^8,K.1,K.1^9,K.1^-7,K.1^-11,K.1^-4,K.1^-2,K.1^11,K.1^-8,K.1^-6,K.1^-12,K.1^-1,K.1^4,K.1^4,K.1^9,K.1^-1,K.1^-7,K.1^-7,K.1^-11,K.1^-3,K.1^-9,-1*K.1,-1*K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^2,-1*K.1^12,-1*K.1,-1*K.1^-2,-1*K.1^3,-1*K.1^11,-1*K.1^-9,-1*K.1^8,-1*K.1^-12,-1*K.1^-6,-1*K.1^-11,-1*K.1^9,-1*K.1^-11,-1*K.1^-1,-1*K.1^-12,-1*K.1^11,-1*K.1^-6,-1*K.1^6,-1*K.1^8,-1*K.1^3,-1*K.1^-4,-1*K.1^-9,-1*K.1^-2,-1*K.1^-7,-1*K.1^12,-1*K.1^-8,-1*K.1^-3,-1*K.1^-8,-1*K.1^7,-1*K.1^-7,-1*K.1^-4,-1*K.1^6,-1*K.1^-1,-1*K.1^4,-1*K.1^9,-1*K.1^4,-1*K.1^4,-1*K.1^-7,K.1^4,K.1^-9,K.1^-11,K.1^-3,-1*K.1^11,K.1^7,K.1^-12,K.1^-2,K.1^3,K.1^11,K.1,K.1^-6,-1*K.1^8,K.1^9,K.1^-8,-1*K.1,K.1^-7,K.1^2,K.1^-6,K.1,-1*K.1^-8,K.1^3,K.1^-8,K.1^7,K.1^7,-1*K.1^-4,K.1^-3,K.1^4,-1*K.1^3,K.1^-11,K.1^6,K.1^6,K.1^8,K.1^3,K.1^8,K.1^-7,-1*K.1^6,K.1^-8,K.1^-3,K.1^-2,-1*K.1^12,K.1^12,K.1^-11,-1*K.1^-6,K.1^-12,K.1^-2,K.1^3,K.1^8,-1*K.1^-12,K.1^-7,K.1^-4,K.1^-9,K.1^-2,K.1^-7,K.1^-1,K.1^2,-1*K.1^-9,K.1^2,K.1^9,K.1^-4,K.1^-1,-1*K.1^7,K.1^11,-1*K.1^-1,-1*K.1,K.1^-8,K.1^-3,-1*K.1^-4,-1*K.1^7,-1*K.1^7,-1*K.1^4,-1*K.1^-9,-1*K.1^4,-1*K.1^-9,-1*K.1^4,-1*K.1^7,K.1^-1,K.1^-4,K.1^-9,K.1^4,-1*K.1^-7,-1*K.1^-1,-1*K.1^-4,K.1^-9,-1*K.1^2,K.1^-12,K.1,K.1^4,K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^3,-1*K.1^-8,-1*K.1^6,-1*K.1^6,-1*K.1^-11,-1*K.1^-3,-1*K.1^-11,-1*K.1^-3,-1*K.1^-11,-1*K.1^6,-1*K.1^-12,-1*K.1^-2,-1*K.1^3,-1*K.1^8,K.1^-6,-1*K.1^-6,-1*K.1^-8,K.1^-12,K.1^-6,K.1^11,K.1^9,-1*K.1^-2,-1*K.1^12,K.1^6,K.1^-11,-1*K.1^3,-1*K.1^8,-1*K.1^-7,-1*K.1^-1,-1*K.1^11,-1*K.1^9,-1*K.1^2,-1*K.1^9,-1*K.1^-8,-1*K.1^-6,K.1^7,-1*K.1^11,-1*K.1^-3,-1*K.1^-2,-1*K.1^-12,-1*K.1,-1*K.1^-11,K.1^-1,K.1^12,K.1^8,-1*K.1^-3,K.1^-4,-1*K.1,-1*K.1^-12,-1*K.1^-2,K.1^9,K.1^11,K.1,-1*K.1^-6,-1*K.1^2,-1*K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^-4,-1*K.1^-1,-1*K.1^-7,-1*K.1^2,-1*K.1^-9,K.1^2,K.1^12,-1*K.1^12,K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-5,K.1^5,K.1^-10,K.1^10,1,1,1,1,-1,-1,-1,-1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,K.1^2,K.1,K.1^7,K.1^-9,K.1^-4,K.1^6,K.1^-8,K.1^-1,K.1^-2,K.1^4,K.1^9,K.1^-6,K.1^-7,K.1^-12,K.1^8,K.1^3,K.1^-3,K.1^-11,K.1^11,K.1^12,-1*K.1^10,-1*K.1^-5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^5,-1*K.1^-10,K.1^-5,-1*K.1^10,-1*K.1^5,K.1^10,K.1^-10,K.1^-10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^5,K.1^-10,K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,K.1^5,K.1^5,-1*K.1^-10,K.1^-5,-1*K.1^-5,K.1^-5,K.1^8,K.1^6,K.1^-11,K.1^3,K.1^-9,K.1^-7,K.1^-12,K.1^11,K.1^-2,K.1^-6,K.1^-2,K.1^-6,K.1^-3,K.1^7,K.1^8,K.1^4,K.1^11,K.1^9,K.1^-2,K.1^-11,K.1^4,K.1^-1,K.1^9,K.1^3,K.1^-11,K.1^2,K.1^-1,K.1^-12,K.1^12,K.1^-8,K.1^-7,K.1^-12,K.1^6,K.1^6,K.1^7,K.1^11,K.1^7,K.1^-4,K.1^-4,K.1^-8,K.1^-8,K.1^-6,K.1^-4,K.1^8,K.1^9,K.1,K.1^-3,K.1^-3,K.1^-9,K.1^2,K.1^2,K.1^-9,K.1^12,K.1,K.1,K.1^12,K.1^3,K.1^-1,K.1^-7,K.1^4,-1*K.1^4,-1*K.1^-4,-1*K.1^-12,-1*K.1^-6,-1*K.1^-1,-1*K.1^12,-1*K.1^-8,-1*K.1^-8,-1*K.1^-2,-1*K.1^3,-1*K.1^-9,-1*K.1,-1*K.1,-1*K.1^12,-1*K.1^7,-1*K.1^6,-1*K.1^11,-1*K.1^2,-1*K.1^-12,-1*K.1^-4,-1*K.1^6,-1*K.1^11,-1*K.1^8,-1*K.1^-7,-1*K.1^-3,-1*K.1^-9,-1*K.1^-3,-1*K.1^-11,-1*K.1^8,-1*K.1^3,-1*K.1^-6,-1*K.1^-1,-1*K.1^-2,-1*K.1^9,-1*K.1^9,-1*K.1^2,-1*K.1^7,-1*K.1^4,-1*K.1^-11,-1*K.1^-7,K.1^2,K.1^-11,K.1^-8,K.1^-4,K.1^-7,K.1^-7,K.1^6,K.1^7,K.1^-12,K.1^-4,K.1,K.1^-9,K.1^11,K.1^-6,K.1^-3,K.1^-9,K.1^8,K.1^4,K.1^2,K.1^-12,K.1^-7,K.1^8,K.1^8,K.1^-2,K.1^6,K.1^7,K.1^-1,K.1^12,K.1^-6,K.1^-2,K.1^-11,K.1^-8,K.1^-6,K.1^-3,K.1^-7,K.1^-3,K.1^9,K.1^3,K.1^-12,K.1^4,K.1^-11,K.1^-8,K.1^2,K.1^-1,K.1^9,K.1^9,K.1^11,K.1^4,K.1^-1,K.1^7,K.1^4,K.1^2,K.1,K.1^3,K.1^3,K.1^-12,K.1^-2,K.1^8,K.1^-4,K.1^-3,K.1^9,K.1^6,K.1^12,K.1,K.1^-11,K.1^7,K.1^-1,K.1^3,K.1^-4,K.1^-8,K.1^-9,K.1^11,K.1^11,K.1^6,K.1^-9,K.1^12,K.1^12,K.1,K.1^-2,K.1^-6,-1*K.1^9,-1*K.1^-12,-1*K.1^-7,-1*K.1^-2,-1*K.1^-7,-1*K.1^8,-1*K.1^9,-1*K.1^7,-1*K.1^2,-1*K.1^-1,-1*K.1^-6,-1*K.1^-3,-1*K.1^-8,-1*K.1^-4,-1*K.1,-1*K.1^6,-1*K.1,-1*K.1^-9,-1*K.1^-8,-1*K.1^-1,-1*K.1^-4,-1*K.1^4,-1*K.1^-3,-1*K.1^2,-1*K.1^-11,-1*K.1^-6,-1*K.1^7,-1*K.1^12,-1*K.1^8,-1*K.1^3,-1*K.1^-2,-1*K.1^3,-1*K.1^-12,-1*K.1^12,-1*K.1^-11,-1*K.1^4,-1*K.1^-9,-1*K.1^11,-1*K.1^6,-1*K.1^11,-1*K.1^11,-1*K.1^12,K.1^11,K.1^-6,K.1,K.1^-2,-1*K.1^-1,K.1^-12,K.1^-8,K.1^7,K.1^2,K.1^-1,K.1^9,K.1^-4,-1*K.1^-3,K.1^6,K.1^3,-1*K.1^9,K.1^12,K.1^-7,K.1^-4,K.1^9,-1*K.1^3,K.1^2,K.1^3,K.1^-12,K.1^-12,-1*K.1^-11,K.1^-2,K.1^11,-1*K.1^2,K.1,K.1^4,K.1^4,K.1^-3,K.1^2,K.1^-3,K.1^12,-1*K.1^4,K.1^3,K.1^-2,K.1^7,-1*K.1^8,K.1^8,K.1,-1*K.1^-4,K.1^-8,K.1^7,K.1^2,K.1^-3,-1*K.1^-8,K.1^12,K.1^-11,K.1^-6,K.1^7,K.1^12,K.1^-9,K.1^-7,-1*K.1^-6,K.1^-7,K.1^6,K.1^-11,K.1^-9,-1*K.1^-12,K.1^-1,-1*K.1^-9,-1*K.1^9,K.1^3,K.1^-2,-1*K.1^-11,-1*K.1^-12,-1*K.1^-12,-1*K.1^11,-1*K.1^-6,-1*K.1^11,-1*K.1^-6,-1*K.1^11,-1*K.1^-12,K.1^-9,K.1^-11,K.1^-6,K.1^11,-1*K.1^12,-1*K.1^-9,-1*K.1^-11,K.1^-6,-1*K.1^-7,K.1^-8,K.1^9,K.1^11,K.1^8,-1*K.1^8,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^4,-1*K.1^-8,-1*K.1^7,-1*K.1^2,-1*K.1^-3,K.1^-4,-1*K.1^-4,-1*K.1^3,K.1^-8,K.1^-4,K.1^-1,K.1^6,-1*K.1^7,-1*K.1^8,K.1^4,K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^12,-1*K.1^-9,-1*K.1^-1,-1*K.1^6,-1*K.1^-7,-1*K.1^6,-1*K.1^3,-1*K.1^-4,K.1^-12,-1*K.1^-1,-1*K.1^-2,-1*K.1^7,-1*K.1^-8,-1*K.1^9,-1*K.1,K.1^-9,K.1^8,K.1^-3,-1*K.1^-2,K.1^-11,-1*K.1^9,-1*K.1^-8,-1*K.1^7,K.1^6,K.1^-1,K.1^9,-1*K.1^-4,-1*K.1^-7,-1*K.1^6,-1*K.1^-1,-1*K.1^6,-1*K.1^-11,-1*K.1^-9,-1*K.1^12,-1*K.1^-7,-1*K.1^-6,K.1^-7,K.1^8,-1*K.1^8,K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^5,K.1^-5,K.1^10,K.1^-10,1,1,1,1,-1,-1,-1,-1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,K.1^-2,K.1^-1,K.1^-7,K.1^9,K.1^4,K.1^-6,K.1^8,K.1,K.1^2,K.1^-4,K.1^-9,K.1^6,K.1^7,K.1^12,K.1^-8,K.1^-3,K.1^3,K.1^11,K.1^-11,K.1^-12,-1*K.1^-10,-1*K.1^5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-5,-1*K.1^10,K.1^5,-1*K.1^-10,-1*K.1^-5,K.1^-10,K.1^10,K.1^10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,K.1^10,K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^10,K.1^-5,K.1^-5,-1*K.1^10,K.1^5,-1*K.1^5,K.1^5,K.1^-8,K.1^-6,K.1^11,K.1^-3,K.1^9,K.1^7,K.1^12,K.1^-11,K.1^2,K.1^6,K.1^2,K.1^6,K.1^3,K.1^-7,K.1^-8,K.1^-4,K.1^-11,K.1^-9,K.1^2,K.1^11,K.1^-4,K.1,K.1^-9,K.1^-3,K.1^11,K.1^-2,K.1,K.1^12,K.1^-12,K.1^8,K.1^7,K.1^12,K.1^-6,K.1^-6,K.1^-7,K.1^-11,K.1^-7,K.1^4,K.1^4,K.1^8,K.1^8,K.1^6,K.1^4,K.1^-8,K.1^-9,K.1^-1,K.1^3,K.1^3,K.1^9,K.1^-2,K.1^-2,K.1^9,K.1^-12,K.1^-1,K.1^-1,K.1^-12,K.1^-3,K.1,K.1^7,K.1^-4,-1*K.1^-4,-1*K.1^4,-1*K.1^12,-1*K.1^6,-1*K.1,-1*K.1^-12,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^-3,-1*K.1^9,-1*K.1^-1,-1*K.1^-1,-1*K.1^-12,-1*K.1^-7,-1*K.1^-6,-1*K.1^-11,-1*K.1^-2,-1*K.1^12,-1*K.1^4,-1*K.1^-6,-1*K.1^-11,-1*K.1^-8,-1*K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^11,-1*K.1^-8,-1*K.1^-3,-1*K.1^6,-1*K.1,-1*K.1^2,-1*K.1^-9,-1*K.1^-9,-1*K.1^-2,-1*K.1^-7,-1*K.1^-4,-1*K.1^11,-1*K.1^7,K.1^-2,K.1^11,K.1^8,K.1^4,K.1^7,K.1^7,K.1^-6,K.1^-7,K.1^12,K.1^4,K.1^-1,K.1^9,K.1^-11,K.1^6,K.1^3,K.1^9,K.1^-8,K.1^-4,K.1^-2,K.1^12,K.1^7,K.1^-8,K.1^-8,K.1^2,K.1^-6,K.1^-7,K.1,K.1^-12,K.1^6,K.1^2,K.1^11,K.1^8,K.1^6,K.1^3,K.1^7,K.1^3,K.1^-9,K.1^-3,K.1^12,K.1^-4,K.1^11,K.1^8,K.1^-2,K.1,K.1^-9,K.1^-9,K.1^-11,K.1^-4,K.1,K.1^-7,K.1^-4,K.1^-2,K.1^-1,K.1^-3,K.1^-3,K.1^12,K.1^2,K.1^-8,K.1^4,K.1^3,K.1^-9,K.1^-6,K.1^-12,K.1^-1,K.1^11,K.1^-7,K.1,K.1^-3,K.1^4,K.1^8,K.1^9,K.1^-11,K.1^-11,K.1^-6,K.1^9,K.1^-12,K.1^-12,K.1^-1,K.1^2,K.1^6,-1*K.1^-9,-1*K.1^12,-1*K.1^7,-1*K.1^2,-1*K.1^7,-1*K.1^-8,-1*K.1^-9,-1*K.1^-7,-1*K.1^-2,-1*K.1,-1*K.1^6,-1*K.1^3,-1*K.1^8,-1*K.1^4,-1*K.1^-1,-1*K.1^-6,-1*K.1^-1,-1*K.1^9,-1*K.1^8,-1*K.1,-1*K.1^4,-1*K.1^-4,-1*K.1^3,-1*K.1^-2,-1*K.1^11,-1*K.1^6,-1*K.1^-7,-1*K.1^-12,-1*K.1^-8,-1*K.1^-3,-1*K.1^2,-1*K.1^-3,-1*K.1^12,-1*K.1^-12,-1*K.1^11,-1*K.1^-4,-1*K.1^9,-1*K.1^-11,-1*K.1^-6,-1*K.1^-11,-1*K.1^-11,-1*K.1^-12,K.1^-11,K.1^6,K.1^-1,K.1^2,-1*K.1,K.1^12,K.1^8,K.1^-7,K.1^-2,K.1,K.1^-9,K.1^4,-1*K.1^3,K.1^-6,K.1^-3,-1*K.1^-9,K.1^-12,K.1^7,K.1^4,K.1^-9,-1*K.1^-3,K.1^-2,K.1^-3,K.1^12,K.1^12,-1*K.1^11,K.1^2,K.1^-11,-1*K.1^-2,K.1^-1,K.1^-4,K.1^-4,K.1^3,K.1^-2,K.1^3,K.1^-12,-1*K.1^-4,K.1^-3,K.1^2,K.1^-7,-1*K.1^-8,K.1^-8,K.1^-1,-1*K.1^4,K.1^8,K.1^-7,K.1^-2,K.1^3,-1*K.1^8,K.1^-12,K.1^11,K.1^6,K.1^-7,K.1^-12,K.1^9,K.1^7,-1*K.1^6,K.1^7,K.1^-6,K.1^11,K.1^9,-1*K.1^12,K.1,-1*K.1^9,-1*K.1^-9,K.1^-3,K.1^2,-1*K.1^11,-1*K.1^12,-1*K.1^12,-1*K.1^-11,-1*K.1^6,-1*K.1^-11,-1*K.1^6,-1*K.1^-11,-1*K.1^12,K.1^9,K.1^11,K.1^6,K.1^-11,-1*K.1^-12,-1*K.1^9,-1*K.1^11,K.1^6,-1*K.1^7,K.1^8,K.1^-9,K.1^-11,K.1^-8,-1*K.1^-8,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-4,-1*K.1^8,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,K.1^4,-1*K.1^4,-1*K.1^-3,K.1^8,K.1^4,K.1,K.1^-6,-1*K.1^-7,-1*K.1^-8,K.1^-4,K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^-12,-1*K.1^9,-1*K.1,-1*K.1^-6,-1*K.1^7,-1*K.1^-6,-1*K.1^-3,-1*K.1^4,K.1^12,-1*K.1,-1*K.1^2,-1*K.1^-7,-1*K.1^8,-1*K.1^-9,-1*K.1^-1,K.1^9,K.1^-8,K.1^3,-1*K.1^2,K.1^11,-1*K.1^-9,-1*K.1^8,-1*K.1^-7,K.1^-6,K.1,K.1^-9,-1*K.1^4,-1*K.1^7,-1*K.1^-6,-1*K.1,-1*K.1^-6,-1*K.1^11,-1*K.1^9,-1*K.1^-12,-1*K.1^7,-1*K.1^6,K.1^7,K.1^-8,-1*K.1^-8,K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-10,K.1^10,K.1^5,K.1^-5,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-11,K.1^7,K.1^-1,K.1^12,K.1^-3,K.1^-8,K.1^-6,K.1^-7,K.1^11,K.1^3,K.1^-12,K.1^8,K.1,K.1^-9,K.1^6,K.1^-4,K.1^4,K.1^-2,K.1^2,K.1^9,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-10,K.1^6,K.1^-8,K.1^-2,K.1^-4,K.1^12,K.1,K.1^-9,K.1^2,K.1^11,K.1^8,K.1^11,K.1^8,K.1^4,K.1^-1,K.1^6,K.1^3,K.1^2,K.1^-12,K.1^11,K.1^-2,K.1^3,K.1^-7,K.1^-12,K.1^-4,K.1^-2,K.1^-11,K.1^-7,K.1^-9,K.1^9,K.1^-6,K.1,K.1^-9,K.1^-8,K.1^-8,K.1^-1,K.1^2,K.1^-1,K.1^-3,K.1^-3,K.1^-6,K.1^-6,K.1^8,K.1^-3,K.1^6,K.1^-12,K.1^7,K.1^4,K.1^4,K.1^12,K.1^-11,K.1^-11,K.1^12,K.1^9,K.1^7,K.1^7,K.1^9,K.1^-4,K.1^-7,K.1,K.1^3,K.1^3,K.1^-3,K.1^-9,K.1^8,K.1^-7,K.1^9,K.1^-6,K.1^-6,K.1^11,K.1^-4,K.1^12,K.1^7,K.1^7,K.1^9,K.1^-1,K.1^-8,K.1^2,K.1^-11,K.1^-9,K.1^-3,K.1^-8,K.1^2,K.1^6,K.1,K.1^4,K.1^12,K.1^4,K.1^-2,K.1^6,K.1^-4,K.1^8,K.1^-7,K.1^11,K.1^-12,K.1^-12,K.1^-11,K.1^-1,K.1^3,K.1^-2,K.1,K.1^-11,K.1^-2,K.1^-6,K.1^-3,K.1,K.1,K.1^-8,K.1^-1,K.1^-9,K.1^-3,K.1^7,K.1^12,K.1^2,K.1^8,K.1^4,K.1^12,K.1^6,K.1^3,K.1^-11,K.1^-9,K.1,K.1^6,K.1^6,K.1^11,K.1^-8,K.1^-1,K.1^-7,K.1^9,K.1^8,K.1^11,K.1^-2,K.1^-6,K.1^8,K.1^4,K.1,K.1^4,K.1^-12,K.1^-4,K.1^-9,K.1^3,K.1^-2,K.1^-6,K.1^-11,K.1^-7,K.1^-12,K.1^-12,K.1^2,K.1^3,K.1^-7,K.1^-1,K.1^3,K.1^-11,K.1^7,K.1^-4,K.1^-4,K.1^-9,K.1^11,K.1^6,K.1^-3,K.1^4,K.1^-12,K.1^-8,K.1^9,K.1^7,K.1^-2,K.1^-1,K.1^-7,K.1^-4,K.1^-3,K.1^-6,K.1^12,K.1^2,K.1^2,K.1^-8,K.1^12,K.1^9,K.1^9,K.1^7,K.1^11,K.1^8,K.1^-12,K.1^-9,K.1,K.1^11,K.1,K.1^6,K.1^-12,K.1^-1,K.1^-11,K.1^-7,K.1^8,K.1^4,K.1^-6,K.1^-3,K.1^7,K.1^-8,K.1^7,K.1^12,K.1^-6,K.1^-7,K.1^-3,K.1^3,K.1^4,K.1^-11,K.1^-2,K.1^8,K.1^-1,K.1^9,K.1^6,K.1^-4,K.1^11,K.1^-4,K.1^-9,K.1^9,K.1^-2,K.1^3,K.1^12,K.1^2,K.1^-8,K.1^2,-1*K.1^2,-1*K.1^9,-1*K.1^2,-1*K.1^8,-1*K.1^7,-1*K.1^11,-1*K.1^-7,-1*K.1^-9,-1*K.1^-6,-1*K.1^-1,-1*K.1^-11,-1*K.1^-7,-1*K.1^-12,-1*K.1^-3,-1*K.1^4,-1*K.1^-8,-1*K.1^-4,-1*K.1^-12,-1*K.1^9,-1*K.1,-1*K.1^-3,-1*K.1^-12,-1*K.1^-4,-1*K.1^-11,-1*K.1^-4,-1*K.1^-9,-1*K.1^-9,-1*K.1^-2,-1*K.1^11,-1*K.1^2,-1*K.1^-11,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^4,-1*K.1^-11,-1*K.1^4,-1*K.1^9,-1*K.1^3,-1*K.1^-4,-1*K.1^11,-1*K.1^-1,-1*K.1^6,-1*K.1^6,-1*K.1^7,-1*K.1^-3,-1*K.1^-6,-1*K.1^-1,-1*K.1^-11,-1*K.1^4,-1*K.1^-6,-1*K.1^9,-1*K.1^-2,-1*K.1^8,-1*K.1^-1,-1*K.1^9,-1*K.1^12,-1*K.1,-1*K.1^8,-1*K.1,-1*K.1^-8,-1*K.1^-2,-1*K.1^12,-1*K.1^-9,-1*K.1^-7,-1*K.1^12,-1*K.1^-12,-1*K.1^-4,-1*K.1^11,-1*K.1^-2,-1*K.1^-9,-1*K.1^-9,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^-9,-1*K.1^12,-1*K.1^-2,-1*K.1^8,-1*K.1^2,-1*K.1^9,-1*K.1^12,-1*K.1^-2,-1*K.1^8,-1*K.1,-1*K.1^-6,-1*K.1^-12,-1*K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^4,-1*K.1^-11,-1*K.1^-4,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^3,-1*K.1^-6,-1*K.1^-1,-1*K.1^-11,-1*K.1^4,-1*K.1^-3,-1*K.1^-3,-1*K.1^-4,-1*K.1^-6,-1*K.1^-3,-1*K.1^-7,-1*K.1^-8,-1*K.1^-1,-1*K.1^6,-1*K.1^3,-1*K.1^7,-1*K.1^-11,-1*K.1^4,-1*K.1^9,-1*K.1^12,-1*K.1^-7,-1*K.1^-8,-1*K.1,-1*K.1^-8,-1*K.1^-4,-1*K.1^-3,-1*K.1^-9,-1*K.1^-7,-1*K.1^11,-1*K.1^-1,-1*K.1^-6,-1*K.1^-12,-1*K.1^7,-1*K.1^12,-1*K.1^6,-1*K.1^4,-1*K.1^11,-1*K.1^-2,-1*K.1^-12,-1*K.1^-6,-1*K.1^-1,-1*K.1^-8,-1*K.1^-7,-1*K.1^-12,-1*K.1^-3,-1*K.1,-1*K.1^-8,-1*K.1^-7,-1*K.1^-8,-1*K.1^-2,-1*K.1^12,-1*K.1^9,-1*K.1,-1*K.1^8,-1*K.1,-1*K.1^6,-1*K.1^6,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^10,K.1^-10,K.1^-5,K.1^5,-1,-1,-1,-1,-1,-1,-1,-1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^11,K.1^-7,K.1,K.1^-12,K.1^3,K.1^8,K.1^6,K.1^7,K.1^-11,K.1^-3,K.1^12,K.1^-8,K.1^-1,K.1^9,K.1^-6,K.1^4,K.1^-4,K.1^2,K.1^-2,K.1^-9,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^-6,K.1^8,K.1^2,K.1^4,K.1^-12,K.1^-1,K.1^9,K.1^-2,K.1^-11,K.1^-8,K.1^-11,K.1^-8,K.1^-4,K.1,K.1^-6,K.1^-3,K.1^-2,K.1^12,K.1^-11,K.1^2,K.1^-3,K.1^7,K.1^12,K.1^4,K.1^2,K.1^11,K.1^7,K.1^9,K.1^-9,K.1^6,K.1^-1,K.1^9,K.1^8,K.1^8,K.1,K.1^-2,K.1,K.1^3,K.1^3,K.1^6,K.1^6,K.1^-8,K.1^3,K.1^-6,K.1^12,K.1^-7,K.1^-4,K.1^-4,K.1^-12,K.1^11,K.1^11,K.1^-12,K.1^-9,K.1^-7,K.1^-7,K.1^-9,K.1^4,K.1^7,K.1^-1,K.1^-3,K.1^-3,K.1^3,K.1^9,K.1^-8,K.1^7,K.1^-9,K.1^6,K.1^6,K.1^-11,K.1^4,K.1^-12,K.1^-7,K.1^-7,K.1^-9,K.1,K.1^8,K.1^-2,K.1^11,K.1^9,K.1^3,K.1^8,K.1^-2,K.1^-6,K.1^-1,K.1^-4,K.1^-12,K.1^-4,K.1^2,K.1^-6,K.1^4,K.1^-8,K.1^7,K.1^-11,K.1^12,K.1^12,K.1^11,K.1,K.1^-3,K.1^2,K.1^-1,K.1^11,K.1^2,K.1^6,K.1^3,K.1^-1,K.1^-1,K.1^8,K.1,K.1^9,K.1^3,K.1^-7,K.1^-12,K.1^-2,K.1^-8,K.1^-4,K.1^-12,K.1^-6,K.1^-3,K.1^11,K.1^9,K.1^-1,K.1^-6,K.1^-6,K.1^-11,K.1^8,K.1,K.1^7,K.1^-9,K.1^-8,K.1^-11,K.1^2,K.1^6,K.1^-8,K.1^-4,K.1^-1,K.1^-4,K.1^12,K.1^4,K.1^9,K.1^-3,K.1^2,K.1^6,K.1^11,K.1^7,K.1^12,K.1^12,K.1^-2,K.1^-3,K.1^7,K.1,K.1^-3,K.1^11,K.1^-7,K.1^4,K.1^4,K.1^9,K.1^-11,K.1^-6,K.1^3,K.1^-4,K.1^12,K.1^8,K.1^-9,K.1^-7,K.1^2,K.1,K.1^7,K.1^4,K.1^3,K.1^6,K.1^-12,K.1^-2,K.1^-2,K.1^8,K.1^-12,K.1^-9,K.1^-9,K.1^-7,K.1^-11,K.1^-8,K.1^12,K.1^9,K.1^-1,K.1^-11,K.1^-1,K.1^-6,K.1^12,K.1,K.1^11,K.1^7,K.1^-8,K.1^-4,K.1^6,K.1^3,K.1^-7,K.1^8,K.1^-7,K.1^-12,K.1^6,K.1^7,K.1^3,K.1^-3,K.1^-4,K.1^11,K.1^2,K.1^-8,K.1,K.1^-9,K.1^-6,K.1^4,K.1^-11,K.1^4,K.1^9,K.1^-9,K.1^2,K.1^-3,K.1^-12,K.1^-2,K.1^8,K.1^-2,-1*K.1^-2,-1*K.1^-9,-1*K.1^-2,-1*K.1^-8,-1*K.1^-7,-1*K.1^-11,-1*K.1^7,-1*K.1^9,-1*K.1^6,-1*K.1,-1*K.1^11,-1*K.1^7,-1*K.1^12,-1*K.1^3,-1*K.1^-4,-1*K.1^8,-1*K.1^4,-1*K.1^12,-1*K.1^-9,-1*K.1^-1,-1*K.1^3,-1*K.1^12,-1*K.1^4,-1*K.1^11,-1*K.1^4,-1*K.1^9,-1*K.1^9,-1*K.1^2,-1*K.1^-11,-1*K.1^-2,-1*K.1^11,-1*K.1^-7,-1*K.1^-3,-1*K.1^-3,-1*K.1^-4,-1*K.1^11,-1*K.1^-4,-1*K.1^-9,-1*K.1^-3,-1*K.1^4,-1*K.1^-11,-1*K.1,-1*K.1^-6,-1*K.1^-6,-1*K.1^-7,-1*K.1^3,-1*K.1^6,-1*K.1,-1*K.1^11,-1*K.1^-4,-1*K.1^6,-1*K.1^-9,-1*K.1^2,-1*K.1^-8,-1*K.1,-1*K.1^-9,-1*K.1^-12,-1*K.1^-1,-1*K.1^-8,-1*K.1^-1,-1*K.1^8,-1*K.1^2,-1*K.1^-12,-1*K.1^9,-1*K.1^7,-1*K.1^-12,-1*K.1^12,-1*K.1^4,-1*K.1^-11,-1*K.1^2,-1*K.1^9,-1*K.1^9,-1*K.1^-2,-1*K.1^-8,-1*K.1^-2,-1*K.1^-8,-1*K.1^-2,-1*K.1^9,-1*K.1^-12,-1*K.1^2,-1*K.1^-8,-1*K.1^-2,-1*K.1^-9,-1*K.1^-12,-1*K.1^2,-1*K.1^-8,-1*K.1^-1,-1*K.1^6,-1*K.1^12,-1*K.1^-2,-1*K.1^-6,-1*K.1^-6,-1*K.1^-4,-1*K.1^11,-1*K.1^4,-1*K.1^-3,-1*K.1^-3,-1*K.1^-7,-1*K.1^-11,-1*K.1^-7,-1*K.1^-11,-1*K.1^-7,-1*K.1^-3,-1*K.1^6,-1*K.1,-1*K.1^11,-1*K.1^-4,-1*K.1^3,-1*K.1^3,-1*K.1^4,-1*K.1^6,-1*K.1^3,-1*K.1^7,-1*K.1^8,-1*K.1,-1*K.1^-6,-1*K.1^-3,-1*K.1^-7,-1*K.1^11,-1*K.1^-4,-1*K.1^-9,-1*K.1^-12,-1*K.1^7,-1*K.1^8,-1*K.1^-1,-1*K.1^8,-1*K.1^4,-1*K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1^-11,-1*K.1,-1*K.1^6,-1*K.1^12,-1*K.1^-7,-1*K.1^-12,-1*K.1^-6,-1*K.1^-4,-1*K.1^-11,-1*K.1^2,-1*K.1^12,-1*K.1^6,-1*K.1,-1*K.1^8,-1*K.1^7,-1*K.1^12,-1*K.1^3,-1*K.1^-1,-1*K.1^8,-1*K.1^7,-1*K.1^8,-1*K.1^2,-1*K.1^-12,-1*K.1^-9,-1*K.1^-1,-1*K.1^-8,-1*K.1^-1,-1*K.1^-6,-1*K.1^-6,-1*K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-10,K.1^10,K.1^5,K.1^-5,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^9,K.1^-8,K.1^-6,K.1^-3,K.1^7,K.1^2,K.1^-11,K.1^8,K.1^-9,K.1^-7,K.1^3,K.1^-2,K.1^6,K.1^-4,K.1^11,K.1,K.1^-1,K.1^-12,K.1^12,K.1^4,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-10,K.1^11,K.1^2,K.1^-12,K.1,K.1^-3,K.1^6,K.1^-4,K.1^12,K.1^-9,K.1^-2,K.1^-9,K.1^-2,K.1^-1,K.1^-6,K.1^11,K.1^-7,K.1^12,K.1^3,K.1^-9,K.1^-12,K.1^-7,K.1^8,K.1^3,K.1,K.1^-12,K.1^9,K.1^8,K.1^-4,K.1^4,K.1^-11,K.1^6,K.1^-4,K.1^2,K.1^2,K.1^-6,K.1^12,K.1^-6,K.1^7,K.1^7,K.1^-11,K.1^-11,K.1^-2,K.1^7,K.1^11,K.1^3,K.1^-8,K.1^-1,K.1^-1,K.1^-3,K.1^9,K.1^9,K.1^-3,K.1^4,K.1^-8,K.1^-8,K.1^4,K.1,K.1^8,K.1^6,K.1^-7,K.1^-7,K.1^7,K.1^-4,K.1^-2,K.1^8,K.1^4,K.1^-11,K.1^-11,K.1^-9,K.1,K.1^-3,K.1^-8,K.1^-8,K.1^4,K.1^-6,K.1^2,K.1^12,K.1^9,K.1^-4,K.1^7,K.1^2,K.1^12,K.1^11,K.1^6,K.1^-1,K.1^-3,K.1^-1,K.1^-12,K.1^11,K.1,K.1^-2,K.1^8,K.1^-9,K.1^3,K.1^3,K.1^9,K.1^-6,K.1^-7,K.1^-12,K.1^6,K.1^9,K.1^-12,K.1^-11,K.1^7,K.1^6,K.1^6,K.1^2,K.1^-6,K.1^-4,K.1^7,K.1^-8,K.1^-3,K.1^12,K.1^-2,K.1^-1,K.1^-3,K.1^11,K.1^-7,K.1^9,K.1^-4,K.1^6,K.1^11,K.1^11,K.1^-9,K.1^2,K.1^-6,K.1^8,K.1^4,K.1^-2,K.1^-9,K.1^-12,K.1^-11,K.1^-2,K.1^-1,K.1^6,K.1^-1,K.1^3,K.1,K.1^-4,K.1^-7,K.1^-12,K.1^-11,K.1^9,K.1^8,K.1^3,K.1^3,K.1^12,K.1^-7,K.1^8,K.1^-6,K.1^-7,K.1^9,K.1^-8,K.1,K.1,K.1^-4,K.1^-9,K.1^11,K.1^7,K.1^-1,K.1^3,K.1^2,K.1^4,K.1^-8,K.1^-12,K.1^-6,K.1^8,K.1,K.1^7,K.1^-11,K.1^-3,K.1^12,K.1^12,K.1^2,K.1^-3,K.1^4,K.1^4,K.1^-8,K.1^-9,K.1^-2,K.1^3,K.1^-4,K.1^6,K.1^-9,K.1^6,K.1^11,K.1^3,K.1^-6,K.1^9,K.1^8,K.1^-2,K.1^-1,K.1^-11,K.1^7,K.1^-8,K.1^2,K.1^-8,K.1^-3,K.1^-11,K.1^8,K.1^7,K.1^-7,K.1^-1,K.1^9,K.1^-12,K.1^-2,K.1^-6,K.1^4,K.1^11,K.1,K.1^-9,K.1,K.1^-4,K.1^4,K.1^-12,K.1^-7,K.1^-3,K.1^12,K.1^2,K.1^12,-1*K.1^12,-1*K.1^4,-1*K.1^12,-1*K.1^-2,-1*K.1^-8,-1*K.1^-9,-1*K.1^8,-1*K.1^-4,-1*K.1^-11,-1*K.1^-6,-1*K.1^9,-1*K.1^8,-1*K.1^3,-1*K.1^7,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^3,-1*K.1^4,-1*K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1,-1*K.1^9,-1*K.1,-1*K.1^-4,-1*K.1^-4,-1*K.1^-12,-1*K.1^-9,-1*K.1^12,-1*K.1^9,-1*K.1^-8,-1*K.1^-7,-1*K.1^-7,-1*K.1^-1,-1*K.1^9,-1*K.1^-1,-1*K.1^4,-1*K.1^-7,-1*K.1,-1*K.1^-9,-1*K.1^-6,-1*K.1^11,-1*K.1^11,-1*K.1^-8,-1*K.1^7,-1*K.1^-11,-1*K.1^-6,-1*K.1^9,-1*K.1^-1,-1*K.1^-11,-1*K.1^4,-1*K.1^-12,-1*K.1^-2,-1*K.1^-6,-1*K.1^4,-1*K.1^-3,-1*K.1^6,-1*K.1^-2,-1*K.1^6,-1*K.1^2,-1*K.1^-12,-1*K.1^-3,-1*K.1^-4,-1*K.1^8,-1*K.1^-3,-1*K.1^3,-1*K.1,-1*K.1^-9,-1*K.1^-12,-1*K.1^-4,-1*K.1^-4,-1*K.1^12,-1*K.1^-2,-1*K.1^12,-1*K.1^-2,-1*K.1^12,-1*K.1^-4,-1*K.1^-3,-1*K.1^-12,-1*K.1^-2,-1*K.1^12,-1*K.1^4,-1*K.1^-3,-1*K.1^-12,-1*K.1^-2,-1*K.1^6,-1*K.1^-11,-1*K.1^3,-1*K.1^12,-1*K.1^11,-1*K.1^11,-1*K.1^-1,-1*K.1^9,-1*K.1,-1*K.1^-7,-1*K.1^-7,-1*K.1^-8,-1*K.1^-9,-1*K.1^-8,-1*K.1^-9,-1*K.1^-8,-1*K.1^-7,-1*K.1^-11,-1*K.1^-6,-1*K.1^9,-1*K.1^-1,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1^-11,-1*K.1^7,-1*K.1^8,-1*K.1^2,-1*K.1^-6,-1*K.1^11,-1*K.1^-7,-1*K.1^-8,-1*K.1^9,-1*K.1^-1,-1*K.1^4,-1*K.1^-3,-1*K.1^8,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1,-1*K.1^7,-1*K.1^-4,-1*K.1^8,-1*K.1^-9,-1*K.1^-6,-1*K.1^-11,-1*K.1^3,-1*K.1^-8,-1*K.1^-3,-1*K.1^11,-1*K.1^-1,-1*K.1^-9,-1*K.1^-12,-1*K.1^3,-1*K.1^-11,-1*K.1^-6,-1*K.1^2,-1*K.1^8,-1*K.1^3,-1*K.1^7,-1*K.1^6,-1*K.1^2,-1*K.1^8,-1*K.1^2,-1*K.1^-12,-1*K.1^-3,-1*K.1^4,-1*K.1^6,-1*K.1^-2,-1*K.1^6,-1*K.1^11,-1*K.1^11,-1*K.1^-7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^10,K.1^-10,K.1^-5,K.1^5,-1,-1,-1,-1,-1,-1,-1,-1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-9,K.1^8,K.1^6,K.1^3,K.1^-7,K.1^-2,K.1^11,K.1^-8,K.1^9,K.1^7,K.1^-3,K.1^2,K.1^-6,K.1^4,K.1^-11,K.1^-1,K.1,K.1^12,K.1^-12,K.1^-4,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^-11,K.1^-2,K.1^12,K.1^-1,K.1^3,K.1^-6,K.1^4,K.1^-12,K.1^9,K.1^2,K.1^9,K.1^2,K.1,K.1^6,K.1^-11,K.1^7,K.1^-12,K.1^-3,K.1^9,K.1^12,K.1^7,K.1^-8,K.1^-3,K.1^-1,K.1^12,K.1^-9,K.1^-8,K.1^4,K.1^-4,K.1^11,K.1^-6,K.1^4,K.1^-2,K.1^-2,K.1^6,K.1^-12,K.1^6,K.1^-7,K.1^-7,K.1^11,K.1^11,K.1^2,K.1^-7,K.1^-11,K.1^-3,K.1^8,K.1,K.1,K.1^3,K.1^-9,K.1^-9,K.1^3,K.1^-4,K.1^8,K.1^8,K.1^-4,K.1^-1,K.1^-8,K.1^-6,K.1^7,K.1^7,K.1^-7,K.1^4,K.1^2,K.1^-8,K.1^-4,K.1^11,K.1^11,K.1^9,K.1^-1,K.1^3,K.1^8,K.1^8,K.1^-4,K.1^6,K.1^-2,K.1^-12,K.1^-9,K.1^4,K.1^-7,K.1^-2,K.1^-12,K.1^-11,K.1^-6,K.1,K.1^3,K.1,K.1^12,K.1^-11,K.1^-1,K.1^2,K.1^-8,K.1^9,K.1^-3,K.1^-3,K.1^-9,K.1^6,K.1^7,K.1^12,K.1^-6,K.1^-9,K.1^12,K.1^11,K.1^-7,K.1^-6,K.1^-6,K.1^-2,K.1^6,K.1^4,K.1^-7,K.1^8,K.1^3,K.1^-12,K.1^2,K.1,K.1^3,K.1^-11,K.1^7,K.1^-9,K.1^4,K.1^-6,K.1^-11,K.1^-11,K.1^9,K.1^-2,K.1^6,K.1^-8,K.1^-4,K.1^2,K.1^9,K.1^12,K.1^11,K.1^2,K.1,K.1^-6,K.1,K.1^-3,K.1^-1,K.1^4,K.1^7,K.1^12,K.1^11,K.1^-9,K.1^-8,K.1^-3,K.1^-3,K.1^-12,K.1^7,K.1^-8,K.1^6,K.1^7,K.1^-9,K.1^8,K.1^-1,K.1^-1,K.1^4,K.1^9,K.1^-11,K.1^-7,K.1,K.1^-3,K.1^-2,K.1^-4,K.1^8,K.1^12,K.1^6,K.1^-8,K.1^-1,K.1^-7,K.1^11,K.1^3,K.1^-12,K.1^-12,K.1^-2,K.1^3,K.1^-4,K.1^-4,K.1^8,K.1^9,K.1^2,K.1^-3,K.1^4,K.1^-6,K.1^9,K.1^-6,K.1^-11,K.1^-3,K.1^6,K.1^-9,K.1^-8,K.1^2,K.1,K.1^11,K.1^-7,K.1^8,K.1^-2,K.1^8,K.1^3,K.1^11,K.1^-8,K.1^-7,K.1^7,K.1,K.1^-9,K.1^12,K.1^2,K.1^6,K.1^-4,K.1^-11,K.1^-1,K.1^9,K.1^-1,K.1^4,K.1^-4,K.1^12,K.1^7,K.1^3,K.1^-12,K.1^-2,K.1^-12,-1*K.1^-12,-1*K.1^-4,-1*K.1^-12,-1*K.1^2,-1*K.1^8,-1*K.1^9,-1*K.1^-8,-1*K.1^4,-1*K.1^11,-1*K.1^6,-1*K.1^-9,-1*K.1^-8,-1*K.1^-3,-1*K.1^-7,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-3,-1*K.1^-4,-1*K.1^-6,-1*K.1^-7,-1*K.1^-3,-1*K.1^-1,-1*K.1^-9,-1*K.1^-1,-1*K.1^4,-1*K.1^4,-1*K.1^12,-1*K.1^9,-1*K.1^-12,-1*K.1^-9,-1*K.1^8,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1^-9,-1*K.1,-1*K.1^-4,-1*K.1^7,-1*K.1^-1,-1*K.1^9,-1*K.1^6,-1*K.1^-11,-1*K.1^-11,-1*K.1^8,-1*K.1^-7,-1*K.1^11,-1*K.1^6,-1*K.1^-9,-1*K.1,-1*K.1^11,-1*K.1^-4,-1*K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^-4,-1*K.1^3,-1*K.1^-6,-1*K.1^2,-1*K.1^-6,-1*K.1^-2,-1*K.1^12,-1*K.1^3,-1*K.1^4,-1*K.1^-8,-1*K.1^3,-1*K.1^-3,-1*K.1^-1,-1*K.1^9,-1*K.1^12,-1*K.1^4,-1*K.1^4,-1*K.1^-12,-1*K.1^2,-1*K.1^-12,-1*K.1^2,-1*K.1^-12,-1*K.1^4,-1*K.1^3,-1*K.1^12,-1*K.1^2,-1*K.1^-12,-1*K.1^-4,-1*K.1^3,-1*K.1^12,-1*K.1^2,-1*K.1^-6,-1*K.1^11,-1*K.1^-3,-1*K.1^-12,-1*K.1^-11,-1*K.1^-11,-1*K.1,-1*K.1^-9,-1*K.1^-1,-1*K.1^7,-1*K.1^7,-1*K.1^8,-1*K.1^9,-1*K.1^8,-1*K.1^9,-1*K.1^8,-1*K.1^7,-1*K.1^11,-1*K.1^6,-1*K.1^-9,-1*K.1,-1*K.1^-7,-1*K.1^-7,-1*K.1^-1,-1*K.1^11,-1*K.1^-7,-1*K.1^-8,-1*K.1^-2,-1*K.1^6,-1*K.1^-11,-1*K.1^7,-1*K.1^8,-1*K.1^-9,-1*K.1,-1*K.1^-4,-1*K.1^3,-1*K.1^-8,-1*K.1^-2,-1*K.1^-6,-1*K.1^-2,-1*K.1^-1,-1*K.1^-7,-1*K.1^4,-1*K.1^-8,-1*K.1^9,-1*K.1^6,-1*K.1^11,-1*K.1^-3,-1*K.1^8,-1*K.1^3,-1*K.1^-11,-1*K.1,-1*K.1^9,-1*K.1^12,-1*K.1^-3,-1*K.1^11,-1*K.1^6,-1*K.1^-2,-1*K.1^-8,-1*K.1^-3,-1*K.1^-7,-1*K.1^-6,-1*K.1^-2,-1*K.1^-8,-1*K.1^-2,-1*K.1^12,-1*K.1^3,-1*K.1^-4,-1*K.1^-6,-1*K.1^2,-1*K.1^-6,-1*K.1^-11,-1*K.1^-11,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-10,K.1^10,K.1^5,K.1^-5,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-6,K.1^-3,K.1^4,K.1^2,K.1^12,K.1^7,K.1^-1,K.1^3,K.1^6,K.1^-12,K.1^-2,K.1^-7,K.1^-4,K.1^11,K.1,K.1^-9,K.1^9,K.1^8,K.1^-8,K.1^-11,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-10,K.1,K.1^7,K.1^8,K.1^-9,K.1^2,K.1^-4,K.1^11,K.1^-8,K.1^6,K.1^-7,K.1^6,K.1^-7,K.1^9,K.1^4,K.1,K.1^-12,K.1^-8,K.1^-2,K.1^6,K.1^8,K.1^-12,K.1^3,K.1^-2,K.1^-9,K.1^8,K.1^-6,K.1^3,K.1^11,K.1^-11,K.1^-1,K.1^-4,K.1^11,K.1^7,K.1^7,K.1^4,K.1^-8,K.1^4,K.1^12,K.1^12,K.1^-1,K.1^-1,K.1^-7,K.1^12,K.1,K.1^-2,K.1^-3,K.1^9,K.1^9,K.1^2,K.1^-6,K.1^-6,K.1^2,K.1^-11,K.1^-3,K.1^-3,K.1^-11,K.1^-9,K.1^3,K.1^-4,K.1^-12,K.1^-12,K.1^12,K.1^11,K.1^-7,K.1^3,K.1^-11,K.1^-1,K.1^-1,K.1^6,K.1^-9,K.1^2,K.1^-3,K.1^-3,K.1^-11,K.1^4,K.1^7,K.1^-8,K.1^-6,K.1^11,K.1^12,K.1^7,K.1^-8,K.1,K.1^-4,K.1^9,K.1^2,K.1^9,K.1^8,K.1,K.1^-9,K.1^-7,K.1^3,K.1^6,K.1^-2,K.1^-2,K.1^-6,K.1^4,K.1^-12,K.1^8,K.1^-4,K.1^-6,K.1^8,K.1^-1,K.1^12,K.1^-4,K.1^-4,K.1^7,K.1^4,K.1^11,K.1^12,K.1^-3,K.1^2,K.1^-8,K.1^-7,K.1^9,K.1^2,K.1,K.1^-12,K.1^-6,K.1^11,K.1^-4,K.1,K.1,K.1^6,K.1^7,K.1^4,K.1^3,K.1^-11,K.1^-7,K.1^6,K.1^8,K.1^-1,K.1^-7,K.1^9,K.1^-4,K.1^9,K.1^-2,K.1^-9,K.1^11,K.1^-12,K.1^8,K.1^-1,K.1^-6,K.1^3,K.1^-2,K.1^-2,K.1^-8,K.1^-12,K.1^3,K.1^4,K.1^-12,K.1^-6,K.1^-3,K.1^-9,K.1^-9,K.1^11,K.1^6,K.1,K.1^12,K.1^9,K.1^-2,K.1^7,K.1^-11,K.1^-3,K.1^8,K.1^4,K.1^3,K.1^-9,K.1^12,K.1^-1,K.1^2,K.1^-8,K.1^-8,K.1^7,K.1^2,K.1^-11,K.1^-11,K.1^-3,K.1^6,K.1^-7,K.1^-2,K.1^11,K.1^-4,K.1^6,K.1^-4,K.1,K.1^-2,K.1^4,K.1^-6,K.1^3,K.1^-7,K.1^9,K.1^-1,K.1^12,K.1^-3,K.1^7,K.1^-3,K.1^2,K.1^-1,K.1^3,K.1^12,K.1^-12,K.1^9,K.1^-6,K.1^8,K.1^-7,K.1^4,K.1^-11,K.1,K.1^-9,K.1^6,K.1^-9,K.1^11,K.1^-11,K.1^8,K.1^-12,K.1^2,K.1^-8,K.1^7,K.1^-8,-1*K.1^-8,-1*K.1^-11,-1*K.1^-8,-1*K.1^-7,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^11,-1*K.1^-1,-1*K.1^4,-1*K.1^-6,-1*K.1^3,-1*K.1^-2,-1*K.1^12,-1*K.1^9,-1*K.1^7,-1*K.1^-9,-1*K.1^-2,-1*K.1^-11,-1*K.1^-4,-1*K.1^12,-1*K.1^-2,-1*K.1^-9,-1*K.1^-6,-1*K.1^-9,-1*K.1^11,-1*K.1^11,-1*K.1^8,-1*K.1^6,-1*K.1^-8,-1*K.1^-6,-1*K.1^-3,-1*K.1^-12,-1*K.1^-12,-1*K.1^9,-1*K.1^-6,-1*K.1^9,-1*K.1^-11,-1*K.1^-12,-1*K.1^-9,-1*K.1^6,-1*K.1^4,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^12,-1*K.1^-1,-1*K.1^4,-1*K.1^-6,-1*K.1^9,-1*K.1^-1,-1*K.1^-11,-1*K.1^8,-1*K.1^-7,-1*K.1^4,-1*K.1^-11,-1*K.1^2,-1*K.1^-4,-1*K.1^-7,-1*K.1^-4,-1*K.1^7,-1*K.1^8,-1*K.1^2,-1*K.1^11,-1*K.1^3,-1*K.1^2,-1*K.1^-2,-1*K.1^-9,-1*K.1^6,-1*K.1^8,-1*K.1^11,-1*K.1^11,-1*K.1^-8,-1*K.1^-7,-1*K.1^-8,-1*K.1^-7,-1*K.1^-8,-1*K.1^11,-1*K.1^2,-1*K.1^8,-1*K.1^-7,-1*K.1^-8,-1*K.1^-11,-1*K.1^2,-1*K.1^8,-1*K.1^-7,-1*K.1^-4,-1*K.1^-1,-1*K.1^-2,-1*K.1^-8,-1*K.1,-1*K.1,-1*K.1^9,-1*K.1^-6,-1*K.1^-9,-1*K.1^-12,-1*K.1^-12,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^6,-1*K.1^-3,-1*K.1^-12,-1*K.1^-1,-1*K.1^4,-1*K.1^-6,-1*K.1^9,-1*K.1^12,-1*K.1^12,-1*K.1^-9,-1*K.1^-1,-1*K.1^12,-1*K.1^3,-1*K.1^7,-1*K.1^4,-1*K.1,-1*K.1^-12,-1*K.1^-3,-1*K.1^-6,-1*K.1^9,-1*K.1^-11,-1*K.1^2,-1*K.1^3,-1*K.1^7,-1*K.1^-4,-1*K.1^7,-1*K.1^-9,-1*K.1^12,-1*K.1^11,-1*K.1^3,-1*K.1^6,-1*K.1^4,-1*K.1^-1,-1*K.1^-2,-1*K.1^-3,-1*K.1^2,-1*K.1,-1*K.1^9,-1*K.1^6,-1*K.1^8,-1*K.1^-2,-1*K.1^-1,-1*K.1^4,-1*K.1^7,-1*K.1^3,-1*K.1^-2,-1*K.1^12,-1*K.1^-4,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^8,-1*K.1^2,-1*K.1^-11,-1*K.1^-4,-1*K.1^-7,-1*K.1^-4,-1*K.1,-1*K.1,-1*K.1^-12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^10,K.1^-10,K.1^-5,K.1^5,-1,-1,-1,-1,-1,-1,-1,-1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^6,K.1^3,K.1^-4,K.1^-2,K.1^-12,K.1^-7,K.1,K.1^-3,K.1^-6,K.1^12,K.1^2,K.1^7,K.1^4,K.1^-11,K.1^-1,K.1^9,K.1^-9,K.1^-8,K.1^8,K.1^11,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^-1,K.1^-7,K.1^-8,K.1^9,K.1^-2,K.1^4,K.1^-11,K.1^8,K.1^-6,K.1^7,K.1^-6,K.1^7,K.1^-9,K.1^-4,K.1^-1,K.1^12,K.1^8,K.1^2,K.1^-6,K.1^-8,K.1^12,K.1^-3,K.1^2,K.1^9,K.1^-8,K.1^6,K.1^-3,K.1^-11,K.1^11,K.1,K.1^4,K.1^-11,K.1^-7,K.1^-7,K.1^-4,K.1^8,K.1^-4,K.1^-12,K.1^-12,K.1,K.1,K.1^7,K.1^-12,K.1^-1,K.1^2,K.1^3,K.1^-9,K.1^-9,K.1^-2,K.1^6,K.1^6,K.1^-2,K.1^11,K.1^3,K.1^3,K.1^11,K.1^9,K.1^-3,K.1^4,K.1^12,K.1^12,K.1^-12,K.1^-11,K.1^7,K.1^-3,K.1^11,K.1,K.1,K.1^-6,K.1^9,K.1^-2,K.1^3,K.1^3,K.1^11,K.1^-4,K.1^-7,K.1^8,K.1^6,K.1^-11,K.1^-12,K.1^-7,K.1^8,K.1^-1,K.1^4,K.1^-9,K.1^-2,K.1^-9,K.1^-8,K.1^-1,K.1^9,K.1^7,K.1^-3,K.1^-6,K.1^2,K.1^2,K.1^6,K.1^-4,K.1^12,K.1^-8,K.1^4,K.1^6,K.1^-8,K.1,K.1^-12,K.1^4,K.1^4,K.1^-7,K.1^-4,K.1^-11,K.1^-12,K.1^3,K.1^-2,K.1^8,K.1^7,K.1^-9,K.1^-2,K.1^-1,K.1^12,K.1^6,K.1^-11,K.1^4,K.1^-1,K.1^-1,K.1^-6,K.1^-7,K.1^-4,K.1^-3,K.1^11,K.1^7,K.1^-6,K.1^-8,K.1,K.1^7,K.1^-9,K.1^4,K.1^-9,K.1^2,K.1^9,K.1^-11,K.1^12,K.1^-8,K.1,K.1^6,K.1^-3,K.1^2,K.1^2,K.1^8,K.1^12,K.1^-3,K.1^-4,K.1^12,K.1^6,K.1^3,K.1^9,K.1^9,K.1^-11,K.1^-6,K.1^-1,K.1^-12,K.1^-9,K.1^2,K.1^-7,K.1^11,K.1^3,K.1^-8,K.1^-4,K.1^-3,K.1^9,K.1^-12,K.1,K.1^-2,K.1^8,K.1^8,K.1^-7,K.1^-2,K.1^11,K.1^11,K.1^3,K.1^-6,K.1^7,K.1^2,K.1^-11,K.1^4,K.1^-6,K.1^4,K.1^-1,K.1^2,K.1^-4,K.1^6,K.1^-3,K.1^7,K.1^-9,K.1,K.1^-12,K.1^3,K.1^-7,K.1^3,K.1^-2,K.1,K.1^-3,K.1^-12,K.1^12,K.1^-9,K.1^6,K.1^-8,K.1^7,K.1^-4,K.1^11,K.1^-1,K.1^9,K.1^-6,K.1^9,K.1^-11,K.1^11,K.1^-8,K.1^12,K.1^-2,K.1^8,K.1^-7,K.1^8,-1*K.1^8,-1*K.1^11,-1*K.1^8,-1*K.1^7,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^-11,-1*K.1,-1*K.1^-4,-1*K.1^6,-1*K.1^-3,-1*K.1^2,-1*K.1^-12,-1*K.1^-9,-1*K.1^-7,-1*K.1^9,-1*K.1^2,-1*K.1^11,-1*K.1^4,-1*K.1^-12,-1*K.1^2,-1*K.1^9,-1*K.1^6,-1*K.1^9,-1*K.1^-11,-1*K.1^-11,-1*K.1^-8,-1*K.1^-6,-1*K.1^8,-1*K.1^6,-1*K.1^3,-1*K.1^12,-1*K.1^12,-1*K.1^-9,-1*K.1^6,-1*K.1^-9,-1*K.1^11,-1*K.1^12,-1*K.1^9,-1*K.1^-6,-1*K.1^-4,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^-12,-1*K.1,-1*K.1^-4,-1*K.1^6,-1*K.1^-9,-1*K.1,-1*K.1^11,-1*K.1^-8,-1*K.1^7,-1*K.1^-4,-1*K.1^11,-1*K.1^-2,-1*K.1^4,-1*K.1^7,-1*K.1^4,-1*K.1^-7,-1*K.1^-8,-1*K.1^-2,-1*K.1^-11,-1*K.1^-3,-1*K.1^-2,-1*K.1^2,-1*K.1^9,-1*K.1^-6,-1*K.1^-8,-1*K.1^-11,-1*K.1^-11,-1*K.1^8,-1*K.1^7,-1*K.1^8,-1*K.1^7,-1*K.1^8,-1*K.1^-11,-1*K.1^-2,-1*K.1^-8,-1*K.1^7,-1*K.1^8,-1*K.1^11,-1*K.1^-2,-1*K.1^-8,-1*K.1^7,-1*K.1^4,-1*K.1,-1*K.1^2,-1*K.1^8,-1*K.1^-1,-1*K.1^-1,-1*K.1^-9,-1*K.1^6,-1*K.1^9,-1*K.1^12,-1*K.1^12,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^-6,-1*K.1^3,-1*K.1^12,-1*K.1,-1*K.1^-4,-1*K.1^6,-1*K.1^-9,-1*K.1^-12,-1*K.1^-12,-1*K.1^9,-1*K.1,-1*K.1^-12,-1*K.1^-3,-1*K.1^-7,-1*K.1^-4,-1*K.1^-1,-1*K.1^12,-1*K.1^3,-1*K.1^6,-1*K.1^-9,-1*K.1^11,-1*K.1^-2,-1*K.1^-3,-1*K.1^-7,-1*K.1^4,-1*K.1^-7,-1*K.1^9,-1*K.1^-12,-1*K.1^-11,-1*K.1^-3,-1*K.1^-6,-1*K.1^-4,-1*K.1,-1*K.1^2,-1*K.1^3,-1*K.1^-2,-1*K.1^-1,-1*K.1^-9,-1*K.1^-6,-1*K.1^-8,-1*K.1^2,-1*K.1,-1*K.1^-4,-1*K.1^-7,-1*K.1^-3,-1*K.1^2,-1*K.1^-12,-1*K.1^4,-1*K.1^-7,-1*K.1^-3,-1*K.1^-7,-1*K.1^-8,-1*K.1^-2,-1*K.1^11,-1*K.1^4,-1*K.1^7,-1*K.1^4,-1*K.1^-1,-1*K.1^-1,-1*K.1^12]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-10,K.1^10,K.1^5,K.1^-5,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^4,K.1^2,K.1^-11,K.1^7,K.1^-8,K.1^12,K.1^9,K.1^-2,K.1^-4,K.1^8,K.1^-7,K.1^-12,K.1^11,K.1,K.1^-9,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^-1,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-10,K.1^-9,K.1^12,K.1^3,K.1^6,K.1^7,K.1^11,K.1,K.1^-3,K.1^-4,K.1^-12,K.1^-4,K.1^-12,K.1^-6,K.1^-11,K.1^-9,K.1^8,K.1^-3,K.1^-7,K.1^-4,K.1^3,K.1^8,K.1^-2,K.1^-7,K.1^6,K.1^3,K.1^4,K.1^-2,K.1,K.1^-1,K.1^9,K.1^11,K.1,K.1^12,K.1^12,K.1^-11,K.1^-3,K.1^-11,K.1^-8,K.1^-8,K.1^9,K.1^9,K.1^-12,K.1^-8,K.1^-9,K.1^-7,K.1^2,K.1^-6,K.1^-6,K.1^7,K.1^4,K.1^4,K.1^7,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1^6,K.1^-2,K.1^11,K.1^8,K.1^8,K.1^-8,K.1,K.1^-12,K.1^-2,K.1^-1,K.1^9,K.1^9,K.1^-4,K.1^6,K.1^7,K.1^2,K.1^2,K.1^-1,K.1^-11,K.1^12,K.1^-3,K.1^4,K.1,K.1^-8,K.1^12,K.1^-3,K.1^-9,K.1^11,K.1^-6,K.1^7,K.1^-6,K.1^3,K.1^-9,K.1^6,K.1^-12,K.1^-2,K.1^-4,K.1^-7,K.1^-7,K.1^4,K.1^-11,K.1^8,K.1^3,K.1^11,K.1^4,K.1^3,K.1^9,K.1^-8,K.1^11,K.1^11,K.1^12,K.1^-11,K.1,K.1^-8,K.1^2,K.1^7,K.1^-3,K.1^-12,K.1^-6,K.1^7,K.1^-9,K.1^8,K.1^4,K.1,K.1^11,K.1^-9,K.1^-9,K.1^-4,K.1^12,K.1^-11,K.1^-2,K.1^-1,K.1^-12,K.1^-4,K.1^3,K.1^9,K.1^-12,K.1^-6,K.1^11,K.1^-6,K.1^-7,K.1^6,K.1,K.1^8,K.1^3,K.1^9,K.1^4,K.1^-2,K.1^-7,K.1^-7,K.1^-3,K.1^8,K.1^-2,K.1^-11,K.1^8,K.1^4,K.1^2,K.1^6,K.1^6,K.1,K.1^-4,K.1^-9,K.1^-8,K.1^-6,K.1^-7,K.1^12,K.1^-1,K.1^2,K.1^3,K.1^-11,K.1^-2,K.1^6,K.1^-8,K.1^9,K.1^7,K.1^-3,K.1^-3,K.1^12,K.1^7,K.1^-1,K.1^-1,K.1^2,K.1^-4,K.1^-12,K.1^-7,K.1,K.1^11,K.1^-4,K.1^11,K.1^-9,K.1^-7,K.1^-11,K.1^4,K.1^-2,K.1^-12,K.1^-6,K.1^9,K.1^-8,K.1^2,K.1^12,K.1^2,K.1^7,K.1^9,K.1^-2,K.1^-8,K.1^8,K.1^-6,K.1^4,K.1^3,K.1^-12,K.1^-11,K.1^-1,K.1^-9,K.1^6,K.1^-4,K.1^6,K.1,K.1^-1,K.1^3,K.1^8,K.1^7,K.1^-3,K.1^12,K.1^-3,-1*K.1^-3,-1*K.1^-1,-1*K.1^-3,-1*K.1^-12,-1*K.1^2,-1*K.1^-4,-1*K.1^-2,-1*K.1,-1*K.1^9,-1*K.1^-11,-1*K.1^4,-1*K.1^-2,-1*K.1^-7,-1*K.1^-8,-1*K.1^-6,-1*K.1^12,-1*K.1^6,-1*K.1^-7,-1*K.1^-1,-1*K.1^11,-1*K.1^-8,-1*K.1^-7,-1*K.1^6,-1*K.1^4,-1*K.1^6,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^-4,-1*K.1^-3,-1*K.1^4,-1*K.1^2,-1*K.1^8,-1*K.1^8,-1*K.1^-6,-1*K.1^4,-1*K.1^-6,-1*K.1^-1,-1*K.1^8,-1*K.1^6,-1*K.1^-4,-1*K.1^-11,-1*K.1^-9,-1*K.1^-9,-1*K.1^2,-1*K.1^-8,-1*K.1^9,-1*K.1^-11,-1*K.1^4,-1*K.1^-6,-1*K.1^9,-1*K.1^-1,-1*K.1^3,-1*K.1^-12,-1*K.1^-11,-1*K.1^-1,-1*K.1^7,-1*K.1^11,-1*K.1^-12,-1*K.1^11,-1*K.1^12,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1^-2,-1*K.1^7,-1*K.1^-7,-1*K.1^6,-1*K.1^-4,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^-3,-1*K.1^-12,-1*K.1^-3,-1*K.1^-12,-1*K.1^-3,-1*K.1,-1*K.1^7,-1*K.1^3,-1*K.1^-12,-1*K.1^-3,-1*K.1^-1,-1*K.1^7,-1*K.1^3,-1*K.1^-12,-1*K.1^11,-1*K.1^9,-1*K.1^-7,-1*K.1^-3,-1*K.1^-9,-1*K.1^-9,-1*K.1^-6,-1*K.1^4,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^2,-1*K.1^-4,-1*K.1^2,-1*K.1^-4,-1*K.1^2,-1*K.1^8,-1*K.1^9,-1*K.1^-11,-1*K.1^4,-1*K.1^-6,-1*K.1^-8,-1*K.1^-8,-1*K.1^6,-1*K.1^9,-1*K.1^-8,-1*K.1^-2,-1*K.1^12,-1*K.1^-11,-1*K.1^-9,-1*K.1^8,-1*K.1^2,-1*K.1^4,-1*K.1^-6,-1*K.1^-1,-1*K.1^7,-1*K.1^-2,-1*K.1^12,-1*K.1^11,-1*K.1^12,-1*K.1^6,-1*K.1^-8,-1*K.1,-1*K.1^-2,-1*K.1^-4,-1*K.1^-11,-1*K.1^9,-1*K.1^-7,-1*K.1^2,-1*K.1^7,-1*K.1^-9,-1*K.1^-6,-1*K.1^-4,-1*K.1^3,-1*K.1^-7,-1*K.1^9,-1*K.1^-11,-1*K.1^12,-1*K.1^-2,-1*K.1^-7,-1*K.1^-8,-1*K.1^11,-1*K.1^12,-1*K.1^-2,-1*K.1^12,-1*K.1^3,-1*K.1^7,-1*K.1^-1,-1*K.1^11,-1*K.1^-12,-1*K.1^11,-1*K.1^-9,-1*K.1^-9,-1*K.1^8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^10,K.1^-10,K.1^-5,K.1^5,-1,-1,-1,-1,-1,-1,-1,-1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-4,K.1^-2,K.1^11,K.1^-7,K.1^8,K.1^-12,K.1^-9,K.1^2,K.1^4,K.1^-8,K.1^7,K.1^12,K.1^-11,K.1^-1,K.1^9,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^9,K.1^-12,K.1^-3,K.1^-6,K.1^-7,K.1^-11,K.1^-1,K.1^3,K.1^4,K.1^12,K.1^4,K.1^12,K.1^6,K.1^11,K.1^9,K.1^-8,K.1^3,K.1^7,K.1^4,K.1^-3,K.1^-8,K.1^2,K.1^7,K.1^-6,K.1^-3,K.1^-4,K.1^2,K.1^-1,K.1,K.1^-9,K.1^-11,K.1^-1,K.1^-12,K.1^-12,K.1^11,K.1^3,K.1^11,K.1^8,K.1^8,K.1^-9,K.1^-9,K.1^12,K.1^8,K.1^9,K.1^7,K.1^-2,K.1^6,K.1^6,K.1^-7,K.1^-4,K.1^-4,K.1^-7,K.1,K.1^-2,K.1^-2,K.1,K.1^-6,K.1^2,K.1^-11,K.1^-8,K.1^-8,K.1^8,K.1^-1,K.1^12,K.1^2,K.1,K.1^-9,K.1^-9,K.1^4,K.1^-6,K.1^-7,K.1^-2,K.1^-2,K.1,K.1^11,K.1^-12,K.1^3,K.1^-4,K.1^-1,K.1^8,K.1^-12,K.1^3,K.1^9,K.1^-11,K.1^6,K.1^-7,K.1^6,K.1^-3,K.1^9,K.1^-6,K.1^12,K.1^2,K.1^4,K.1^7,K.1^7,K.1^-4,K.1^11,K.1^-8,K.1^-3,K.1^-11,K.1^-4,K.1^-3,K.1^-9,K.1^8,K.1^-11,K.1^-11,K.1^-12,K.1^11,K.1^-1,K.1^8,K.1^-2,K.1^-7,K.1^3,K.1^12,K.1^6,K.1^-7,K.1^9,K.1^-8,K.1^-4,K.1^-1,K.1^-11,K.1^9,K.1^9,K.1^4,K.1^-12,K.1^11,K.1^2,K.1,K.1^12,K.1^4,K.1^-3,K.1^-9,K.1^12,K.1^6,K.1^-11,K.1^6,K.1^7,K.1^-6,K.1^-1,K.1^-8,K.1^-3,K.1^-9,K.1^-4,K.1^2,K.1^7,K.1^7,K.1^3,K.1^-8,K.1^2,K.1^11,K.1^-8,K.1^-4,K.1^-2,K.1^-6,K.1^-6,K.1^-1,K.1^4,K.1^9,K.1^8,K.1^6,K.1^7,K.1^-12,K.1,K.1^-2,K.1^-3,K.1^11,K.1^2,K.1^-6,K.1^8,K.1^-9,K.1^-7,K.1^3,K.1^3,K.1^-12,K.1^-7,K.1,K.1,K.1^-2,K.1^4,K.1^12,K.1^7,K.1^-1,K.1^-11,K.1^4,K.1^-11,K.1^9,K.1^7,K.1^11,K.1^-4,K.1^2,K.1^12,K.1^6,K.1^-9,K.1^8,K.1^-2,K.1^-12,K.1^-2,K.1^-7,K.1^-9,K.1^2,K.1^8,K.1^-8,K.1^6,K.1^-4,K.1^-3,K.1^12,K.1^11,K.1,K.1^9,K.1^-6,K.1^4,K.1^-6,K.1^-1,K.1,K.1^-3,K.1^-8,K.1^-7,K.1^3,K.1^-12,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^12,-1*K.1^-2,-1*K.1^4,-1*K.1^2,-1*K.1^-1,-1*K.1^-9,-1*K.1^11,-1*K.1^-4,-1*K.1^2,-1*K.1^7,-1*K.1^8,-1*K.1^6,-1*K.1^-12,-1*K.1^-6,-1*K.1^7,-1*K.1,-1*K.1^-11,-1*K.1^8,-1*K.1^7,-1*K.1^-6,-1*K.1^-4,-1*K.1^-6,-1*K.1^-1,-1*K.1^-1,-1*K.1^-3,-1*K.1^4,-1*K.1^3,-1*K.1^-4,-1*K.1^-2,-1*K.1^-8,-1*K.1^-8,-1*K.1^6,-1*K.1^-4,-1*K.1^6,-1*K.1,-1*K.1^-8,-1*K.1^-6,-1*K.1^4,-1*K.1^11,-1*K.1^9,-1*K.1^9,-1*K.1^-2,-1*K.1^8,-1*K.1^-9,-1*K.1^11,-1*K.1^-4,-1*K.1^6,-1*K.1^-9,-1*K.1,-1*K.1^-3,-1*K.1^12,-1*K.1^11,-1*K.1,-1*K.1^-7,-1*K.1^-11,-1*K.1^12,-1*K.1^-11,-1*K.1^-12,-1*K.1^-3,-1*K.1^-7,-1*K.1^-1,-1*K.1^2,-1*K.1^-7,-1*K.1^7,-1*K.1^-6,-1*K.1^4,-1*K.1^-3,-1*K.1^-1,-1*K.1^-1,-1*K.1^3,-1*K.1^12,-1*K.1^3,-1*K.1^12,-1*K.1^3,-1*K.1^-1,-1*K.1^-7,-1*K.1^-3,-1*K.1^12,-1*K.1^3,-1*K.1,-1*K.1^-7,-1*K.1^-3,-1*K.1^12,-1*K.1^-11,-1*K.1^-9,-1*K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^6,-1*K.1^-4,-1*K.1^-6,-1*K.1^-8,-1*K.1^-8,-1*K.1^-2,-1*K.1^4,-1*K.1^-2,-1*K.1^4,-1*K.1^-2,-1*K.1^-8,-1*K.1^-9,-1*K.1^11,-1*K.1^-4,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^-6,-1*K.1^-9,-1*K.1^8,-1*K.1^2,-1*K.1^-12,-1*K.1^11,-1*K.1^9,-1*K.1^-8,-1*K.1^-2,-1*K.1^-4,-1*K.1^6,-1*K.1,-1*K.1^-7,-1*K.1^2,-1*K.1^-12,-1*K.1^-11,-1*K.1^-12,-1*K.1^-6,-1*K.1^8,-1*K.1^-1,-1*K.1^2,-1*K.1^4,-1*K.1^11,-1*K.1^-9,-1*K.1^7,-1*K.1^-2,-1*K.1^-7,-1*K.1^9,-1*K.1^6,-1*K.1^4,-1*K.1^-3,-1*K.1^7,-1*K.1^-9,-1*K.1^11,-1*K.1^-12,-1*K.1^2,-1*K.1^7,-1*K.1^8,-1*K.1^-11,-1*K.1^-12,-1*K.1^2,-1*K.1^-12,-1*K.1^-3,-1*K.1^-7,-1*K.1,-1*K.1^-11,-1*K.1^12,-1*K.1^-11,-1*K.1^9,-1*K.1^9,-1*K.1^-8]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-10,K.1^10,K.1^5,K.1^-5,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^5,K.1^5,K.1^-10,K.1^-10,K.1^10,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^10,K.1^-5,K.1^-5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-1,K.1^12,K.1^9,K.1^-8,K.1^2,K.1^-3,K.1^4,K.1^-12,K.1,K.1^-2,K.1^8,K.1^3,K.1^-9,K.1^6,K.1^-4,K.1^11,K.1^-11,K.1^-7,K.1^7,K.1^-6,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^10,-1*K.1^-5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-10,K.1^-4,K.1^-3,K.1^-7,K.1^11,K.1^-8,K.1^-9,K.1^6,K.1^7,K.1,K.1^3,K.1,K.1^3,K.1^-11,K.1^9,K.1^-4,K.1^-2,K.1^7,K.1^8,K.1,K.1^-7,K.1^-2,K.1^-12,K.1^8,K.1^11,K.1^-7,K.1^-1,K.1^-12,K.1^6,K.1^-6,K.1^4,K.1^-9,K.1^6,K.1^-3,K.1^-3,K.1^9,K.1^7,K.1^9,K.1^2,K.1^2,K.1^4,K.1^4,K.1^3,K.1^2,K.1^-4,K.1^8,K.1^12,K.1^-11,K.1^-11,K.1^-8,K.1^-1,K.1^-1,K.1^-8,K.1^-6,K.1^12,K.1^12,K.1^-6,K.1^11,K.1^-12,K.1^-9,K.1^-2,K.1^-2,K.1^2,K.1^6,K.1^3,K.1^-12,K.1^-6,K.1^4,K.1^4,K.1,K.1^11,K.1^-8,K.1^12,K.1^12,K.1^-6,K.1^9,K.1^-3,K.1^7,K.1^-1,K.1^6,K.1^2,K.1^-3,K.1^7,K.1^-4,K.1^-9,K.1^-11,K.1^-8,K.1^-11,K.1^-7,K.1^-4,K.1^11,K.1^3,K.1^-12,K.1,K.1^8,K.1^8,K.1^-1,K.1^9,K.1^-2,K.1^-7,K.1^-9,K.1^-1,K.1^-7,K.1^4,K.1^2,K.1^-9,K.1^-9,K.1^-3,K.1^9,K.1^6,K.1^2,K.1^12,K.1^-8,K.1^7,K.1^3,K.1^-11,K.1^-8,K.1^-4,K.1^-2,K.1^-1,K.1^6,K.1^-9,K.1^-4,K.1^-4,K.1,K.1^-3,K.1^9,K.1^-12,K.1^-6,K.1^3,K.1,K.1^-7,K.1^4,K.1^3,K.1^-11,K.1^-9,K.1^-11,K.1^8,K.1^11,K.1^6,K.1^-2,K.1^-7,K.1^4,K.1^-1,K.1^-12,K.1^8,K.1^8,K.1^7,K.1^-2,K.1^-12,K.1^9,K.1^-2,K.1^-1,K.1^12,K.1^11,K.1^11,K.1^6,K.1,K.1^-4,K.1^2,K.1^-11,K.1^8,K.1^-3,K.1^-6,K.1^12,K.1^-7,K.1^9,K.1^-12,K.1^11,K.1^2,K.1^4,K.1^-8,K.1^7,K.1^7,K.1^-3,K.1^-8,K.1^-6,K.1^-6,K.1^12,K.1,K.1^3,K.1^8,K.1^6,K.1^-9,K.1,K.1^-9,K.1^-4,K.1^8,K.1^9,K.1^-1,K.1^-12,K.1^3,K.1^-11,K.1^4,K.1^2,K.1^12,K.1^-3,K.1^12,K.1^-8,K.1^4,K.1^-12,K.1^2,K.1^-2,K.1^-11,K.1^-1,K.1^-7,K.1^3,K.1^9,K.1^-6,K.1^-4,K.1^11,K.1,K.1^11,K.1^6,K.1^-6,K.1^-7,K.1^-2,K.1^-8,K.1^7,K.1^-3,K.1^7,-1*K.1^7,-1*K.1^-6,-1*K.1^7,-1*K.1^3,-1*K.1^12,-1*K.1,-1*K.1^-12,-1*K.1^6,-1*K.1^4,-1*K.1^9,-1*K.1^-1,-1*K.1^-12,-1*K.1^8,-1*K.1^2,-1*K.1^-11,-1*K.1^-3,-1*K.1^11,-1*K.1^8,-1*K.1^-6,-1*K.1^-9,-1*K.1^2,-1*K.1^8,-1*K.1^11,-1*K.1^-1,-1*K.1^11,-1*K.1^6,-1*K.1^6,-1*K.1^-7,-1*K.1,-1*K.1^7,-1*K.1^-1,-1*K.1^12,-1*K.1^-2,-1*K.1^-2,-1*K.1^-11,-1*K.1^-1,-1*K.1^-11,-1*K.1^-6,-1*K.1^-2,-1*K.1^11,-1*K.1,-1*K.1^9,-1*K.1^-4,-1*K.1^-4,-1*K.1^12,-1*K.1^2,-1*K.1^4,-1*K.1^9,-1*K.1^-1,-1*K.1^-11,-1*K.1^4,-1*K.1^-6,-1*K.1^-7,-1*K.1^3,-1*K.1^9,-1*K.1^-6,-1*K.1^-8,-1*K.1^-9,-1*K.1^3,-1*K.1^-9,-1*K.1^-3,-1*K.1^-7,-1*K.1^-8,-1*K.1^6,-1*K.1^-12,-1*K.1^-8,-1*K.1^8,-1*K.1^11,-1*K.1,-1*K.1^-7,-1*K.1^6,-1*K.1^6,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^6,-1*K.1^-8,-1*K.1^-7,-1*K.1^3,-1*K.1^7,-1*K.1^-6,-1*K.1^-8,-1*K.1^-7,-1*K.1^3,-1*K.1^-9,-1*K.1^4,-1*K.1^8,-1*K.1^7,-1*K.1^-4,-1*K.1^-4,-1*K.1^-11,-1*K.1^-1,-1*K.1^11,-1*K.1^-2,-1*K.1^-2,-1*K.1^12,-1*K.1,-1*K.1^12,-1*K.1,-1*K.1^12,-1*K.1^-2,-1*K.1^4,-1*K.1^9,-1*K.1^-1,-1*K.1^-11,-1*K.1^2,-1*K.1^2,-1*K.1^11,-1*K.1^4,-1*K.1^2,-1*K.1^-12,-1*K.1^-3,-1*K.1^9,-1*K.1^-4,-1*K.1^-2,-1*K.1^12,-1*K.1^-1,-1*K.1^-11,-1*K.1^-6,-1*K.1^-8,-1*K.1^-12,-1*K.1^-3,-1*K.1^-9,-1*K.1^-3,-1*K.1^11,-1*K.1^2,-1*K.1^6,-1*K.1^-12,-1*K.1,-1*K.1^9,-1*K.1^4,-1*K.1^8,-1*K.1^12,-1*K.1^-8,-1*K.1^-4,-1*K.1^-11,-1*K.1,-1*K.1^-7,-1*K.1^8,-1*K.1^4,-1*K.1^9,-1*K.1^-3,-1*K.1^-12,-1*K.1^8,-1*K.1^2,-1*K.1^-9,-1*K.1^-3,-1*K.1^-12,-1*K.1^-3,-1*K.1^-7,-1*K.1^-8,-1*K.1^-6,-1*K.1^-9,-1*K.1^3,-1*K.1^-9,-1*K.1^-4,-1*K.1^-4,-1*K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^10,K.1^-10,K.1^-5,K.1^5,-1,-1,-1,-1,-1,-1,-1,-1,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-5,K.1^-5,K.1^10,K.1^10,K.1^-10,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^-10,K.1^5,K.1^5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1,K.1^-12,K.1^-9,K.1^8,K.1^-2,K.1^3,K.1^-4,K.1^12,K.1^-1,K.1^2,K.1^-8,K.1^-3,K.1^9,K.1^-6,K.1^4,K.1^-11,K.1^11,K.1^7,K.1^-7,K.1^6,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-5,-1*K.1^-10,-1*K.1^5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^10,-1*K.1^10,K.1^4,K.1^3,K.1^7,K.1^-11,K.1^8,K.1^9,K.1^-6,K.1^-7,K.1^-1,K.1^-3,K.1^-1,K.1^-3,K.1^11,K.1^-9,K.1^4,K.1^2,K.1^-7,K.1^-8,K.1^-1,K.1^7,K.1^2,K.1^12,K.1^-8,K.1^-11,K.1^7,K.1,K.1^12,K.1^-6,K.1^6,K.1^-4,K.1^9,K.1^-6,K.1^3,K.1^3,K.1^-9,K.1^-7,K.1^-9,K.1^-2,K.1^-2,K.1^-4,K.1^-4,K.1^-3,K.1^-2,K.1^4,K.1^-8,K.1^-12,K.1^11,K.1^11,K.1^8,K.1,K.1,K.1^8,K.1^6,K.1^-12,K.1^-12,K.1^6,K.1^-11,K.1^12,K.1^9,K.1^2,K.1^2,K.1^-2,K.1^-6,K.1^-3,K.1^12,K.1^6,K.1^-4,K.1^-4,K.1^-1,K.1^-11,K.1^8,K.1^-12,K.1^-12,K.1^6,K.1^-9,K.1^3,K.1^-7,K.1,K.1^-6,K.1^-2,K.1^3,K.1^-7,K.1^4,K.1^9,K.1^11,K.1^8,K.1^11,K.1^7,K.1^4,K.1^-11,K.1^-3,K.1^12,K.1^-1,K.1^-8,K.1^-8,K.1,K.1^-9,K.1^2,K.1^7,K.1^9,K.1,K.1^7,K.1^-4,K.1^-2,K.1^9,K.1^9,K.1^3,K.1^-9,K.1^-6,K.1^-2,K.1^-12,K.1^8,K.1^-7,K.1^-3,K.1^11,K.1^8,K.1^4,K.1^2,K.1,K.1^-6,K.1^9,K.1^4,K.1^4,K.1^-1,K.1^3,K.1^-9,K.1^12,K.1^6,K.1^-3,K.1^-1,K.1^7,K.1^-4,K.1^-3,K.1^11,K.1^9,K.1^11,K.1^-8,K.1^-11,K.1^-6,K.1^2,K.1^7,K.1^-4,K.1,K.1^12,K.1^-8,K.1^-8,K.1^-7,K.1^2,K.1^12,K.1^-9,K.1^2,K.1,K.1^-12,K.1^-11,K.1^-11,K.1^-6,K.1^-1,K.1^4,K.1^-2,K.1^11,K.1^-8,K.1^3,K.1^6,K.1^-12,K.1^7,K.1^-9,K.1^12,K.1^-11,K.1^-2,K.1^-4,K.1^8,K.1^-7,K.1^-7,K.1^3,K.1^8,K.1^6,K.1^6,K.1^-12,K.1^-1,K.1^-3,K.1^-8,K.1^-6,K.1^9,K.1^-1,K.1^9,K.1^4,K.1^-8,K.1^-9,K.1,K.1^12,K.1^-3,K.1^11,K.1^-4,K.1^-2,K.1^-12,K.1^3,K.1^-12,K.1^8,K.1^-4,K.1^12,K.1^-2,K.1^2,K.1^11,K.1,K.1^7,K.1^-3,K.1^-9,K.1^6,K.1^4,K.1^-11,K.1^-1,K.1^-11,K.1^-6,K.1^6,K.1^7,K.1^2,K.1^8,K.1^-7,K.1^3,K.1^-7,-1*K.1^-7,-1*K.1^6,-1*K.1^-7,-1*K.1^-3,-1*K.1^-12,-1*K.1^-1,-1*K.1^12,-1*K.1^-6,-1*K.1^-4,-1*K.1^-9,-1*K.1,-1*K.1^12,-1*K.1^-8,-1*K.1^-2,-1*K.1^11,-1*K.1^3,-1*K.1^-11,-1*K.1^-8,-1*K.1^6,-1*K.1^9,-1*K.1^-2,-1*K.1^-8,-1*K.1^-11,-1*K.1,-1*K.1^-11,-1*K.1^-6,-1*K.1^-6,-1*K.1^7,-1*K.1^-1,-1*K.1^-7,-1*K.1,-1*K.1^-12,-1*K.1^2,-1*K.1^2,-1*K.1^11,-1*K.1,-1*K.1^11,-1*K.1^6,-1*K.1^2,-1*K.1^-11,-1*K.1^-1,-1*K.1^-9,-1*K.1^4,-1*K.1^4,-1*K.1^-12,-1*K.1^-2,-1*K.1^-4,-1*K.1^-9,-1*K.1,-1*K.1^11,-1*K.1^-4,-1*K.1^6,-1*K.1^7,-1*K.1^-3,-1*K.1^-9,-1*K.1^6,-1*K.1^8,-1*K.1^9,-1*K.1^-3,-1*K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^8,-1*K.1^-6,-1*K.1^12,-1*K.1^8,-1*K.1^-8,-1*K.1^-11,-1*K.1^-1,-1*K.1^7,-1*K.1^-6,-1*K.1^-6,-1*K.1^-7,-1*K.1^-3,-1*K.1^-7,-1*K.1^-3,-1*K.1^-7,-1*K.1^-6,-1*K.1^8,-1*K.1^7,-1*K.1^-3,-1*K.1^-7,-1*K.1^6,-1*K.1^8,-1*K.1^7,-1*K.1^-3,-1*K.1^9,-1*K.1^-4,-1*K.1^-8,-1*K.1^-7,-1*K.1^4,-1*K.1^4,-1*K.1^11,-1*K.1,-1*K.1^-11,-1*K.1^2,-1*K.1^2,-1*K.1^-12,-1*K.1^-1,-1*K.1^-12,-1*K.1^-1,-1*K.1^-12,-1*K.1^2,-1*K.1^-4,-1*K.1^-9,-1*K.1,-1*K.1^11,-1*K.1^-2,-1*K.1^-2,-1*K.1^-11,-1*K.1^-4,-1*K.1^-2,-1*K.1^12,-1*K.1^3,-1*K.1^-9,-1*K.1^4,-1*K.1^2,-1*K.1^-12,-1*K.1,-1*K.1^11,-1*K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^-11,-1*K.1^-2,-1*K.1^-6,-1*K.1^12,-1*K.1^-1,-1*K.1^-9,-1*K.1^-4,-1*K.1^-8,-1*K.1^-12,-1*K.1^8,-1*K.1^4,-1*K.1^11,-1*K.1^-1,-1*K.1^7,-1*K.1^-8,-1*K.1^-4,-1*K.1^-9,-1*K.1^3,-1*K.1^12,-1*K.1^-8,-1*K.1^-2,-1*K.1^9,-1*K.1^3,-1*K.1^12,-1*K.1^3,-1*K.1^7,-1*K.1^8,-1*K.1^6,-1*K.1^9,-1*K.1^-3,-1*K.1^9,-1*K.1^4,-1*K.1^4,-1*K.1^2]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^5,K.1^-10,K.1^10,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^12,K.1^6,K.1^-8,K.1^-4,K.1,K.1^11,K.1^2,K.1^-6,K.1^-12,K.1^-1,K.1^4,K.1^-11,K.1^8,K.1^3,K.1^-2,K.1^-7,K.1^7,K.1^9,K.1^-9,K.1^-3,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-5,-1*K.1^-5,K.1^-2,K.1^11,K.1^9,K.1^-7,K.1^-4,K.1^8,K.1^3,K.1^-9,K.1^-12,K.1^-11,K.1^-12,K.1^-11,K.1^7,K.1^-8,K.1^-2,K.1^-1,K.1^-9,K.1^4,K.1^-12,K.1^9,K.1^-1,K.1^-6,K.1^4,K.1^-7,K.1^9,K.1^12,K.1^-6,K.1^3,K.1^-3,K.1^2,K.1^8,K.1^3,K.1^11,K.1^11,K.1^-8,K.1^-9,K.1^-8,K.1,K.1,K.1^2,K.1^2,K.1^-11,K.1,K.1^-2,K.1^4,K.1^6,K.1^7,K.1^7,K.1^-4,K.1^12,K.1^12,K.1^-4,K.1^-3,K.1^6,K.1^6,K.1^-3,K.1^-7,K.1^-6,K.1^8,K.1^-1,K.1^-1,K.1,K.1^3,K.1^-11,K.1^-6,K.1^-3,K.1^2,K.1^2,K.1^-12,K.1^-7,K.1^-4,K.1^6,K.1^6,K.1^-3,K.1^-8,K.1^11,K.1^-9,K.1^12,K.1^3,K.1,K.1^11,K.1^-9,K.1^-2,K.1^8,K.1^7,K.1^-4,K.1^7,K.1^9,K.1^-2,K.1^-7,K.1^-11,K.1^-6,K.1^-12,K.1^4,K.1^4,K.1^12,K.1^-8,K.1^-1,K.1^9,K.1^8,K.1^12,K.1^9,K.1^2,K.1,K.1^8,K.1^8,K.1^11,K.1^-8,K.1^3,K.1,K.1^6,K.1^-4,K.1^-9,K.1^-11,K.1^7,K.1^-4,K.1^-2,K.1^-1,K.1^12,K.1^3,K.1^8,K.1^-2,K.1^-2,K.1^-12,K.1^11,K.1^-8,K.1^-6,K.1^-3,K.1^-11,K.1^-12,K.1^9,K.1^2,K.1^-11,K.1^7,K.1^8,K.1^7,K.1^4,K.1^-7,K.1^3,K.1^-1,K.1^9,K.1^2,K.1^12,K.1^-6,K.1^4,K.1^4,K.1^-9,K.1^-1,K.1^-6,K.1^-8,K.1^-1,K.1^12,K.1^6,K.1^-7,K.1^-7,K.1^3,K.1^-12,K.1^-2,K.1,K.1^7,K.1^4,K.1^11,K.1^-3,K.1^6,K.1^9,K.1^-8,K.1^-6,K.1^-7,K.1,K.1^2,K.1^-4,K.1^-9,K.1^-9,K.1^11,K.1^-4,K.1^-3,K.1^-3,K.1^6,K.1^-12,K.1^-11,K.1^4,K.1^3,K.1^8,K.1^-12,K.1^8,K.1^-2,K.1^4,K.1^-8,K.1^12,K.1^-6,K.1^-11,K.1^7,K.1^2,K.1,K.1^6,K.1^11,K.1^6,K.1^-4,K.1^2,K.1^-6,K.1,K.1^-1,K.1^7,K.1^12,K.1^9,K.1^-11,K.1^-8,K.1^-3,K.1^-2,K.1^-7,K.1^-12,K.1^-7,K.1^3,K.1^-3,K.1^9,K.1^-1,K.1^-4,K.1^-9,K.1^11,K.1^-9,-1*K.1^-9,-1*K.1^-3,-1*K.1^-9,-1*K.1^-11,-1*K.1^6,-1*K.1^-12,-1*K.1^-6,-1*K.1^3,-1*K.1^2,-1*K.1^-8,-1*K.1^12,-1*K.1^-6,-1*K.1^4,-1*K.1,-1*K.1^7,-1*K.1^11,-1*K.1^-7,-1*K.1^4,-1*K.1^-3,-1*K.1^8,-1*K.1,-1*K.1^4,-1*K.1^-7,-1*K.1^12,-1*K.1^-7,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^-12,-1*K.1^-9,-1*K.1^12,-1*K.1^6,-1*K.1^-1,-1*K.1^-1,-1*K.1^7,-1*K.1^12,-1*K.1^7,-1*K.1^-3,-1*K.1^-1,-1*K.1^-7,-1*K.1^-12,-1*K.1^-8,-1*K.1^-2,-1*K.1^-2,-1*K.1^6,-1*K.1,-1*K.1^2,-1*K.1^-8,-1*K.1^12,-1*K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^9,-1*K.1^-11,-1*K.1^-8,-1*K.1^-3,-1*K.1^-4,-1*K.1^8,-1*K.1^-11,-1*K.1^8,-1*K.1^11,-1*K.1^9,-1*K.1^-4,-1*K.1^3,-1*K.1^-6,-1*K.1^-4,-1*K.1^4,-1*K.1^-7,-1*K.1^-12,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^-9,-1*K.1^-11,-1*K.1^-9,-1*K.1^-11,-1*K.1^-9,-1*K.1^3,-1*K.1^-4,-1*K.1^9,-1*K.1^-11,-1*K.1^-9,-1*K.1^-3,-1*K.1^-4,-1*K.1^9,-1*K.1^-11,-1*K.1^8,-1*K.1^2,-1*K.1^4,-1*K.1^-9,-1*K.1^-2,-1*K.1^-2,-1*K.1^7,-1*K.1^12,-1*K.1^-7,-1*K.1^-1,-1*K.1^-1,-1*K.1^6,-1*K.1^-12,-1*K.1^6,-1*K.1^-12,-1*K.1^6,-1*K.1^-1,-1*K.1^2,-1*K.1^-8,-1*K.1^12,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^-7,-1*K.1^2,-1*K.1,-1*K.1^-6,-1*K.1^11,-1*K.1^-8,-1*K.1^-2,-1*K.1^-1,-1*K.1^6,-1*K.1^12,-1*K.1^7,-1*K.1^-3,-1*K.1^-4,-1*K.1^-6,-1*K.1^11,-1*K.1^8,-1*K.1^11,-1*K.1^-7,-1*K.1,-1*K.1^3,-1*K.1^-6,-1*K.1^-12,-1*K.1^-8,-1*K.1^2,-1*K.1^4,-1*K.1^6,-1*K.1^-4,-1*K.1^-2,-1*K.1^7,-1*K.1^-12,-1*K.1^9,-1*K.1^4,-1*K.1^2,-1*K.1^-8,-1*K.1^11,-1*K.1^-6,-1*K.1^4,-1*K.1,-1*K.1^8,-1*K.1^11,-1*K.1^-6,-1*K.1^11,-1*K.1^9,-1*K.1^-4,-1*K.1^-3,-1*K.1^8,-1*K.1^-11,-1*K.1^8,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-5,K.1^10,K.1^-10,-1,-1,-1,-1,-1,-1,-1,-1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^-12,K.1^-6,K.1^8,K.1^4,K.1^-1,K.1^-11,K.1^-2,K.1^6,K.1^12,K.1,K.1^-4,K.1^11,K.1^-8,K.1^-3,K.1^2,K.1^7,K.1^-7,K.1^-9,K.1^9,K.1^3,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^2,K.1^-11,K.1^-9,K.1^7,K.1^4,K.1^-8,K.1^-3,K.1^9,K.1^12,K.1^11,K.1^12,K.1^11,K.1^-7,K.1^8,K.1^2,K.1,K.1^9,K.1^-4,K.1^12,K.1^-9,K.1,K.1^6,K.1^-4,K.1^7,K.1^-9,K.1^-12,K.1^6,K.1^-3,K.1^3,K.1^-2,K.1^-8,K.1^-3,K.1^-11,K.1^-11,K.1^8,K.1^9,K.1^8,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^11,K.1^-1,K.1^2,K.1^-4,K.1^-6,K.1^-7,K.1^-7,K.1^4,K.1^-12,K.1^-12,K.1^4,K.1^3,K.1^-6,K.1^-6,K.1^3,K.1^7,K.1^6,K.1^-8,K.1,K.1,K.1^-1,K.1^-3,K.1^11,K.1^6,K.1^3,K.1^-2,K.1^-2,K.1^12,K.1^7,K.1^4,K.1^-6,K.1^-6,K.1^3,K.1^8,K.1^-11,K.1^9,K.1^-12,K.1^-3,K.1^-1,K.1^-11,K.1^9,K.1^2,K.1^-8,K.1^-7,K.1^4,K.1^-7,K.1^-9,K.1^2,K.1^7,K.1^11,K.1^6,K.1^12,K.1^-4,K.1^-4,K.1^-12,K.1^8,K.1,K.1^-9,K.1^-8,K.1^-12,K.1^-9,K.1^-2,K.1^-1,K.1^-8,K.1^-8,K.1^-11,K.1^8,K.1^-3,K.1^-1,K.1^-6,K.1^4,K.1^9,K.1^11,K.1^-7,K.1^4,K.1^2,K.1,K.1^-12,K.1^-3,K.1^-8,K.1^2,K.1^2,K.1^12,K.1^-11,K.1^8,K.1^6,K.1^3,K.1^11,K.1^12,K.1^-9,K.1^-2,K.1^11,K.1^-7,K.1^-8,K.1^-7,K.1^-4,K.1^7,K.1^-3,K.1,K.1^-9,K.1^-2,K.1^-12,K.1^6,K.1^-4,K.1^-4,K.1^9,K.1,K.1^6,K.1^8,K.1,K.1^-12,K.1^-6,K.1^7,K.1^7,K.1^-3,K.1^12,K.1^2,K.1^-1,K.1^-7,K.1^-4,K.1^-11,K.1^3,K.1^-6,K.1^-9,K.1^8,K.1^6,K.1^7,K.1^-1,K.1^-2,K.1^4,K.1^9,K.1^9,K.1^-11,K.1^4,K.1^3,K.1^3,K.1^-6,K.1^12,K.1^11,K.1^-4,K.1^-3,K.1^-8,K.1^12,K.1^-8,K.1^2,K.1^-4,K.1^8,K.1^-12,K.1^6,K.1^11,K.1^-7,K.1^-2,K.1^-1,K.1^-6,K.1^-11,K.1^-6,K.1^4,K.1^-2,K.1^6,K.1^-1,K.1,K.1^-7,K.1^-12,K.1^-9,K.1^11,K.1^8,K.1^3,K.1^2,K.1^7,K.1^12,K.1^7,K.1^-3,K.1^3,K.1^-9,K.1,K.1^4,K.1^9,K.1^-11,K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^-6,-1*K.1^12,-1*K.1^6,-1*K.1^-3,-1*K.1^-2,-1*K.1^8,-1*K.1^-12,-1*K.1^6,-1*K.1^-4,-1*K.1^-1,-1*K.1^-7,-1*K.1^-11,-1*K.1^7,-1*K.1^-4,-1*K.1^3,-1*K.1^-8,-1*K.1^-1,-1*K.1^-4,-1*K.1^7,-1*K.1^-12,-1*K.1^7,-1*K.1^-3,-1*K.1^-3,-1*K.1^-9,-1*K.1^12,-1*K.1^9,-1*K.1^-12,-1*K.1^-6,-1*K.1,-1*K.1,-1*K.1^-7,-1*K.1^-12,-1*K.1^-7,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^12,-1*K.1^8,-1*K.1^2,-1*K.1^2,-1*K.1^-6,-1*K.1^-1,-1*K.1^-2,-1*K.1^8,-1*K.1^-12,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^-9,-1*K.1^11,-1*K.1^8,-1*K.1^3,-1*K.1^4,-1*K.1^-8,-1*K.1^11,-1*K.1^-8,-1*K.1^-11,-1*K.1^-9,-1*K.1^4,-1*K.1^-3,-1*K.1^6,-1*K.1^4,-1*K.1^-4,-1*K.1^7,-1*K.1^12,-1*K.1^-9,-1*K.1^-3,-1*K.1^-3,-1*K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^-3,-1*K.1^4,-1*K.1^-9,-1*K.1^11,-1*K.1^9,-1*K.1^3,-1*K.1^4,-1*K.1^-9,-1*K.1^11,-1*K.1^-8,-1*K.1^-2,-1*K.1^-4,-1*K.1^9,-1*K.1^2,-1*K.1^2,-1*K.1^-7,-1*K.1^-12,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^-6,-1*K.1^12,-1*K.1^-6,-1*K.1^12,-1*K.1^-6,-1*K.1,-1*K.1^-2,-1*K.1^8,-1*K.1^-12,-1*K.1^-7,-1*K.1^-1,-1*K.1^-1,-1*K.1^7,-1*K.1^-2,-1*K.1^-1,-1*K.1^6,-1*K.1^-11,-1*K.1^8,-1*K.1^2,-1*K.1,-1*K.1^-6,-1*K.1^-12,-1*K.1^-7,-1*K.1^3,-1*K.1^4,-1*K.1^6,-1*K.1^-11,-1*K.1^-8,-1*K.1^-11,-1*K.1^7,-1*K.1^-1,-1*K.1^-3,-1*K.1^6,-1*K.1^12,-1*K.1^8,-1*K.1^-2,-1*K.1^-4,-1*K.1^-6,-1*K.1^4,-1*K.1^2,-1*K.1^-7,-1*K.1^12,-1*K.1^-9,-1*K.1^-4,-1*K.1^-2,-1*K.1^8,-1*K.1^-11,-1*K.1^6,-1*K.1^-4,-1*K.1^-1,-1*K.1^-8,-1*K.1^-11,-1*K.1^6,-1*K.1^-11,-1*K.1^-9,-1*K.1^4,-1*K.1^3,-1*K.1^-8,-1*K.1^11,-1*K.1^-8,-1*K.1^2,-1*K.1^2,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^5,K.1^-10,K.1^10,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-8,K.1^-4,K.1^-3,K.1^11,K.1^-9,K.1,K.1^7,K.1^4,K.1^8,K.1^9,K.1^-11,K.1^-1,K.1^3,K.1^-2,K.1^-7,K.1^-12,K.1^12,K.1^-6,K.1^6,K.1^2,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-5,-1*K.1^-5,K.1^-7,K.1,K.1^-6,K.1^-12,K.1^11,K.1^3,K.1^-2,K.1^6,K.1^8,K.1^-1,K.1^8,K.1^-1,K.1^12,K.1^-3,K.1^-7,K.1^9,K.1^6,K.1^-11,K.1^8,K.1^-6,K.1^9,K.1^4,K.1^-11,K.1^-12,K.1^-6,K.1^-8,K.1^4,K.1^-2,K.1^2,K.1^7,K.1^3,K.1^-2,K.1,K.1,K.1^-3,K.1^6,K.1^-3,K.1^-9,K.1^-9,K.1^7,K.1^7,K.1^-1,K.1^-9,K.1^-7,K.1^-11,K.1^-4,K.1^12,K.1^12,K.1^11,K.1^-8,K.1^-8,K.1^11,K.1^2,K.1^-4,K.1^-4,K.1^2,K.1^-12,K.1^4,K.1^3,K.1^9,K.1^9,K.1^-9,K.1^-2,K.1^-1,K.1^4,K.1^2,K.1^7,K.1^7,K.1^8,K.1^-12,K.1^11,K.1^-4,K.1^-4,K.1^2,K.1^-3,K.1,K.1^6,K.1^-8,K.1^-2,K.1^-9,K.1,K.1^6,K.1^-7,K.1^3,K.1^12,K.1^11,K.1^12,K.1^-6,K.1^-7,K.1^-12,K.1^-1,K.1^4,K.1^8,K.1^-11,K.1^-11,K.1^-8,K.1^-3,K.1^9,K.1^-6,K.1^3,K.1^-8,K.1^-6,K.1^7,K.1^-9,K.1^3,K.1^3,K.1,K.1^-3,K.1^-2,K.1^-9,K.1^-4,K.1^11,K.1^6,K.1^-1,K.1^12,K.1^11,K.1^-7,K.1^9,K.1^-8,K.1^-2,K.1^3,K.1^-7,K.1^-7,K.1^8,K.1,K.1^-3,K.1^4,K.1^2,K.1^-1,K.1^8,K.1^-6,K.1^7,K.1^-1,K.1^12,K.1^3,K.1^12,K.1^-11,K.1^-12,K.1^-2,K.1^9,K.1^-6,K.1^7,K.1^-8,K.1^4,K.1^-11,K.1^-11,K.1^6,K.1^9,K.1^4,K.1^-3,K.1^9,K.1^-8,K.1^-4,K.1^-12,K.1^-12,K.1^-2,K.1^8,K.1^-7,K.1^-9,K.1^12,K.1^-11,K.1,K.1^2,K.1^-4,K.1^-6,K.1^-3,K.1^4,K.1^-12,K.1^-9,K.1^7,K.1^11,K.1^6,K.1^6,K.1,K.1^11,K.1^2,K.1^2,K.1^-4,K.1^8,K.1^-1,K.1^-11,K.1^-2,K.1^3,K.1^8,K.1^3,K.1^-7,K.1^-11,K.1^-3,K.1^-8,K.1^4,K.1^-1,K.1^12,K.1^7,K.1^-9,K.1^-4,K.1,K.1^-4,K.1^11,K.1^7,K.1^4,K.1^-9,K.1^9,K.1^12,K.1^-8,K.1^-6,K.1^-1,K.1^-3,K.1^2,K.1^-7,K.1^-12,K.1^8,K.1^-12,K.1^-2,K.1^2,K.1^-6,K.1^9,K.1^11,K.1^6,K.1,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^6,-1*K.1^-1,-1*K.1^-4,-1*K.1^8,-1*K.1^4,-1*K.1^-2,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^4,-1*K.1^-11,-1*K.1^-9,-1*K.1^12,-1*K.1,-1*K.1^-12,-1*K.1^-11,-1*K.1^2,-1*K.1^3,-1*K.1^-9,-1*K.1^-11,-1*K.1^-12,-1*K.1^-8,-1*K.1^-12,-1*K.1^-2,-1*K.1^-2,-1*K.1^-6,-1*K.1^8,-1*K.1^6,-1*K.1^-8,-1*K.1^-4,-1*K.1^9,-1*K.1^9,-1*K.1^12,-1*K.1^-8,-1*K.1^12,-1*K.1^2,-1*K.1^9,-1*K.1^-12,-1*K.1^8,-1*K.1^-3,-1*K.1^-7,-1*K.1^-7,-1*K.1^-4,-1*K.1^-9,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^12,-1*K.1^7,-1*K.1^2,-1*K.1^-6,-1*K.1^-1,-1*K.1^-3,-1*K.1^2,-1*K.1^11,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1,-1*K.1^-6,-1*K.1^11,-1*K.1^-2,-1*K.1^4,-1*K.1^11,-1*K.1^-11,-1*K.1^-12,-1*K.1^8,-1*K.1^-6,-1*K.1^-2,-1*K.1^-2,-1*K.1^6,-1*K.1^-1,-1*K.1^6,-1*K.1^-1,-1*K.1^6,-1*K.1^-2,-1*K.1^11,-1*K.1^-6,-1*K.1^-1,-1*K.1^6,-1*K.1^2,-1*K.1^11,-1*K.1^-6,-1*K.1^-1,-1*K.1^3,-1*K.1^7,-1*K.1^-11,-1*K.1^6,-1*K.1^-7,-1*K.1^-7,-1*K.1^12,-1*K.1^-8,-1*K.1^-12,-1*K.1^9,-1*K.1^9,-1*K.1^-4,-1*K.1^8,-1*K.1^-4,-1*K.1^8,-1*K.1^-4,-1*K.1^9,-1*K.1^7,-1*K.1^-3,-1*K.1^-8,-1*K.1^12,-1*K.1^-9,-1*K.1^-9,-1*K.1^-12,-1*K.1^7,-1*K.1^-9,-1*K.1^4,-1*K.1,-1*K.1^-3,-1*K.1^-7,-1*K.1^9,-1*K.1^-4,-1*K.1^-8,-1*K.1^12,-1*K.1^2,-1*K.1^11,-1*K.1^4,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^-12,-1*K.1^-9,-1*K.1^-2,-1*K.1^4,-1*K.1^8,-1*K.1^-3,-1*K.1^7,-1*K.1^-11,-1*K.1^-4,-1*K.1^11,-1*K.1^-7,-1*K.1^12,-1*K.1^8,-1*K.1^-6,-1*K.1^-11,-1*K.1^7,-1*K.1^-3,-1*K.1,-1*K.1^4,-1*K.1^-11,-1*K.1^-9,-1*K.1^3,-1*K.1,-1*K.1^4,-1*K.1,-1*K.1^-6,-1*K.1^11,-1*K.1^2,-1*K.1^3,-1*K.1^-1,-1*K.1^3,-1*K.1^-7,-1*K.1^-7,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-5,K.1^10,K.1^-10,-1,-1,-1,-1,-1,-1,-1,-1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^8,K.1^4,K.1^3,K.1^-11,K.1^9,K.1^-1,K.1^-7,K.1^-4,K.1^-8,K.1^-9,K.1^11,K.1,K.1^-3,K.1^2,K.1^7,K.1^12,K.1^-12,K.1^6,K.1^-6,K.1^-2,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^7,K.1^-1,K.1^6,K.1^12,K.1^-11,K.1^-3,K.1^2,K.1^-6,K.1^-8,K.1,K.1^-8,K.1,K.1^-12,K.1^3,K.1^7,K.1^-9,K.1^-6,K.1^11,K.1^-8,K.1^6,K.1^-9,K.1^-4,K.1^11,K.1^12,K.1^6,K.1^8,K.1^-4,K.1^2,K.1^-2,K.1^-7,K.1^-3,K.1^2,K.1^-1,K.1^-1,K.1^3,K.1^-6,K.1^3,K.1^9,K.1^9,K.1^-7,K.1^-7,K.1,K.1^9,K.1^7,K.1^11,K.1^4,K.1^-12,K.1^-12,K.1^-11,K.1^8,K.1^8,K.1^-11,K.1^-2,K.1^4,K.1^4,K.1^-2,K.1^12,K.1^-4,K.1^-3,K.1^-9,K.1^-9,K.1^9,K.1^2,K.1,K.1^-4,K.1^-2,K.1^-7,K.1^-7,K.1^-8,K.1^12,K.1^-11,K.1^4,K.1^4,K.1^-2,K.1^3,K.1^-1,K.1^-6,K.1^8,K.1^2,K.1^9,K.1^-1,K.1^-6,K.1^7,K.1^-3,K.1^-12,K.1^-11,K.1^-12,K.1^6,K.1^7,K.1^12,K.1,K.1^-4,K.1^-8,K.1^11,K.1^11,K.1^8,K.1^3,K.1^-9,K.1^6,K.1^-3,K.1^8,K.1^6,K.1^-7,K.1^9,K.1^-3,K.1^-3,K.1^-1,K.1^3,K.1^2,K.1^9,K.1^4,K.1^-11,K.1^-6,K.1,K.1^-12,K.1^-11,K.1^7,K.1^-9,K.1^8,K.1^2,K.1^-3,K.1^7,K.1^7,K.1^-8,K.1^-1,K.1^3,K.1^-4,K.1^-2,K.1,K.1^-8,K.1^6,K.1^-7,K.1,K.1^-12,K.1^-3,K.1^-12,K.1^11,K.1^12,K.1^2,K.1^-9,K.1^6,K.1^-7,K.1^8,K.1^-4,K.1^11,K.1^11,K.1^-6,K.1^-9,K.1^-4,K.1^3,K.1^-9,K.1^8,K.1^4,K.1^12,K.1^12,K.1^2,K.1^-8,K.1^7,K.1^9,K.1^-12,K.1^11,K.1^-1,K.1^-2,K.1^4,K.1^6,K.1^3,K.1^-4,K.1^12,K.1^9,K.1^-7,K.1^-11,K.1^-6,K.1^-6,K.1^-1,K.1^-11,K.1^-2,K.1^-2,K.1^4,K.1^-8,K.1,K.1^11,K.1^2,K.1^-3,K.1^-8,K.1^-3,K.1^7,K.1^11,K.1^3,K.1^8,K.1^-4,K.1,K.1^-12,K.1^-7,K.1^9,K.1^4,K.1^-1,K.1^4,K.1^-11,K.1^-7,K.1^-4,K.1^9,K.1^-9,K.1^-12,K.1^8,K.1^6,K.1,K.1^3,K.1^-2,K.1^7,K.1^12,K.1^-8,K.1^12,K.1^2,K.1^-2,K.1^6,K.1^-9,K.1^-11,K.1^-6,K.1^-1,K.1^-6,-1*K.1^-6,-1*K.1^-2,-1*K.1^-6,-1*K.1,-1*K.1^4,-1*K.1^-8,-1*K.1^-4,-1*K.1^2,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-4,-1*K.1^11,-1*K.1^9,-1*K.1^-12,-1*K.1^-1,-1*K.1^12,-1*K.1^11,-1*K.1^-2,-1*K.1^-3,-1*K.1^9,-1*K.1^11,-1*K.1^12,-1*K.1^8,-1*K.1^12,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^-8,-1*K.1^-6,-1*K.1^8,-1*K.1^4,-1*K.1^-9,-1*K.1^-9,-1*K.1^-12,-1*K.1^8,-1*K.1^-12,-1*K.1^-2,-1*K.1^-9,-1*K.1^12,-1*K.1^-8,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^4,-1*K.1^9,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-12,-1*K.1^-7,-1*K.1^-2,-1*K.1^6,-1*K.1,-1*K.1^3,-1*K.1^-2,-1*K.1^-11,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^-1,-1*K.1^6,-1*K.1^-11,-1*K.1^2,-1*K.1^-4,-1*K.1^-11,-1*K.1^11,-1*K.1^12,-1*K.1^-8,-1*K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^-6,-1*K.1,-1*K.1^-6,-1*K.1,-1*K.1^-6,-1*K.1^2,-1*K.1^-11,-1*K.1^6,-1*K.1,-1*K.1^-6,-1*K.1^-2,-1*K.1^-11,-1*K.1^6,-1*K.1,-1*K.1^-3,-1*K.1^-7,-1*K.1^11,-1*K.1^-6,-1*K.1^7,-1*K.1^7,-1*K.1^-12,-1*K.1^8,-1*K.1^12,-1*K.1^-9,-1*K.1^-9,-1*K.1^4,-1*K.1^-8,-1*K.1^4,-1*K.1^-8,-1*K.1^4,-1*K.1^-9,-1*K.1^-7,-1*K.1^3,-1*K.1^8,-1*K.1^-12,-1*K.1^9,-1*K.1^9,-1*K.1^12,-1*K.1^-7,-1*K.1^9,-1*K.1^-4,-1*K.1^-1,-1*K.1^3,-1*K.1^7,-1*K.1^-9,-1*K.1^4,-1*K.1^8,-1*K.1^-12,-1*K.1^-2,-1*K.1^-11,-1*K.1^-4,-1*K.1^-1,-1*K.1^-3,-1*K.1^-1,-1*K.1^12,-1*K.1^9,-1*K.1^2,-1*K.1^-4,-1*K.1^-8,-1*K.1^3,-1*K.1^-7,-1*K.1^11,-1*K.1^4,-1*K.1^-11,-1*K.1^7,-1*K.1^-12,-1*K.1^-8,-1*K.1^6,-1*K.1^11,-1*K.1^-7,-1*K.1^3,-1*K.1^-1,-1*K.1^-4,-1*K.1^11,-1*K.1^9,-1*K.1^-3,-1*K.1^-1,-1*K.1^-4,-1*K.1^-1,-1*K.1^6,-1*K.1^-11,-1*K.1^-2,-1*K.1^-3,-1*K.1,-1*K.1^-3,-1*K.1^7,-1*K.1^7,-1*K.1^-9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^5,K.1^-10,K.1^10,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^7,K.1^-9,K.1^12,K.1^6,K.1^11,K.1^-4,K.1^-3,K.1^9,K.1^-7,K.1^-11,K.1^-6,K.1^4,K.1^-12,K.1^8,K.1^3,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-8,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-5,-1*K.1^-5,K.1^3,K.1^-4,K.1^-1,K.1^-2,K.1^6,K.1^-12,K.1^8,K.1,K.1^-7,K.1^4,K.1^-7,K.1^4,K.1^2,K.1^12,K.1^3,K.1^-11,K.1,K.1^-6,K.1^-7,K.1^-1,K.1^-11,K.1^9,K.1^-6,K.1^-2,K.1^-1,K.1^7,K.1^9,K.1^8,K.1^-8,K.1^-3,K.1^-12,K.1^8,K.1^-4,K.1^-4,K.1^12,K.1,K.1^12,K.1^11,K.1^11,K.1^-3,K.1^-3,K.1^4,K.1^11,K.1^3,K.1^-6,K.1^-9,K.1^2,K.1^2,K.1^6,K.1^7,K.1^7,K.1^6,K.1^-8,K.1^-9,K.1^-9,K.1^-8,K.1^-2,K.1^9,K.1^-12,K.1^-11,K.1^-11,K.1^11,K.1^8,K.1^4,K.1^9,K.1^-8,K.1^-3,K.1^-3,K.1^-7,K.1^-2,K.1^6,K.1^-9,K.1^-9,K.1^-8,K.1^12,K.1^-4,K.1,K.1^7,K.1^8,K.1^11,K.1^-4,K.1,K.1^3,K.1^-12,K.1^2,K.1^6,K.1^2,K.1^-1,K.1^3,K.1^-2,K.1^4,K.1^9,K.1^-7,K.1^-6,K.1^-6,K.1^7,K.1^12,K.1^-11,K.1^-1,K.1^-12,K.1^7,K.1^-1,K.1^-3,K.1^11,K.1^-12,K.1^-12,K.1^-4,K.1^12,K.1^8,K.1^11,K.1^-9,K.1^6,K.1,K.1^4,K.1^2,K.1^6,K.1^3,K.1^-11,K.1^7,K.1^8,K.1^-12,K.1^3,K.1^3,K.1^-7,K.1^-4,K.1^12,K.1^9,K.1^-8,K.1^4,K.1^-7,K.1^-1,K.1^-3,K.1^4,K.1^2,K.1^-12,K.1^2,K.1^-6,K.1^-2,K.1^8,K.1^-11,K.1^-1,K.1^-3,K.1^7,K.1^9,K.1^-6,K.1^-6,K.1,K.1^-11,K.1^9,K.1^12,K.1^-11,K.1^7,K.1^-9,K.1^-2,K.1^-2,K.1^8,K.1^-7,K.1^3,K.1^11,K.1^2,K.1^-6,K.1^-4,K.1^-8,K.1^-9,K.1^-1,K.1^12,K.1^9,K.1^-2,K.1^11,K.1^-3,K.1^6,K.1,K.1,K.1^-4,K.1^6,K.1^-8,K.1^-8,K.1^-9,K.1^-7,K.1^4,K.1^-6,K.1^8,K.1^-12,K.1^-7,K.1^-12,K.1^3,K.1^-6,K.1^12,K.1^7,K.1^9,K.1^4,K.1^2,K.1^-3,K.1^11,K.1^-9,K.1^-4,K.1^-9,K.1^6,K.1^-3,K.1^9,K.1^11,K.1^-11,K.1^2,K.1^7,K.1^-1,K.1^4,K.1^12,K.1^-8,K.1^3,K.1^-2,K.1^-7,K.1^-2,K.1^8,K.1^-8,K.1^-1,K.1^-11,K.1^6,K.1,K.1^-4,K.1,-1*K.1,-1*K.1^-8,-1*K.1,-1*K.1^4,-1*K.1^-9,-1*K.1^-7,-1*K.1^9,-1*K.1^8,-1*K.1^-3,-1*K.1^12,-1*K.1^7,-1*K.1^9,-1*K.1^-6,-1*K.1^11,-1*K.1^2,-1*K.1^-4,-1*K.1^-2,-1*K.1^-6,-1*K.1^-8,-1*K.1^-12,-1*K.1^11,-1*K.1^-6,-1*K.1^-2,-1*K.1^7,-1*K.1^-2,-1*K.1^8,-1*K.1^8,-1*K.1^-1,-1*K.1^-7,-1*K.1,-1*K.1^7,-1*K.1^-9,-1*K.1^-11,-1*K.1^-11,-1*K.1^2,-1*K.1^7,-1*K.1^2,-1*K.1^-8,-1*K.1^-11,-1*K.1^-2,-1*K.1^-7,-1*K.1^12,-1*K.1^3,-1*K.1^3,-1*K.1^-9,-1*K.1^11,-1*K.1^-3,-1*K.1^12,-1*K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^-8,-1*K.1^-1,-1*K.1^4,-1*K.1^12,-1*K.1^-8,-1*K.1^6,-1*K.1^-12,-1*K.1^4,-1*K.1^-12,-1*K.1^-4,-1*K.1^-1,-1*K.1^6,-1*K.1^8,-1*K.1^9,-1*K.1^6,-1*K.1^-6,-1*K.1^-2,-1*K.1^-7,-1*K.1^-1,-1*K.1^8,-1*K.1^8,-1*K.1,-1*K.1^4,-1*K.1,-1*K.1^4,-1*K.1,-1*K.1^8,-1*K.1^6,-1*K.1^-1,-1*K.1^4,-1*K.1,-1*K.1^-8,-1*K.1^6,-1*K.1^-1,-1*K.1^4,-1*K.1^-12,-1*K.1^-3,-1*K.1^-6,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^2,-1*K.1^7,-1*K.1^-2,-1*K.1^-11,-1*K.1^-11,-1*K.1^-9,-1*K.1^-7,-1*K.1^-9,-1*K.1^-7,-1*K.1^-9,-1*K.1^-11,-1*K.1^-3,-1*K.1^12,-1*K.1^7,-1*K.1^2,-1*K.1^11,-1*K.1^11,-1*K.1^-2,-1*K.1^-3,-1*K.1^11,-1*K.1^9,-1*K.1^-4,-1*K.1^12,-1*K.1^3,-1*K.1^-11,-1*K.1^-9,-1*K.1^7,-1*K.1^2,-1*K.1^-8,-1*K.1^6,-1*K.1^9,-1*K.1^-4,-1*K.1^-12,-1*K.1^-4,-1*K.1^-2,-1*K.1^11,-1*K.1^8,-1*K.1^9,-1*K.1^-7,-1*K.1^12,-1*K.1^-3,-1*K.1^-6,-1*K.1^-9,-1*K.1^6,-1*K.1^3,-1*K.1^2,-1*K.1^-7,-1*K.1^-1,-1*K.1^-6,-1*K.1^-3,-1*K.1^12,-1*K.1^-4,-1*K.1^9,-1*K.1^-6,-1*K.1^11,-1*K.1^-12,-1*K.1^-4,-1*K.1^9,-1*K.1^-4,-1*K.1^-1,-1*K.1^6,-1*K.1^-8,-1*K.1^-12,-1*K.1^4,-1*K.1^-12,-1*K.1^3,-1*K.1^3,-1*K.1^-11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-5,K.1^10,K.1^-10,-1,-1,-1,-1,-1,-1,-1,-1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^-7,K.1^9,K.1^-12,K.1^-6,K.1^-11,K.1^4,K.1^3,K.1^-9,K.1^7,K.1^11,K.1^6,K.1^-4,K.1^12,K.1^-8,K.1^-3,K.1^2,K.1^-2,K.1,K.1^-1,K.1^8,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^-3,K.1^4,K.1,K.1^2,K.1^-6,K.1^12,K.1^-8,K.1^-1,K.1^7,K.1^-4,K.1^7,K.1^-4,K.1^-2,K.1^-12,K.1^-3,K.1^11,K.1^-1,K.1^6,K.1^7,K.1,K.1^11,K.1^-9,K.1^6,K.1^2,K.1,K.1^-7,K.1^-9,K.1^-8,K.1^8,K.1^3,K.1^12,K.1^-8,K.1^4,K.1^4,K.1^-12,K.1^-1,K.1^-12,K.1^-11,K.1^-11,K.1^3,K.1^3,K.1^-4,K.1^-11,K.1^-3,K.1^6,K.1^9,K.1^-2,K.1^-2,K.1^-6,K.1^-7,K.1^-7,K.1^-6,K.1^8,K.1^9,K.1^9,K.1^8,K.1^2,K.1^-9,K.1^12,K.1^11,K.1^11,K.1^-11,K.1^-8,K.1^-4,K.1^-9,K.1^8,K.1^3,K.1^3,K.1^7,K.1^2,K.1^-6,K.1^9,K.1^9,K.1^8,K.1^-12,K.1^4,K.1^-1,K.1^-7,K.1^-8,K.1^-11,K.1^4,K.1^-1,K.1^-3,K.1^12,K.1^-2,K.1^-6,K.1^-2,K.1,K.1^-3,K.1^2,K.1^-4,K.1^-9,K.1^7,K.1^6,K.1^6,K.1^-7,K.1^-12,K.1^11,K.1,K.1^12,K.1^-7,K.1,K.1^3,K.1^-11,K.1^12,K.1^12,K.1^4,K.1^-12,K.1^-8,K.1^-11,K.1^9,K.1^-6,K.1^-1,K.1^-4,K.1^-2,K.1^-6,K.1^-3,K.1^11,K.1^-7,K.1^-8,K.1^12,K.1^-3,K.1^-3,K.1^7,K.1^4,K.1^-12,K.1^-9,K.1^8,K.1^-4,K.1^7,K.1,K.1^3,K.1^-4,K.1^-2,K.1^12,K.1^-2,K.1^6,K.1^2,K.1^-8,K.1^11,K.1,K.1^3,K.1^-7,K.1^-9,K.1^6,K.1^6,K.1^-1,K.1^11,K.1^-9,K.1^-12,K.1^11,K.1^-7,K.1^9,K.1^2,K.1^2,K.1^-8,K.1^7,K.1^-3,K.1^-11,K.1^-2,K.1^6,K.1^4,K.1^8,K.1^9,K.1,K.1^-12,K.1^-9,K.1^2,K.1^-11,K.1^3,K.1^-6,K.1^-1,K.1^-1,K.1^4,K.1^-6,K.1^8,K.1^8,K.1^9,K.1^7,K.1^-4,K.1^6,K.1^-8,K.1^12,K.1^7,K.1^12,K.1^-3,K.1^6,K.1^-12,K.1^-7,K.1^-9,K.1^-4,K.1^-2,K.1^3,K.1^-11,K.1^9,K.1^4,K.1^9,K.1^-6,K.1^3,K.1^-9,K.1^-11,K.1^11,K.1^-2,K.1^-7,K.1,K.1^-4,K.1^-12,K.1^8,K.1^-3,K.1^2,K.1^7,K.1^2,K.1^-8,K.1^8,K.1,K.1^11,K.1^-6,K.1^-1,K.1^4,K.1^-1,-1*K.1^-1,-1*K.1^8,-1*K.1^-1,-1*K.1^-4,-1*K.1^9,-1*K.1^7,-1*K.1^-9,-1*K.1^-8,-1*K.1^3,-1*K.1^-12,-1*K.1^-7,-1*K.1^-9,-1*K.1^6,-1*K.1^-11,-1*K.1^-2,-1*K.1^4,-1*K.1^2,-1*K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^-11,-1*K.1^6,-1*K.1^2,-1*K.1^-7,-1*K.1^2,-1*K.1^-8,-1*K.1^-8,-1*K.1,-1*K.1^7,-1*K.1^-1,-1*K.1^-7,-1*K.1^9,-1*K.1^11,-1*K.1^11,-1*K.1^-2,-1*K.1^-7,-1*K.1^-2,-1*K.1^8,-1*K.1^11,-1*K.1^2,-1*K.1^7,-1*K.1^-12,-1*K.1^-3,-1*K.1^-3,-1*K.1^9,-1*K.1^-11,-1*K.1^3,-1*K.1^-12,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^8,-1*K.1,-1*K.1^-4,-1*K.1^-12,-1*K.1^8,-1*K.1^-6,-1*K.1^12,-1*K.1^-4,-1*K.1^12,-1*K.1^4,-1*K.1,-1*K.1^-6,-1*K.1^-8,-1*K.1^-9,-1*K.1^-6,-1*K.1^6,-1*K.1^2,-1*K.1^7,-1*K.1,-1*K.1^-8,-1*K.1^-8,-1*K.1^-1,-1*K.1^-4,-1*K.1^-1,-1*K.1^-4,-1*K.1^-1,-1*K.1^-8,-1*K.1^-6,-1*K.1,-1*K.1^-4,-1*K.1^-1,-1*K.1^8,-1*K.1^-6,-1*K.1,-1*K.1^-4,-1*K.1^12,-1*K.1^3,-1*K.1^6,-1*K.1^-1,-1*K.1^-3,-1*K.1^-3,-1*K.1^-2,-1*K.1^-7,-1*K.1^2,-1*K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^-12,-1*K.1^-7,-1*K.1^-2,-1*K.1^-11,-1*K.1^-11,-1*K.1^2,-1*K.1^3,-1*K.1^-11,-1*K.1^-9,-1*K.1^4,-1*K.1^-12,-1*K.1^-3,-1*K.1^11,-1*K.1^9,-1*K.1^-7,-1*K.1^-2,-1*K.1^8,-1*K.1^-6,-1*K.1^-9,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^2,-1*K.1^-11,-1*K.1^-8,-1*K.1^-9,-1*K.1^7,-1*K.1^-12,-1*K.1^3,-1*K.1^6,-1*K.1^9,-1*K.1^-6,-1*K.1^-3,-1*K.1^-2,-1*K.1^7,-1*K.1,-1*K.1^6,-1*K.1^3,-1*K.1^-12,-1*K.1^4,-1*K.1^-9,-1*K.1^6,-1*K.1^-11,-1*K.1^12,-1*K.1^4,-1*K.1^-9,-1*K.1^4,-1*K.1,-1*K.1^-6,-1*K.1^8,-1*K.1^12,-1*K.1^-4,-1*K.1^12,-1*K.1^-3,-1*K.1^-3,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^5,K.1^-10,K.1^10,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^-3,K.1^11,K.1^2,K.1,K.1^6,K.1^-9,K.1^12,K.1^-11,K.1^3,K.1^-6,K.1^-1,K.1^9,K.1^-2,K.1^-7,K.1^-12,K.1^8,K.1^-8,K.1^4,K.1^-4,K.1^7,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-5,-1*K.1^-5,K.1^-12,K.1^-9,K.1^4,K.1^8,K.1,K.1^-2,K.1^-7,K.1^-4,K.1^3,K.1^9,K.1^3,K.1^9,K.1^-8,K.1^2,K.1^-12,K.1^-6,K.1^-4,K.1^-1,K.1^3,K.1^4,K.1^-6,K.1^-11,K.1^-1,K.1^8,K.1^4,K.1^-3,K.1^-11,K.1^-7,K.1^7,K.1^12,K.1^-2,K.1^-7,K.1^-9,K.1^-9,K.1^2,K.1^-4,K.1^2,K.1^6,K.1^6,K.1^12,K.1^12,K.1^9,K.1^6,K.1^-12,K.1^-1,K.1^11,K.1^-8,K.1^-8,K.1,K.1^-3,K.1^-3,K.1,K.1^7,K.1^11,K.1^11,K.1^7,K.1^8,K.1^-11,K.1^-2,K.1^-6,K.1^-6,K.1^6,K.1^-7,K.1^9,K.1^-11,K.1^7,K.1^12,K.1^12,K.1^3,K.1^8,K.1,K.1^11,K.1^11,K.1^7,K.1^2,K.1^-9,K.1^-4,K.1^-3,K.1^-7,K.1^6,K.1^-9,K.1^-4,K.1^-12,K.1^-2,K.1^-8,K.1,K.1^-8,K.1^4,K.1^-12,K.1^8,K.1^9,K.1^-11,K.1^3,K.1^-1,K.1^-1,K.1^-3,K.1^2,K.1^-6,K.1^4,K.1^-2,K.1^-3,K.1^4,K.1^12,K.1^6,K.1^-2,K.1^-2,K.1^-9,K.1^2,K.1^-7,K.1^6,K.1^11,K.1,K.1^-4,K.1^9,K.1^-8,K.1,K.1^-12,K.1^-6,K.1^-3,K.1^-7,K.1^-2,K.1^-12,K.1^-12,K.1^3,K.1^-9,K.1^2,K.1^-11,K.1^7,K.1^9,K.1^3,K.1^4,K.1^12,K.1^9,K.1^-8,K.1^-2,K.1^-8,K.1^-1,K.1^8,K.1^-7,K.1^-6,K.1^4,K.1^12,K.1^-3,K.1^-11,K.1^-1,K.1^-1,K.1^-4,K.1^-6,K.1^-11,K.1^2,K.1^-6,K.1^-3,K.1^11,K.1^8,K.1^8,K.1^-7,K.1^3,K.1^-12,K.1^6,K.1^-8,K.1^-1,K.1^-9,K.1^7,K.1^11,K.1^4,K.1^2,K.1^-11,K.1^8,K.1^6,K.1^12,K.1,K.1^-4,K.1^-4,K.1^-9,K.1,K.1^7,K.1^7,K.1^11,K.1^3,K.1^9,K.1^-1,K.1^-7,K.1^-2,K.1^3,K.1^-2,K.1^-12,K.1^-1,K.1^2,K.1^-3,K.1^-11,K.1^9,K.1^-8,K.1^12,K.1^6,K.1^11,K.1^-9,K.1^11,K.1,K.1^12,K.1^-11,K.1^6,K.1^-6,K.1^-8,K.1^-3,K.1^4,K.1^9,K.1^2,K.1^7,K.1^-12,K.1^8,K.1^3,K.1^8,K.1^-7,K.1^7,K.1^4,K.1^-6,K.1,K.1^-4,K.1^-9,K.1^-4,-1*K.1^-4,-1*K.1^7,-1*K.1^-4,-1*K.1^9,-1*K.1^11,-1*K.1^3,-1*K.1^-11,-1*K.1^-7,-1*K.1^12,-1*K.1^2,-1*K.1^-3,-1*K.1^-11,-1*K.1^-1,-1*K.1^6,-1*K.1^-8,-1*K.1^-9,-1*K.1^8,-1*K.1^-1,-1*K.1^7,-1*K.1^-2,-1*K.1^6,-1*K.1^-1,-1*K.1^8,-1*K.1^-3,-1*K.1^8,-1*K.1^-7,-1*K.1^-7,-1*K.1^4,-1*K.1^3,-1*K.1^-4,-1*K.1^-3,-1*K.1^11,-1*K.1^-6,-1*K.1^-6,-1*K.1^-8,-1*K.1^-3,-1*K.1^-8,-1*K.1^7,-1*K.1^-6,-1*K.1^8,-1*K.1^3,-1*K.1^2,-1*K.1^-12,-1*K.1^-12,-1*K.1^11,-1*K.1^6,-1*K.1^12,-1*K.1^2,-1*K.1^-3,-1*K.1^-8,-1*K.1^12,-1*K.1^7,-1*K.1^4,-1*K.1^9,-1*K.1^2,-1*K.1^7,-1*K.1,-1*K.1^-2,-1*K.1^9,-1*K.1^-2,-1*K.1^-9,-1*K.1^4,-1*K.1,-1*K.1^-7,-1*K.1^-11,-1*K.1,-1*K.1^-1,-1*K.1^8,-1*K.1^3,-1*K.1^4,-1*K.1^-7,-1*K.1^-7,-1*K.1^-4,-1*K.1^9,-1*K.1^-4,-1*K.1^9,-1*K.1^-4,-1*K.1^-7,-1*K.1,-1*K.1^4,-1*K.1^9,-1*K.1^-4,-1*K.1^7,-1*K.1,-1*K.1^4,-1*K.1^9,-1*K.1^-2,-1*K.1^12,-1*K.1^-1,-1*K.1^-4,-1*K.1^-12,-1*K.1^-12,-1*K.1^-8,-1*K.1^-3,-1*K.1^8,-1*K.1^-6,-1*K.1^-6,-1*K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1^11,-1*K.1^-6,-1*K.1^12,-1*K.1^2,-1*K.1^-3,-1*K.1^-8,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^12,-1*K.1^6,-1*K.1^-11,-1*K.1^-9,-1*K.1^2,-1*K.1^-12,-1*K.1^-6,-1*K.1^11,-1*K.1^-3,-1*K.1^-8,-1*K.1^7,-1*K.1,-1*K.1^-11,-1*K.1^-9,-1*K.1^-2,-1*K.1^-9,-1*K.1^8,-1*K.1^6,-1*K.1^-7,-1*K.1^-11,-1*K.1^3,-1*K.1^2,-1*K.1^12,-1*K.1^-1,-1*K.1^11,-1*K.1,-1*K.1^-12,-1*K.1^-8,-1*K.1^3,-1*K.1^4,-1*K.1^-1,-1*K.1^12,-1*K.1^2,-1*K.1^-9,-1*K.1^-11,-1*K.1^-1,-1*K.1^6,-1*K.1^-2,-1*K.1^-9,-1*K.1^-11,-1*K.1^-9,-1*K.1^4,-1*K.1,-1*K.1^7,-1*K.1^-2,-1*K.1^9,-1*K.1^-2,-1*K.1^-12,-1*K.1^-12,-1*K.1^-6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-5,K.1^10,K.1^-10,-1,-1,-1,-1,-1,-1,-1,-1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^3,K.1^-11,K.1^-2,K.1^-1,K.1^-6,K.1^9,K.1^-12,K.1^11,K.1^-3,K.1^6,K.1,K.1^-9,K.1^2,K.1^7,K.1^12,K.1^-8,K.1^8,K.1^-4,K.1^4,K.1^-7,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^12,K.1^9,K.1^-4,K.1^-8,K.1^-1,K.1^2,K.1^7,K.1^4,K.1^-3,K.1^-9,K.1^-3,K.1^-9,K.1^8,K.1^-2,K.1^12,K.1^6,K.1^4,K.1,K.1^-3,K.1^-4,K.1^6,K.1^11,K.1,K.1^-8,K.1^-4,K.1^3,K.1^11,K.1^7,K.1^-7,K.1^-12,K.1^2,K.1^7,K.1^9,K.1^9,K.1^-2,K.1^4,K.1^-2,K.1^-6,K.1^-6,K.1^-12,K.1^-12,K.1^-9,K.1^-6,K.1^12,K.1,K.1^-11,K.1^8,K.1^8,K.1^-1,K.1^3,K.1^3,K.1^-1,K.1^-7,K.1^-11,K.1^-11,K.1^-7,K.1^-8,K.1^11,K.1^2,K.1^6,K.1^6,K.1^-6,K.1^7,K.1^-9,K.1^11,K.1^-7,K.1^-12,K.1^-12,K.1^-3,K.1^-8,K.1^-1,K.1^-11,K.1^-11,K.1^-7,K.1^-2,K.1^9,K.1^4,K.1^3,K.1^7,K.1^-6,K.1^9,K.1^4,K.1^12,K.1^2,K.1^8,K.1^-1,K.1^8,K.1^-4,K.1^12,K.1^-8,K.1^-9,K.1^11,K.1^-3,K.1,K.1,K.1^3,K.1^-2,K.1^6,K.1^-4,K.1^2,K.1^3,K.1^-4,K.1^-12,K.1^-6,K.1^2,K.1^2,K.1^9,K.1^-2,K.1^7,K.1^-6,K.1^-11,K.1^-1,K.1^4,K.1^-9,K.1^8,K.1^-1,K.1^12,K.1^6,K.1^3,K.1^7,K.1^2,K.1^12,K.1^12,K.1^-3,K.1^9,K.1^-2,K.1^11,K.1^-7,K.1^-9,K.1^-3,K.1^-4,K.1^-12,K.1^-9,K.1^8,K.1^2,K.1^8,K.1,K.1^-8,K.1^7,K.1^6,K.1^-4,K.1^-12,K.1^3,K.1^11,K.1,K.1,K.1^4,K.1^6,K.1^11,K.1^-2,K.1^6,K.1^3,K.1^-11,K.1^-8,K.1^-8,K.1^7,K.1^-3,K.1^12,K.1^-6,K.1^8,K.1,K.1^9,K.1^-7,K.1^-11,K.1^-4,K.1^-2,K.1^11,K.1^-8,K.1^-6,K.1^-12,K.1^-1,K.1^4,K.1^4,K.1^9,K.1^-1,K.1^-7,K.1^-7,K.1^-11,K.1^-3,K.1^-9,K.1,K.1^7,K.1^2,K.1^-3,K.1^2,K.1^12,K.1,K.1^-2,K.1^3,K.1^11,K.1^-9,K.1^8,K.1^-12,K.1^-6,K.1^-11,K.1^9,K.1^-11,K.1^-1,K.1^-12,K.1^11,K.1^-6,K.1^6,K.1^8,K.1^3,K.1^-4,K.1^-9,K.1^-2,K.1^-7,K.1^12,K.1^-8,K.1^-3,K.1^-8,K.1^7,K.1^-7,K.1^-4,K.1^6,K.1^-1,K.1^4,K.1^9,K.1^4,-1*K.1^4,-1*K.1^-7,-1*K.1^4,-1*K.1^-9,-1*K.1^-11,-1*K.1^-3,-1*K.1^11,-1*K.1^7,-1*K.1^-12,-1*K.1^-2,-1*K.1^3,-1*K.1^11,-1*K.1,-1*K.1^-6,-1*K.1^8,-1*K.1^9,-1*K.1^-8,-1*K.1,-1*K.1^-7,-1*K.1^2,-1*K.1^-6,-1*K.1,-1*K.1^-8,-1*K.1^3,-1*K.1^-8,-1*K.1^7,-1*K.1^7,-1*K.1^-4,-1*K.1^-3,-1*K.1^4,-1*K.1^3,-1*K.1^-11,-1*K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^3,-1*K.1^8,-1*K.1^-7,-1*K.1^6,-1*K.1^-8,-1*K.1^-3,-1*K.1^-2,-1*K.1^12,-1*K.1^12,-1*K.1^-11,-1*K.1^-6,-1*K.1^-12,-1*K.1^-2,-1*K.1^3,-1*K.1^8,-1*K.1^-12,-1*K.1^-7,-1*K.1^-4,-1*K.1^-9,-1*K.1^-2,-1*K.1^-7,-1*K.1^-1,-1*K.1^2,-1*K.1^-9,-1*K.1^2,-1*K.1^9,-1*K.1^-4,-1*K.1^-1,-1*K.1^7,-1*K.1^11,-1*K.1^-1,-1*K.1,-1*K.1^-8,-1*K.1^-3,-1*K.1^-4,-1*K.1^7,-1*K.1^7,-1*K.1^4,-1*K.1^-9,-1*K.1^4,-1*K.1^-9,-1*K.1^4,-1*K.1^7,-1*K.1^-1,-1*K.1^-4,-1*K.1^-9,-1*K.1^4,-1*K.1^-7,-1*K.1^-1,-1*K.1^-4,-1*K.1^-9,-1*K.1^2,-1*K.1^-12,-1*K.1,-1*K.1^4,-1*K.1^12,-1*K.1^12,-1*K.1^8,-1*K.1^3,-1*K.1^-8,-1*K.1^6,-1*K.1^6,-1*K.1^-11,-1*K.1^-3,-1*K.1^-11,-1*K.1^-3,-1*K.1^-11,-1*K.1^6,-1*K.1^-12,-1*K.1^-2,-1*K.1^3,-1*K.1^8,-1*K.1^-6,-1*K.1^-6,-1*K.1^-8,-1*K.1^-12,-1*K.1^-6,-1*K.1^11,-1*K.1^9,-1*K.1^-2,-1*K.1^12,-1*K.1^6,-1*K.1^-11,-1*K.1^3,-1*K.1^8,-1*K.1^-7,-1*K.1^-1,-1*K.1^11,-1*K.1^9,-1*K.1^2,-1*K.1^9,-1*K.1^-8,-1*K.1^-6,-1*K.1^7,-1*K.1^11,-1*K.1^-3,-1*K.1^-2,-1*K.1^-12,-1*K.1,-1*K.1^-11,-1*K.1^-1,-1*K.1^12,-1*K.1^8,-1*K.1^-3,-1*K.1^-4,-1*K.1,-1*K.1^-12,-1*K.1^-2,-1*K.1^9,-1*K.1^11,-1*K.1,-1*K.1^-6,-1*K.1^2,-1*K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^-4,-1*K.1^-1,-1*K.1^-7,-1*K.1^2,-1*K.1^-9,-1*K.1^2,-1*K.1^12,-1*K.1^12,-1*K.1^6]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^-5,K.1^5,K.1^-10,K.1^10,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-5,K.1^-10,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^-10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^5,K.1^10,K.1^-10,K.1^-10,K.1^-10,K.1^-5,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^10,K.1^-10,K.1^5,K.1^10,K.1^5,K.1^10,K.1^10,K.1^-5,K.1^5,K.1^10,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-10,K.1^2,K.1,K.1^7,K.1^-9,K.1^-4,K.1^6,K.1^-8,K.1^-1,K.1^-2,K.1^4,K.1^9,K.1^-6,K.1^-7,K.1^-12,K.1^8,K.1^3,K.1^-3,K.1^-11,K.1^11,K.1^12,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^10,-1*K.1^-10,-1*K.1^-10,-1*K.1^-10,-1*K.1^5,-1*K.1^10,-1*K.1^10,-1*K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-5,-1*K.1^-5,K.1^8,K.1^6,K.1^-11,K.1^3,K.1^-9,K.1^-7,K.1^-12,K.1^11,K.1^-2,K.1^-6,K.1^-2,K.1^-6,K.1^-3,K.1^7,K.1^8,K.1^4,K.1^11,K.1^9,K.1^-2,K.1^-11,K.1^4,K.1^-1,K.1^9,K.1^3,K.1^-11,K.1^2,K.1^-1,K.1^-12,K.1^12,K.1^-8,K.1^-7,K.1^-12,K.1^6,K.1^6,K.1^7,K.1^11,K.1^7,K.1^-4,K.1^-4,K.1^-8,K.1^-8,K.1^-6,K.1^-4,K.1^8,K.1^9,K.1,K.1^-3,K.1^-3,K.1^-9,K.1^2,K.1^2,K.1^-9,K.1^12,K.1,K.1,K.1^12,K.1^3,K.1^-1,K.1^-7,K.1^4,K.1^4,K.1^-4,K.1^-12,K.1^-6,K.1^-1,K.1^12,K.1^-8,K.1^-8,K.1^-2,K.1^3,K.1^-9,K.1,K.1,K.1^12,K.1^7,K.1^6,K.1^11,K.1^2,K.1^-12,K.1^-4,K.1^6,K.1^11,K.1^8,K.1^-7,K.1^-3,K.1^-9,K.1^-3,K.1^-11,K.1^8,K.1^3,K.1^-6,K.1^-1,K.1^-2,K.1^9,K.1^9,K.1^2,K.1^7,K.1^4,K.1^-11,K.1^-7,K.1^2,K.1^-11,K.1^-8,K.1^-4,K.1^-7,K.1^-7,K.1^6,K.1^7,K.1^-12,K.1^-4,K.1,K.1^-9,K.1^11,K.1^-6,K.1^-3,K.1^-9,K.1^8,K.1^4,K.1^2,K.1^-12,K.1^-7,K.1^8,K.1^8,K.1^-2,K.1^6,K.1^7,K.1^-1,K.1^12,K.1^-6,K.1^-2,K.1^-11,K.1^-8,K.1^-6,K.1^-3,K.1^-7,K.1^-3,K.1^9,K.1^3,K.1^-12,K.1^4,K.1^-11,K.1^-8,K.1^2,K.1^-1,K.1^9,K.1^9,K.1^11,K.1^4,K.1^-1,K.1^7,K.1^4,K.1^2,K.1,K.1^3,K.1^3,K.1^-12,K.1^-2,K.1^8,K.1^-4,K.1^-3,K.1^9,K.1^6,K.1^12,K.1,K.1^-11,K.1^7,K.1^-1,K.1^3,K.1^-4,K.1^-8,K.1^-9,K.1^11,K.1^11,K.1^6,K.1^-9,K.1^12,K.1^12,K.1,K.1^-2,K.1^-6,K.1^9,K.1^-12,K.1^-7,K.1^-2,K.1^-7,K.1^8,K.1^9,K.1^7,K.1^2,K.1^-1,K.1^-6,K.1^-3,K.1^-8,K.1^-4,K.1,K.1^6,K.1,K.1^-9,K.1^-8,K.1^-1,K.1^-4,K.1^4,K.1^-3,K.1^2,K.1^-11,K.1^-6,K.1^7,K.1^12,K.1^8,K.1^3,K.1^-2,K.1^3,K.1^-12,K.1^12,K.1^-11,K.1^4,K.1^-9,K.1^11,K.1^6,K.1^11,-1*K.1^11,-1*K.1^12,-1*K.1^11,-1*K.1^-6,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-12,-1*K.1^-8,-1*K.1^7,-1*K.1^2,-1*K.1^-1,-1*K.1^9,-1*K.1^-4,-1*K.1^-3,-1*K.1^6,-1*K.1^3,-1*K.1^9,-1*K.1^12,-1*K.1^-7,-1*K.1^-4,-1*K.1^9,-1*K.1^3,-1*K.1^2,-1*K.1^3,-1*K.1^-12,-1*K.1^-12,-1*K.1^-11,-1*K.1^-2,-1*K.1^11,-1*K.1^2,-1*K.1,-1*K.1^4,-1*K.1^4,-1*K.1^-3,-1*K.1^2,-1*K.1^-3,-1*K.1^12,-1*K.1^4,-1*K.1^3,-1*K.1^-2,-1*K.1^7,-1*K.1^8,-1*K.1^8,-1*K.1,-1*K.1^-4,-1*K.1^-8,-1*K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^-8,-1*K.1^12,-1*K.1^-11,-1*K.1^-6,-1*K.1^7,-1*K.1^12,-1*K.1^-9,-1*K.1^-7,-1*K.1^-6,-1*K.1^-7,-1*K.1^6,-1*K.1^-11,-1*K.1^-9,-1*K.1^-12,-1*K.1^-1,-1*K.1^-9,-1*K.1^9,-1*K.1^3,-1*K.1^-2,-1*K.1^-11,-1*K.1^-12,-1*K.1^-12,-1*K.1^11,-1*K.1^-6,-1*K.1^11,-1*K.1^-6,-1*K.1^11,-1*K.1^-12,-1*K.1^-9,-1*K.1^-11,-1*K.1^-6,-1*K.1^11,-1*K.1^12,-1*K.1^-9,-1*K.1^-11,-1*K.1^-6,-1*K.1^-7,-1*K.1^-8,-1*K.1^9,-1*K.1^11,-1*K.1^8,-1*K.1^8,-1*K.1^-3,-1*K.1^2,-1*K.1^3,-1*K.1^4,-1*K.1^4,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^-2,-1*K.1,-1*K.1^4,-1*K.1^-8,-1*K.1^7,-1*K.1^2,-1*K.1^-3,-1*K.1^-4,-1*K.1^-4,-1*K.1^3,-1*K.1^-8,-1*K.1^-4,-1*K.1^-1,-1*K.1^6,-1*K.1^7,-1*K.1^8,-1*K.1^4,-1*K.1,-1*K.1^2,-1*K.1^-3,-1*K.1^12,-1*K.1^-9,-1*K.1^-1,-1*K.1^6,-1*K.1^-7,-1*K.1^6,-1*K.1^3,-1*K.1^-4,-1*K.1^-12,-1*K.1^-1,-1*K.1^-2,-1*K.1^7,-1*K.1^-8,-1*K.1^9,-1*K.1,-1*K.1^-9,-1*K.1^8,-1*K.1^-3,-1*K.1^-2,-1*K.1^-11,-1*K.1^9,-1*K.1^-8,-1*K.1^7,-1*K.1^6,-1*K.1^-1,-1*K.1^9,-1*K.1^-4,-1*K.1^-7,-1*K.1^6,-1*K.1^-1,-1*K.1^6,-1*K.1^-11,-1*K.1^-9,-1*K.1^12,-1*K.1^-7,-1*K.1^-6,-1*K.1^-7,-1*K.1^8,-1*K.1^8,-1*K.1^4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,K.1^5,K.1^-5,K.1^10,K.1^-10,-1,-1,-1,-1,-1,-1,-1,-1,K.1^5,K.1^10,K.1^-5,K.1^5,K.1^-10,K.1^-5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^5,K.1^-5,K.1^-10,K.1^10,K.1^10,K.1^10,K.1^5,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^10,K.1^5,K.1^-10,K.1^10,K.1^-5,K.1^-10,K.1^-5,K.1^-10,K.1^-10,K.1^5,K.1^-5,K.1^-10,K.1^5,K.1^10,K.1^-10,K.1^-5,K.1^10,K.1^-2,K.1^-1,K.1^-7,K.1^9,K.1^4,K.1^-6,K.1^8,K.1,K.1^2,K.1^-4,K.1^-9,K.1^6,K.1^7,K.1^12,K.1^-8,K.1^-3,K.1^3,K.1^11,K.1^-11,K.1^-12,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^-10,-1*K.1^-5,-1*K.1^-10,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^-5,-1*K.1^-10,-1*K.1^-10,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^10,-1*K.1^-10,-1*K.1^5,-1*K.1^-10,-1*K.1^10,-1*K.1^-5,-1*K.1^-5,-1*K.1^10,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^-8,K.1^-6,K.1^11,K.1^-3,K.1^9,K.1^7,K.1^12,K.1^-11,K.1^2,K.1^6,K.1^2,K.1^6,K.1^3,K.1^-7,K.1^-8,K.1^-4,K.1^-11,K.1^-9,K.1^2,K.1^11,K.1^-4,K.1,K.1^-9,K.1^-3,K.1^11,K.1^-2,K.1,K.1^12,K.1^-12,K.1^8,K.1^7,K.1^12,K.1^-6,K.1^-6,K.1^-7,K.1^-11,K.1^-7,K.1^4,K.1^4,K.1^8,K.1^8,K.1^6,K.1^4,K.1^-8,K.1^-9,K.1^-1,K.1^3,K.1^3,K.1^9,K.1^-2,K.1^-2,K.1^9,K.1^-12,K.1^-1,K.1^-1,K.1^-12,K.1^-3,K.1,K.1^7,K.1^-4,K.1^-4,K.1^4,K.1^12,K.1^6,K.1,K.1^-12,K.1^8,K.1^8,K.1^2,K.1^-3,K.1^9,K.1^-1,K.1^-1,K.1^-12,K.1^-7,K.1^-6,K.1^-11,K.1^-2,K.1^12,K.1^4,K.1^-6,K.1^-11,K.1^-8,K.1^7,K.1^3,K.1^9,K.1^3,K.1^11,K.1^-8,K.1^-3,K.1^6,K.1,K.1^2,K.1^-9,K.1^-9,K.1^-2,K.1^-7,K.1^-4,K.1^11,K.1^7,K.1^-2,K.1^11,K.1^8,K.1^4,K.1^7,K.1^7,K.1^-6,K.1^-7,K.1^12,K.1^4,K.1^-1,K.1^9,K.1^-11,K.1^6,K.1^3,K.1^9,K.1^-8,K.1^-4,K.1^-2,K.1^12,K.1^7,K.1^-8,K.1^-8,K.1^2,K.1^-6,K.1^-7,K.1,K.1^-12,K.1^6,K.1^2,K.1^11,K.1^8,K.1^6,K.1^3,K.1^7,K.1^3,K.1^-9,K.1^-3,K.1^12,K.1^-4,K.1^11,K.1^8,K.1^-2,K.1,K.1^-9,K.1^-9,K.1^-11,K.1^-4,K.1,K.1^-7,K.1^-4,K.1^-2,K.1^-1,K.1^-3,K.1^-3,K.1^12,K.1^2,K.1^-8,K.1^4,K.1^3,K.1^-9,K.1^-6,K.1^-12,K.1^-1,K.1^11,K.1^-7,K.1,K.1^-3,K.1^4,K.1^8,K.1^9,K.1^-11,K.1^-11,K.1^-6,K.1^9,K.1^-12,K.1^-12,K.1^-1,K.1^2,K.1^6,K.1^-9,K.1^12,K.1^7,K.1^2,K.1^7,K.1^-8,K.1^-9,K.1^-7,K.1^-2,K.1,K.1^6,K.1^3,K.1^8,K.1^4,K.1^-1,K.1^-6,K.1^-1,K.1^9,K.1^8,K.1,K.1^4,K.1^-4,K.1^3,K.1^-2,K.1^11,K.1^6,K.1^-7,K.1^-12,K.1^-8,K.1^-3,K.1^2,K.1^-3,K.1^12,K.1^-12,K.1^11,K.1^-4,K.1^9,K.1^-11,K.1^-6,K.1^-11,-1*K.1^-11,-1*K.1^-12,-1*K.1^-11,-1*K.1^6,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1^12,-1*K.1^8,-1*K.1^-7,-1*K.1^-2,-1*K.1,-1*K.1^-9,-1*K.1^4,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,-1*K.1^-9,-1*K.1^-12,-1*K.1^7,-1*K.1^4,-1*K.1^-9,-1*K.1^-3,-1*K.1^-2,-1*K.1^-3,-1*K.1^12,-1*K.1^12,-1*K.1^11,-1*K.1^2,-1*K.1^-11,-1*K.1^-2,-1*K.1^-1,-1*K.1^-4,-1*K.1^-4,-1*K.1^3,-1*K.1^-2,-1*K.1^3,-1*K.1^-12,-1*K.1^-4,-1*K.1^-3,-1*K.1^2,-1*K.1^-7,-1*K.1^-8,-1*K.1^-8,-1*K.1^-1,-1*K.1^4,-1*K.1^8,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^8,-1*K.1^-12,-1*K.1^11,-1*K.1^6,-1*K.1^-7,-1*K.1^-12,-1*K.1^9,-1*K.1^7,-1*K.1^6,-1*K.1^7,-1*K.1^-6,-1*K.1^11,-1*K.1^9,-1*K.1^12,-1*K.1,-1*K.1^9,-1*K.1^-9,-1*K.1^-3,-1*K.1^2,-1*K.1^11,-1*K.1^12,-1*K.1^12,-1*K.1^-11,-1*K.1^6,-1*K.1^-11,-1*K.1^6,-1*K.1^-11,-1*K.1^12,-1*K.1^9,-1*K.1^11,-1*K.1^6,-1*K.1^-11,-1*K.1^-12,-1*K.1^9,-1*K.1^11,-1*K.1^6,-1*K.1^7,-1*K.1^8,-1*K.1^-9,-1*K.1^-11,-1*K.1^-8,-1*K.1^-8,-1*K.1^3,-1*K.1^-2,-1*K.1^-3,-1*K.1^-4,-1*K.1^-4,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^2,-1*K.1^-1,-1*K.1^-4,-1*K.1^8,-1*K.1^-7,-1*K.1^-2,-1*K.1^3,-1*K.1^4,-1*K.1^4,-1*K.1^-3,-1*K.1^8,-1*K.1^4,-1*K.1,-1*K.1^-6,-1*K.1^-7,-1*K.1^-8,-1*K.1^-4,-1*K.1^-1,-1*K.1^-2,-1*K.1^3,-1*K.1^-12,-1*K.1^9,-1*K.1,-1*K.1^-6,-1*K.1^7,-1*K.1^-6,-1*K.1^-3,-1*K.1^4,-1*K.1^12,-1*K.1,-1*K.1^2,-1*K.1^-7,-1*K.1^8,-1*K.1^-9,-1*K.1^-1,-1*K.1^9,-1*K.1^-8,-1*K.1^3,-1*K.1^2,-1*K.1^11,-1*K.1^-9,-1*K.1^8,-1*K.1^-7,-1*K.1^-6,-1*K.1,-1*K.1^-9,-1*K.1^4,-1*K.1^7,-1*K.1^-6,-1*K.1,-1*K.1^-6,-1*K.1^11,-1*K.1^9,-1*K.1^-12,-1*K.1^7,-1*K.1^6,-1*K.1^7,-1*K.1^-8,-1*K.1^-8,-1*K.1^-4]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,-1*K.1^6,K.1^28,-1*K.1^46,K.1^48,-1*K.1^38,-1*K.1^18,-1*K.1^26,-1*K.1^22,K.1^44,K.1^12,-1*K.1^2,K.1^32,K.1^4,-1*K.1^14,K.1^24,-1*K.1^34,K.1^16,-1*K.1^42,K.1^8,K.1^36,K.1^5,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^45,K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,-1*K.1^45,-1*K.1^45,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^35,K.1^15,K.1^45,K.1^5,-1*K.1^35,-1*K.1^5,K.1^45,-1*K.1^15,K.1^15,K.1^45,K.1^35,K.1^35,K.1^35,K.1^24,-1*K.1^18,-1*K.1^42,-1*K.1^34,K.1^48,K.1^4,-1*K.1^14,K.1^8,K.1^44,K.1^32,K.1^44,K.1^32,K.1^16,-1*K.1^46,K.1^24,K.1^12,K.1^8,-1*K.1^2,K.1^44,-1*K.1^42,K.1^12,-1*K.1^22,-1*K.1^2,-1*K.1^34,-1*K.1^42,-1*K.1^6,-1*K.1^22,-1*K.1^14,K.1^36,-1*K.1^26,K.1^4,-1*K.1^14,-1*K.1^18,-1*K.1^18,-1*K.1^46,K.1^8,-1*K.1^46,-1*K.1^38,-1*K.1^38,-1*K.1^26,-1*K.1^26,K.1^32,-1*K.1^38,K.1^24,-1*K.1^2,K.1^28,K.1^16,K.1^16,K.1^48,-1*K.1^6,-1*K.1^6,K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^34,-1*K.1^22,K.1^4,K.1^12,-1*K.1^12,K.1^38,K.1^14,-1*K.1^32,K.1^22,-1*K.1^36,K.1^26,K.1^26,-1*K.1^44,K.1^34,-1*K.1^48,-1*K.1^28,-1*K.1^28,-1*K.1^36,K.1^46,K.1^18,-1*K.1^8,K.1^6,K.1^14,K.1^38,K.1^18,-1*K.1^8,-1*K.1^24,-1*K.1^4,-1*K.1^16,-1*K.1^48,-1*K.1^16,K.1^42,-1*K.1^24,K.1^34,-1*K.1^32,K.1^22,-1*K.1^44,K.1^2,K.1^2,K.1^6,K.1^46,-1*K.1^12,K.1^42,-1*K.1^4,K.1^6,K.1^42,K.1^26,K.1^38,-1*K.1^4,-1*K.1^4,K.1^18,K.1^46,K.1^14,K.1^38,-1*K.1^28,-1*K.1^48,-1*K.1^8,-1*K.1^32,-1*K.1^16,-1*K.1^48,-1*K.1^24,-1*K.1^12,K.1^6,K.1^14,-1*K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^44,K.1^18,K.1^46,K.1^22,-1*K.1^36,-1*K.1^32,-1*K.1^44,K.1^42,K.1^26,-1*K.1^32,-1*K.1^16,-1*K.1^4,-1*K.1^16,K.1^2,K.1^34,K.1^14,-1*K.1^12,K.1^42,K.1^26,K.1^6,K.1^22,K.1^2,K.1^2,-1*K.1^8,-1*K.1^12,K.1^22,K.1^46,-1*K.1^12,K.1^6,-1*K.1^28,K.1^34,K.1^34,K.1^14,-1*K.1^44,-1*K.1^24,K.1^38,-1*K.1^16,K.1^2,K.1^18,-1*K.1^36,-1*K.1^28,K.1^42,K.1^46,K.1^22,K.1^34,K.1^38,K.1^26,-1*K.1^48,-1*K.1^8,-1*K.1^8,K.1^18,-1*K.1^48,-1*K.1^36,-1*K.1^36,-1*K.1^28,-1*K.1^44,-1*K.1^32,-1*K.1^2,-1*K.1^14,K.1^4,K.1^44,K.1^4,K.1^24,-1*K.1^2,-1*K.1^46,-1*K.1^6,-1*K.1^22,K.1^32,K.1^16,-1*K.1^26,-1*K.1^38,K.1^28,-1*K.1^18,K.1^28,K.1^48,-1*K.1^26,-1*K.1^22,-1*K.1^38,K.1^12,K.1^16,-1*K.1^6,-1*K.1^42,K.1^32,-1*K.1^46,K.1^36,K.1^24,-1*K.1^34,K.1^44,-1*K.1^34,-1*K.1^14,K.1^36,-1*K.1^42,K.1^12,K.1^48,K.1^8,-1*K.1^18,K.1^8,-1*K.1^33,K.1^11,-1*K.1^33,-1*K.1^7,-1*K.1^3,K.1^19,K.1^47,K.1^39,-1*K.1,K.1^21,-1*K.1^31,-1*K.1^47,-1*K.1^27,-1*K.1^13,-1*K.1^41,K.1^43,-1*K.1^9,K.1^27,K.1^11,K.1^29,-1*K.1^13,K.1^27,-1*K.1^9,K.1^31,K.1^9,-1*K.1^39,K.1^39,-1*K.1^17,K.1^19,-1*K.1^33,K.1^31,K.1^3,K.1^37,K.1^37,K.1^41,-1*K.1^31,-1*K.1^41,K.1^11,-1*K.1^37,-1*K.1^9,-1*K.1^19,-1*K.1^21,-1*K.1^49,-1*K.1^49,K.1^3,K.1^13,K.1,-1*K.1^21,K.1^31,K.1^41,-1*K.1,-1*K.1^11,K.1^17,-1*K.1^7,K.1^21,-1*K.1^11,K.1^23,-1*K.1^29,K.1^7,-1*K.1^29,-1*K.1^43,K.1^17,K.1^23,K.1^39,K.1^47,K.1^23,-1*K.1^27,K.1^9,-1*K.1^19,K.1^17,K.1^39,-1*K.1^39,K.1^33,K.1^7,K.1^33,-1*K.1^7,-1*K.1^33,-1*K.1^39,-1*K.1^23,-1*K.1^17,K.1^7,K.1^33,-1*K.1^11,K.1^23,K.1^17,K.1^7,-1*K.1^29,-1*K.1,-1*K.1^27,K.1^33,-1*K.1^49,-1*K.1^49,K.1^41,-1*K.1^31,-1*K.1^9,K.1^37,K.1^37,K.1^3,-1*K.1^19,K.1^3,-1*K.1^19,-1*K.1^3,-1*K.1^37,K.1,-1*K.1^21,K.1^31,K.1^41,K.1^13,K.1^13,K.1^9,K.1,K.1^13,-1*K.1^47,K.1^43,-1*K.1^21,K.1^49,-1*K.1^37,-1*K.1^3,-1*K.1^31,-1*K.1^41,K.1^11,-1*K.1^23,K.1^47,-1*K.1^43,K.1^29,K.1^43,K.1^9,-1*K.1^13,-1*K.1^39,-1*K.1^47,K.1^19,K.1^21,K.1,K.1^27,-1*K.1^3,-1*K.1^23,K.1^49,-1*K.1^41,K.1^19,-1*K.1^17,-1*K.1^27,-1*K.1,K.1^21,-1*K.1^43,K.1^47,K.1^27,-1*K.1^13,K.1^29,K.1^43,-1*K.1^47,-1*K.1^43,-1*K.1^17,-1*K.1^23,-1*K.1^11,-1*K.1^29,-1*K.1^7,K.1^29,K.1^49,K.1^49,-1*K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,K.1^40,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,K.1^44,-1*K.1^22,K.1^4,-1*K.1^2,K.1^12,K.1^32,K.1^24,K.1^28,-1*K.1^6,-1*K.1^38,K.1^48,-1*K.1^18,-1*K.1^46,K.1^36,-1*K.1^26,K.1^16,-1*K.1^34,K.1^8,-1*K.1^42,-1*K.1^14,-1*K.1^45,-1*K.1^15,K.1^45,K.1^15,K.1^35,-1*K.1^5,-1*K.1^35,K.1^5,K.1^15,K.1^45,K.1^35,-1*K.1^45,K.1^5,K.1^5,K.1^5,K.1^35,-1*K.1^45,K.1^45,-1*K.1^35,K.1^15,-1*K.1^35,-1*K.1^5,-1*K.1^45,K.1^15,K.1^45,-1*K.1^5,K.1^35,-1*K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^26,K.1^32,K.1^8,K.1^16,-1*K.1^2,-1*K.1^46,K.1^36,-1*K.1^42,-1*K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^18,-1*K.1^34,K.1^4,-1*K.1^26,-1*K.1^38,-1*K.1^42,K.1^48,-1*K.1^6,K.1^8,-1*K.1^38,K.1^28,K.1^48,K.1^16,K.1^8,K.1^44,K.1^28,K.1^36,-1*K.1^14,K.1^24,-1*K.1^46,K.1^36,K.1^32,K.1^32,K.1^4,-1*K.1^42,K.1^4,K.1^12,K.1^12,K.1^24,K.1^24,-1*K.1^18,K.1^12,-1*K.1^26,K.1^48,-1*K.1^22,-1*K.1^34,-1*K.1^34,-1*K.1^2,K.1^44,K.1^44,-1*K.1^2,-1*K.1^14,-1*K.1^22,-1*K.1^22,-1*K.1^14,K.1^16,K.1^28,-1*K.1^46,-1*K.1^38,K.1^38,-1*K.1^12,-1*K.1^36,K.1^18,-1*K.1^28,K.1^14,-1*K.1^24,-1*K.1^24,K.1^6,-1*K.1^16,K.1^2,K.1^22,K.1^22,K.1^14,-1*K.1^4,-1*K.1^32,K.1^42,-1*K.1^44,-1*K.1^36,-1*K.1^12,-1*K.1^32,K.1^42,K.1^26,K.1^46,K.1^34,K.1^2,K.1^34,-1*K.1^8,K.1^26,-1*K.1^16,K.1^18,-1*K.1^28,K.1^6,-1*K.1^48,-1*K.1^48,-1*K.1^44,-1*K.1^4,K.1^38,-1*K.1^8,K.1^46,-1*K.1^44,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^46,K.1^46,-1*K.1^32,-1*K.1^4,-1*K.1^36,-1*K.1^12,K.1^22,K.1^2,K.1^42,K.1^18,K.1^34,K.1^2,K.1^26,K.1^38,-1*K.1^44,-1*K.1^36,K.1^46,K.1^26,K.1^26,K.1^6,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^14,K.1^18,K.1^6,-1*K.1^8,-1*K.1^24,K.1^18,K.1^34,K.1^46,K.1^34,-1*K.1^48,-1*K.1^16,-1*K.1^36,K.1^38,-1*K.1^8,-1*K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^48,-1*K.1^48,K.1^42,K.1^38,-1*K.1^28,-1*K.1^4,K.1^38,-1*K.1^44,K.1^22,-1*K.1^16,-1*K.1^16,-1*K.1^36,K.1^6,K.1^26,-1*K.1^12,K.1^34,-1*K.1^48,-1*K.1^32,K.1^14,K.1^22,-1*K.1^8,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^12,-1*K.1^24,K.1^2,K.1^42,K.1^42,-1*K.1^32,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,K.1^18,K.1^48,K.1^36,-1*K.1^46,-1*K.1^6,-1*K.1^46,-1*K.1^26,K.1^48,K.1^4,K.1^44,K.1^28,-1*K.1^18,-1*K.1^34,K.1^24,K.1^12,-1*K.1^22,K.1^32,-1*K.1^22,-1*K.1^2,K.1^24,K.1^28,K.1^12,-1*K.1^38,-1*K.1^34,K.1^44,K.1^8,-1*K.1^18,K.1^4,-1*K.1^14,-1*K.1^26,K.1^16,-1*K.1^6,K.1^16,K.1^36,-1*K.1^14,K.1^8,-1*K.1^38,-1*K.1^2,-1*K.1^42,K.1^32,-1*K.1^42,K.1^17,-1*K.1^39,K.1^17,K.1^43,K.1^47,-1*K.1^31,-1*K.1^3,-1*K.1^11,K.1^49,-1*K.1^29,K.1^19,K.1^3,K.1^23,K.1^37,K.1^9,-1*K.1^7,K.1^41,-1*K.1^23,-1*K.1^39,-1*K.1^21,K.1^37,-1*K.1^23,K.1^41,-1*K.1^19,-1*K.1^41,K.1^11,-1*K.1^11,K.1^33,-1*K.1^31,K.1^17,-1*K.1^19,-1*K.1^47,-1*K.1^13,-1*K.1^13,-1*K.1^9,K.1^19,K.1^9,-1*K.1^39,K.1^13,K.1^41,K.1^31,K.1^29,K.1,K.1,-1*K.1^47,-1*K.1^37,-1*K.1^49,K.1^29,-1*K.1^19,-1*K.1^9,K.1^49,K.1^39,-1*K.1^33,K.1^43,-1*K.1^29,K.1^39,-1*K.1^27,K.1^21,-1*K.1^43,K.1^21,K.1^7,-1*K.1^33,-1*K.1^27,-1*K.1^11,-1*K.1^3,-1*K.1^27,K.1^23,-1*K.1^41,K.1^31,-1*K.1^33,-1*K.1^11,K.1^11,-1*K.1^17,-1*K.1^43,-1*K.1^17,K.1^43,K.1^17,K.1^11,K.1^27,K.1^33,-1*K.1^43,-1*K.1^17,K.1^39,-1*K.1^27,-1*K.1^33,-1*K.1^43,K.1^21,K.1^49,K.1^23,-1*K.1^17,K.1,K.1,-1*K.1^9,K.1^19,K.1^41,-1*K.1^13,-1*K.1^13,-1*K.1^47,K.1^31,-1*K.1^47,K.1^31,K.1^47,K.1^13,-1*K.1^49,K.1^29,-1*K.1^19,-1*K.1^9,-1*K.1^37,-1*K.1^37,-1*K.1^41,-1*K.1^49,-1*K.1^37,K.1^3,-1*K.1^7,K.1^29,-1*K.1,K.1^13,K.1^47,K.1^19,K.1^9,-1*K.1^39,K.1^27,-1*K.1^3,K.1^7,-1*K.1^21,-1*K.1^7,-1*K.1^41,K.1^37,K.1^11,K.1^3,-1*K.1^31,-1*K.1^29,-1*K.1^49,-1*K.1^23,K.1^47,K.1^27,-1*K.1,K.1^9,-1*K.1^31,K.1^33,K.1^23,K.1^49,-1*K.1^29,K.1^7,-1*K.1^3,-1*K.1^23,K.1^37,-1*K.1^21,-1*K.1^7,K.1^3,K.1^7,K.1^33,K.1^27,K.1^39,K.1^21,K.1^43,-1*K.1^21,-1*K.1,-1*K.1,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^36,-1*K.1^18,-1*K.1^26,-1*K.1^38,K.1^28,K.1^8,-1*K.1^6,K.1^32,-1*K.1^14,-1*K.1^22,K.1^12,-1*K.1^42,K.1^24,-1*K.1^34,K.1^44,K.1^4,-1*K.1^46,-1*K.1^2,K.1^48,K.1^16,K.1^5,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^45,K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,-1*K.1^45,-1*K.1^45,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^35,K.1^15,K.1^45,K.1^5,-1*K.1^35,-1*K.1^5,K.1^45,-1*K.1^15,K.1^15,K.1^45,K.1^35,K.1^35,K.1^35,K.1^44,K.1^8,-1*K.1^2,K.1^4,-1*K.1^38,K.1^24,-1*K.1^34,K.1^48,-1*K.1^14,-1*K.1^42,-1*K.1^14,-1*K.1^42,-1*K.1^46,-1*K.1^26,K.1^44,-1*K.1^22,K.1^48,K.1^12,-1*K.1^14,-1*K.1^2,-1*K.1^22,K.1^32,K.1^12,K.1^4,-1*K.1^2,K.1^36,K.1^32,-1*K.1^34,K.1^16,-1*K.1^6,K.1^24,-1*K.1^34,K.1^8,K.1^8,-1*K.1^26,K.1^48,-1*K.1^26,K.1^28,K.1^28,-1*K.1^6,-1*K.1^6,-1*K.1^42,K.1^28,K.1^44,K.1^12,-1*K.1^18,-1*K.1^46,-1*K.1^46,-1*K.1^38,K.1^36,K.1^36,-1*K.1^38,K.1^16,-1*K.1^18,-1*K.1^18,K.1^16,K.1^4,K.1^32,K.1^24,-1*K.1^22,K.1^22,-1*K.1^28,K.1^34,K.1^42,-1*K.1^32,-1*K.1^16,K.1^6,K.1^6,K.1^14,-1*K.1^4,K.1^38,K.1^18,K.1^18,-1*K.1^16,K.1^26,-1*K.1^8,-1*K.1^48,-1*K.1^36,K.1^34,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^44,-1*K.1^24,K.1^46,K.1^38,K.1^46,K.1^2,-1*K.1^44,-1*K.1^4,K.1^42,-1*K.1^32,K.1^14,-1*K.1^12,-1*K.1^12,-1*K.1^36,K.1^26,K.1^22,K.1^2,-1*K.1^24,-1*K.1^36,K.1^2,K.1^6,-1*K.1^28,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^26,K.1^34,-1*K.1^28,K.1^18,K.1^38,-1*K.1^48,K.1^42,K.1^46,K.1^38,-1*K.1^44,K.1^22,-1*K.1^36,K.1^34,-1*K.1^24,-1*K.1^44,-1*K.1^44,K.1^14,-1*K.1^8,K.1^26,-1*K.1^32,-1*K.1^16,K.1^42,K.1^14,K.1^2,K.1^6,K.1^42,K.1^46,-1*K.1^24,K.1^46,-1*K.1^12,-1*K.1^4,K.1^34,K.1^22,K.1^2,K.1^6,-1*K.1^36,-1*K.1^32,-1*K.1^12,-1*K.1^12,-1*K.1^48,K.1^22,-1*K.1^32,K.1^26,K.1^22,-1*K.1^36,K.1^18,-1*K.1^4,-1*K.1^4,K.1^34,K.1^14,-1*K.1^44,-1*K.1^28,K.1^46,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^18,K.1^2,K.1^26,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^6,K.1^38,-1*K.1^48,-1*K.1^48,-1*K.1^8,K.1^38,-1*K.1^16,-1*K.1^16,K.1^18,K.1^14,K.1^42,K.1^12,-1*K.1^34,K.1^24,-1*K.1^14,K.1^24,K.1^44,K.1^12,-1*K.1^26,K.1^36,K.1^32,-1*K.1^42,-1*K.1^46,-1*K.1^6,K.1^28,-1*K.1^18,K.1^8,-1*K.1^18,-1*K.1^38,-1*K.1^6,K.1^32,K.1^28,-1*K.1^22,-1*K.1^46,K.1^36,-1*K.1^2,-1*K.1^42,-1*K.1^26,K.1^16,K.1^44,K.1^4,-1*K.1^14,K.1^4,-1*K.1^34,K.1^16,-1*K.1^2,-1*K.1^22,-1*K.1^38,K.1^48,K.1^8,K.1^48,K.1^23,-1*K.1^41,K.1^23,K.1^17,-1*K.1^43,K.1^39,K.1^7,-1*K.1^9,K.1^31,K.1,-1*K.1^11,-1*K.1^7,K.1^37,K.1^3,-1*K.1^21,-1*K.1^33,-1*K.1^29,-1*K.1^37,-1*K.1^41,K.1^49,K.1^3,-1*K.1^37,-1*K.1^29,K.1^11,K.1^29,K.1^9,-1*K.1^9,K.1^27,K.1^39,K.1^23,K.1^11,K.1^43,-1*K.1^47,-1*K.1^47,K.1^21,-1*K.1^11,-1*K.1^21,-1*K.1^41,K.1^47,-1*K.1^29,-1*K.1^39,-1*K.1,K.1^19,K.1^19,K.1^43,-1*K.1^3,-1*K.1^31,-1*K.1,K.1^11,K.1^21,K.1^31,K.1^41,-1*K.1^27,K.1^17,K.1,K.1^41,-1*K.1^13,-1*K.1^49,-1*K.1^17,-1*K.1^49,K.1^33,-1*K.1^27,-1*K.1^13,-1*K.1^9,K.1^7,-1*K.1^13,K.1^37,K.1^29,-1*K.1^39,-1*K.1^27,-1*K.1^9,K.1^9,-1*K.1^23,-1*K.1^17,-1*K.1^23,K.1^17,K.1^23,K.1^9,K.1^13,K.1^27,-1*K.1^17,-1*K.1^23,K.1^41,-1*K.1^13,-1*K.1^27,-1*K.1^17,-1*K.1^49,K.1^31,K.1^37,-1*K.1^23,K.1^19,K.1^19,K.1^21,-1*K.1^11,-1*K.1^29,-1*K.1^47,-1*K.1^47,K.1^43,-1*K.1^39,K.1^43,-1*K.1^39,-1*K.1^43,K.1^47,-1*K.1^31,-1*K.1,K.1^11,K.1^21,-1*K.1^3,-1*K.1^3,K.1^29,-1*K.1^31,-1*K.1^3,-1*K.1^7,-1*K.1^33,-1*K.1,-1*K.1^19,K.1^47,-1*K.1^43,-1*K.1^11,-1*K.1^21,-1*K.1^41,K.1^13,K.1^7,K.1^33,K.1^49,-1*K.1^33,K.1^29,K.1^3,K.1^9,-1*K.1^7,K.1^39,K.1,-1*K.1^31,-1*K.1^37,-1*K.1^43,K.1^13,-1*K.1^19,-1*K.1^21,K.1^39,K.1^27,K.1^37,K.1^31,K.1,K.1^33,K.1^7,-1*K.1^37,K.1^3,K.1^49,-1*K.1^33,-1*K.1^7,K.1^33,K.1^27,K.1^13,K.1^41,-1*K.1^49,K.1^17,K.1^49,-1*K.1^19,-1*K.1^19,K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,K.1^40,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^14,K.1^32,K.1^24,K.1^12,-1*K.1^22,-1*K.1^42,K.1^44,-1*K.1^18,K.1^36,K.1^28,-1*K.1^38,K.1^8,-1*K.1^26,K.1^16,-1*K.1^6,-1*K.1^46,K.1^4,K.1^48,-1*K.1^2,-1*K.1^34,-1*K.1^45,-1*K.1^15,K.1^45,K.1^15,K.1^35,-1*K.1^5,-1*K.1^35,K.1^5,K.1^15,K.1^45,K.1^35,-1*K.1^45,K.1^5,K.1^5,K.1^5,K.1^35,-1*K.1^45,K.1^45,-1*K.1^35,K.1^15,-1*K.1^35,-1*K.1^5,-1*K.1^45,K.1^15,K.1^45,-1*K.1^5,K.1^35,-1*K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^6,-1*K.1^42,K.1^48,-1*K.1^46,K.1^12,-1*K.1^26,K.1^16,-1*K.1^2,K.1^36,K.1^8,K.1^36,K.1^8,K.1^4,K.1^24,-1*K.1^6,K.1^28,-1*K.1^2,-1*K.1^38,K.1^36,K.1^48,K.1^28,-1*K.1^18,-1*K.1^38,-1*K.1^46,K.1^48,-1*K.1^14,-1*K.1^18,K.1^16,-1*K.1^34,K.1^44,-1*K.1^26,K.1^16,-1*K.1^42,-1*K.1^42,K.1^24,-1*K.1^2,K.1^24,-1*K.1^22,-1*K.1^22,K.1^44,K.1^44,K.1^8,-1*K.1^22,-1*K.1^6,-1*K.1^38,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^14,-1*K.1^14,K.1^12,-1*K.1^34,K.1^32,K.1^32,-1*K.1^34,-1*K.1^46,-1*K.1^18,-1*K.1^26,K.1^28,-1*K.1^28,K.1^22,-1*K.1^16,-1*K.1^8,K.1^18,K.1^34,-1*K.1^44,-1*K.1^44,-1*K.1^36,K.1^46,-1*K.1^12,-1*K.1^32,-1*K.1^32,K.1^34,-1*K.1^24,K.1^42,K.1^2,K.1^14,-1*K.1^16,K.1^22,K.1^42,K.1^2,K.1^6,K.1^26,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^48,K.1^6,K.1^46,-1*K.1^8,K.1^18,-1*K.1^36,K.1^38,K.1^38,K.1^14,-1*K.1^24,-1*K.1^28,-1*K.1^48,K.1^26,K.1^14,-1*K.1^48,-1*K.1^44,K.1^22,K.1^26,K.1^26,K.1^42,-1*K.1^24,-1*K.1^16,K.1^22,-1*K.1^32,-1*K.1^12,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^28,K.1^14,-1*K.1^16,K.1^26,K.1^6,K.1^6,-1*K.1^36,K.1^42,-1*K.1^24,K.1^18,K.1^34,-1*K.1^8,-1*K.1^36,-1*K.1^48,-1*K.1^44,-1*K.1^8,-1*K.1^4,K.1^26,-1*K.1^4,K.1^38,K.1^46,-1*K.1^16,-1*K.1^28,-1*K.1^48,-1*K.1^44,K.1^14,K.1^18,K.1^38,K.1^38,K.1^2,-1*K.1^28,K.1^18,-1*K.1^24,-1*K.1^28,K.1^14,-1*K.1^32,K.1^46,K.1^46,-1*K.1^16,-1*K.1^36,K.1^6,K.1^22,-1*K.1^4,K.1^38,K.1^42,K.1^34,-1*K.1^32,-1*K.1^48,-1*K.1^24,K.1^18,K.1^46,K.1^22,-1*K.1^44,-1*K.1^12,K.1^2,K.1^2,K.1^42,-1*K.1^12,K.1^34,K.1^34,-1*K.1^32,-1*K.1^36,-1*K.1^8,-1*K.1^38,K.1^16,-1*K.1^26,K.1^36,-1*K.1^26,-1*K.1^6,-1*K.1^38,K.1^24,-1*K.1^14,-1*K.1^18,K.1^8,K.1^4,K.1^44,-1*K.1^22,K.1^32,-1*K.1^42,K.1^32,K.1^12,K.1^44,-1*K.1^18,-1*K.1^22,K.1^28,K.1^4,-1*K.1^14,K.1^48,K.1^8,K.1^24,-1*K.1^34,-1*K.1^6,-1*K.1^46,K.1^36,-1*K.1^46,K.1^16,-1*K.1^34,K.1^48,K.1^28,K.1^12,-1*K.1^2,-1*K.1^42,-1*K.1^2,-1*K.1^27,K.1^9,-1*K.1^27,-1*K.1^33,K.1^7,-1*K.1^11,-1*K.1^43,K.1^41,-1*K.1^19,-1*K.1^49,K.1^39,K.1^43,-1*K.1^13,-1*K.1^47,K.1^29,K.1^17,K.1^21,K.1^13,K.1^9,-1*K.1,-1*K.1^47,K.1^13,K.1^21,-1*K.1^39,-1*K.1^21,-1*K.1^41,K.1^41,-1*K.1^23,-1*K.1^11,-1*K.1^27,-1*K.1^39,-1*K.1^7,K.1^3,K.1^3,-1*K.1^29,K.1^39,K.1^29,K.1^9,-1*K.1^3,K.1^21,K.1^11,K.1^49,-1*K.1^31,-1*K.1^31,-1*K.1^7,K.1^47,K.1^19,K.1^49,-1*K.1^39,-1*K.1^29,-1*K.1^19,-1*K.1^9,K.1^23,-1*K.1^33,-1*K.1^49,-1*K.1^9,K.1^37,K.1,K.1^33,K.1,-1*K.1^17,K.1^23,K.1^37,K.1^41,-1*K.1^43,K.1^37,-1*K.1^13,-1*K.1^21,K.1^11,K.1^23,K.1^41,-1*K.1^41,K.1^27,K.1^33,K.1^27,-1*K.1^33,-1*K.1^27,-1*K.1^41,-1*K.1^37,-1*K.1^23,K.1^33,K.1^27,-1*K.1^9,K.1^37,K.1^23,K.1^33,K.1,-1*K.1^19,-1*K.1^13,K.1^27,-1*K.1^31,-1*K.1^31,-1*K.1^29,K.1^39,K.1^21,K.1^3,K.1^3,-1*K.1^7,K.1^11,-1*K.1^7,K.1^11,K.1^7,-1*K.1^3,K.1^19,K.1^49,-1*K.1^39,-1*K.1^29,K.1^47,K.1^47,-1*K.1^21,K.1^19,K.1^47,K.1^43,K.1^17,K.1^49,K.1^31,-1*K.1^3,K.1^7,K.1^39,K.1^29,K.1^9,-1*K.1^37,-1*K.1^43,-1*K.1^17,-1*K.1,K.1^17,-1*K.1^21,-1*K.1^47,-1*K.1^41,K.1^43,-1*K.1^11,-1*K.1^49,K.1^19,K.1^13,K.1^7,-1*K.1^37,K.1^31,K.1^29,-1*K.1^11,-1*K.1^23,-1*K.1^13,-1*K.1^19,-1*K.1^49,-1*K.1^17,-1*K.1^43,K.1^13,-1*K.1^47,-1*K.1,K.1^17,K.1^43,-1*K.1^17,-1*K.1^23,-1*K.1^37,-1*K.1^9,K.1,-1*K.1^33,-1*K.1,K.1^31,K.1^31,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,-1*K.1^26,-1*K.1^38,K.1^16,K.1^8,K.1^48,K.1^28,-1*K.1^46,K.1^12,K.1^24,-1*K.1^2,-1*K.1^42,-1*K.1^22,-1*K.1^34,K.1^44,K.1^4,-1*K.1^14,K.1^36,K.1^32,-1*K.1^18,-1*K.1^6,K.1^5,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^45,K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,-1*K.1^45,-1*K.1^45,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^35,K.1^15,K.1^45,K.1^5,-1*K.1^35,-1*K.1^5,K.1^45,-1*K.1^15,K.1^15,K.1^45,K.1^35,K.1^35,K.1^35,K.1^4,K.1^28,K.1^32,-1*K.1^14,K.1^8,-1*K.1^34,K.1^44,-1*K.1^18,K.1^24,-1*K.1^22,K.1^24,-1*K.1^22,K.1^36,K.1^16,K.1^4,-1*K.1^2,-1*K.1^18,-1*K.1^42,K.1^24,K.1^32,-1*K.1^2,K.1^12,-1*K.1^42,-1*K.1^14,K.1^32,-1*K.1^26,K.1^12,K.1^44,-1*K.1^6,-1*K.1^46,-1*K.1^34,K.1^44,K.1^28,K.1^28,K.1^16,-1*K.1^18,K.1^16,K.1^48,K.1^48,-1*K.1^46,-1*K.1^46,-1*K.1^22,K.1^48,K.1^4,-1*K.1^42,-1*K.1^38,K.1^36,K.1^36,K.1^8,-1*K.1^26,-1*K.1^26,K.1^8,-1*K.1^6,-1*K.1^38,-1*K.1^38,-1*K.1^6,-1*K.1^14,K.1^12,-1*K.1^34,-1*K.1^2,K.1^2,-1*K.1^48,-1*K.1^44,K.1^22,-1*K.1^12,K.1^6,K.1^46,K.1^46,-1*K.1^24,K.1^14,-1*K.1^8,K.1^38,K.1^38,K.1^6,-1*K.1^16,-1*K.1^28,K.1^18,K.1^26,-1*K.1^44,-1*K.1^48,-1*K.1^28,K.1^18,-1*K.1^4,K.1^34,-1*K.1^36,-1*K.1^8,-1*K.1^36,-1*K.1^32,-1*K.1^4,K.1^14,K.1^22,-1*K.1^12,-1*K.1^24,K.1^42,K.1^42,K.1^26,-1*K.1^16,K.1^2,-1*K.1^32,K.1^34,K.1^26,-1*K.1^32,K.1^46,-1*K.1^48,K.1^34,K.1^34,-1*K.1^28,-1*K.1^16,-1*K.1^44,-1*K.1^48,K.1^38,-1*K.1^8,K.1^18,K.1^22,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^2,K.1^26,-1*K.1^44,K.1^34,-1*K.1^4,-1*K.1^4,-1*K.1^24,-1*K.1^28,-1*K.1^16,-1*K.1^12,K.1^6,K.1^22,-1*K.1^24,-1*K.1^32,K.1^46,K.1^22,-1*K.1^36,K.1^34,-1*K.1^36,K.1^42,K.1^14,-1*K.1^44,K.1^2,-1*K.1^32,K.1^46,K.1^26,-1*K.1^12,K.1^42,K.1^42,K.1^18,K.1^2,-1*K.1^12,-1*K.1^16,K.1^2,K.1^26,K.1^38,K.1^14,K.1^14,-1*K.1^44,-1*K.1^24,-1*K.1^4,-1*K.1^48,-1*K.1^36,K.1^42,-1*K.1^28,K.1^6,K.1^38,-1*K.1^32,-1*K.1^16,-1*K.1^12,K.1^14,-1*K.1^48,K.1^46,-1*K.1^8,K.1^18,K.1^18,-1*K.1^28,-1*K.1^8,K.1^6,K.1^6,K.1^38,-1*K.1^24,K.1^22,-1*K.1^42,K.1^44,-1*K.1^34,K.1^24,-1*K.1^34,K.1^4,-1*K.1^42,K.1^16,-1*K.1^26,K.1^12,-1*K.1^22,K.1^36,-1*K.1^46,K.1^48,-1*K.1^38,K.1^28,-1*K.1^38,K.1^8,-1*K.1^46,K.1^12,K.1^48,-1*K.1^2,K.1^36,-1*K.1^26,K.1^32,-1*K.1^22,K.1^16,-1*K.1^6,K.1^4,-1*K.1^14,K.1^24,-1*K.1^14,K.1^44,-1*K.1^6,K.1^32,-1*K.1^2,K.1^8,-1*K.1^18,K.1^28,-1*K.1^18,K.1^43,K.1^31,K.1^43,-1*K.1^47,K.1^13,-1*K.1^49,-1*K.1^37,K.1^19,-1*K.1^21,K.1^41,K.1,K.1^37,K.1^17,K.1^23,K.1^11,K.1^3,K.1^39,-1*K.1^17,K.1^31,K.1^9,K.1^23,-1*K.1^17,K.1^39,-1*K.1,-1*K.1^39,-1*K.1^19,K.1^19,K.1^7,-1*K.1^49,K.1^43,-1*K.1,-1*K.1^13,-1*K.1^27,-1*K.1^27,-1*K.1^11,K.1,K.1^11,K.1^31,K.1^27,K.1^39,K.1^49,-1*K.1^41,-1*K.1^29,-1*K.1^29,-1*K.1^13,-1*K.1^23,K.1^21,-1*K.1^41,-1*K.1,-1*K.1^11,-1*K.1^21,-1*K.1^31,-1*K.1^7,-1*K.1^47,K.1^41,-1*K.1^31,-1*K.1^33,-1*K.1^9,K.1^47,-1*K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^33,K.1^19,-1*K.1^37,-1*K.1^33,K.1^17,-1*K.1^39,K.1^49,-1*K.1^7,K.1^19,-1*K.1^19,-1*K.1^43,K.1^47,-1*K.1^43,-1*K.1^47,K.1^43,-1*K.1^19,K.1^33,K.1^7,K.1^47,-1*K.1^43,-1*K.1^31,-1*K.1^33,-1*K.1^7,K.1^47,-1*K.1^9,-1*K.1^21,K.1^17,-1*K.1^43,-1*K.1^29,-1*K.1^29,-1*K.1^11,K.1,K.1^39,-1*K.1^27,-1*K.1^27,-1*K.1^13,K.1^49,-1*K.1^13,K.1^49,K.1^13,K.1^27,K.1^21,-1*K.1^41,-1*K.1,-1*K.1^11,-1*K.1^23,-1*K.1^23,-1*K.1^39,K.1^21,-1*K.1^23,K.1^37,K.1^3,-1*K.1^41,K.1^29,K.1^27,K.1^13,K.1,K.1^11,K.1^31,K.1^33,-1*K.1^37,-1*K.1^3,K.1^9,K.1^3,-1*K.1^39,K.1^23,-1*K.1^19,K.1^37,-1*K.1^49,K.1^41,K.1^21,-1*K.1^17,K.1^13,K.1^33,K.1^29,K.1^11,-1*K.1^49,K.1^7,K.1^17,-1*K.1^21,K.1^41,-1*K.1^3,-1*K.1^37,-1*K.1^17,K.1^23,K.1^9,K.1^3,K.1^37,-1*K.1^3,K.1^7,K.1^33,-1*K.1^31,-1*K.1^9,-1*K.1^47,K.1^9,K.1^29,K.1^29,K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,K.1^40,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,K.1^24,K.1^12,-1*K.1^34,-1*K.1^42,-1*K.1^2,-1*K.1^22,K.1^4,-1*K.1^38,-1*K.1^26,K.1^48,K.1^8,K.1^28,K.1^16,-1*K.1^6,-1*K.1^46,K.1^36,-1*K.1^14,-1*K.1^18,K.1^32,K.1^44,-1*K.1^45,-1*K.1^15,K.1^45,K.1^15,K.1^35,-1*K.1^5,-1*K.1^35,K.1^5,K.1^15,K.1^45,K.1^35,-1*K.1^45,K.1^5,K.1^5,K.1^5,K.1^35,-1*K.1^45,K.1^45,-1*K.1^35,K.1^15,-1*K.1^35,-1*K.1^5,-1*K.1^45,K.1^15,K.1^45,-1*K.1^5,K.1^35,-1*K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^46,-1*K.1^22,-1*K.1^18,K.1^36,-1*K.1^42,K.1^16,-1*K.1^6,K.1^32,-1*K.1^26,K.1^28,-1*K.1^26,K.1^28,-1*K.1^14,-1*K.1^34,-1*K.1^46,K.1^48,K.1^32,K.1^8,-1*K.1^26,-1*K.1^18,K.1^48,-1*K.1^38,K.1^8,K.1^36,-1*K.1^18,K.1^24,-1*K.1^38,-1*K.1^6,K.1^44,K.1^4,K.1^16,-1*K.1^6,-1*K.1^22,-1*K.1^22,-1*K.1^34,K.1^32,-1*K.1^34,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^28,-1*K.1^2,-1*K.1^46,K.1^8,K.1^12,-1*K.1^14,-1*K.1^14,-1*K.1^42,K.1^24,K.1^24,-1*K.1^42,K.1^44,K.1^12,K.1^12,K.1^44,K.1^36,-1*K.1^38,K.1^16,K.1^48,-1*K.1^48,K.1^2,K.1^6,-1*K.1^28,K.1^38,-1*K.1^44,-1*K.1^4,-1*K.1^4,K.1^26,-1*K.1^36,K.1^42,-1*K.1^12,-1*K.1^12,-1*K.1^44,K.1^34,K.1^22,-1*K.1^32,-1*K.1^24,K.1^6,K.1^2,K.1^22,-1*K.1^32,K.1^46,-1*K.1^16,K.1^14,K.1^42,K.1^14,K.1^18,K.1^46,-1*K.1^36,-1*K.1^28,K.1^38,K.1^26,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^34,-1*K.1^48,K.1^18,-1*K.1^16,-1*K.1^24,K.1^18,-1*K.1^4,K.1^2,-1*K.1^16,-1*K.1^16,K.1^22,K.1^34,K.1^6,K.1^2,-1*K.1^12,K.1^42,-1*K.1^32,-1*K.1^28,K.1^14,K.1^42,K.1^46,-1*K.1^48,-1*K.1^24,K.1^6,-1*K.1^16,K.1^46,K.1^46,K.1^26,K.1^22,K.1^34,K.1^38,-1*K.1^44,-1*K.1^28,K.1^26,K.1^18,-1*K.1^4,-1*K.1^28,K.1^14,-1*K.1^16,K.1^14,-1*K.1^8,-1*K.1^36,K.1^6,-1*K.1^48,K.1^18,-1*K.1^4,-1*K.1^24,K.1^38,-1*K.1^8,-1*K.1^8,-1*K.1^32,-1*K.1^48,K.1^38,K.1^34,-1*K.1^48,-1*K.1^24,-1*K.1^12,-1*K.1^36,-1*K.1^36,K.1^6,K.1^26,K.1^46,K.1^2,K.1^14,-1*K.1^8,K.1^22,-1*K.1^44,-1*K.1^12,K.1^18,K.1^34,K.1^38,-1*K.1^36,K.1^2,-1*K.1^4,K.1^42,-1*K.1^32,-1*K.1^32,K.1^22,K.1^42,-1*K.1^44,-1*K.1^44,-1*K.1^12,K.1^26,-1*K.1^28,K.1^8,-1*K.1^6,K.1^16,-1*K.1^26,K.1^16,-1*K.1^46,K.1^8,-1*K.1^34,K.1^24,-1*K.1^38,K.1^28,-1*K.1^14,K.1^4,-1*K.1^2,K.1^12,-1*K.1^22,K.1^12,-1*K.1^42,K.1^4,-1*K.1^38,-1*K.1^2,K.1^48,-1*K.1^14,K.1^24,-1*K.1^18,K.1^28,-1*K.1^34,K.1^44,-1*K.1^46,K.1^36,-1*K.1^26,K.1^36,-1*K.1^6,K.1^44,-1*K.1^18,K.1^48,-1*K.1^42,K.1^32,-1*K.1^22,K.1^32,-1*K.1^7,-1*K.1^19,-1*K.1^7,K.1^3,-1*K.1^37,K.1,K.1^13,-1*K.1^31,K.1^29,-1*K.1^9,-1*K.1^49,-1*K.1^13,-1*K.1^33,-1*K.1^27,-1*K.1^39,-1*K.1^47,-1*K.1^11,K.1^33,-1*K.1^19,-1*K.1^41,-1*K.1^27,K.1^33,-1*K.1^11,K.1^49,K.1^11,K.1^31,-1*K.1^31,-1*K.1^43,K.1,-1*K.1^7,K.1^49,K.1^37,K.1^23,K.1^23,K.1^39,-1*K.1^49,-1*K.1^39,-1*K.1^19,-1*K.1^23,-1*K.1^11,-1*K.1,K.1^9,K.1^21,K.1^21,K.1^37,K.1^27,-1*K.1^29,K.1^9,K.1^49,K.1^39,K.1^29,K.1^19,K.1^43,K.1^3,-1*K.1^9,K.1^19,K.1^17,K.1^41,-1*K.1^3,K.1^41,K.1^47,K.1^43,K.1^17,-1*K.1^31,K.1^13,K.1^17,-1*K.1^33,K.1^11,-1*K.1,K.1^43,-1*K.1^31,K.1^31,K.1^7,-1*K.1^3,K.1^7,K.1^3,-1*K.1^7,K.1^31,-1*K.1^17,-1*K.1^43,-1*K.1^3,K.1^7,K.1^19,K.1^17,K.1^43,-1*K.1^3,K.1^41,K.1^29,-1*K.1^33,K.1^7,K.1^21,K.1^21,K.1^39,-1*K.1^49,-1*K.1^11,K.1^23,K.1^23,K.1^37,-1*K.1,K.1^37,-1*K.1,-1*K.1^37,-1*K.1^23,-1*K.1^29,K.1^9,K.1^49,K.1^39,K.1^27,K.1^27,K.1^11,-1*K.1^29,K.1^27,-1*K.1^13,-1*K.1^47,K.1^9,-1*K.1^21,-1*K.1^23,-1*K.1^37,-1*K.1^49,-1*K.1^39,-1*K.1^19,-1*K.1^17,K.1^13,K.1^47,-1*K.1^41,-1*K.1^47,K.1^11,-1*K.1^27,K.1^31,-1*K.1^13,K.1,-1*K.1^9,-1*K.1^29,K.1^33,-1*K.1^37,-1*K.1^17,-1*K.1^21,-1*K.1^39,K.1,-1*K.1^43,-1*K.1^33,K.1^29,-1*K.1^9,K.1^47,K.1^13,K.1^33,-1*K.1^27,-1*K.1^41,-1*K.1^47,-1*K.1^13,K.1^47,-1*K.1^43,-1*K.1^17,K.1^19,K.1^41,K.1^3,-1*K.1^41,-1*K.1^21,-1*K.1^21,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^16,K.1^8,-1*K.1^6,K.1^28,-1*K.1^18,K.1^48,K.1^36,-1*K.1^42,-1*K.1^34,K.1^32,-1*K.1^22,-1*K.1^2,K.1^44,K.1^4,-1*K.1^14,K.1^24,-1*K.1^26,K.1^12,-1*K.1^38,-1*K.1^46,K.1^5,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^45,K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,-1*K.1^45,-1*K.1^45,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^35,K.1^15,K.1^45,K.1^5,-1*K.1^35,-1*K.1^5,K.1^45,-1*K.1^15,K.1^15,K.1^45,K.1^35,K.1^35,K.1^35,-1*K.1^14,K.1^48,K.1^12,K.1^24,K.1^28,K.1^44,K.1^4,-1*K.1^38,-1*K.1^34,-1*K.1^2,-1*K.1^34,-1*K.1^2,-1*K.1^26,-1*K.1^6,-1*K.1^14,K.1^32,-1*K.1^38,-1*K.1^22,-1*K.1^34,K.1^12,K.1^32,-1*K.1^42,-1*K.1^22,K.1^24,K.1^12,K.1^16,-1*K.1^42,K.1^4,-1*K.1^46,K.1^36,K.1^44,K.1^4,K.1^48,K.1^48,-1*K.1^6,-1*K.1^38,-1*K.1^6,-1*K.1^18,-1*K.1^18,K.1^36,K.1^36,-1*K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^22,K.1^8,-1*K.1^26,-1*K.1^26,K.1^28,K.1^16,K.1^16,K.1^28,-1*K.1^46,K.1^8,K.1^8,-1*K.1^46,K.1^24,-1*K.1^42,K.1^44,K.1^32,-1*K.1^32,K.1^18,-1*K.1^4,K.1^2,K.1^42,K.1^46,-1*K.1^36,-1*K.1^36,K.1^34,-1*K.1^24,-1*K.1^28,-1*K.1^8,-1*K.1^8,K.1^46,K.1^6,-1*K.1^48,K.1^38,-1*K.1^16,-1*K.1^4,K.1^18,-1*K.1^48,K.1^38,K.1^14,-1*K.1^44,K.1^26,-1*K.1^28,K.1^26,-1*K.1^12,K.1^14,-1*K.1^24,K.1^2,K.1^42,K.1^34,K.1^22,K.1^22,-1*K.1^16,K.1^6,-1*K.1^32,-1*K.1^12,-1*K.1^44,-1*K.1^16,-1*K.1^12,-1*K.1^36,K.1^18,-1*K.1^44,-1*K.1^44,-1*K.1^48,K.1^6,-1*K.1^4,K.1^18,-1*K.1^8,-1*K.1^28,K.1^38,K.1^2,K.1^26,-1*K.1^28,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^4,-1*K.1^44,K.1^14,K.1^14,K.1^34,-1*K.1^48,K.1^6,K.1^42,K.1^46,K.1^2,K.1^34,-1*K.1^12,-1*K.1^36,K.1^2,K.1^26,-1*K.1^44,K.1^26,K.1^22,-1*K.1^24,-1*K.1^4,-1*K.1^32,-1*K.1^12,-1*K.1^36,-1*K.1^16,K.1^42,K.1^22,K.1^22,K.1^38,-1*K.1^32,K.1^42,K.1^6,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^4,K.1^34,K.1^14,K.1^18,K.1^26,K.1^22,-1*K.1^48,K.1^46,-1*K.1^8,-1*K.1^12,K.1^6,K.1^42,-1*K.1^24,K.1^18,-1*K.1^36,-1*K.1^28,K.1^38,K.1^38,-1*K.1^48,-1*K.1^28,K.1^46,K.1^46,-1*K.1^8,K.1^34,K.1^2,-1*K.1^22,K.1^4,K.1^44,-1*K.1^34,K.1^44,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^16,-1*K.1^42,-1*K.1^2,-1*K.1^26,K.1^36,-1*K.1^18,K.1^8,K.1^48,K.1^8,K.1^28,K.1^36,-1*K.1^42,-1*K.1^18,K.1^32,-1*K.1^26,K.1^16,K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^46,-1*K.1^14,K.1^24,-1*K.1^34,K.1^24,K.1^4,-1*K.1^46,K.1^12,K.1^32,K.1^28,-1*K.1^38,K.1^48,-1*K.1^38,-1*K.1^13,-1*K.1^21,-1*K.1^13,-1*K.1^27,K.1^33,-1*K.1^9,-1*K.1^17,-1*K.1^29,K.1^11,-1*K.1^31,K.1^41,K.1^17,-1*K.1^47,K.1^43,-1*K.1,K.1^23,-1*K.1^49,K.1^47,-1*K.1^21,-1*K.1^19,K.1^43,K.1^47,-1*K.1^49,-1*K.1^41,K.1^49,K.1^29,-1*K.1^29,-1*K.1^37,-1*K.1^9,-1*K.1^13,-1*K.1^41,-1*K.1^33,-1*K.1^7,-1*K.1^7,K.1,K.1^41,-1*K.1,-1*K.1^21,K.1^7,-1*K.1^49,K.1^9,K.1^31,K.1^39,K.1^39,-1*K.1^33,-1*K.1^43,-1*K.1^11,K.1^31,-1*K.1^41,K.1,K.1^11,K.1^21,K.1^37,-1*K.1^27,-1*K.1^31,K.1^21,K.1^3,K.1^19,K.1^27,K.1^19,-1*K.1^23,K.1^37,K.1^3,-1*K.1^29,-1*K.1^17,K.1^3,-1*K.1^47,K.1^49,K.1^9,K.1^37,-1*K.1^29,K.1^29,K.1^13,K.1^27,K.1^13,-1*K.1^27,-1*K.1^13,K.1^29,-1*K.1^3,-1*K.1^37,K.1^27,K.1^13,K.1^21,K.1^3,K.1^37,K.1^27,K.1^19,K.1^11,-1*K.1^47,K.1^13,K.1^39,K.1^39,K.1,K.1^41,-1*K.1^49,-1*K.1^7,-1*K.1^7,-1*K.1^33,K.1^9,-1*K.1^33,K.1^9,K.1^33,K.1^7,-1*K.1^11,K.1^31,-1*K.1^41,K.1,-1*K.1^43,-1*K.1^43,K.1^49,-1*K.1^11,-1*K.1^43,K.1^17,K.1^23,K.1^31,-1*K.1^39,K.1^7,K.1^33,K.1^41,-1*K.1,-1*K.1^21,-1*K.1^3,-1*K.1^17,-1*K.1^23,-1*K.1^19,K.1^23,K.1^49,K.1^43,K.1^29,K.1^17,-1*K.1^9,-1*K.1^31,-1*K.1^11,K.1^47,K.1^33,-1*K.1^3,-1*K.1^39,-1*K.1,-1*K.1^9,-1*K.1^37,-1*K.1^47,K.1^11,-1*K.1^31,-1*K.1^23,-1*K.1^17,K.1^47,K.1^43,-1*K.1^19,K.1^23,K.1^17,-1*K.1^23,-1*K.1^37,-1*K.1^3,K.1^21,K.1^19,-1*K.1^27,-1*K.1^19,-1*K.1^39,-1*K.1^39,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,K.1^40,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^34,-1*K.1^42,K.1^44,-1*K.1^22,K.1^32,-1*K.1^2,-1*K.1^14,K.1^8,K.1^16,-1*K.1^18,K.1^28,K.1^48,-1*K.1^6,-1*K.1^46,K.1^36,-1*K.1^26,K.1^24,-1*K.1^38,K.1^12,K.1^4,-1*K.1^45,-1*K.1^15,K.1^45,K.1^15,K.1^35,-1*K.1^5,-1*K.1^35,K.1^5,K.1^15,K.1^45,K.1^35,-1*K.1^45,K.1^5,K.1^5,K.1^5,K.1^35,-1*K.1^45,K.1^45,-1*K.1^35,K.1^15,-1*K.1^35,-1*K.1^5,-1*K.1^45,K.1^15,K.1^45,-1*K.1^5,K.1^35,-1*K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,K.1^36,-1*K.1^2,-1*K.1^38,-1*K.1^26,-1*K.1^22,-1*K.1^6,-1*K.1^46,K.1^12,K.1^16,K.1^48,K.1^16,K.1^48,K.1^24,K.1^44,K.1^36,-1*K.1^18,K.1^12,K.1^28,K.1^16,-1*K.1^38,-1*K.1^18,K.1^8,K.1^28,-1*K.1^26,-1*K.1^38,-1*K.1^34,K.1^8,-1*K.1^46,K.1^4,-1*K.1^14,-1*K.1^6,-1*K.1^46,-1*K.1^2,-1*K.1^2,K.1^44,K.1^12,K.1^44,K.1^32,K.1^32,-1*K.1^14,-1*K.1^14,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^42,K.1^24,K.1^24,-1*K.1^22,-1*K.1^34,-1*K.1^34,-1*K.1^22,K.1^4,-1*K.1^42,-1*K.1^42,K.1^4,-1*K.1^26,K.1^8,-1*K.1^6,-1*K.1^18,K.1^18,-1*K.1^32,K.1^46,-1*K.1^48,-1*K.1^8,-1*K.1^4,K.1^14,K.1^14,-1*K.1^16,K.1^26,K.1^22,K.1^42,K.1^42,-1*K.1^4,-1*K.1^44,K.1^2,-1*K.1^12,K.1^34,K.1^46,-1*K.1^32,K.1^2,-1*K.1^12,-1*K.1^36,K.1^6,-1*K.1^24,K.1^22,-1*K.1^24,K.1^38,-1*K.1^36,K.1^26,-1*K.1^48,-1*K.1^8,-1*K.1^16,-1*K.1^28,-1*K.1^28,K.1^34,-1*K.1^44,K.1^18,K.1^38,K.1^6,K.1^34,K.1^38,K.1^14,-1*K.1^32,K.1^6,K.1^6,K.1^2,-1*K.1^44,K.1^46,-1*K.1^32,K.1^42,K.1^22,-1*K.1^12,-1*K.1^48,-1*K.1^24,K.1^22,-1*K.1^36,K.1^18,K.1^34,K.1^46,K.1^6,-1*K.1^36,-1*K.1^36,-1*K.1^16,K.1^2,-1*K.1^44,-1*K.1^8,-1*K.1^4,-1*K.1^48,-1*K.1^16,K.1^38,K.1^14,-1*K.1^48,-1*K.1^24,K.1^6,-1*K.1^24,-1*K.1^28,K.1^26,K.1^46,K.1^18,K.1^38,K.1^14,K.1^34,-1*K.1^8,-1*K.1^28,-1*K.1^28,-1*K.1^12,K.1^18,-1*K.1^8,-1*K.1^44,K.1^18,K.1^34,K.1^42,K.1^26,K.1^26,K.1^46,-1*K.1^16,-1*K.1^36,-1*K.1^32,-1*K.1^24,-1*K.1^28,K.1^2,-1*K.1^4,K.1^42,K.1^38,-1*K.1^44,-1*K.1^8,K.1^26,-1*K.1^32,K.1^14,K.1^22,-1*K.1^12,-1*K.1^12,K.1^2,K.1^22,-1*K.1^4,-1*K.1^4,K.1^42,-1*K.1^16,-1*K.1^48,K.1^28,-1*K.1^46,-1*K.1^6,K.1^16,-1*K.1^6,K.1^36,K.1^28,K.1^44,-1*K.1^34,K.1^8,K.1^48,K.1^24,-1*K.1^14,K.1^32,-1*K.1^42,-1*K.1^2,-1*K.1^42,-1*K.1^22,-1*K.1^14,K.1^8,K.1^32,-1*K.1^18,K.1^24,-1*K.1^34,-1*K.1^38,K.1^48,K.1^44,K.1^4,K.1^36,-1*K.1^26,K.1^16,-1*K.1^26,-1*K.1^46,K.1^4,-1*K.1^38,-1*K.1^18,-1*K.1^22,K.1^12,-1*K.1^2,K.1^12,K.1^37,K.1^29,K.1^37,K.1^23,-1*K.1^17,K.1^41,K.1^33,K.1^21,-1*K.1^39,K.1^19,-1*K.1^9,-1*K.1^33,K.1^3,-1*K.1^7,K.1^49,-1*K.1^27,K.1,-1*K.1^3,K.1^29,K.1^31,-1*K.1^7,-1*K.1^3,K.1,K.1^9,-1*K.1,-1*K.1^21,K.1^21,K.1^13,K.1^41,K.1^37,K.1^9,K.1^17,K.1^43,K.1^43,-1*K.1^49,-1*K.1^9,K.1^49,K.1^29,-1*K.1^43,K.1,-1*K.1^41,-1*K.1^19,-1*K.1^11,-1*K.1^11,K.1^17,K.1^7,K.1^39,-1*K.1^19,K.1^9,-1*K.1^49,-1*K.1^39,-1*K.1^29,-1*K.1^13,K.1^23,K.1^19,-1*K.1^29,-1*K.1^47,-1*K.1^31,-1*K.1^23,-1*K.1^31,K.1^27,-1*K.1^13,-1*K.1^47,K.1^21,K.1^33,-1*K.1^47,K.1^3,-1*K.1,-1*K.1^41,-1*K.1^13,K.1^21,-1*K.1^21,-1*K.1^37,-1*K.1^23,-1*K.1^37,K.1^23,K.1^37,-1*K.1^21,K.1^47,K.1^13,-1*K.1^23,-1*K.1^37,-1*K.1^29,-1*K.1^47,-1*K.1^13,-1*K.1^23,-1*K.1^31,-1*K.1^39,K.1^3,-1*K.1^37,-1*K.1^11,-1*K.1^11,-1*K.1^49,-1*K.1^9,K.1,K.1^43,K.1^43,K.1^17,-1*K.1^41,K.1^17,-1*K.1^41,-1*K.1^17,-1*K.1^43,K.1^39,-1*K.1^19,K.1^9,-1*K.1^49,K.1^7,K.1^7,-1*K.1,K.1^39,K.1^7,-1*K.1^33,-1*K.1^27,-1*K.1^19,K.1^11,-1*K.1^43,-1*K.1^17,-1*K.1^9,K.1^49,K.1^29,K.1^47,K.1^33,K.1^27,K.1^31,-1*K.1^27,-1*K.1,-1*K.1^7,-1*K.1^21,-1*K.1^33,K.1^41,K.1^19,K.1^39,-1*K.1^3,-1*K.1^17,K.1^47,K.1^11,K.1^49,K.1^41,K.1^13,K.1^3,-1*K.1^39,K.1^19,K.1^27,K.1^33,-1*K.1^3,-1*K.1^7,K.1^31,-1*K.1^27,-1*K.1^33,K.1^27,K.1^13,K.1^47,-1*K.1^29,-1*K.1^31,K.1^23,K.1^31,K.1^11,K.1^11,-1*K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,-1*K.1^46,K.1^48,K.1^36,-1*K.1^18,K.1^8,-1*K.1^38,K.1^16,-1*K.1^2,K.1^4,-1*K.1^42,K.1^32,K.1^12,-1*K.1^14,K.1^24,-1*K.1^34,K.1^44,-1*K.1^6,-1*K.1^22,K.1^28,-1*K.1^26,K.1^5,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^45,K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,-1*K.1^45,-1*K.1^45,-1*K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^35,K.1^15,K.1^45,K.1^5,-1*K.1^35,-1*K.1^5,K.1^45,-1*K.1^15,K.1^15,K.1^45,K.1^35,K.1^35,K.1^35,-1*K.1^34,-1*K.1^38,-1*K.1^22,K.1^44,-1*K.1^18,-1*K.1^14,K.1^24,K.1^28,K.1^4,K.1^12,K.1^4,K.1^12,-1*K.1^6,K.1^36,-1*K.1^34,-1*K.1^42,K.1^28,K.1^32,K.1^4,-1*K.1^22,-1*K.1^42,-1*K.1^2,K.1^32,K.1^44,-1*K.1^22,-1*K.1^46,-1*K.1^2,K.1^24,-1*K.1^26,K.1^16,-1*K.1^14,K.1^24,-1*K.1^38,-1*K.1^38,K.1^36,K.1^28,K.1^36,K.1^8,K.1^8,K.1^16,K.1^16,K.1^12,K.1^8,-1*K.1^34,K.1^32,K.1^48,-1*K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^46,-1*K.1^46,-1*K.1^18,-1*K.1^26,K.1^48,K.1^48,-1*K.1^26,K.1^44,-1*K.1^2,-1*K.1^14,-1*K.1^42,K.1^42,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^2,K.1^26,-1*K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^44,K.1^18,-1*K.1^48,-1*K.1^48,K.1^26,-1*K.1^36,K.1^38,-1*K.1^28,K.1^46,-1*K.1^24,-1*K.1^8,K.1^38,-1*K.1^28,K.1^34,K.1^14,K.1^6,K.1^18,K.1^6,K.1^22,K.1^34,-1*K.1^44,-1*K.1^12,K.1^2,-1*K.1^4,-1*K.1^32,-1*K.1^32,K.1^46,-1*K.1^36,K.1^42,K.1^22,K.1^14,K.1^46,K.1^22,-1*K.1^16,-1*K.1^8,K.1^14,K.1^14,K.1^38,-1*K.1^36,-1*K.1^24,-1*K.1^8,-1*K.1^48,K.1^18,-1*K.1^28,-1*K.1^12,K.1^6,K.1^18,K.1^34,K.1^42,K.1^46,-1*K.1^24,K.1^14,K.1^34,K.1^34,-1*K.1^4,K.1^38,-1*K.1^36,K.1^2,K.1^26,-1*K.1^12,-1*K.1^4,K.1^22,-1*K.1^16,-1*K.1^12,K.1^6,K.1^14,K.1^6,-1*K.1^32,-1*K.1^44,-1*K.1^24,K.1^42,K.1^22,-1*K.1^16,K.1^46,K.1^2,-1*K.1^32,-1*K.1^32,-1*K.1^28,K.1^42,K.1^2,-1*K.1^36,K.1^42,K.1^46,-1*K.1^48,-1*K.1^44,-1*K.1^44,-1*K.1^24,-1*K.1^4,K.1^34,-1*K.1^8,K.1^6,-1*K.1^32,K.1^38,K.1^26,-1*K.1^48,K.1^22,-1*K.1^36,K.1^2,-1*K.1^44,-1*K.1^8,-1*K.1^16,K.1^18,-1*K.1^28,-1*K.1^28,K.1^38,K.1^18,K.1^26,K.1^26,-1*K.1^48,-1*K.1^4,-1*K.1^12,K.1^32,K.1^24,-1*K.1^14,K.1^4,-1*K.1^14,-1*K.1^34,K.1^32,K.1^36,-1*K.1^46,-1*K.1^2,K.1^12,-1*K.1^6,K.1^16,K.1^8,K.1^48,-1*K.1^38,K.1^48,-1*K.1^18,K.1^16,-1*K.1^2,K.1^8,-1*K.1^42,-1*K.1^6,-1*K.1^46,-1*K.1^22,K.1^12,K.1^36,-1*K.1^26,-1*K.1^34,K.1^44,K.1^4,K.1^44,K.1^24,-1*K.1^26,-1*K.1^22,-1*K.1^42,-1*K.1^18,K.1^28,-1*K.1^38,K.1^28,K.1^3,-1*K.1,K.1^3,K.1^37,-1*K.1^23,-1*K.1^29,K.1^27,-1*K.1^49,-1*K.1^41,-1*K.1^11,K.1^21,-1*K.1^27,-1*K.1^7,-1*K.1^33,K.1^31,-1*K.1^13,K.1^19,K.1^7,-1*K.1,-1*K.1^39,-1*K.1^33,K.1^7,K.1^19,-1*K.1^21,-1*K.1^19,K.1^49,-1*K.1^49,K.1^47,-1*K.1^29,K.1^3,-1*K.1^21,K.1^23,K.1^17,K.1^17,-1*K.1^31,K.1^21,K.1^31,-1*K.1,-1*K.1^17,K.1^19,K.1^29,K.1^11,-1*K.1^9,-1*K.1^9,K.1^23,K.1^33,K.1^41,K.1^11,-1*K.1^21,-1*K.1^31,-1*K.1^41,K.1,-1*K.1^47,K.1^37,-1*K.1^11,K.1,K.1^43,K.1^39,-1*K.1^37,K.1^39,K.1^13,-1*K.1^47,K.1^43,-1*K.1^49,K.1^27,K.1^43,-1*K.1^7,-1*K.1^19,K.1^29,-1*K.1^47,-1*K.1^49,K.1^49,-1*K.1^3,-1*K.1^37,-1*K.1^3,K.1^37,K.1^3,K.1^49,-1*K.1^43,K.1^47,-1*K.1^37,-1*K.1^3,K.1,K.1^43,-1*K.1^47,-1*K.1^37,K.1^39,-1*K.1^41,-1*K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^31,K.1^21,K.1^19,K.1^17,K.1^17,K.1^23,K.1^29,K.1^23,K.1^29,-1*K.1^23,-1*K.1^17,K.1^41,K.1^11,-1*K.1^21,-1*K.1^31,K.1^33,K.1^33,-1*K.1^19,K.1^41,K.1^33,-1*K.1^27,-1*K.1^13,K.1^11,K.1^9,-1*K.1^17,-1*K.1^23,K.1^21,K.1^31,-1*K.1,-1*K.1^43,K.1^27,K.1^13,-1*K.1^39,-1*K.1^13,-1*K.1^19,-1*K.1^33,K.1^49,-1*K.1^27,-1*K.1^29,-1*K.1^11,K.1^41,K.1^7,-1*K.1^23,-1*K.1^43,K.1^9,K.1^31,-1*K.1^29,K.1^47,-1*K.1^7,-1*K.1^41,-1*K.1^11,K.1^13,K.1^27,K.1^7,-1*K.1^33,-1*K.1^39,-1*K.1^13,-1*K.1^27,K.1^13,K.1^47,-1*K.1^43,K.1,K.1^39,K.1^37,-1*K.1^39,K.1^9,K.1^9,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,K.1^40,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,K.1^4,-1*K.1^2,-1*K.1^14,K.1^32,-1*K.1^42,K.1^12,-1*K.1^34,K.1^48,-1*K.1^46,K.1^8,-1*K.1^18,-1*K.1^38,K.1^36,-1*K.1^26,K.1^16,-1*K.1^6,K.1^44,K.1^28,-1*K.1^22,K.1^24,-1*K.1^45,-1*K.1^15,K.1^45,K.1^15,K.1^35,-1*K.1^5,-1*K.1^35,K.1^5,K.1^15,K.1^45,K.1^35,-1*K.1^45,K.1^5,K.1^5,K.1^5,K.1^35,-1*K.1^45,K.1^45,-1*K.1^35,K.1^15,-1*K.1^35,-1*K.1^5,-1*K.1^45,K.1^15,K.1^45,-1*K.1^5,K.1^35,-1*K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^15,-1*K.1^15,K.1^16,K.1^12,K.1^28,-1*K.1^6,K.1^32,K.1^36,-1*K.1^26,-1*K.1^22,-1*K.1^46,-1*K.1^38,-1*K.1^46,-1*K.1^38,K.1^44,-1*K.1^14,K.1^16,K.1^8,-1*K.1^22,-1*K.1^18,-1*K.1^46,K.1^28,K.1^8,K.1^48,-1*K.1^18,-1*K.1^6,K.1^28,K.1^4,K.1^48,-1*K.1^26,K.1^24,-1*K.1^34,K.1^36,-1*K.1^26,K.1^12,K.1^12,-1*K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^42,-1*K.1^42,-1*K.1^34,-1*K.1^34,-1*K.1^38,-1*K.1^42,K.1^16,-1*K.1^18,-1*K.1^2,K.1^44,K.1^44,K.1^32,K.1^4,K.1^4,K.1^32,K.1^24,-1*K.1^2,-1*K.1^2,K.1^24,-1*K.1^6,K.1^48,K.1^36,K.1^8,-1*K.1^8,K.1^42,K.1^26,K.1^38,-1*K.1^48,-1*K.1^24,K.1^34,K.1^34,K.1^46,K.1^6,-1*K.1^32,K.1^2,K.1^2,-1*K.1^24,K.1^14,-1*K.1^12,K.1^22,-1*K.1^4,K.1^26,K.1^42,-1*K.1^12,K.1^22,-1*K.1^16,-1*K.1^36,-1*K.1^44,-1*K.1^32,-1*K.1^44,-1*K.1^28,-1*K.1^16,K.1^6,K.1^38,-1*K.1^48,K.1^46,K.1^18,K.1^18,-1*K.1^4,K.1^14,-1*K.1^8,-1*K.1^28,-1*K.1^36,-1*K.1^4,-1*K.1^28,K.1^34,K.1^42,-1*K.1^36,-1*K.1^36,-1*K.1^12,K.1^14,K.1^26,K.1^42,K.1^2,-1*K.1^32,K.1^22,K.1^38,-1*K.1^44,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^26,-1*K.1^36,-1*K.1^16,-1*K.1^16,K.1^46,-1*K.1^12,K.1^14,-1*K.1^48,-1*K.1^24,K.1^38,K.1^46,-1*K.1^28,K.1^34,K.1^38,-1*K.1^44,-1*K.1^36,-1*K.1^44,K.1^18,K.1^6,K.1^26,-1*K.1^8,-1*K.1^28,K.1^34,-1*K.1^4,-1*K.1^48,K.1^18,K.1^18,K.1^22,-1*K.1^8,-1*K.1^48,K.1^14,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^26,K.1^46,-1*K.1^16,K.1^42,-1*K.1^44,K.1^18,-1*K.1^12,-1*K.1^24,K.1^2,-1*K.1^28,K.1^14,-1*K.1^48,K.1^6,K.1^42,K.1^34,-1*K.1^32,K.1^22,K.1^22,-1*K.1^12,-1*K.1^32,-1*K.1^24,-1*K.1^24,K.1^2,K.1^46,K.1^38,-1*K.1^18,-1*K.1^26,K.1^36,-1*K.1^46,K.1^36,K.1^16,-1*K.1^18,-1*K.1^14,K.1^4,K.1^48,-1*K.1^38,K.1^44,-1*K.1^34,-1*K.1^42,-1*K.1^2,K.1^12,-1*K.1^2,K.1^32,-1*K.1^34,K.1^48,-1*K.1^42,K.1^8,K.1^44,K.1^4,K.1^28,-1*K.1^38,-1*K.1^14,K.1^24,K.1^16,-1*K.1^6,-1*K.1^46,-1*K.1^6,-1*K.1^26,K.1^24,K.1^28,K.1^8,K.1^32,-1*K.1^22,K.1^12,-1*K.1^22,-1*K.1^47,K.1^49,-1*K.1^47,-1*K.1^13,K.1^27,K.1^21,-1*K.1^23,K.1,K.1^9,K.1^39,-1*K.1^29,K.1^23,K.1^43,K.1^17,-1*K.1^19,K.1^37,-1*K.1^31,-1*K.1^43,K.1^49,K.1^11,K.1^17,-1*K.1^43,-1*K.1^31,K.1^29,K.1^31,-1*K.1,K.1,-1*K.1^3,K.1^21,-1*K.1^47,K.1^29,-1*K.1^27,-1*K.1^33,-1*K.1^33,K.1^19,-1*K.1^29,-1*K.1^19,K.1^49,K.1^33,-1*K.1^31,-1*K.1^21,-1*K.1^39,K.1^41,K.1^41,-1*K.1^27,-1*K.1^17,-1*K.1^9,-1*K.1^39,K.1^29,K.1^19,K.1^9,-1*K.1^49,K.1^3,-1*K.1^13,K.1^39,-1*K.1^49,-1*K.1^7,-1*K.1^11,K.1^13,-1*K.1^11,-1*K.1^37,K.1^3,-1*K.1^7,K.1,-1*K.1^23,-1*K.1^7,K.1^43,K.1^31,-1*K.1^21,K.1^3,K.1,-1*K.1,K.1^47,K.1^13,K.1^47,-1*K.1^13,-1*K.1^47,-1*K.1,K.1^7,-1*K.1^3,K.1^13,K.1^47,-1*K.1^49,-1*K.1^7,K.1^3,K.1^13,-1*K.1^11,K.1^9,K.1^43,K.1^47,K.1^41,K.1^41,K.1^19,-1*K.1^29,-1*K.1^31,-1*K.1^33,-1*K.1^33,-1*K.1^27,-1*K.1^21,-1*K.1^27,-1*K.1^21,K.1^27,K.1^33,-1*K.1^9,-1*K.1^39,K.1^29,K.1^19,-1*K.1^17,-1*K.1^17,K.1^31,-1*K.1^9,-1*K.1^17,K.1^23,K.1^37,-1*K.1^39,-1*K.1^41,K.1^33,K.1^27,-1*K.1^29,-1*K.1^19,K.1^49,K.1^7,-1*K.1^23,-1*K.1^37,K.1^11,K.1^37,K.1^31,K.1^17,-1*K.1,K.1^23,K.1^21,K.1^39,-1*K.1^9,-1*K.1^43,K.1^27,K.1^7,-1*K.1^41,-1*K.1^19,K.1^21,-1*K.1^3,K.1^43,K.1^9,K.1^39,-1*K.1^37,-1*K.1^23,-1*K.1^43,K.1^17,K.1^11,K.1^37,K.1^23,-1*K.1^37,-1*K.1^3,K.1^7,-1*K.1^49,-1*K.1^11,-1*K.1^13,K.1^11,-1*K.1^41,-1*K.1^41,K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,-1*K.1^6,K.1^28,-1*K.1^46,K.1^48,-1*K.1^38,-1*K.1^18,-1*K.1^26,-1*K.1^22,K.1^44,K.1^12,-1*K.1^2,K.1^32,K.1^4,-1*K.1^14,K.1^24,-1*K.1^34,K.1^16,-1*K.1^42,K.1^8,K.1^36,-1*K.1^5,-1*K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^45,-1*K.1^15,K.1^45,K.1^35,K.1^5,K.1^15,-1*K.1^5,K.1^45,K.1^45,K.1^45,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^35,-1*K.1^15,-1*K.1^45,-1*K.1^5,K.1^35,K.1^5,-1*K.1^45,K.1^15,-1*K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^35,-1*K.1^35,K.1^24,-1*K.1^18,-1*K.1^42,-1*K.1^34,K.1^48,K.1^4,-1*K.1^14,K.1^8,K.1^44,K.1^32,K.1^44,K.1^32,K.1^16,-1*K.1^46,K.1^24,K.1^12,K.1^8,-1*K.1^2,K.1^44,-1*K.1^42,K.1^12,-1*K.1^22,-1*K.1^2,-1*K.1^34,-1*K.1^42,-1*K.1^6,-1*K.1^22,-1*K.1^14,K.1^36,-1*K.1^26,K.1^4,-1*K.1^14,-1*K.1^18,-1*K.1^18,-1*K.1^46,K.1^8,-1*K.1^46,-1*K.1^38,-1*K.1^38,-1*K.1^26,-1*K.1^26,K.1^32,-1*K.1^38,K.1^24,-1*K.1^2,K.1^28,K.1^16,K.1^16,K.1^48,-1*K.1^6,-1*K.1^6,K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^34,-1*K.1^22,K.1^4,K.1^12,-1*K.1^12,K.1^38,K.1^14,-1*K.1^32,K.1^22,-1*K.1^36,K.1^26,K.1^26,-1*K.1^44,K.1^34,-1*K.1^48,-1*K.1^28,-1*K.1^28,-1*K.1^36,K.1^46,K.1^18,-1*K.1^8,K.1^6,K.1^14,K.1^38,K.1^18,-1*K.1^8,-1*K.1^24,-1*K.1^4,-1*K.1^16,-1*K.1^48,-1*K.1^16,K.1^42,-1*K.1^24,K.1^34,-1*K.1^32,K.1^22,-1*K.1^44,K.1^2,K.1^2,K.1^6,K.1^46,-1*K.1^12,K.1^42,-1*K.1^4,K.1^6,K.1^42,K.1^26,K.1^38,-1*K.1^4,-1*K.1^4,K.1^18,K.1^46,K.1^14,K.1^38,-1*K.1^28,-1*K.1^48,-1*K.1^8,-1*K.1^32,-1*K.1^16,-1*K.1^48,-1*K.1^24,-1*K.1^12,K.1^6,K.1^14,-1*K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^44,K.1^18,K.1^46,K.1^22,-1*K.1^36,-1*K.1^32,-1*K.1^44,K.1^42,K.1^26,-1*K.1^32,-1*K.1^16,-1*K.1^4,-1*K.1^16,K.1^2,K.1^34,K.1^14,-1*K.1^12,K.1^42,K.1^26,K.1^6,K.1^22,K.1^2,K.1^2,-1*K.1^8,-1*K.1^12,K.1^22,K.1^46,-1*K.1^12,K.1^6,-1*K.1^28,K.1^34,K.1^34,K.1^14,-1*K.1^44,-1*K.1^24,K.1^38,-1*K.1^16,K.1^2,K.1^18,-1*K.1^36,-1*K.1^28,K.1^42,K.1^46,K.1^22,K.1^34,K.1^38,K.1^26,-1*K.1^48,-1*K.1^8,-1*K.1^8,K.1^18,-1*K.1^48,-1*K.1^36,-1*K.1^36,-1*K.1^28,-1*K.1^44,-1*K.1^32,-1*K.1^2,-1*K.1^14,K.1^4,K.1^44,K.1^4,K.1^24,-1*K.1^2,-1*K.1^46,-1*K.1^6,-1*K.1^22,K.1^32,K.1^16,-1*K.1^26,-1*K.1^38,K.1^28,-1*K.1^18,K.1^28,K.1^48,-1*K.1^26,-1*K.1^22,-1*K.1^38,K.1^12,K.1^16,-1*K.1^6,-1*K.1^42,K.1^32,-1*K.1^46,K.1^36,K.1^24,-1*K.1^34,K.1^44,-1*K.1^34,-1*K.1^14,K.1^36,-1*K.1^42,K.1^12,K.1^48,K.1^8,-1*K.1^18,K.1^8,K.1^33,-1*K.1^11,K.1^33,K.1^7,K.1^3,-1*K.1^19,-1*K.1^47,-1*K.1^39,K.1,-1*K.1^21,K.1^31,K.1^47,K.1^27,K.1^13,K.1^41,-1*K.1^43,K.1^9,-1*K.1^27,-1*K.1^11,-1*K.1^29,K.1^13,-1*K.1^27,K.1^9,-1*K.1^31,-1*K.1^9,K.1^39,-1*K.1^39,K.1^17,-1*K.1^19,K.1^33,-1*K.1^31,-1*K.1^3,-1*K.1^37,-1*K.1^37,-1*K.1^41,K.1^31,K.1^41,-1*K.1^11,K.1^37,K.1^9,K.1^19,K.1^21,K.1^49,K.1^49,-1*K.1^3,-1*K.1^13,-1*K.1,K.1^21,-1*K.1^31,-1*K.1^41,K.1,K.1^11,-1*K.1^17,K.1^7,-1*K.1^21,K.1^11,-1*K.1^23,K.1^29,-1*K.1^7,K.1^29,K.1^43,-1*K.1^17,-1*K.1^23,-1*K.1^39,-1*K.1^47,-1*K.1^23,K.1^27,-1*K.1^9,K.1^19,-1*K.1^17,-1*K.1^39,K.1^39,-1*K.1^33,-1*K.1^7,-1*K.1^33,K.1^7,K.1^33,K.1^39,K.1^23,K.1^17,-1*K.1^7,-1*K.1^33,K.1^11,-1*K.1^23,-1*K.1^17,-1*K.1^7,K.1^29,K.1,K.1^27,-1*K.1^33,K.1^49,K.1^49,-1*K.1^41,K.1^31,K.1^9,-1*K.1^37,-1*K.1^37,-1*K.1^3,K.1^19,-1*K.1^3,K.1^19,K.1^3,K.1^37,-1*K.1,K.1^21,-1*K.1^31,-1*K.1^41,-1*K.1^13,-1*K.1^13,-1*K.1^9,-1*K.1,-1*K.1^13,K.1^47,-1*K.1^43,K.1^21,-1*K.1^49,K.1^37,K.1^3,K.1^31,K.1^41,-1*K.1^11,K.1^23,-1*K.1^47,K.1^43,-1*K.1^29,-1*K.1^43,-1*K.1^9,K.1^13,K.1^39,K.1^47,-1*K.1^19,-1*K.1^21,-1*K.1,-1*K.1^27,K.1^3,K.1^23,-1*K.1^49,K.1^41,-1*K.1^19,K.1^17,K.1^27,K.1,-1*K.1^21,K.1^43,-1*K.1^47,-1*K.1^27,K.1^13,-1*K.1^29,-1*K.1^43,K.1^47,K.1^43,K.1^17,K.1^23,K.1^11,K.1^29,K.1^7,-1*K.1^29,-1*K.1^49,-1*K.1^49,K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,K.1^40,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,K.1^44,-1*K.1^22,K.1^4,-1*K.1^2,K.1^12,K.1^32,K.1^24,K.1^28,-1*K.1^6,-1*K.1^38,K.1^48,-1*K.1^18,-1*K.1^46,K.1^36,-1*K.1^26,K.1^16,-1*K.1^34,K.1^8,-1*K.1^42,-1*K.1^14,K.1^45,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^35,K.1^5,K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^35,K.1^45,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^35,K.1^45,-1*K.1^45,K.1^35,-1*K.1^15,K.1^35,K.1^5,K.1^45,-1*K.1^15,-1*K.1^45,K.1^5,-1*K.1^35,K.1^35,K.1^5,K.1^15,K.1^15,K.1^15,-1*K.1^26,K.1^32,K.1^8,K.1^16,-1*K.1^2,-1*K.1^46,K.1^36,-1*K.1^42,-1*K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^18,-1*K.1^34,K.1^4,-1*K.1^26,-1*K.1^38,-1*K.1^42,K.1^48,-1*K.1^6,K.1^8,-1*K.1^38,K.1^28,K.1^48,K.1^16,K.1^8,K.1^44,K.1^28,K.1^36,-1*K.1^14,K.1^24,-1*K.1^46,K.1^36,K.1^32,K.1^32,K.1^4,-1*K.1^42,K.1^4,K.1^12,K.1^12,K.1^24,K.1^24,-1*K.1^18,K.1^12,-1*K.1^26,K.1^48,-1*K.1^22,-1*K.1^34,-1*K.1^34,-1*K.1^2,K.1^44,K.1^44,-1*K.1^2,-1*K.1^14,-1*K.1^22,-1*K.1^22,-1*K.1^14,K.1^16,K.1^28,-1*K.1^46,-1*K.1^38,K.1^38,-1*K.1^12,-1*K.1^36,K.1^18,-1*K.1^28,K.1^14,-1*K.1^24,-1*K.1^24,K.1^6,-1*K.1^16,K.1^2,K.1^22,K.1^22,K.1^14,-1*K.1^4,-1*K.1^32,K.1^42,-1*K.1^44,-1*K.1^36,-1*K.1^12,-1*K.1^32,K.1^42,K.1^26,K.1^46,K.1^34,K.1^2,K.1^34,-1*K.1^8,K.1^26,-1*K.1^16,K.1^18,-1*K.1^28,K.1^6,-1*K.1^48,-1*K.1^48,-1*K.1^44,-1*K.1^4,K.1^38,-1*K.1^8,K.1^46,-1*K.1^44,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^46,K.1^46,-1*K.1^32,-1*K.1^4,-1*K.1^36,-1*K.1^12,K.1^22,K.1^2,K.1^42,K.1^18,K.1^34,K.1^2,K.1^26,K.1^38,-1*K.1^44,-1*K.1^36,K.1^46,K.1^26,K.1^26,K.1^6,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^14,K.1^18,K.1^6,-1*K.1^8,-1*K.1^24,K.1^18,K.1^34,K.1^46,K.1^34,-1*K.1^48,-1*K.1^16,-1*K.1^36,K.1^38,-1*K.1^8,-1*K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^48,-1*K.1^48,K.1^42,K.1^38,-1*K.1^28,-1*K.1^4,K.1^38,-1*K.1^44,K.1^22,-1*K.1^16,-1*K.1^16,-1*K.1^36,K.1^6,K.1^26,-1*K.1^12,K.1^34,-1*K.1^48,-1*K.1^32,K.1^14,K.1^22,-1*K.1^8,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^12,-1*K.1^24,K.1^2,K.1^42,K.1^42,-1*K.1^32,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,K.1^18,K.1^48,K.1^36,-1*K.1^46,-1*K.1^6,-1*K.1^46,-1*K.1^26,K.1^48,K.1^4,K.1^44,K.1^28,-1*K.1^18,-1*K.1^34,K.1^24,K.1^12,-1*K.1^22,K.1^32,-1*K.1^22,-1*K.1^2,K.1^24,K.1^28,K.1^12,-1*K.1^38,-1*K.1^34,K.1^44,K.1^8,-1*K.1^18,K.1^4,-1*K.1^14,-1*K.1^26,K.1^16,-1*K.1^6,K.1^16,K.1^36,-1*K.1^14,K.1^8,-1*K.1^38,-1*K.1^2,-1*K.1^42,K.1^32,-1*K.1^42,-1*K.1^17,K.1^39,-1*K.1^17,-1*K.1^43,-1*K.1^47,K.1^31,K.1^3,K.1^11,-1*K.1^49,K.1^29,-1*K.1^19,-1*K.1^3,-1*K.1^23,-1*K.1^37,-1*K.1^9,K.1^7,-1*K.1^41,K.1^23,K.1^39,K.1^21,-1*K.1^37,K.1^23,-1*K.1^41,K.1^19,K.1^41,-1*K.1^11,K.1^11,-1*K.1^33,K.1^31,-1*K.1^17,K.1^19,K.1^47,K.1^13,K.1^13,K.1^9,-1*K.1^19,-1*K.1^9,K.1^39,-1*K.1^13,-1*K.1^41,-1*K.1^31,-1*K.1^29,-1*K.1,-1*K.1,K.1^47,K.1^37,K.1^49,-1*K.1^29,K.1^19,K.1^9,-1*K.1^49,-1*K.1^39,K.1^33,-1*K.1^43,K.1^29,-1*K.1^39,K.1^27,-1*K.1^21,K.1^43,-1*K.1^21,-1*K.1^7,K.1^33,K.1^27,K.1^11,K.1^3,K.1^27,-1*K.1^23,K.1^41,-1*K.1^31,K.1^33,K.1^11,-1*K.1^11,K.1^17,K.1^43,K.1^17,-1*K.1^43,-1*K.1^17,-1*K.1^11,-1*K.1^27,-1*K.1^33,K.1^43,K.1^17,-1*K.1^39,K.1^27,K.1^33,K.1^43,-1*K.1^21,-1*K.1^49,-1*K.1^23,K.1^17,-1*K.1,-1*K.1,K.1^9,-1*K.1^19,-1*K.1^41,K.1^13,K.1^13,K.1^47,-1*K.1^31,K.1^47,-1*K.1^31,-1*K.1^47,-1*K.1^13,K.1^49,-1*K.1^29,K.1^19,K.1^9,K.1^37,K.1^37,K.1^41,K.1^49,K.1^37,-1*K.1^3,K.1^7,-1*K.1^29,K.1,-1*K.1^13,-1*K.1^47,-1*K.1^19,-1*K.1^9,K.1^39,-1*K.1^27,K.1^3,-1*K.1^7,K.1^21,K.1^7,K.1^41,-1*K.1^37,-1*K.1^11,-1*K.1^3,K.1^31,K.1^29,K.1^49,K.1^23,-1*K.1^47,-1*K.1^27,K.1,-1*K.1^9,K.1^31,-1*K.1^33,-1*K.1^23,-1*K.1^49,K.1^29,-1*K.1^7,K.1^3,K.1^23,-1*K.1^37,K.1^21,K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^33,-1*K.1^27,-1*K.1^39,-1*K.1^21,-1*K.1^43,K.1^21,K.1,K.1,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^36,-1*K.1^18,-1*K.1^26,-1*K.1^38,K.1^28,K.1^8,-1*K.1^6,K.1^32,-1*K.1^14,-1*K.1^22,K.1^12,-1*K.1^42,K.1^24,-1*K.1^34,K.1^44,K.1^4,-1*K.1^46,-1*K.1^2,K.1^48,K.1^16,-1*K.1^5,-1*K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^45,-1*K.1^15,K.1^45,K.1^35,K.1^5,K.1^15,-1*K.1^5,K.1^45,K.1^45,K.1^45,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^35,-1*K.1^15,-1*K.1^45,-1*K.1^5,K.1^35,K.1^5,-1*K.1^45,K.1^15,-1*K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^35,-1*K.1^35,K.1^44,K.1^8,-1*K.1^2,K.1^4,-1*K.1^38,K.1^24,-1*K.1^34,K.1^48,-1*K.1^14,-1*K.1^42,-1*K.1^14,-1*K.1^42,-1*K.1^46,-1*K.1^26,K.1^44,-1*K.1^22,K.1^48,K.1^12,-1*K.1^14,-1*K.1^2,-1*K.1^22,K.1^32,K.1^12,K.1^4,-1*K.1^2,K.1^36,K.1^32,-1*K.1^34,K.1^16,-1*K.1^6,K.1^24,-1*K.1^34,K.1^8,K.1^8,-1*K.1^26,K.1^48,-1*K.1^26,K.1^28,K.1^28,-1*K.1^6,-1*K.1^6,-1*K.1^42,K.1^28,K.1^44,K.1^12,-1*K.1^18,-1*K.1^46,-1*K.1^46,-1*K.1^38,K.1^36,K.1^36,-1*K.1^38,K.1^16,-1*K.1^18,-1*K.1^18,K.1^16,K.1^4,K.1^32,K.1^24,-1*K.1^22,K.1^22,-1*K.1^28,K.1^34,K.1^42,-1*K.1^32,-1*K.1^16,K.1^6,K.1^6,K.1^14,-1*K.1^4,K.1^38,K.1^18,K.1^18,-1*K.1^16,K.1^26,-1*K.1^8,-1*K.1^48,-1*K.1^36,K.1^34,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^44,-1*K.1^24,K.1^46,K.1^38,K.1^46,K.1^2,-1*K.1^44,-1*K.1^4,K.1^42,-1*K.1^32,K.1^14,-1*K.1^12,-1*K.1^12,-1*K.1^36,K.1^26,K.1^22,K.1^2,-1*K.1^24,-1*K.1^36,K.1^2,K.1^6,-1*K.1^28,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^26,K.1^34,-1*K.1^28,K.1^18,K.1^38,-1*K.1^48,K.1^42,K.1^46,K.1^38,-1*K.1^44,K.1^22,-1*K.1^36,K.1^34,-1*K.1^24,-1*K.1^44,-1*K.1^44,K.1^14,-1*K.1^8,K.1^26,-1*K.1^32,-1*K.1^16,K.1^42,K.1^14,K.1^2,K.1^6,K.1^42,K.1^46,-1*K.1^24,K.1^46,-1*K.1^12,-1*K.1^4,K.1^34,K.1^22,K.1^2,K.1^6,-1*K.1^36,-1*K.1^32,-1*K.1^12,-1*K.1^12,-1*K.1^48,K.1^22,-1*K.1^32,K.1^26,K.1^22,-1*K.1^36,K.1^18,-1*K.1^4,-1*K.1^4,K.1^34,K.1^14,-1*K.1^44,-1*K.1^28,K.1^46,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^18,K.1^2,K.1^26,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^6,K.1^38,-1*K.1^48,-1*K.1^48,-1*K.1^8,K.1^38,-1*K.1^16,-1*K.1^16,K.1^18,K.1^14,K.1^42,K.1^12,-1*K.1^34,K.1^24,-1*K.1^14,K.1^24,K.1^44,K.1^12,-1*K.1^26,K.1^36,K.1^32,-1*K.1^42,-1*K.1^46,-1*K.1^6,K.1^28,-1*K.1^18,K.1^8,-1*K.1^18,-1*K.1^38,-1*K.1^6,K.1^32,K.1^28,-1*K.1^22,-1*K.1^46,K.1^36,-1*K.1^2,-1*K.1^42,-1*K.1^26,K.1^16,K.1^44,K.1^4,-1*K.1^14,K.1^4,-1*K.1^34,K.1^16,-1*K.1^2,-1*K.1^22,-1*K.1^38,K.1^48,K.1^8,K.1^48,-1*K.1^23,K.1^41,-1*K.1^23,-1*K.1^17,K.1^43,-1*K.1^39,-1*K.1^7,K.1^9,-1*K.1^31,-1*K.1,K.1^11,K.1^7,-1*K.1^37,-1*K.1^3,K.1^21,K.1^33,K.1^29,K.1^37,K.1^41,-1*K.1^49,-1*K.1^3,K.1^37,K.1^29,-1*K.1^11,-1*K.1^29,-1*K.1^9,K.1^9,-1*K.1^27,-1*K.1^39,-1*K.1^23,-1*K.1^11,-1*K.1^43,K.1^47,K.1^47,-1*K.1^21,K.1^11,K.1^21,K.1^41,-1*K.1^47,K.1^29,K.1^39,K.1,-1*K.1^19,-1*K.1^19,-1*K.1^43,K.1^3,K.1^31,K.1,-1*K.1^11,-1*K.1^21,-1*K.1^31,-1*K.1^41,K.1^27,-1*K.1^17,-1*K.1,-1*K.1^41,K.1^13,K.1^49,K.1^17,K.1^49,-1*K.1^33,K.1^27,K.1^13,K.1^9,-1*K.1^7,K.1^13,-1*K.1^37,-1*K.1^29,K.1^39,K.1^27,K.1^9,-1*K.1^9,K.1^23,K.1^17,K.1^23,-1*K.1^17,-1*K.1^23,-1*K.1^9,-1*K.1^13,-1*K.1^27,K.1^17,K.1^23,-1*K.1^41,K.1^13,K.1^27,K.1^17,K.1^49,-1*K.1^31,-1*K.1^37,K.1^23,-1*K.1^19,-1*K.1^19,-1*K.1^21,K.1^11,K.1^29,K.1^47,K.1^47,-1*K.1^43,K.1^39,-1*K.1^43,K.1^39,K.1^43,-1*K.1^47,K.1^31,K.1,-1*K.1^11,-1*K.1^21,K.1^3,K.1^3,-1*K.1^29,K.1^31,K.1^3,K.1^7,K.1^33,K.1,K.1^19,-1*K.1^47,K.1^43,K.1^11,K.1^21,K.1^41,-1*K.1^13,-1*K.1^7,-1*K.1^33,-1*K.1^49,K.1^33,-1*K.1^29,-1*K.1^3,-1*K.1^9,K.1^7,-1*K.1^39,-1*K.1,K.1^31,K.1^37,K.1^43,-1*K.1^13,K.1^19,K.1^21,-1*K.1^39,-1*K.1^27,-1*K.1^37,-1*K.1^31,-1*K.1,-1*K.1^33,-1*K.1^7,K.1^37,-1*K.1^3,-1*K.1^49,K.1^33,K.1^7,-1*K.1^33,-1*K.1^27,-1*K.1^13,-1*K.1^41,K.1^49,-1*K.1^17,-1*K.1^49,K.1^19,K.1^19,-1*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,K.1^40,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^14,K.1^32,K.1^24,K.1^12,-1*K.1^22,-1*K.1^42,K.1^44,-1*K.1^18,K.1^36,K.1^28,-1*K.1^38,K.1^8,-1*K.1^26,K.1^16,-1*K.1^6,-1*K.1^46,K.1^4,K.1^48,-1*K.1^2,-1*K.1^34,K.1^45,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^35,K.1^5,K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^35,K.1^45,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^35,K.1^45,-1*K.1^45,K.1^35,-1*K.1^15,K.1^35,K.1^5,K.1^45,-1*K.1^15,-1*K.1^45,K.1^5,-1*K.1^35,K.1^35,K.1^5,K.1^15,K.1^15,K.1^15,-1*K.1^6,-1*K.1^42,K.1^48,-1*K.1^46,K.1^12,-1*K.1^26,K.1^16,-1*K.1^2,K.1^36,K.1^8,K.1^36,K.1^8,K.1^4,K.1^24,-1*K.1^6,K.1^28,-1*K.1^2,-1*K.1^38,K.1^36,K.1^48,K.1^28,-1*K.1^18,-1*K.1^38,-1*K.1^46,K.1^48,-1*K.1^14,-1*K.1^18,K.1^16,-1*K.1^34,K.1^44,-1*K.1^26,K.1^16,-1*K.1^42,-1*K.1^42,K.1^24,-1*K.1^2,K.1^24,-1*K.1^22,-1*K.1^22,K.1^44,K.1^44,K.1^8,-1*K.1^22,-1*K.1^6,-1*K.1^38,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^14,-1*K.1^14,K.1^12,-1*K.1^34,K.1^32,K.1^32,-1*K.1^34,-1*K.1^46,-1*K.1^18,-1*K.1^26,K.1^28,-1*K.1^28,K.1^22,-1*K.1^16,-1*K.1^8,K.1^18,K.1^34,-1*K.1^44,-1*K.1^44,-1*K.1^36,K.1^46,-1*K.1^12,-1*K.1^32,-1*K.1^32,K.1^34,-1*K.1^24,K.1^42,K.1^2,K.1^14,-1*K.1^16,K.1^22,K.1^42,K.1^2,K.1^6,K.1^26,-1*K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^48,K.1^6,K.1^46,-1*K.1^8,K.1^18,-1*K.1^36,K.1^38,K.1^38,K.1^14,-1*K.1^24,-1*K.1^28,-1*K.1^48,K.1^26,K.1^14,-1*K.1^48,-1*K.1^44,K.1^22,K.1^26,K.1^26,K.1^42,-1*K.1^24,-1*K.1^16,K.1^22,-1*K.1^32,-1*K.1^12,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^28,K.1^14,-1*K.1^16,K.1^26,K.1^6,K.1^6,-1*K.1^36,K.1^42,-1*K.1^24,K.1^18,K.1^34,-1*K.1^8,-1*K.1^36,-1*K.1^48,-1*K.1^44,-1*K.1^8,-1*K.1^4,K.1^26,-1*K.1^4,K.1^38,K.1^46,-1*K.1^16,-1*K.1^28,-1*K.1^48,-1*K.1^44,K.1^14,K.1^18,K.1^38,K.1^38,K.1^2,-1*K.1^28,K.1^18,-1*K.1^24,-1*K.1^28,K.1^14,-1*K.1^32,K.1^46,K.1^46,-1*K.1^16,-1*K.1^36,K.1^6,K.1^22,-1*K.1^4,K.1^38,K.1^42,K.1^34,-1*K.1^32,-1*K.1^48,-1*K.1^24,K.1^18,K.1^46,K.1^22,-1*K.1^44,-1*K.1^12,K.1^2,K.1^2,K.1^42,-1*K.1^12,K.1^34,K.1^34,-1*K.1^32,-1*K.1^36,-1*K.1^8,-1*K.1^38,K.1^16,-1*K.1^26,K.1^36,-1*K.1^26,-1*K.1^6,-1*K.1^38,K.1^24,-1*K.1^14,-1*K.1^18,K.1^8,K.1^4,K.1^44,-1*K.1^22,K.1^32,-1*K.1^42,K.1^32,K.1^12,K.1^44,-1*K.1^18,-1*K.1^22,K.1^28,K.1^4,-1*K.1^14,K.1^48,K.1^8,K.1^24,-1*K.1^34,-1*K.1^6,-1*K.1^46,K.1^36,-1*K.1^46,K.1^16,-1*K.1^34,K.1^48,K.1^28,K.1^12,-1*K.1^2,-1*K.1^42,-1*K.1^2,K.1^27,-1*K.1^9,K.1^27,K.1^33,-1*K.1^7,K.1^11,K.1^43,-1*K.1^41,K.1^19,K.1^49,-1*K.1^39,-1*K.1^43,K.1^13,K.1^47,-1*K.1^29,-1*K.1^17,-1*K.1^21,-1*K.1^13,-1*K.1^9,K.1,K.1^47,-1*K.1^13,-1*K.1^21,K.1^39,K.1^21,K.1^41,-1*K.1^41,K.1^23,K.1^11,K.1^27,K.1^39,K.1^7,-1*K.1^3,-1*K.1^3,K.1^29,-1*K.1^39,-1*K.1^29,-1*K.1^9,K.1^3,-1*K.1^21,-1*K.1^11,-1*K.1^49,K.1^31,K.1^31,K.1^7,-1*K.1^47,-1*K.1^19,-1*K.1^49,K.1^39,K.1^29,K.1^19,K.1^9,-1*K.1^23,K.1^33,K.1^49,K.1^9,-1*K.1^37,-1*K.1,-1*K.1^33,-1*K.1,K.1^17,-1*K.1^23,-1*K.1^37,-1*K.1^41,K.1^43,-1*K.1^37,K.1^13,K.1^21,-1*K.1^11,-1*K.1^23,-1*K.1^41,K.1^41,-1*K.1^27,-1*K.1^33,-1*K.1^27,K.1^33,K.1^27,K.1^41,K.1^37,K.1^23,-1*K.1^33,-1*K.1^27,K.1^9,-1*K.1^37,-1*K.1^23,-1*K.1^33,-1*K.1,K.1^19,K.1^13,-1*K.1^27,K.1^31,K.1^31,K.1^29,-1*K.1^39,-1*K.1^21,-1*K.1^3,-1*K.1^3,K.1^7,-1*K.1^11,K.1^7,-1*K.1^11,-1*K.1^7,K.1^3,-1*K.1^19,-1*K.1^49,K.1^39,K.1^29,-1*K.1^47,-1*K.1^47,K.1^21,-1*K.1^19,-1*K.1^47,-1*K.1^43,-1*K.1^17,-1*K.1^49,-1*K.1^31,K.1^3,-1*K.1^7,-1*K.1^39,-1*K.1^29,-1*K.1^9,K.1^37,K.1^43,K.1^17,K.1,-1*K.1^17,K.1^21,K.1^47,K.1^41,-1*K.1^43,K.1^11,K.1^49,-1*K.1^19,-1*K.1^13,-1*K.1^7,K.1^37,-1*K.1^31,-1*K.1^29,K.1^11,K.1^23,K.1^13,K.1^19,K.1^49,K.1^17,K.1^43,-1*K.1^13,K.1^47,K.1,-1*K.1^17,-1*K.1^43,K.1^17,K.1^23,K.1^37,K.1^9,-1*K.1,K.1^33,K.1,-1*K.1^31,-1*K.1^31,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,-1*K.1^26,-1*K.1^38,K.1^16,K.1^8,K.1^48,K.1^28,-1*K.1^46,K.1^12,K.1^24,-1*K.1^2,-1*K.1^42,-1*K.1^22,-1*K.1^34,K.1^44,K.1^4,-1*K.1^14,K.1^36,K.1^32,-1*K.1^18,-1*K.1^6,-1*K.1^5,-1*K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^45,-1*K.1^15,K.1^45,K.1^35,K.1^5,K.1^15,-1*K.1^5,K.1^45,K.1^45,K.1^45,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^35,-1*K.1^15,-1*K.1^45,-1*K.1^5,K.1^35,K.1^5,-1*K.1^45,K.1^15,-1*K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^35,-1*K.1^35,K.1^4,K.1^28,K.1^32,-1*K.1^14,K.1^8,-1*K.1^34,K.1^44,-1*K.1^18,K.1^24,-1*K.1^22,K.1^24,-1*K.1^22,K.1^36,K.1^16,K.1^4,-1*K.1^2,-1*K.1^18,-1*K.1^42,K.1^24,K.1^32,-1*K.1^2,K.1^12,-1*K.1^42,-1*K.1^14,K.1^32,-1*K.1^26,K.1^12,K.1^44,-1*K.1^6,-1*K.1^46,-1*K.1^34,K.1^44,K.1^28,K.1^28,K.1^16,-1*K.1^18,K.1^16,K.1^48,K.1^48,-1*K.1^46,-1*K.1^46,-1*K.1^22,K.1^48,K.1^4,-1*K.1^42,-1*K.1^38,K.1^36,K.1^36,K.1^8,-1*K.1^26,-1*K.1^26,K.1^8,-1*K.1^6,-1*K.1^38,-1*K.1^38,-1*K.1^6,-1*K.1^14,K.1^12,-1*K.1^34,-1*K.1^2,K.1^2,-1*K.1^48,-1*K.1^44,K.1^22,-1*K.1^12,K.1^6,K.1^46,K.1^46,-1*K.1^24,K.1^14,-1*K.1^8,K.1^38,K.1^38,K.1^6,-1*K.1^16,-1*K.1^28,K.1^18,K.1^26,-1*K.1^44,-1*K.1^48,-1*K.1^28,K.1^18,-1*K.1^4,K.1^34,-1*K.1^36,-1*K.1^8,-1*K.1^36,-1*K.1^32,-1*K.1^4,K.1^14,K.1^22,-1*K.1^12,-1*K.1^24,K.1^42,K.1^42,K.1^26,-1*K.1^16,K.1^2,-1*K.1^32,K.1^34,K.1^26,-1*K.1^32,K.1^46,-1*K.1^48,K.1^34,K.1^34,-1*K.1^28,-1*K.1^16,-1*K.1^44,-1*K.1^48,K.1^38,-1*K.1^8,K.1^18,K.1^22,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^2,K.1^26,-1*K.1^44,K.1^34,-1*K.1^4,-1*K.1^4,-1*K.1^24,-1*K.1^28,-1*K.1^16,-1*K.1^12,K.1^6,K.1^22,-1*K.1^24,-1*K.1^32,K.1^46,K.1^22,-1*K.1^36,K.1^34,-1*K.1^36,K.1^42,K.1^14,-1*K.1^44,K.1^2,-1*K.1^32,K.1^46,K.1^26,-1*K.1^12,K.1^42,K.1^42,K.1^18,K.1^2,-1*K.1^12,-1*K.1^16,K.1^2,K.1^26,K.1^38,K.1^14,K.1^14,-1*K.1^44,-1*K.1^24,-1*K.1^4,-1*K.1^48,-1*K.1^36,K.1^42,-1*K.1^28,K.1^6,K.1^38,-1*K.1^32,-1*K.1^16,-1*K.1^12,K.1^14,-1*K.1^48,K.1^46,-1*K.1^8,K.1^18,K.1^18,-1*K.1^28,-1*K.1^8,K.1^6,K.1^6,K.1^38,-1*K.1^24,K.1^22,-1*K.1^42,K.1^44,-1*K.1^34,K.1^24,-1*K.1^34,K.1^4,-1*K.1^42,K.1^16,-1*K.1^26,K.1^12,-1*K.1^22,K.1^36,-1*K.1^46,K.1^48,-1*K.1^38,K.1^28,-1*K.1^38,K.1^8,-1*K.1^46,K.1^12,K.1^48,-1*K.1^2,K.1^36,-1*K.1^26,K.1^32,-1*K.1^22,K.1^16,-1*K.1^6,K.1^4,-1*K.1^14,K.1^24,-1*K.1^14,K.1^44,-1*K.1^6,K.1^32,-1*K.1^2,K.1^8,-1*K.1^18,K.1^28,-1*K.1^18,-1*K.1^43,-1*K.1^31,-1*K.1^43,K.1^47,-1*K.1^13,K.1^49,K.1^37,-1*K.1^19,K.1^21,-1*K.1^41,-1*K.1,-1*K.1^37,-1*K.1^17,-1*K.1^23,-1*K.1^11,-1*K.1^3,-1*K.1^39,K.1^17,-1*K.1^31,-1*K.1^9,-1*K.1^23,K.1^17,-1*K.1^39,K.1,K.1^39,K.1^19,-1*K.1^19,-1*K.1^7,K.1^49,-1*K.1^43,K.1,K.1^13,K.1^27,K.1^27,K.1^11,-1*K.1,-1*K.1^11,-1*K.1^31,-1*K.1^27,-1*K.1^39,-1*K.1^49,K.1^41,K.1^29,K.1^29,K.1^13,K.1^23,-1*K.1^21,K.1^41,K.1,K.1^11,K.1^21,K.1^31,K.1^7,K.1^47,-1*K.1^41,K.1^31,K.1^33,K.1^9,-1*K.1^47,K.1^9,K.1^3,K.1^7,K.1^33,-1*K.1^19,K.1^37,K.1^33,-1*K.1^17,K.1^39,-1*K.1^49,K.1^7,-1*K.1^19,K.1^19,K.1^43,-1*K.1^47,K.1^43,K.1^47,-1*K.1^43,K.1^19,-1*K.1^33,-1*K.1^7,-1*K.1^47,K.1^43,K.1^31,K.1^33,K.1^7,-1*K.1^47,K.1^9,K.1^21,-1*K.1^17,K.1^43,K.1^29,K.1^29,K.1^11,-1*K.1,-1*K.1^39,K.1^27,K.1^27,K.1^13,-1*K.1^49,K.1^13,-1*K.1^49,-1*K.1^13,-1*K.1^27,-1*K.1^21,K.1^41,K.1,K.1^11,K.1^23,K.1^23,K.1^39,-1*K.1^21,K.1^23,-1*K.1^37,-1*K.1^3,K.1^41,-1*K.1^29,-1*K.1^27,-1*K.1^13,-1*K.1,-1*K.1^11,-1*K.1^31,-1*K.1^33,K.1^37,K.1^3,-1*K.1^9,-1*K.1^3,K.1^39,-1*K.1^23,K.1^19,-1*K.1^37,K.1^49,-1*K.1^41,-1*K.1^21,K.1^17,-1*K.1^13,-1*K.1^33,-1*K.1^29,-1*K.1^11,K.1^49,-1*K.1^7,-1*K.1^17,K.1^21,-1*K.1^41,K.1^3,K.1^37,K.1^17,-1*K.1^23,-1*K.1^9,-1*K.1^3,-1*K.1^37,K.1^3,-1*K.1^7,-1*K.1^33,K.1^31,K.1^9,K.1^47,-1*K.1^9,-1*K.1^29,-1*K.1^29,-1*K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,K.1^40,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,K.1^24,K.1^12,-1*K.1^34,-1*K.1^42,-1*K.1^2,-1*K.1^22,K.1^4,-1*K.1^38,-1*K.1^26,K.1^48,K.1^8,K.1^28,K.1^16,-1*K.1^6,-1*K.1^46,K.1^36,-1*K.1^14,-1*K.1^18,K.1^32,K.1^44,K.1^45,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^35,K.1^5,K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^35,K.1^45,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^35,K.1^45,-1*K.1^45,K.1^35,-1*K.1^15,K.1^35,K.1^5,K.1^45,-1*K.1^15,-1*K.1^45,K.1^5,-1*K.1^35,K.1^35,K.1^5,K.1^15,K.1^15,K.1^15,-1*K.1^46,-1*K.1^22,-1*K.1^18,K.1^36,-1*K.1^42,K.1^16,-1*K.1^6,K.1^32,-1*K.1^26,K.1^28,-1*K.1^26,K.1^28,-1*K.1^14,-1*K.1^34,-1*K.1^46,K.1^48,K.1^32,K.1^8,-1*K.1^26,-1*K.1^18,K.1^48,-1*K.1^38,K.1^8,K.1^36,-1*K.1^18,K.1^24,-1*K.1^38,-1*K.1^6,K.1^44,K.1^4,K.1^16,-1*K.1^6,-1*K.1^22,-1*K.1^22,-1*K.1^34,K.1^32,-1*K.1^34,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^28,-1*K.1^2,-1*K.1^46,K.1^8,K.1^12,-1*K.1^14,-1*K.1^14,-1*K.1^42,K.1^24,K.1^24,-1*K.1^42,K.1^44,K.1^12,K.1^12,K.1^44,K.1^36,-1*K.1^38,K.1^16,K.1^48,-1*K.1^48,K.1^2,K.1^6,-1*K.1^28,K.1^38,-1*K.1^44,-1*K.1^4,-1*K.1^4,K.1^26,-1*K.1^36,K.1^42,-1*K.1^12,-1*K.1^12,-1*K.1^44,K.1^34,K.1^22,-1*K.1^32,-1*K.1^24,K.1^6,K.1^2,K.1^22,-1*K.1^32,K.1^46,-1*K.1^16,K.1^14,K.1^42,K.1^14,K.1^18,K.1^46,-1*K.1^36,-1*K.1^28,K.1^38,K.1^26,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^34,-1*K.1^48,K.1^18,-1*K.1^16,-1*K.1^24,K.1^18,-1*K.1^4,K.1^2,-1*K.1^16,-1*K.1^16,K.1^22,K.1^34,K.1^6,K.1^2,-1*K.1^12,K.1^42,-1*K.1^32,-1*K.1^28,K.1^14,K.1^42,K.1^46,-1*K.1^48,-1*K.1^24,K.1^6,-1*K.1^16,K.1^46,K.1^46,K.1^26,K.1^22,K.1^34,K.1^38,-1*K.1^44,-1*K.1^28,K.1^26,K.1^18,-1*K.1^4,-1*K.1^28,K.1^14,-1*K.1^16,K.1^14,-1*K.1^8,-1*K.1^36,K.1^6,-1*K.1^48,K.1^18,-1*K.1^4,-1*K.1^24,K.1^38,-1*K.1^8,-1*K.1^8,-1*K.1^32,-1*K.1^48,K.1^38,K.1^34,-1*K.1^48,-1*K.1^24,-1*K.1^12,-1*K.1^36,-1*K.1^36,K.1^6,K.1^26,K.1^46,K.1^2,K.1^14,-1*K.1^8,K.1^22,-1*K.1^44,-1*K.1^12,K.1^18,K.1^34,K.1^38,-1*K.1^36,K.1^2,-1*K.1^4,K.1^42,-1*K.1^32,-1*K.1^32,K.1^22,K.1^42,-1*K.1^44,-1*K.1^44,-1*K.1^12,K.1^26,-1*K.1^28,K.1^8,-1*K.1^6,K.1^16,-1*K.1^26,K.1^16,-1*K.1^46,K.1^8,-1*K.1^34,K.1^24,-1*K.1^38,K.1^28,-1*K.1^14,K.1^4,-1*K.1^2,K.1^12,-1*K.1^22,K.1^12,-1*K.1^42,K.1^4,-1*K.1^38,-1*K.1^2,K.1^48,-1*K.1^14,K.1^24,-1*K.1^18,K.1^28,-1*K.1^34,K.1^44,-1*K.1^46,K.1^36,-1*K.1^26,K.1^36,-1*K.1^6,K.1^44,-1*K.1^18,K.1^48,-1*K.1^42,K.1^32,-1*K.1^22,K.1^32,K.1^7,K.1^19,K.1^7,-1*K.1^3,K.1^37,-1*K.1,-1*K.1^13,K.1^31,-1*K.1^29,K.1^9,K.1^49,K.1^13,K.1^33,K.1^27,K.1^39,K.1^47,K.1^11,-1*K.1^33,K.1^19,K.1^41,K.1^27,-1*K.1^33,K.1^11,-1*K.1^49,-1*K.1^11,-1*K.1^31,K.1^31,K.1^43,-1*K.1,K.1^7,-1*K.1^49,-1*K.1^37,-1*K.1^23,-1*K.1^23,-1*K.1^39,K.1^49,K.1^39,K.1^19,K.1^23,K.1^11,K.1,-1*K.1^9,-1*K.1^21,-1*K.1^21,-1*K.1^37,-1*K.1^27,K.1^29,-1*K.1^9,-1*K.1^49,-1*K.1^39,-1*K.1^29,-1*K.1^19,-1*K.1^43,-1*K.1^3,K.1^9,-1*K.1^19,-1*K.1^17,-1*K.1^41,K.1^3,-1*K.1^41,-1*K.1^47,-1*K.1^43,-1*K.1^17,K.1^31,-1*K.1^13,-1*K.1^17,K.1^33,-1*K.1^11,K.1,-1*K.1^43,K.1^31,-1*K.1^31,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^3,K.1^7,-1*K.1^31,K.1^17,K.1^43,K.1^3,-1*K.1^7,-1*K.1^19,-1*K.1^17,-1*K.1^43,K.1^3,-1*K.1^41,-1*K.1^29,K.1^33,-1*K.1^7,-1*K.1^21,-1*K.1^21,-1*K.1^39,K.1^49,K.1^11,-1*K.1^23,-1*K.1^23,-1*K.1^37,K.1,-1*K.1^37,K.1,K.1^37,K.1^23,K.1^29,-1*K.1^9,-1*K.1^49,-1*K.1^39,-1*K.1^27,-1*K.1^27,-1*K.1^11,K.1^29,-1*K.1^27,K.1^13,K.1^47,-1*K.1^9,K.1^21,K.1^23,K.1^37,K.1^49,K.1^39,K.1^19,K.1^17,-1*K.1^13,-1*K.1^47,K.1^41,K.1^47,-1*K.1^11,K.1^27,-1*K.1^31,K.1^13,-1*K.1,K.1^9,K.1^29,-1*K.1^33,K.1^37,K.1^17,K.1^21,K.1^39,-1*K.1,K.1^43,K.1^33,-1*K.1^29,K.1^9,-1*K.1^47,-1*K.1^13,-1*K.1^33,K.1^27,K.1^41,K.1^47,K.1^13,-1*K.1^47,K.1^43,K.1^17,-1*K.1^19,-1*K.1^41,-1*K.1^3,K.1^41,K.1^21,K.1^21,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^16,K.1^8,-1*K.1^6,K.1^28,-1*K.1^18,K.1^48,K.1^36,-1*K.1^42,-1*K.1^34,K.1^32,-1*K.1^22,-1*K.1^2,K.1^44,K.1^4,-1*K.1^14,K.1^24,-1*K.1^26,K.1^12,-1*K.1^38,-1*K.1^46,-1*K.1^5,-1*K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^45,-1*K.1^15,K.1^45,K.1^35,K.1^5,K.1^15,-1*K.1^5,K.1^45,K.1^45,K.1^45,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^35,-1*K.1^15,-1*K.1^45,-1*K.1^5,K.1^35,K.1^5,-1*K.1^45,K.1^15,-1*K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^35,-1*K.1^35,-1*K.1^14,K.1^48,K.1^12,K.1^24,K.1^28,K.1^44,K.1^4,-1*K.1^38,-1*K.1^34,-1*K.1^2,-1*K.1^34,-1*K.1^2,-1*K.1^26,-1*K.1^6,-1*K.1^14,K.1^32,-1*K.1^38,-1*K.1^22,-1*K.1^34,K.1^12,K.1^32,-1*K.1^42,-1*K.1^22,K.1^24,K.1^12,K.1^16,-1*K.1^42,K.1^4,-1*K.1^46,K.1^36,K.1^44,K.1^4,K.1^48,K.1^48,-1*K.1^6,-1*K.1^38,-1*K.1^6,-1*K.1^18,-1*K.1^18,K.1^36,K.1^36,-1*K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^22,K.1^8,-1*K.1^26,-1*K.1^26,K.1^28,K.1^16,K.1^16,K.1^28,-1*K.1^46,K.1^8,K.1^8,-1*K.1^46,K.1^24,-1*K.1^42,K.1^44,K.1^32,-1*K.1^32,K.1^18,-1*K.1^4,K.1^2,K.1^42,K.1^46,-1*K.1^36,-1*K.1^36,K.1^34,-1*K.1^24,-1*K.1^28,-1*K.1^8,-1*K.1^8,K.1^46,K.1^6,-1*K.1^48,K.1^38,-1*K.1^16,-1*K.1^4,K.1^18,-1*K.1^48,K.1^38,K.1^14,-1*K.1^44,K.1^26,-1*K.1^28,K.1^26,-1*K.1^12,K.1^14,-1*K.1^24,K.1^2,K.1^42,K.1^34,K.1^22,K.1^22,-1*K.1^16,K.1^6,-1*K.1^32,-1*K.1^12,-1*K.1^44,-1*K.1^16,-1*K.1^12,-1*K.1^36,K.1^18,-1*K.1^44,-1*K.1^44,-1*K.1^48,K.1^6,-1*K.1^4,K.1^18,-1*K.1^8,-1*K.1^28,K.1^38,K.1^2,K.1^26,-1*K.1^28,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^4,-1*K.1^44,K.1^14,K.1^14,K.1^34,-1*K.1^48,K.1^6,K.1^42,K.1^46,K.1^2,K.1^34,-1*K.1^12,-1*K.1^36,K.1^2,K.1^26,-1*K.1^44,K.1^26,K.1^22,-1*K.1^24,-1*K.1^4,-1*K.1^32,-1*K.1^12,-1*K.1^36,-1*K.1^16,K.1^42,K.1^22,K.1^22,K.1^38,-1*K.1^32,K.1^42,K.1^6,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^4,K.1^34,K.1^14,K.1^18,K.1^26,K.1^22,-1*K.1^48,K.1^46,-1*K.1^8,-1*K.1^12,K.1^6,K.1^42,-1*K.1^24,K.1^18,-1*K.1^36,-1*K.1^28,K.1^38,K.1^38,-1*K.1^48,-1*K.1^28,K.1^46,K.1^46,-1*K.1^8,K.1^34,K.1^2,-1*K.1^22,K.1^4,K.1^44,-1*K.1^34,K.1^44,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^16,-1*K.1^42,-1*K.1^2,-1*K.1^26,K.1^36,-1*K.1^18,K.1^8,K.1^48,K.1^8,K.1^28,K.1^36,-1*K.1^42,-1*K.1^18,K.1^32,-1*K.1^26,K.1^16,K.1^12,-1*K.1^2,-1*K.1^6,-1*K.1^46,-1*K.1^14,K.1^24,-1*K.1^34,K.1^24,K.1^4,-1*K.1^46,K.1^12,K.1^32,K.1^28,-1*K.1^38,K.1^48,-1*K.1^38,K.1^13,K.1^21,K.1^13,K.1^27,-1*K.1^33,K.1^9,K.1^17,K.1^29,-1*K.1^11,K.1^31,-1*K.1^41,-1*K.1^17,K.1^47,-1*K.1^43,K.1,-1*K.1^23,K.1^49,-1*K.1^47,K.1^21,K.1^19,-1*K.1^43,-1*K.1^47,K.1^49,K.1^41,-1*K.1^49,-1*K.1^29,K.1^29,K.1^37,K.1^9,K.1^13,K.1^41,K.1^33,K.1^7,K.1^7,-1*K.1,-1*K.1^41,K.1,K.1^21,-1*K.1^7,K.1^49,-1*K.1^9,-1*K.1^31,-1*K.1^39,-1*K.1^39,K.1^33,K.1^43,K.1^11,-1*K.1^31,K.1^41,-1*K.1,-1*K.1^11,-1*K.1^21,-1*K.1^37,K.1^27,K.1^31,-1*K.1^21,-1*K.1^3,-1*K.1^19,-1*K.1^27,-1*K.1^19,K.1^23,-1*K.1^37,-1*K.1^3,K.1^29,K.1^17,-1*K.1^3,K.1^47,-1*K.1^49,-1*K.1^9,-1*K.1^37,K.1^29,-1*K.1^29,-1*K.1^13,-1*K.1^27,-1*K.1^13,K.1^27,K.1^13,-1*K.1^29,K.1^3,K.1^37,-1*K.1^27,-1*K.1^13,-1*K.1^21,-1*K.1^3,-1*K.1^37,-1*K.1^27,-1*K.1^19,-1*K.1^11,K.1^47,-1*K.1^13,-1*K.1^39,-1*K.1^39,-1*K.1,-1*K.1^41,K.1^49,K.1^7,K.1^7,K.1^33,-1*K.1^9,K.1^33,-1*K.1^9,-1*K.1^33,-1*K.1^7,K.1^11,-1*K.1^31,K.1^41,-1*K.1,K.1^43,K.1^43,-1*K.1^49,K.1^11,K.1^43,-1*K.1^17,-1*K.1^23,-1*K.1^31,K.1^39,-1*K.1^7,-1*K.1^33,-1*K.1^41,K.1,K.1^21,K.1^3,K.1^17,K.1^23,K.1^19,-1*K.1^23,-1*K.1^49,-1*K.1^43,-1*K.1^29,-1*K.1^17,K.1^9,K.1^31,K.1^11,-1*K.1^47,-1*K.1^33,K.1^3,K.1^39,K.1,K.1^9,K.1^37,K.1^47,-1*K.1^11,K.1^31,K.1^23,K.1^17,-1*K.1^47,-1*K.1^43,K.1^19,-1*K.1^23,-1*K.1^17,K.1^23,K.1^37,K.1^3,-1*K.1^21,-1*K.1^19,K.1^27,K.1^19,K.1^39,K.1^39,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,K.1^40,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^34,-1*K.1^42,K.1^44,-1*K.1^22,K.1^32,-1*K.1^2,-1*K.1^14,K.1^8,K.1^16,-1*K.1^18,K.1^28,K.1^48,-1*K.1^6,-1*K.1^46,K.1^36,-1*K.1^26,K.1^24,-1*K.1^38,K.1^12,K.1^4,K.1^45,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^35,K.1^5,K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^35,K.1^45,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^35,K.1^45,-1*K.1^45,K.1^35,-1*K.1^15,K.1^35,K.1^5,K.1^45,-1*K.1^15,-1*K.1^45,K.1^5,-1*K.1^35,K.1^35,K.1^5,K.1^15,K.1^15,K.1^15,K.1^36,-1*K.1^2,-1*K.1^38,-1*K.1^26,-1*K.1^22,-1*K.1^6,-1*K.1^46,K.1^12,K.1^16,K.1^48,K.1^16,K.1^48,K.1^24,K.1^44,K.1^36,-1*K.1^18,K.1^12,K.1^28,K.1^16,-1*K.1^38,-1*K.1^18,K.1^8,K.1^28,-1*K.1^26,-1*K.1^38,-1*K.1^34,K.1^8,-1*K.1^46,K.1^4,-1*K.1^14,-1*K.1^6,-1*K.1^46,-1*K.1^2,-1*K.1^2,K.1^44,K.1^12,K.1^44,K.1^32,K.1^32,-1*K.1^14,-1*K.1^14,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^42,K.1^24,K.1^24,-1*K.1^22,-1*K.1^34,-1*K.1^34,-1*K.1^22,K.1^4,-1*K.1^42,-1*K.1^42,K.1^4,-1*K.1^26,K.1^8,-1*K.1^6,-1*K.1^18,K.1^18,-1*K.1^32,K.1^46,-1*K.1^48,-1*K.1^8,-1*K.1^4,K.1^14,K.1^14,-1*K.1^16,K.1^26,K.1^22,K.1^42,K.1^42,-1*K.1^4,-1*K.1^44,K.1^2,-1*K.1^12,K.1^34,K.1^46,-1*K.1^32,K.1^2,-1*K.1^12,-1*K.1^36,K.1^6,-1*K.1^24,K.1^22,-1*K.1^24,K.1^38,-1*K.1^36,K.1^26,-1*K.1^48,-1*K.1^8,-1*K.1^16,-1*K.1^28,-1*K.1^28,K.1^34,-1*K.1^44,K.1^18,K.1^38,K.1^6,K.1^34,K.1^38,K.1^14,-1*K.1^32,K.1^6,K.1^6,K.1^2,-1*K.1^44,K.1^46,-1*K.1^32,K.1^42,K.1^22,-1*K.1^12,-1*K.1^48,-1*K.1^24,K.1^22,-1*K.1^36,K.1^18,K.1^34,K.1^46,K.1^6,-1*K.1^36,-1*K.1^36,-1*K.1^16,K.1^2,-1*K.1^44,-1*K.1^8,-1*K.1^4,-1*K.1^48,-1*K.1^16,K.1^38,K.1^14,-1*K.1^48,-1*K.1^24,K.1^6,-1*K.1^24,-1*K.1^28,K.1^26,K.1^46,K.1^18,K.1^38,K.1^14,K.1^34,-1*K.1^8,-1*K.1^28,-1*K.1^28,-1*K.1^12,K.1^18,-1*K.1^8,-1*K.1^44,K.1^18,K.1^34,K.1^42,K.1^26,K.1^26,K.1^46,-1*K.1^16,-1*K.1^36,-1*K.1^32,-1*K.1^24,-1*K.1^28,K.1^2,-1*K.1^4,K.1^42,K.1^38,-1*K.1^44,-1*K.1^8,K.1^26,-1*K.1^32,K.1^14,K.1^22,-1*K.1^12,-1*K.1^12,K.1^2,K.1^22,-1*K.1^4,-1*K.1^4,K.1^42,-1*K.1^16,-1*K.1^48,K.1^28,-1*K.1^46,-1*K.1^6,K.1^16,-1*K.1^6,K.1^36,K.1^28,K.1^44,-1*K.1^34,K.1^8,K.1^48,K.1^24,-1*K.1^14,K.1^32,-1*K.1^42,-1*K.1^2,-1*K.1^42,-1*K.1^22,-1*K.1^14,K.1^8,K.1^32,-1*K.1^18,K.1^24,-1*K.1^34,-1*K.1^38,K.1^48,K.1^44,K.1^4,K.1^36,-1*K.1^26,K.1^16,-1*K.1^26,-1*K.1^46,K.1^4,-1*K.1^38,-1*K.1^18,-1*K.1^22,K.1^12,-1*K.1^2,K.1^12,-1*K.1^37,-1*K.1^29,-1*K.1^37,-1*K.1^23,K.1^17,-1*K.1^41,-1*K.1^33,-1*K.1^21,K.1^39,-1*K.1^19,K.1^9,K.1^33,-1*K.1^3,K.1^7,-1*K.1^49,K.1^27,-1*K.1,K.1^3,-1*K.1^29,-1*K.1^31,K.1^7,K.1^3,-1*K.1,-1*K.1^9,K.1,K.1^21,-1*K.1^21,-1*K.1^13,-1*K.1^41,-1*K.1^37,-1*K.1^9,-1*K.1^17,-1*K.1^43,-1*K.1^43,K.1^49,K.1^9,-1*K.1^49,-1*K.1^29,K.1^43,-1*K.1,K.1^41,K.1^19,K.1^11,K.1^11,-1*K.1^17,-1*K.1^7,-1*K.1^39,K.1^19,-1*K.1^9,K.1^49,K.1^39,K.1^29,K.1^13,-1*K.1^23,-1*K.1^19,K.1^29,K.1^47,K.1^31,K.1^23,K.1^31,-1*K.1^27,K.1^13,K.1^47,-1*K.1^21,-1*K.1^33,K.1^47,-1*K.1^3,K.1,K.1^41,K.1^13,-1*K.1^21,K.1^21,K.1^37,K.1^23,K.1^37,-1*K.1^23,-1*K.1^37,K.1^21,-1*K.1^47,-1*K.1^13,K.1^23,K.1^37,K.1^29,K.1^47,K.1^13,K.1^23,K.1^31,K.1^39,-1*K.1^3,K.1^37,K.1^11,K.1^11,K.1^49,K.1^9,-1*K.1,-1*K.1^43,-1*K.1^43,-1*K.1^17,K.1^41,-1*K.1^17,K.1^41,K.1^17,K.1^43,-1*K.1^39,K.1^19,-1*K.1^9,K.1^49,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^39,-1*K.1^7,K.1^33,K.1^27,K.1^19,-1*K.1^11,K.1^43,K.1^17,K.1^9,-1*K.1^49,-1*K.1^29,-1*K.1^47,-1*K.1^33,-1*K.1^27,-1*K.1^31,K.1^27,K.1,K.1^7,K.1^21,K.1^33,-1*K.1^41,-1*K.1^19,-1*K.1^39,K.1^3,K.1^17,-1*K.1^47,-1*K.1^11,-1*K.1^49,-1*K.1^41,-1*K.1^13,-1*K.1^3,K.1^39,-1*K.1^19,-1*K.1^27,-1*K.1^33,K.1^3,K.1^7,-1*K.1^31,K.1^27,K.1^33,-1*K.1^27,-1*K.1^13,-1*K.1^47,K.1^29,K.1^31,-1*K.1^23,-1*K.1^31,-1*K.1^11,-1*K.1^11,K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,-1*K.1^46,K.1^48,K.1^36,-1*K.1^18,K.1^8,-1*K.1^38,K.1^16,-1*K.1^2,K.1^4,-1*K.1^42,K.1^32,K.1^12,-1*K.1^14,K.1^24,-1*K.1^34,K.1^44,-1*K.1^6,-1*K.1^22,K.1^28,-1*K.1^26,-1*K.1^5,-1*K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^45,-1*K.1^15,K.1^45,K.1^35,K.1^5,K.1^15,-1*K.1^5,K.1^45,K.1^45,K.1^45,K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^35,-1*K.1^15,-1*K.1^45,-1*K.1^5,K.1^35,K.1^5,-1*K.1^45,K.1^15,-1*K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^35,-1*K.1^35,-1*K.1^34,-1*K.1^38,-1*K.1^22,K.1^44,-1*K.1^18,-1*K.1^14,K.1^24,K.1^28,K.1^4,K.1^12,K.1^4,K.1^12,-1*K.1^6,K.1^36,-1*K.1^34,-1*K.1^42,K.1^28,K.1^32,K.1^4,-1*K.1^22,-1*K.1^42,-1*K.1^2,K.1^32,K.1^44,-1*K.1^22,-1*K.1^46,-1*K.1^2,K.1^24,-1*K.1^26,K.1^16,-1*K.1^14,K.1^24,-1*K.1^38,-1*K.1^38,K.1^36,K.1^28,K.1^36,K.1^8,K.1^8,K.1^16,K.1^16,K.1^12,K.1^8,-1*K.1^34,K.1^32,K.1^48,-1*K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^46,-1*K.1^46,-1*K.1^18,-1*K.1^26,K.1^48,K.1^48,-1*K.1^26,K.1^44,-1*K.1^2,-1*K.1^14,-1*K.1^42,K.1^42,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^2,K.1^26,-1*K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^44,K.1^18,-1*K.1^48,-1*K.1^48,K.1^26,-1*K.1^36,K.1^38,-1*K.1^28,K.1^46,-1*K.1^24,-1*K.1^8,K.1^38,-1*K.1^28,K.1^34,K.1^14,K.1^6,K.1^18,K.1^6,K.1^22,K.1^34,-1*K.1^44,-1*K.1^12,K.1^2,-1*K.1^4,-1*K.1^32,-1*K.1^32,K.1^46,-1*K.1^36,K.1^42,K.1^22,K.1^14,K.1^46,K.1^22,-1*K.1^16,-1*K.1^8,K.1^14,K.1^14,K.1^38,-1*K.1^36,-1*K.1^24,-1*K.1^8,-1*K.1^48,K.1^18,-1*K.1^28,-1*K.1^12,K.1^6,K.1^18,K.1^34,K.1^42,K.1^46,-1*K.1^24,K.1^14,K.1^34,K.1^34,-1*K.1^4,K.1^38,-1*K.1^36,K.1^2,K.1^26,-1*K.1^12,-1*K.1^4,K.1^22,-1*K.1^16,-1*K.1^12,K.1^6,K.1^14,K.1^6,-1*K.1^32,-1*K.1^44,-1*K.1^24,K.1^42,K.1^22,-1*K.1^16,K.1^46,K.1^2,-1*K.1^32,-1*K.1^32,-1*K.1^28,K.1^42,K.1^2,-1*K.1^36,K.1^42,K.1^46,-1*K.1^48,-1*K.1^44,-1*K.1^44,-1*K.1^24,-1*K.1^4,K.1^34,-1*K.1^8,K.1^6,-1*K.1^32,K.1^38,K.1^26,-1*K.1^48,K.1^22,-1*K.1^36,K.1^2,-1*K.1^44,-1*K.1^8,-1*K.1^16,K.1^18,-1*K.1^28,-1*K.1^28,K.1^38,K.1^18,K.1^26,K.1^26,-1*K.1^48,-1*K.1^4,-1*K.1^12,K.1^32,K.1^24,-1*K.1^14,K.1^4,-1*K.1^14,-1*K.1^34,K.1^32,K.1^36,-1*K.1^46,-1*K.1^2,K.1^12,-1*K.1^6,K.1^16,K.1^8,K.1^48,-1*K.1^38,K.1^48,-1*K.1^18,K.1^16,-1*K.1^2,K.1^8,-1*K.1^42,-1*K.1^6,-1*K.1^46,-1*K.1^22,K.1^12,K.1^36,-1*K.1^26,-1*K.1^34,K.1^44,K.1^4,K.1^44,K.1^24,-1*K.1^26,-1*K.1^22,-1*K.1^42,-1*K.1^18,K.1^28,-1*K.1^38,K.1^28,-1*K.1^3,K.1,-1*K.1^3,-1*K.1^37,K.1^23,K.1^29,-1*K.1^27,K.1^49,K.1^41,K.1^11,-1*K.1^21,K.1^27,K.1^7,K.1^33,-1*K.1^31,K.1^13,-1*K.1^19,-1*K.1^7,K.1,K.1^39,K.1^33,-1*K.1^7,-1*K.1^19,K.1^21,K.1^19,-1*K.1^49,K.1^49,-1*K.1^47,K.1^29,-1*K.1^3,K.1^21,-1*K.1^23,-1*K.1^17,-1*K.1^17,K.1^31,-1*K.1^21,-1*K.1^31,K.1,K.1^17,-1*K.1^19,-1*K.1^29,-1*K.1^11,K.1^9,K.1^9,-1*K.1^23,-1*K.1^33,-1*K.1^41,-1*K.1^11,K.1^21,K.1^31,K.1^41,-1*K.1,K.1^47,-1*K.1^37,K.1^11,-1*K.1,-1*K.1^43,-1*K.1^39,K.1^37,-1*K.1^39,-1*K.1^13,K.1^47,-1*K.1^43,K.1^49,-1*K.1^27,-1*K.1^43,K.1^7,K.1^19,-1*K.1^29,K.1^47,K.1^49,-1*K.1^49,K.1^3,K.1^37,K.1^3,-1*K.1^37,-1*K.1^3,-1*K.1^49,K.1^43,-1*K.1^47,K.1^37,K.1^3,-1*K.1,-1*K.1^43,K.1^47,K.1^37,-1*K.1^39,K.1^41,K.1^7,K.1^3,K.1^9,K.1^9,K.1^31,-1*K.1^21,-1*K.1^19,-1*K.1^17,-1*K.1^17,-1*K.1^23,-1*K.1^29,-1*K.1^23,-1*K.1^29,K.1^23,K.1^17,-1*K.1^41,-1*K.1^11,K.1^21,K.1^31,-1*K.1^33,-1*K.1^33,K.1^19,-1*K.1^41,-1*K.1^33,K.1^27,K.1^13,-1*K.1^11,-1*K.1^9,K.1^17,K.1^23,-1*K.1^21,-1*K.1^31,K.1,K.1^43,-1*K.1^27,-1*K.1^13,K.1^39,K.1^13,K.1^19,K.1^33,-1*K.1^49,K.1^27,K.1^29,K.1^11,-1*K.1^41,-1*K.1^7,K.1^23,K.1^43,-1*K.1^9,-1*K.1^31,K.1^29,-1*K.1^47,K.1^7,K.1^41,K.1^11,-1*K.1^13,-1*K.1^27,-1*K.1^7,K.1^33,K.1^39,K.1^13,K.1^27,-1*K.1^13,-1*K.1^47,K.1^43,-1*K.1,-1*K.1^39,-1*K.1^37,K.1^39,-1*K.1^9,-1*K.1^9,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,K.1^40,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,K.1^4,-1*K.1^2,-1*K.1^14,K.1^32,-1*K.1^42,K.1^12,-1*K.1^34,K.1^48,-1*K.1^46,K.1^8,-1*K.1^18,-1*K.1^38,K.1^36,-1*K.1^26,K.1^16,-1*K.1^6,K.1^44,K.1^28,-1*K.1^22,K.1^24,K.1^45,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^35,K.1^5,K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^35,K.1^45,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^35,K.1^45,-1*K.1^45,K.1^35,-1*K.1^15,K.1^35,K.1^5,K.1^45,-1*K.1^15,-1*K.1^45,K.1^5,-1*K.1^35,K.1^35,K.1^5,K.1^15,K.1^15,K.1^15,K.1^16,K.1^12,K.1^28,-1*K.1^6,K.1^32,K.1^36,-1*K.1^26,-1*K.1^22,-1*K.1^46,-1*K.1^38,-1*K.1^46,-1*K.1^38,K.1^44,-1*K.1^14,K.1^16,K.1^8,-1*K.1^22,-1*K.1^18,-1*K.1^46,K.1^28,K.1^8,K.1^48,-1*K.1^18,-1*K.1^6,K.1^28,K.1^4,K.1^48,-1*K.1^26,K.1^24,-1*K.1^34,K.1^36,-1*K.1^26,K.1^12,K.1^12,-1*K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^42,-1*K.1^42,-1*K.1^34,-1*K.1^34,-1*K.1^38,-1*K.1^42,K.1^16,-1*K.1^18,-1*K.1^2,K.1^44,K.1^44,K.1^32,K.1^4,K.1^4,K.1^32,K.1^24,-1*K.1^2,-1*K.1^2,K.1^24,-1*K.1^6,K.1^48,K.1^36,K.1^8,-1*K.1^8,K.1^42,K.1^26,K.1^38,-1*K.1^48,-1*K.1^24,K.1^34,K.1^34,K.1^46,K.1^6,-1*K.1^32,K.1^2,K.1^2,-1*K.1^24,K.1^14,-1*K.1^12,K.1^22,-1*K.1^4,K.1^26,K.1^42,-1*K.1^12,K.1^22,-1*K.1^16,-1*K.1^36,-1*K.1^44,-1*K.1^32,-1*K.1^44,-1*K.1^28,-1*K.1^16,K.1^6,K.1^38,-1*K.1^48,K.1^46,K.1^18,K.1^18,-1*K.1^4,K.1^14,-1*K.1^8,-1*K.1^28,-1*K.1^36,-1*K.1^4,-1*K.1^28,K.1^34,K.1^42,-1*K.1^36,-1*K.1^36,-1*K.1^12,K.1^14,K.1^26,K.1^42,K.1^2,-1*K.1^32,K.1^22,K.1^38,-1*K.1^44,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^26,-1*K.1^36,-1*K.1^16,-1*K.1^16,K.1^46,-1*K.1^12,K.1^14,-1*K.1^48,-1*K.1^24,K.1^38,K.1^46,-1*K.1^28,K.1^34,K.1^38,-1*K.1^44,-1*K.1^36,-1*K.1^44,K.1^18,K.1^6,K.1^26,-1*K.1^8,-1*K.1^28,K.1^34,-1*K.1^4,-1*K.1^48,K.1^18,K.1^18,K.1^22,-1*K.1^8,-1*K.1^48,K.1^14,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^26,K.1^46,-1*K.1^16,K.1^42,-1*K.1^44,K.1^18,-1*K.1^12,-1*K.1^24,K.1^2,-1*K.1^28,K.1^14,-1*K.1^48,K.1^6,K.1^42,K.1^34,-1*K.1^32,K.1^22,K.1^22,-1*K.1^12,-1*K.1^32,-1*K.1^24,-1*K.1^24,K.1^2,K.1^46,K.1^38,-1*K.1^18,-1*K.1^26,K.1^36,-1*K.1^46,K.1^36,K.1^16,-1*K.1^18,-1*K.1^14,K.1^4,K.1^48,-1*K.1^38,K.1^44,-1*K.1^34,-1*K.1^42,-1*K.1^2,K.1^12,-1*K.1^2,K.1^32,-1*K.1^34,K.1^48,-1*K.1^42,K.1^8,K.1^44,K.1^4,K.1^28,-1*K.1^38,-1*K.1^14,K.1^24,K.1^16,-1*K.1^6,-1*K.1^46,-1*K.1^6,-1*K.1^26,K.1^24,K.1^28,K.1^8,K.1^32,-1*K.1^22,K.1^12,-1*K.1^22,K.1^47,-1*K.1^49,K.1^47,K.1^13,-1*K.1^27,-1*K.1^21,K.1^23,-1*K.1,-1*K.1^9,-1*K.1^39,K.1^29,-1*K.1^23,-1*K.1^43,-1*K.1^17,K.1^19,-1*K.1^37,K.1^31,K.1^43,-1*K.1^49,-1*K.1^11,-1*K.1^17,K.1^43,K.1^31,-1*K.1^29,-1*K.1^31,K.1,-1*K.1,K.1^3,-1*K.1^21,K.1^47,-1*K.1^29,K.1^27,K.1^33,K.1^33,-1*K.1^19,K.1^29,K.1^19,-1*K.1^49,-1*K.1^33,K.1^31,K.1^21,K.1^39,-1*K.1^41,-1*K.1^41,K.1^27,K.1^17,K.1^9,K.1^39,-1*K.1^29,-1*K.1^19,-1*K.1^9,K.1^49,-1*K.1^3,K.1^13,-1*K.1^39,K.1^49,K.1^7,K.1^11,-1*K.1^13,K.1^11,K.1^37,-1*K.1^3,K.1^7,-1*K.1,K.1^23,K.1^7,-1*K.1^43,-1*K.1^31,K.1^21,-1*K.1^3,-1*K.1,K.1,-1*K.1^47,-1*K.1^13,-1*K.1^47,K.1^13,K.1^47,K.1,-1*K.1^7,K.1^3,-1*K.1^13,-1*K.1^47,K.1^49,K.1^7,-1*K.1^3,-1*K.1^13,K.1^11,-1*K.1^9,-1*K.1^43,-1*K.1^47,-1*K.1^41,-1*K.1^41,-1*K.1^19,K.1^29,K.1^31,K.1^33,K.1^33,K.1^27,K.1^21,K.1^27,K.1^21,-1*K.1^27,-1*K.1^33,K.1^9,K.1^39,-1*K.1^29,-1*K.1^19,K.1^17,K.1^17,-1*K.1^31,K.1^9,K.1^17,-1*K.1^23,-1*K.1^37,K.1^39,K.1^41,-1*K.1^33,-1*K.1^27,K.1^29,K.1^19,-1*K.1^49,-1*K.1^7,K.1^23,K.1^37,-1*K.1^11,-1*K.1^37,-1*K.1^31,-1*K.1^17,K.1,-1*K.1^23,-1*K.1^21,-1*K.1^39,K.1^9,K.1^43,-1*K.1^27,-1*K.1^7,K.1^41,K.1^19,-1*K.1^21,K.1^3,-1*K.1^43,-1*K.1^9,-1*K.1^39,K.1^37,K.1^23,K.1^43,-1*K.1^17,-1*K.1^11,-1*K.1^37,-1*K.1^23,K.1^37,K.1^3,-1*K.1^7,K.1^49,K.1^11,K.1^13,-1*K.1^11,K.1^41,K.1^41,-1*K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,K.1^48,K.1^24,-1*K.1^18,-1*K.1^34,K.1^4,K.1^44,K.1^8,-1*K.1^26,-1*K.1^2,-1*K.1^46,K.1^16,-1*K.1^6,K.1^32,K.1^12,-1*K.1^42,-1*K.1^22,K.1^28,K.1^36,-1*K.1^14,-1*K.1^38,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^45,-1*K.1^35,-1*K.1^45,K.1^35,K.1^5,K.1^15,K.1^45,-1*K.1^15,K.1^35,K.1^35,K.1^35,K.1^45,-1*K.1^15,K.1^15,-1*K.1^45,K.1^5,-1*K.1^45,-1*K.1^35,-1*K.1^15,K.1^5,K.1^15,-1*K.1^35,K.1^45,-1*K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^42,K.1^44,K.1^36,-1*K.1^22,-1*K.1^34,K.1^32,K.1^12,-1*K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^28,-1*K.1^18,-1*K.1^42,-1*K.1^46,-1*K.1^14,K.1^16,-1*K.1^2,K.1^36,-1*K.1^46,-1*K.1^26,K.1^16,-1*K.1^22,K.1^36,K.1^48,-1*K.1^26,K.1^12,-1*K.1^38,K.1^8,K.1^32,K.1^12,K.1^44,K.1^44,-1*K.1^18,-1*K.1^14,-1*K.1^18,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^42,K.1^16,K.1^24,K.1^28,K.1^28,-1*K.1^34,K.1^48,K.1^48,-1*K.1^34,-1*K.1^38,K.1^24,K.1^24,-1*K.1^38,-1*K.1^22,-1*K.1^26,K.1^32,-1*K.1^46,K.1^46,-1*K.1^4,-1*K.1^12,K.1^6,K.1^26,K.1^38,-1*K.1^8,-1*K.1^8,K.1^2,K.1^22,K.1^34,-1*K.1^24,-1*K.1^24,K.1^38,K.1^18,-1*K.1^44,K.1^14,-1*K.1^48,-1*K.1^12,-1*K.1^4,-1*K.1^44,K.1^14,K.1^42,-1*K.1^32,-1*K.1^28,K.1^34,-1*K.1^28,-1*K.1^36,K.1^42,K.1^22,K.1^6,K.1^26,K.1^2,-1*K.1^16,-1*K.1^16,-1*K.1^48,K.1^18,K.1^46,-1*K.1^36,-1*K.1^32,-1*K.1^48,-1*K.1^36,-1*K.1^8,-1*K.1^4,-1*K.1^32,-1*K.1^32,-1*K.1^44,K.1^18,-1*K.1^12,-1*K.1^4,-1*K.1^24,K.1^34,K.1^14,K.1^6,-1*K.1^28,K.1^34,K.1^42,K.1^46,-1*K.1^48,-1*K.1^12,-1*K.1^32,K.1^42,K.1^42,K.1^2,-1*K.1^44,K.1^18,K.1^26,K.1^38,K.1^6,K.1^2,-1*K.1^36,-1*K.1^8,K.1^6,-1*K.1^28,-1*K.1^32,-1*K.1^28,-1*K.1^16,K.1^22,-1*K.1^12,K.1^46,-1*K.1^36,-1*K.1^8,-1*K.1^48,K.1^26,-1*K.1^16,-1*K.1^16,K.1^14,K.1^46,K.1^26,K.1^18,K.1^46,-1*K.1^48,-1*K.1^24,K.1^22,K.1^22,-1*K.1^12,K.1^2,K.1^42,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^44,K.1^38,-1*K.1^24,-1*K.1^36,K.1^18,K.1^26,K.1^22,-1*K.1^4,-1*K.1^8,K.1^34,K.1^14,K.1^14,-1*K.1^44,K.1^34,K.1^38,K.1^38,-1*K.1^24,K.1^2,K.1^6,K.1^16,K.1^12,K.1^32,-1*K.1^2,K.1^32,-1*K.1^42,K.1^16,-1*K.1^18,K.1^48,-1*K.1^26,-1*K.1^6,K.1^28,K.1^8,K.1^4,K.1^24,K.1^44,K.1^24,-1*K.1^34,K.1^8,-1*K.1^26,K.1^4,-1*K.1^46,K.1^28,K.1^48,K.1^36,-1*K.1^6,-1*K.1^18,-1*K.1^38,-1*K.1^42,-1*K.1^22,-1*K.1^2,-1*K.1^22,K.1^12,-1*K.1^38,K.1^36,-1*K.1^46,-1*K.1^34,-1*K.1^14,K.1^44,-1*K.1^14,K.1^39,-1*K.1^13,K.1^39,-1*K.1^31,K.1^49,K.1^27,-1*K.1,-1*K.1^37,-1*K.1^33,-1*K.1^43,-1*K.1^23,K.1,K.1^41,-1*K.1^29,K.1^3,K.1^19,K.1^47,-1*K.1^41,-1*K.1^13,-1*K.1^7,-1*K.1^29,-1*K.1^41,K.1^47,K.1^23,-1*K.1^47,K.1^37,-1*K.1^37,K.1^11,K.1^27,K.1^39,K.1^23,-1*K.1^49,K.1^21,K.1^21,-1*K.1^3,-1*K.1^23,K.1^3,-1*K.1^13,-1*K.1^21,K.1^47,-1*K.1^27,K.1^43,-1*K.1^17,-1*K.1^17,-1*K.1^49,K.1^29,K.1^33,K.1^43,K.1^23,-1*K.1^3,-1*K.1^33,K.1^13,-1*K.1^11,-1*K.1^31,-1*K.1^43,K.1^13,-1*K.1^9,K.1^7,K.1^31,K.1^7,-1*K.1^19,-1*K.1^11,-1*K.1^9,-1*K.1^37,-1*K.1,-1*K.1^9,K.1^41,-1*K.1^47,-1*K.1^27,-1*K.1^11,-1*K.1^37,K.1^37,-1*K.1^39,K.1^31,-1*K.1^39,-1*K.1^31,K.1^39,K.1^37,K.1^9,K.1^11,K.1^31,-1*K.1^39,K.1^13,-1*K.1^9,-1*K.1^11,K.1^31,K.1^7,-1*K.1^33,K.1^41,-1*K.1^39,-1*K.1^17,-1*K.1^17,-1*K.1^3,-1*K.1^23,K.1^47,K.1^21,K.1^21,-1*K.1^49,-1*K.1^27,-1*K.1^49,-1*K.1^27,K.1^49,-1*K.1^21,K.1^33,K.1^43,K.1^23,-1*K.1^3,K.1^29,K.1^29,-1*K.1^47,K.1^33,K.1^29,K.1,K.1^19,K.1^43,K.1^17,-1*K.1^21,K.1^49,-1*K.1^23,K.1^3,-1*K.1^13,K.1^9,-1*K.1,-1*K.1^19,-1*K.1^7,K.1^19,-1*K.1^47,-1*K.1^29,K.1^37,K.1,K.1^27,-1*K.1^43,K.1^33,-1*K.1^41,K.1^49,K.1^9,K.1^17,K.1^3,K.1^27,K.1^11,K.1^41,-1*K.1^33,-1*K.1^43,-1*K.1^19,-1*K.1,-1*K.1^41,-1*K.1^29,-1*K.1^7,K.1^19,K.1,-1*K.1^19,K.1^11,K.1^9,K.1^13,K.1^7,-1*K.1^31,-1*K.1^7,K.1^17,K.1^17,-1*K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,-1*K.1^2,-1*K.1^26,K.1^32,K.1^16,-1*K.1^46,-1*K.1^6,-1*K.1^42,K.1^24,K.1^48,K.1^4,-1*K.1^34,K.1^44,-1*K.1^18,-1*K.1^38,K.1^8,K.1^28,-1*K.1^22,-1*K.1^14,K.1^36,K.1^12,K.1^35,K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^5,K.1^35,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^35,-1*K.1^35,K.1^5,-1*K.1^45,K.1^5,K.1^15,K.1^35,-1*K.1^45,-1*K.1^35,K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^45,K.1^45,K.1^45,K.1^8,-1*K.1^6,-1*K.1^14,K.1^28,K.1^16,-1*K.1^18,-1*K.1^38,K.1^36,K.1^48,K.1^44,K.1^48,K.1^44,-1*K.1^22,K.1^32,K.1^8,K.1^4,K.1^36,-1*K.1^34,K.1^48,-1*K.1^14,K.1^4,K.1^24,-1*K.1^34,K.1^28,-1*K.1^14,-1*K.1^2,K.1^24,-1*K.1^38,K.1^12,-1*K.1^42,-1*K.1^18,-1*K.1^38,-1*K.1^6,-1*K.1^6,K.1^32,K.1^36,K.1^32,-1*K.1^46,-1*K.1^46,-1*K.1^42,-1*K.1^42,K.1^44,-1*K.1^46,K.1^8,-1*K.1^34,-1*K.1^26,-1*K.1^22,-1*K.1^22,K.1^16,-1*K.1^2,-1*K.1^2,K.1^16,K.1^12,-1*K.1^26,-1*K.1^26,K.1^12,K.1^28,K.1^24,-1*K.1^18,K.1^4,-1*K.1^4,K.1^46,K.1^38,-1*K.1^44,-1*K.1^24,-1*K.1^12,K.1^42,K.1^42,-1*K.1^48,-1*K.1^28,-1*K.1^16,K.1^26,K.1^26,-1*K.1^12,-1*K.1^32,K.1^6,-1*K.1^36,K.1^2,K.1^38,K.1^46,K.1^6,-1*K.1^36,-1*K.1^8,K.1^18,K.1^22,-1*K.1^16,K.1^22,K.1^14,-1*K.1^8,-1*K.1^28,-1*K.1^44,-1*K.1^24,-1*K.1^48,K.1^34,K.1^34,K.1^2,-1*K.1^32,-1*K.1^4,K.1^14,K.1^18,K.1^2,K.1^14,K.1^42,K.1^46,K.1^18,K.1^18,K.1^6,-1*K.1^32,K.1^38,K.1^46,K.1^26,-1*K.1^16,-1*K.1^36,-1*K.1^44,K.1^22,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^2,K.1^38,K.1^18,-1*K.1^8,-1*K.1^8,-1*K.1^48,K.1^6,-1*K.1^32,-1*K.1^24,-1*K.1^12,-1*K.1^44,-1*K.1^48,K.1^14,K.1^42,-1*K.1^44,K.1^22,K.1^18,K.1^22,K.1^34,-1*K.1^28,K.1^38,-1*K.1^4,K.1^14,K.1^42,K.1^2,-1*K.1^24,K.1^34,K.1^34,-1*K.1^36,-1*K.1^4,-1*K.1^24,-1*K.1^32,-1*K.1^4,K.1^2,K.1^26,-1*K.1^28,-1*K.1^28,K.1^38,-1*K.1^48,-1*K.1^8,K.1^46,K.1^22,K.1^34,K.1^6,-1*K.1^12,K.1^26,K.1^14,-1*K.1^32,-1*K.1^24,-1*K.1^28,K.1^46,K.1^42,-1*K.1^16,-1*K.1^36,-1*K.1^36,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^12,K.1^26,-1*K.1^48,-1*K.1^44,-1*K.1^34,-1*K.1^38,-1*K.1^18,K.1^48,-1*K.1^18,K.1^8,-1*K.1^34,K.1^32,-1*K.1^2,K.1^24,K.1^44,-1*K.1^22,-1*K.1^42,-1*K.1^46,-1*K.1^26,-1*K.1^6,-1*K.1^26,K.1^16,-1*K.1^42,K.1^24,-1*K.1^46,K.1^4,-1*K.1^22,-1*K.1^2,-1*K.1^14,K.1^44,K.1^32,K.1^12,K.1^8,K.1^28,K.1^48,K.1^28,-1*K.1^38,K.1^12,-1*K.1^14,K.1^4,K.1^16,K.1^36,-1*K.1^6,K.1^36,-1*K.1^11,K.1^37,-1*K.1^11,K.1^19,-1*K.1,-1*K.1^23,K.1^49,K.1^13,K.1^17,K.1^7,K.1^27,-1*K.1^49,-1*K.1^9,K.1^21,-1*K.1^47,-1*K.1^31,-1*K.1^3,K.1^9,K.1^37,K.1^43,K.1^21,K.1^9,-1*K.1^3,-1*K.1^27,K.1^3,-1*K.1^13,K.1^13,-1*K.1^39,-1*K.1^23,-1*K.1^11,-1*K.1^27,K.1,-1*K.1^29,-1*K.1^29,K.1^47,K.1^27,-1*K.1^47,K.1^37,K.1^29,-1*K.1^3,K.1^23,-1*K.1^7,K.1^33,K.1^33,K.1,-1*K.1^21,-1*K.1^17,-1*K.1^7,-1*K.1^27,K.1^47,K.1^17,-1*K.1^37,K.1^39,K.1^19,K.1^7,-1*K.1^37,K.1^41,-1*K.1^43,-1*K.1^19,-1*K.1^43,K.1^31,K.1^39,K.1^41,K.1^13,K.1^49,K.1^41,-1*K.1^9,K.1^3,K.1^23,K.1^39,K.1^13,-1*K.1^13,K.1^11,-1*K.1^19,K.1^11,K.1^19,-1*K.1^11,-1*K.1^13,-1*K.1^41,-1*K.1^39,-1*K.1^19,K.1^11,-1*K.1^37,K.1^41,K.1^39,-1*K.1^19,-1*K.1^43,K.1^17,-1*K.1^9,K.1^11,K.1^33,K.1^33,K.1^47,K.1^27,-1*K.1^3,-1*K.1^29,-1*K.1^29,K.1,K.1^23,K.1,K.1^23,-1*K.1,K.1^29,-1*K.1^17,-1*K.1^7,-1*K.1^27,K.1^47,-1*K.1^21,-1*K.1^21,K.1^3,-1*K.1^17,-1*K.1^21,-1*K.1^49,-1*K.1^31,-1*K.1^7,-1*K.1^33,K.1^29,-1*K.1,K.1^27,-1*K.1^47,K.1^37,-1*K.1^41,K.1^49,K.1^31,K.1^43,-1*K.1^31,K.1^3,K.1^21,-1*K.1^13,-1*K.1^49,-1*K.1^23,K.1^7,-1*K.1^17,K.1^9,-1*K.1,-1*K.1^41,-1*K.1^33,-1*K.1^47,-1*K.1^23,-1*K.1^39,-1*K.1^9,K.1^17,K.1^7,K.1^31,K.1^49,K.1^9,K.1^21,K.1^43,-1*K.1^31,-1*K.1^49,K.1^31,-1*K.1^39,-1*K.1^41,-1*K.1^37,-1*K.1^43,K.1^19,K.1^43,-1*K.1^33,-1*K.1^33,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^18,-1*K.1^34,-1*K.1^38,K.1^44,-1*K.1^14,K.1^4,K.1^28,K.1^16,K.1^32,K.1^36,-1*K.1^6,-1*K.1^46,K.1^12,-1*K.1^42,-1*K.1^22,-1*K.1^2,K.1^48,-1*K.1^26,K.1^24,K.1^8,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^45,-1*K.1^35,-1*K.1^45,K.1^35,K.1^5,K.1^15,K.1^45,-1*K.1^15,K.1^35,K.1^35,K.1^35,K.1^45,-1*K.1^15,K.1^15,-1*K.1^45,K.1^5,-1*K.1^45,-1*K.1^35,-1*K.1^15,K.1^5,K.1^15,-1*K.1^35,K.1^45,-1*K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^22,K.1^4,-1*K.1^26,-1*K.1^2,K.1^44,K.1^12,-1*K.1^42,K.1^24,K.1^32,-1*K.1^46,K.1^32,-1*K.1^46,K.1^48,-1*K.1^38,-1*K.1^22,K.1^36,K.1^24,-1*K.1^6,K.1^32,-1*K.1^26,K.1^36,K.1^16,-1*K.1^6,-1*K.1^2,-1*K.1^26,-1*K.1^18,K.1^16,-1*K.1^42,K.1^8,K.1^28,K.1^12,-1*K.1^42,K.1^4,K.1^4,-1*K.1^38,K.1^24,-1*K.1^38,-1*K.1^14,-1*K.1^14,K.1^28,K.1^28,-1*K.1^46,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^34,K.1^48,K.1^48,K.1^44,-1*K.1^18,-1*K.1^18,K.1^44,K.1^8,-1*K.1^34,-1*K.1^34,K.1^8,-1*K.1^2,K.1^16,K.1^12,K.1^36,-1*K.1^36,K.1^14,K.1^42,K.1^46,-1*K.1^16,-1*K.1^8,-1*K.1^28,-1*K.1^28,-1*K.1^32,K.1^2,-1*K.1^44,K.1^34,K.1^34,-1*K.1^8,K.1^38,-1*K.1^4,-1*K.1^24,K.1^18,K.1^42,K.1^14,-1*K.1^4,-1*K.1^24,K.1^22,-1*K.1^12,-1*K.1^48,-1*K.1^44,-1*K.1^48,K.1^26,K.1^22,K.1^2,K.1^46,-1*K.1^16,-1*K.1^32,K.1^6,K.1^6,K.1^18,K.1^38,-1*K.1^36,K.1^26,-1*K.1^12,K.1^18,K.1^26,-1*K.1^28,K.1^14,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^38,K.1^42,K.1^14,K.1^34,-1*K.1^44,-1*K.1^24,K.1^46,-1*K.1^48,-1*K.1^44,K.1^22,-1*K.1^36,K.1^18,K.1^42,-1*K.1^12,K.1^22,K.1^22,-1*K.1^32,-1*K.1^4,K.1^38,-1*K.1^16,-1*K.1^8,K.1^46,-1*K.1^32,K.1^26,-1*K.1^28,K.1^46,-1*K.1^48,-1*K.1^12,-1*K.1^48,K.1^6,K.1^2,K.1^42,-1*K.1^36,K.1^26,-1*K.1^28,K.1^18,-1*K.1^16,K.1^6,K.1^6,-1*K.1^24,-1*K.1^36,-1*K.1^16,K.1^38,-1*K.1^36,K.1^18,K.1^34,K.1^2,K.1^2,K.1^42,-1*K.1^32,K.1^22,K.1^14,-1*K.1^48,K.1^6,-1*K.1^4,-1*K.1^8,K.1^34,K.1^26,K.1^38,-1*K.1^16,K.1^2,K.1^14,-1*K.1^28,-1*K.1^44,-1*K.1^24,-1*K.1^24,-1*K.1^4,-1*K.1^44,-1*K.1^8,-1*K.1^8,K.1^34,-1*K.1^32,K.1^46,-1*K.1^6,-1*K.1^42,K.1^12,K.1^32,K.1^12,-1*K.1^22,-1*K.1^6,-1*K.1^38,-1*K.1^18,K.1^16,-1*K.1^46,K.1^48,K.1^28,-1*K.1^14,-1*K.1^34,K.1^4,-1*K.1^34,K.1^44,K.1^28,K.1^16,-1*K.1^14,K.1^36,K.1^48,-1*K.1^18,-1*K.1^26,-1*K.1^46,-1*K.1^38,K.1^8,-1*K.1^22,-1*K.1^2,K.1^32,-1*K.1^2,-1*K.1^42,K.1^8,-1*K.1^26,K.1^36,K.1^44,K.1^24,K.1^4,K.1^24,-1*K.1^49,-1*K.1^33,-1*K.1^49,K.1^21,K.1^9,K.1^7,-1*K.1^41,-1*K.1^17,K.1^3,K.1^13,-1*K.1^43,K.1^41,-1*K.1^31,K.1^39,K.1^23,-1*K.1^29,K.1^27,K.1^31,-1*K.1^33,K.1^37,K.1^39,K.1^31,K.1^27,K.1^43,-1*K.1^27,K.1^17,-1*K.1^17,-1*K.1,K.1^7,-1*K.1^49,K.1^43,-1*K.1^9,-1*K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^43,K.1^23,-1*K.1^33,K.1^11,K.1^27,-1*K.1^7,-1*K.1^13,K.1^47,K.1^47,-1*K.1^9,-1*K.1^39,-1*K.1^3,-1*K.1^13,K.1^43,-1*K.1^23,K.1^3,K.1^33,K.1,K.1^21,K.1^13,K.1^33,K.1^19,-1*K.1^37,-1*K.1^21,-1*K.1^37,K.1^29,K.1,K.1^19,-1*K.1^17,-1*K.1^41,K.1^19,-1*K.1^31,-1*K.1^27,-1*K.1^7,K.1,-1*K.1^17,K.1^17,K.1^49,-1*K.1^21,K.1^49,K.1^21,-1*K.1^49,K.1^17,-1*K.1^19,-1*K.1,-1*K.1^21,K.1^49,K.1^33,K.1^19,K.1,-1*K.1^21,-1*K.1^37,K.1^3,-1*K.1^31,K.1^49,K.1^47,K.1^47,-1*K.1^23,-1*K.1^43,K.1^27,-1*K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^7,K.1^9,K.1^11,-1*K.1^3,-1*K.1^13,K.1^43,-1*K.1^23,-1*K.1^39,-1*K.1^39,-1*K.1^27,-1*K.1^3,-1*K.1^39,K.1^41,-1*K.1^29,-1*K.1^13,-1*K.1^47,K.1^11,K.1^9,-1*K.1^43,K.1^23,-1*K.1^33,-1*K.1^19,-1*K.1^41,K.1^29,K.1^37,-1*K.1^29,-1*K.1^27,K.1^39,K.1^17,K.1^41,K.1^7,K.1^13,-1*K.1^3,K.1^31,K.1^9,-1*K.1^19,-1*K.1^47,K.1^23,K.1^7,-1*K.1,-1*K.1^31,K.1^3,K.1^13,K.1^29,-1*K.1^41,K.1^31,K.1^39,K.1^37,-1*K.1^29,K.1^41,K.1^29,-1*K.1,-1*K.1^19,K.1^33,-1*K.1^37,K.1^21,K.1^37,-1*K.1^47,-1*K.1^47,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^32,K.1^16,K.1^12,-1*K.1^6,K.1^36,-1*K.1^46,-1*K.1^22,-1*K.1^34,-1*K.1^18,-1*K.1^14,K.1^44,K.1^4,-1*K.1^38,K.1^8,K.1^28,K.1^48,-1*K.1^2,K.1^24,-1*K.1^26,-1*K.1^42,K.1^35,K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^5,K.1^35,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^35,-1*K.1^35,K.1^5,-1*K.1^45,K.1^5,K.1^15,K.1^35,-1*K.1^45,-1*K.1^35,K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^45,K.1^45,K.1^45,K.1^28,-1*K.1^46,K.1^24,K.1^48,-1*K.1^6,-1*K.1^38,K.1^8,-1*K.1^26,-1*K.1^18,K.1^4,-1*K.1^18,K.1^4,-1*K.1^2,K.1^12,K.1^28,-1*K.1^14,-1*K.1^26,K.1^44,-1*K.1^18,K.1^24,-1*K.1^14,-1*K.1^34,K.1^44,K.1^48,K.1^24,K.1^32,-1*K.1^34,K.1^8,-1*K.1^42,-1*K.1^22,-1*K.1^38,K.1^8,-1*K.1^46,-1*K.1^46,K.1^12,-1*K.1^26,K.1^12,K.1^36,K.1^36,-1*K.1^22,-1*K.1^22,K.1^4,K.1^36,K.1^28,K.1^44,K.1^16,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^32,K.1^32,-1*K.1^6,-1*K.1^42,K.1^16,K.1^16,-1*K.1^42,K.1^48,-1*K.1^34,-1*K.1^38,-1*K.1^14,K.1^14,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^34,K.1^42,K.1^22,K.1^22,K.1^18,-1*K.1^48,K.1^6,-1*K.1^16,-1*K.1^16,K.1^42,-1*K.1^12,K.1^46,K.1^26,-1*K.1^32,-1*K.1^8,-1*K.1^36,K.1^46,K.1^26,-1*K.1^28,K.1^38,K.1^2,K.1^6,K.1^2,-1*K.1^24,-1*K.1^28,-1*K.1^48,-1*K.1^4,K.1^34,K.1^18,-1*K.1^44,-1*K.1^44,-1*K.1^32,-1*K.1^12,K.1^14,-1*K.1^24,K.1^38,-1*K.1^32,-1*K.1^24,K.1^22,-1*K.1^36,K.1^38,K.1^38,K.1^46,-1*K.1^12,-1*K.1^8,-1*K.1^36,-1*K.1^16,K.1^6,K.1^26,-1*K.1^4,K.1^2,K.1^6,-1*K.1^28,K.1^14,-1*K.1^32,-1*K.1^8,K.1^38,-1*K.1^28,-1*K.1^28,K.1^18,K.1^46,-1*K.1^12,K.1^34,K.1^42,-1*K.1^4,K.1^18,-1*K.1^24,K.1^22,-1*K.1^4,K.1^2,K.1^38,K.1^2,-1*K.1^44,-1*K.1^48,-1*K.1^8,K.1^14,-1*K.1^24,K.1^22,-1*K.1^32,K.1^34,-1*K.1^44,-1*K.1^44,K.1^26,K.1^14,K.1^34,-1*K.1^12,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^8,K.1^18,-1*K.1^28,-1*K.1^36,K.1^2,-1*K.1^44,K.1^46,K.1^42,-1*K.1^16,-1*K.1^24,-1*K.1^12,K.1^34,-1*K.1^48,-1*K.1^36,K.1^22,K.1^6,K.1^26,K.1^26,K.1^46,K.1^6,K.1^42,K.1^42,-1*K.1^16,K.1^18,-1*K.1^4,K.1^44,K.1^8,-1*K.1^38,-1*K.1^18,-1*K.1^38,K.1^28,K.1^44,K.1^12,K.1^32,-1*K.1^34,K.1^4,-1*K.1^2,-1*K.1^22,K.1^36,K.1^16,-1*K.1^46,K.1^16,-1*K.1^6,-1*K.1^22,-1*K.1^34,K.1^36,-1*K.1^14,-1*K.1^2,K.1^32,K.1^24,K.1^4,K.1^12,-1*K.1^42,K.1^28,K.1^48,-1*K.1^18,K.1^48,K.1^8,-1*K.1^42,K.1^24,-1*K.1^14,-1*K.1^6,-1*K.1^26,-1*K.1^46,-1*K.1^26,K.1,K.1^17,K.1,-1*K.1^29,-1*K.1^41,-1*K.1^43,K.1^9,K.1^33,-1*K.1^47,-1*K.1^37,K.1^7,-1*K.1^9,K.1^19,-1*K.1^11,-1*K.1^27,K.1^21,-1*K.1^23,-1*K.1^19,K.1^17,-1*K.1^13,-1*K.1^11,-1*K.1^19,-1*K.1^23,-1*K.1^7,K.1^23,-1*K.1^33,K.1^33,K.1^49,-1*K.1^43,K.1,-1*K.1^7,K.1^41,K.1^39,K.1^39,K.1^27,K.1^7,-1*K.1^27,K.1^17,-1*K.1^39,-1*K.1^23,K.1^43,K.1^37,-1*K.1^3,-1*K.1^3,K.1^41,K.1^11,K.1^47,K.1^37,-1*K.1^7,K.1^27,-1*K.1^47,-1*K.1^17,-1*K.1^49,-1*K.1^29,-1*K.1^37,-1*K.1^17,-1*K.1^31,K.1^13,K.1^29,K.1^13,-1*K.1^21,-1*K.1^49,-1*K.1^31,K.1^33,K.1^9,-1*K.1^31,K.1^19,K.1^23,K.1^43,-1*K.1^49,K.1^33,-1*K.1^33,-1*K.1,K.1^29,-1*K.1,-1*K.1^29,K.1,-1*K.1^33,K.1^31,K.1^49,K.1^29,-1*K.1,-1*K.1^17,-1*K.1^31,-1*K.1^49,K.1^29,K.1^13,-1*K.1^47,K.1^19,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^27,K.1^7,-1*K.1^23,K.1^39,K.1^39,K.1^41,K.1^43,K.1^41,K.1^43,-1*K.1^41,-1*K.1^39,K.1^47,K.1^37,-1*K.1^7,K.1^27,K.1^11,K.1^11,K.1^23,K.1^47,K.1^11,-1*K.1^9,K.1^21,K.1^37,K.1^3,-1*K.1^39,-1*K.1^41,K.1^7,-1*K.1^27,K.1^17,K.1^31,K.1^9,-1*K.1^21,-1*K.1^13,K.1^21,K.1^23,-1*K.1^11,-1*K.1^33,-1*K.1^9,-1*K.1^43,-1*K.1^37,K.1^47,-1*K.1^19,-1*K.1^41,K.1^31,K.1^3,-1*K.1^27,-1*K.1^43,K.1^49,K.1^19,-1*K.1^47,-1*K.1^37,-1*K.1^21,K.1^9,-1*K.1^19,-1*K.1^11,-1*K.1^13,K.1^21,-1*K.1^9,-1*K.1^21,K.1^49,K.1^31,-1*K.1^17,K.1^13,-1*K.1^29,-1*K.1^13,K.1^3,K.1^3,-1*K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,K.1^28,-1*K.1^14,K.1^48,K.1^24,K.1^44,-1*K.1^34,-1*K.1^38,K.1^36,-1*K.1^22,-1*K.1^6,-1*K.1^26,K.1^16,-1*K.1^2,K.1^32,K.1^12,-1*K.1^42,K.1^8,-1*K.1^46,K.1^4,-1*K.1^18,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^45,-1*K.1^35,-1*K.1^45,K.1^35,K.1^5,K.1^15,K.1^45,-1*K.1^15,K.1^35,K.1^35,K.1^35,K.1^45,-1*K.1^15,K.1^15,-1*K.1^45,K.1^5,-1*K.1^45,-1*K.1^35,-1*K.1^15,K.1^5,K.1^15,-1*K.1^35,K.1^45,-1*K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^12,-1*K.1^34,-1*K.1^46,-1*K.1^42,K.1^24,-1*K.1^2,K.1^32,K.1^4,-1*K.1^22,K.1^16,-1*K.1^22,K.1^16,K.1^8,K.1^48,K.1^12,-1*K.1^6,K.1^4,-1*K.1^26,-1*K.1^22,-1*K.1^46,-1*K.1^6,K.1^36,-1*K.1^26,-1*K.1^42,-1*K.1^46,K.1^28,K.1^36,K.1^32,-1*K.1^18,-1*K.1^38,-1*K.1^2,K.1^32,-1*K.1^34,-1*K.1^34,K.1^48,K.1^4,K.1^48,K.1^44,K.1^44,-1*K.1^38,-1*K.1^38,K.1^16,K.1^44,K.1^12,-1*K.1^26,-1*K.1^14,K.1^8,K.1^8,K.1^24,K.1^28,K.1^28,K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^42,K.1^36,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^44,-1*K.1^32,-1*K.1^16,-1*K.1^36,K.1^18,K.1^38,K.1^38,K.1^22,K.1^42,-1*K.1^24,K.1^14,K.1^14,K.1^18,-1*K.1^48,K.1^34,-1*K.1^4,-1*K.1^28,-1*K.1^32,-1*K.1^44,K.1^34,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^46,-1*K.1^12,K.1^42,-1*K.1^16,-1*K.1^36,K.1^22,K.1^26,K.1^26,-1*K.1^28,-1*K.1^48,K.1^6,K.1^46,K.1^2,-1*K.1^28,K.1^46,K.1^38,-1*K.1^44,K.1^2,K.1^2,K.1^34,-1*K.1^48,-1*K.1^32,-1*K.1^44,K.1^14,-1*K.1^24,-1*K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^6,-1*K.1^28,-1*K.1^32,K.1^2,-1*K.1^12,-1*K.1^12,K.1^22,K.1^34,-1*K.1^48,-1*K.1^36,K.1^18,-1*K.1^16,K.1^22,K.1^46,K.1^38,-1*K.1^16,-1*K.1^8,K.1^2,-1*K.1^8,K.1^26,K.1^42,-1*K.1^32,K.1^6,K.1^46,K.1^38,-1*K.1^28,-1*K.1^36,K.1^26,K.1^26,-1*K.1^4,K.1^6,-1*K.1^36,-1*K.1^48,K.1^6,-1*K.1^28,K.1^14,K.1^42,K.1^42,-1*K.1^32,K.1^22,-1*K.1^12,-1*K.1^44,-1*K.1^8,K.1^26,K.1^34,K.1^18,K.1^14,K.1^46,-1*K.1^48,-1*K.1^36,K.1^42,-1*K.1^44,K.1^38,-1*K.1^24,-1*K.1^4,-1*K.1^4,K.1^34,-1*K.1^24,K.1^18,K.1^18,K.1^14,K.1^22,-1*K.1^16,-1*K.1^26,K.1^32,-1*K.1^2,-1*K.1^22,-1*K.1^2,K.1^12,-1*K.1^26,K.1^48,K.1^28,K.1^36,K.1^16,K.1^8,-1*K.1^38,K.1^44,-1*K.1^14,-1*K.1^34,-1*K.1^14,K.1^24,-1*K.1^38,K.1^36,K.1^44,-1*K.1^6,K.1^8,K.1^28,-1*K.1^46,K.1^16,K.1^48,-1*K.1^18,K.1^12,-1*K.1^42,-1*K.1^22,-1*K.1^42,K.1^32,-1*K.1^18,-1*K.1^46,-1*K.1^6,K.1^24,K.1^4,-1*K.1^34,K.1^4,-1*K.1^29,K.1^43,-1*K.1^29,K.1^41,-1*K.1^39,K.1^47,K.1^11,K.1^7,-1*K.1^13,-1*K.1^23,-1*K.1^3,-1*K.1^11,K.1,K.1^19,-1*K.1^33,-1*K.1^9,-1*K.1^17,-1*K.1,K.1^43,-1*K.1^27,K.1^19,-1*K.1,-1*K.1^17,K.1^3,K.1^17,-1*K.1^7,K.1^7,-1*K.1^21,K.1^47,-1*K.1^29,K.1^3,K.1^39,-1*K.1^31,-1*K.1^31,K.1^33,-1*K.1^3,-1*K.1^33,K.1^43,K.1^31,-1*K.1^17,-1*K.1^47,K.1^23,-1*K.1^37,-1*K.1^37,K.1^39,-1*K.1^19,K.1^13,K.1^23,K.1^3,K.1^33,-1*K.1^13,-1*K.1^43,K.1^21,K.1^41,-1*K.1^23,-1*K.1^43,-1*K.1^49,K.1^27,-1*K.1^41,K.1^27,K.1^9,K.1^21,-1*K.1^49,K.1^7,K.1^11,-1*K.1^49,K.1,K.1^17,-1*K.1^47,K.1^21,K.1^7,-1*K.1^7,K.1^29,-1*K.1^41,K.1^29,K.1^41,-1*K.1^29,-1*K.1^7,K.1^49,-1*K.1^21,-1*K.1^41,K.1^29,-1*K.1^43,-1*K.1^49,K.1^21,-1*K.1^41,K.1^27,-1*K.1^13,K.1,K.1^29,-1*K.1^37,-1*K.1^37,K.1^33,-1*K.1^3,-1*K.1^17,-1*K.1^31,-1*K.1^31,K.1^39,-1*K.1^47,K.1^39,-1*K.1^47,-1*K.1^39,K.1^31,K.1^13,K.1^23,K.1^3,K.1^33,-1*K.1^19,-1*K.1^19,K.1^17,K.1^13,-1*K.1^19,-1*K.1^11,-1*K.1^9,K.1^23,K.1^37,K.1^31,-1*K.1^39,-1*K.1^3,-1*K.1^33,K.1^43,K.1^49,K.1^11,K.1^9,-1*K.1^27,-1*K.1^9,K.1^17,K.1^19,-1*K.1^7,-1*K.1^11,K.1^47,-1*K.1^23,K.1^13,-1*K.1,-1*K.1^39,K.1^49,K.1^37,-1*K.1^33,K.1^47,-1*K.1^21,K.1,-1*K.1^13,-1*K.1^23,K.1^9,K.1^11,-1*K.1,K.1^19,-1*K.1^27,-1*K.1^9,-1*K.1^11,K.1^9,-1*K.1^21,K.1^49,-1*K.1^43,K.1^27,K.1^41,-1*K.1^27,K.1^37,K.1^37,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,-1*K.1^22,K.1^36,-1*K.1^2,-1*K.1^26,-1*K.1^6,K.1^16,K.1^12,-1*K.1^14,K.1^28,K.1^44,K.1^24,-1*K.1^34,K.1^48,-1*K.1^18,-1*K.1^38,K.1^8,-1*K.1^42,K.1^4,-1*K.1^46,K.1^32,K.1^35,K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^5,K.1^35,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^35,-1*K.1^35,K.1^5,-1*K.1^45,K.1^5,K.1^15,K.1^35,-1*K.1^45,-1*K.1^35,K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^45,K.1^45,K.1^45,-1*K.1^38,K.1^16,K.1^4,K.1^8,-1*K.1^26,K.1^48,-1*K.1^18,-1*K.1^46,K.1^28,-1*K.1^34,K.1^28,-1*K.1^34,-1*K.1^42,-1*K.1^2,-1*K.1^38,K.1^44,-1*K.1^46,K.1^24,K.1^28,K.1^4,K.1^44,-1*K.1^14,K.1^24,K.1^8,K.1^4,-1*K.1^22,-1*K.1^14,-1*K.1^18,K.1^32,K.1^12,K.1^48,-1*K.1^18,K.1^16,K.1^16,-1*K.1^2,-1*K.1^46,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^12,K.1^12,-1*K.1^34,-1*K.1^6,-1*K.1^38,K.1^24,K.1^36,-1*K.1^42,-1*K.1^42,-1*K.1^26,-1*K.1^22,-1*K.1^22,-1*K.1^26,K.1^32,K.1^36,K.1^36,K.1^32,K.1^8,-1*K.1^14,K.1^48,K.1^44,-1*K.1^44,K.1^6,K.1^18,K.1^34,K.1^14,-1*K.1^32,-1*K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^8,K.1^26,-1*K.1^36,-1*K.1^36,-1*K.1^32,K.1^2,-1*K.1^16,K.1^46,K.1^22,K.1^18,K.1^6,-1*K.1^16,K.1^46,K.1^38,-1*K.1^48,K.1^42,K.1^26,K.1^42,-1*K.1^4,K.1^38,-1*K.1^8,K.1^34,K.1^14,-1*K.1^28,-1*K.1^24,-1*K.1^24,K.1^22,K.1^2,-1*K.1^44,-1*K.1^4,-1*K.1^48,K.1^22,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^48,-1*K.1^48,-1*K.1^16,K.1^2,K.1^18,K.1^6,-1*K.1^36,K.1^26,K.1^46,K.1^34,K.1^42,K.1^26,K.1^38,-1*K.1^44,K.1^22,K.1^18,-1*K.1^48,K.1^38,K.1^38,-1*K.1^28,-1*K.1^16,K.1^2,K.1^14,-1*K.1^32,K.1^34,-1*K.1^28,-1*K.1^4,-1*K.1^12,K.1^34,K.1^42,-1*K.1^48,K.1^42,-1*K.1^24,-1*K.1^8,K.1^18,-1*K.1^44,-1*K.1^4,-1*K.1^12,K.1^22,K.1^14,-1*K.1^24,-1*K.1^24,K.1^46,-1*K.1^44,K.1^14,K.1^2,-1*K.1^44,K.1^22,-1*K.1^36,-1*K.1^8,-1*K.1^8,K.1^18,-1*K.1^28,K.1^38,K.1^6,K.1^42,-1*K.1^24,-1*K.1^16,-1*K.1^32,-1*K.1^36,-1*K.1^4,K.1^2,K.1^14,-1*K.1^8,K.1^6,-1*K.1^12,K.1^26,K.1^46,K.1^46,-1*K.1^16,K.1^26,-1*K.1^32,-1*K.1^32,-1*K.1^36,-1*K.1^28,K.1^34,K.1^24,-1*K.1^18,K.1^48,K.1^28,K.1^48,-1*K.1^38,K.1^24,-1*K.1^2,-1*K.1^22,-1*K.1^14,-1*K.1^34,-1*K.1^42,K.1^12,-1*K.1^6,K.1^36,K.1^16,K.1^36,-1*K.1^26,K.1^12,-1*K.1^14,-1*K.1^6,K.1^44,-1*K.1^42,-1*K.1^22,K.1^4,-1*K.1^34,-1*K.1^2,K.1^32,-1*K.1^38,K.1^8,K.1^28,K.1^8,-1*K.1^18,K.1^32,K.1^4,K.1^44,-1*K.1^26,-1*K.1^46,K.1^16,-1*K.1^46,K.1^21,-1*K.1^7,K.1^21,-1*K.1^9,K.1^11,-1*K.1^3,-1*K.1^39,-1*K.1^43,K.1^37,K.1^27,K.1^47,K.1^39,-1*K.1^49,-1*K.1^31,K.1^17,K.1^41,K.1^33,K.1^49,-1*K.1^7,K.1^23,-1*K.1^31,K.1^49,K.1^33,-1*K.1^47,-1*K.1^33,K.1^43,-1*K.1^43,K.1^29,-1*K.1^3,K.1^21,-1*K.1^47,-1*K.1^11,K.1^19,K.1^19,-1*K.1^17,K.1^47,K.1^17,-1*K.1^7,-1*K.1^19,K.1^33,K.1^3,-1*K.1^27,K.1^13,K.1^13,-1*K.1^11,K.1^31,-1*K.1^37,-1*K.1^27,-1*K.1^47,-1*K.1^17,K.1^37,K.1^7,-1*K.1^29,-1*K.1^9,K.1^27,K.1^7,K.1,-1*K.1^23,K.1^9,-1*K.1^23,-1*K.1^41,-1*K.1^29,K.1,-1*K.1^43,-1*K.1^39,K.1,-1*K.1^49,-1*K.1^33,K.1^3,-1*K.1^29,-1*K.1^43,K.1^43,-1*K.1^21,K.1^9,-1*K.1^21,-1*K.1^9,K.1^21,K.1^43,-1*K.1,K.1^29,K.1^9,-1*K.1^21,K.1^7,K.1,-1*K.1^29,K.1^9,-1*K.1^23,K.1^37,-1*K.1^49,-1*K.1^21,K.1^13,K.1^13,-1*K.1^17,K.1^47,K.1^33,K.1^19,K.1^19,-1*K.1^11,K.1^3,-1*K.1^11,K.1^3,K.1^11,-1*K.1^19,-1*K.1^37,-1*K.1^27,-1*K.1^47,-1*K.1^17,K.1^31,K.1^31,-1*K.1^33,-1*K.1^37,K.1^31,K.1^39,K.1^41,-1*K.1^27,-1*K.1^13,-1*K.1^19,K.1^11,K.1^47,K.1^17,-1*K.1^7,-1*K.1,-1*K.1^39,-1*K.1^41,K.1^23,K.1^41,-1*K.1^33,-1*K.1^31,K.1^43,K.1^39,-1*K.1^3,K.1^27,-1*K.1^37,K.1^49,K.1^11,-1*K.1,-1*K.1^13,K.1^17,-1*K.1^3,K.1^29,-1*K.1^49,K.1^37,K.1^27,-1*K.1^41,-1*K.1^39,K.1^49,-1*K.1^31,K.1^23,K.1^41,K.1^39,-1*K.1^41,K.1^29,-1*K.1,K.1^7,-1*K.1^23,-1*K.1^9,K.1^23,-1*K.1^13,-1*K.1^13,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^38,K.1^44,K.1^8,K.1^4,K.1^24,-1*K.1^14,K.1^48,-1*K.1^6,K.1^12,-1*K.1^26,-1*K.1^46,K.1^36,-1*K.1^42,-1*K.1^22,-1*K.1^2,K.1^32,-1*K.1^18,K.1^16,-1*K.1^34,K.1^28,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^45,-1*K.1^35,-1*K.1^45,K.1^35,K.1^5,K.1^15,K.1^45,-1*K.1^15,K.1^35,K.1^35,K.1^35,K.1^45,-1*K.1^15,K.1^15,-1*K.1^45,K.1^5,-1*K.1^45,-1*K.1^35,-1*K.1^15,K.1^5,K.1^15,-1*K.1^35,K.1^45,-1*K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^2,-1*K.1^14,K.1^16,K.1^32,K.1^4,-1*K.1^42,-1*K.1^22,-1*K.1^34,K.1^12,K.1^36,K.1^12,K.1^36,-1*K.1^18,K.1^8,-1*K.1^2,-1*K.1^26,-1*K.1^34,-1*K.1^46,K.1^12,K.1^16,-1*K.1^26,-1*K.1^6,-1*K.1^46,K.1^32,K.1^16,-1*K.1^38,-1*K.1^6,-1*K.1^22,K.1^28,K.1^48,-1*K.1^42,-1*K.1^22,-1*K.1^14,-1*K.1^14,K.1^8,-1*K.1^34,K.1^8,K.1^24,K.1^24,K.1^48,K.1^48,K.1^36,K.1^24,-1*K.1^2,-1*K.1^46,K.1^44,-1*K.1^18,-1*K.1^18,K.1^4,-1*K.1^38,-1*K.1^38,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^6,-1*K.1^42,-1*K.1^26,K.1^26,-1*K.1^24,K.1^22,-1*K.1^36,K.1^6,-1*K.1^28,-1*K.1^48,-1*K.1^48,-1*K.1^12,-1*K.1^32,-1*K.1^4,-1*K.1^44,-1*K.1^44,-1*K.1^28,-1*K.1^8,K.1^14,K.1^34,K.1^38,K.1^22,-1*K.1^24,K.1^14,K.1^34,K.1^2,K.1^42,K.1^18,-1*K.1^4,K.1^18,-1*K.1^16,K.1^2,-1*K.1^32,-1*K.1^36,K.1^6,-1*K.1^12,K.1^46,K.1^46,K.1^38,-1*K.1^8,K.1^26,-1*K.1^16,K.1^42,K.1^38,-1*K.1^16,-1*K.1^48,-1*K.1^24,K.1^42,K.1^42,K.1^14,-1*K.1^8,K.1^22,-1*K.1^24,-1*K.1^44,-1*K.1^4,K.1^34,-1*K.1^36,K.1^18,-1*K.1^4,K.1^2,K.1^26,K.1^38,K.1^22,K.1^42,K.1^2,K.1^2,-1*K.1^12,K.1^14,-1*K.1^8,K.1^6,-1*K.1^28,-1*K.1^36,-1*K.1^12,-1*K.1^16,-1*K.1^48,-1*K.1^36,K.1^18,K.1^42,K.1^18,K.1^46,-1*K.1^32,K.1^22,K.1^26,-1*K.1^16,-1*K.1^48,K.1^38,K.1^6,K.1^46,K.1^46,K.1^34,K.1^26,K.1^6,-1*K.1^8,K.1^26,K.1^38,-1*K.1^44,-1*K.1^32,-1*K.1^32,K.1^22,-1*K.1^12,K.1^2,-1*K.1^24,K.1^18,K.1^46,K.1^14,-1*K.1^28,-1*K.1^44,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^32,-1*K.1^24,-1*K.1^48,-1*K.1^4,K.1^34,K.1^34,K.1^14,-1*K.1^4,-1*K.1^28,-1*K.1^28,-1*K.1^44,-1*K.1^12,-1*K.1^36,-1*K.1^46,-1*K.1^22,-1*K.1^42,K.1^12,-1*K.1^42,-1*K.1^2,-1*K.1^46,K.1^8,-1*K.1^38,-1*K.1^6,K.1^36,-1*K.1^18,K.1^48,K.1^24,K.1^44,-1*K.1^14,K.1^44,K.1^4,K.1^48,-1*K.1^6,K.1^24,-1*K.1^26,-1*K.1^18,-1*K.1^38,K.1^16,K.1^36,K.1^8,K.1^28,-1*K.1^2,K.1^32,K.1^12,K.1^32,-1*K.1^22,K.1^28,K.1^16,-1*K.1^26,K.1^4,-1*K.1^34,-1*K.1^14,-1*K.1^34,-1*K.1^9,K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^19,-1*K.1^37,K.1^31,K.1^47,K.1^23,K.1^33,K.1^13,-1*K.1^31,K.1^21,-1*K.1^49,K.1^43,K.1^39,K.1^7,-1*K.1^21,K.1^3,K.1^17,-1*K.1^49,-1*K.1^21,K.1^7,-1*K.1^13,-1*K.1^7,-1*K.1^47,K.1^47,-1*K.1^41,-1*K.1^37,-1*K.1^9,-1*K.1^13,K.1^19,K.1,K.1,-1*K.1^43,K.1^13,K.1^43,K.1^3,-1*K.1,K.1^7,K.1^37,-1*K.1^33,K.1^27,K.1^27,K.1^19,K.1^49,-1*K.1^23,-1*K.1^33,-1*K.1^13,-1*K.1^43,K.1^23,-1*K.1^3,K.1^41,-1*K.1^11,K.1^33,-1*K.1^3,-1*K.1^29,-1*K.1^17,K.1^11,-1*K.1^17,-1*K.1^39,K.1^41,-1*K.1^29,K.1^47,K.1^31,-1*K.1^29,K.1^21,-1*K.1^7,K.1^37,K.1^41,K.1^47,-1*K.1^47,K.1^9,K.1^11,K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^47,K.1^29,-1*K.1^41,K.1^11,K.1^9,-1*K.1^3,-1*K.1^29,K.1^41,K.1^11,-1*K.1^17,K.1^23,K.1^21,K.1^9,K.1^27,K.1^27,-1*K.1^43,K.1^13,K.1^7,K.1,K.1,K.1^19,K.1^37,K.1^19,K.1^37,-1*K.1^19,-1*K.1,-1*K.1^23,-1*K.1^33,-1*K.1^13,-1*K.1^43,K.1^49,K.1^49,-1*K.1^7,-1*K.1^23,K.1^49,-1*K.1^31,K.1^39,-1*K.1^33,-1*K.1^27,-1*K.1,-1*K.1^19,K.1^13,K.1^43,K.1^3,K.1^29,K.1^31,-1*K.1^39,K.1^17,K.1^39,-1*K.1^7,-1*K.1^49,-1*K.1^47,-1*K.1^31,-1*K.1^37,K.1^33,-1*K.1^23,-1*K.1^21,-1*K.1^19,K.1^29,-1*K.1^27,K.1^43,-1*K.1^37,-1*K.1^41,K.1^21,K.1^23,K.1^33,-1*K.1^39,K.1^31,-1*K.1^21,-1*K.1^49,K.1^17,K.1^39,-1*K.1^31,-1*K.1^39,-1*K.1^41,K.1^29,-1*K.1^3,-1*K.1^17,-1*K.1^11,K.1^17,-1*K.1^27,-1*K.1^27,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^12,-1*K.1^6,-1*K.1^42,-1*K.1^46,-1*K.1^26,K.1^36,-1*K.1^2,K.1^44,-1*K.1^38,K.1^24,K.1^4,-1*K.1^14,K.1^8,K.1^28,K.1^48,-1*K.1^18,K.1^32,-1*K.1^34,K.1^16,-1*K.1^22,K.1^35,K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^5,K.1^35,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^35,-1*K.1^35,K.1^5,-1*K.1^45,K.1^5,K.1^15,K.1^35,-1*K.1^45,-1*K.1^35,K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^45,K.1^45,K.1^45,K.1^48,K.1^36,-1*K.1^34,-1*K.1^18,-1*K.1^46,K.1^8,K.1^28,K.1^16,-1*K.1^38,-1*K.1^14,-1*K.1^38,-1*K.1^14,K.1^32,-1*K.1^42,K.1^48,K.1^24,K.1^16,K.1^4,-1*K.1^38,-1*K.1^34,K.1^24,K.1^44,K.1^4,-1*K.1^18,-1*K.1^34,K.1^12,K.1^44,K.1^28,-1*K.1^22,-1*K.1^2,K.1^8,K.1^28,K.1^36,K.1^36,-1*K.1^42,K.1^16,-1*K.1^42,-1*K.1^26,-1*K.1^26,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^26,K.1^48,K.1^4,-1*K.1^6,K.1^32,K.1^32,-1*K.1^46,K.1^12,K.1^12,-1*K.1^46,-1*K.1^22,-1*K.1^6,-1*K.1^6,-1*K.1^22,-1*K.1^18,K.1^44,K.1^8,K.1^24,-1*K.1^24,K.1^26,-1*K.1^28,K.1^14,-1*K.1^44,K.1^22,K.1^2,K.1^2,K.1^38,K.1^18,K.1^46,K.1^6,K.1^6,K.1^22,K.1^42,-1*K.1^36,-1*K.1^16,-1*K.1^12,-1*K.1^28,K.1^26,-1*K.1^36,-1*K.1^16,-1*K.1^48,-1*K.1^8,-1*K.1^32,K.1^46,-1*K.1^32,K.1^34,-1*K.1^48,K.1^18,K.1^14,-1*K.1^44,K.1^38,-1*K.1^4,-1*K.1^4,-1*K.1^12,K.1^42,-1*K.1^24,K.1^34,-1*K.1^8,-1*K.1^12,K.1^34,K.1^2,K.1^26,-1*K.1^8,-1*K.1^8,-1*K.1^36,K.1^42,-1*K.1^28,K.1^26,K.1^6,K.1^46,-1*K.1^16,K.1^14,-1*K.1^32,K.1^46,-1*K.1^48,-1*K.1^24,-1*K.1^12,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^48,K.1^38,-1*K.1^36,K.1^42,-1*K.1^44,K.1^22,K.1^14,K.1^38,K.1^34,K.1^2,K.1^14,-1*K.1^32,-1*K.1^8,-1*K.1^32,-1*K.1^4,K.1^18,-1*K.1^28,-1*K.1^24,K.1^34,K.1^2,-1*K.1^12,-1*K.1^44,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^24,-1*K.1^44,K.1^42,-1*K.1^24,-1*K.1^12,K.1^6,K.1^18,K.1^18,-1*K.1^28,K.1^38,-1*K.1^48,K.1^26,-1*K.1^32,-1*K.1^4,-1*K.1^36,K.1^22,K.1^6,K.1^34,K.1^42,-1*K.1^44,K.1^18,K.1^26,K.1^2,K.1^46,-1*K.1^16,-1*K.1^16,-1*K.1^36,K.1^46,K.1^22,K.1^22,K.1^6,K.1^38,K.1^14,K.1^4,K.1^28,K.1^8,-1*K.1^38,K.1^8,K.1^48,K.1^4,-1*K.1^42,K.1^12,K.1^44,-1*K.1^14,K.1^32,-1*K.1^2,-1*K.1^26,-1*K.1^6,K.1^36,-1*K.1^6,-1*K.1^46,-1*K.1^2,K.1^44,-1*K.1^26,K.1^24,K.1^32,K.1^12,-1*K.1^34,-1*K.1^14,-1*K.1^42,-1*K.1^22,K.1^48,-1*K.1^18,-1*K.1^38,-1*K.1^18,K.1^28,-1*K.1^22,-1*K.1^34,K.1^24,-1*K.1^46,K.1^16,K.1^36,K.1^16,K.1^41,-1*K.1^47,K.1^41,K.1^39,K.1^31,K.1^13,-1*K.1^19,-1*K.1^3,-1*K.1^27,-1*K.1^17,-1*K.1^37,K.1^19,-1*K.1^29,K.1,-1*K.1^7,-1*K.1^11,-1*K.1^43,K.1^29,-1*K.1^47,-1*K.1^33,K.1,K.1^29,-1*K.1^43,K.1^37,K.1^43,K.1^3,-1*K.1^3,K.1^9,K.1^13,K.1^41,K.1^37,-1*K.1^31,-1*K.1^49,-1*K.1^49,K.1^7,-1*K.1^37,-1*K.1^7,-1*K.1^47,K.1^49,-1*K.1^43,-1*K.1^13,K.1^17,-1*K.1^23,-1*K.1^23,-1*K.1^31,-1*K.1,K.1^27,K.1^17,K.1^37,K.1^7,-1*K.1^27,K.1^47,-1*K.1^9,K.1^39,-1*K.1^17,K.1^47,K.1^21,K.1^33,-1*K.1^39,K.1^33,K.1^11,-1*K.1^9,K.1^21,-1*K.1^3,-1*K.1^19,K.1^21,-1*K.1^29,K.1^43,-1*K.1^13,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1^41,-1*K.1^39,-1*K.1^41,K.1^39,K.1^41,K.1^3,-1*K.1^21,K.1^9,-1*K.1^39,-1*K.1^41,K.1^47,K.1^21,-1*K.1^9,-1*K.1^39,K.1^33,-1*K.1^27,-1*K.1^29,-1*K.1^41,-1*K.1^23,-1*K.1^23,K.1^7,-1*K.1^37,-1*K.1^43,-1*K.1^49,-1*K.1^49,-1*K.1^31,-1*K.1^13,-1*K.1^31,-1*K.1^13,K.1^31,K.1^49,K.1^27,K.1^17,K.1^37,K.1^7,-1*K.1,-1*K.1,K.1^43,K.1^27,-1*K.1,K.1^19,-1*K.1^11,K.1^17,K.1^23,K.1^49,K.1^31,-1*K.1^37,-1*K.1^7,-1*K.1^47,-1*K.1^21,-1*K.1^19,K.1^11,-1*K.1^33,-1*K.1^11,K.1^43,K.1,K.1^3,K.1^19,K.1^13,-1*K.1^17,K.1^27,K.1^29,K.1^31,-1*K.1^21,K.1^23,-1*K.1^7,K.1^13,K.1^9,-1*K.1^29,-1*K.1^27,-1*K.1^17,K.1^11,-1*K.1^19,K.1^29,K.1,-1*K.1^33,-1*K.1^11,K.1^19,K.1^11,K.1^9,-1*K.1^21,K.1^47,K.1^33,K.1^39,-1*K.1^33,K.1^23,K.1^23,K.1^49]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,K.1^8,K.1^4,K.1^28,-1*K.1^14,-1*K.1^34,K.1^24,-1*K.1^18,-1*K.1^46,-1*K.1^42,K.1^16,K.1^36,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^32,K.1^12,-1*K.1^38,-1*K.1^6,K.1^44,K.1^48,-1*K.1^15,-1*K.1^5,K.1^15,K.1^5,K.1^45,-1*K.1^35,-1*K.1^45,K.1^35,K.1^5,K.1^15,K.1^45,-1*K.1^15,K.1^35,K.1^35,K.1^35,K.1^45,-1*K.1^15,K.1^15,-1*K.1^45,K.1^5,-1*K.1^45,-1*K.1^35,-1*K.1^15,K.1^5,K.1^15,-1*K.1^35,K.1^45,-1*K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^32,K.1^24,-1*K.1^6,K.1^12,-1*K.1^14,-1*K.1^22,-1*K.1^2,K.1^44,-1*K.1^42,-1*K.1^26,-1*K.1^42,-1*K.1^26,-1*K.1^38,K.1^28,K.1^32,K.1^16,K.1^44,K.1^36,-1*K.1^42,-1*K.1^6,K.1^16,-1*K.1^46,K.1^36,K.1^12,-1*K.1^6,K.1^8,-1*K.1^46,-1*K.1^2,K.1^48,-1*K.1^18,-1*K.1^22,-1*K.1^2,K.1^24,K.1^24,K.1^28,K.1^44,K.1^28,-1*K.1^34,-1*K.1^34,-1*K.1^18,-1*K.1^18,-1*K.1^26,-1*K.1^34,K.1^32,K.1^36,K.1^4,-1*K.1^38,-1*K.1^38,-1*K.1^14,K.1^8,K.1^8,-1*K.1^14,K.1^48,K.1^4,K.1^4,K.1^48,K.1^12,-1*K.1^46,-1*K.1^22,K.1^16,-1*K.1^16,K.1^34,K.1^2,K.1^26,K.1^46,-1*K.1^48,K.1^18,K.1^18,K.1^42,-1*K.1^12,K.1^14,-1*K.1^4,-1*K.1^4,-1*K.1^48,-1*K.1^28,-1*K.1^24,-1*K.1^44,-1*K.1^8,K.1^2,K.1^34,-1*K.1^24,-1*K.1^44,-1*K.1^32,K.1^22,K.1^38,K.1^14,K.1^38,K.1^6,-1*K.1^32,-1*K.1^12,K.1^26,K.1^46,K.1^42,-1*K.1^36,-1*K.1^36,-1*K.1^8,-1*K.1^28,-1*K.1^16,K.1^6,K.1^22,-1*K.1^8,K.1^6,K.1^18,K.1^34,K.1^22,K.1^22,-1*K.1^24,-1*K.1^28,K.1^2,K.1^34,-1*K.1^4,K.1^14,-1*K.1^44,K.1^26,K.1^38,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^8,K.1^2,K.1^22,-1*K.1^32,-1*K.1^32,K.1^42,-1*K.1^24,-1*K.1^28,K.1^46,-1*K.1^48,K.1^26,K.1^42,K.1^6,K.1^18,K.1^26,K.1^38,K.1^22,K.1^38,-1*K.1^36,-1*K.1^12,K.1^2,-1*K.1^16,K.1^6,K.1^18,-1*K.1^8,K.1^46,-1*K.1^36,-1*K.1^36,-1*K.1^44,-1*K.1^16,K.1^46,-1*K.1^28,-1*K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^2,K.1^42,-1*K.1^32,K.1^34,K.1^38,-1*K.1^36,-1*K.1^24,-1*K.1^48,-1*K.1^4,K.1^6,-1*K.1^28,K.1^46,-1*K.1^12,K.1^34,K.1^18,K.1^14,-1*K.1^44,-1*K.1^44,-1*K.1^24,K.1^14,-1*K.1^48,-1*K.1^48,-1*K.1^4,K.1^42,K.1^26,K.1^36,-1*K.1^2,-1*K.1^22,-1*K.1^42,-1*K.1^22,K.1^32,K.1^36,K.1^28,K.1^8,-1*K.1^46,-1*K.1^26,-1*K.1^38,-1*K.1^18,-1*K.1^34,K.1^4,K.1^24,K.1^4,-1*K.1^14,-1*K.1^18,-1*K.1^46,-1*K.1^34,K.1^16,-1*K.1^38,K.1^8,-1*K.1^6,-1*K.1^26,K.1^28,K.1^48,K.1^32,K.1^12,-1*K.1^42,K.1^12,-1*K.1^2,K.1^48,-1*K.1^6,K.1^16,-1*K.1^14,K.1^44,K.1^24,K.1^44,K.1^19,K.1^23,K.1^19,K.1,K.1^29,-1*K.1^17,-1*K.1^21,K.1^27,K.1^43,-1*K.1^3,K.1^33,K.1^21,-1*K.1^11,-1*K.1^9,-1*K.1^13,-1*K.1^49,-1*K.1^37,K.1^11,K.1^23,-1*K.1^47,-1*K.1^9,K.1^11,-1*K.1^37,-1*K.1^33,K.1^37,-1*K.1^27,K.1^27,K.1^31,-1*K.1^17,K.1^19,-1*K.1^33,-1*K.1^29,K.1^41,K.1^41,K.1^13,K.1^33,-1*K.1^13,K.1^23,-1*K.1^41,-1*K.1^37,K.1^17,K.1^3,K.1^7,K.1^7,-1*K.1^29,K.1^9,-1*K.1^43,K.1^3,-1*K.1^33,K.1^13,K.1^43,-1*K.1^23,-1*K.1^31,K.1,-1*K.1^3,-1*K.1^23,K.1^39,K.1^47,-1*K.1,K.1^47,K.1^49,-1*K.1^31,K.1^39,K.1^27,-1*K.1^21,K.1^39,-1*K.1^11,K.1^37,K.1^17,-1*K.1^31,K.1^27,-1*K.1^27,-1*K.1^19,-1*K.1,-1*K.1^19,K.1,K.1^19,-1*K.1^27,-1*K.1^39,K.1^31,-1*K.1,-1*K.1^19,-1*K.1^23,K.1^39,-1*K.1^31,-1*K.1,K.1^47,K.1^43,-1*K.1^11,-1*K.1^19,K.1^7,K.1^7,K.1^13,K.1^33,-1*K.1^37,K.1^41,K.1^41,-1*K.1^29,K.1^17,-1*K.1^29,K.1^17,K.1^29,-1*K.1^41,-1*K.1^43,K.1^3,-1*K.1^33,K.1^13,K.1^9,K.1^9,K.1^37,-1*K.1^43,K.1^9,K.1^21,-1*K.1^49,K.1^3,-1*K.1^7,-1*K.1^41,K.1^29,K.1^33,-1*K.1^13,K.1^23,-1*K.1^39,-1*K.1^21,K.1^49,-1*K.1^47,-1*K.1^49,K.1^37,-1*K.1^9,-1*K.1^27,K.1^21,-1*K.1^17,-1*K.1^3,-1*K.1^43,K.1^11,K.1^29,-1*K.1^39,-1*K.1^7,-1*K.1^13,-1*K.1^17,K.1^31,-1*K.1^11,K.1^43,-1*K.1^3,K.1^49,-1*K.1^21,K.1^11,-1*K.1^9,-1*K.1^47,-1*K.1^49,K.1^21,K.1^49,K.1^31,-1*K.1^39,-1*K.1^23,K.1^47,K.1,-1*K.1^47,-1*K.1^7,-1*K.1^7,-1*K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,-1*K.1^42,-1*K.1^46,-1*K.1^22,K.1^36,K.1^16,-1*K.1^26,K.1^32,K.1^4,K.1^8,-1*K.1^34,-1*K.1^14,K.1^24,K.1^28,K.1^48,-1*K.1^18,-1*K.1^38,K.1^12,K.1^44,-1*K.1^6,-1*K.1^2,K.1^35,K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^5,K.1^15,K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^5,K.1^35,-1*K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^5,K.1^35,-1*K.1^35,K.1^5,-1*K.1^45,K.1^5,K.1^15,K.1^35,-1*K.1^45,-1*K.1^35,K.1^15,-1*K.1^5,K.1^5,K.1^15,K.1^45,K.1^45,K.1^45,-1*K.1^18,-1*K.1^26,K.1^44,-1*K.1^38,K.1^36,K.1^28,K.1^48,-1*K.1^6,K.1^8,K.1^24,K.1^8,K.1^24,K.1^12,-1*K.1^22,-1*K.1^18,-1*K.1^34,-1*K.1^6,-1*K.1^14,K.1^8,K.1^44,-1*K.1^34,K.1^4,-1*K.1^14,-1*K.1^38,K.1^44,-1*K.1^42,K.1^4,K.1^48,-1*K.1^2,K.1^32,K.1^28,K.1^48,-1*K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^6,-1*K.1^22,K.1^16,K.1^16,K.1^32,K.1^32,K.1^24,K.1^16,-1*K.1^18,-1*K.1^14,-1*K.1^46,K.1^12,K.1^12,K.1^36,-1*K.1^42,-1*K.1^42,K.1^36,-1*K.1^2,-1*K.1^46,-1*K.1^46,-1*K.1^2,-1*K.1^38,K.1^4,K.1^28,-1*K.1^34,K.1^34,-1*K.1^16,-1*K.1^48,-1*K.1^24,-1*K.1^4,K.1^2,-1*K.1^32,-1*K.1^32,-1*K.1^8,K.1^38,-1*K.1^36,K.1^46,K.1^46,K.1^2,K.1^22,K.1^26,K.1^6,K.1^42,-1*K.1^48,-1*K.1^16,K.1^26,K.1^6,K.1^18,-1*K.1^28,-1*K.1^12,-1*K.1^36,-1*K.1^12,-1*K.1^44,K.1^18,K.1^38,-1*K.1^24,-1*K.1^4,-1*K.1^8,K.1^14,K.1^14,K.1^42,K.1^22,K.1^34,-1*K.1^44,-1*K.1^28,K.1^42,-1*K.1^44,-1*K.1^32,-1*K.1^16,-1*K.1^28,-1*K.1^28,K.1^26,K.1^22,-1*K.1^48,-1*K.1^16,K.1^46,-1*K.1^36,K.1^6,-1*K.1^24,-1*K.1^12,-1*K.1^36,K.1^18,K.1^34,K.1^42,-1*K.1^48,-1*K.1^28,K.1^18,K.1^18,-1*K.1^8,K.1^26,K.1^22,-1*K.1^4,K.1^2,-1*K.1^24,-1*K.1^8,-1*K.1^44,-1*K.1^32,-1*K.1^24,-1*K.1^12,-1*K.1^28,-1*K.1^12,K.1^14,K.1^38,-1*K.1^48,K.1^34,-1*K.1^44,-1*K.1^32,K.1^42,-1*K.1^4,K.1^14,K.1^14,K.1^6,K.1^34,-1*K.1^4,K.1^22,K.1^34,K.1^42,K.1^46,K.1^38,K.1^38,-1*K.1^48,-1*K.1^8,K.1^18,-1*K.1^16,-1*K.1^12,K.1^14,K.1^26,K.1^2,K.1^46,-1*K.1^44,K.1^22,-1*K.1^4,K.1^38,-1*K.1^16,-1*K.1^32,-1*K.1^36,K.1^6,K.1^6,K.1^26,-1*K.1^36,K.1^2,K.1^2,K.1^46,-1*K.1^8,-1*K.1^24,-1*K.1^14,K.1^48,K.1^28,K.1^8,K.1^28,-1*K.1^18,-1*K.1^14,-1*K.1^22,-1*K.1^42,K.1^4,K.1^24,K.1^12,K.1^32,K.1^16,-1*K.1^46,-1*K.1^26,-1*K.1^46,K.1^36,K.1^32,K.1^4,K.1^16,-1*K.1^34,K.1^12,-1*K.1^42,K.1^44,K.1^24,-1*K.1^22,-1*K.1^2,-1*K.1^18,-1*K.1^38,K.1^8,-1*K.1^38,K.1^48,-1*K.1^2,K.1^44,-1*K.1^34,K.1^36,-1*K.1^6,-1*K.1^26,-1*K.1^6,-1*K.1^31,-1*K.1^27,-1*K.1^31,-1*K.1^49,-1*K.1^21,K.1^33,K.1^29,-1*K.1^23,-1*K.1^7,K.1^47,-1*K.1^17,-1*K.1^29,K.1^39,K.1^41,K.1^37,K.1,K.1^13,-1*K.1^39,-1*K.1^27,K.1^3,K.1^41,-1*K.1^39,K.1^13,K.1^17,-1*K.1^13,K.1^23,-1*K.1^23,-1*K.1^19,K.1^33,-1*K.1^31,K.1^17,K.1^21,-1*K.1^9,-1*K.1^9,-1*K.1^37,-1*K.1^17,K.1^37,-1*K.1^27,K.1^9,K.1^13,-1*K.1^33,-1*K.1^47,-1*K.1^43,-1*K.1^43,K.1^21,-1*K.1^41,K.1^7,-1*K.1^47,K.1^17,-1*K.1^37,-1*K.1^7,K.1^27,K.1^19,-1*K.1^49,K.1^47,K.1^27,-1*K.1^11,-1*K.1^3,K.1^49,-1*K.1^3,-1*K.1,K.1^19,-1*K.1^11,-1*K.1^23,K.1^29,-1*K.1^11,K.1^39,-1*K.1^13,-1*K.1^33,K.1^19,-1*K.1^23,K.1^23,K.1^31,K.1^49,K.1^31,-1*K.1^49,-1*K.1^31,K.1^23,K.1^11,-1*K.1^19,K.1^49,K.1^31,K.1^27,-1*K.1^11,K.1^19,K.1^49,-1*K.1^3,-1*K.1^7,K.1^39,K.1^31,-1*K.1^43,-1*K.1^43,-1*K.1^37,-1*K.1^17,K.1^13,-1*K.1^9,-1*K.1^9,K.1^21,-1*K.1^33,K.1^21,-1*K.1^33,-1*K.1^21,K.1^9,K.1^7,-1*K.1^47,K.1^17,-1*K.1^37,-1*K.1^41,-1*K.1^41,-1*K.1^13,K.1^7,-1*K.1^41,-1*K.1^29,K.1,-1*K.1^47,K.1^43,K.1^9,-1*K.1^21,-1*K.1^17,K.1^37,-1*K.1^27,K.1^11,K.1^29,-1*K.1,K.1^3,K.1,-1*K.1^13,K.1^41,K.1^23,-1*K.1^29,K.1^33,K.1^47,K.1^7,-1*K.1^39,-1*K.1^21,K.1^11,K.1^43,K.1^37,K.1^33,-1*K.1^19,K.1^39,-1*K.1^7,K.1^47,-1*K.1,K.1^29,-1*K.1^39,K.1^41,K.1^3,K.1,-1*K.1^29,-1*K.1,-1*K.1^19,K.1^11,K.1^27,-1*K.1^3,-1*K.1^49,K.1^3,K.1^43,K.1^43,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,K.1^48,K.1^24,-1*K.1^18,-1*K.1^34,K.1^4,K.1^44,K.1^8,-1*K.1^26,-1*K.1^2,-1*K.1^46,K.1^16,-1*K.1^6,K.1^32,K.1^12,-1*K.1^42,-1*K.1^22,K.1^28,K.1^36,-1*K.1^14,-1*K.1^38,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^45,K.1^35,K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^45,K.1^15,-1*K.1^35,-1*K.1^35,-1*K.1^35,-1*K.1^45,K.1^15,-1*K.1^15,K.1^45,-1*K.1^5,K.1^45,K.1^35,K.1^15,-1*K.1^5,-1*K.1^15,K.1^35,-1*K.1^45,K.1^45,K.1^35,K.1^5,K.1^5,K.1^5,-1*K.1^42,K.1^44,K.1^36,-1*K.1^22,-1*K.1^34,K.1^32,K.1^12,-1*K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^28,-1*K.1^18,-1*K.1^42,-1*K.1^46,-1*K.1^14,K.1^16,-1*K.1^2,K.1^36,-1*K.1^46,-1*K.1^26,K.1^16,-1*K.1^22,K.1^36,K.1^48,-1*K.1^26,K.1^12,-1*K.1^38,K.1^8,K.1^32,K.1^12,K.1^44,K.1^44,-1*K.1^18,-1*K.1^14,-1*K.1^18,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^42,K.1^16,K.1^24,K.1^28,K.1^28,-1*K.1^34,K.1^48,K.1^48,-1*K.1^34,-1*K.1^38,K.1^24,K.1^24,-1*K.1^38,-1*K.1^22,-1*K.1^26,K.1^32,-1*K.1^46,K.1^46,-1*K.1^4,-1*K.1^12,K.1^6,K.1^26,K.1^38,-1*K.1^8,-1*K.1^8,K.1^2,K.1^22,K.1^34,-1*K.1^24,-1*K.1^24,K.1^38,K.1^18,-1*K.1^44,K.1^14,-1*K.1^48,-1*K.1^12,-1*K.1^4,-1*K.1^44,K.1^14,K.1^42,-1*K.1^32,-1*K.1^28,K.1^34,-1*K.1^28,-1*K.1^36,K.1^42,K.1^22,K.1^6,K.1^26,K.1^2,-1*K.1^16,-1*K.1^16,-1*K.1^48,K.1^18,K.1^46,-1*K.1^36,-1*K.1^32,-1*K.1^48,-1*K.1^36,-1*K.1^8,-1*K.1^4,-1*K.1^32,-1*K.1^32,-1*K.1^44,K.1^18,-1*K.1^12,-1*K.1^4,-1*K.1^24,K.1^34,K.1^14,K.1^6,-1*K.1^28,K.1^34,K.1^42,K.1^46,-1*K.1^48,-1*K.1^12,-1*K.1^32,K.1^42,K.1^42,K.1^2,-1*K.1^44,K.1^18,K.1^26,K.1^38,K.1^6,K.1^2,-1*K.1^36,-1*K.1^8,K.1^6,-1*K.1^28,-1*K.1^32,-1*K.1^28,-1*K.1^16,K.1^22,-1*K.1^12,K.1^46,-1*K.1^36,-1*K.1^8,-1*K.1^48,K.1^26,-1*K.1^16,-1*K.1^16,K.1^14,K.1^46,K.1^26,K.1^18,K.1^46,-1*K.1^48,-1*K.1^24,K.1^22,K.1^22,-1*K.1^12,K.1^2,K.1^42,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^44,K.1^38,-1*K.1^24,-1*K.1^36,K.1^18,K.1^26,K.1^22,-1*K.1^4,-1*K.1^8,K.1^34,K.1^14,K.1^14,-1*K.1^44,K.1^34,K.1^38,K.1^38,-1*K.1^24,K.1^2,K.1^6,K.1^16,K.1^12,K.1^32,-1*K.1^2,K.1^32,-1*K.1^42,K.1^16,-1*K.1^18,K.1^48,-1*K.1^26,-1*K.1^6,K.1^28,K.1^8,K.1^4,K.1^24,K.1^44,K.1^24,-1*K.1^34,K.1^8,-1*K.1^26,K.1^4,-1*K.1^46,K.1^28,K.1^48,K.1^36,-1*K.1^6,-1*K.1^18,-1*K.1^38,-1*K.1^42,-1*K.1^22,-1*K.1^2,-1*K.1^22,K.1^12,-1*K.1^38,K.1^36,-1*K.1^46,-1*K.1^34,-1*K.1^14,K.1^44,-1*K.1^14,-1*K.1^39,K.1^13,-1*K.1^39,K.1^31,-1*K.1^49,-1*K.1^27,K.1,K.1^37,K.1^33,K.1^43,K.1^23,-1*K.1,-1*K.1^41,K.1^29,-1*K.1^3,-1*K.1^19,-1*K.1^47,K.1^41,K.1^13,K.1^7,K.1^29,K.1^41,-1*K.1^47,-1*K.1^23,K.1^47,-1*K.1^37,K.1^37,-1*K.1^11,-1*K.1^27,-1*K.1^39,-1*K.1^23,K.1^49,-1*K.1^21,-1*K.1^21,K.1^3,K.1^23,-1*K.1^3,K.1^13,K.1^21,-1*K.1^47,K.1^27,-1*K.1^43,K.1^17,K.1^17,K.1^49,-1*K.1^29,-1*K.1^33,-1*K.1^43,-1*K.1^23,K.1^3,K.1^33,-1*K.1^13,K.1^11,K.1^31,K.1^43,-1*K.1^13,K.1^9,-1*K.1^7,-1*K.1^31,-1*K.1^7,K.1^19,K.1^11,K.1^9,K.1^37,K.1,K.1^9,-1*K.1^41,K.1^47,K.1^27,K.1^11,K.1^37,-1*K.1^37,K.1^39,-1*K.1^31,K.1^39,K.1^31,-1*K.1^39,-1*K.1^37,-1*K.1^9,-1*K.1^11,-1*K.1^31,K.1^39,-1*K.1^13,K.1^9,K.1^11,-1*K.1^31,-1*K.1^7,K.1^33,-1*K.1^41,K.1^39,K.1^17,K.1^17,K.1^3,K.1^23,-1*K.1^47,-1*K.1^21,-1*K.1^21,K.1^49,K.1^27,K.1^49,K.1^27,-1*K.1^49,K.1^21,-1*K.1^33,-1*K.1^43,-1*K.1^23,K.1^3,-1*K.1^29,-1*K.1^29,K.1^47,-1*K.1^33,-1*K.1^29,-1*K.1,-1*K.1^19,-1*K.1^43,-1*K.1^17,K.1^21,-1*K.1^49,K.1^23,-1*K.1^3,K.1^13,-1*K.1^9,K.1,K.1^19,K.1^7,-1*K.1^19,K.1^47,K.1^29,-1*K.1^37,-1*K.1,-1*K.1^27,K.1^43,-1*K.1^33,K.1^41,-1*K.1^49,-1*K.1^9,-1*K.1^17,-1*K.1^3,-1*K.1^27,-1*K.1^11,-1*K.1^41,K.1^33,K.1^43,K.1^19,K.1,K.1^41,K.1^29,K.1^7,-1*K.1^19,-1*K.1,K.1^19,-1*K.1^11,-1*K.1^9,-1*K.1^13,-1*K.1^7,K.1^31,K.1^7,-1*K.1^17,-1*K.1^17,K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,-1*K.1^2,-1*K.1^26,K.1^32,K.1^16,-1*K.1^46,-1*K.1^6,-1*K.1^42,K.1^24,K.1^48,K.1^4,-1*K.1^34,K.1^44,-1*K.1^18,-1*K.1^38,K.1^8,K.1^28,-1*K.1^22,-1*K.1^14,K.1^36,K.1^12,-1*K.1^35,-1*K.1^45,K.1^35,K.1^45,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,K.1^45,K.1^35,K.1^5,-1*K.1^35,K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^35,K.1^35,-1*K.1^5,K.1^45,-1*K.1^5,-1*K.1^15,-1*K.1^35,K.1^45,K.1^35,-1*K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^45,-1*K.1^45,K.1^8,-1*K.1^6,-1*K.1^14,K.1^28,K.1^16,-1*K.1^18,-1*K.1^38,K.1^36,K.1^48,K.1^44,K.1^48,K.1^44,-1*K.1^22,K.1^32,K.1^8,K.1^4,K.1^36,-1*K.1^34,K.1^48,-1*K.1^14,K.1^4,K.1^24,-1*K.1^34,K.1^28,-1*K.1^14,-1*K.1^2,K.1^24,-1*K.1^38,K.1^12,-1*K.1^42,-1*K.1^18,-1*K.1^38,-1*K.1^6,-1*K.1^6,K.1^32,K.1^36,K.1^32,-1*K.1^46,-1*K.1^46,-1*K.1^42,-1*K.1^42,K.1^44,-1*K.1^46,K.1^8,-1*K.1^34,-1*K.1^26,-1*K.1^22,-1*K.1^22,K.1^16,-1*K.1^2,-1*K.1^2,K.1^16,K.1^12,-1*K.1^26,-1*K.1^26,K.1^12,K.1^28,K.1^24,-1*K.1^18,K.1^4,-1*K.1^4,K.1^46,K.1^38,-1*K.1^44,-1*K.1^24,-1*K.1^12,K.1^42,K.1^42,-1*K.1^48,-1*K.1^28,-1*K.1^16,K.1^26,K.1^26,-1*K.1^12,-1*K.1^32,K.1^6,-1*K.1^36,K.1^2,K.1^38,K.1^46,K.1^6,-1*K.1^36,-1*K.1^8,K.1^18,K.1^22,-1*K.1^16,K.1^22,K.1^14,-1*K.1^8,-1*K.1^28,-1*K.1^44,-1*K.1^24,-1*K.1^48,K.1^34,K.1^34,K.1^2,-1*K.1^32,-1*K.1^4,K.1^14,K.1^18,K.1^2,K.1^14,K.1^42,K.1^46,K.1^18,K.1^18,K.1^6,-1*K.1^32,K.1^38,K.1^46,K.1^26,-1*K.1^16,-1*K.1^36,-1*K.1^44,K.1^22,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^2,K.1^38,K.1^18,-1*K.1^8,-1*K.1^8,-1*K.1^48,K.1^6,-1*K.1^32,-1*K.1^24,-1*K.1^12,-1*K.1^44,-1*K.1^48,K.1^14,K.1^42,-1*K.1^44,K.1^22,K.1^18,K.1^22,K.1^34,-1*K.1^28,K.1^38,-1*K.1^4,K.1^14,K.1^42,K.1^2,-1*K.1^24,K.1^34,K.1^34,-1*K.1^36,-1*K.1^4,-1*K.1^24,-1*K.1^32,-1*K.1^4,K.1^2,K.1^26,-1*K.1^28,-1*K.1^28,K.1^38,-1*K.1^48,-1*K.1^8,K.1^46,K.1^22,K.1^34,K.1^6,-1*K.1^12,K.1^26,K.1^14,-1*K.1^32,-1*K.1^24,-1*K.1^28,K.1^46,K.1^42,-1*K.1^16,-1*K.1^36,-1*K.1^36,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^12,K.1^26,-1*K.1^48,-1*K.1^44,-1*K.1^34,-1*K.1^38,-1*K.1^18,K.1^48,-1*K.1^18,K.1^8,-1*K.1^34,K.1^32,-1*K.1^2,K.1^24,K.1^44,-1*K.1^22,-1*K.1^42,-1*K.1^46,-1*K.1^26,-1*K.1^6,-1*K.1^26,K.1^16,-1*K.1^42,K.1^24,-1*K.1^46,K.1^4,-1*K.1^22,-1*K.1^2,-1*K.1^14,K.1^44,K.1^32,K.1^12,K.1^8,K.1^28,K.1^48,K.1^28,-1*K.1^38,K.1^12,-1*K.1^14,K.1^4,K.1^16,K.1^36,-1*K.1^6,K.1^36,K.1^11,-1*K.1^37,K.1^11,-1*K.1^19,K.1,K.1^23,-1*K.1^49,-1*K.1^13,-1*K.1^17,-1*K.1^7,-1*K.1^27,K.1^49,K.1^9,-1*K.1^21,K.1^47,K.1^31,K.1^3,-1*K.1^9,-1*K.1^37,-1*K.1^43,-1*K.1^21,-1*K.1^9,K.1^3,K.1^27,-1*K.1^3,K.1^13,-1*K.1^13,K.1^39,K.1^23,K.1^11,K.1^27,-1*K.1,K.1^29,K.1^29,-1*K.1^47,-1*K.1^27,K.1^47,-1*K.1^37,-1*K.1^29,K.1^3,-1*K.1^23,K.1^7,-1*K.1^33,-1*K.1^33,-1*K.1,K.1^21,K.1^17,K.1^7,K.1^27,-1*K.1^47,-1*K.1^17,K.1^37,-1*K.1^39,-1*K.1^19,-1*K.1^7,K.1^37,-1*K.1^41,K.1^43,K.1^19,K.1^43,-1*K.1^31,-1*K.1^39,-1*K.1^41,-1*K.1^13,-1*K.1^49,-1*K.1^41,K.1^9,-1*K.1^3,-1*K.1^23,-1*K.1^39,-1*K.1^13,K.1^13,-1*K.1^11,K.1^19,-1*K.1^11,-1*K.1^19,K.1^11,K.1^13,K.1^41,K.1^39,K.1^19,-1*K.1^11,K.1^37,-1*K.1^41,-1*K.1^39,K.1^19,K.1^43,-1*K.1^17,K.1^9,-1*K.1^11,-1*K.1^33,-1*K.1^33,-1*K.1^47,-1*K.1^27,K.1^3,K.1^29,K.1^29,-1*K.1,-1*K.1^23,-1*K.1,-1*K.1^23,K.1,-1*K.1^29,K.1^17,K.1^7,K.1^27,-1*K.1^47,K.1^21,K.1^21,-1*K.1^3,K.1^17,K.1^21,K.1^49,K.1^31,K.1^7,K.1^33,-1*K.1^29,K.1,-1*K.1^27,K.1^47,-1*K.1^37,K.1^41,-1*K.1^49,-1*K.1^31,-1*K.1^43,K.1^31,-1*K.1^3,-1*K.1^21,K.1^13,K.1^49,K.1^23,-1*K.1^7,K.1^17,-1*K.1^9,K.1,K.1^41,K.1^33,K.1^47,K.1^23,K.1^39,K.1^9,-1*K.1^17,-1*K.1^7,-1*K.1^31,-1*K.1^49,-1*K.1^9,-1*K.1^21,-1*K.1^43,K.1^31,K.1^49,-1*K.1^31,K.1^39,K.1^41,K.1^37,K.1^43,-1*K.1^19,-1*K.1^43,K.1^33,K.1^33,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^18,-1*K.1^34,-1*K.1^38,K.1^44,-1*K.1^14,K.1^4,K.1^28,K.1^16,K.1^32,K.1^36,-1*K.1^6,-1*K.1^46,K.1^12,-1*K.1^42,-1*K.1^22,-1*K.1^2,K.1^48,-1*K.1^26,K.1^24,K.1^8,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^45,K.1^35,K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^45,K.1^15,-1*K.1^35,-1*K.1^35,-1*K.1^35,-1*K.1^45,K.1^15,-1*K.1^15,K.1^45,-1*K.1^5,K.1^45,K.1^35,K.1^15,-1*K.1^5,-1*K.1^15,K.1^35,-1*K.1^45,K.1^45,K.1^35,K.1^5,K.1^5,K.1^5,-1*K.1^22,K.1^4,-1*K.1^26,-1*K.1^2,K.1^44,K.1^12,-1*K.1^42,K.1^24,K.1^32,-1*K.1^46,K.1^32,-1*K.1^46,K.1^48,-1*K.1^38,-1*K.1^22,K.1^36,K.1^24,-1*K.1^6,K.1^32,-1*K.1^26,K.1^36,K.1^16,-1*K.1^6,-1*K.1^2,-1*K.1^26,-1*K.1^18,K.1^16,-1*K.1^42,K.1^8,K.1^28,K.1^12,-1*K.1^42,K.1^4,K.1^4,-1*K.1^38,K.1^24,-1*K.1^38,-1*K.1^14,-1*K.1^14,K.1^28,K.1^28,-1*K.1^46,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^34,K.1^48,K.1^48,K.1^44,-1*K.1^18,-1*K.1^18,K.1^44,K.1^8,-1*K.1^34,-1*K.1^34,K.1^8,-1*K.1^2,K.1^16,K.1^12,K.1^36,-1*K.1^36,K.1^14,K.1^42,K.1^46,-1*K.1^16,-1*K.1^8,-1*K.1^28,-1*K.1^28,-1*K.1^32,K.1^2,-1*K.1^44,K.1^34,K.1^34,-1*K.1^8,K.1^38,-1*K.1^4,-1*K.1^24,K.1^18,K.1^42,K.1^14,-1*K.1^4,-1*K.1^24,K.1^22,-1*K.1^12,-1*K.1^48,-1*K.1^44,-1*K.1^48,K.1^26,K.1^22,K.1^2,K.1^46,-1*K.1^16,-1*K.1^32,K.1^6,K.1^6,K.1^18,K.1^38,-1*K.1^36,K.1^26,-1*K.1^12,K.1^18,K.1^26,-1*K.1^28,K.1^14,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^38,K.1^42,K.1^14,K.1^34,-1*K.1^44,-1*K.1^24,K.1^46,-1*K.1^48,-1*K.1^44,K.1^22,-1*K.1^36,K.1^18,K.1^42,-1*K.1^12,K.1^22,K.1^22,-1*K.1^32,-1*K.1^4,K.1^38,-1*K.1^16,-1*K.1^8,K.1^46,-1*K.1^32,K.1^26,-1*K.1^28,K.1^46,-1*K.1^48,-1*K.1^12,-1*K.1^48,K.1^6,K.1^2,K.1^42,-1*K.1^36,K.1^26,-1*K.1^28,K.1^18,-1*K.1^16,K.1^6,K.1^6,-1*K.1^24,-1*K.1^36,-1*K.1^16,K.1^38,-1*K.1^36,K.1^18,K.1^34,K.1^2,K.1^2,K.1^42,-1*K.1^32,K.1^22,K.1^14,-1*K.1^48,K.1^6,-1*K.1^4,-1*K.1^8,K.1^34,K.1^26,K.1^38,-1*K.1^16,K.1^2,K.1^14,-1*K.1^28,-1*K.1^44,-1*K.1^24,-1*K.1^24,-1*K.1^4,-1*K.1^44,-1*K.1^8,-1*K.1^8,K.1^34,-1*K.1^32,K.1^46,-1*K.1^6,-1*K.1^42,K.1^12,K.1^32,K.1^12,-1*K.1^22,-1*K.1^6,-1*K.1^38,-1*K.1^18,K.1^16,-1*K.1^46,K.1^48,K.1^28,-1*K.1^14,-1*K.1^34,K.1^4,-1*K.1^34,K.1^44,K.1^28,K.1^16,-1*K.1^14,K.1^36,K.1^48,-1*K.1^18,-1*K.1^26,-1*K.1^46,-1*K.1^38,K.1^8,-1*K.1^22,-1*K.1^2,K.1^32,-1*K.1^2,-1*K.1^42,K.1^8,-1*K.1^26,K.1^36,K.1^44,K.1^24,K.1^4,K.1^24,K.1^49,K.1^33,K.1^49,-1*K.1^21,-1*K.1^9,-1*K.1^7,K.1^41,K.1^17,-1*K.1^3,-1*K.1^13,K.1^43,-1*K.1^41,K.1^31,-1*K.1^39,-1*K.1^23,K.1^29,-1*K.1^27,-1*K.1^31,K.1^33,-1*K.1^37,-1*K.1^39,-1*K.1^31,-1*K.1^27,-1*K.1^43,K.1^27,-1*K.1^17,K.1^17,K.1,-1*K.1^7,K.1^49,-1*K.1^43,K.1^9,K.1^11,K.1^11,K.1^23,K.1^43,-1*K.1^23,K.1^33,-1*K.1^11,-1*K.1^27,K.1^7,K.1^13,-1*K.1^47,-1*K.1^47,K.1^9,K.1^39,K.1^3,K.1^13,-1*K.1^43,K.1^23,-1*K.1^3,-1*K.1^33,-1*K.1,-1*K.1^21,-1*K.1^13,-1*K.1^33,-1*K.1^19,K.1^37,K.1^21,K.1^37,-1*K.1^29,-1*K.1,-1*K.1^19,K.1^17,K.1^41,-1*K.1^19,K.1^31,K.1^27,K.1^7,-1*K.1,K.1^17,-1*K.1^17,-1*K.1^49,K.1^21,-1*K.1^49,-1*K.1^21,K.1^49,-1*K.1^17,K.1^19,K.1,K.1^21,-1*K.1^49,-1*K.1^33,-1*K.1^19,-1*K.1,K.1^21,K.1^37,-1*K.1^3,K.1^31,-1*K.1^49,-1*K.1^47,-1*K.1^47,K.1^23,K.1^43,-1*K.1^27,K.1^11,K.1^11,K.1^9,K.1^7,K.1^9,K.1^7,-1*K.1^9,-1*K.1^11,K.1^3,K.1^13,-1*K.1^43,K.1^23,K.1^39,K.1^39,K.1^27,K.1^3,K.1^39,-1*K.1^41,K.1^29,K.1^13,K.1^47,-1*K.1^11,-1*K.1^9,K.1^43,-1*K.1^23,K.1^33,K.1^19,K.1^41,-1*K.1^29,-1*K.1^37,K.1^29,K.1^27,-1*K.1^39,-1*K.1^17,-1*K.1^41,-1*K.1^7,-1*K.1^13,K.1^3,-1*K.1^31,-1*K.1^9,K.1^19,K.1^47,-1*K.1^23,-1*K.1^7,K.1,K.1^31,-1*K.1^3,-1*K.1^13,-1*K.1^29,K.1^41,-1*K.1^31,-1*K.1^39,-1*K.1^37,K.1^29,-1*K.1^41,-1*K.1^29,K.1,K.1^19,-1*K.1^33,K.1^37,-1*K.1^21,-1*K.1^37,K.1^47,K.1^47,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^32,K.1^16,K.1^12,-1*K.1^6,K.1^36,-1*K.1^46,-1*K.1^22,-1*K.1^34,-1*K.1^18,-1*K.1^14,K.1^44,K.1^4,-1*K.1^38,K.1^8,K.1^28,K.1^48,-1*K.1^2,K.1^24,-1*K.1^26,-1*K.1^42,-1*K.1^35,-1*K.1^45,K.1^35,K.1^45,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,K.1^45,K.1^35,K.1^5,-1*K.1^35,K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^35,K.1^35,-1*K.1^5,K.1^45,-1*K.1^5,-1*K.1^15,-1*K.1^35,K.1^45,K.1^35,-1*K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^45,-1*K.1^45,K.1^28,-1*K.1^46,K.1^24,K.1^48,-1*K.1^6,-1*K.1^38,K.1^8,-1*K.1^26,-1*K.1^18,K.1^4,-1*K.1^18,K.1^4,-1*K.1^2,K.1^12,K.1^28,-1*K.1^14,-1*K.1^26,K.1^44,-1*K.1^18,K.1^24,-1*K.1^14,-1*K.1^34,K.1^44,K.1^48,K.1^24,K.1^32,-1*K.1^34,K.1^8,-1*K.1^42,-1*K.1^22,-1*K.1^38,K.1^8,-1*K.1^46,-1*K.1^46,K.1^12,-1*K.1^26,K.1^12,K.1^36,K.1^36,-1*K.1^22,-1*K.1^22,K.1^4,K.1^36,K.1^28,K.1^44,K.1^16,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^32,K.1^32,-1*K.1^6,-1*K.1^42,K.1^16,K.1^16,-1*K.1^42,K.1^48,-1*K.1^34,-1*K.1^38,-1*K.1^14,K.1^14,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^34,K.1^42,K.1^22,K.1^22,K.1^18,-1*K.1^48,K.1^6,-1*K.1^16,-1*K.1^16,K.1^42,-1*K.1^12,K.1^46,K.1^26,-1*K.1^32,-1*K.1^8,-1*K.1^36,K.1^46,K.1^26,-1*K.1^28,K.1^38,K.1^2,K.1^6,K.1^2,-1*K.1^24,-1*K.1^28,-1*K.1^48,-1*K.1^4,K.1^34,K.1^18,-1*K.1^44,-1*K.1^44,-1*K.1^32,-1*K.1^12,K.1^14,-1*K.1^24,K.1^38,-1*K.1^32,-1*K.1^24,K.1^22,-1*K.1^36,K.1^38,K.1^38,K.1^46,-1*K.1^12,-1*K.1^8,-1*K.1^36,-1*K.1^16,K.1^6,K.1^26,-1*K.1^4,K.1^2,K.1^6,-1*K.1^28,K.1^14,-1*K.1^32,-1*K.1^8,K.1^38,-1*K.1^28,-1*K.1^28,K.1^18,K.1^46,-1*K.1^12,K.1^34,K.1^42,-1*K.1^4,K.1^18,-1*K.1^24,K.1^22,-1*K.1^4,K.1^2,K.1^38,K.1^2,-1*K.1^44,-1*K.1^48,-1*K.1^8,K.1^14,-1*K.1^24,K.1^22,-1*K.1^32,K.1^34,-1*K.1^44,-1*K.1^44,K.1^26,K.1^14,K.1^34,-1*K.1^12,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^8,K.1^18,-1*K.1^28,-1*K.1^36,K.1^2,-1*K.1^44,K.1^46,K.1^42,-1*K.1^16,-1*K.1^24,-1*K.1^12,K.1^34,-1*K.1^48,-1*K.1^36,K.1^22,K.1^6,K.1^26,K.1^26,K.1^46,K.1^6,K.1^42,K.1^42,-1*K.1^16,K.1^18,-1*K.1^4,K.1^44,K.1^8,-1*K.1^38,-1*K.1^18,-1*K.1^38,K.1^28,K.1^44,K.1^12,K.1^32,-1*K.1^34,K.1^4,-1*K.1^2,-1*K.1^22,K.1^36,K.1^16,-1*K.1^46,K.1^16,-1*K.1^6,-1*K.1^22,-1*K.1^34,K.1^36,-1*K.1^14,-1*K.1^2,K.1^32,K.1^24,K.1^4,K.1^12,-1*K.1^42,K.1^28,K.1^48,-1*K.1^18,K.1^48,K.1^8,-1*K.1^42,K.1^24,-1*K.1^14,-1*K.1^6,-1*K.1^26,-1*K.1^46,-1*K.1^26,-1*K.1,-1*K.1^17,-1*K.1,K.1^29,K.1^41,K.1^43,-1*K.1^9,-1*K.1^33,K.1^47,K.1^37,-1*K.1^7,K.1^9,-1*K.1^19,K.1^11,K.1^27,-1*K.1^21,K.1^23,K.1^19,-1*K.1^17,K.1^13,K.1^11,K.1^19,K.1^23,K.1^7,-1*K.1^23,K.1^33,-1*K.1^33,-1*K.1^49,K.1^43,-1*K.1,K.1^7,-1*K.1^41,-1*K.1^39,-1*K.1^39,-1*K.1^27,-1*K.1^7,K.1^27,-1*K.1^17,K.1^39,K.1^23,-1*K.1^43,-1*K.1^37,K.1^3,K.1^3,-1*K.1^41,-1*K.1^11,-1*K.1^47,-1*K.1^37,K.1^7,-1*K.1^27,K.1^47,K.1^17,K.1^49,K.1^29,K.1^37,K.1^17,K.1^31,-1*K.1^13,-1*K.1^29,-1*K.1^13,K.1^21,K.1^49,K.1^31,-1*K.1^33,-1*K.1^9,K.1^31,-1*K.1^19,-1*K.1^23,-1*K.1^43,K.1^49,-1*K.1^33,K.1^33,K.1,-1*K.1^29,K.1,K.1^29,-1*K.1,K.1^33,-1*K.1^31,-1*K.1^49,-1*K.1^29,K.1,K.1^17,K.1^31,K.1^49,-1*K.1^29,-1*K.1^13,K.1^47,-1*K.1^19,K.1,K.1^3,K.1^3,-1*K.1^27,-1*K.1^7,K.1^23,-1*K.1^39,-1*K.1^39,-1*K.1^41,-1*K.1^43,-1*K.1^41,-1*K.1^43,K.1^41,K.1^39,-1*K.1^47,-1*K.1^37,K.1^7,-1*K.1^27,-1*K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^47,-1*K.1^11,K.1^9,-1*K.1^21,-1*K.1^37,-1*K.1^3,K.1^39,K.1^41,-1*K.1^7,K.1^27,-1*K.1^17,-1*K.1^31,-1*K.1^9,K.1^21,K.1^13,-1*K.1^21,-1*K.1^23,K.1^11,K.1^33,K.1^9,K.1^43,K.1^37,-1*K.1^47,K.1^19,K.1^41,-1*K.1^31,-1*K.1^3,K.1^27,K.1^43,-1*K.1^49,-1*K.1^19,K.1^47,K.1^37,K.1^21,-1*K.1^9,K.1^19,K.1^11,K.1^13,-1*K.1^21,K.1^9,K.1^21,-1*K.1^49,-1*K.1^31,K.1^17,-1*K.1^13,K.1^29,K.1^13,-1*K.1^3,-1*K.1^3,K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,K.1^28,-1*K.1^14,K.1^48,K.1^24,K.1^44,-1*K.1^34,-1*K.1^38,K.1^36,-1*K.1^22,-1*K.1^6,-1*K.1^26,K.1^16,-1*K.1^2,K.1^32,K.1^12,-1*K.1^42,K.1^8,-1*K.1^46,K.1^4,-1*K.1^18,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^45,K.1^35,K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^45,K.1^15,-1*K.1^35,-1*K.1^35,-1*K.1^35,-1*K.1^45,K.1^15,-1*K.1^15,K.1^45,-1*K.1^5,K.1^45,K.1^35,K.1^15,-1*K.1^5,-1*K.1^15,K.1^35,-1*K.1^45,K.1^45,K.1^35,K.1^5,K.1^5,K.1^5,K.1^12,-1*K.1^34,-1*K.1^46,-1*K.1^42,K.1^24,-1*K.1^2,K.1^32,K.1^4,-1*K.1^22,K.1^16,-1*K.1^22,K.1^16,K.1^8,K.1^48,K.1^12,-1*K.1^6,K.1^4,-1*K.1^26,-1*K.1^22,-1*K.1^46,-1*K.1^6,K.1^36,-1*K.1^26,-1*K.1^42,-1*K.1^46,K.1^28,K.1^36,K.1^32,-1*K.1^18,-1*K.1^38,-1*K.1^2,K.1^32,-1*K.1^34,-1*K.1^34,K.1^48,K.1^4,K.1^48,K.1^44,K.1^44,-1*K.1^38,-1*K.1^38,K.1^16,K.1^44,K.1^12,-1*K.1^26,-1*K.1^14,K.1^8,K.1^8,K.1^24,K.1^28,K.1^28,K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^42,K.1^36,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^44,-1*K.1^32,-1*K.1^16,-1*K.1^36,K.1^18,K.1^38,K.1^38,K.1^22,K.1^42,-1*K.1^24,K.1^14,K.1^14,K.1^18,-1*K.1^48,K.1^34,-1*K.1^4,-1*K.1^28,-1*K.1^32,-1*K.1^44,K.1^34,-1*K.1^4,-1*K.1^12,K.1^2,-1*K.1^8,-1*K.1^24,-1*K.1^8,K.1^46,-1*K.1^12,K.1^42,-1*K.1^16,-1*K.1^36,K.1^22,K.1^26,K.1^26,-1*K.1^28,-1*K.1^48,K.1^6,K.1^46,K.1^2,-1*K.1^28,K.1^46,K.1^38,-1*K.1^44,K.1^2,K.1^2,K.1^34,-1*K.1^48,-1*K.1^32,-1*K.1^44,K.1^14,-1*K.1^24,-1*K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^6,-1*K.1^28,-1*K.1^32,K.1^2,-1*K.1^12,-1*K.1^12,K.1^22,K.1^34,-1*K.1^48,-1*K.1^36,K.1^18,-1*K.1^16,K.1^22,K.1^46,K.1^38,-1*K.1^16,-1*K.1^8,K.1^2,-1*K.1^8,K.1^26,K.1^42,-1*K.1^32,K.1^6,K.1^46,K.1^38,-1*K.1^28,-1*K.1^36,K.1^26,K.1^26,-1*K.1^4,K.1^6,-1*K.1^36,-1*K.1^48,K.1^6,-1*K.1^28,K.1^14,K.1^42,K.1^42,-1*K.1^32,K.1^22,-1*K.1^12,-1*K.1^44,-1*K.1^8,K.1^26,K.1^34,K.1^18,K.1^14,K.1^46,-1*K.1^48,-1*K.1^36,K.1^42,-1*K.1^44,K.1^38,-1*K.1^24,-1*K.1^4,-1*K.1^4,K.1^34,-1*K.1^24,K.1^18,K.1^18,K.1^14,K.1^22,-1*K.1^16,-1*K.1^26,K.1^32,-1*K.1^2,-1*K.1^22,-1*K.1^2,K.1^12,-1*K.1^26,K.1^48,K.1^28,K.1^36,K.1^16,K.1^8,-1*K.1^38,K.1^44,-1*K.1^14,-1*K.1^34,-1*K.1^14,K.1^24,-1*K.1^38,K.1^36,K.1^44,-1*K.1^6,K.1^8,K.1^28,-1*K.1^46,K.1^16,K.1^48,-1*K.1^18,K.1^12,-1*K.1^42,-1*K.1^22,-1*K.1^42,K.1^32,-1*K.1^18,-1*K.1^46,-1*K.1^6,K.1^24,K.1^4,-1*K.1^34,K.1^4,K.1^29,-1*K.1^43,K.1^29,-1*K.1^41,K.1^39,-1*K.1^47,-1*K.1^11,-1*K.1^7,K.1^13,K.1^23,K.1^3,K.1^11,-1*K.1,-1*K.1^19,K.1^33,K.1^9,K.1^17,K.1,-1*K.1^43,K.1^27,-1*K.1^19,K.1,K.1^17,-1*K.1^3,-1*K.1^17,K.1^7,-1*K.1^7,K.1^21,-1*K.1^47,K.1^29,-1*K.1^3,-1*K.1^39,K.1^31,K.1^31,-1*K.1^33,K.1^3,K.1^33,-1*K.1^43,-1*K.1^31,K.1^17,K.1^47,-1*K.1^23,K.1^37,K.1^37,-1*K.1^39,K.1^19,-1*K.1^13,-1*K.1^23,-1*K.1^3,-1*K.1^33,K.1^13,K.1^43,-1*K.1^21,-1*K.1^41,K.1^23,K.1^43,K.1^49,-1*K.1^27,K.1^41,-1*K.1^27,-1*K.1^9,-1*K.1^21,K.1^49,-1*K.1^7,-1*K.1^11,K.1^49,-1*K.1,-1*K.1^17,K.1^47,-1*K.1^21,-1*K.1^7,K.1^7,-1*K.1^29,K.1^41,-1*K.1^29,-1*K.1^41,K.1^29,K.1^7,-1*K.1^49,K.1^21,K.1^41,-1*K.1^29,K.1^43,K.1^49,-1*K.1^21,K.1^41,-1*K.1^27,K.1^13,-1*K.1,-1*K.1^29,K.1^37,K.1^37,-1*K.1^33,K.1^3,K.1^17,K.1^31,K.1^31,-1*K.1^39,K.1^47,-1*K.1^39,K.1^47,K.1^39,-1*K.1^31,-1*K.1^13,-1*K.1^23,-1*K.1^3,-1*K.1^33,K.1^19,K.1^19,-1*K.1^17,-1*K.1^13,K.1^19,K.1^11,K.1^9,-1*K.1^23,-1*K.1^37,-1*K.1^31,K.1^39,K.1^3,K.1^33,-1*K.1^43,-1*K.1^49,-1*K.1^11,-1*K.1^9,K.1^27,K.1^9,-1*K.1^17,-1*K.1^19,K.1^7,K.1^11,-1*K.1^47,K.1^23,-1*K.1^13,K.1,K.1^39,-1*K.1^49,-1*K.1^37,K.1^33,-1*K.1^47,K.1^21,-1*K.1,K.1^13,K.1^23,-1*K.1^9,-1*K.1^11,K.1,-1*K.1^19,K.1^27,K.1^9,K.1^11,-1*K.1^9,K.1^21,-1*K.1^49,K.1^43,-1*K.1^27,-1*K.1^41,K.1^27,-1*K.1^37,-1*K.1^37,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,-1*K.1^22,K.1^36,-1*K.1^2,-1*K.1^26,-1*K.1^6,K.1^16,K.1^12,-1*K.1^14,K.1^28,K.1^44,K.1^24,-1*K.1^34,K.1^48,-1*K.1^18,-1*K.1^38,K.1^8,-1*K.1^42,K.1^4,-1*K.1^46,K.1^32,-1*K.1^35,-1*K.1^45,K.1^35,K.1^45,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,K.1^45,K.1^35,K.1^5,-1*K.1^35,K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^35,K.1^35,-1*K.1^5,K.1^45,-1*K.1^5,-1*K.1^15,-1*K.1^35,K.1^45,K.1^35,-1*K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^45,-1*K.1^45,-1*K.1^38,K.1^16,K.1^4,K.1^8,-1*K.1^26,K.1^48,-1*K.1^18,-1*K.1^46,K.1^28,-1*K.1^34,K.1^28,-1*K.1^34,-1*K.1^42,-1*K.1^2,-1*K.1^38,K.1^44,-1*K.1^46,K.1^24,K.1^28,K.1^4,K.1^44,-1*K.1^14,K.1^24,K.1^8,K.1^4,-1*K.1^22,-1*K.1^14,-1*K.1^18,K.1^32,K.1^12,K.1^48,-1*K.1^18,K.1^16,K.1^16,-1*K.1^2,-1*K.1^46,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^12,K.1^12,-1*K.1^34,-1*K.1^6,-1*K.1^38,K.1^24,K.1^36,-1*K.1^42,-1*K.1^42,-1*K.1^26,-1*K.1^22,-1*K.1^22,-1*K.1^26,K.1^32,K.1^36,K.1^36,K.1^32,K.1^8,-1*K.1^14,K.1^48,K.1^44,-1*K.1^44,K.1^6,K.1^18,K.1^34,K.1^14,-1*K.1^32,-1*K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^8,K.1^26,-1*K.1^36,-1*K.1^36,-1*K.1^32,K.1^2,-1*K.1^16,K.1^46,K.1^22,K.1^18,K.1^6,-1*K.1^16,K.1^46,K.1^38,-1*K.1^48,K.1^42,K.1^26,K.1^42,-1*K.1^4,K.1^38,-1*K.1^8,K.1^34,K.1^14,-1*K.1^28,-1*K.1^24,-1*K.1^24,K.1^22,K.1^2,-1*K.1^44,-1*K.1^4,-1*K.1^48,K.1^22,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^48,-1*K.1^48,-1*K.1^16,K.1^2,K.1^18,K.1^6,-1*K.1^36,K.1^26,K.1^46,K.1^34,K.1^42,K.1^26,K.1^38,-1*K.1^44,K.1^22,K.1^18,-1*K.1^48,K.1^38,K.1^38,-1*K.1^28,-1*K.1^16,K.1^2,K.1^14,-1*K.1^32,K.1^34,-1*K.1^28,-1*K.1^4,-1*K.1^12,K.1^34,K.1^42,-1*K.1^48,K.1^42,-1*K.1^24,-1*K.1^8,K.1^18,-1*K.1^44,-1*K.1^4,-1*K.1^12,K.1^22,K.1^14,-1*K.1^24,-1*K.1^24,K.1^46,-1*K.1^44,K.1^14,K.1^2,-1*K.1^44,K.1^22,-1*K.1^36,-1*K.1^8,-1*K.1^8,K.1^18,-1*K.1^28,K.1^38,K.1^6,K.1^42,-1*K.1^24,-1*K.1^16,-1*K.1^32,-1*K.1^36,-1*K.1^4,K.1^2,K.1^14,-1*K.1^8,K.1^6,-1*K.1^12,K.1^26,K.1^46,K.1^46,-1*K.1^16,K.1^26,-1*K.1^32,-1*K.1^32,-1*K.1^36,-1*K.1^28,K.1^34,K.1^24,-1*K.1^18,K.1^48,K.1^28,K.1^48,-1*K.1^38,K.1^24,-1*K.1^2,-1*K.1^22,-1*K.1^14,-1*K.1^34,-1*K.1^42,K.1^12,-1*K.1^6,K.1^36,K.1^16,K.1^36,-1*K.1^26,K.1^12,-1*K.1^14,-1*K.1^6,K.1^44,-1*K.1^42,-1*K.1^22,K.1^4,-1*K.1^34,-1*K.1^2,K.1^32,-1*K.1^38,K.1^8,K.1^28,K.1^8,-1*K.1^18,K.1^32,K.1^4,K.1^44,-1*K.1^26,-1*K.1^46,K.1^16,-1*K.1^46,-1*K.1^21,K.1^7,-1*K.1^21,K.1^9,-1*K.1^11,K.1^3,K.1^39,K.1^43,-1*K.1^37,-1*K.1^27,-1*K.1^47,-1*K.1^39,K.1^49,K.1^31,-1*K.1^17,-1*K.1^41,-1*K.1^33,-1*K.1^49,K.1^7,-1*K.1^23,K.1^31,-1*K.1^49,-1*K.1^33,K.1^47,K.1^33,-1*K.1^43,K.1^43,-1*K.1^29,K.1^3,-1*K.1^21,K.1^47,K.1^11,-1*K.1^19,-1*K.1^19,K.1^17,-1*K.1^47,-1*K.1^17,K.1^7,K.1^19,-1*K.1^33,-1*K.1^3,K.1^27,-1*K.1^13,-1*K.1^13,K.1^11,-1*K.1^31,K.1^37,K.1^27,K.1^47,K.1^17,-1*K.1^37,-1*K.1^7,K.1^29,K.1^9,-1*K.1^27,-1*K.1^7,-1*K.1,K.1^23,-1*K.1^9,K.1^23,K.1^41,K.1^29,-1*K.1,K.1^43,K.1^39,-1*K.1,K.1^49,K.1^33,-1*K.1^3,K.1^29,K.1^43,-1*K.1^43,K.1^21,-1*K.1^9,K.1^21,K.1^9,-1*K.1^21,-1*K.1^43,K.1,-1*K.1^29,-1*K.1^9,K.1^21,-1*K.1^7,-1*K.1,K.1^29,-1*K.1^9,K.1^23,-1*K.1^37,K.1^49,K.1^21,-1*K.1^13,-1*K.1^13,K.1^17,-1*K.1^47,-1*K.1^33,-1*K.1^19,-1*K.1^19,K.1^11,-1*K.1^3,K.1^11,-1*K.1^3,-1*K.1^11,K.1^19,K.1^37,K.1^27,K.1^47,K.1^17,-1*K.1^31,-1*K.1^31,K.1^33,K.1^37,-1*K.1^31,-1*K.1^39,-1*K.1^41,K.1^27,K.1^13,K.1^19,-1*K.1^11,-1*K.1^47,-1*K.1^17,K.1^7,K.1,K.1^39,K.1^41,-1*K.1^23,-1*K.1^41,K.1^33,K.1^31,-1*K.1^43,-1*K.1^39,K.1^3,-1*K.1^27,K.1^37,-1*K.1^49,-1*K.1^11,K.1,K.1^13,-1*K.1^17,K.1^3,-1*K.1^29,K.1^49,-1*K.1^37,-1*K.1^27,K.1^41,K.1^39,-1*K.1^49,K.1^31,-1*K.1^23,-1*K.1^41,-1*K.1^39,K.1^41,-1*K.1^29,K.1,-1*K.1^7,K.1^23,K.1^9,-1*K.1^23,K.1^13,K.1^13,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^38,K.1^44,K.1^8,K.1^4,K.1^24,-1*K.1^14,K.1^48,-1*K.1^6,K.1^12,-1*K.1^26,-1*K.1^46,K.1^36,-1*K.1^42,-1*K.1^22,-1*K.1^2,K.1^32,-1*K.1^18,K.1^16,-1*K.1^34,K.1^28,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^45,K.1^35,K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^45,K.1^15,-1*K.1^35,-1*K.1^35,-1*K.1^35,-1*K.1^45,K.1^15,-1*K.1^15,K.1^45,-1*K.1^5,K.1^45,K.1^35,K.1^15,-1*K.1^5,-1*K.1^15,K.1^35,-1*K.1^45,K.1^45,K.1^35,K.1^5,K.1^5,K.1^5,-1*K.1^2,-1*K.1^14,K.1^16,K.1^32,K.1^4,-1*K.1^42,-1*K.1^22,-1*K.1^34,K.1^12,K.1^36,K.1^12,K.1^36,-1*K.1^18,K.1^8,-1*K.1^2,-1*K.1^26,-1*K.1^34,-1*K.1^46,K.1^12,K.1^16,-1*K.1^26,-1*K.1^6,-1*K.1^46,K.1^32,K.1^16,-1*K.1^38,-1*K.1^6,-1*K.1^22,K.1^28,K.1^48,-1*K.1^42,-1*K.1^22,-1*K.1^14,-1*K.1^14,K.1^8,-1*K.1^34,K.1^8,K.1^24,K.1^24,K.1^48,K.1^48,K.1^36,K.1^24,-1*K.1^2,-1*K.1^46,K.1^44,-1*K.1^18,-1*K.1^18,K.1^4,-1*K.1^38,-1*K.1^38,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^6,-1*K.1^42,-1*K.1^26,K.1^26,-1*K.1^24,K.1^22,-1*K.1^36,K.1^6,-1*K.1^28,-1*K.1^48,-1*K.1^48,-1*K.1^12,-1*K.1^32,-1*K.1^4,-1*K.1^44,-1*K.1^44,-1*K.1^28,-1*K.1^8,K.1^14,K.1^34,K.1^38,K.1^22,-1*K.1^24,K.1^14,K.1^34,K.1^2,K.1^42,K.1^18,-1*K.1^4,K.1^18,-1*K.1^16,K.1^2,-1*K.1^32,-1*K.1^36,K.1^6,-1*K.1^12,K.1^46,K.1^46,K.1^38,-1*K.1^8,K.1^26,-1*K.1^16,K.1^42,K.1^38,-1*K.1^16,-1*K.1^48,-1*K.1^24,K.1^42,K.1^42,K.1^14,-1*K.1^8,K.1^22,-1*K.1^24,-1*K.1^44,-1*K.1^4,K.1^34,-1*K.1^36,K.1^18,-1*K.1^4,K.1^2,K.1^26,K.1^38,K.1^22,K.1^42,K.1^2,K.1^2,-1*K.1^12,K.1^14,-1*K.1^8,K.1^6,-1*K.1^28,-1*K.1^36,-1*K.1^12,-1*K.1^16,-1*K.1^48,-1*K.1^36,K.1^18,K.1^42,K.1^18,K.1^46,-1*K.1^32,K.1^22,K.1^26,-1*K.1^16,-1*K.1^48,K.1^38,K.1^6,K.1^46,K.1^46,K.1^34,K.1^26,K.1^6,-1*K.1^8,K.1^26,K.1^38,-1*K.1^44,-1*K.1^32,-1*K.1^32,K.1^22,-1*K.1^12,K.1^2,-1*K.1^24,K.1^18,K.1^46,K.1^14,-1*K.1^28,-1*K.1^44,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^32,-1*K.1^24,-1*K.1^48,-1*K.1^4,K.1^34,K.1^34,K.1^14,-1*K.1^4,-1*K.1^28,-1*K.1^28,-1*K.1^44,-1*K.1^12,-1*K.1^36,-1*K.1^46,-1*K.1^22,-1*K.1^42,K.1^12,-1*K.1^42,-1*K.1^2,-1*K.1^46,K.1^8,-1*K.1^38,-1*K.1^6,K.1^36,-1*K.1^18,K.1^48,K.1^24,K.1^44,-1*K.1^14,K.1^44,K.1^4,K.1^48,-1*K.1^6,K.1^24,-1*K.1^26,-1*K.1^18,-1*K.1^38,K.1^16,K.1^36,K.1^8,K.1^28,-1*K.1^2,K.1^32,K.1^12,K.1^32,-1*K.1^22,K.1^28,K.1^16,-1*K.1^26,K.1^4,-1*K.1^34,-1*K.1^14,-1*K.1^34,K.1^9,-1*K.1^3,K.1^9,K.1^11,K.1^19,K.1^37,-1*K.1^31,-1*K.1^47,-1*K.1^23,-1*K.1^33,-1*K.1^13,K.1^31,-1*K.1^21,K.1^49,-1*K.1^43,-1*K.1^39,-1*K.1^7,K.1^21,-1*K.1^3,-1*K.1^17,K.1^49,K.1^21,-1*K.1^7,K.1^13,K.1^7,K.1^47,-1*K.1^47,K.1^41,K.1^37,K.1^9,K.1^13,-1*K.1^19,-1*K.1,-1*K.1,K.1^43,-1*K.1^13,-1*K.1^43,-1*K.1^3,K.1,-1*K.1^7,-1*K.1^37,K.1^33,-1*K.1^27,-1*K.1^27,-1*K.1^19,-1*K.1^49,K.1^23,K.1^33,K.1^13,K.1^43,-1*K.1^23,K.1^3,-1*K.1^41,K.1^11,-1*K.1^33,K.1^3,K.1^29,K.1^17,-1*K.1^11,K.1^17,K.1^39,-1*K.1^41,K.1^29,-1*K.1^47,-1*K.1^31,K.1^29,-1*K.1^21,K.1^7,-1*K.1^37,-1*K.1^41,-1*K.1^47,K.1^47,-1*K.1^9,-1*K.1^11,-1*K.1^9,K.1^11,K.1^9,K.1^47,-1*K.1^29,K.1^41,-1*K.1^11,-1*K.1^9,K.1^3,K.1^29,-1*K.1^41,-1*K.1^11,K.1^17,-1*K.1^23,-1*K.1^21,-1*K.1^9,-1*K.1^27,-1*K.1^27,K.1^43,-1*K.1^13,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^19,-1*K.1^37,-1*K.1^19,-1*K.1^37,K.1^19,K.1,K.1^23,K.1^33,K.1^13,K.1^43,-1*K.1^49,-1*K.1^49,K.1^7,K.1^23,-1*K.1^49,K.1^31,-1*K.1^39,K.1^33,K.1^27,K.1,K.1^19,-1*K.1^13,-1*K.1^43,-1*K.1^3,-1*K.1^29,-1*K.1^31,K.1^39,-1*K.1^17,-1*K.1^39,K.1^7,K.1^49,K.1^47,K.1^31,K.1^37,-1*K.1^33,K.1^23,K.1^21,K.1^19,-1*K.1^29,K.1^27,-1*K.1^43,K.1^37,K.1^41,-1*K.1^21,-1*K.1^23,-1*K.1^33,K.1^39,-1*K.1^31,K.1^21,K.1^49,-1*K.1^17,-1*K.1^39,K.1^31,K.1^39,K.1^41,-1*K.1^29,K.1^3,K.1^17,K.1^11,-1*K.1^17,K.1^27,K.1^27,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^12,-1*K.1^6,-1*K.1^42,-1*K.1^46,-1*K.1^26,K.1^36,-1*K.1^2,K.1^44,-1*K.1^38,K.1^24,K.1^4,-1*K.1^14,K.1^8,K.1^28,K.1^48,-1*K.1^18,K.1^32,-1*K.1^34,K.1^16,-1*K.1^22,-1*K.1^35,-1*K.1^45,K.1^35,K.1^45,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,K.1^45,K.1^35,K.1^5,-1*K.1^35,K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^35,K.1^35,-1*K.1^5,K.1^45,-1*K.1^5,-1*K.1^15,-1*K.1^35,K.1^45,K.1^35,-1*K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^45,-1*K.1^45,K.1^48,K.1^36,-1*K.1^34,-1*K.1^18,-1*K.1^46,K.1^8,K.1^28,K.1^16,-1*K.1^38,-1*K.1^14,-1*K.1^38,-1*K.1^14,K.1^32,-1*K.1^42,K.1^48,K.1^24,K.1^16,K.1^4,-1*K.1^38,-1*K.1^34,K.1^24,K.1^44,K.1^4,-1*K.1^18,-1*K.1^34,K.1^12,K.1^44,K.1^28,-1*K.1^22,-1*K.1^2,K.1^8,K.1^28,K.1^36,K.1^36,-1*K.1^42,K.1^16,-1*K.1^42,-1*K.1^26,-1*K.1^26,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^26,K.1^48,K.1^4,-1*K.1^6,K.1^32,K.1^32,-1*K.1^46,K.1^12,K.1^12,-1*K.1^46,-1*K.1^22,-1*K.1^6,-1*K.1^6,-1*K.1^22,-1*K.1^18,K.1^44,K.1^8,K.1^24,-1*K.1^24,K.1^26,-1*K.1^28,K.1^14,-1*K.1^44,K.1^22,K.1^2,K.1^2,K.1^38,K.1^18,K.1^46,K.1^6,K.1^6,K.1^22,K.1^42,-1*K.1^36,-1*K.1^16,-1*K.1^12,-1*K.1^28,K.1^26,-1*K.1^36,-1*K.1^16,-1*K.1^48,-1*K.1^8,-1*K.1^32,K.1^46,-1*K.1^32,K.1^34,-1*K.1^48,K.1^18,K.1^14,-1*K.1^44,K.1^38,-1*K.1^4,-1*K.1^4,-1*K.1^12,K.1^42,-1*K.1^24,K.1^34,-1*K.1^8,-1*K.1^12,K.1^34,K.1^2,K.1^26,-1*K.1^8,-1*K.1^8,-1*K.1^36,K.1^42,-1*K.1^28,K.1^26,K.1^6,K.1^46,-1*K.1^16,K.1^14,-1*K.1^32,K.1^46,-1*K.1^48,-1*K.1^24,-1*K.1^12,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^48,K.1^38,-1*K.1^36,K.1^42,-1*K.1^44,K.1^22,K.1^14,K.1^38,K.1^34,K.1^2,K.1^14,-1*K.1^32,-1*K.1^8,-1*K.1^32,-1*K.1^4,K.1^18,-1*K.1^28,-1*K.1^24,K.1^34,K.1^2,-1*K.1^12,-1*K.1^44,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^24,-1*K.1^44,K.1^42,-1*K.1^24,-1*K.1^12,K.1^6,K.1^18,K.1^18,-1*K.1^28,K.1^38,-1*K.1^48,K.1^26,-1*K.1^32,-1*K.1^4,-1*K.1^36,K.1^22,K.1^6,K.1^34,K.1^42,-1*K.1^44,K.1^18,K.1^26,K.1^2,K.1^46,-1*K.1^16,-1*K.1^16,-1*K.1^36,K.1^46,K.1^22,K.1^22,K.1^6,K.1^38,K.1^14,K.1^4,K.1^28,K.1^8,-1*K.1^38,K.1^8,K.1^48,K.1^4,-1*K.1^42,K.1^12,K.1^44,-1*K.1^14,K.1^32,-1*K.1^2,-1*K.1^26,-1*K.1^6,K.1^36,-1*K.1^6,-1*K.1^46,-1*K.1^2,K.1^44,-1*K.1^26,K.1^24,K.1^32,K.1^12,-1*K.1^34,-1*K.1^14,-1*K.1^42,-1*K.1^22,K.1^48,-1*K.1^18,-1*K.1^38,-1*K.1^18,K.1^28,-1*K.1^22,-1*K.1^34,K.1^24,-1*K.1^46,K.1^16,K.1^36,K.1^16,-1*K.1^41,K.1^47,-1*K.1^41,-1*K.1^39,-1*K.1^31,-1*K.1^13,K.1^19,K.1^3,K.1^27,K.1^17,K.1^37,-1*K.1^19,K.1^29,-1*K.1,K.1^7,K.1^11,K.1^43,-1*K.1^29,K.1^47,K.1^33,-1*K.1,-1*K.1^29,K.1^43,-1*K.1^37,-1*K.1^43,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^13,-1*K.1^41,-1*K.1^37,K.1^31,K.1^49,K.1^49,-1*K.1^7,K.1^37,K.1^7,K.1^47,-1*K.1^49,K.1^43,K.1^13,-1*K.1^17,K.1^23,K.1^23,K.1^31,K.1,-1*K.1^27,-1*K.1^17,-1*K.1^37,-1*K.1^7,K.1^27,-1*K.1^47,K.1^9,-1*K.1^39,K.1^17,-1*K.1^47,-1*K.1^21,-1*K.1^33,K.1^39,-1*K.1^33,-1*K.1^11,K.1^9,-1*K.1^21,K.1^3,K.1^19,-1*K.1^21,K.1^29,-1*K.1^43,K.1^13,K.1^9,K.1^3,-1*K.1^3,K.1^41,K.1^39,K.1^41,-1*K.1^39,-1*K.1^41,-1*K.1^3,K.1^21,-1*K.1^9,K.1^39,K.1^41,-1*K.1^47,-1*K.1^21,K.1^9,K.1^39,-1*K.1^33,K.1^27,K.1^29,K.1^41,K.1^23,K.1^23,-1*K.1^7,K.1^37,K.1^43,K.1^49,K.1^49,K.1^31,K.1^13,K.1^31,K.1^13,-1*K.1^31,-1*K.1^49,-1*K.1^27,-1*K.1^17,-1*K.1^37,-1*K.1^7,K.1,K.1,-1*K.1^43,-1*K.1^27,K.1,-1*K.1^19,K.1^11,-1*K.1^17,-1*K.1^23,-1*K.1^49,-1*K.1^31,K.1^37,K.1^7,K.1^47,K.1^21,K.1^19,-1*K.1^11,K.1^33,K.1^11,-1*K.1^43,-1*K.1,-1*K.1^3,-1*K.1^19,-1*K.1^13,K.1^17,-1*K.1^27,-1*K.1^29,-1*K.1^31,K.1^21,-1*K.1^23,K.1^7,-1*K.1^13,-1*K.1^9,K.1^29,K.1^27,K.1^17,-1*K.1^11,K.1^19,-1*K.1^29,-1*K.1,K.1^33,K.1^11,-1*K.1^19,-1*K.1^11,-1*K.1^9,K.1^21,-1*K.1^47,-1*K.1^33,-1*K.1^39,K.1^33,-1*K.1^23,-1*K.1^23,-1*K.1^49]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,K.1^8,K.1^4,K.1^28,-1*K.1^14,-1*K.1^34,K.1^24,-1*K.1^18,-1*K.1^46,-1*K.1^42,K.1^16,K.1^36,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^32,K.1^12,-1*K.1^38,-1*K.1^6,K.1^44,K.1^48,K.1^15,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^45,K.1^35,K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^45,K.1^15,-1*K.1^35,-1*K.1^35,-1*K.1^35,-1*K.1^45,K.1^15,-1*K.1^15,K.1^45,-1*K.1^5,K.1^45,K.1^35,K.1^15,-1*K.1^5,-1*K.1^15,K.1^35,-1*K.1^45,K.1^45,K.1^35,K.1^5,K.1^5,K.1^5,K.1^32,K.1^24,-1*K.1^6,K.1^12,-1*K.1^14,-1*K.1^22,-1*K.1^2,K.1^44,-1*K.1^42,-1*K.1^26,-1*K.1^42,-1*K.1^26,-1*K.1^38,K.1^28,K.1^32,K.1^16,K.1^44,K.1^36,-1*K.1^42,-1*K.1^6,K.1^16,-1*K.1^46,K.1^36,K.1^12,-1*K.1^6,K.1^8,-1*K.1^46,-1*K.1^2,K.1^48,-1*K.1^18,-1*K.1^22,-1*K.1^2,K.1^24,K.1^24,K.1^28,K.1^44,K.1^28,-1*K.1^34,-1*K.1^34,-1*K.1^18,-1*K.1^18,-1*K.1^26,-1*K.1^34,K.1^32,K.1^36,K.1^4,-1*K.1^38,-1*K.1^38,-1*K.1^14,K.1^8,K.1^8,-1*K.1^14,K.1^48,K.1^4,K.1^4,K.1^48,K.1^12,-1*K.1^46,-1*K.1^22,K.1^16,-1*K.1^16,K.1^34,K.1^2,K.1^26,K.1^46,-1*K.1^48,K.1^18,K.1^18,K.1^42,-1*K.1^12,K.1^14,-1*K.1^4,-1*K.1^4,-1*K.1^48,-1*K.1^28,-1*K.1^24,-1*K.1^44,-1*K.1^8,K.1^2,K.1^34,-1*K.1^24,-1*K.1^44,-1*K.1^32,K.1^22,K.1^38,K.1^14,K.1^38,K.1^6,-1*K.1^32,-1*K.1^12,K.1^26,K.1^46,K.1^42,-1*K.1^36,-1*K.1^36,-1*K.1^8,-1*K.1^28,-1*K.1^16,K.1^6,K.1^22,-1*K.1^8,K.1^6,K.1^18,K.1^34,K.1^22,K.1^22,-1*K.1^24,-1*K.1^28,K.1^2,K.1^34,-1*K.1^4,K.1^14,-1*K.1^44,K.1^26,K.1^38,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^8,K.1^2,K.1^22,-1*K.1^32,-1*K.1^32,K.1^42,-1*K.1^24,-1*K.1^28,K.1^46,-1*K.1^48,K.1^26,K.1^42,K.1^6,K.1^18,K.1^26,K.1^38,K.1^22,K.1^38,-1*K.1^36,-1*K.1^12,K.1^2,-1*K.1^16,K.1^6,K.1^18,-1*K.1^8,K.1^46,-1*K.1^36,-1*K.1^36,-1*K.1^44,-1*K.1^16,K.1^46,-1*K.1^28,-1*K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^2,K.1^42,-1*K.1^32,K.1^34,K.1^38,-1*K.1^36,-1*K.1^24,-1*K.1^48,-1*K.1^4,K.1^6,-1*K.1^28,K.1^46,-1*K.1^12,K.1^34,K.1^18,K.1^14,-1*K.1^44,-1*K.1^44,-1*K.1^24,K.1^14,-1*K.1^48,-1*K.1^48,-1*K.1^4,K.1^42,K.1^26,K.1^36,-1*K.1^2,-1*K.1^22,-1*K.1^42,-1*K.1^22,K.1^32,K.1^36,K.1^28,K.1^8,-1*K.1^46,-1*K.1^26,-1*K.1^38,-1*K.1^18,-1*K.1^34,K.1^4,K.1^24,K.1^4,-1*K.1^14,-1*K.1^18,-1*K.1^46,-1*K.1^34,K.1^16,-1*K.1^38,K.1^8,-1*K.1^6,-1*K.1^26,K.1^28,K.1^48,K.1^32,K.1^12,-1*K.1^42,K.1^12,-1*K.1^2,K.1^48,-1*K.1^6,K.1^16,-1*K.1^14,K.1^44,K.1^24,K.1^44,-1*K.1^19,-1*K.1^23,-1*K.1^19,-1*K.1,-1*K.1^29,K.1^17,K.1^21,-1*K.1^27,-1*K.1^43,K.1^3,-1*K.1^33,-1*K.1^21,K.1^11,K.1^9,K.1^13,K.1^49,K.1^37,-1*K.1^11,-1*K.1^23,K.1^47,K.1^9,-1*K.1^11,K.1^37,K.1^33,-1*K.1^37,K.1^27,-1*K.1^27,-1*K.1^31,K.1^17,-1*K.1^19,K.1^33,K.1^29,-1*K.1^41,-1*K.1^41,-1*K.1^13,-1*K.1^33,K.1^13,-1*K.1^23,K.1^41,K.1^37,-1*K.1^17,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^29,-1*K.1^9,K.1^43,-1*K.1^3,K.1^33,-1*K.1^13,-1*K.1^43,K.1^23,K.1^31,-1*K.1,K.1^3,K.1^23,-1*K.1^39,-1*K.1^47,K.1,-1*K.1^47,-1*K.1^49,K.1^31,-1*K.1^39,-1*K.1^27,K.1^21,-1*K.1^39,K.1^11,-1*K.1^37,-1*K.1^17,K.1^31,-1*K.1^27,K.1^27,K.1^19,K.1,K.1^19,-1*K.1,-1*K.1^19,K.1^27,K.1^39,-1*K.1^31,K.1,K.1^19,K.1^23,-1*K.1^39,K.1^31,K.1,-1*K.1^47,-1*K.1^43,K.1^11,K.1^19,-1*K.1^7,-1*K.1^7,-1*K.1^13,-1*K.1^33,K.1^37,-1*K.1^41,-1*K.1^41,K.1^29,-1*K.1^17,K.1^29,-1*K.1^17,-1*K.1^29,K.1^41,K.1^43,-1*K.1^3,K.1^33,-1*K.1^13,-1*K.1^9,-1*K.1^9,-1*K.1^37,K.1^43,-1*K.1^9,-1*K.1^21,K.1^49,-1*K.1^3,K.1^7,K.1^41,-1*K.1^29,-1*K.1^33,K.1^13,-1*K.1^23,K.1^39,K.1^21,-1*K.1^49,K.1^47,K.1^49,-1*K.1^37,K.1^9,K.1^27,-1*K.1^21,K.1^17,K.1^3,K.1^43,-1*K.1^11,-1*K.1^29,K.1^39,K.1^7,K.1^13,K.1^17,-1*K.1^31,K.1^11,-1*K.1^43,K.1^3,-1*K.1^49,K.1^21,-1*K.1^11,K.1^9,K.1^47,K.1^49,-1*K.1^21,-1*K.1^49,-1*K.1^31,K.1^39,K.1^23,-1*K.1^47,-1*K.1,K.1^47,K.1^7,K.1^7,K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,-1*K.1^42,-1*K.1^46,-1*K.1^22,K.1^36,K.1^16,-1*K.1^26,K.1^32,K.1^4,K.1^8,-1*K.1^34,-1*K.1^14,K.1^24,K.1^28,K.1^48,-1*K.1^18,-1*K.1^38,K.1^12,K.1^44,-1*K.1^6,-1*K.1^2,-1*K.1^35,-1*K.1^45,K.1^35,K.1^45,K.1^5,-1*K.1^15,-1*K.1^5,K.1^15,K.1^45,K.1^35,K.1^5,-1*K.1^35,K.1^15,K.1^15,K.1^15,K.1^5,-1*K.1^35,K.1^35,-1*K.1^5,K.1^45,-1*K.1^5,-1*K.1^15,-1*K.1^35,K.1^45,K.1^35,-1*K.1^15,K.1^5,-1*K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^45,-1*K.1^45,-1*K.1^18,-1*K.1^26,K.1^44,-1*K.1^38,K.1^36,K.1^28,K.1^48,-1*K.1^6,K.1^8,K.1^24,K.1^8,K.1^24,K.1^12,-1*K.1^22,-1*K.1^18,-1*K.1^34,-1*K.1^6,-1*K.1^14,K.1^8,K.1^44,-1*K.1^34,K.1^4,-1*K.1^14,-1*K.1^38,K.1^44,-1*K.1^42,K.1^4,K.1^48,-1*K.1^2,K.1^32,K.1^28,K.1^48,-1*K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^6,-1*K.1^22,K.1^16,K.1^16,K.1^32,K.1^32,K.1^24,K.1^16,-1*K.1^18,-1*K.1^14,-1*K.1^46,K.1^12,K.1^12,K.1^36,-1*K.1^42,-1*K.1^42,K.1^36,-1*K.1^2,-1*K.1^46,-1*K.1^46,-1*K.1^2,-1*K.1^38,K.1^4,K.1^28,-1*K.1^34,K.1^34,-1*K.1^16,-1*K.1^48,-1*K.1^24,-1*K.1^4,K.1^2,-1*K.1^32,-1*K.1^32,-1*K.1^8,K.1^38,-1*K.1^36,K.1^46,K.1^46,K.1^2,K.1^22,K.1^26,K.1^6,K.1^42,-1*K.1^48,-1*K.1^16,K.1^26,K.1^6,K.1^18,-1*K.1^28,-1*K.1^12,-1*K.1^36,-1*K.1^12,-1*K.1^44,K.1^18,K.1^38,-1*K.1^24,-1*K.1^4,-1*K.1^8,K.1^14,K.1^14,K.1^42,K.1^22,K.1^34,-1*K.1^44,-1*K.1^28,K.1^42,-1*K.1^44,-1*K.1^32,-1*K.1^16,-1*K.1^28,-1*K.1^28,K.1^26,K.1^22,-1*K.1^48,-1*K.1^16,K.1^46,-1*K.1^36,K.1^6,-1*K.1^24,-1*K.1^12,-1*K.1^36,K.1^18,K.1^34,K.1^42,-1*K.1^48,-1*K.1^28,K.1^18,K.1^18,-1*K.1^8,K.1^26,K.1^22,-1*K.1^4,K.1^2,-1*K.1^24,-1*K.1^8,-1*K.1^44,-1*K.1^32,-1*K.1^24,-1*K.1^12,-1*K.1^28,-1*K.1^12,K.1^14,K.1^38,-1*K.1^48,K.1^34,-1*K.1^44,-1*K.1^32,K.1^42,-1*K.1^4,K.1^14,K.1^14,K.1^6,K.1^34,-1*K.1^4,K.1^22,K.1^34,K.1^42,K.1^46,K.1^38,K.1^38,-1*K.1^48,-1*K.1^8,K.1^18,-1*K.1^16,-1*K.1^12,K.1^14,K.1^26,K.1^2,K.1^46,-1*K.1^44,K.1^22,-1*K.1^4,K.1^38,-1*K.1^16,-1*K.1^32,-1*K.1^36,K.1^6,K.1^6,K.1^26,-1*K.1^36,K.1^2,K.1^2,K.1^46,-1*K.1^8,-1*K.1^24,-1*K.1^14,K.1^48,K.1^28,K.1^8,K.1^28,-1*K.1^18,-1*K.1^14,-1*K.1^22,-1*K.1^42,K.1^4,K.1^24,K.1^12,K.1^32,K.1^16,-1*K.1^46,-1*K.1^26,-1*K.1^46,K.1^36,K.1^32,K.1^4,K.1^16,-1*K.1^34,K.1^12,-1*K.1^42,K.1^44,K.1^24,-1*K.1^22,-1*K.1^2,-1*K.1^18,-1*K.1^38,K.1^8,-1*K.1^38,K.1^48,-1*K.1^2,K.1^44,-1*K.1^34,K.1^36,-1*K.1^6,-1*K.1^26,-1*K.1^6,K.1^31,K.1^27,K.1^31,K.1^49,K.1^21,-1*K.1^33,-1*K.1^29,K.1^23,K.1^7,-1*K.1^47,K.1^17,K.1^29,-1*K.1^39,-1*K.1^41,-1*K.1^37,-1*K.1,-1*K.1^13,K.1^39,K.1^27,-1*K.1^3,-1*K.1^41,K.1^39,-1*K.1^13,-1*K.1^17,K.1^13,-1*K.1^23,K.1^23,K.1^19,-1*K.1^33,K.1^31,-1*K.1^17,-1*K.1^21,K.1^9,K.1^9,K.1^37,K.1^17,-1*K.1^37,K.1^27,-1*K.1^9,-1*K.1^13,K.1^33,K.1^47,K.1^43,K.1^43,-1*K.1^21,K.1^41,-1*K.1^7,K.1^47,-1*K.1^17,K.1^37,K.1^7,-1*K.1^27,-1*K.1^19,K.1^49,-1*K.1^47,-1*K.1^27,K.1^11,K.1^3,-1*K.1^49,K.1^3,K.1,-1*K.1^19,K.1^11,K.1^23,-1*K.1^29,K.1^11,-1*K.1^39,K.1^13,K.1^33,-1*K.1^19,K.1^23,-1*K.1^23,-1*K.1^31,-1*K.1^49,-1*K.1^31,K.1^49,K.1^31,-1*K.1^23,-1*K.1^11,K.1^19,-1*K.1^49,-1*K.1^31,-1*K.1^27,K.1^11,-1*K.1^19,-1*K.1^49,K.1^3,K.1^7,-1*K.1^39,-1*K.1^31,K.1^43,K.1^43,K.1^37,K.1^17,-1*K.1^13,K.1^9,K.1^9,-1*K.1^21,K.1^33,-1*K.1^21,K.1^33,K.1^21,-1*K.1^9,-1*K.1^7,K.1^47,-1*K.1^17,K.1^37,K.1^41,K.1^41,K.1^13,-1*K.1^7,K.1^41,K.1^29,-1*K.1,K.1^47,-1*K.1^43,-1*K.1^9,K.1^21,K.1^17,-1*K.1^37,K.1^27,-1*K.1^11,-1*K.1^29,K.1,-1*K.1^3,-1*K.1,K.1^13,-1*K.1^41,-1*K.1^23,K.1^29,-1*K.1^33,-1*K.1^47,-1*K.1^7,K.1^39,K.1^21,-1*K.1^11,-1*K.1^43,-1*K.1^37,-1*K.1^33,K.1^19,-1*K.1^39,K.1^7,-1*K.1^47,K.1,-1*K.1^29,K.1^39,-1*K.1^41,-1*K.1^3,-1*K.1,K.1^29,K.1,K.1^19,-1*K.1^11,-1*K.1^27,K.1^3,K.1^49,-1*K.1^3,-1*K.1^43,-1*K.1^43,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,K.1^10,-1*K.1^40,K.1^30,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,-1*K.1^6,K.1^28,-1*K.1^46,K.1^48,-1*K.1^38,-1*K.1^18,-1*K.1^26,-1*K.1^22,K.1^44,K.1^12,-1*K.1^2,K.1^32,K.1^4,-1*K.1^14,K.1^24,-1*K.1^34,K.1^16,-1*K.1^42,K.1^8,K.1^36,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^45,K.1^15,K.1^45,-1*K.1^35,K.1^5,K.1^15,K.1^5,-1*K.1^45,-1*K.1^45,K.1^45,K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^35,-1*K.1^15,K.1^45,K.1^5,K.1^35,K.1^5,-1*K.1^45,-1*K.1^15,K.1^15,-1*K.1^45,K.1^35,-1*K.1^35,K.1^35,K.1^24,-1*K.1^18,-1*K.1^42,-1*K.1^34,K.1^48,K.1^4,-1*K.1^14,K.1^8,K.1^44,K.1^32,K.1^44,K.1^32,K.1^16,-1*K.1^46,K.1^24,K.1^12,K.1^8,-1*K.1^2,K.1^44,-1*K.1^42,K.1^12,-1*K.1^22,-1*K.1^2,-1*K.1^34,-1*K.1^42,-1*K.1^6,-1*K.1^22,-1*K.1^14,K.1^36,-1*K.1^26,K.1^4,-1*K.1^14,-1*K.1^18,-1*K.1^18,-1*K.1^46,K.1^8,-1*K.1^46,-1*K.1^38,-1*K.1^38,-1*K.1^26,-1*K.1^26,K.1^32,-1*K.1^38,K.1^24,-1*K.1^2,K.1^28,K.1^16,K.1^16,K.1^48,-1*K.1^6,-1*K.1^6,K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^34,-1*K.1^22,K.1^4,K.1^12,K.1^12,-1*K.1^38,-1*K.1^14,K.1^32,-1*K.1^22,K.1^36,-1*K.1^26,-1*K.1^26,K.1^44,-1*K.1^34,K.1^48,K.1^28,K.1^28,K.1^36,-1*K.1^46,-1*K.1^18,K.1^8,-1*K.1^6,-1*K.1^14,-1*K.1^38,-1*K.1^18,K.1^8,K.1^24,K.1^4,K.1^16,K.1^48,K.1^16,-1*K.1^42,K.1^24,-1*K.1^34,K.1^32,-1*K.1^22,K.1^44,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^46,K.1^12,-1*K.1^42,K.1^4,K.1^6,K.1^42,K.1^26,K.1^38,-1*K.1^4,-1*K.1^4,K.1^18,K.1^46,K.1^14,K.1^38,-1*K.1^28,-1*K.1^48,-1*K.1^8,-1*K.1^32,-1*K.1^16,-1*K.1^48,-1*K.1^24,-1*K.1^12,K.1^6,K.1^14,-1*K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^44,K.1^18,K.1^46,K.1^22,-1*K.1^36,-1*K.1^32,-1*K.1^44,K.1^42,K.1^26,-1*K.1^32,-1*K.1^16,-1*K.1^4,-1*K.1^16,K.1^2,K.1^34,K.1^14,-1*K.1^12,K.1^42,K.1^26,K.1^6,K.1^22,K.1^2,K.1^2,-1*K.1^8,-1*K.1^12,K.1^22,K.1^46,-1*K.1^12,K.1^6,-1*K.1^28,K.1^34,K.1^34,K.1^14,-1*K.1^44,-1*K.1^24,K.1^38,-1*K.1^16,K.1^2,K.1^18,-1*K.1^36,-1*K.1^28,K.1^42,K.1^46,K.1^22,K.1^34,K.1^38,K.1^26,-1*K.1^48,-1*K.1^8,-1*K.1^8,K.1^18,-1*K.1^48,-1*K.1^36,-1*K.1^36,-1*K.1^28,-1*K.1^44,-1*K.1^32,K.1^2,K.1^14,-1*K.1^4,-1*K.1^44,-1*K.1^4,-1*K.1^24,K.1^2,K.1^46,K.1^6,K.1^22,-1*K.1^32,-1*K.1^16,K.1^26,K.1^38,-1*K.1^28,K.1^18,-1*K.1^28,-1*K.1^48,K.1^26,K.1^22,K.1^38,-1*K.1^12,-1*K.1^16,K.1^6,K.1^42,-1*K.1^32,K.1^46,-1*K.1^36,-1*K.1^24,K.1^34,-1*K.1^44,K.1^34,K.1^14,-1*K.1^36,K.1^42,-1*K.1^12,-1*K.1^48,-1*K.1^8,K.1^18,-1*K.1^8,K.1^33,-1*K.1^11,-1*K.1^33,-1*K.1^7,-1*K.1^3,K.1^19,-1*K.1^47,K.1^39,-1*K.1,K.1^21,-1*K.1^31,-1*K.1^47,-1*K.1^27,-1*K.1^13,K.1^41,K.1^43,-1*K.1^9,-1*K.1^27,K.1^11,K.1^29,-1*K.1^13,K.1^27,K.1^9,K.1^31,K.1^9,-1*K.1^39,K.1^39,K.1^17,K.1^19,-1*K.1^33,-1*K.1^31,K.1^3,K.1^37,K.1^37,K.1^41,-1*K.1^31,-1*K.1^41,K.1^11,K.1^37,-1*K.1^9,-1*K.1^19,-1*K.1^21,K.1^49,-1*K.1^49,K.1^3,-1*K.1^13,K.1,-1*K.1^21,K.1^31,K.1^41,K.1,-1*K.1^11,K.1^17,-1*K.1^7,K.1^21,-1*K.1^11,K.1^23,-1*K.1^29,-1*K.1^7,-1*K.1^29,-1*K.1^43,K.1^17,K.1^23,-1*K.1^39,K.1^47,-1*K.1^23,K.1^27,K.1^9,-1*K.1^19,-1*K.1^17,-1*K.1^39,K.1^39,-1*K.1^33,-1*K.1^7,-1*K.1^33,K.1^7,K.1^33,K.1^39,-1*K.1^23,-1*K.1^17,K.1^7,K.1^33,K.1^11,-1*K.1^23,-1*K.1^17,K.1^7,K.1^29,-1*K.1,-1*K.1^27,K.1^33,-1*K.1^49,K.1^49,-1*K.1^41,K.1^31,K.1^9,-1*K.1^37,-1*K.1^37,-1*K.1^3,K.1^19,-1*K.1^3,K.1^19,K.1^3,K.1^37,-1*K.1,K.1^21,-1*K.1^31,-1*K.1^41,K.1^13,-1*K.1^13,-1*K.1^9,K.1,K.1^13,-1*K.1^47,K.1^43,K.1^21,-1*K.1^49,-1*K.1^37,-1*K.1^3,K.1^31,K.1^41,-1*K.1^11,K.1^23,-1*K.1^47,K.1^43,-1*K.1^29,-1*K.1^43,-1*K.1^9,K.1^13,-1*K.1^39,K.1^47,-1*K.1^19,-1*K.1^21,-1*K.1,-1*K.1^27,K.1^3,-1*K.1^23,K.1^49,-1*K.1^41,-1*K.1^19,-1*K.1^17,K.1^27,K.1,-1*K.1^21,-1*K.1^43,K.1^47,K.1^27,K.1^13,-1*K.1^29,-1*K.1^43,K.1^47,K.1^43,K.1^17,K.1^23,K.1^11,K.1^29,K.1^7,K.1^29,K.1^49,-1*K.1^49,-1*K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,K.1^30,K.1^44,-1*K.1^22,K.1^4,-1*K.1^2,K.1^12,K.1^32,K.1^24,K.1^28,-1*K.1^6,-1*K.1^38,K.1^48,-1*K.1^18,-1*K.1^46,K.1^36,-1*K.1^26,K.1^16,-1*K.1^34,K.1^8,-1*K.1^42,-1*K.1^14,K.1^45,K.1^15,K.1^45,K.1^15,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^5,K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^5,-1*K.1^5,-1*K.1^35,K.1^45,K.1^45,K.1^35,-1*K.1^15,K.1^35,-1*K.1^5,-1*K.1^45,-1*K.1^15,-1*K.1^45,K.1^5,K.1^35,-1*K.1^35,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^26,K.1^32,K.1^8,K.1^16,-1*K.1^2,-1*K.1^46,K.1^36,-1*K.1^42,-1*K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^18,-1*K.1^34,K.1^4,-1*K.1^26,-1*K.1^38,-1*K.1^42,K.1^48,-1*K.1^6,K.1^8,-1*K.1^38,K.1^28,K.1^48,K.1^16,K.1^8,K.1^44,K.1^28,K.1^36,-1*K.1^14,K.1^24,-1*K.1^46,K.1^36,K.1^32,K.1^32,K.1^4,-1*K.1^42,K.1^4,K.1^12,K.1^12,K.1^24,K.1^24,-1*K.1^18,K.1^12,-1*K.1^26,K.1^48,-1*K.1^22,-1*K.1^34,-1*K.1^34,-1*K.1^2,K.1^44,K.1^44,-1*K.1^2,-1*K.1^14,-1*K.1^22,-1*K.1^22,-1*K.1^14,K.1^16,K.1^28,-1*K.1^46,-1*K.1^38,-1*K.1^38,K.1^12,K.1^36,-1*K.1^18,K.1^28,-1*K.1^14,K.1^24,K.1^24,-1*K.1^6,K.1^16,-1*K.1^2,-1*K.1^22,-1*K.1^22,-1*K.1^14,K.1^4,K.1^32,-1*K.1^42,K.1^44,K.1^36,K.1^12,K.1^32,-1*K.1^42,-1*K.1^26,-1*K.1^46,-1*K.1^34,-1*K.1^2,-1*K.1^34,K.1^8,-1*K.1^26,K.1^16,-1*K.1^18,K.1^28,-1*K.1^6,K.1^48,K.1^48,K.1^44,K.1^4,-1*K.1^38,K.1^8,-1*K.1^46,-1*K.1^44,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^46,K.1^46,-1*K.1^32,-1*K.1^4,-1*K.1^36,-1*K.1^12,K.1^22,K.1^2,K.1^42,K.1^18,K.1^34,K.1^2,K.1^26,K.1^38,-1*K.1^44,-1*K.1^36,K.1^46,K.1^26,K.1^26,K.1^6,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^14,K.1^18,K.1^6,-1*K.1^8,-1*K.1^24,K.1^18,K.1^34,K.1^46,K.1^34,-1*K.1^48,-1*K.1^16,-1*K.1^36,K.1^38,-1*K.1^8,-1*K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^48,-1*K.1^48,K.1^42,K.1^38,-1*K.1^28,-1*K.1^4,K.1^38,-1*K.1^44,K.1^22,-1*K.1^16,-1*K.1^16,-1*K.1^36,K.1^6,K.1^26,-1*K.1^12,K.1^34,-1*K.1^48,-1*K.1^32,K.1^14,K.1^22,-1*K.1^8,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^12,-1*K.1^24,K.1^2,K.1^42,K.1^42,-1*K.1^32,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,K.1^18,-1*K.1^48,-1*K.1^36,K.1^46,K.1^6,K.1^46,K.1^26,-1*K.1^48,-1*K.1^4,-1*K.1^44,-1*K.1^28,K.1^18,K.1^34,-1*K.1^24,-1*K.1^12,K.1^22,-1*K.1^32,K.1^22,K.1^2,-1*K.1^24,-1*K.1^28,-1*K.1^12,K.1^38,K.1^34,-1*K.1^44,-1*K.1^8,K.1^18,-1*K.1^4,K.1^14,K.1^26,-1*K.1^16,K.1^6,-1*K.1^16,-1*K.1^36,K.1^14,-1*K.1^8,K.1^38,K.1^2,K.1^42,-1*K.1^32,K.1^42,-1*K.1^17,K.1^39,K.1^17,K.1^43,K.1^47,-1*K.1^31,K.1^3,-1*K.1^11,K.1^49,-1*K.1^29,K.1^19,K.1^3,K.1^23,K.1^37,-1*K.1^9,-1*K.1^7,K.1^41,K.1^23,-1*K.1^39,-1*K.1^21,K.1^37,-1*K.1^23,-1*K.1^41,-1*K.1^19,-1*K.1^41,K.1^11,-1*K.1^11,-1*K.1^33,-1*K.1^31,K.1^17,K.1^19,-1*K.1^47,-1*K.1^13,-1*K.1^13,-1*K.1^9,K.1^19,K.1^9,-1*K.1^39,-1*K.1^13,K.1^41,K.1^31,K.1^29,-1*K.1,K.1,-1*K.1^47,K.1^37,-1*K.1^49,K.1^29,-1*K.1^19,-1*K.1^9,-1*K.1^49,K.1^39,-1*K.1^33,K.1^43,-1*K.1^29,K.1^39,-1*K.1^27,K.1^21,K.1^43,K.1^21,K.1^7,-1*K.1^33,-1*K.1^27,K.1^11,-1*K.1^3,K.1^27,-1*K.1^23,-1*K.1^41,K.1^31,K.1^33,K.1^11,-1*K.1^11,K.1^17,K.1^43,K.1^17,-1*K.1^43,-1*K.1^17,-1*K.1^11,K.1^27,K.1^33,-1*K.1^43,-1*K.1^17,-1*K.1^39,K.1^27,K.1^33,-1*K.1^43,-1*K.1^21,K.1^49,K.1^23,-1*K.1^17,K.1,-1*K.1,K.1^9,-1*K.1^19,-1*K.1^41,K.1^13,K.1^13,K.1^47,-1*K.1^31,K.1^47,-1*K.1^31,-1*K.1^47,-1*K.1^13,K.1^49,-1*K.1^29,K.1^19,K.1^9,-1*K.1^37,K.1^37,K.1^41,-1*K.1^49,-1*K.1^37,K.1^3,-1*K.1^7,-1*K.1^29,K.1,K.1^13,K.1^47,-1*K.1^19,-1*K.1^9,K.1^39,-1*K.1^27,K.1^3,-1*K.1^7,K.1^21,K.1^7,K.1^41,-1*K.1^37,K.1^11,-1*K.1^3,K.1^31,K.1^29,K.1^49,K.1^23,-1*K.1^47,K.1^27,-1*K.1,K.1^9,K.1^31,K.1^33,-1*K.1^23,-1*K.1^49,K.1^29,K.1^7,-1*K.1^3,-1*K.1^23,-1*K.1^37,K.1^21,K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^33,-1*K.1^27,-1*K.1^39,-1*K.1^21,-1*K.1^43,-1*K.1^21,-1*K.1,K.1,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,K.1^10,-1*K.1^40,K.1^30,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^36,-1*K.1^18,-1*K.1^26,-1*K.1^38,K.1^28,K.1^8,-1*K.1^6,K.1^32,-1*K.1^14,-1*K.1^22,K.1^12,-1*K.1^42,K.1^24,-1*K.1^34,K.1^44,K.1^4,-1*K.1^46,-1*K.1^2,K.1^48,K.1^16,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^45,K.1^15,K.1^45,-1*K.1^35,K.1^5,K.1^15,K.1^5,-1*K.1^45,-1*K.1^45,K.1^45,K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^35,-1*K.1^15,K.1^45,K.1^5,K.1^35,K.1^5,-1*K.1^45,-1*K.1^15,K.1^15,-1*K.1^45,K.1^35,-1*K.1^35,K.1^35,K.1^44,K.1^8,-1*K.1^2,K.1^4,-1*K.1^38,K.1^24,-1*K.1^34,K.1^48,-1*K.1^14,-1*K.1^42,-1*K.1^14,-1*K.1^42,-1*K.1^46,-1*K.1^26,K.1^44,-1*K.1^22,K.1^48,K.1^12,-1*K.1^14,-1*K.1^2,-1*K.1^22,K.1^32,K.1^12,K.1^4,-1*K.1^2,K.1^36,K.1^32,-1*K.1^34,K.1^16,-1*K.1^6,K.1^24,-1*K.1^34,K.1^8,K.1^8,-1*K.1^26,K.1^48,-1*K.1^26,K.1^28,K.1^28,-1*K.1^6,-1*K.1^6,-1*K.1^42,K.1^28,K.1^44,K.1^12,-1*K.1^18,-1*K.1^46,-1*K.1^46,-1*K.1^38,K.1^36,K.1^36,-1*K.1^38,K.1^16,-1*K.1^18,-1*K.1^18,K.1^16,K.1^4,K.1^32,K.1^24,-1*K.1^22,-1*K.1^22,K.1^28,-1*K.1^34,-1*K.1^42,K.1^32,K.1^16,-1*K.1^6,-1*K.1^6,-1*K.1^14,K.1^4,-1*K.1^38,-1*K.1^18,-1*K.1^18,K.1^16,-1*K.1^26,K.1^8,K.1^48,K.1^36,-1*K.1^34,K.1^28,K.1^8,K.1^48,K.1^44,K.1^24,-1*K.1^46,-1*K.1^38,-1*K.1^46,-1*K.1^2,K.1^44,K.1^4,-1*K.1^42,K.1^32,-1*K.1^14,K.1^12,K.1^12,K.1^36,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^24,-1*K.1^36,K.1^2,K.1^6,-1*K.1^28,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^26,K.1^34,-1*K.1^28,K.1^18,K.1^38,-1*K.1^48,K.1^42,K.1^46,K.1^38,-1*K.1^44,K.1^22,-1*K.1^36,K.1^34,-1*K.1^24,-1*K.1^44,-1*K.1^44,K.1^14,-1*K.1^8,K.1^26,-1*K.1^32,-1*K.1^16,K.1^42,K.1^14,K.1^2,K.1^6,K.1^42,K.1^46,-1*K.1^24,K.1^46,-1*K.1^12,-1*K.1^4,K.1^34,K.1^22,K.1^2,K.1^6,-1*K.1^36,-1*K.1^32,-1*K.1^12,-1*K.1^12,-1*K.1^48,K.1^22,-1*K.1^32,K.1^26,K.1^22,-1*K.1^36,K.1^18,-1*K.1^4,-1*K.1^4,K.1^34,K.1^14,-1*K.1^44,-1*K.1^28,K.1^46,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^18,K.1^2,K.1^26,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^6,K.1^38,-1*K.1^48,-1*K.1^48,-1*K.1^8,K.1^38,-1*K.1^16,-1*K.1^16,K.1^18,K.1^14,K.1^42,-1*K.1^12,K.1^34,-1*K.1^24,K.1^14,-1*K.1^24,-1*K.1^44,-1*K.1^12,K.1^26,-1*K.1^36,-1*K.1^32,K.1^42,K.1^46,K.1^6,-1*K.1^28,K.1^18,-1*K.1^8,K.1^18,K.1^38,K.1^6,-1*K.1^32,-1*K.1^28,K.1^22,K.1^46,-1*K.1^36,K.1^2,K.1^42,K.1^26,-1*K.1^16,-1*K.1^44,-1*K.1^4,K.1^14,-1*K.1^4,K.1^34,-1*K.1^16,K.1^2,K.1^22,K.1^38,-1*K.1^48,-1*K.1^8,-1*K.1^48,-1*K.1^23,K.1^41,K.1^23,K.1^17,-1*K.1^43,K.1^39,-1*K.1^7,-1*K.1^9,K.1^31,K.1,-1*K.1^11,-1*K.1^7,K.1^37,K.1^3,K.1^21,-1*K.1^33,-1*K.1^29,K.1^37,-1*K.1^41,K.1^49,K.1^3,-1*K.1^37,K.1^29,K.1^11,K.1^29,K.1^9,-1*K.1^9,-1*K.1^27,K.1^39,K.1^23,-1*K.1^11,K.1^43,-1*K.1^47,-1*K.1^47,K.1^21,-1*K.1^11,-1*K.1^21,-1*K.1^41,-1*K.1^47,-1*K.1^29,-1*K.1^39,-1*K.1,-1*K.1^19,K.1^19,K.1^43,K.1^3,-1*K.1^31,-1*K.1,K.1^11,K.1^21,-1*K.1^31,K.1^41,-1*K.1^27,K.1^17,K.1,K.1^41,-1*K.1^13,-1*K.1^49,K.1^17,-1*K.1^49,K.1^33,-1*K.1^27,-1*K.1^13,K.1^9,K.1^7,K.1^13,-1*K.1^37,K.1^29,-1*K.1^39,K.1^27,K.1^9,-1*K.1^9,K.1^23,K.1^17,K.1^23,-1*K.1^17,-1*K.1^23,-1*K.1^9,K.1^13,K.1^27,-1*K.1^17,-1*K.1^23,-1*K.1^41,K.1^13,K.1^27,-1*K.1^17,K.1^49,K.1^31,K.1^37,-1*K.1^23,K.1^19,-1*K.1^19,-1*K.1^21,K.1^11,K.1^29,K.1^47,K.1^47,-1*K.1^43,K.1^39,-1*K.1^43,K.1^39,K.1^43,-1*K.1^47,K.1^31,K.1,-1*K.1^11,-1*K.1^21,-1*K.1^3,K.1^3,-1*K.1^29,-1*K.1^31,-1*K.1^3,-1*K.1^7,-1*K.1^33,K.1,K.1^19,K.1^47,-1*K.1^43,K.1^11,K.1^21,K.1^41,-1*K.1^13,-1*K.1^7,-1*K.1^33,-1*K.1^49,K.1^33,-1*K.1^29,-1*K.1^3,K.1^9,K.1^7,-1*K.1^39,-1*K.1,K.1^31,K.1^37,K.1^43,K.1^13,-1*K.1^19,-1*K.1^21,-1*K.1^39,K.1^27,-1*K.1^37,-1*K.1^31,-1*K.1,K.1^33,K.1^7,-1*K.1^37,-1*K.1^3,-1*K.1^49,K.1^33,K.1^7,-1*K.1^33,-1*K.1^27,-1*K.1^13,-1*K.1^41,K.1^49,-1*K.1^17,K.1^49,-1*K.1^19,K.1^19,K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^14,K.1^32,K.1^24,K.1^12,-1*K.1^22,-1*K.1^42,K.1^44,-1*K.1^18,K.1^36,K.1^28,-1*K.1^38,K.1^8,-1*K.1^26,K.1^16,-1*K.1^6,-1*K.1^46,K.1^4,K.1^48,-1*K.1^2,-1*K.1^34,K.1^45,K.1^15,K.1^45,K.1^15,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^5,K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^5,-1*K.1^5,-1*K.1^35,K.1^45,K.1^45,K.1^35,-1*K.1^15,K.1^35,-1*K.1^5,-1*K.1^45,-1*K.1^15,-1*K.1^45,K.1^5,K.1^35,-1*K.1^35,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^6,-1*K.1^42,K.1^48,-1*K.1^46,K.1^12,-1*K.1^26,K.1^16,-1*K.1^2,K.1^36,K.1^8,K.1^36,K.1^8,K.1^4,K.1^24,-1*K.1^6,K.1^28,-1*K.1^2,-1*K.1^38,K.1^36,K.1^48,K.1^28,-1*K.1^18,-1*K.1^38,-1*K.1^46,K.1^48,-1*K.1^14,-1*K.1^18,K.1^16,-1*K.1^34,K.1^44,-1*K.1^26,K.1^16,-1*K.1^42,-1*K.1^42,K.1^24,-1*K.1^2,K.1^24,-1*K.1^22,-1*K.1^22,K.1^44,K.1^44,K.1^8,-1*K.1^22,-1*K.1^6,-1*K.1^38,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^14,-1*K.1^14,K.1^12,-1*K.1^34,K.1^32,K.1^32,-1*K.1^34,-1*K.1^46,-1*K.1^18,-1*K.1^26,K.1^28,K.1^28,-1*K.1^22,K.1^16,K.1^8,-1*K.1^18,-1*K.1^34,K.1^44,K.1^44,K.1^36,-1*K.1^46,K.1^12,K.1^32,K.1^32,-1*K.1^34,K.1^24,-1*K.1^42,-1*K.1^2,-1*K.1^14,K.1^16,-1*K.1^22,-1*K.1^42,-1*K.1^2,-1*K.1^6,-1*K.1^26,K.1^4,K.1^12,K.1^4,K.1^48,-1*K.1^6,-1*K.1^46,K.1^8,-1*K.1^18,K.1^36,-1*K.1^38,-1*K.1^38,-1*K.1^14,K.1^24,K.1^28,K.1^48,-1*K.1^26,K.1^14,-1*K.1^48,-1*K.1^44,K.1^22,K.1^26,K.1^26,K.1^42,-1*K.1^24,-1*K.1^16,K.1^22,-1*K.1^32,-1*K.1^12,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^28,K.1^14,-1*K.1^16,K.1^26,K.1^6,K.1^6,-1*K.1^36,K.1^42,-1*K.1^24,K.1^18,K.1^34,-1*K.1^8,-1*K.1^36,-1*K.1^48,-1*K.1^44,-1*K.1^8,-1*K.1^4,K.1^26,-1*K.1^4,K.1^38,K.1^46,-1*K.1^16,-1*K.1^28,-1*K.1^48,-1*K.1^44,K.1^14,K.1^18,K.1^38,K.1^38,K.1^2,-1*K.1^28,K.1^18,-1*K.1^24,-1*K.1^28,K.1^14,-1*K.1^32,K.1^46,K.1^46,-1*K.1^16,-1*K.1^36,K.1^6,K.1^22,-1*K.1^4,K.1^38,K.1^42,K.1^34,-1*K.1^32,-1*K.1^48,-1*K.1^24,K.1^18,K.1^46,K.1^22,-1*K.1^44,-1*K.1^12,K.1^2,K.1^2,K.1^42,-1*K.1^12,K.1^34,K.1^34,-1*K.1^32,-1*K.1^36,-1*K.1^8,K.1^38,-1*K.1^16,K.1^26,-1*K.1^36,K.1^26,K.1^6,K.1^38,-1*K.1^24,K.1^14,K.1^18,-1*K.1^8,-1*K.1^4,-1*K.1^44,K.1^22,-1*K.1^32,K.1^42,-1*K.1^32,-1*K.1^12,-1*K.1^44,K.1^18,K.1^22,-1*K.1^28,-1*K.1^4,K.1^14,-1*K.1^48,-1*K.1^8,-1*K.1^24,K.1^34,K.1^6,K.1^46,-1*K.1^36,K.1^46,-1*K.1^16,K.1^34,-1*K.1^48,-1*K.1^28,-1*K.1^12,K.1^2,K.1^42,K.1^2,K.1^27,-1*K.1^9,-1*K.1^27,-1*K.1^33,K.1^7,-1*K.1^11,K.1^43,K.1^41,-1*K.1^19,-1*K.1^49,K.1^39,K.1^43,-1*K.1^13,-1*K.1^47,-1*K.1^29,K.1^17,K.1^21,-1*K.1^13,K.1^9,-1*K.1,-1*K.1^47,K.1^13,-1*K.1^21,-1*K.1^39,-1*K.1^21,-1*K.1^41,K.1^41,K.1^23,-1*K.1^11,-1*K.1^27,K.1^39,-1*K.1^7,K.1^3,K.1^3,-1*K.1^29,K.1^39,K.1^29,K.1^9,K.1^3,K.1^21,K.1^11,K.1^49,K.1^31,-1*K.1^31,-1*K.1^7,-1*K.1^47,K.1^19,K.1^49,-1*K.1^39,-1*K.1^29,K.1^19,-1*K.1^9,K.1^23,-1*K.1^33,-1*K.1^49,-1*K.1^9,K.1^37,K.1,-1*K.1^33,K.1,-1*K.1^17,K.1^23,K.1^37,-1*K.1^41,-1*K.1^43,-1*K.1^37,K.1^13,-1*K.1^21,K.1^11,-1*K.1^23,-1*K.1^41,K.1^41,-1*K.1^27,-1*K.1^33,-1*K.1^27,K.1^33,K.1^27,K.1^41,-1*K.1^37,-1*K.1^23,K.1^33,K.1^27,K.1^9,-1*K.1^37,-1*K.1^23,K.1^33,-1*K.1,-1*K.1^19,-1*K.1^13,K.1^27,-1*K.1^31,K.1^31,K.1^29,-1*K.1^39,-1*K.1^21,-1*K.1^3,-1*K.1^3,K.1^7,-1*K.1^11,K.1^7,-1*K.1^11,-1*K.1^7,K.1^3,-1*K.1^19,-1*K.1^49,K.1^39,K.1^29,K.1^47,-1*K.1^47,K.1^21,K.1^19,K.1^47,K.1^43,K.1^17,-1*K.1^49,-1*K.1^31,-1*K.1^3,K.1^7,-1*K.1^39,-1*K.1^29,-1*K.1^9,K.1^37,K.1^43,K.1^17,K.1,-1*K.1^17,K.1^21,K.1^47,-1*K.1^41,-1*K.1^43,K.1^11,K.1^49,-1*K.1^19,-1*K.1^13,-1*K.1^7,-1*K.1^37,K.1^31,K.1^29,K.1^11,-1*K.1^23,K.1^13,K.1^19,K.1^49,-1*K.1^17,-1*K.1^43,K.1^13,K.1^47,K.1,-1*K.1^17,-1*K.1^43,K.1^17,K.1^23,K.1^37,K.1^9,-1*K.1,K.1^33,-1*K.1,K.1^31,-1*K.1^31,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,K.1^10,-1*K.1^40,K.1^30,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,-1*K.1^26,-1*K.1^38,K.1^16,K.1^8,K.1^48,K.1^28,-1*K.1^46,K.1^12,K.1^24,-1*K.1^2,-1*K.1^42,-1*K.1^22,-1*K.1^34,K.1^44,K.1^4,-1*K.1^14,K.1^36,K.1^32,-1*K.1^18,-1*K.1^6,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^45,K.1^15,K.1^45,-1*K.1^35,K.1^5,K.1^15,K.1^5,-1*K.1^45,-1*K.1^45,K.1^45,K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^35,-1*K.1^15,K.1^45,K.1^5,K.1^35,K.1^5,-1*K.1^45,-1*K.1^15,K.1^15,-1*K.1^45,K.1^35,-1*K.1^35,K.1^35,K.1^4,K.1^28,K.1^32,-1*K.1^14,K.1^8,-1*K.1^34,K.1^44,-1*K.1^18,K.1^24,-1*K.1^22,K.1^24,-1*K.1^22,K.1^36,K.1^16,K.1^4,-1*K.1^2,-1*K.1^18,-1*K.1^42,K.1^24,K.1^32,-1*K.1^2,K.1^12,-1*K.1^42,-1*K.1^14,K.1^32,-1*K.1^26,K.1^12,K.1^44,-1*K.1^6,-1*K.1^46,-1*K.1^34,K.1^44,K.1^28,K.1^28,K.1^16,-1*K.1^18,K.1^16,K.1^48,K.1^48,-1*K.1^46,-1*K.1^46,-1*K.1^22,K.1^48,K.1^4,-1*K.1^42,-1*K.1^38,K.1^36,K.1^36,K.1^8,-1*K.1^26,-1*K.1^26,K.1^8,-1*K.1^6,-1*K.1^38,-1*K.1^38,-1*K.1^6,-1*K.1^14,K.1^12,-1*K.1^34,-1*K.1^2,-1*K.1^2,K.1^48,K.1^44,-1*K.1^22,K.1^12,-1*K.1^6,-1*K.1^46,-1*K.1^46,K.1^24,-1*K.1^14,K.1^8,-1*K.1^38,-1*K.1^38,-1*K.1^6,K.1^16,K.1^28,-1*K.1^18,-1*K.1^26,K.1^44,K.1^48,K.1^28,-1*K.1^18,K.1^4,-1*K.1^34,K.1^36,K.1^8,K.1^36,K.1^32,K.1^4,-1*K.1^14,-1*K.1^22,K.1^12,K.1^24,-1*K.1^42,-1*K.1^42,-1*K.1^26,K.1^16,-1*K.1^2,K.1^32,-1*K.1^34,K.1^26,-1*K.1^32,K.1^46,-1*K.1^48,K.1^34,K.1^34,-1*K.1^28,-1*K.1^16,-1*K.1^44,-1*K.1^48,K.1^38,-1*K.1^8,K.1^18,K.1^22,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^2,K.1^26,-1*K.1^44,K.1^34,-1*K.1^4,-1*K.1^4,-1*K.1^24,-1*K.1^28,-1*K.1^16,-1*K.1^12,K.1^6,K.1^22,-1*K.1^24,-1*K.1^32,K.1^46,K.1^22,-1*K.1^36,K.1^34,-1*K.1^36,K.1^42,K.1^14,-1*K.1^44,K.1^2,-1*K.1^32,K.1^46,K.1^26,-1*K.1^12,K.1^42,K.1^42,K.1^18,K.1^2,-1*K.1^12,-1*K.1^16,K.1^2,K.1^26,K.1^38,K.1^14,K.1^14,-1*K.1^44,-1*K.1^24,-1*K.1^4,-1*K.1^48,-1*K.1^36,K.1^42,-1*K.1^28,K.1^6,K.1^38,-1*K.1^32,-1*K.1^16,-1*K.1^12,K.1^14,-1*K.1^48,K.1^46,-1*K.1^8,K.1^18,K.1^18,-1*K.1^28,-1*K.1^8,K.1^6,K.1^6,K.1^38,-1*K.1^24,K.1^22,K.1^42,-1*K.1^44,K.1^34,-1*K.1^24,K.1^34,-1*K.1^4,K.1^42,-1*K.1^16,K.1^26,-1*K.1^12,K.1^22,-1*K.1^36,K.1^46,-1*K.1^48,K.1^38,-1*K.1^28,K.1^38,-1*K.1^8,K.1^46,-1*K.1^12,-1*K.1^48,K.1^2,-1*K.1^36,K.1^26,-1*K.1^32,K.1^22,-1*K.1^16,K.1^6,-1*K.1^4,K.1^14,-1*K.1^24,K.1^14,-1*K.1^44,K.1^6,-1*K.1^32,K.1^2,-1*K.1^8,K.1^18,-1*K.1^28,K.1^18,-1*K.1^43,-1*K.1^31,K.1^43,-1*K.1^47,K.1^13,-1*K.1^49,K.1^37,K.1^19,-1*K.1^21,K.1^41,K.1,K.1^37,K.1^17,K.1^23,-1*K.1^11,K.1^3,K.1^39,K.1^17,K.1^31,K.1^9,K.1^23,-1*K.1^17,-1*K.1^39,-1*K.1,-1*K.1^39,-1*K.1^19,K.1^19,-1*K.1^7,-1*K.1^49,K.1^43,K.1,-1*K.1^13,-1*K.1^27,-1*K.1^27,-1*K.1^11,K.1,K.1^11,K.1^31,-1*K.1^27,K.1^39,K.1^49,-1*K.1^41,K.1^29,-1*K.1^29,-1*K.1^13,K.1^23,K.1^21,-1*K.1^41,-1*K.1,-1*K.1^11,K.1^21,-1*K.1^31,-1*K.1^7,-1*K.1^47,K.1^41,-1*K.1^31,-1*K.1^33,-1*K.1^9,-1*K.1^47,-1*K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^33,-1*K.1^19,-1*K.1^37,K.1^33,-1*K.1^17,-1*K.1^39,K.1^49,K.1^7,-1*K.1^19,K.1^19,K.1^43,-1*K.1^47,K.1^43,K.1^47,-1*K.1^43,K.1^19,K.1^33,K.1^7,K.1^47,-1*K.1^43,K.1^31,K.1^33,K.1^7,K.1^47,K.1^9,-1*K.1^21,K.1^17,-1*K.1^43,-1*K.1^29,K.1^29,K.1^11,-1*K.1,-1*K.1^39,K.1^27,K.1^27,K.1^13,-1*K.1^49,K.1^13,-1*K.1^49,-1*K.1^13,-1*K.1^27,-1*K.1^21,K.1^41,K.1,K.1^11,-1*K.1^23,K.1^23,K.1^39,K.1^21,-1*K.1^23,K.1^37,K.1^3,K.1^41,-1*K.1^29,K.1^27,K.1^13,-1*K.1,-1*K.1^11,-1*K.1^31,-1*K.1^33,K.1^37,K.1^3,-1*K.1^9,-1*K.1^3,K.1^39,-1*K.1^23,-1*K.1^19,-1*K.1^37,K.1^49,-1*K.1^41,-1*K.1^21,K.1^17,-1*K.1^13,K.1^33,K.1^29,K.1^11,K.1^49,K.1^7,-1*K.1^17,K.1^21,-1*K.1^41,-1*K.1^3,-1*K.1^37,-1*K.1^17,-1*K.1^23,-1*K.1^9,-1*K.1^3,-1*K.1^37,K.1^3,-1*K.1^7,-1*K.1^33,K.1^31,K.1^9,K.1^47,K.1^9,K.1^29,-1*K.1^29,K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,K.1^30,K.1^24,K.1^12,-1*K.1^34,-1*K.1^42,-1*K.1^2,-1*K.1^22,K.1^4,-1*K.1^38,-1*K.1^26,K.1^48,K.1^8,K.1^28,K.1^16,-1*K.1^6,-1*K.1^46,K.1^36,-1*K.1^14,-1*K.1^18,K.1^32,K.1^44,K.1^45,K.1^15,K.1^45,K.1^15,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^5,K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^5,-1*K.1^5,-1*K.1^35,K.1^45,K.1^45,K.1^35,-1*K.1^15,K.1^35,-1*K.1^5,-1*K.1^45,-1*K.1^15,-1*K.1^45,K.1^5,K.1^35,-1*K.1^35,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,-1*K.1^46,-1*K.1^22,-1*K.1^18,K.1^36,-1*K.1^42,K.1^16,-1*K.1^6,K.1^32,-1*K.1^26,K.1^28,-1*K.1^26,K.1^28,-1*K.1^14,-1*K.1^34,-1*K.1^46,K.1^48,K.1^32,K.1^8,-1*K.1^26,-1*K.1^18,K.1^48,-1*K.1^38,K.1^8,K.1^36,-1*K.1^18,K.1^24,-1*K.1^38,-1*K.1^6,K.1^44,K.1^4,K.1^16,-1*K.1^6,-1*K.1^22,-1*K.1^22,-1*K.1^34,K.1^32,-1*K.1^34,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^28,-1*K.1^2,-1*K.1^46,K.1^8,K.1^12,-1*K.1^14,-1*K.1^14,-1*K.1^42,K.1^24,K.1^24,-1*K.1^42,K.1^44,K.1^12,K.1^12,K.1^44,K.1^36,-1*K.1^38,K.1^16,K.1^48,K.1^48,-1*K.1^2,-1*K.1^6,K.1^28,-1*K.1^38,K.1^44,K.1^4,K.1^4,-1*K.1^26,K.1^36,-1*K.1^42,K.1^12,K.1^12,K.1^44,-1*K.1^34,-1*K.1^22,K.1^32,K.1^24,-1*K.1^6,-1*K.1^2,-1*K.1^22,K.1^32,-1*K.1^46,K.1^16,-1*K.1^14,-1*K.1^42,-1*K.1^14,-1*K.1^18,-1*K.1^46,K.1^36,K.1^28,-1*K.1^38,-1*K.1^26,K.1^8,K.1^8,K.1^24,-1*K.1^34,K.1^48,-1*K.1^18,K.1^16,-1*K.1^24,K.1^18,-1*K.1^4,K.1^2,-1*K.1^16,-1*K.1^16,K.1^22,K.1^34,K.1^6,K.1^2,-1*K.1^12,K.1^42,-1*K.1^32,-1*K.1^28,K.1^14,K.1^42,K.1^46,-1*K.1^48,-1*K.1^24,K.1^6,-1*K.1^16,K.1^46,K.1^46,K.1^26,K.1^22,K.1^34,K.1^38,-1*K.1^44,-1*K.1^28,K.1^26,K.1^18,-1*K.1^4,-1*K.1^28,K.1^14,-1*K.1^16,K.1^14,-1*K.1^8,-1*K.1^36,K.1^6,-1*K.1^48,K.1^18,-1*K.1^4,-1*K.1^24,K.1^38,-1*K.1^8,-1*K.1^8,-1*K.1^32,-1*K.1^48,K.1^38,K.1^34,-1*K.1^48,-1*K.1^24,-1*K.1^12,-1*K.1^36,-1*K.1^36,K.1^6,K.1^26,K.1^46,K.1^2,K.1^14,-1*K.1^8,K.1^22,-1*K.1^44,-1*K.1^12,K.1^18,K.1^34,K.1^38,-1*K.1^36,K.1^2,-1*K.1^4,K.1^42,-1*K.1^32,-1*K.1^32,K.1^22,K.1^42,-1*K.1^44,-1*K.1^44,-1*K.1^12,K.1^26,-1*K.1^28,-1*K.1^8,K.1^6,-1*K.1^16,K.1^26,-1*K.1^16,K.1^46,-1*K.1^8,K.1^34,-1*K.1^24,K.1^38,-1*K.1^28,K.1^14,-1*K.1^4,K.1^2,-1*K.1^12,K.1^22,-1*K.1^12,K.1^42,-1*K.1^4,K.1^38,K.1^2,-1*K.1^48,K.1^14,-1*K.1^24,K.1^18,-1*K.1^28,K.1^34,-1*K.1^44,K.1^46,-1*K.1^36,K.1^26,-1*K.1^36,K.1^6,-1*K.1^44,K.1^18,-1*K.1^48,K.1^42,-1*K.1^32,K.1^22,-1*K.1^32,K.1^7,K.1^19,-1*K.1^7,K.1^3,-1*K.1^37,K.1,-1*K.1^13,-1*K.1^31,K.1^29,-1*K.1^9,-1*K.1^49,-1*K.1^13,-1*K.1^33,-1*K.1^27,K.1^39,-1*K.1^47,-1*K.1^11,-1*K.1^33,-1*K.1^19,-1*K.1^41,-1*K.1^27,K.1^33,K.1^11,K.1^49,K.1^11,K.1^31,-1*K.1^31,K.1^43,K.1,-1*K.1^7,-1*K.1^49,K.1^37,K.1^23,K.1^23,K.1^39,-1*K.1^49,-1*K.1^39,-1*K.1^19,K.1^23,-1*K.1^11,-1*K.1,K.1^9,-1*K.1^21,K.1^21,K.1^37,-1*K.1^27,-1*K.1^29,K.1^9,K.1^49,K.1^39,-1*K.1^29,K.1^19,K.1^43,K.1^3,-1*K.1^9,K.1^19,K.1^17,K.1^41,K.1^3,K.1^41,K.1^47,K.1^43,K.1^17,K.1^31,K.1^13,-1*K.1^17,K.1^33,K.1^11,-1*K.1,-1*K.1^43,K.1^31,-1*K.1^31,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^3,K.1^7,-1*K.1^31,-1*K.1^17,-1*K.1^43,-1*K.1^3,K.1^7,-1*K.1^19,-1*K.1^17,-1*K.1^43,-1*K.1^3,-1*K.1^41,K.1^29,-1*K.1^33,K.1^7,K.1^21,-1*K.1^21,-1*K.1^39,K.1^49,K.1^11,-1*K.1^23,-1*K.1^23,-1*K.1^37,K.1,-1*K.1^37,K.1,K.1^37,K.1^23,K.1^29,-1*K.1^9,-1*K.1^49,-1*K.1^39,K.1^27,-1*K.1^27,-1*K.1^11,-1*K.1^29,K.1^27,-1*K.1^13,-1*K.1^47,-1*K.1^9,K.1^21,-1*K.1^23,-1*K.1^37,K.1^49,K.1^39,K.1^19,K.1^17,-1*K.1^13,-1*K.1^47,K.1^41,K.1^47,-1*K.1^11,K.1^27,K.1^31,K.1^13,-1*K.1,K.1^9,K.1^29,-1*K.1^33,K.1^37,-1*K.1^17,-1*K.1^21,-1*K.1^39,-1*K.1,-1*K.1^43,K.1^33,-1*K.1^29,K.1^9,K.1^47,K.1^13,K.1^33,K.1^27,K.1^41,K.1^47,K.1^13,-1*K.1^47,K.1^43,K.1^17,-1*K.1^19,-1*K.1^41,-1*K.1^3,-1*K.1^41,-1*K.1^21,K.1^21,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,K.1^10,-1*K.1^40,K.1^30,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^16,K.1^8,-1*K.1^6,K.1^28,-1*K.1^18,K.1^48,K.1^36,-1*K.1^42,-1*K.1^34,K.1^32,-1*K.1^22,-1*K.1^2,K.1^44,K.1^4,-1*K.1^14,K.1^24,-1*K.1^26,K.1^12,-1*K.1^38,-1*K.1^46,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^45,K.1^15,K.1^45,-1*K.1^35,K.1^5,K.1^15,K.1^5,-1*K.1^45,-1*K.1^45,K.1^45,K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^35,-1*K.1^15,K.1^45,K.1^5,K.1^35,K.1^5,-1*K.1^45,-1*K.1^15,K.1^15,-1*K.1^45,K.1^35,-1*K.1^35,K.1^35,-1*K.1^14,K.1^48,K.1^12,K.1^24,K.1^28,K.1^44,K.1^4,-1*K.1^38,-1*K.1^34,-1*K.1^2,-1*K.1^34,-1*K.1^2,-1*K.1^26,-1*K.1^6,-1*K.1^14,K.1^32,-1*K.1^38,-1*K.1^22,-1*K.1^34,K.1^12,K.1^32,-1*K.1^42,-1*K.1^22,K.1^24,K.1^12,K.1^16,-1*K.1^42,K.1^4,-1*K.1^46,K.1^36,K.1^44,K.1^4,K.1^48,K.1^48,-1*K.1^6,-1*K.1^38,-1*K.1^6,-1*K.1^18,-1*K.1^18,K.1^36,K.1^36,-1*K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^22,K.1^8,-1*K.1^26,-1*K.1^26,K.1^28,K.1^16,K.1^16,K.1^28,-1*K.1^46,K.1^8,K.1^8,-1*K.1^46,K.1^24,-1*K.1^42,K.1^44,K.1^32,K.1^32,-1*K.1^18,K.1^4,-1*K.1^2,-1*K.1^42,-1*K.1^46,K.1^36,K.1^36,-1*K.1^34,K.1^24,K.1^28,K.1^8,K.1^8,-1*K.1^46,-1*K.1^6,K.1^48,-1*K.1^38,K.1^16,K.1^4,-1*K.1^18,K.1^48,-1*K.1^38,-1*K.1^14,K.1^44,-1*K.1^26,K.1^28,-1*K.1^26,K.1^12,-1*K.1^14,K.1^24,-1*K.1^2,-1*K.1^42,-1*K.1^34,-1*K.1^22,-1*K.1^22,K.1^16,-1*K.1^6,K.1^32,K.1^12,K.1^44,-1*K.1^16,-1*K.1^12,-1*K.1^36,K.1^18,-1*K.1^44,-1*K.1^44,-1*K.1^48,K.1^6,-1*K.1^4,K.1^18,-1*K.1^8,-1*K.1^28,K.1^38,K.1^2,K.1^26,-1*K.1^28,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^4,-1*K.1^44,K.1^14,K.1^14,K.1^34,-1*K.1^48,K.1^6,K.1^42,K.1^46,K.1^2,K.1^34,-1*K.1^12,-1*K.1^36,K.1^2,K.1^26,-1*K.1^44,K.1^26,K.1^22,-1*K.1^24,-1*K.1^4,-1*K.1^32,-1*K.1^12,-1*K.1^36,-1*K.1^16,K.1^42,K.1^22,K.1^22,K.1^38,-1*K.1^32,K.1^42,K.1^6,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^4,K.1^34,K.1^14,K.1^18,K.1^26,K.1^22,-1*K.1^48,K.1^46,-1*K.1^8,-1*K.1^12,K.1^6,K.1^42,-1*K.1^24,K.1^18,-1*K.1^36,-1*K.1^28,K.1^38,K.1^38,-1*K.1^48,-1*K.1^28,K.1^46,K.1^46,-1*K.1^8,K.1^34,K.1^2,K.1^22,-1*K.1^4,-1*K.1^44,K.1^34,-1*K.1^44,K.1^14,K.1^22,K.1^6,-1*K.1^16,K.1^42,K.1^2,K.1^26,-1*K.1^36,K.1^18,-1*K.1^8,-1*K.1^48,-1*K.1^8,-1*K.1^28,-1*K.1^36,K.1^42,K.1^18,-1*K.1^32,K.1^26,-1*K.1^16,-1*K.1^12,K.1^2,K.1^6,K.1^46,K.1^14,-1*K.1^24,K.1^34,-1*K.1^24,-1*K.1^4,K.1^46,-1*K.1^12,-1*K.1^32,-1*K.1^28,K.1^38,-1*K.1^48,K.1^38,K.1^13,K.1^21,-1*K.1^13,-1*K.1^27,K.1^33,-1*K.1^9,K.1^17,-1*K.1^29,K.1^11,-1*K.1^31,K.1^41,K.1^17,-1*K.1^47,K.1^43,K.1,K.1^23,-1*K.1^49,-1*K.1^47,-1*K.1^21,-1*K.1^19,K.1^43,K.1^47,K.1^49,-1*K.1^41,K.1^49,K.1^29,-1*K.1^29,K.1^37,-1*K.1^9,-1*K.1^13,K.1^41,-1*K.1^33,-1*K.1^7,-1*K.1^7,K.1,K.1^41,-1*K.1,-1*K.1^21,-1*K.1^7,-1*K.1^49,K.1^9,K.1^31,-1*K.1^39,K.1^39,-1*K.1^33,K.1^43,-1*K.1^11,K.1^31,-1*K.1^41,K.1,-1*K.1^11,K.1^21,K.1^37,-1*K.1^27,-1*K.1^31,K.1^21,K.1^3,K.1^19,-1*K.1^27,K.1^19,-1*K.1^23,K.1^37,K.1^3,K.1^29,-1*K.1^17,-1*K.1^3,K.1^47,K.1^49,K.1^9,-1*K.1^37,K.1^29,-1*K.1^29,-1*K.1^13,-1*K.1^27,-1*K.1^13,K.1^27,K.1^13,-1*K.1^29,-1*K.1^3,-1*K.1^37,K.1^27,K.1^13,-1*K.1^21,-1*K.1^3,-1*K.1^37,K.1^27,-1*K.1^19,K.1^11,-1*K.1^47,K.1^13,K.1^39,-1*K.1^39,-1*K.1,-1*K.1^41,K.1^49,K.1^7,K.1^7,K.1^33,-1*K.1^9,K.1^33,-1*K.1^9,-1*K.1^33,-1*K.1^7,K.1^11,-1*K.1^31,K.1^41,-1*K.1,-1*K.1^43,K.1^43,-1*K.1^49,-1*K.1^11,-1*K.1^43,K.1^17,K.1^23,-1*K.1^31,K.1^39,K.1^7,K.1^33,-1*K.1^41,K.1,K.1^21,K.1^3,K.1^17,K.1^23,K.1^19,-1*K.1^23,-1*K.1^49,-1*K.1^43,K.1^29,-1*K.1^17,K.1^9,K.1^31,K.1^11,-1*K.1^47,-1*K.1^33,-1*K.1^3,-1*K.1^39,-1*K.1,K.1^9,-1*K.1^37,K.1^47,-1*K.1^11,K.1^31,-1*K.1^23,-1*K.1^17,K.1^47,-1*K.1^43,K.1^19,-1*K.1^23,-1*K.1^17,K.1^23,K.1^37,K.1^3,-1*K.1^21,-1*K.1^19,K.1^27,-1*K.1^19,-1*K.1^39,K.1^39,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^34,-1*K.1^42,K.1^44,-1*K.1^22,K.1^32,-1*K.1^2,-1*K.1^14,K.1^8,K.1^16,-1*K.1^18,K.1^28,K.1^48,-1*K.1^6,-1*K.1^46,K.1^36,-1*K.1^26,K.1^24,-1*K.1^38,K.1^12,K.1^4,K.1^45,K.1^15,K.1^45,K.1^15,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^5,K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^5,-1*K.1^5,-1*K.1^35,K.1^45,K.1^45,K.1^35,-1*K.1^15,K.1^35,-1*K.1^5,-1*K.1^45,-1*K.1^15,-1*K.1^45,K.1^5,K.1^35,-1*K.1^35,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^36,-1*K.1^2,-1*K.1^38,-1*K.1^26,-1*K.1^22,-1*K.1^6,-1*K.1^46,K.1^12,K.1^16,K.1^48,K.1^16,K.1^48,K.1^24,K.1^44,K.1^36,-1*K.1^18,K.1^12,K.1^28,K.1^16,-1*K.1^38,-1*K.1^18,K.1^8,K.1^28,-1*K.1^26,-1*K.1^38,-1*K.1^34,K.1^8,-1*K.1^46,K.1^4,-1*K.1^14,-1*K.1^6,-1*K.1^46,-1*K.1^2,-1*K.1^2,K.1^44,K.1^12,K.1^44,K.1^32,K.1^32,-1*K.1^14,-1*K.1^14,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^42,K.1^24,K.1^24,-1*K.1^22,-1*K.1^34,-1*K.1^34,-1*K.1^22,K.1^4,-1*K.1^42,-1*K.1^42,K.1^4,-1*K.1^26,K.1^8,-1*K.1^6,-1*K.1^18,-1*K.1^18,K.1^32,-1*K.1^46,K.1^48,K.1^8,K.1^4,-1*K.1^14,-1*K.1^14,K.1^16,-1*K.1^26,-1*K.1^22,-1*K.1^42,-1*K.1^42,K.1^4,K.1^44,-1*K.1^2,K.1^12,-1*K.1^34,-1*K.1^46,K.1^32,-1*K.1^2,K.1^12,K.1^36,-1*K.1^6,K.1^24,-1*K.1^22,K.1^24,-1*K.1^38,K.1^36,-1*K.1^26,K.1^48,K.1^8,K.1^16,K.1^28,K.1^28,-1*K.1^34,K.1^44,-1*K.1^18,-1*K.1^38,-1*K.1^6,K.1^34,K.1^38,K.1^14,-1*K.1^32,K.1^6,K.1^6,K.1^2,-1*K.1^44,K.1^46,-1*K.1^32,K.1^42,K.1^22,-1*K.1^12,-1*K.1^48,-1*K.1^24,K.1^22,-1*K.1^36,K.1^18,K.1^34,K.1^46,K.1^6,-1*K.1^36,-1*K.1^36,-1*K.1^16,K.1^2,-1*K.1^44,-1*K.1^8,-1*K.1^4,-1*K.1^48,-1*K.1^16,K.1^38,K.1^14,-1*K.1^48,-1*K.1^24,K.1^6,-1*K.1^24,-1*K.1^28,K.1^26,K.1^46,K.1^18,K.1^38,K.1^14,K.1^34,-1*K.1^8,-1*K.1^28,-1*K.1^28,-1*K.1^12,K.1^18,-1*K.1^8,-1*K.1^44,K.1^18,K.1^34,K.1^42,K.1^26,K.1^26,K.1^46,-1*K.1^16,-1*K.1^36,-1*K.1^32,-1*K.1^24,-1*K.1^28,K.1^2,-1*K.1^4,K.1^42,K.1^38,-1*K.1^44,-1*K.1^8,K.1^26,-1*K.1^32,K.1^14,K.1^22,-1*K.1^12,-1*K.1^12,K.1^2,K.1^22,-1*K.1^4,-1*K.1^4,K.1^42,-1*K.1^16,-1*K.1^48,-1*K.1^28,K.1^46,K.1^6,-1*K.1^16,K.1^6,-1*K.1^36,-1*K.1^28,-1*K.1^44,K.1^34,-1*K.1^8,-1*K.1^48,-1*K.1^24,K.1^14,-1*K.1^32,K.1^42,K.1^2,K.1^42,K.1^22,K.1^14,-1*K.1^8,-1*K.1^32,K.1^18,-1*K.1^24,K.1^34,K.1^38,-1*K.1^48,-1*K.1^44,-1*K.1^4,-1*K.1^36,K.1^26,-1*K.1^16,K.1^26,K.1^46,-1*K.1^4,K.1^38,K.1^18,K.1^22,-1*K.1^12,K.1^2,-1*K.1^12,-1*K.1^37,-1*K.1^29,K.1^37,K.1^23,-1*K.1^17,K.1^41,-1*K.1^33,K.1^21,-1*K.1^39,K.1^19,-1*K.1^9,-1*K.1^33,K.1^3,-1*K.1^7,-1*K.1^49,-1*K.1^27,K.1,K.1^3,K.1^29,K.1^31,-1*K.1^7,-1*K.1^3,-1*K.1,K.1^9,-1*K.1,-1*K.1^21,K.1^21,-1*K.1^13,K.1^41,K.1^37,-1*K.1^9,K.1^17,K.1^43,K.1^43,-1*K.1^49,-1*K.1^9,K.1^49,K.1^29,K.1^43,K.1,-1*K.1^41,-1*K.1^19,K.1^11,-1*K.1^11,K.1^17,-1*K.1^7,K.1^39,-1*K.1^19,K.1^9,-1*K.1^49,K.1^39,-1*K.1^29,-1*K.1^13,K.1^23,K.1^19,-1*K.1^29,-1*K.1^47,-1*K.1^31,K.1^23,-1*K.1^31,K.1^27,-1*K.1^13,-1*K.1^47,-1*K.1^21,K.1^33,K.1^47,-1*K.1^3,-1*K.1,-1*K.1^41,K.1^13,-1*K.1^21,K.1^21,K.1^37,K.1^23,K.1^37,-1*K.1^23,-1*K.1^37,K.1^21,K.1^47,K.1^13,-1*K.1^23,-1*K.1^37,K.1^29,K.1^47,K.1^13,-1*K.1^23,K.1^31,-1*K.1^39,K.1^3,-1*K.1^37,-1*K.1^11,K.1^11,K.1^49,K.1^9,-1*K.1,-1*K.1^43,-1*K.1^43,-1*K.1^17,K.1^41,-1*K.1^17,K.1^41,K.1^17,K.1^43,-1*K.1^39,K.1^19,-1*K.1^9,K.1^49,K.1^7,-1*K.1^7,K.1,K.1^39,K.1^7,-1*K.1^33,-1*K.1^27,K.1^19,-1*K.1^11,-1*K.1^43,-1*K.1^17,K.1^9,-1*K.1^49,-1*K.1^29,-1*K.1^47,-1*K.1^33,-1*K.1^27,-1*K.1^31,K.1^27,K.1,K.1^7,-1*K.1^21,K.1^33,-1*K.1^41,-1*K.1^19,-1*K.1^39,K.1^3,K.1^17,K.1^47,K.1^11,K.1^49,-1*K.1^41,K.1^13,-1*K.1^3,K.1^39,-1*K.1^19,K.1^27,K.1^33,-1*K.1^3,K.1^7,-1*K.1^31,K.1^27,K.1^33,-1*K.1^27,-1*K.1^13,-1*K.1^47,K.1^29,K.1^31,-1*K.1^23,K.1^31,K.1^11,-1*K.1^11,-1*K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,K.1^10,-1*K.1^40,K.1^30,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,-1*K.1^46,K.1^48,K.1^36,-1*K.1^18,K.1^8,-1*K.1^38,K.1^16,-1*K.1^2,K.1^4,-1*K.1^42,K.1^32,K.1^12,-1*K.1^14,K.1^24,-1*K.1^34,K.1^44,-1*K.1^6,-1*K.1^22,K.1^28,-1*K.1^26,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^45,K.1^15,K.1^45,-1*K.1^35,K.1^5,K.1^15,K.1^5,-1*K.1^45,-1*K.1^45,K.1^45,K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^35,-1*K.1^15,K.1^45,K.1^5,K.1^35,K.1^5,-1*K.1^45,-1*K.1^15,K.1^15,-1*K.1^45,K.1^35,-1*K.1^35,K.1^35,-1*K.1^34,-1*K.1^38,-1*K.1^22,K.1^44,-1*K.1^18,-1*K.1^14,K.1^24,K.1^28,K.1^4,K.1^12,K.1^4,K.1^12,-1*K.1^6,K.1^36,-1*K.1^34,-1*K.1^42,K.1^28,K.1^32,K.1^4,-1*K.1^22,-1*K.1^42,-1*K.1^2,K.1^32,K.1^44,-1*K.1^22,-1*K.1^46,-1*K.1^2,K.1^24,-1*K.1^26,K.1^16,-1*K.1^14,K.1^24,-1*K.1^38,-1*K.1^38,K.1^36,K.1^28,K.1^36,K.1^8,K.1^8,K.1^16,K.1^16,K.1^12,K.1^8,-1*K.1^34,K.1^32,K.1^48,-1*K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^46,-1*K.1^46,-1*K.1^18,-1*K.1^26,K.1^48,K.1^48,-1*K.1^26,K.1^44,-1*K.1^2,-1*K.1^14,-1*K.1^42,-1*K.1^42,K.1^8,K.1^24,K.1^12,-1*K.1^2,-1*K.1^26,K.1^16,K.1^16,K.1^4,K.1^44,-1*K.1^18,K.1^48,K.1^48,-1*K.1^26,K.1^36,-1*K.1^38,K.1^28,-1*K.1^46,K.1^24,K.1^8,-1*K.1^38,K.1^28,-1*K.1^34,-1*K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^22,-1*K.1^34,K.1^44,K.1^12,-1*K.1^2,K.1^4,K.1^32,K.1^32,-1*K.1^46,K.1^36,-1*K.1^42,-1*K.1^22,-1*K.1^14,K.1^46,K.1^22,-1*K.1^16,-1*K.1^8,K.1^14,K.1^14,K.1^38,-1*K.1^36,-1*K.1^24,-1*K.1^8,-1*K.1^48,K.1^18,-1*K.1^28,-1*K.1^12,K.1^6,K.1^18,K.1^34,K.1^42,K.1^46,-1*K.1^24,K.1^14,K.1^34,K.1^34,-1*K.1^4,K.1^38,-1*K.1^36,K.1^2,K.1^26,-1*K.1^12,-1*K.1^4,K.1^22,-1*K.1^16,-1*K.1^12,K.1^6,K.1^14,K.1^6,-1*K.1^32,-1*K.1^44,-1*K.1^24,K.1^42,K.1^22,-1*K.1^16,K.1^46,K.1^2,-1*K.1^32,-1*K.1^32,-1*K.1^28,K.1^42,K.1^2,-1*K.1^36,K.1^42,K.1^46,-1*K.1^48,-1*K.1^44,-1*K.1^44,-1*K.1^24,-1*K.1^4,K.1^34,-1*K.1^8,K.1^6,-1*K.1^32,K.1^38,K.1^26,-1*K.1^48,K.1^22,-1*K.1^36,K.1^2,-1*K.1^44,-1*K.1^8,-1*K.1^16,K.1^18,-1*K.1^28,-1*K.1^28,K.1^38,K.1^18,K.1^26,K.1^26,-1*K.1^48,-1*K.1^4,-1*K.1^12,-1*K.1^32,-1*K.1^24,K.1^14,-1*K.1^4,K.1^14,K.1^34,-1*K.1^32,-1*K.1^36,K.1^46,K.1^2,-1*K.1^12,K.1^6,-1*K.1^16,-1*K.1^8,-1*K.1^48,K.1^38,-1*K.1^48,K.1^18,-1*K.1^16,K.1^2,-1*K.1^8,K.1^42,K.1^6,K.1^46,K.1^22,-1*K.1^12,-1*K.1^36,K.1^26,K.1^34,-1*K.1^44,-1*K.1^4,-1*K.1^44,-1*K.1^24,K.1^26,K.1^22,K.1^42,K.1^18,-1*K.1^28,K.1^38,-1*K.1^28,-1*K.1^3,K.1,K.1^3,K.1^37,-1*K.1^23,-1*K.1^29,-1*K.1^27,-1*K.1^49,-1*K.1^41,-1*K.1^11,K.1^21,-1*K.1^27,-1*K.1^7,-1*K.1^33,-1*K.1^31,-1*K.1^13,K.1^19,-1*K.1^7,-1*K.1,-1*K.1^39,-1*K.1^33,K.1^7,-1*K.1^19,-1*K.1^21,-1*K.1^19,K.1^49,-1*K.1^49,-1*K.1^47,-1*K.1^29,K.1^3,K.1^21,K.1^23,K.1^17,K.1^17,-1*K.1^31,K.1^21,K.1^31,-1*K.1,K.1^17,K.1^19,K.1^29,K.1^11,K.1^9,-1*K.1^9,K.1^23,-1*K.1^33,K.1^41,K.1^11,-1*K.1^21,-1*K.1^31,K.1^41,K.1,-1*K.1^47,K.1^37,-1*K.1^11,K.1,K.1^43,K.1^39,K.1^37,K.1^39,K.1^13,-1*K.1^47,K.1^43,K.1^49,K.1^27,-1*K.1^43,K.1^7,-1*K.1^19,K.1^29,K.1^47,K.1^49,-1*K.1^49,K.1^3,K.1^37,K.1^3,-1*K.1^37,-1*K.1^3,-1*K.1^49,-1*K.1^43,K.1^47,-1*K.1^37,-1*K.1^3,-1*K.1,-1*K.1^43,K.1^47,-1*K.1^37,-1*K.1^39,-1*K.1^41,-1*K.1^7,-1*K.1^3,-1*K.1^9,K.1^9,K.1^31,-1*K.1^21,-1*K.1^19,-1*K.1^17,-1*K.1^17,-1*K.1^23,-1*K.1^29,-1*K.1^23,-1*K.1^29,K.1^23,K.1^17,-1*K.1^41,-1*K.1^11,K.1^21,K.1^31,K.1^33,-1*K.1^33,K.1^19,K.1^41,K.1^33,-1*K.1^27,-1*K.1^13,-1*K.1^11,-1*K.1^9,-1*K.1^17,-1*K.1^23,-1*K.1^21,-1*K.1^31,K.1,K.1^43,-1*K.1^27,-1*K.1^13,K.1^39,K.1^13,K.1^19,K.1^33,K.1^49,K.1^27,K.1^29,K.1^11,-1*K.1^41,-1*K.1^7,K.1^23,-1*K.1^43,K.1^9,K.1^31,K.1^29,K.1^47,K.1^7,K.1^41,K.1^11,K.1^13,K.1^27,K.1^7,K.1^33,K.1^39,K.1^13,K.1^27,-1*K.1^13,-1*K.1^47,K.1^43,-1*K.1,-1*K.1^39,-1*K.1^37,-1*K.1^39,K.1^9,-1*K.1^9,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,K.1^30,K.1^4,-1*K.1^2,-1*K.1^14,K.1^32,-1*K.1^42,K.1^12,-1*K.1^34,K.1^48,-1*K.1^46,K.1^8,-1*K.1^18,-1*K.1^38,K.1^36,-1*K.1^26,K.1^16,-1*K.1^6,K.1^44,K.1^28,-1*K.1^22,K.1^24,K.1^45,K.1^15,K.1^45,K.1^15,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^5,K.1^15,-1*K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^5,-1*K.1^5,-1*K.1^35,K.1^45,K.1^45,K.1^35,-1*K.1^15,K.1^35,-1*K.1^5,-1*K.1^45,-1*K.1^15,-1*K.1^45,K.1^5,K.1^35,-1*K.1^35,K.1^5,-1*K.1^15,K.1^15,-1*K.1^15,K.1^16,K.1^12,K.1^28,-1*K.1^6,K.1^32,K.1^36,-1*K.1^26,-1*K.1^22,-1*K.1^46,-1*K.1^38,-1*K.1^46,-1*K.1^38,K.1^44,-1*K.1^14,K.1^16,K.1^8,-1*K.1^22,-1*K.1^18,-1*K.1^46,K.1^28,K.1^8,K.1^48,-1*K.1^18,-1*K.1^6,K.1^28,K.1^4,K.1^48,-1*K.1^26,K.1^24,-1*K.1^34,K.1^36,-1*K.1^26,K.1^12,K.1^12,-1*K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^42,-1*K.1^42,-1*K.1^34,-1*K.1^34,-1*K.1^38,-1*K.1^42,K.1^16,-1*K.1^18,-1*K.1^2,K.1^44,K.1^44,K.1^32,K.1^4,K.1^4,K.1^32,K.1^24,-1*K.1^2,-1*K.1^2,K.1^24,-1*K.1^6,K.1^48,K.1^36,K.1^8,K.1^8,-1*K.1^42,-1*K.1^26,-1*K.1^38,K.1^48,K.1^24,-1*K.1^34,-1*K.1^34,-1*K.1^46,-1*K.1^6,K.1^32,-1*K.1^2,-1*K.1^2,K.1^24,-1*K.1^14,K.1^12,-1*K.1^22,K.1^4,-1*K.1^26,-1*K.1^42,K.1^12,-1*K.1^22,K.1^16,K.1^36,K.1^44,K.1^32,K.1^44,K.1^28,K.1^16,-1*K.1^6,-1*K.1^38,K.1^48,-1*K.1^46,-1*K.1^18,-1*K.1^18,K.1^4,-1*K.1^14,K.1^8,K.1^28,K.1^36,-1*K.1^4,-1*K.1^28,K.1^34,K.1^42,-1*K.1^36,-1*K.1^36,-1*K.1^12,K.1^14,K.1^26,K.1^42,K.1^2,-1*K.1^32,K.1^22,K.1^38,-1*K.1^44,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^26,-1*K.1^36,-1*K.1^16,-1*K.1^16,K.1^46,-1*K.1^12,K.1^14,-1*K.1^48,-1*K.1^24,K.1^38,K.1^46,-1*K.1^28,K.1^34,K.1^38,-1*K.1^44,-1*K.1^36,-1*K.1^44,K.1^18,K.1^6,K.1^26,-1*K.1^8,-1*K.1^28,K.1^34,-1*K.1^4,-1*K.1^48,K.1^18,K.1^18,K.1^22,-1*K.1^8,-1*K.1^48,K.1^14,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^26,K.1^46,-1*K.1^16,K.1^42,-1*K.1^44,K.1^18,-1*K.1^12,-1*K.1^24,K.1^2,-1*K.1^28,K.1^14,-1*K.1^48,K.1^6,K.1^42,K.1^34,-1*K.1^32,K.1^22,K.1^22,-1*K.1^12,-1*K.1^32,-1*K.1^24,-1*K.1^24,K.1^2,K.1^46,K.1^38,K.1^18,K.1^26,-1*K.1^36,K.1^46,-1*K.1^36,-1*K.1^16,K.1^18,K.1^14,-1*K.1^4,-1*K.1^48,K.1^38,-1*K.1^44,K.1^34,K.1^42,K.1^2,-1*K.1^12,K.1^2,-1*K.1^32,K.1^34,-1*K.1^48,K.1^42,-1*K.1^8,-1*K.1^44,-1*K.1^4,-1*K.1^28,K.1^38,K.1^14,-1*K.1^24,-1*K.1^16,K.1^6,K.1^46,K.1^6,K.1^26,-1*K.1^24,-1*K.1^28,-1*K.1^8,-1*K.1^32,K.1^22,-1*K.1^12,K.1^22,K.1^47,-1*K.1^49,-1*K.1^47,-1*K.1^13,K.1^27,K.1^21,K.1^23,K.1,K.1^9,K.1^39,-1*K.1^29,K.1^23,K.1^43,K.1^17,K.1^19,K.1^37,-1*K.1^31,K.1^43,K.1^49,K.1^11,K.1^17,-1*K.1^43,K.1^31,K.1^29,K.1^31,-1*K.1,K.1,K.1^3,K.1^21,-1*K.1^47,-1*K.1^29,-1*K.1^27,-1*K.1^33,-1*K.1^33,K.1^19,-1*K.1^29,-1*K.1^19,K.1^49,-1*K.1^33,-1*K.1^31,-1*K.1^21,-1*K.1^39,-1*K.1^41,K.1^41,-1*K.1^27,K.1^17,-1*K.1^9,-1*K.1^39,K.1^29,K.1^19,-1*K.1^9,-1*K.1^49,K.1^3,-1*K.1^13,K.1^39,-1*K.1^49,-1*K.1^7,-1*K.1^11,-1*K.1^13,-1*K.1^11,-1*K.1^37,K.1^3,-1*K.1^7,-1*K.1,-1*K.1^23,K.1^7,-1*K.1^43,K.1^31,-1*K.1^21,-1*K.1^3,-1*K.1,K.1,-1*K.1^47,-1*K.1^13,-1*K.1^47,K.1^13,K.1^47,K.1,K.1^7,-1*K.1^3,K.1^13,K.1^47,K.1^49,K.1^7,-1*K.1^3,K.1^13,K.1^11,K.1^9,K.1^43,K.1^47,K.1^41,-1*K.1^41,-1*K.1^19,K.1^29,K.1^31,K.1^33,K.1^33,K.1^27,K.1^21,K.1^27,K.1^21,-1*K.1^27,-1*K.1^33,K.1^9,K.1^39,-1*K.1^29,-1*K.1^19,-1*K.1^17,K.1^17,-1*K.1^31,-1*K.1^9,-1*K.1^17,K.1^23,K.1^37,K.1^39,K.1^41,K.1^33,K.1^27,K.1^29,K.1^19,-1*K.1^49,-1*K.1^7,K.1^23,K.1^37,-1*K.1^11,-1*K.1^37,-1*K.1^31,-1*K.1^17,-1*K.1,-1*K.1^23,-1*K.1^21,-1*K.1^39,K.1^9,K.1^43,-1*K.1^27,K.1^7,-1*K.1^41,-1*K.1^19,-1*K.1^21,-1*K.1^3,-1*K.1^43,-1*K.1^9,-1*K.1^39,-1*K.1^37,-1*K.1^23,-1*K.1^43,-1*K.1^17,-1*K.1^11,-1*K.1^37,-1*K.1^23,K.1^37,K.1^3,-1*K.1^7,K.1^49,K.1^11,K.1^13,K.1^11,-1*K.1^41,K.1^41,K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,K.1^10,-1*K.1^40,K.1^30,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,-1*K.1^6,K.1^28,-1*K.1^46,K.1^48,-1*K.1^38,-1*K.1^18,-1*K.1^26,-1*K.1^22,K.1^44,K.1^12,-1*K.1^2,K.1^32,K.1^4,-1*K.1^14,K.1^24,-1*K.1^34,K.1^16,-1*K.1^42,K.1^8,K.1^36,K.1^5,K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^45,K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^45,K.1^45,-1*K.1^45,-1*K.1^15,K.1^5,K.1^5,K.1^15,-1*K.1^35,K.1^15,-1*K.1^45,-1*K.1^5,-1*K.1^35,-1*K.1^5,K.1^45,K.1^15,-1*K.1^15,K.1^45,-1*K.1^35,K.1^35,-1*K.1^35,K.1^24,-1*K.1^18,-1*K.1^42,-1*K.1^34,K.1^48,K.1^4,-1*K.1^14,K.1^8,K.1^44,K.1^32,K.1^44,K.1^32,K.1^16,-1*K.1^46,K.1^24,K.1^12,K.1^8,-1*K.1^2,K.1^44,-1*K.1^42,K.1^12,-1*K.1^22,-1*K.1^2,-1*K.1^34,-1*K.1^42,-1*K.1^6,-1*K.1^22,-1*K.1^14,K.1^36,-1*K.1^26,K.1^4,-1*K.1^14,-1*K.1^18,-1*K.1^18,-1*K.1^46,K.1^8,-1*K.1^46,-1*K.1^38,-1*K.1^38,-1*K.1^26,-1*K.1^26,K.1^32,-1*K.1^38,K.1^24,-1*K.1^2,K.1^28,K.1^16,K.1^16,K.1^48,-1*K.1^6,-1*K.1^6,K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^34,-1*K.1^22,K.1^4,K.1^12,K.1^12,-1*K.1^38,-1*K.1^14,K.1^32,-1*K.1^22,K.1^36,-1*K.1^26,-1*K.1^26,K.1^44,-1*K.1^34,K.1^48,K.1^28,K.1^28,K.1^36,-1*K.1^46,-1*K.1^18,K.1^8,-1*K.1^6,-1*K.1^14,-1*K.1^38,-1*K.1^18,K.1^8,K.1^24,K.1^4,K.1^16,K.1^48,K.1^16,-1*K.1^42,K.1^24,-1*K.1^34,K.1^32,-1*K.1^22,K.1^44,-1*K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^46,K.1^12,-1*K.1^42,K.1^4,K.1^6,K.1^42,K.1^26,K.1^38,-1*K.1^4,-1*K.1^4,K.1^18,K.1^46,K.1^14,K.1^38,-1*K.1^28,-1*K.1^48,-1*K.1^8,-1*K.1^32,-1*K.1^16,-1*K.1^48,-1*K.1^24,-1*K.1^12,K.1^6,K.1^14,-1*K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^44,K.1^18,K.1^46,K.1^22,-1*K.1^36,-1*K.1^32,-1*K.1^44,K.1^42,K.1^26,-1*K.1^32,-1*K.1^16,-1*K.1^4,-1*K.1^16,K.1^2,K.1^34,K.1^14,-1*K.1^12,K.1^42,K.1^26,K.1^6,K.1^22,K.1^2,K.1^2,-1*K.1^8,-1*K.1^12,K.1^22,K.1^46,-1*K.1^12,K.1^6,-1*K.1^28,K.1^34,K.1^34,K.1^14,-1*K.1^44,-1*K.1^24,K.1^38,-1*K.1^16,K.1^2,K.1^18,-1*K.1^36,-1*K.1^28,K.1^42,K.1^46,K.1^22,K.1^34,K.1^38,K.1^26,-1*K.1^48,-1*K.1^8,-1*K.1^8,K.1^18,-1*K.1^48,-1*K.1^36,-1*K.1^36,-1*K.1^28,-1*K.1^44,-1*K.1^32,K.1^2,K.1^14,-1*K.1^4,-1*K.1^44,-1*K.1^4,-1*K.1^24,K.1^2,K.1^46,K.1^6,K.1^22,-1*K.1^32,-1*K.1^16,K.1^26,K.1^38,-1*K.1^28,K.1^18,-1*K.1^28,-1*K.1^48,K.1^26,K.1^22,K.1^38,-1*K.1^12,-1*K.1^16,K.1^6,K.1^42,-1*K.1^32,K.1^46,-1*K.1^36,-1*K.1^24,K.1^34,-1*K.1^44,K.1^34,K.1^14,-1*K.1^36,K.1^42,-1*K.1^12,-1*K.1^48,-1*K.1^8,K.1^18,-1*K.1^8,-1*K.1^33,K.1^11,K.1^33,K.1^7,K.1^3,-1*K.1^19,K.1^47,-1*K.1^39,K.1,-1*K.1^21,K.1^31,K.1^47,K.1^27,K.1^13,-1*K.1^41,-1*K.1^43,K.1^9,K.1^27,-1*K.1^11,-1*K.1^29,K.1^13,-1*K.1^27,-1*K.1^9,-1*K.1^31,-1*K.1^9,K.1^39,-1*K.1^39,-1*K.1^17,-1*K.1^19,K.1^33,K.1^31,-1*K.1^3,-1*K.1^37,-1*K.1^37,-1*K.1^41,K.1^31,K.1^41,-1*K.1^11,-1*K.1^37,K.1^9,K.1^19,K.1^21,-1*K.1^49,K.1^49,-1*K.1^3,K.1^13,-1*K.1,K.1^21,-1*K.1^31,-1*K.1^41,-1*K.1,K.1^11,-1*K.1^17,K.1^7,-1*K.1^21,K.1^11,-1*K.1^23,K.1^29,K.1^7,K.1^29,K.1^43,-1*K.1^17,-1*K.1^23,K.1^39,-1*K.1^47,K.1^23,-1*K.1^27,-1*K.1^9,K.1^19,K.1^17,K.1^39,-1*K.1^39,K.1^33,K.1^7,K.1^33,-1*K.1^7,-1*K.1^33,-1*K.1^39,K.1^23,K.1^17,-1*K.1^7,-1*K.1^33,-1*K.1^11,K.1^23,K.1^17,-1*K.1^7,-1*K.1^29,K.1,K.1^27,-1*K.1^33,K.1^49,-1*K.1^49,K.1^41,-1*K.1^31,-1*K.1^9,K.1^37,K.1^37,K.1^3,-1*K.1^19,K.1^3,-1*K.1^19,-1*K.1^3,-1*K.1^37,K.1,-1*K.1^21,K.1^31,K.1^41,-1*K.1^13,K.1^13,K.1^9,-1*K.1,-1*K.1^13,K.1^47,-1*K.1^43,-1*K.1^21,K.1^49,K.1^37,K.1^3,-1*K.1^31,-1*K.1^41,K.1^11,-1*K.1^23,K.1^47,-1*K.1^43,K.1^29,K.1^43,K.1^9,-1*K.1^13,K.1^39,-1*K.1^47,K.1^19,K.1^21,K.1,K.1^27,-1*K.1^3,K.1^23,-1*K.1^49,K.1^41,K.1^19,K.1^17,-1*K.1^27,-1*K.1,K.1^21,K.1^43,-1*K.1^47,-1*K.1^27,-1*K.1^13,K.1^29,K.1^43,-1*K.1^47,-1*K.1^43,-1*K.1^17,-1*K.1^23,-1*K.1^11,-1*K.1^29,-1*K.1^7,-1*K.1^29,-1*K.1^49,K.1^49,K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,K.1^30,K.1^44,-1*K.1^22,K.1^4,-1*K.1^2,K.1^12,K.1^32,K.1^24,K.1^28,-1*K.1^6,-1*K.1^38,K.1^48,-1*K.1^18,-1*K.1^46,K.1^36,-1*K.1^26,K.1^16,-1*K.1^34,K.1^8,-1*K.1^42,-1*K.1^14,-1*K.1^45,-1*K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^35,K.1^5,K.1^35,K.1^5,-1*K.1^15,K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^5,K.1^5,K.1^35,-1*K.1^45,-1*K.1^45,-1*K.1^35,K.1^15,-1*K.1^35,K.1^5,K.1^45,K.1^15,K.1^45,-1*K.1^5,-1*K.1^35,K.1^35,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^26,K.1^32,K.1^8,K.1^16,-1*K.1^2,-1*K.1^46,K.1^36,-1*K.1^42,-1*K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^18,-1*K.1^34,K.1^4,-1*K.1^26,-1*K.1^38,-1*K.1^42,K.1^48,-1*K.1^6,K.1^8,-1*K.1^38,K.1^28,K.1^48,K.1^16,K.1^8,K.1^44,K.1^28,K.1^36,-1*K.1^14,K.1^24,-1*K.1^46,K.1^36,K.1^32,K.1^32,K.1^4,-1*K.1^42,K.1^4,K.1^12,K.1^12,K.1^24,K.1^24,-1*K.1^18,K.1^12,-1*K.1^26,K.1^48,-1*K.1^22,-1*K.1^34,-1*K.1^34,-1*K.1^2,K.1^44,K.1^44,-1*K.1^2,-1*K.1^14,-1*K.1^22,-1*K.1^22,-1*K.1^14,K.1^16,K.1^28,-1*K.1^46,-1*K.1^38,-1*K.1^38,K.1^12,K.1^36,-1*K.1^18,K.1^28,-1*K.1^14,K.1^24,K.1^24,-1*K.1^6,K.1^16,-1*K.1^2,-1*K.1^22,-1*K.1^22,-1*K.1^14,K.1^4,K.1^32,-1*K.1^42,K.1^44,K.1^36,K.1^12,K.1^32,-1*K.1^42,-1*K.1^26,-1*K.1^46,-1*K.1^34,-1*K.1^2,-1*K.1^34,K.1^8,-1*K.1^26,K.1^16,-1*K.1^18,K.1^28,-1*K.1^6,K.1^48,K.1^48,K.1^44,K.1^4,-1*K.1^38,K.1^8,-1*K.1^46,-1*K.1^44,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^46,K.1^46,-1*K.1^32,-1*K.1^4,-1*K.1^36,-1*K.1^12,K.1^22,K.1^2,K.1^42,K.1^18,K.1^34,K.1^2,K.1^26,K.1^38,-1*K.1^44,-1*K.1^36,K.1^46,K.1^26,K.1^26,K.1^6,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^14,K.1^18,K.1^6,-1*K.1^8,-1*K.1^24,K.1^18,K.1^34,K.1^46,K.1^34,-1*K.1^48,-1*K.1^16,-1*K.1^36,K.1^38,-1*K.1^8,-1*K.1^24,-1*K.1^44,-1*K.1^28,-1*K.1^48,-1*K.1^48,K.1^42,K.1^38,-1*K.1^28,-1*K.1^4,K.1^38,-1*K.1^44,K.1^22,-1*K.1^16,-1*K.1^16,-1*K.1^36,K.1^6,K.1^26,-1*K.1^12,K.1^34,-1*K.1^48,-1*K.1^32,K.1^14,K.1^22,-1*K.1^8,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^12,-1*K.1^24,K.1^2,K.1^42,K.1^42,-1*K.1^32,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,K.1^18,-1*K.1^48,-1*K.1^36,K.1^46,K.1^6,K.1^46,K.1^26,-1*K.1^48,-1*K.1^4,-1*K.1^44,-1*K.1^28,K.1^18,K.1^34,-1*K.1^24,-1*K.1^12,K.1^22,-1*K.1^32,K.1^22,K.1^2,-1*K.1^24,-1*K.1^28,-1*K.1^12,K.1^38,K.1^34,-1*K.1^44,-1*K.1^8,K.1^18,-1*K.1^4,K.1^14,K.1^26,-1*K.1^16,K.1^6,-1*K.1^16,-1*K.1^36,K.1^14,-1*K.1^8,K.1^38,K.1^2,K.1^42,-1*K.1^32,K.1^42,K.1^17,-1*K.1^39,-1*K.1^17,-1*K.1^43,-1*K.1^47,K.1^31,-1*K.1^3,K.1^11,-1*K.1^49,K.1^29,-1*K.1^19,-1*K.1^3,-1*K.1^23,-1*K.1^37,K.1^9,K.1^7,-1*K.1^41,-1*K.1^23,K.1^39,K.1^21,-1*K.1^37,K.1^23,K.1^41,K.1^19,K.1^41,-1*K.1^11,K.1^11,K.1^33,K.1^31,-1*K.1^17,-1*K.1^19,K.1^47,K.1^13,K.1^13,K.1^9,-1*K.1^19,-1*K.1^9,K.1^39,K.1^13,-1*K.1^41,-1*K.1^31,-1*K.1^29,K.1,-1*K.1,K.1^47,-1*K.1^37,K.1^49,-1*K.1^29,K.1^19,K.1^9,K.1^49,-1*K.1^39,K.1^33,-1*K.1^43,K.1^29,-1*K.1^39,K.1^27,-1*K.1^21,-1*K.1^43,-1*K.1^21,-1*K.1^7,K.1^33,K.1^27,-1*K.1^11,K.1^3,-1*K.1^27,K.1^23,K.1^41,-1*K.1^31,-1*K.1^33,-1*K.1^11,K.1^11,-1*K.1^17,-1*K.1^43,-1*K.1^17,K.1^43,K.1^17,K.1^11,-1*K.1^27,-1*K.1^33,K.1^43,K.1^17,K.1^39,-1*K.1^27,-1*K.1^33,K.1^43,K.1^21,-1*K.1^49,-1*K.1^23,K.1^17,-1*K.1,K.1,-1*K.1^9,K.1^19,K.1^41,-1*K.1^13,-1*K.1^13,-1*K.1^47,K.1^31,-1*K.1^47,K.1^31,K.1^47,K.1^13,-1*K.1^49,K.1^29,-1*K.1^19,-1*K.1^9,K.1^37,-1*K.1^37,-1*K.1^41,K.1^49,K.1^37,-1*K.1^3,K.1^7,K.1^29,-1*K.1,-1*K.1^13,-1*K.1^47,K.1^19,K.1^9,-1*K.1^39,K.1^27,-1*K.1^3,K.1^7,-1*K.1^21,-1*K.1^7,-1*K.1^41,K.1^37,-1*K.1^11,K.1^3,-1*K.1^31,-1*K.1^29,-1*K.1^49,-1*K.1^23,K.1^47,-1*K.1^27,K.1,-1*K.1^9,-1*K.1^31,-1*K.1^33,K.1^23,K.1^49,-1*K.1^29,-1*K.1^7,K.1^3,K.1^23,K.1^37,-1*K.1^21,-1*K.1^7,K.1^3,K.1^7,K.1^33,K.1^27,K.1^39,K.1^21,K.1^43,K.1^21,K.1,-1*K.1,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,K.1^10,-1*K.1^40,K.1^30,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^36,-1*K.1^18,-1*K.1^26,-1*K.1^38,K.1^28,K.1^8,-1*K.1^6,K.1^32,-1*K.1^14,-1*K.1^22,K.1^12,-1*K.1^42,K.1^24,-1*K.1^34,K.1^44,K.1^4,-1*K.1^46,-1*K.1^2,K.1^48,K.1^16,K.1^5,K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^45,K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^45,K.1^45,-1*K.1^45,-1*K.1^15,K.1^5,K.1^5,K.1^15,-1*K.1^35,K.1^15,-1*K.1^45,-1*K.1^5,-1*K.1^35,-1*K.1^5,K.1^45,K.1^15,-1*K.1^15,K.1^45,-1*K.1^35,K.1^35,-1*K.1^35,K.1^44,K.1^8,-1*K.1^2,K.1^4,-1*K.1^38,K.1^24,-1*K.1^34,K.1^48,-1*K.1^14,-1*K.1^42,-1*K.1^14,-1*K.1^42,-1*K.1^46,-1*K.1^26,K.1^44,-1*K.1^22,K.1^48,K.1^12,-1*K.1^14,-1*K.1^2,-1*K.1^22,K.1^32,K.1^12,K.1^4,-1*K.1^2,K.1^36,K.1^32,-1*K.1^34,K.1^16,-1*K.1^6,K.1^24,-1*K.1^34,K.1^8,K.1^8,-1*K.1^26,K.1^48,-1*K.1^26,K.1^28,K.1^28,-1*K.1^6,-1*K.1^6,-1*K.1^42,K.1^28,K.1^44,K.1^12,-1*K.1^18,-1*K.1^46,-1*K.1^46,-1*K.1^38,K.1^36,K.1^36,-1*K.1^38,K.1^16,-1*K.1^18,-1*K.1^18,K.1^16,K.1^4,K.1^32,K.1^24,-1*K.1^22,-1*K.1^22,K.1^28,-1*K.1^34,-1*K.1^42,K.1^32,K.1^16,-1*K.1^6,-1*K.1^6,-1*K.1^14,K.1^4,-1*K.1^38,-1*K.1^18,-1*K.1^18,K.1^16,-1*K.1^26,K.1^8,K.1^48,K.1^36,-1*K.1^34,K.1^28,K.1^8,K.1^48,K.1^44,K.1^24,-1*K.1^46,-1*K.1^38,-1*K.1^46,-1*K.1^2,K.1^44,K.1^4,-1*K.1^42,K.1^32,-1*K.1^14,K.1^12,K.1^12,K.1^36,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^24,-1*K.1^36,K.1^2,K.1^6,-1*K.1^28,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^26,K.1^34,-1*K.1^28,K.1^18,K.1^38,-1*K.1^48,K.1^42,K.1^46,K.1^38,-1*K.1^44,K.1^22,-1*K.1^36,K.1^34,-1*K.1^24,-1*K.1^44,-1*K.1^44,K.1^14,-1*K.1^8,K.1^26,-1*K.1^32,-1*K.1^16,K.1^42,K.1^14,K.1^2,K.1^6,K.1^42,K.1^46,-1*K.1^24,K.1^46,-1*K.1^12,-1*K.1^4,K.1^34,K.1^22,K.1^2,K.1^6,-1*K.1^36,-1*K.1^32,-1*K.1^12,-1*K.1^12,-1*K.1^48,K.1^22,-1*K.1^32,K.1^26,K.1^22,-1*K.1^36,K.1^18,-1*K.1^4,-1*K.1^4,K.1^34,K.1^14,-1*K.1^44,-1*K.1^28,K.1^46,-1*K.1^12,-1*K.1^8,-1*K.1^16,K.1^18,K.1^2,K.1^26,-1*K.1^32,-1*K.1^4,-1*K.1^28,K.1^6,K.1^38,-1*K.1^48,-1*K.1^48,-1*K.1^8,K.1^38,-1*K.1^16,-1*K.1^16,K.1^18,K.1^14,K.1^42,-1*K.1^12,K.1^34,-1*K.1^24,K.1^14,-1*K.1^24,-1*K.1^44,-1*K.1^12,K.1^26,-1*K.1^36,-1*K.1^32,K.1^42,K.1^46,K.1^6,-1*K.1^28,K.1^18,-1*K.1^8,K.1^18,K.1^38,K.1^6,-1*K.1^32,-1*K.1^28,K.1^22,K.1^46,-1*K.1^36,K.1^2,K.1^42,K.1^26,-1*K.1^16,-1*K.1^44,-1*K.1^4,K.1^14,-1*K.1^4,K.1^34,-1*K.1^16,K.1^2,K.1^22,K.1^38,-1*K.1^48,-1*K.1^8,-1*K.1^48,K.1^23,-1*K.1^41,-1*K.1^23,-1*K.1^17,K.1^43,-1*K.1^39,K.1^7,K.1^9,-1*K.1^31,-1*K.1,K.1^11,K.1^7,-1*K.1^37,-1*K.1^3,-1*K.1^21,K.1^33,K.1^29,-1*K.1^37,K.1^41,-1*K.1^49,-1*K.1^3,K.1^37,-1*K.1^29,-1*K.1^11,-1*K.1^29,-1*K.1^9,K.1^9,K.1^27,-1*K.1^39,-1*K.1^23,K.1^11,-1*K.1^43,K.1^47,K.1^47,-1*K.1^21,K.1^11,K.1^21,K.1^41,K.1^47,K.1^29,K.1^39,K.1,K.1^19,-1*K.1^19,-1*K.1^43,-1*K.1^3,K.1^31,K.1,-1*K.1^11,-1*K.1^21,K.1^31,-1*K.1^41,K.1^27,-1*K.1^17,-1*K.1,-1*K.1^41,K.1^13,K.1^49,-1*K.1^17,K.1^49,-1*K.1^33,K.1^27,K.1^13,-1*K.1^9,-1*K.1^7,-1*K.1^13,K.1^37,-1*K.1^29,K.1^39,-1*K.1^27,-1*K.1^9,K.1^9,-1*K.1^23,-1*K.1^17,-1*K.1^23,K.1^17,K.1^23,K.1^9,-1*K.1^13,-1*K.1^27,K.1^17,K.1^23,K.1^41,-1*K.1^13,-1*K.1^27,K.1^17,-1*K.1^49,-1*K.1^31,-1*K.1^37,K.1^23,-1*K.1^19,K.1^19,K.1^21,-1*K.1^11,-1*K.1^29,-1*K.1^47,-1*K.1^47,K.1^43,-1*K.1^39,K.1^43,-1*K.1^39,-1*K.1^43,K.1^47,-1*K.1^31,-1*K.1,K.1^11,K.1^21,K.1^3,-1*K.1^3,K.1^29,K.1^31,K.1^3,K.1^7,K.1^33,-1*K.1,-1*K.1^19,-1*K.1^47,K.1^43,-1*K.1^11,-1*K.1^21,-1*K.1^41,K.1^13,K.1^7,K.1^33,K.1^49,-1*K.1^33,K.1^29,K.1^3,-1*K.1^9,-1*K.1^7,K.1^39,K.1,-1*K.1^31,-1*K.1^37,-1*K.1^43,-1*K.1^13,K.1^19,K.1^21,K.1^39,-1*K.1^27,K.1^37,K.1^31,K.1,-1*K.1^33,-1*K.1^7,K.1^37,K.1^3,K.1^49,-1*K.1^33,-1*K.1^7,K.1^33,K.1^27,K.1^13,K.1^41,-1*K.1^49,K.1^17,-1*K.1^49,K.1^19,-1*K.1^19,-1*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^14,K.1^32,K.1^24,K.1^12,-1*K.1^22,-1*K.1^42,K.1^44,-1*K.1^18,K.1^36,K.1^28,-1*K.1^38,K.1^8,-1*K.1^26,K.1^16,-1*K.1^6,-1*K.1^46,K.1^4,K.1^48,-1*K.1^2,-1*K.1^34,-1*K.1^45,-1*K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^35,K.1^5,K.1^35,K.1^5,-1*K.1^15,K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^5,K.1^5,K.1^35,-1*K.1^45,-1*K.1^45,-1*K.1^35,K.1^15,-1*K.1^35,K.1^5,K.1^45,K.1^15,K.1^45,-1*K.1^5,-1*K.1^35,K.1^35,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^6,-1*K.1^42,K.1^48,-1*K.1^46,K.1^12,-1*K.1^26,K.1^16,-1*K.1^2,K.1^36,K.1^8,K.1^36,K.1^8,K.1^4,K.1^24,-1*K.1^6,K.1^28,-1*K.1^2,-1*K.1^38,K.1^36,K.1^48,K.1^28,-1*K.1^18,-1*K.1^38,-1*K.1^46,K.1^48,-1*K.1^14,-1*K.1^18,K.1^16,-1*K.1^34,K.1^44,-1*K.1^26,K.1^16,-1*K.1^42,-1*K.1^42,K.1^24,-1*K.1^2,K.1^24,-1*K.1^22,-1*K.1^22,K.1^44,K.1^44,K.1^8,-1*K.1^22,-1*K.1^6,-1*K.1^38,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^14,-1*K.1^14,K.1^12,-1*K.1^34,K.1^32,K.1^32,-1*K.1^34,-1*K.1^46,-1*K.1^18,-1*K.1^26,K.1^28,K.1^28,-1*K.1^22,K.1^16,K.1^8,-1*K.1^18,-1*K.1^34,K.1^44,K.1^44,K.1^36,-1*K.1^46,K.1^12,K.1^32,K.1^32,-1*K.1^34,K.1^24,-1*K.1^42,-1*K.1^2,-1*K.1^14,K.1^16,-1*K.1^22,-1*K.1^42,-1*K.1^2,-1*K.1^6,-1*K.1^26,K.1^4,K.1^12,K.1^4,K.1^48,-1*K.1^6,-1*K.1^46,K.1^8,-1*K.1^18,K.1^36,-1*K.1^38,-1*K.1^38,-1*K.1^14,K.1^24,K.1^28,K.1^48,-1*K.1^26,K.1^14,-1*K.1^48,-1*K.1^44,K.1^22,K.1^26,K.1^26,K.1^42,-1*K.1^24,-1*K.1^16,K.1^22,-1*K.1^32,-1*K.1^12,K.1^2,-1*K.1^8,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^28,K.1^14,-1*K.1^16,K.1^26,K.1^6,K.1^6,-1*K.1^36,K.1^42,-1*K.1^24,K.1^18,K.1^34,-1*K.1^8,-1*K.1^36,-1*K.1^48,-1*K.1^44,-1*K.1^8,-1*K.1^4,K.1^26,-1*K.1^4,K.1^38,K.1^46,-1*K.1^16,-1*K.1^28,-1*K.1^48,-1*K.1^44,K.1^14,K.1^18,K.1^38,K.1^38,K.1^2,-1*K.1^28,K.1^18,-1*K.1^24,-1*K.1^28,K.1^14,-1*K.1^32,K.1^46,K.1^46,-1*K.1^16,-1*K.1^36,K.1^6,K.1^22,-1*K.1^4,K.1^38,K.1^42,K.1^34,-1*K.1^32,-1*K.1^48,-1*K.1^24,K.1^18,K.1^46,K.1^22,-1*K.1^44,-1*K.1^12,K.1^2,K.1^2,K.1^42,-1*K.1^12,K.1^34,K.1^34,-1*K.1^32,-1*K.1^36,-1*K.1^8,K.1^38,-1*K.1^16,K.1^26,-1*K.1^36,K.1^26,K.1^6,K.1^38,-1*K.1^24,K.1^14,K.1^18,-1*K.1^8,-1*K.1^4,-1*K.1^44,K.1^22,-1*K.1^32,K.1^42,-1*K.1^32,-1*K.1^12,-1*K.1^44,K.1^18,K.1^22,-1*K.1^28,-1*K.1^4,K.1^14,-1*K.1^48,-1*K.1^8,-1*K.1^24,K.1^34,K.1^6,K.1^46,-1*K.1^36,K.1^46,-1*K.1^16,K.1^34,-1*K.1^48,-1*K.1^28,-1*K.1^12,K.1^2,K.1^42,K.1^2,-1*K.1^27,K.1^9,K.1^27,K.1^33,-1*K.1^7,K.1^11,-1*K.1^43,-1*K.1^41,K.1^19,K.1^49,-1*K.1^39,-1*K.1^43,K.1^13,K.1^47,K.1^29,-1*K.1^17,-1*K.1^21,K.1^13,-1*K.1^9,K.1,K.1^47,-1*K.1^13,K.1^21,K.1^39,K.1^21,K.1^41,-1*K.1^41,-1*K.1^23,K.1^11,K.1^27,-1*K.1^39,K.1^7,-1*K.1^3,-1*K.1^3,K.1^29,-1*K.1^39,-1*K.1^29,-1*K.1^9,-1*K.1^3,-1*K.1^21,-1*K.1^11,-1*K.1^49,-1*K.1^31,K.1^31,K.1^7,K.1^47,-1*K.1^19,-1*K.1^49,K.1^39,K.1^29,-1*K.1^19,K.1^9,-1*K.1^23,K.1^33,K.1^49,K.1^9,-1*K.1^37,-1*K.1,K.1^33,-1*K.1,K.1^17,-1*K.1^23,-1*K.1^37,K.1^41,K.1^43,K.1^37,-1*K.1^13,K.1^21,-1*K.1^11,K.1^23,K.1^41,-1*K.1^41,K.1^27,K.1^33,K.1^27,-1*K.1^33,-1*K.1^27,-1*K.1^41,K.1^37,K.1^23,-1*K.1^33,-1*K.1^27,-1*K.1^9,K.1^37,K.1^23,-1*K.1^33,K.1,K.1^19,K.1^13,-1*K.1^27,K.1^31,-1*K.1^31,-1*K.1^29,K.1^39,K.1^21,K.1^3,K.1^3,-1*K.1^7,K.1^11,-1*K.1^7,K.1^11,K.1^7,-1*K.1^3,K.1^19,K.1^49,-1*K.1^39,-1*K.1^29,-1*K.1^47,K.1^47,-1*K.1^21,-1*K.1^19,-1*K.1^47,-1*K.1^43,-1*K.1^17,K.1^49,K.1^31,K.1^3,-1*K.1^7,K.1^39,K.1^29,K.1^9,-1*K.1^37,-1*K.1^43,-1*K.1^17,-1*K.1,K.1^17,-1*K.1^21,-1*K.1^47,K.1^41,K.1^43,-1*K.1^11,-1*K.1^49,K.1^19,K.1^13,K.1^7,K.1^37,-1*K.1^31,-1*K.1^29,-1*K.1^11,K.1^23,-1*K.1^13,-1*K.1^19,-1*K.1^49,K.1^17,K.1^43,-1*K.1^13,-1*K.1^47,-1*K.1,K.1^17,K.1^43,-1*K.1^17,-1*K.1^23,-1*K.1^37,-1*K.1^9,K.1,-1*K.1^33,K.1,-1*K.1^31,K.1^31,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,K.1^10,-1*K.1^40,K.1^30,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,-1*K.1^26,-1*K.1^38,K.1^16,K.1^8,K.1^48,K.1^28,-1*K.1^46,K.1^12,K.1^24,-1*K.1^2,-1*K.1^42,-1*K.1^22,-1*K.1^34,K.1^44,K.1^4,-1*K.1^14,K.1^36,K.1^32,-1*K.1^18,-1*K.1^6,K.1^5,K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^45,K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^45,K.1^45,-1*K.1^45,-1*K.1^15,K.1^5,K.1^5,K.1^15,-1*K.1^35,K.1^15,-1*K.1^45,-1*K.1^5,-1*K.1^35,-1*K.1^5,K.1^45,K.1^15,-1*K.1^15,K.1^45,-1*K.1^35,K.1^35,-1*K.1^35,K.1^4,K.1^28,K.1^32,-1*K.1^14,K.1^8,-1*K.1^34,K.1^44,-1*K.1^18,K.1^24,-1*K.1^22,K.1^24,-1*K.1^22,K.1^36,K.1^16,K.1^4,-1*K.1^2,-1*K.1^18,-1*K.1^42,K.1^24,K.1^32,-1*K.1^2,K.1^12,-1*K.1^42,-1*K.1^14,K.1^32,-1*K.1^26,K.1^12,K.1^44,-1*K.1^6,-1*K.1^46,-1*K.1^34,K.1^44,K.1^28,K.1^28,K.1^16,-1*K.1^18,K.1^16,K.1^48,K.1^48,-1*K.1^46,-1*K.1^46,-1*K.1^22,K.1^48,K.1^4,-1*K.1^42,-1*K.1^38,K.1^36,K.1^36,K.1^8,-1*K.1^26,-1*K.1^26,K.1^8,-1*K.1^6,-1*K.1^38,-1*K.1^38,-1*K.1^6,-1*K.1^14,K.1^12,-1*K.1^34,-1*K.1^2,-1*K.1^2,K.1^48,K.1^44,-1*K.1^22,K.1^12,-1*K.1^6,-1*K.1^46,-1*K.1^46,K.1^24,-1*K.1^14,K.1^8,-1*K.1^38,-1*K.1^38,-1*K.1^6,K.1^16,K.1^28,-1*K.1^18,-1*K.1^26,K.1^44,K.1^48,K.1^28,-1*K.1^18,K.1^4,-1*K.1^34,K.1^36,K.1^8,K.1^36,K.1^32,K.1^4,-1*K.1^14,-1*K.1^22,K.1^12,K.1^24,-1*K.1^42,-1*K.1^42,-1*K.1^26,K.1^16,-1*K.1^2,K.1^32,-1*K.1^34,K.1^26,-1*K.1^32,K.1^46,-1*K.1^48,K.1^34,K.1^34,-1*K.1^28,-1*K.1^16,-1*K.1^44,-1*K.1^48,K.1^38,-1*K.1^8,K.1^18,K.1^22,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^2,K.1^26,-1*K.1^44,K.1^34,-1*K.1^4,-1*K.1^4,-1*K.1^24,-1*K.1^28,-1*K.1^16,-1*K.1^12,K.1^6,K.1^22,-1*K.1^24,-1*K.1^32,K.1^46,K.1^22,-1*K.1^36,K.1^34,-1*K.1^36,K.1^42,K.1^14,-1*K.1^44,K.1^2,-1*K.1^32,K.1^46,K.1^26,-1*K.1^12,K.1^42,K.1^42,K.1^18,K.1^2,-1*K.1^12,-1*K.1^16,K.1^2,K.1^26,K.1^38,K.1^14,K.1^14,-1*K.1^44,-1*K.1^24,-1*K.1^4,-1*K.1^48,-1*K.1^36,K.1^42,-1*K.1^28,K.1^6,K.1^38,-1*K.1^32,-1*K.1^16,-1*K.1^12,K.1^14,-1*K.1^48,K.1^46,-1*K.1^8,K.1^18,K.1^18,-1*K.1^28,-1*K.1^8,K.1^6,K.1^6,K.1^38,-1*K.1^24,K.1^22,K.1^42,-1*K.1^44,K.1^34,-1*K.1^24,K.1^34,-1*K.1^4,K.1^42,-1*K.1^16,K.1^26,-1*K.1^12,K.1^22,-1*K.1^36,K.1^46,-1*K.1^48,K.1^38,-1*K.1^28,K.1^38,-1*K.1^8,K.1^46,-1*K.1^12,-1*K.1^48,K.1^2,-1*K.1^36,K.1^26,-1*K.1^32,K.1^22,-1*K.1^16,K.1^6,-1*K.1^4,K.1^14,-1*K.1^24,K.1^14,-1*K.1^44,K.1^6,-1*K.1^32,K.1^2,-1*K.1^8,K.1^18,-1*K.1^28,K.1^18,K.1^43,K.1^31,-1*K.1^43,K.1^47,-1*K.1^13,K.1^49,-1*K.1^37,-1*K.1^19,K.1^21,-1*K.1^41,-1*K.1,-1*K.1^37,-1*K.1^17,-1*K.1^23,K.1^11,-1*K.1^3,-1*K.1^39,-1*K.1^17,-1*K.1^31,-1*K.1^9,-1*K.1^23,K.1^17,K.1^39,K.1,K.1^39,K.1^19,-1*K.1^19,K.1^7,K.1^49,-1*K.1^43,-1*K.1,K.1^13,K.1^27,K.1^27,K.1^11,-1*K.1,-1*K.1^11,-1*K.1^31,K.1^27,-1*K.1^39,-1*K.1^49,K.1^41,-1*K.1^29,K.1^29,K.1^13,-1*K.1^23,-1*K.1^21,K.1^41,K.1,K.1^11,-1*K.1^21,K.1^31,K.1^7,K.1^47,-1*K.1^41,K.1^31,K.1^33,K.1^9,K.1^47,K.1^9,K.1^3,K.1^7,K.1^33,K.1^19,K.1^37,-1*K.1^33,K.1^17,K.1^39,-1*K.1^49,-1*K.1^7,K.1^19,-1*K.1^19,-1*K.1^43,K.1^47,-1*K.1^43,-1*K.1^47,K.1^43,-1*K.1^19,-1*K.1^33,-1*K.1^7,-1*K.1^47,K.1^43,-1*K.1^31,-1*K.1^33,-1*K.1^7,-1*K.1^47,-1*K.1^9,K.1^21,-1*K.1^17,K.1^43,K.1^29,-1*K.1^29,-1*K.1^11,K.1,K.1^39,-1*K.1^27,-1*K.1^27,-1*K.1^13,K.1^49,-1*K.1^13,K.1^49,K.1^13,K.1^27,K.1^21,-1*K.1^41,-1*K.1,-1*K.1^11,K.1^23,-1*K.1^23,-1*K.1^39,-1*K.1^21,K.1^23,-1*K.1^37,-1*K.1^3,-1*K.1^41,K.1^29,-1*K.1^27,-1*K.1^13,K.1,K.1^11,K.1^31,K.1^33,-1*K.1^37,-1*K.1^3,K.1^9,K.1^3,-1*K.1^39,K.1^23,K.1^19,K.1^37,-1*K.1^49,K.1^41,K.1^21,-1*K.1^17,K.1^13,-1*K.1^33,-1*K.1^29,-1*K.1^11,-1*K.1^49,-1*K.1^7,K.1^17,-1*K.1^21,K.1^41,K.1^3,K.1^37,K.1^17,K.1^23,K.1^9,K.1^3,K.1^37,-1*K.1^3,K.1^7,K.1^33,-1*K.1^31,-1*K.1^9,-1*K.1^47,-1*K.1^9,-1*K.1^29,K.1^29,-1*K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,K.1^30,K.1^24,K.1^12,-1*K.1^34,-1*K.1^42,-1*K.1^2,-1*K.1^22,K.1^4,-1*K.1^38,-1*K.1^26,K.1^48,K.1^8,K.1^28,K.1^16,-1*K.1^6,-1*K.1^46,K.1^36,-1*K.1^14,-1*K.1^18,K.1^32,K.1^44,-1*K.1^45,-1*K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^35,K.1^5,K.1^35,K.1^5,-1*K.1^15,K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^5,K.1^5,K.1^35,-1*K.1^45,-1*K.1^45,-1*K.1^35,K.1^15,-1*K.1^35,K.1^5,K.1^45,K.1^15,K.1^45,-1*K.1^5,-1*K.1^35,K.1^35,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,-1*K.1^46,-1*K.1^22,-1*K.1^18,K.1^36,-1*K.1^42,K.1^16,-1*K.1^6,K.1^32,-1*K.1^26,K.1^28,-1*K.1^26,K.1^28,-1*K.1^14,-1*K.1^34,-1*K.1^46,K.1^48,K.1^32,K.1^8,-1*K.1^26,-1*K.1^18,K.1^48,-1*K.1^38,K.1^8,K.1^36,-1*K.1^18,K.1^24,-1*K.1^38,-1*K.1^6,K.1^44,K.1^4,K.1^16,-1*K.1^6,-1*K.1^22,-1*K.1^22,-1*K.1^34,K.1^32,-1*K.1^34,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,K.1^28,-1*K.1^2,-1*K.1^46,K.1^8,K.1^12,-1*K.1^14,-1*K.1^14,-1*K.1^42,K.1^24,K.1^24,-1*K.1^42,K.1^44,K.1^12,K.1^12,K.1^44,K.1^36,-1*K.1^38,K.1^16,K.1^48,K.1^48,-1*K.1^2,-1*K.1^6,K.1^28,-1*K.1^38,K.1^44,K.1^4,K.1^4,-1*K.1^26,K.1^36,-1*K.1^42,K.1^12,K.1^12,K.1^44,-1*K.1^34,-1*K.1^22,K.1^32,K.1^24,-1*K.1^6,-1*K.1^2,-1*K.1^22,K.1^32,-1*K.1^46,K.1^16,-1*K.1^14,-1*K.1^42,-1*K.1^14,-1*K.1^18,-1*K.1^46,K.1^36,K.1^28,-1*K.1^38,-1*K.1^26,K.1^8,K.1^8,K.1^24,-1*K.1^34,K.1^48,-1*K.1^18,K.1^16,-1*K.1^24,K.1^18,-1*K.1^4,K.1^2,-1*K.1^16,-1*K.1^16,K.1^22,K.1^34,K.1^6,K.1^2,-1*K.1^12,K.1^42,-1*K.1^32,-1*K.1^28,K.1^14,K.1^42,K.1^46,-1*K.1^48,-1*K.1^24,K.1^6,-1*K.1^16,K.1^46,K.1^46,K.1^26,K.1^22,K.1^34,K.1^38,-1*K.1^44,-1*K.1^28,K.1^26,K.1^18,-1*K.1^4,-1*K.1^28,K.1^14,-1*K.1^16,K.1^14,-1*K.1^8,-1*K.1^36,K.1^6,-1*K.1^48,K.1^18,-1*K.1^4,-1*K.1^24,K.1^38,-1*K.1^8,-1*K.1^8,-1*K.1^32,-1*K.1^48,K.1^38,K.1^34,-1*K.1^48,-1*K.1^24,-1*K.1^12,-1*K.1^36,-1*K.1^36,K.1^6,K.1^26,K.1^46,K.1^2,K.1^14,-1*K.1^8,K.1^22,-1*K.1^44,-1*K.1^12,K.1^18,K.1^34,K.1^38,-1*K.1^36,K.1^2,-1*K.1^4,K.1^42,-1*K.1^32,-1*K.1^32,K.1^22,K.1^42,-1*K.1^44,-1*K.1^44,-1*K.1^12,K.1^26,-1*K.1^28,-1*K.1^8,K.1^6,-1*K.1^16,K.1^26,-1*K.1^16,K.1^46,-1*K.1^8,K.1^34,-1*K.1^24,K.1^38,-1*K.1^28,K.1^14,-1*K.1^4,K.1^2,-1*K.1^12,K.1^22,-1*K.1^12,K.1^42,-1*K.1^4,K.1^38,K.1^2,-1*K.1^48,K.1^14,-1*K.1^24,K.1^18,-1*K.1^28,K.1^34,-1*K.1^44,K.1^46,-1*K.1^36,K.1^26,-1*K.1^36,K.1^6,-1*K.1^44,K.1^18,-1*K.1^48,K.1^42,-1*K.1^32,K.1^22,-1*K.1^32,-1*K.1^7,-1*K.1^19,K.1^7,-1*K.1^3,K.1^37,-1*K.1,K.1^13,K.1^31,-1*K.1^29,K.1^9,K.1^49,K.1^13,K.1^33,K.1^27,-1*K.1^39,K.1^47,K.1^11,K.1^33,K.1^19,K.1^41,K.1^27,-1*K.1^33,-1*K.1^11,-1*K.1^49,-1*K.1^11,-1*K.1^31,K.1^31,-1*K.1^43,-1*K.1,K.1^7,K.1^49,-1*K.1^37,-1*K.1^23,-1*K.1^23,-1*K.1^39,K.1^49,K.1^39,K.1^19,-1*K.1^23,K.1^11,K.1,-1*K.1^9,K.1^21,-1*K.1^21,-1*K.1^37,K.1^27,K.1^29,-1*K.1^9,-1*K.1^49,-1*K.1^39,K.1^29,-1*K.1^19,-1*K.1^43,-1*K.1^3,K.1^9,-1*K.1^19,-1*K.1^17,-1*K.1^41,-1*K.1^3,-1*K.1^41,-1*K.1^47,-1*K.1^43,-1*K.1^17,-1*K.1^31,-1*K.1^13,K.1^17,-1*K.1^33,-1*K.1^11,K.1,K.1^43,-1*K.1^31,K.1^31,K.1^7,-1*K.1^3,K.1^7,K.1^3,-1*K.1^7,K.1^31,K.1^17,K.1^43,K.1^3,-1*K.1^7,K.1^19,K.1^17,K.1^43,K.1^3,K.1^41,-1*K.1^29,K.1^33,-1*K.1^7,-1*K.1^21,K.1^21,K.1^39,-1*K.1^49,-1*K.1^11,K.1^23,K.1^23,K.1^37,-1*K.1,K.1^37,-1*K.1,-1*K.1^37,-1*K.1^23,-1*K.1^29,K.1^9,K.1^49,K.1^39,-1*K.1^27,K.1^27,K.1^11,K.1^29,-1*K.1^27,K.1^13,K.1^47,K.1^9,-1*K.1^21,K.1^23,K.1^37,-1*K.1^49,-1*K.1^39,-1*K.1^19,-1*K.1^17,K.1^13,K.1^47,-1*K.1^41,-1*K.1^47,K.1^11,-1*K.1^27,-1*K.1^31,-1*K.1^13,K.1,-1*K.1^9,-1*K.1^29,K.1^33,-1*K.1^37,K.1^17,K.1^21,K.1^39,K.1,K.1^43,-1*K.1^33,K.1^29,-1*K.1^9,-1*K.1^47,-1*K.1^13,-1*K.1^33,-1*K.1^27,-1*K.1^41,-1*K.1^47,-1*K.1^13,K.1^47,-1*K.1^43,-1*K.1^17,K.1^19,K.1^41,K.1^3,K.1^41,K.1^21,-1*K.1^21,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,K.1^10,-1*K.1^40,K.1^30,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^16,K.1^8,-1*K.1^6,K.1^28,-1*K.1^18,K.1^48,K.1^36,-1*K.1^42,-1*K.1^34,K.1^32,-1*K.1^22,-1*K.1^2,K.1^44,K.1^4,-1*K.1^14,K.1^24,-1*K.1^26,K.1^12,-1*K.1^38,-1*K.1^46,K.1^5,K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^45,K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^45,K.1^45,-1*K.1^45,-1*K.1^15,K.1^5,K.1^5,K.1^15,-1*K.1^35,K.1^15,-1*K.1^45,-1*K.1^5,-1*K.1^35,-1*K.1^5,K.1^45,K.1^15,-1*K.1^15,K.1^45,-1*K.1^35,K.1^35,-1*K.1^35,-1*K.1^14,K.1^48,K.1^12,K.1^24,K.1^28,K.1^44,K.1^4,-1*K.1^38,-1*K.1^34,-1*K.1^2,-1*K.1^34,-1*K.1^2,-1*K.1^26,-1*K.1^6,-1*K.1^14,K.1^32,-1*K.1^38,-1*K.1^22,-1*K.1^34,K.1^12,K.1^32,-1*K.1^42,-1*K.1^22,K.1^24,K.1^12,K.1^16,-1*K.1^42,K.1^4,-1*K.1^46,K.1^36,K.1^44,K.1^4,K.1^48,K.1^48,-1*K.1^6,-1*K.1^38,-1*K.1^6,-1*K.1^18,-1*K.1^18,K.1^36,K.1^36,-1*K.1^2,-1*K.1^18,-1*K.1^14,-1*K.1^22,K.1^8,-1*K.1^26,-1*K.1^26,K.1^28,K.1^16,K.1^16,K.1^28,-1*K.1^46,K.1^8,K.1^8,-1*K.1^46,K.1^24,-1*K.1^42,K.1^44,K.1^32,K.1^32,-1*K.1^18,K.1^4,-1*K.1^2,-1*K.1^42,-1*K.1^46,K.1^36,K.1^36,-1*K.1^34,K.1^24,K.1^28,K.1^8,K.1^8,-1*K.1^46,-1*K.1^6,K.1^48,-1*K.1^38,K.1^16,K.1^4,-1*K.1^18,K.1^48,-1*K.1^38,-1*K.1^14,K.1^44,-1*K.1^26,K.1^28,-1*K.1^26,K.1^12,-1*K.1^14,K.1^24,-1*K.1^2,-1*K.1^42,-1*K.1^34,-1*K.1^22,-1*K.1^22,K.1^16,-1*K.1^6,K.1^32,K.1^12,K.1^44,-1*K.1^16,-1*K.1^12,-1*K.1^36,K.1^18,-1*K.1^44,-1*K.1^44,-1*K.1^48,K.1^6,-1*K.1^4,K.1^18,-1*K.1^8,-1*K.1^28,K.1^38,K.1^2,K.1^26,-1*K.1^28,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^4,-1*K.1^44,K.1^14,K.1^14,K.1^34,-1*K.1^48,K.1^6,K.1^42,K.1^46,K.1^2,K.1^34,-1*K.1^12,-1*K.1^36,K.1^2,K.1^26,-1*K.1^44,K.1^26,K.1^22,-1*K.1^24,-1*K.1^4,-1*K.1^32,-1*K.1^12,-1*K.1^36,-1*K.1^16,K.1^42,K.1^22,K.1^22,K.1^38,-1*K.1^32,K.1^42,K.1^6,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^4,K.1^34,K.1^14,K.1^18,K.1^26,K.1^22,-1*K.1^48,K.1^46,-1*K.1^8,-1*K.1^12,K.1^6,K.1^42,-1*K.1^24,K.1^18,-1*K.1^36,-1*K.1^28,K.1^38,K.1^38,-1*K.1^48,-1*K.1^28,K.1^46,K.1^46,-1*K.1^8,K.1^34,K.1^2,K.1^22,-1*K.1^4,-1*K.1^44,K.1^34,-1*K.1^44,K.1^14,K.1^22,K.1^6,-1*K.1^16,K.1^42,K.1^2,K.1^26,-1*K.1^36,K.1^18,-1*K.1^8,-1*K.1^48,-1*K.1^8,-1*K.1^28,-1*K.1^36,K.1^42,K.1^18,-1*K.1^32,K.1^26,-1*K.1^16,-1*K.1^12,K.1^2,K.1^6,K.1^46,K.1^14,-1*K.1^24,K.1^34,-1*K.1^24,-1*K.1^4,K.1^46,-1*K.1^12,-1*K.1^32,-1*K.1^28,K.1^38,-1*K.1^48,K.1^38,-1*K.1^13,-1*K.1^21,K.1^13,K.1^27,-1*K.1^33,K.1^9,-1*K.1^17,K.1^29,-1*K.1^11,K.1^31,-1*K.1^41,-1*K.1^17,K.1^47,-1*K.1^43,-1*K.1,-1*K.1^23,K.1^49,K.1^47,K.1^21,K.1^19,-1*K.1^43,-1*K.1^47,-1*K.1^49,K.1^41,-1*K.1^49,-1*K.1^29,K.1^29,-1*K.1^37,K.1^9,K.1^13,-1*K.1^41,K.1^33,K.1^7,K.1^7,-1*K.1,-1*K.1^41,K.1,K.1^21,K.1^7,K.1^49,-1*K.1^9,-1*K.1^31,K.1^39,-1*K.1^39,K.1^33,-1*K.1^43,K.1^11,-1*K.1^31,K.1^41,-1*K.1,K.1^11,-1*K.1^21,-1*K.1^37,K.1^27,K.1^31,-1*K.1^21,-1*K.1^3,-1*K.1^19,K.1^27,-1*K.1^19,K.1^23,-1*K.1^37,-1*K.1^3,-1*K.1^29,K.1^17,K.1^3,-1*K.1^47,-1*K.1^49,-1*K.1^9,K.1^37,-1*K.1^29,K.1^29,K.1^13,K.1^27,K.1^13,-1*K.1^27,-1*K.1^13,K.1^29,K.1^3,K.1^37,-1*K.1^27,-1*K.1^13,K.1^21,K.1^3,K.1^37,-1*K.1^27,K.1^19,-1*K.1^11,K.1^47,-1*K.1^13,-1*K.1^39,K.1^39,K.1,K.1^41,-1*K.1^49,-1*K.1^7,-1*K.1^7,-1*K.1^33,K.1^9,-1*K.1^33,K.1^9,K.1^33,K.1^7,-1*K.1^11,K.1^31,-1*K.1^41,K.1,K.1^43,-1*K.1^43,K.1^49,K.1^11,K.1^43,-1*K.1^17,-1*K.1^23,K.1^31,-1*K.1^39,-1*K.1^7,-1*K.1^33,K.1^41,-1*K.1,-1*K.1^21,-1*K.1^3,-1*K.1^17,-1*K.1^23,-1*K.1^19,K.1^23,K.1^49,K.1^43,-1*K.1^29,K.1^17,-1*K.1^9,-1*K.1^31,-1*K.1^11,K.1^47,K.1^33,K.1^3,K.1^39,K.1,-1*K.1^9,K.1^37,-1*K.1^47,K.1^11,-1*K.1^31,K.1^23,K.1^17,-1*K.1^47,K.1^43,-1*K.1^19,K.1^23,K.1^17,-1*K.1^23,-1*K.1^37,-1*K.1^3,K.1^21,K.1^19,-1*K.1^27,K.1^19,K.1^39,-1*K.1^39,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^34,-1*K.1^42,K.1^44,-1*K.1^22,K.1^32,-1*K.1^2,-1*K.1^14,K.1^8,K.1^16,-1*K.1^18,K.1^28,K.1^48,-1*K.1^6,-1*K.1^46,K.1^36,-1*K.1^26,K.1^24,-1*K.1^38,K.1^12,K.1^4,-1*K.1^45,-1*K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^35,K.1^5,K.1^35,K.1^5,-1*K.1^15,K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^5,K.1^5,K.1^35,-1*K.1^45,-1*K.1^45,-1*K.1^35,K.1^15,-1*K.1^35,K.1^5,K.1^45,K.1^15,K.1^45,-1*K.1^5,-1*K.1^35,K.1^35,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,K.1^36,-1*K.1^2,-1*K.1^38,-1*K.1^26,-1*K.1^22,-1*K.1^6,-1*K.1^46,K.1^12,K.1^16,K.1^48,K.1^16,K.1^48,K.1^24,K.1^44,K.1^36,-1*K.1^18,K.1^12,K.1^28,K.1^16,-1*K.1^38,-1*K.1^18,K.1^8,K.1^28,-1*K.1^26,-1*K.1^38,-1*K.1^34,K.1^8,-1*K.1^46,K.1^4,-1*K.1^14,-1*K.1^6,-1*K.1^46,-1*K.1^2,-1*K.1^2,K.1^44,K.1^12,K.1^44,K.1^32,K.1^32,-1*K.1^14,-1*K.1^14,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^42,K.1^24,K.1^24,-1*K.1^22,-1*K.1^34,-1*K.1^34,-1*K.1^22,K.1^4,-1*K.1^42,-1*K.1^42,K.1^4,-1*K.1^26,K.1^8,-1*K.1^6,-1*K.1^18,-1*K.1^18,K.1^32,-1*K.1^46,K.1^48,K.1^8,K.1^4,-1*K.1^14,-1*K.1^14,K.1^16,-1*K.1^26,-1*K.1^22,-1*K.1^42,-1*K.1^42,K.1^4,K.1^44,-1*K.1^2,K.1^12,-1*K.1^34,-1*K.1^46,K.1^32,-1*K.1^2,K.1^12,K.1^36,-1*K.1^6,K.1^24,-1*K.1^22,K.1^24,-1*K.1^38,K.1^36,-1*K.1^26,K.1^48,K.1^8,K.1^16,K.1^28,K.1^28,-1*K.1^34,K.1^44,-1*K.1^18,-1*K.1^38,-1*K.1^6,K.1^34,K.1^38,K.1^14,-1*K.1^32,K.1^6,K.1^6,K.1^2,-1*K.1^44,K.1^46,-1*K.1^32,K.1^42,K.1^22,-1*K.1^12,-1*K.1^48,-1*K.1^24,K.1^22,-1*K.1^36,K.1^18,K.1^34,K.1^46,K.1^6,-1*K.1^36,-1*K.1^36,-1*K.1^16,K.1^2,-1*K.1^44,-1*K.1^8,-1*K.1^4,-1*K.1^48,-1*K.1^16,K.1^38,K.1^14,-1*K.1^48,-1*K.1^24,K.1^6,-1*K.1^24,-1*K.1^28,K.1^26,K.1^46,K.1^18,K.1^38,K.1^14,K.1^34,-1*K.1^8,-1*K.1^28,-1*K.1^28,-1*K.1^12,K.1^18,-1*K.1^8,-1*K.1^44,K.1^18,K.1^34,K.1^42,K.1^26,K.1^26,K.1^46,-1*K.1^16,-1*K.1^36,-1*K.1^32,-1*K.1^24,-1*K.1^28,K.1^2,-1*K.1^4,K.1^42,K.1^38,-1*K.1^44,-1*K.1^8,K.1^26,-1*K.1^32,K.1^14,K.1^22,-1*K.1^12,-1*K.1^12,K.1^2,K.1^22,-1*K.1^4,-1*K.1^4,K.1^42,-1*K.1^16,-1*K.1^48,-1*K.1^28,K.1^46,K.1^6,-1*K.1^16,K.1^6,-1*K.1^36,-1*K.1^28,-1*K.1^44,K.1^34,-1*K.1^8,-1*K.1^48,-1*K.1^24,K.1^14,-1*K.1^32,K.1^42,K.1^2,K.1^42,K.1^22,K.1^14,-1*K.1^8,-1*K.1^32,K.1^18,-1*K.1^24,K.1^34,K.1^38,-1*K.1^48,-1*K.1^44,-1*K.1^4,-1*K.1^36,K.1^26,-1*K.1^16,K.1^26,K.1^46,-1*K.1^4,K.1^38,K.1^18,K.1^22,-1*K.1^12,K.1^2,-1*K.1^12,K.1^37,K.1^29,-1*K.1^37,-1*K.1^23,K.1^17,-1*K.1^41,K.1^33,-1*K.1^21,K.1^39,-1*K.1^19,K.1^9,K.1^33,-1*K.1^3,K.1^7,K.1^49,K.1^27,-1*K.1,-1*K.1^3,-1*K.1^29,-1*K.1^31,K.1^7,K.1^3,K.1,-1*K.1^9,K.1,K.1^21,-1*K.1^21,K.1^13,-1*K.1^41,-1*K.1^37,K.1^9,-1*K.1^17,-1*K.1^43,-1*K.1^43,K.1^49,K.1^9,-1*K.1^49,-1*K.1^29,-1*K.1^43,-1*K.1,K.1^41,K.1^19,-1*K.1^11,K.1^11,-1*K.1^17,K.1^7,-1*K.1^39,K.1^19,-1*K.1^9,K.1^49,-1*K.1^39,K.1^29,K.1^13,-1*K.1^23,-1*K.1^19,K.1^29,K.1^47,K.1^31,-1*K.1^23,K.1^31,-1*K.1^27,K.1^13,K.1^47,K.1^21,-1*K.1^33,-1*K.1^47,K.1^3,K.1,K.1^41,-1*K.1^13,K.1^21,-1*K.1^21,-1*K.1^37,-1*K.1^23,-1*K.1^37,K.1^23,K.1^37,-1*K.1^21,-1*K.1^47,-1*K.1^13,K.1^23,K.1^37,-1*K.1^29,-1*K.1^47,-1*K.1^13,K.1^23,-1*K.1^31,K.1^39,-1*K.1^3,K.1^37,K.1^11,-1*K.1^11,-1*K.1^49,-1*K.1^9,K.1,K.1^43,K.1^43,K.1^17,-1*K.1^41,K.1^17,-1*K.1^41,-1*K.1^17,-1*K.1^43,K.1^39,-1*K.1^19,K.1^9,-1*K.1^49,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^39,-1*K.1^7,K.1^33,K.1^27,-1*K.1^19,K.1^11,K.1^43,K.1^17,-1*K.1^9,K.1^49,K.1^29,K.1^47,K.1^33,K.1^27,K.1^31,-1*K.1^27,-1*K.1,-1*K.1^7,K.1^21,-1*K.1^33,K.1^41,K.1^19,K.1^39,-1*K.1^3,-1*K.1^17,-1*K.1^47,-1*K.1^11,-1*K.1^49,K.1^41,-1*K.1^13,K.1^3,-1*K.1^39,K.1^19,-1*K.1^27,-1*K.1^33,K.1^3,-1*K.1^7,K.1^31,-1*K.1^27,-1*K.1^33,K.1^27,K.1^13,K.1^47,-1*K.1^29,-1*K.1^31,K.1^23,-1*K.1^31,-1*K.1^11,K.1^11,K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^10,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^40,K.1^40,-1*K.1^30,-1*K.1^10,K.1^20,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,-1*K.1^20,-1*K.1^20,K.1^10,K.1^10,-1*K.1^40,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^40,K.1^30,K.1^30,K.1^10,-1*K.1^40,K.1^30,K.1^10,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,-1*K.1^46,K.1^48,K.1^36,-1*K.1^18,K.1^8,-1*K.1^38,K.1^16,-1*K.1^2,K.1^4,-1*K.1^42,K.1^32,K.1^12,-1*K.1^14,K.1^24,-1*K.1^34,K.1^44,-1*K.1^6,-1*K.1^22,K.1^28,-1*K.1^26,K.1^5,K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^45,K.1^35,-1*K.1^5,-1*K.1^15,-1*K.1^5,K.1^45,K.1^45,-1*K.1^45,-1*K.1^15,K.1^5,K.1^5,K.1^15,-1*K.1^35,K.1^15,-1*K.1^45,-1*K.1^5,-1*K.1^35,-1*K.1^5,K.1^45,K.1^15,-1*K.1^15,K.1^45,-1*K.1^35,K.1^35,-1*K.1^35,-1*K.1^34,-1*K.1^38,-1*K.1^22,K.1^44,-1*K.1^18,-1*K.1^14,K.1^24,K.1^28,K.1^4,K.1^12,K.1^4,K.1^12,-1*K.1^6,K.1^36,-1*K.1^34,-1*K.1^42,K.1^28,K.1^32,K.1^4,-1*K.1^22,-1*K.1^42,-1*K.1^2,K.1^32,K.1^44,-1*K.1^22,-1*K.1^46,-1*K.1^2,K.1^24,-1*K.1^26,K.1^16,-1*K.1^14,K.1^24,-1*K.1^38,-1*K.1^38,K.1^36,K.1^28,K.1^36,K.1^8,K.1^8,K.1^16,K.1^16,K.1^12,K.1^8,-1*K.1^34,K.1^32,K.1^48,-1*K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^46,-1*K.1^46,-1*K.1^18,-1*K.1^26,K.1^48,K.1^48,-1*K.1^26,K.1^44,-1*K.1^2,-1*K.1^14,-1*K.1^42,-1*K.1^42,K.1^8,K.1^24,K.1^12,-1*K.1^2,-1*K.1^26,K.1^16,K.1^16,K.1^4,K.1^44,-1*K.1^18,K.1^48,K.1^48,-1*K.1^26,K.1^36,-1*K.1^38,K.1^28,-1*K.1^46,K.1^24,K.1^8,-1*K.1^38,K.1^28,-1*K.1^34,-1*K.1^14,-1*K.1^6,-1*K.1^18,-1*K.1^6,-1*K.1^22,-1*K.1^34,K.1^44,K.1^12,-1*K.1^2,K.1^4,K.1^32,K.1^32,-1*K.1^46,K.1^36,-1*K.1^42,-1*K.1^22,-1*K.1^14,K.1^46,K.1^22,-1*K.1^16,-1*K.1^8,K.1^14,K.1^14,K.1^38,-1*K.1^36,-1*K.1^24,-1*K.1^8,-1*K.1^48,K.1^18,-1*K.1^28,-1*K.1^12,K.1^6,K.1^18,K.1^34,K.1^42,K.1^46,-1*K.1^24,K.1^14,K.1^34,K.1^34,-1*K.1^4,K.1^38,-1*K.1^36,K.1^2,K.1^26,-1*K.1^12,-1*K.1^4,K.1^22,-1*K.1^16,-1*K.1^12,K.1^6,K.1^14,K.1^6,-1*K.1^32,-1*K.1^44,-1*K.1^24,K.1^42,K.1^22,-1*K.1^16,K.1^46,K.1^2,-1*K.1^32,-1*K.1^32,-1*K.1^28,K.1^42,K.1^2,-1*K.1^36,K.1^42,K.1^46,-1*K.1^48,-1*K.1^44,-1*K.1^44,-1*K.1^24,-1*K.1^4,K.1^34,-1*K.1^8,K.1^6,-1*K.1^32,K.1^38,K.1^26,-1*K.1^48,K.1^22,-1*K.1^36,K.1^2,-1*K.1^44,-1*K.1^8,-1*K.1^16,K.1^18,-1*K.1^28,-1*K.1^28,K.1^38,K.1^18,K.1^26,K.1^26,-1*K.1^48,-1*K.1^4,-1*K.1^12,-1*K.1^32,-1*K.1^24,K.1^14,-1*K.1^4,K.1^14,K.1^34,-1*K.1^32,-1*K.1^36,K.1^46,K.1^2,-1*K.1^12,K.1^6,-1*K.1^16,-1*K.1^8,-1*K.1^48,K.1^38,-1*K.1^48,K.1^18,-1*K.1^16,K.1^2,-1*K.1^8,K.1^42,K.1^6,K.1^46,K.1^22,-1*K.1^12,-1*K.1^36,K.1^26,K.1^34,-1*K.1^44,-1*K.1^4,-1*K.1^44,-1*K.1^24,K.1^26,K.1^22,K.1^42,K.1^18,-1*K.1^28,K.1^38,-1*K.1^28,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^37,K.1^23,K.1^29,K.1^27,K.1^49,K.1^41,K.1^11,-1*K.1^21,K.1^27,K.1^7,K.1^33,K.1^31,K.1^13,-1*K.1^19,K.1^7,K.1,K.1^39,K.1^33,-1*K.1^7,K.1^19,K.1^21,K.1^19,-1*K.1^49,K.1^49,K.1^47,K.1^29,-1*K.1^3,-1*K.1^21,-1*K.1^23,-1*K.1^17,-1*K.1^17,K.1^31,-1*K.1^21,-1*K.1^31,K.1,-1*K.1^17,-1*K.1^19,-1*K.1^29,-1*K.1^11,-1*K.1^9,K.1^9,-1*K.1^23,K.1^33,-1*K.1^41,-1*K.1^11,K.1^21,K.1^31,-1*K.1^41,-1*K.1,K.1^47,-1*K.1^37,K.1^11,-1*K.1,-1*K.1^43,-1*K.1^39,-1*K.1^37,-1*K.1^39,-1*K.1^13,K.1^47,-1*K.1^43,-1*K.1^49,-1*K.1^27,K.1^43,-1*K.1^7,K.1^19,-1*K.1^29,-1*K.1^47,-1*K.1^49,K.1^49,-1*K.1^3,-1*K.1^37,-1*K.1^3,K.1^37,K.1^3,K.1^49,K.1^43,-1*K.1^47,K.1^37,K.1^3,K.1,K.1^43,-1*K.1^47,K.1^37,K.1^39,K.1^41,K.1^7,K.1^3,K.1^9,-1*K.1^9,-1*K.1^31,K.1^21,K.1^19,K.1^17,K.1^17,K.1^23,K.1^29,K.1^23,K.1^29,-1*K.1^23,-1*K.1^17,K.1^41,K.1^11,-1*K.1^21,-1*K.1^31,-1*K.1^33,K.1^33,-1*K.1^19,-1*K.1^41,-1*K.1^33,K.1^27,K.1^13,K.1^11,K.1^9,K.1^17,K.1^23,K.1^21,K.1^31,-1*K.1,-1*K.1^43,K.1^27,K.1^13,-1*K.1^39,-1*K.1^13,-1*K.1^19,-1*K.1^33,-1*K.1^49,-1*K.1^27,-1*K.1^29,-1*K.1^11,K.1^41,K.1^7,-1*K.1^23,K.1^43,-1*K.1^9,-1*K.1^31,-1*K.1^29,-1*K.1^47,-1*K.1^7,-1*K.1^41,-1*K.1^11,-1*K.1^13,-1*K.1^27,-1*K.1^7,-1*K.1^33,-1*K.1^39,-1*K.1^13,-1*K.1^27,K.1^13,K.1^47,-1*K.1^43,K.1,K.1^39,K.1^37,K.1^39,-1*K.1^9,K.1^9,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^40,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^10,-1*K.1^10,K.1^20,K.1^40,-1*K.1^30,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,K.1^30,K.1^30,-1*K.1^40,-1*K.1^40,K.1^10,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,K.1^10,-1*K.1^20,-1*K.1^20,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,K.1^30,-1*K.1^20,K.1^10,K.1^30,K.1^4,-1*K.1^2,-1*K.1^14,K.1^32,-1*K.1^42,K.1^12,-1*K.1^34,K.1^48,-1*K.1^46,K.1^8,-1*K.1^18,-1*K.1^38,K.1^36,-1*K.1^26,K.1^16,-1*K.1^6,K.1^44,K.1^28,-1*K.1^22,K.1^24,-1*K.1^45,-1*K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^35,K.1^5,K.1^35,K.1^5,-1*K.1^15,K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^5,K.1^5,K.1^35,-1*K.1^45,-1*K.1^45,-1*K.1^35,K.1^15,-1*K.1^35,K.1^5,K.1^45,K.1^15,K.1^45,-1*K.1^5,-1*K.1^35,K.1^35,-1*K.1^5,K.1^15,-1*K.1^15,K.1^15,K.1^16,K.1^12,K.1^28,-1*K.1^6,K.1^32,K.1^36,-1*K.1^26,-1*K.1^22,-1*K.1^46,-1*K.1^38,-1*K.1^46,-1*K.1^38,K.1^44,-1*K.1^14,K.1^16,K.1^8,-1*K.1^22,-1*K.1^18,-1*K.1^46,K.1^28,K.1^8,K.1^48,-1*K.1^18,-1*K.1^6,K.1^28,K.1^4,K.1^48,-1*K.1^26,K.1^24,-1*K.1^34,K.1^36,-1*K.1^26,K.1^12,K.1^12,-1*K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^42,-1*K.1^42,-1*K.1^34,-1*K.1^34,-1*K.1^38,-1*K.1^42,K.1^16,-1*K.1^18,-1*K.1^2,K.1^44,K.1^44,K.1^32,K.1^4,K.1^4,K.1^32,K.1^24,-1*K.1^2,-1*K.1^2,K.1^24,-1*K.1^6,K.1^48,K.1^36,K.1^8,K.1^8,-1*K.1^42,-1*K.1^26,-1*K.1^38,K.1^48,K.1^24,-1*K.1^34,-1*K.1^34,-1*K.1^46,-1*K.1^6,K.1^32,-1*K.1^2,-1*K.1^2,K.1^24,-1*K.1^14,K.1^12,-1*K.1^22,K.1^4,-1*K.1^26,-1*K.1^42,K.1^12,-1*K.1^22,K.1^16,K.1^36,K.1^44,K.1^32,K.1^44,K.1^28,K.1^16,-1*K.1^6,-1*K.1^38,K.1^48,-1*K.1^46,-1*K.1^18,-1*K.1^18,K.1^4,-1*K.1^14,K.1^8,K.1^28,K.1^36,-1*K.1^4,-1*K.1^28,K.1^34,K.1^42,-1*K.1^36,-1*K.1^36,-1*K.1^12,K.1^14,K.1^26,K.1^42,K.1^2,-1*K.1^32,K.1^22,K.1^38,-1*K.1^44,-1*K.1^32,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^26,-1*K.1^36,-1*K.1^16,-1*K.1^16,K.1^46,-1*K.1^12,K.1^14,-1*K.1^48,-1*K.1^24,K.1^38,K.1^46,-1*K.1^28,K.1^34,K.1^38,-1*K.1^44,-1*K.1^36,-1*K.1^44,K.1^18,K.1^6,K.1^26,-1*K.1^8,-1*K.1^28,K.1^34,-1*K.1^4,-1*K.1^48,K.1^18,K.1^18,K.1^22,-1*K.1^8,-1*K.1^48,K.1^14,-1*K.1^8,-1*K.1^4,K.1^2,K.1^6,K.1^6,K.1^26,K.1^46,-1*K.1^16,K.1^42,-1*K.1^44,K.1^18,-1*K.1^12,-1*K.1^24,K.1^2,-1*K.1^28,K.1^14,-1*K.1^48,K.1^6,K.1^42,K.1^34,-1*K.1^32,K.1^22,K.1^22,-1*K.1^12,-1*K.1^32,-1*K.1^24,-1*K.1^24,K.1^2,K.1^46,K.1^38,K.1^18,K.1^26,-1*K.1^36,K.1^46,-1*K.1^36,-1*K.1^16,K.1^18,K.1^14,-1*K.1^4,-1*K.1^48,K.1^38,-1*K.1^44,K.1^34,K.1^42,K.1^2,-1*K.1^12,K.1^2,-1*K.1^32,K.1^34,-1*K.1^48,K.1^42,-1*K.1^8,-1*K.1^44,-1*K.1^4,-1*K.1^28,K.1^38,K.1^14,-1*K.1^24,-1*K.1^16,K.1^6,K.1^46,K.1^6,K.1^26,-1*K.1^24,-1*K.1^28,-1*K.1^8,-1*K.1^32,K.1^22,-1*K.1^12,K.1^22,-1*K.1^47,K.1^49,K.1^47,K.1^13,-1*K.1^27,-1*K.1^21,-1*K.1^23,-1*K.1,-1*K.1^9,-1*K.1^39,K.1^29,-1*K.1^23,-1*K.1^43,-1*K.1^17,-1*K.1^19,-1*K.1^37,K.1^31,-1*K.1^43,-1*K.1^49,-1*K.1^11,-1*K.1^17,K.1^43,-1*K.1^31,-1*K.1^29,-1*K.1^31,K.1,-1*K.1,-1*K.1^3,-1*K.1^21,K.1^47,K.1^29,K.1^27,K.1^33,K.1^33,-1*K.1^19,K.1^29,K.1^19,-1*K.1^49,K.1^33,K.1^31,K.1^21,K.1^39,K.1^41,-1*K.1^41,K.1^27,-1*K.1^17,K.1^9,K.1^39,-1*K.1^29,-1*K.1^19,K.1^9,K.1^49,-1*K.1^3,K.1^13,-1*K.1^39,K.1^49,K.1^7,K.1^11,K.1^13,K.1^11,K.1^37,-1*K.1^3,K.1^7,K.1,K.1^23,-1*K.1^7,K.1^43,-1*K.1^31,K.1^21,K.1^3,K.1,-1*K.1,K.1^47,K.1^13,K.1^47,-1*K.1^13,-1*K.1^47,-1*K.1,-1*K.1^7,K.1^3,-1*K.1^13,-1*K.1^47,-1*K.1^49,-1*K.1^7,K.1^3,-1*K.1^13,-1*K.1^11,-1*K.1^9,-1*K.1^43,-1*K.1^47,-1*K.1^41,K.1^41,K.1^19,-1*K.1^29,-1*K.1^31,-1*K.1^33,-1*K.1^33,-1*K.1^27,-1*K.1^21,-1*K.1^27,-1*K.1^21,K.1^27,K.1^33,-1*K.1^9,-1*K.1^39,K.1^29,K.1^19,K.1^17,-1*K.1^17,K.1^31,K.1^9,K.1^17,-1*K.1^23,-1*K.1^37,-1*K.1^39,-1*K.1^41,-1*K.1^33,-1*K.1^27,-1*K.1^29,-1*K.1^19,K.1^49,K.1^7,-1*K.1^23,-1*K.1^37,K.1^11,K.1^37,K.1^31,K.1^17,K.1,K.1^23,K.1^21,K.1^39,-1*K.1^9,-1*K.1^43,K.1^27,-1*K.1^7,K.1^41,K.1^19,K.1^21,K.1^3,K.1^43,K.1^9,K.1^39,K.1^37,K.1^23,K.1^43,K.1^17,K.1^11,K.1^37,K.1^23,-1*K.1^37,-1*K.1^3,K.1^7,-1*K.1^49,-1*K.1^11,-1*K.1^13,-1*K.1^11,K.1^41,-1*K.1^41,-1*K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^48,K.1^24,-1*K.1^18,-1*K.1^34,K.1^4,K.1^44,K.1^8,-1*K.1^26,-1*K.1^2,-1*K.1^46,K.1^16,-1*K.1^6,K.1^32,K.1^12,-1*K.1^42,-1*K.1^22,K.1^28,K.1^36,-1*K.1^14,-1*K.1^38,K.1^15,K.1^5,K.1^15,K.1^5,K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^35,K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^15,K.1^35,K.1^35,-1*K.1^35,-1*K.1^45,K.1^15,K.1^15,K.1^45,-1*K.1^5,K.1^45,-1*K.1^35,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^35,K.1^45,-1*K.1^45,K.1^35,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^42,K.1^44,K.1^36,-1*K.1^22,-1*K.1^34,K.1^32,K.1^12,-1*K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^28,-1*K.1^18,-1*K.1^42,-1*K.1^46,-1*K.1^14,K.1^16,-1*K.1^2,K.1^36,-1*K.1^46,-1*K.1^26,K.1^16,-1*K.1^22,K.1^36,K.1^48,-1*K.1^26,K.1^12,-1*K.1^38,K.1^8,K.1^32,K.1^12,K.1^44,K.1^44,-1*K.1^18,-1*K.1^14,-1*K.1^18,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^42,K.1^16,K.1^24,K.1^28,K.1^28,-1*K.1^34,K.1^48,K.1^48,-1*K.1^34,-1*K.1^38,K.1^24,K.1^24,-1*K.1^38,-1*K.1^22,-1*K.1^26,K.1^32,-1*K.1^46,-1*K.1^46,K.1^4,K.1^12,-1*K.1^6,-1*K.1^26,-1*K.1^38,K.1^8,K.1^8,-1*K.1^2,-1*K.1^22,-1*K.1^34,K.1^24,K.1^24,-1*K.1^38,-1*K.1^18,K.1^44,-1*K.1^14,K.1^48,K.1^12,K.1^4,K.1^44,-1*K.1^14,-1*K.1^42,K.1^32,K.1^28,-1*K.1^34,K.1^28,K.1^36,-1*K.1^42,-1*K.1^22,-1*K.1^6,-1*K.1^26,-1*K.1^2,K.1^16,K.1^16,K.1^48,-1*K.1^18,-1*K.1^46,K.1^36,K.1^32,-1*K.1^48,-1*K.1^36,-1*K.1^8,-1*K.1^4,-1*K.1^32,-1*K.1^32,-1*K.1^44,K.1^18,-1*K.1^12,-1*K.1^4,-1*K.1^24,K.1^34,K.1^14,K.1^6,-1*K.1^28,K.1^34,K.1^42,K.1^46,-1*K.1^48,-1*K.1^12,-1*K.1^32,K.1^42,K.1^42,K.1^2,-1*K.1^44,K.1^18,K.1^26,K.1^38,K.1^6,K.1^2,-1*K.1^36,-1*K.1^8,K.1^6,-1*K.1^28,-1*K.1^32,-1*K.1^28,-1*K.1^16,K.1^22,-1*K.1^12,K.1^46,-1*K.1^36,-1*K.1^8,-1*K.1^48,K.1^26,-1*K.1^16,-1*K.1^16,K.1^14,K.1^46,K.1^26,K.1^18,K.1^46,-1*K.1^48,-1*K.1^24,K.1^22,K.1^22,-1*K.1^12,K.1^2,K.1^42,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^44,K.1^38,-1*K.1^24,-1*K.1^36,K.1^18,K.1^26,K.1^22,-1*K.1^4,-1*K.1^8,K.1^34,K.1^14,K.1^14,-1*K.1^44,K.1^34,K.1^38,K.1^38,-1*K.1^24,K.1^2,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^32,K.1^2,-1*K.1^32,K.1^42,-1*K.1^16,K.1^18,-1*K.1^48,K.1^26,K.1^6,-1*K.1^28,-1*K.1^8,-1*K.1^4,-1*K.1^24,-1*K.1^44,-1*K.1^24,K.1^34,-1*K.1^8,K.1^26,-1*K.1^4,K.1^46,-1*K.1^28,-1*K.1^48,-1*K.1^36,K.1^6,K.1^18,K.1^38,K.1^42,K.1^22,K.1^2,K.1^22,-1*K.1^12,K.1^38,-1*K.1^36,K.1^46,K.1^34,K.1^14,-1*K.1^44,K.1^14,-1*K.1^39,K.1^13,K.1^39,-1*K.1^31,K.1^49,K.1^27,K.1,-1*K.1^37,-1*K.1^33,-1*K.1^43,-1*K.1^23,K.1,K.1^41,-1*K.1^29,-1*K.1^3,K.1^19,K.1^47,K.1^41,-1*K.1^13,-1*K.1^7,-1*K.1^29,-1*K.1^41,-1*K.1^47,K.1^23,-1*K.1^47,K.1^37,-1*K.1^37,-1*K.1^11,K.1^27,K.1^39,-1*K.1^23,-1*K.1^49,K.1^21,K.1^21,-1*K.1^3,-1*K.1^23,K.1^3,-1*K.1^13,K.1^21,K.1^47,-1*K.1^27,K.1^43,K.1^17,-1*K.1^17,-1*K.1^49,-1*K.1^29,K.1^33,K.1^43,K.1^23,-1*K.1^3,K.1^33,K.1^13,-1*K.1^11,-1*K.1^31,-1*K.1^43,K.1^13,-1*K.1^9,K.1^7,-1*K.1^31,K.1^7,-1*K.1^19,-1*K.1^11,-1*K.1^9,K.1^37,-1*K.1,K.1^9,-1*K.1^41,-1*K.1^47,-1*K.1^27,K.1^11,K.1^37,-1*K.1^37,K.1^39,-1*K.1^31,K.1^39,K.1^31,-1*K.1^39,-1*K.1^37,K.1^9,K.1^11,K.1^31,-1*K.1^39,-1*K.1^13,K.1^9,K.1^11,K.1^31,-1*K.1^7,-1*K.1^33,K.1^41,-1*K.1^39,-1*K.1^17,K.1^17,K.1^3,K.1^23,-1*K.1^47,-1*K.1^21,-1*K.1^21,K.1^49,K.1^27,K.1^49,K.1^27,-1*K.1^49,K.1^21,-1*K.1^33,-1*K.1^43,-1*K.1^23,K.1^3,K.1^29,-1*K.1^29,K.1^47,K.1^33,K.1^29,K.1,K.1^19,-1*K.1^43,-1*K.1^17,-1*K.1^21,K.1^49,K.1^23,-1*K.1^3,K.1^13,-1*K.1^9,K.1,K.1^19,K.1^7,-1*K.1^19,K.1^47,K.1^29,K.1^37,-1*K.1,-1*K.1^27,K.1^43,-1*K.1^33,K.1^41,-1*K.1^49,K.1^9,K.1^17,K.1^3,-1*K.1^27,K.1^11,-1*K.1^41,K.1^33,K.1^43,-1*K.1^19,-1*K.1,-1*K.1^41,K.1^29,K.1^7,-1*K.1^19,-1*K.1,K.1^19,-1*K.1^11,-1*K.1^9,-1*K.1^13,-1*K.1^7,K.1^31,-1*K.1^7,K.1^17,-1*K.1^17,-1*K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^2,-1*K.1^26,K.1^32,K.1^16,-1*K.1^46,-1*K.1^6,-1*K.1^42,K.1^24,K.1^48,K.1^4,-1*K.1^34,K.1^44,-1*K.1^18,-1*K.1^38,K.1^8,K.1^28,-1*K.1^22,-1*K.1^14,K.1^36,K.1^12,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^45,K.1^35,K.1^5,K.1^35,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5,-1*K.1^35,-1*K.1^35,-1*K.1^5,K.1^45,-1*K.1^5,K.1^15,K.1^35,K.1^45,K.1^35,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^45,-1*K.1^45,K.1^45,K.1^8,-1*K.1^6,-1*K.1^14,K.1^28,K.1^16,-1*K.1^18,-1*K.1^38,K.1^36,K.1^48,K.1^44,K.1^48,K.1^44,-1*K.1^22,K.1^32,K.1^8,K.1^4,K.1^36,-1*K.1^34,K.1^48,-1*K.1^14,K.1^4,K.1^24,-1*K.1^34,K.1^28,-1*K.1^14,-1*K.1^2,K.1^24,-1*K.1^38,K.1^12,-1*K.1^42,-1*K.1^18,-1*K.1^38,-1*K.1^6,-1*K.1^6,K.1^32,K.1^36,K.1^32,-1*K.1^46,-1*K.1^46,-1*K.1^42,-1*K.1^42,K.1^44,-1*K.1^46,K.1^8,-1*K.1^34,-1*K.1^26,-1*K.1^22,-1*K.1^22,K.1^16,-1*K.1^2,-1*K.1^2,K.1^16,K.1^12,-1*K.1^26,-1*K.1^26,K.1^12,K.1^28,K.1^24,-1*K.1^18,K.1^4,K.1^4,-1*K.1^46,-1*K.1^38,K.1^44,K.1^24,K.1^12,-1*K.1^42,-1*K.1^42,K.1^48,K.1^28,K.1^16,-1*K.1^26,-1*K.1^26,K.1^12,K.1^32,-1*K.1^6,K.1^36,-1*K.1^2,-1*K.1^38,-1*K.1^46,-1*K.1^6,K.1^36,K.1^8,-1*K.1^18,-1*K.1^22,K.1^16,-1*K.1^22,-1*K.1^14,K.1^8,K.1^28,K.1^44,K.1^24,K.1^48,-1*K.1^34,-1*K.1^34,-1*K.1^2,K.1^32,K.1^4,-1*K.1^14,-1*K.1^18,K.1^2,K.1^14,K.1^42,K.1^46,K.1^18,K.1^18,K.1^6,-1*K.1^32,K.1^38,K.1^46,K.1^26,-1*K.1^16,-1*K.1^36,-1*K.1^44,K.1^22,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^2,K.1^38,K.1^18,-1*K.1^8,-1*K.1^8,-1*K.1^48,K.1^6,-1*K.1^32,-1*K.1^24,-1*K.1^12,-1*K.1^44,-1*K.1^48,K.1^14,K.1^42,-1*K.1^44,K.1^22,K.1^18,K.1^22,K.1^34,-1*K.1^28,K.1^38,-1*K.1^4,K.1^14,K.1^42,K.1^2,-1*K.1^24,K.1^34,K.1^34,-1*K.1^36,-1*K.1^4,-1*K.1^24,-1*K.1^32,-1*K.1^4,K.1^2,K.1^26,-1*K.1^28,-1*K.1^28,K.1^38,-1*K.1^48,-1*K.1^8,K.1^46,K.1^22,K.1^34,K.1^6,-1*K.1^12,K.1^26,K.1^14,-1*K.1^32,-1*K.1^24,-1*K.1^28,K.1^46,K.1^42,-1*K.1^16,-1*K.1^36,-1*K.1^36,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^12,K.1^26,-1*K.1^48,-1*K.1^44,K.1^34,K.1^38,K.1^18,-1*K.1^48,K.1^18,-1*K.1^8,K.1^34,-1*K.1^32,K.1^2,-1*K.1^24,-1*K.1^44,K.1^22,K.1^42,K.1^46,K.1^26,K.1^6,K.1^26,-1*K.1^16,K.1^42,-1*K.1^24,K.1^46,-1*K.1^4,K.1^22,K.1^2,K.1^14,-1*K.1^44,-1*K.1^32,-1*K.1^12,-1*K.1^8,-1*K.1^28,-1*K.1^48,-1*K.1^28,K.1^38,-1*K.1^12,K.1^14,-1*K.1^4,-1*K.1^16,-1*K.1^36,K.1^6,-1*K.1^36,K.1^11,-1*K.1^37,-1*K.1^11,K.1^19,-1*K.1,-1*K.1^23,-1*K.1^49,K.1^13,K.1^17,K.1^7,K.1^27,-1*K.1^49,-1*K.1^9,K.1^21,K.1^47,-1*K.1^31,-1*K.1^3,-1*K.1^9,K.1^37,K.1^43,K.1^21,K.1^9,K.1^3,-1*K.1^27,K.1^3,-1*K.1^13,K.1^13,K.1^39,-1*K.1^23,-1*K.1^11,K.1^27,K.1,-1*K.1^29,-1*K.1^29,K.1^47,K.1^27,-1*K.1^47,K.1^37,-1*K.1^29,-1*K.1^3,K.1^23,-1*K.1^7,-1*K.1^33,K.1^33,K.1,K.1^21,-1*K.1^17,-1*K.1^7,-1*K.1^27,K.1^47,-1*K.1^17,-1*K.1^37,K.1^39,K.1^19,K.1^7,-1*K.1^37,K.1^41,-1*K.1^43,K.1^19,-1*K.1^43,K.1^31,K.1^39,K.1^41,-1*K.1^13,K.1^49,-1*K.1^41,K.1^9,K.1^3,K.1^23,-1*K.1^39,-1*K.1^13,K.1^13,-1*K.1^11,K.1^19,-1*K.1^11,-1*K.1^19,K.1^11,K.1^13,-1*K.1^41,-1*K.1^39,-1*K.1^19,K.1^11,K.1^37,-1*K.1^41,-1*K.1^39,-1*K.1^19,K.1^43,K.1^17,-1*K.1^9,K.1^11,K.1^33,-1*K.1^33,-1*K.1^47,-1*K.1^27,K.1^3,K.1^29,K.1^29,-1*K.1,-1*K.1^23,-1*K.1,-1*K.1^23,K.1,-1*K.1^29,K.1^17,K.1^7,K.1^27,-1*K.1^47,-1*K.1^21,K.1^21,-1*K.1^3,-1*K.1^17,-1*K.1^21,-1*K.1^49,-1*K.1^31,K.1^7,K.1^33,K.1^29,-1*K.1,-1*K.1^27,K.1^47,-1*K.1^37,K.1^41,-1*K.1^49,-1*K.1^31,-1*K.1^43,K.1^31,-1*K.1^3,-1*K.1^21,-1*K.1^13,K.1^49,K.1^23,-1*K.1^7,K.1^17,-1*K.1^9,K.1,-1*K.1^41,-1*K.1^33,-1*K.1^47,K.1^23,-1*K.1^39,K.1^9,-1*K.1^17,-1*K.1^7,K.1^31,K.1^49,K.1^9,-1*K.1^21,-1*K.1^43,K.1^31,K.1^49,-1*K.1^31,K.1^39,K.1^41,K.1^37,K.1^43,-1*K.1^19,K.1^43,-1*K.1^33,K.1^33,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^18,-1*K.1^34,-1*K.1^38,K.1^44,-1*K.1^14,K.1^4,K.1^28,K.1^16,K.1^32,K.1^36,-1*K.1^6,-1*K.1^46,K.1^12,-1*K.1^42,-1*K.1^22,-1*K.1^2,K.1^48,-1*K.1^26,K.1^24,K.1^8,K.1^15,K.1^5,K.1^15,K.1^5,K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^35,K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^15,K.1^35,K.1^35,-1*K.1^35,-1*K.1^45,K.1^15,K.1^15,K.1^45,-1*K.1^5,K.1^45,-1*K.1^35,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^35,K.1^45,-1*K.1^45,K.1^35,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^22,K.1^4,-1*K.1^26,-1*K.1^2,K.1^44,K.1^12,-1*K.1^42,K.1^24,K.1^32,-1*K.1^46,K.1^32,-1*K.1^46,K.1^48,-1*K.1^38,-1*K.1^22,K.1^36,K.1^24,-1*K.1^6,K.1^32,-1*K.1^26,K.1^36,K.1^16,-1*K.1^6,-1*K.1^2,-1*K.1^26,-1*K.1^18,K.1^16,-1*K.1^42,K.1^8,K.1^28,K.1^12,-1*K.1^42,K.1^4,K.1^4,-1*K.1^38,K.1^24,-1*K.1^38,-1*K.1^14,-1*K.1^14,K.1^28,K.1^28,-1*K.1^46,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^34,K.1^48,K.1^48,K.1^44,-1*K.1^18,-1*K.1^18,K.1^44,K.1^8,-1*K.1^34,-1*K.1^34,K.1^8,-1*K.1^2,K.1^16,K.1^12,K.1^36,K.1^36,-1*K.1^14,-1*K.1^42,-1*K.1^46,K.1^16,K.1^8,K.1^28,K.1^28,K.1^32,-1*K.1^2,K.1^44,-1*K.1^34,-1*K.1^34,K.1^8,-1*K.1^38,K.1^4,K.1^24,-1*K.1^18,-1*K.1^42,-1*K.1^14,K.1^4,K.1^24,-1*K.1^22,K.1^12,K.1^48,K.1^44,K.1^48,-1*K.1^26,-1*K.1^22,-1*K.1^2,-1*K.1^46,K.1^16,K.1^32,-1*K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^38,K.1^36,-1*K.1^26,K.1^12,K.1^18,K.1^26,-1*K.1^28,K.1^14,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^38,K.1^42,K.1^14,K.1^34,-1*K.1^44,-1*K.1^24,K.1^46,-1*K.1^48,-1*K.1^44,K.1^22,-1*K.1^36,K.1^18,K.1^42,-1*K.1^12,K.1^22,K.1^22,-1*K.1^32,-1*K.1^4,K.1^38,-1*K.1^16,-1*K.1^8,K.1^46,-1*K.1^32,K.1^26,-1*K.1^28,K.1^46,-1*K.1^48,-1*K.1^12,-1*K.1^48,K.1^6,K.1^2,K.1^42,-1*K.1^36,K.1^26,-1*K.1^28,K.1^18,-1*K.1^16,K.1^6,K.1^6,-1*K.1^24,-1*K.1^36,-1*K.1^16,K.1^38,-1*K.1^36,K.1^18,K.1^34,K.1^2,K.1^2,K.1^42,-1*K.1^32,K.1^22,K.1^14,-1*K.1^48,K.1^6,-1*K.1^4,-1*K.1^8,K.1^34,K.1^26,K.1^38,-1*K.1^16,K.1^2,K.1^14,-1*K.1^28,-1*K.1^44,-1*K.1^24,-1*K.1^24,-1*K.1^4,-1*K.1^44,-1*K.1^8,-1*K.1^8,K.1^34,-1*K.1^32,K.1^46,K.1^6,K.1^42,-1*K.1^12,-1*K.1^32,-1*K.1^12,K.1^22,K.1^6,K.1^38,K.1^18,-1*K.1^16,K.1^46,-1*K.1^48,-1*K.1^28,K.1^14,K.1^34,-1*K.1^4,K.1^34,-1*K.1^44,-1*K.1^28,-1*K.1^16,K.1^14,-1*K.1^36,-1*K.1^48,K.1^18,K.1^26,K.1^46,K.1^38,-1*K.1^8,K.1^22,K.1^2,-1*K.1^32,K.1^2,K.1^42,-1*K.1^8,K.1^26,-1*K.1^36,-1*K.1^44,-1*K.1^24,-1*K.1^4,-1*K.1^24,K.1^49,K.1^33,-1*K.1^49,K.1^21,K.1^9,K.1^7,K.1^41,-1*K.1^17,K.1^3,K.1^13,-1*K.1^43,K.1^41,-1*K.1^31,K.1^39,-1*K.1^23,-1*K.1^29,K.1^27,-1*K.1^31,-1*K.1^33,K.1^37,K.1^39,K.1^31,-1*K.1^27,K.1^43,-1*K.1^27,K.1^17,-1*K.1^17,K.1,K.1^7,-1*K.1^49,-1*K.1^43,-1*K.1^9,-1*K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^43,K.1^23,-1*K.1^33,-1*K.1^11,K.1^27,-1*K.1^7,-1*K.1^13,-1*K.1^47,K.1^47,-1*K.1^9,K.1^39,-1*K.1^3,-1*K.1^13,K.1^43,-1*K.1^23,-1*K.1^3,K.1^33,K.1,K.1^21,K.1^13,K.1^33,K.1^19,-1*K.1^37,K.1^21,-1*K.1^37,K.1^29,K.1,K.1^19,K.1^17,-1*K.1^41,-1*K.1^19,K.1^31,-1*K.1^27,-1*K.1^7,-1*K.1,K.1^17,-1*K.1^17,-1*K.1^49,K.1^21,-1*K.1^49,-1*K.1^21,K.1^49,-1*K.1^17,-1*K.1^19,-1*K.1,-1*K.1^21,K.1^49,-1*K.1^33,-1*K.1^19,-1*K.1,-1*K.1^21,K.1^37,K.1^3,-1*K.1^31,K.1^49,K.1^47,-1*K.1^47,K.1^23,K.1^43,-1*K.1^27,K.1^11,K.1^11,K.1^9,K.1^7,K.1^9,K.1^7,-1*K.1^9,-1*K.1^11,K.1^3,K.1^13,-1*K.1^43,K.1^23,-1*K.1^39,K.1^39,K.1^27,-1*K.1^3,-1*K.1^39,K.1^41,-1*K.1^29,K.1^13,K.1^47,K.1^11,K.1^9,K.1^43,-1*K.1^23,K.1^33,K.1^19,K.1^41,-1*K.1^29,-1*K.1^37,K.1^29,K.1^27,-1*K.1^39,K.1^17,-1*K.1^41,-1*K.1^7,-1*K.1^13,K.1^3,-1*K.1^31,-1*K.1^9,-1*K.1^19,-1*K.1^47,K.1^23,-1*K.1^7,-1*K.1,K.1^31,-1*K.1^3,-1*K.1^13,K.1^29,-1*K.1^41,K.1^31,-1*K.1^39,-1*K.1^37,K.1^29,-1*K.1^41,-1*K.1^29,K.1,K.1^19,-1*K.1^33,K.1^37,-1*K.1^21,K.1^37,-1*K.1^47,K.1^47,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,K.1^32,K.1^16,K.1^12,-1*K.1^6,K.1^36,-1*K.1^46,-1*K.1^22,-1*K.1^34,-1*K.1^18,-1*K.1^14,K.1^44,K.1^4,-1*K.1^38,K.1^8,K.1^28,K.1^48,-1*K.1^2,K.1^24,-1*K.1^26,-1*K.1^42,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^45,K.1^35,K.1^5,K.1^35,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5,-1*K.1^35,-1*K.1^35,-1*K.1^5,K.1^45,-1*K.1^5,K.1^15,K.1^35,K.1^45,K.1^35,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^45,-1*K.1^45,K.1^45,K.1^28,-1*K.1^46,K.1^24,K.1^48,-1*K.1^6,-1*K.1^38,K.1^8,-1*K.1^26,-1*K.1^18,K.1^4,-1*K.1^18,K.1^4,-1*K.1^2,K.1^12,K.1^28,-1*K.1^14,-1*K.1^26,K.1^44,-1*K.1^18,K.1^24,-1*K.1^14,-1*K.1^34,K.1^44,K.1^48,K.1^24,K.1^32,-1*K.1^34,K.1^8,-1*K.1^42,-1*K.1^22,-1*K.1^38,K.1^8,-1*K.1^46,-1*K.1^46,K.1^12,-1*K.1^26,K.1^12,K.1^36,K.1^36,-1*K.1^22,-1*K.1^22,K.1^4,K.1^36,K.1^28,K.1^44,K.1^16,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^32,K.1^32,-1*K.1^6,-1*K.1^42,K.1^16,K.1^16,-1*K.1^42,K.1^48,-1*K.1^34,-1*K.1^38,-1*K.1^14,-1*K.1^14,K.1^36,K.1^8,K.1^4,-1*K.1^34,-1*K.1^42,-1*K.1^22,-1*K.1^22,-1*K.1^18,K.1^48,-1*K.1^6,K.1^16,K.1^16,-1*K.1^42,K.1^12,-1*K.1^46,-1*K.1^26,K.1^32,K.1^8,K.1^36,-1*K.1^46,-1*K.1^26,K.1^28,-1*K.1^38,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^24,K.1^28,K.1^48,K.1^4,-1*K.1^34,-1*K.1^18,K.1^44,K.1^44,K.1^32,K.1^12,-1*K.1^14,K.1^24,-1*K.1^38,-1*K.1^32,-1*K.1^24,K.1^22,-1*K.1^36,K.1^38,K.1^38,K.1^46,-1*K.1^12,-1*K.1^8,-1*K.1^36,-1*K.1^16,K.1^6,K.1^26,-1*K.1^4,K.1^2,K.1^6,-1*K.1^28,K.1^14,-1*K.1^32,-1*K.1^8,K.1^38,-1*K.1^28,-1*K.1^28,K.1^18,K.1^46,-1*K.1^12,K.1^34,K.1^42,-1*K.1^4,K.1^18,-1*K.1^24,K.1^22,-1*K.1^4,K.1^2,K.1^38,K.1^2,-1*K.1^44,-1*K.1^48,-1*K.1^8,K.1^14,-1*K.1^24,K.1^22,-1*K.1^32,K.1^34,-1*K.1^44,-1*K.1^44,K.1^26,K.1^14,K.1^34,-1*K.1^12,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^8,K.1^18,-1*K.1^28,-1*K.1^36,K.1^2,-1*K.1^44,K.1^46,K.1^42,-1*K.1^16,-1*K.1^24,-1*K.1^12,K.1^34,-1*K.1^48,-1*K.1^36,K.1^22,K.1^6,K.1^26,K.1^26,K.1^46,K.1^6,K.1^42,K.1^42,-1*K.1^16,K.1^18,-1*K.1^4,-1*K.1^44,-1*K.1^8,K.1^38,K.1^18,K.1^38,-1*K.1^28,-1*K.1^44,-1*K.1^12,-1*K.1^32,K.1^34,-1*K.1^4,K.1^2,K.1^22,-1*K.1^36,-1*K.1^16,K.1^46,-1*K.1^16,K.1^6,K.1^22,K.1^34,-1*K.1^36,K.1^14,K.1^2,-1*K.1^32,-1*K.1^24,-1*K.1^4,-1*K.1^12,K.1^42,-1*K.1^28,-1*K.1^48,K.1^18,-1*K.1^48,-1*K.1^8,K.1^42,-1*K.1^24,K.1^14,K.1^6,K.1^26,K.1^46,K.1^26,-1*K.1,-1*K.1^17,K.1,-1*K.1^29,-1*K.1^41,-1*K.1^43,-1*K.1^9,K.1^33,-1*K.1^47,-1*K.1^37,K.1^7,-1*K.1^9,K.1^19,-1*K.1^11,K.1^27,K.1^21,-1*K.1^23,K.1^19,K.1^17,-1*K.1^13,-1*K.1^11,-1*K.1^19,K.1^23,-1*K.1^7,K.1^23,-1*K.1^33,K.1^33,-1*K.1^49,-1*K.1^43,K.1,K.1^7,K.1^41,K.1^39,K.1^39,K.1^27,K.1^7,-1*K.1^27,K.1^17,K.1^39,-1*K.1^23,K.1^43,K.1^37,K.1^3,-1*K.1^3,K.1^41,-1*K.1^11,K.1^47,K.1^37,-1*K.1^7,K.1^27,K.1^47,-1*K.1^17,-1*K.1^49,-1*K.1^29,-1*K.1^37,-1*K.1^17,-1*K.1^31,K.1^13,-1*K.1^29,K.1^13,-1*K.1^21,-1*K.1^49,-1*K.1^31,-1*K.1^33,K.1^9,K.1^31,-1*K.1^19,K.1^23,K.1^43,K.1^49,-1*K.1^33,K.1^33,K.1,-1*K.1^29,K.1,K.1^29,-1*K.1,K.1^33,K.1^31,K.1^49,K.1^29,-1*K.1,K.1^17,K.1^31,K.1^49,K.1^29,-1*K.1^13,-1*K.1^47,K.1^19,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^27,-1*K.1^7,K.1^23,-1*K.1^39,-1*K.1^39,-1*K.1^41,-1*K.1^43,-1*K.1^41,-1*K.1^43,K.1^41,K.1^39,-1*K.1^47,-1*K.1^37,K.1^7,-1*K.1^27,K.1^11,-1*K.1^11,-1*K.1^23,K.1^47,K.1^11,-1*K.1^9,K.1^21,-1*K.1^37,-1*K.1^3,-1*K.1^39,-1*K.1^41,-1*K.1^7,K.1^27,-1*K.1^17,-1*K.1^31,-1*K.1^9,K.1^21,K.1^13,-1*K.1^21,-1*K.1^23,K.1^11,-1*K.1^33,K.1^9,K.1^43,K.1^37,-1*K.1^47,K.1^19,K.1^41,K.1^31,K.1^3,-1*K.1^27,K.1^43,K.1^49,-1*K.1^19,K.1^47,K.1^37,-1*K.1^21,K.1^9,-1*K.1^19,K.1^11,K.1^13,-1*K.1^21,K.1^9,K.1^21,-1*K.1^49,-1*K.1^31,K.1^17,-1*K.1^13,K.1^29,-1*K.1^13,K.1^3,-1*K.1^3,-1*K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^28,-1*K.1^14,K.1^48,K.1^24,K.1^44,-1*K.1^34,-1*K.1^38,K.1^36,-1*K.1^22,-1*K.1^6,-1*K.1^26,K.1^16,-1*K.1^2,K.1^32,K.1^12,-1*K.1^42,K.1^8,-1*K.1^46,K.1^4,-1*K.1^18,K.1^15,K.1^5,K.1^15,K.1^5,K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^35,K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^15,K.1^35,K.1^35,-1*K.1^35,-1*K.1^45,K.1^15,K.1^15,K.1^45,-1*K.1^5,K.1^45,-1*K.1^35,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^35,K.1^45,-1*K.1^45,K.1^35,-1*K.1^5,K.1^5,-1*K.1^5,K.1^12,-1*K.1^34,-1*K.1^46,-1*K.1^42,K.1^24,-1*K.1^2,K.1^32,K.1^4,-1*K.1^22,K.1^16,-1*K.1^22,K.1^16,K.1^8,K.1^48,K.1^12,-1*K.1^6,K.1^4,-1*K.1^26,-1*K.1^22,-1*K.1^46,-1*K.1^6,K.1^36,-1*K.1^26,-1*K.1^42,-1*K.1^46,K.1^28,K.1^36,K.1^32,-1*K.1^18,-1*K.1^38,-1*K.1^2,K.1^32,-1*K.1^34,-1*K.1^34,K.1^48,K.1^4,K.1^48,K.1^44,K.1^44,-1*K.1^38,-1*K.1^38,K.1^16,K.1^44,K.1^12,-1*K.1^26,-1*K.1^14,K.1^8,K.1^8,K.1^24,K.1^28,K.1^28,K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^42,K.1^36,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^44,K.1^32,K.1^16,K.1^36,-1*K.1^18,-1*K.1^38,-1*K.1^38,-1*K.1^22,-1*K.1^42,K.1^24,-1*K.1^14,-1*K.1^14,-1*K.1^18,K.1^48,-1*K.1^34,K.1^4,K.1^28,K.1^32,K.1^44,-1*K.1^34,K.1^4,K.1^12,-1*K.1^2,K.1^8,K.1^24,K.1^8,-1*K.1^46,K.1^12,-1*K.1^42,K.1^16,K.1^36,-1*K.1^22,-1*K.1^26,-1*K.1^26,K.1^28,K.1^48,-1*K.1^6,-1*K.1^46,-1*K.1^2,-1*K.1^28,K.1^46,K.1^38,-1*K.1^44,K.1^2,K.1^2,K.1^34,-1*K.1^48,-1*K.1^32,-1*K.1^44,K.1^14,-1*K.1^24,-1*K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^6,-1*K.1^28,-1*K.1^32,K.1^2,-1*K.1^12,-1*K.1^12,K.1^22,K.1^34,-1*K.1^48,-1*K.1^36,K.1^18,-1*K.1^16,K.1^22,K.1^46,K.1^38,-1*K.1^16,-1*K.1^8,K.1^2,-1*K.1^8,K.1^26,K.1^42,-1*K.1^32,K.1^6,K.1^46,K.1^38,-1*K.1^28,-1*K.1^36,K.1^26,K.1^26,-1*K.1^4,K.1^6,-1*K.1^36,-1*K.1^48,K.1^6,-1*K.1^28,K.1^14,K.1^42,K.1^42,-1*K.1^32,K.1^22,-1*K.1^12,-1*K.1^44,-1*K.1^8,K.1^26,K.1^34,K.1^18,K.1^14,K.1^46,-1*K.1^48,-1*K.1^36,K.1^42,-1*K.1^44,K.1^38,-1*K.1^24,-1*K.1^4,-1*K.1^4,K.1^34,-1*K.1^24,K.1^18,K.1^18,K.1^14,K.1^22,-1*K.1^16,K.1^26,-1*K.1^32,K.1^2,K.1^22,K.1^2,-1*K.1^12,K.1^26,-1*K.1^48,-1*K.1^28,-1*K.1^36,-1*K.1^16,-1*K.1^8,K.1^38,-1*K.1^44,K.1^14,K.1^34,K.1^14,-1*K.1^24,K.1^38,-1*K.1^36,-1*K.1^44,K.1^6,-1*K.1^8,-1*K.1^28,K.1^46,-1*K.1^16,-1*K.1^48,K.1^18,-1*K.1^12,K.1^42,K.1^22,K.1^42,-1*K.1^32,K.1^18,K.1^46,K.1^6,-1*K.1^24,-1*K.1^4,K.1^34,-1*K.1^4,K.1^29,-1*K.1^43,-1*K.1^29,K.1^41,-1*K.1^39,K.1^47,-1*K.1^11,K.1^7,-1*K.1^13,-1*K.1^23,-1*K.1^3,-1*K.1^11,K.1,K.1^19,K.1^33,-1*K.1^9,-1*K.1^17,K.1,K.1^43,-1*K.1^27,K.1^19,-1*K.1,K.1^17,K.1^3,K.1^17,-1*K.1^7,K.1^7,K.1^21,K.1^47,-1*K.1^29,-1*K.1^3,K.1^39,-1*K.1^31,-1*K.1^31,K.1^33,-1*K.1^3,-1*K.1^33,K.1^43,-1*K.1^31,-1*K.1^17,-1*K.1^47,K.1^23,K.1^37,-1*K.1^37,K.1^39,K.1^19,K.1^13,K.1^23,K.1^3,K.1^33,K.1^13,-1*K.1^43,K.1^21,K.1^41,-1*K.1^23,-1*K.1^43,-1*K.1^49,K.1^27,K.1^41,K.1^27,K.1^9,K.1^21,-1*K.1^49,-1*K.1^7,K.1^11,K.1^49,-1*K.1,K.1^17,-1*K.1^47,-1*K.1^21,-1*K.1^7,K.1^7,-1*K.1^29,K.1^41,-1*K.1^29,-1*K.1^41,K.1^29,K.1^7,K.1^49,-1*K.1^21,-1*K.1^41,K.1^29,K.1^43,K.1^49,-1*K.1^21,-1*K.1^41,-1*K.1^27,-1*K.1^13,K.1,K.1^29,-1*K.1^37,K.1^37,-1*K.1^33,K.1^3,K.1^17,K.1^31,K.1^31,-1*K.1^39,K.1^47,-1*K.1^39,K.1^47,K.1^39,-1*K.1^31,-1*K.1^13,-1*K.1^23,-1*K.1^3,-1*K.1^33,-1*K.1^19,K.1^19,-1*K.1^17,K.1^13,-1*K.1^19,-1*K.1^11,-1*K.1^9,-1*K.1^23,-1*K.1^37,K.1^31,-1*K.1^39,K.1^3,K.1^33,-1*K.1^43,-1*K.1^49,-1*K.1^11,-1*K.1^9,K.1^27,K.1^9,-1*K.1^17,-1*K.1^19,-1*K.1^7,K.1^11,-1*K.1^47,K.1^23,-1*K.1^13,K.1,K.1^39,K.1^49,K.1^37,-1*K.1^33,-1*K.1^47,-1*K.1^21,-1*K.1,K.1^13,K.1^23,K.1^9,K.1^11,-1*K.1,-1*K.1^19,K.1^27,K.1^9,K.1^11,-1*K.1^9,K.1^21,-1*K.1^49,K.1^43,-1*K.1^27,-1*K.1^41,-1*K.1^27,K.1^37,-1*K.1^37,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^22,K.1^36,-1*K.1^2,-1*K.1^26,-1*K.1^6,K.1^16,K.1^12,-1*K.1^14,K.1^28,K.1^44,K.1^24,-1*K.1^34,K.1^48,-1*K.1^18,-1*K.1^38,K.1^8,-1*K.1^42,K.1^4,-1*K.1^46,K.1^32,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^45,K.1^35,K.1^5,K.1^35,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5,-1*K.1^35,-1*K.1^35,-1*K.1^5,K.1^45,-1*K.1^5,K.1^15,K.1^35,K.1^45,K.1^35,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^45,-1*K.1^45,K.1^45,-1*K.1^38,K.1^16,K.1^4,K.1^8,-1*K.1^26,K.1^48,-1*K.1^18,-1*K.1^46,K.1^28,-1*K.1^34,K.1^28,-1*K.1^34,-1*K.1^42,-1*K.1^2,-1*K.1^38,K.1^44,-1*K.1^46,K.1^24,K.1^28,K.1^4,K.1^44,-1*K.1^14,K.1^24,K.1^8,K.1^4,-1*K.1^22,-1*K.1^14,-1*K.1^18,K.1^32,K.1^12,K.1^48,-1*K.1^18,K.1^16,K.1^16,-1*K.1^2,-1*K.1^46,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^12,K.1^12,-1*K.1^34,-1*K.1^6,-1*K.1^38,K.1^24,K.1^36,-1*K.1^42,-1*K.1^42,-1*K.1^26,-1*K.1^22,-1*K.1^22,-1*K.1^26,K.1^32,K.1^36,K.1^36,K.1^32,K.1^8,-1*K.1^14,K.1^48,K.1^44,K.1^44,-1*K.1^6,-1*K.1^18,-1*K.1^34,-1*K.1^14,K.1^32,K.1^12,K.1^12,K.1^28,K.1^8,-1*K.1^26,K.1^36,K.1^36,K.1^32,-1*K.1^2,K.1^16,-1*K.1^46,-1*K.1^22,-1*K.1^18,-1*K.1^6,K.1^16,-1*K.1^46,-1*K.1^38,K.1^48,-1*K.1^42,-1*K.1^26,-1*K.1^42,K.1^4,-1*K.1^38,K.1^8,-1*K.1^34,-1*K.1^14,K.1^28,K.1^24,K.1^24,-1*K.1^22,-1*K.1^2,K.1^44,K.1^4,K.1^48,K.1^22,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^48,-1*K.1^48,-1*K.1^16,K.1^2,K.1^18,K.1^6,-1*K.1^36,K.1^26,K.1^46,K.1^34,K.1^42,K.1^26,K.1^38,-1*K.1^44,K.1^22,K.1^18,-1*K.1^48,K.1^38,K.1^38,-1*K.1^28,-1*K.1^16,K.1^2,K.1^14,-1*K.1^32,K.1^34,-1*K.1^28,-1*K.1^4,-1*K.1^12,K.1^34,K.1^42,-1*K.1^48,K.1^42,-1*K.1^24,-1*K.1^8,K.1^18,-1*K.1^44,-1*K.1^4,-1*K.1^12,K.1^22,K.1^14,-1*K.1^24,-1*K.1^24,K.1^46,-1*K.1^44,K.1^14,K.1^2,-1*K.1^44,K.1^22,-1*K.1^36,-1*K.1^8,-1*K.1^8,K.1^18,-1*K.1^28,K.1^38,K.1^6,K.1^42,-1*K.1^24,-1*K.1^16,-1*K.1^32,-1*K.1^36,-1*K.1^4,K.1^2,K.1^14,-1*K.1^8,K.1^6,-1*K.1^12,K.1^26,K.1^46,K.1^46,-1*K.1^16,K.1^26,-1*K.1^32,-1*K.1^32,-1*K.1^36,-1*K.1^28,K.1^34,-1*K.1^24,K.1^18,-1*K.1^48,-1*K.1^28,-1*K.1^48,K.1^38,-1*K.1^24,K.1^2,K.1^22,K.1^14,K.1^34,K.1^42,-1*K.1^12,K.1^6,-1*K.1^36,-1*K.1^16,-1*K.1^36,K.1^26,-1*K.1^12,K.1^14,K.1^6,-1*K.1^44,K.1^42,K.1^22,-1*K.1^4,K.1^34,K.1^2,-1*K.1^32,K.1^38,-1*K.1^8,-1*K.1^28,-1*K.1^8,K.1^18,-1*K.1^32,-1*K.1^4,-1*K.1^44,K.1^26,K.1^46,-1*K.1^16,K.1^46,-1*K.1^21,K.1^7,K.1^21,-1*K.1^9,K.1^11,-1*K.1^3,K.1^39,-1*K.1^43,K.1^37,K.1^27,K.1^47,K.1^39,-1*K.1^49,-1*K.1^31,-1*K.1^17,K.1^41,K.1^33,-1*K.1^49,-1*K.1^7,K.1^23,-1*K.1^31,K.1^49,-1*K.1^33,-1*K.1^47,-1*K.1^33,K.1^43,-1*K.1^43,-1*K.1^29,-1*K.1^3,K.1^21,K.1^47,-1*K.1^11,K.1^19,K.1^19,-1*K.1^17,K.1^47,K.1^17,-1*K.1^7,K.1^19,K.1^33,K.1^3,-1*K.1^27,-1*K.1^13,K.1^13,-1*K.1^11,-1*K.1^31,-1*K.1^37,-1*K.1^27,-1*K.1^47,-1*K.1^17,-1*K.1^37,K.1^7,-1*K.1^29,-1*K.1^9,K.1^27,K.1^7,K.1,-1*K.1^23,-1*K.1^9,-1*K.1^23,-1*K.1^41,-1*K.1^29,K.1,K.1^43,-1*K.1^39,-1*K.1,K.1^49,-1*K.1^33,K.1^3,K.1^29,K.1^43,-1*K.1^43,K.1^21,-1*K.1^9,K.1^21,K.1^9,-1*K.1^21,-1*K.1^43,-1*K.1,K.1^29,K.1^9,-1*K.1^21,-1*K.1^7,-1*K.1,K.1^29,K.1^9,K.1^23,K.1^37,-1*K.1^49,-1*K.1^21,K.1^13,-1*K.1^13,K.1^17,-1*K.1^47,-1*K.1^33,-1*K.1^19,-1*K.1^19,K.1^11,-1*K.1^3,K.1^11,-1*K.1^3,-1*K.1^11,K.1^19,K.1^37,K.1^27,K.1^47,K.1^17,K.1^31,-1*K.1^31,K.1^33,-1*K.1^37,K.1^31,K.1^39,K.1^41,K.1^27,K.1^13,-1*K.1^19,K.1^11,-1*K.1^47,-1*K.1^17,K.1^7,K.1,K.1^39,K.1^41,-1*K.1^23,-1*K.1^41,K.1^33,K.1^31,K.1^43,-1*K.1^39,K.1^3,-1*K.1^27,K.1^37,-1*K.1^49,-1*K.1^11,-1*K.1,-1*K.1^13,K.1^17,K.1^3,K.1^29,K.1^49,-1*K.1^37,-1*K.1^27,-1*K.1^41,-1*K.1^39,K.1^49,K.1^31,-1*K.1^23,-1*K.1^41,-1*K.1^39,K.1^41,-1*K.1^29,K.1,-1*K.1^7,K.1^23,K.1^9,K.1^23,-1*K.1^13,K.1^13,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^38,K.1^44,K.1^8,K.1^4,K.1^24,-1*K.1^14,K.1^48,-1*K.1^6,K.1^12,-1*K.1^26,-1*K.1^46,K.1^36,-1*K.1^42,-1*K.1^22,-1*K.1^2,K.1^32,-1*K.1^18,K.1^16,-1*K.1^34,K.1^28,K.1^15,K.1^5,K.1^15,K.1^5,K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^35,K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^15,K.1^35,K.1^35,-1*K.1^35,-1*K.1^45,K.1^15,K.1^15,K.1^45,-1*K.1^5,K.1^45,-1*K.1^35,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^35,K.1^45,-1*K.1^45,K.1^35,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^2,-1*K.1^14,K.1^16,K.1^32,K.1^4,-1*K.1^42,-1*K.1^22,-1*K.1^34,K.1^12,K.1^36,K.1^12,K.1^36,-1*K.1^18,K.1^8,-1*K.1^2,-1*K.1^26,-1*K.1^34,-1*K.1^46,K.1^12,K.1^16,-1*K.1^26,-1*K.1^6,-1*K.1^46,K.1^32,K.1^16,-1*K.1^38,-1*K.1^6,-1*K.1^22,K.1^28,K.1^48,-1*K.1^42,-1*K.1^22,-1*K.1^14,-1*K.1^14,K.1^8,-1*K.1^34,K.1^8,K.1^24,K.1^24,K.1^48,K.1^48,K.1^36,K.1^24,-1*K.1^2,-1*K.1^46,K.1^44,-1*K.1^18,-1*K.1^18,K.1^4,-1*K.1^38,-1*K.1^38,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^6,-1*K.1^42,-1*K.1^26,-1*K.1^26,K.1^24,-1*K.1^22,K.1^36,-1*K.1^6,K.1^28,K.1^48,K.1^48,K.1^12,K.1^32,K.1^4,K.1^44,K.1^44,K.1^28,K.1^8,-1*K.1^14,-1*K.1^34,-1*K.1^38,-1*K.1^22,K.1^24,-1*K.1^14,-1*K.1^34,-1*K.1^2,-1*K.1^42,-1*K.1^18,K.1^4,-1*K.1^18,K.1^16,-1*K.1^2,K.1^32,K.1^36,-1*K.1^6,K.1^12,-1*K.1^46,-1*K.1^46,-1*K.1^38,K.1^8,-1*K.1^26,K.1^16,-1*K.1^42,K.1^38,-1*K.1^16,-1*K.1^48,-1*K.1^24,K.1^42,K.1^42,K.1^14,-1*K.1^8,K.1^22,-1*K.1^24,-1*K.1^44,-1*K.1^4,K.1^34,-1*K.1^36,K.1^18,-1*K.1^4,K.1^2,K.1^26,K.1^38,K.1^22,K.1^42,K.1^2,K.1^2,-1*K.1^12,K.1^14,-1*K.1^8,K.1^6,-1*K.1^28,-1*K.1^36,-1*K.1^12,-1*K.1^16,-1*K.1^48,-1*K.1^36,K.1^18,K.1^42,K.1^18,K.1^46,-1*K.1^32,K.1^22,K.1^26,-1*K.1^16,-1*K.1^48,K.1^38,K.1^6,K.1^46,K.1^46,K.1^34,K.1^26,K.1^6,-1*K.1^8,K.1^26,K.1^38,-1*K.1^44,-1*K.1^32,-1*K.1^32,K.1^22,-1*K.1^12,K.1^2,-1*K.1^24,K.1^18,K.1^46,K.1^14,-1*K.1^28,-1*K.1^44,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^32,-1*K.1^24,-1*K.1^48,-1*K.1^4,K.1^34,K.1^34,K.1^14,-1*K.1^4,-1*K.1^28,-1*K.1^28,-1*K.1^44,-1*K.1^12,-1*K.1^36,K.1^46,K.1^22,K.1^42,-1*K.1^12,K.1^42,K.1^2,K.1^46,-1*K.1^8,K.1^38,K.1^6,-1*K.1^36,K.1^18,-1*K.1^48,-1*K.1^24,-1*K.1^44,K.1^14,-1*K.1^44,-1*K.1^4,-1*K.1^48,K.1^6,-1*K.1^24,K.1^26,K.1^18,K.1^38,-1*K.1^16,-1*K.1^36,-1*K.1^8,-1*K.1^28,K.1^2,-1*K.1^32,-1*K.1^12,-1*K.1^32,K.1^22,-1*K.1^28,-1*K.1^16,K.1^26,-1*K.1^4,K.1^34,K.1^14,K.1^34,K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^11,-1*K.1^19,-1*K.1^37,-1*K.1^31,K.1^47,K.1^23,K.1^33,K.1^13,-1*K.1^31,K.1^21,-1*K.1^49,-1*K.1^43,K.1^39,K.1^7,K.1^21,K.1^3,K.1^17,-1*K.1^49,-1*K.1^21,-1*K.1^7,-1*K.1^13,-1*K.1^7,-1*K.1^47,K.1^47,K.1^41,-1*K.1^37,-1*K.1^9,K.1^13,K.1^19,K.1,K.1,-1*K.1^43,K.1^13,K.1^43,K.1^3,K.1,K.1^7,K.1^37,-1*K.1^33,-1*K.1^27,K.1^27,K.1^19,-1*K.1^49,-1*K.1^23,-1*K.1^33,-1*K.1^13,-1*K.1^43,-1*K.1^23,-1*K.1^3,K.1^41,-1*K.1^11,K.1^33,-1*K.1^3,-1*K.1^29,-1*K.1^17,-1*K.1^11,-1*K.1^17,-1*K.1^39,K.1^41,-1*K.1^29,-1*K.1^47,K.1^31,K.1^29,-1*K.1^21,-1*K.1^7,K.1^37,-1*K.1^41,-1*K.1^47,K.1^47,-1*K.1^9,-1*K.1^11,-1*K.1^9,K.1^11,K.1^9,K.1^47,K.1^29,-1*K.1^41,K.1^11,K.1^9,K.1^3,K.1^29,-1*K.1^41,K.1^11,K.1^17,K.1^23,K.1^21,K.1^9,K.1^27,-1*K.1^27,K.1^43,-1*K.1^13,-1*K.1^7,-1*K.1,-1*K.1,-1*K.1^19,-1*K.1^37,-1*K.1^19,-1*K.1^37,K.1^19,K.1,K.1^23,K.1^33,K.1^13,K.1^43,K.1^49,-1*K.1^49,K.1^7,-1*K.1^23,K.1^49,-1*K.1^31,K.1^39,K.1^33,K.1^27,-1*K.1,-1*K.1^19,-1*K.1^13,-1*K.1^43,-1*K.1^3,-1*K.1^29,-1*K.1^31,K.1^39,-1*K.1^17,-1*K.1^39,K.1^7,K.1^49,-1*K.1^47,K.1^31,K.1^37,-1*K.1^33,K.1^23,K.1^21,K.1^19,K.1^29,-1*K.1^27,K.1^43,K.1^37,-1*K.1^41,-1*K.1^21,-1*K.1^23,-1*K.1^33,-1*K.1^39,K.1^31,-1*K.1^21,K.1^49,-1*K.1^17,-1*K.1^39,K.1^31,K.1^39,K.1^41,-1*K.1^29,K.1^3,K.1^17,K.1^11,K.1^17,-1*K.1^27,K.1^27,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,K.1^12,-1*K.1^6,-1*K.1^42,-1*K.1^46,-1*K.1^26,K.1^36,-1*K.1^2,K.1^44,-1*K.1^38,K.1^24,K.1^4,-1*K.1^14,K.1^8,K.1^28,K.1^48,-1*K.1^18,K.1^32,-1*K.1^34,K.1^16,-1*K.1^22,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^45,K.1^35,K.1^5,K.1^35,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5,-1*K.1^35,-1*K.1^35,-1*K.1^5,K.1^45,-1*K.1^5,K.1^15,K.1^35,K.1^45,K.1^35,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^45,-1*K.1^45,K.1^45,K.1^48,K.1^36,-1*K.1^34,-1*K.1^18,-1*K.1^46,K.1^8,K.1^28,K.1^16,-1*K.1^38,-1*K.1^14,-1*K.1^38,-1*K.1^14,K.1^32,-1*K.1^42,K.1^48,K.1^24,K.1^16,K.1^4,-1*K.1^38,-1*K.1^34,K.1^24,K.1^44,K.1^4,-1*K.1^18,-1*K.1^34,K.1^12,K.1^44,K.1^28,-1*K.1^22,-1*K.1^2,K.1^8,K.1^28,K.1^36,K.1^36,-1*K.1^42,K.1^16,-1*K.1^42,-1*K.1^26,-1*K.1^26,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^26,K.1^48,K.1^4,-1*K.1^6,K.1^32,K.1^32,-1*K.1^46,K.1^12,K.1^12,-1*K.1^46,-1*K.1^22,-1*K.1^6,-1*K.1^6,-1*K.1^22,-1*K.1^18,K.1^44,K.1^8,K.1^24,K.1^24,-1*K.1^26,K.1^28,-1*K.1^14,K.1^44,-1*K.1^22,-1*K.1^2,-1*K.1^2,-1*K.1^38,-1*K.1^18,-1*K.1^46,-1*K.1^6,-1*K.1^6,-1*K.1^22,-1*K.1^42,K.1^36,K.1^16,K.1^12,K.1^28,-1*K.1^26,K.1^36,K.1^16,K.1^48,K.1^8,K.1^32,-1*K.1^46,K.1^32,-1*K.1^34,K.1^48,-1*K.1^18,-1*K.1^14,K.1^44,-1*K.1^38,K.1^4,K.1^4,K.1^12,-1*K.1^42,K.1^24,-1*K.1^34,K.1^8,-1*K.1^12,K.1^34,K.1^2,K.1^26,-1*K.1^8,-1*K.1^8,-1*K.1^36,K.1^42,-1*K.1^28,K.1^26,K.1^6,K.1^46,-1*K.1^16,K.1^14,-1*K.1^32,K.1^46,-1*K.1^48,-1*K.1^24,-1*K.1^12,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^48,K.1^38,-1*K.1^36,K.1^42,-1*K.1^44,K.1^22,K.1^14,K.1^38,K.1^34,K.1^2,K.1^14,-1*K.1^32,-1*K.1^8,-1*K.1^32,-1*K.1^4,K.1^18,-1*K.1^28,-1*K.1^24,K.1^34,K.1^2,-1*K.1^12,-1*K.1^44,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^24,-1*K.1^44,K.1^42,-1*K.1^24,-1*K.1^12,K.1^6,K.1^18,K.1^18,-1*K.1^28,K.1^38,-1*K.1^48,K.1^26,-1*K.1^32,-1*K.1^4,-1*K.1^36,K.1^22,K.1^6,K.1^34,K.1^42,-1*K.1^44,K.1^18,K.1^26,K.1^2,K.1^46,-1*K.1^16,-1*K.1^16,-1*K.1^36,K.1^46,K.1^22,K.1^22,K.1^6,K.1^38,K.1^14,-1*K.1^4,-1*K.1^28,-1*K.1^8,K.1^38,-1*K.1^8,-1*K.1^48,-1*K.1^4,K.1^42,-1*K.1^12,-1*K.1^44,K.1^14,-1*K.1^32,K.1^2,K.1^26,K.1^6,-1*K.1^36,K.1^6,K.1^46,K.1^2,-1*K.1^44,K.1^26,-1*K.1^24,-1*K.1^32,-1*K.1^12,K.1^34,K.1^14,K.1^42,K.1^22,-1*K.1^48,K.1^18,K.1^38,K.1^18,-1*K.1^28,K.1^22,K.1^34,-1*K.1^24,K.1^46,-1*K.1^16,-1*K.1^36,-1*K.1^16,-1*K.1^41,K.1^47,K.1^41,K.1^39,K.1^31,K.1^13,K.1^19,-1*K.1^3,-1*K.1^27,-1*K.1^17,-1*K.1^37,K.1^19,-1*K.1^29,K.1,K.1^7,-1*K.1^11,-1*K.1^43,-1*K.1^29,-1*K.1^47,-1*K.1^33,K.1,K.1^29,K.1^43,K.1^37,K.1^43,K.1^3,-1*K.1^3,-1*K.1^9,K.1^13,K.1^41,-1*K.1^37,-1*K.1^31,-1*K.1^49,-1*K.1^49,K.1^7,-1*K.1^37,-1*K.1^7,-1*K.1^47,-1*K.1^49,-1*K.1^43,-1*K.1^13,K.1^17,K.1^23,-1*K.1^23,-1*K.1^31,K.1,K.1^27,K.1^17,K.1^37,K.1^7,K.1^27,K.1^47,-1*K.1^9,K.1^39,-1*K.1^17,K.1^47,K.1^21,K.1^33,K.1^39,K.1^33,K.1^11,-1*K.1^9,K.1^21,K.1^3,-1*K.1^19,-1*K.1^21,K.1^29,K.1^43,-1*K.1^13,K.1^9,K.1^3,-1*K.1^3,K.1^41,K.1^39,K.1^41,-1*K.1^39,-1*K.1^41,-1*K.1^3,-1*K.1^21,K.1^9,-1*K.1^39,-1*K.1^41,-1*K.1^47,-1*K.1^21,K.1^9,-1*K.1^39,-1*K.1^33,-1*K.1^27,-1*K.1^29,-1*K.1^41,-1*K.1^23,K.1^23,-1*K.1^7,K.1^37,K.1^43,K.1^49,K.1^49,K.1^31,K.1^13,K.1^31,K.1^13,-1*K.1^31,-1*K.1^49,-1*K.1^27,-1*K.1^17,-1*K.1^37,-1*K.1^7,-1*K.1,K.1,-1*K.1^43,K.1^27,-1*K.1,K.1^19,-1*K.1^11,-1*K.1^17,-1*K.1^23,K.1^49,K.1^31,K.1^37,K.1^7,K.1^47,K.1^21,K.1^19,-1*K.1^11,K.1^33,K.1^11,-1*K.1^43,-1*K.1,K.1^3,-1*K.1^19,-1*K.1^13,K.1^17,-1*K.1^27,-1*K.1^29,-1*K.1^31,-1*K.1^21,K.1^23,-1*K.1^7,-1*K.1^13,K.1^9,K.1^29,K.1^27,K.1^17,K.1^11,-1*K.1^19,K.1^29,-1*K.1,K.1^33,K.1^11,-1*K.1^19,-1*K.1^11,-1*K.1^9,K.1^21,-1*K.1^47,-1*K.1^33,-1*K.1^39,-1*K.1^33,K.1^23,-1*K.1^23,K.1^49]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^8,K.1^4,K.1^28,-1*K.1^14,-1*K.1^34,K.1^24,-1*K.1^18,-1*K.1^46,-1*K.1^42,K.1^16,K.1^36,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^32,K.1^12,-1*K.1^38,-1*K.1^6,K.1^44,K.1^48,K.1^15,K.1^5,K.1^15,K.1^5,K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^35,K.1^5,-1*K.1^15,-1*K.1^45,-1*K.1^15,K.1^35,K.1^35,-1*K.1^35,-1*K.1^45,K.1^15,K.1^15,K.1^45,-1*K.1^5,K.1^45,-1*K.1^35,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^35,K.1^45,-1*K.1^45,K.1^35,-1*K.1^5,K.1^5,-1*K.1^5,K.1^32,K.1^24,-1*K.1^6,K.1^12,-1*K.1^14,-1*K.1^22,-1*K.1^2,K.1^44,-1*K.1^42,-1*K.1^26,-1*K.1^42,-1*K.1^26,-1*K.1^38,K.1^28,K.1^32,K.1^16,K.1^44,K.1^36,-1*K.1^42,-1*K.1^6,K.1^16,-1*K.1^46,K.1^36,K.1^12,-1*K.1^6,K.1^8,-1*K.1^46,-1*K.1^2,K.1^48,-1*K.1^18,-1*K.1^22,-1*K.1^2,K.1^24,K.1^24,K.1^28,K.1^44,K.1^28,-1*K.1^34,-1*K.1^34,-1*K.1^18,-1*K.1^18,-1*K.1^26,-1*K.1^34,K.1^32,K.1^36,K.1^4,-1*K.1^38,-1*K.1^38,-1*K.1^14,K.1^8,K.1^8,-1*K.1^14,K.1^48,K.1^4,K.1^4,K.1^48,K.1^12,-1*K.1^46,-1*K.1^22,K.1^16,K.1^16,-1*K.1^34,-1*K.1^2,-1*K.1^26,-1*K.1^46,K.1^48,-1*K.1^18,-1*K.1^18,-1*K.1^42,K.1^12,-1*K.1^14,K.1^4,K.1^4,K.1^48,K.1^28,K.1^24,K.1^44,K.1^8,-1*K.1^2,-1*K.1^34,K.1^24,K.1^44,K.1^32,-1*K.1^22,-1*K.1^38,-1*K.1^14,-1*K.1^38,-1*K.1^6,K.1^32,K.1^12,-1*K.1^26,-1*K.1^46,-1*K.1^42,K.1^36,K.1^36,K.1^8,K.1^28,K.1^16,-1*K.1^6,-1*K.1^22,-1*K.1^8,K.1^6,K.1^18,K.1^34,K.1^22,K.1^22,-1*K.1^24,-1*K.1^28,K.1^2,K.1^34,-1*K.1^4,K.1^14,-1*K.1^44,K.1^26,K.1^38,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^8,K.1^2,K.1^22,-1*K.1^32,-1*K.1^32,K.1^42,-1*K.1^24,-1*K.1^28,K.1^46,-1*K.1^48,K.1^26,K.1^42,K.1^6,K.1^18,K.1^26,K.1^38,K.1^22,K.1^38,-1*K.1^36,-1*K.1^12,K.1^2,-1*K.1^16,K.1^6,K.1^18,-1*K.1^8,K.1^46,-1*K.1^36,-1*K.1^36,-1*K.1^44,-1*K.1^16,K.1^46,-1*K.1^28,-1*K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^2,K.1^42,-1*K.1^32,K.1^34,K.1^38,-1*K.1^36,-1*K.1^24,-1*K.1^48,-1*K.1^4,K.1^6,-1*K.1^28,K.1^46,-1*K.1^12,K.1^34,K.1^18,K.1^14,-1*K.1^44,-1*K.1^44,-1*K.1^24,K.1^14,-1*K.1^48,-1*K.1^48,-1*K.1^4,K.1^42,K.1^26,-1*K.1^36,K.1^2,K.1^22,K.1^42,K.1^22,-1*K.1^32,-1*K.1^36,-1*K.1^28,-1*K.1^8,K.1^46,K.1^26,K.1^38,K.1^18,K.1^34,-1*K.1^4,-1*K.1^24,-1*K.1^4,K.1^14,K.1^18,K.1^46,K.1^34,-1*K.1^16,K.1^38,-1*K.1^8,K.1^6,K.1^26,-1*K.1^28,-1*K.1^48,-1*K.1^32,-1*K.1^12,K.1^42,-1*K.1^12,K.1^2,-1*K.1^48,K.1^6,-1*K.1^16,K.1^14,-1*K.1^44,-1*K.1^24,-1*K.1^44,-1*K.1^19,-1*K.1^23,K.1^19,K.1,K.1^29,-1*K.1^17,K.1^21,K.1^27,K.1^43,-1*K.1^3,K.1^33,K.1^21,-1*K.1^11,-1*K.1^9,K.1^13,-1*K.1^49,-1*K.1^37,-1*K.1^11,K.1^23,-1*K.1^47,-1*K.1^9,K.1^11,K.1^37,-1*K.1^33,K.1^37,-1*K.1^27,K.1^27,-1*K.1^31,-1*K.1^17,K.1^19,K.1^33,-1*K.1^29,K.1^41,K.1^41,K.1^13,K.1^33,-1*K.1^13,K.1^23,K.1^41,-1*K.1^37,K.1^17,K.1^3,-1*K.1^7,K.1^7,-1*K.1^29,-1*K.1^9,-1*K.1^43,K.1^3,-1*K.1^33,K.1^13,-1*K.1^43,-1*K.1^23,-1*K.1^31,K.1,-1*K.1^3,-1*K.1^23,K.1^39,K.1^47,K.1,K.1^47,K.1^49,-1*K.1^31,K.1^39,-1*K.1^27,-1*K.1^21,-1*K.1^39,K.1^11,K.1^37,K.1^17,K.1^31,-1*K.1^27,K.1^27,K.1^19,K.1,K.1^19,-1*K.1,-1*K.1^19,K.1^27,-1*K.1^39,K.1^31,-1*K.1,-1*K.1^19,K.1^23,-1*K.1^39,K.1^31,-1*K.1,-1*K.1^47,K.1^43,-1*K.1^11,-1*K.1^19,K.1^7,-1*K.1^7,-1*K.1^13,-1*K.1^33,K.1^37,-1*K.1^41,-1*K.1^41,K.1^29,-1*K.1^17,K.1^29,-1*K.1^17,-1*K.1^29,K.1^41,K.1^43,-1*K.1^3,K.1^33,-1*K.1^13,K.1^9,-1*K.1^9,-1*K.1^37,-1*K.1^43,K.1^9,K.1^21,-1*K.1^49,-1*K.1^3,K.1^7,-1*K.1^41,K.1^29,-1*K.1^33,K.1^13,-1*K.1^23,K.1^39,K.1^21,-1*K.1^49,K.1^47,K.1^49,-1*K.1^37,K.1^9,-1*K.1^27,-1*K.1^21,K.1^17,K.1^3,K.1^43,-1*K.1^11,-1*K.1^29,-1*K.1^39,-1*K.1^7,-1*K.1^13,K.1^17,K.1^31,K.1^11,-1*K.1^43,K.1^3,K.1^49,-1*K.1^21,K.1^11,K.1^9,K.1^47,K.1^49,-1*K.1^21,-1*K.1^49,-1*K.1^31,K.1^39,K.1^23,-1*K.1^47,-1*K.1,-1*K.1^47,-1*K.1^7,K.1^7,-1*K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^42,-1*K.1^46,-1*K.1^22,K.1^36,K.1^16,-1*K.1^26,K.1^32,K.1^4,K.1^8,-1*K.1^34,-1*K.1^14,K.1^24,K.1^28,K.1^48,-1*K.1^18,-1*K.1^38,K.1^12,K.1^44,-1*K.1^6,-1*K.1^2,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^5,K.1^15,K.1^5,K.1^15,-1*K.1^45,K.1^35,K.1^5,K.1^35,-1*K.1^15,-1*K.1^15,K.1^15,K.1^5,-1*K.1^35,-1*K.1^35,-1*K.1^5,K.1^45,-1*K.1^5,K.1^15,K.1^35,K.1^45,K.1^35,-1*K.1^15,-1*K.1^5,K.1^5,-1*K.1^15,K.1^45,-1*K.1^45,K.1^45,-1*K.1^18,-1*K.1^26,K.1^44,-1*K.1^38,K.1^36,K.1^28,K.1^48,-1*K.1^6,K.1^8,K.1^24,K.1^8,K.1^24,K.1^12,-1*K.1^22,-1*K.1^18,-1*K.1^34,-1*K.1^6,-1*K.1^14,K.1^8,K.1^44,-1*K.1^34,K.1^4,-1*K.1^14,-1*K.1^38,K.1^44,-1*K.1^42,K.1^4,K.1^48,-1*K.1^2,K.1^32,K.1^28,K.1^48,-1*K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^6,-1*K.1^22,K.1^16,K.1^16,K.1^32,K.1^32,K.1^24,K.1^16,-1*K.1^18,-1*K.1^14,-1*K.1^46,K.1^12,K.1^12,K.1^36,-1*K.1^42,-1*K.1^42,K.1^36,-1*K.1^2,-1*K.1^46,-1*K.1^46,-1*K.1^2,-1*K.1^38,K.1^4,K.1^28,-1*K.1^34,-1*K.1^34,K.1^16,K.1^48,K.1^24,K.1^4,-1*K.1^2,K.1^32,K.1^32,K.1^8,-1*K.1^38,K.1^36,-1*K.1^46,-1*K.1^46,-1*K.1^2,-1*K.1^22,-1*K.1^26,-1*K.1^6,-1*K.1^42,K.1^48,K.1^16,-1*K.1^26,-1*K.1^6,-1*K.1^18,K.1^28,K.1^12,K.1^36,K.1^12,K.1^44,-1*K.1^18,-1*K.1^38,K.1^24,K.1^4,K.1^8,-1*K.1^14,-1*K.1^14,-1*K.1^42,-1*K.1^22,-1*K.1^34,K.1^44,K.1^28,K.1^42,-1*K.1^44,-1*K.1^32,-1*K.1^16,-1*K.1^28,-1*K.1^28,K.1^26,K.1^22,-1*K.1^48,-1*K.1^16,K.1^46,-1*K.1^36,K.1^6,-1*K.1^24,-1*K.1^12,-1*K.1^36,K.1^18,K.1^34,K.1^42,-1*K.1^48,-1*K.1^28,K.1^18,K.1^18,-1*K.1^8,K.1^26,K.1^22,-1*K.1^4,K.1^2,-1*K.1^24,-1*K.1^8,-1*K.1^44,-1*K.1^32,-1*K.1^24,-1*K.1^12,-1*K.1^28,-1*K.1^12,K.1^14,K.1^38,-1*K.1^48,K.1^34,-1*K.1^44,-1*K.1^32,K.1^42,-1*K.1^4,K.1^14,K.1^14,K.1^6,K.1^34,-1*K.1^4,K.1^22,K.1^34,K.1^42,K.1^46,K.1^38,K.1^38,-1*K.1^48,-1*K.1^8,K.1^18,-1*K.1^16,-1*K.1^12,K.1^14,K.1^26,K.1^2,K.1^46,-1*K.1^44,K.1^22,-1*K.1^4,K.1^38,-1*K.1^16,-1*K.1^32,-1*K.1^36,K.1^6,K.1^6,K.1^26,-1*K.1^36,K.1^2,K.1^2,K.1^46,-1*K.1^8,-1*K.1^24,K.1^14,-1*K.1^48,-1*K.1^28,-1*K.1^8,-1*K.1^28,K.1^18,K.1^14,K.1^22,K.1^42,-1*K.1^4,-1*K.1^24,-1*K.1^12,-1*K.1^32,-1*K.1^16,K.1^46,K.1^26,K.1^46,-1*K.1^36,-1*K.1^32,-1*K.1^4,-1*K.1^16,K.1^34,-1*K.1^12,K.1^42,-1*K.1^44,-1*K.1^24,K.1^22,K.1^2,K.1^18,K.1^38,-1*K.1^8,K.1^38,-1*K.1^48,K.1^2,-1*K.1^44,K.1^34,-1*K.1^36,K.1^6,K.1^26,K.1^6,K.1^31,K.1^27,-1*K.1^31,-1*K.1^49,-1*K.1^21,K.1^33,-1*K.1^29,-1*K.1^23,-1*K.1^7,K.1^47,-1*K.1^17,-1*K.1^29,K.1^39,K.1^41,-1*K.1^37,K.1,K.1^13,K.1^39,-1*K.1^27,K.1^3,K.1^41,-1*K.1^39,-1*K.1^13,K.1^17,-1*K.1^13,K.1^23,-1*K.1^23,K.1^19,K.1^33,-1*K.1^31,-1*K.1^17,K.1^21,-1*K.1^9,-1*K.1^9,-1*K.1^37,-1*K.1^17,K.1^37,-1*K.1^27,-1*K.1^9,K.1^13,-1*K.1^33,-1*K.1^47,K.1^43,-1*K.1^43,K.1^21,K.1^41,K.1^7,-1*K.1^47,K.1^17,-1*K.1^37,K.1^7,K.1^27,K.1^19,-1*K.1^49,K.1^47,K.1^27,-1*K.1^11,-1*K.1^3,-1*K.1^49,-1*K.1^3,-1*K.1,K.1^19,-1*K.1^11,K.1^23,K.1^29,K.1^11,-1*K.1^39,-1*K.1^13,-1*K.1^33,-1*K.1^19,K.1^23,-1*K.1^23,-1*K.1^31,-1*K.1^49,-1*K.1^31,K.1^49,K.1^31,-1*K.1^23,K.1^11,-1*K.1^19,K.1^49,K.1^31,-1*K.1^27,K.1^11,-1*K.1^19,K.1^49,K.1^3,-1*K.1^7,K.1^39,K.1^31,-1*K.1^43,K.1^43,K.1^37,K.1^17,-1*K.1^13,K.1^9,K.1^9,-1*K.1^21,K.1^33,-1*K.1^21,K.1^33,K.1^21,-1*K.1^9,-1*K.1^7,K.1^47,-1*K.1^17,K.1^37,-1*K.1^41,K.1^41,K.1^13,K.1^7,-1*K.1^41,-1*K.1^29,K.1,K.1^47,-1*K.1^43,K.1^9,-1*K.1^21,K.1^17,-1*K.1^37,K.1^27,-1*K.1^11,-1*K.1^29,K.1,-1*K.1^3,-1*K.1,K.1^13,-1*K.1^41,K.1^23,K.1^29,-1*K.1^33,-1*K.1^47,-1*K.1^7,K.1^39,K.1^21,K.1^11,K.1^43,K.1^37,-1*K.1^33,-1*K.1^19,-1*K.1^39,K.1^7,-1*K.1^47,-1*K.1,K.1^29,-1*K.1^39,-1*K.1^41,-1*K.1^3,-1*K.1,K.1^29,K.1,K.1^19,-1*K.1^11,-1*K.1^27,K.1^3,K.1^49,K.1^3,K.1^43,-1*K.1^43,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^48,K.1^24,-1*K.1^18,-1*K.1^34,K.1^4,K.1^44,K.1^8,-1*K.1^26,-1*K.1^2,-1*K.1^46,K.1^16,-1*K.1^6,K.1^32,K.1^12,-1*K.1^42,-1*K.1^22,K.1^28,K.1^36,-1*K.1^14,-1*K.1^38,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^45,K.1^35,K.1^45,K.1^35,-1*K.1^5,K.1^15,K.1^45,K.1^15,-1*K.1^35,-1*K.1^35,K.1^35,K.1^45,-1*K.1^15,-1*K.1^15,-1*K.1^45,K.1^5,-1*K.1^45,K.1^35,K.1^15,K.1^5,K.1^15,-1*K.1^35,-1*K.1^45,K.1^45,-1*K.1^35,K.1^5,-1*K.1^5,K.1^5,-1*K.1^42,K.1^44,K.1^36,-1*K.1^22,-1*K.1^34,K.1^32,K.1^12,-1*K.1^14,-1*K.1^2,-1*K.1^6,-1*K.1^2,-1*K.1^6,K.1^28,-1*K.1^18,-1*K.1^42,-1*K.1^46,-1*K.1^14,K.1^16,-1*K.1^2,K.1^36,-1*K.1^46,-1*K.1^26,K.1^16,-1*K.1^22,K.1^36,K.1^48,-1*K.1^26,K.1^12,-1*K.1^38,K.1^8,K.1^32,K.1^12,K.1^44,K.1^44,-1*K.1^18,-1*K.1^14,-1*K.1^18,K.1^4,K.1^4,K.1^8,K.1^8,-1*K.1^6,K.1^4,-1*K.1^42,K.1^16,K.1^24,K.1^28,K.1^28,-1*K.1^34,K.1^48,K.1^48,-1*K.1^34,-1*K.1^38,K.1^24,K.1^24,-1*K.1^38,-1*K.1^22,-1*K.1^26,K.1^32,-1*K.1^46,-1*K.1^46,K.1^4,K.1^12,-1*K.1^6,-1*K.1^26,-1*K.1^38,K.1^8,K.1^8,-1*K.1^2,-1*K.1^22,-1*K.1^34,K.1^24,K.1^24,-1*K.1^38,-1*K.1^18,K.1^44,-1*K.1^14,K.1^48,K.1^12,K.1^4,K.1^44,-1*K.1^14,-1*K.1^42,K.1^32,K.1^28,-1*K.1^34,K.1^28,K.1^36,-1*K.1^42,-1*K.1^22,-1*K.1^6,-1*K.1^26,-1*K.1^2,K.1^16,K.1^16,K.1^48,-1*K.1^18,-1*K.1^46,K.1^36,K.1^32,-1*K.1^48,-1*K.1^36,-1*K.1^8,-1*K.1^4,-1*K.1^32,-1*K.1^32,-1*K.1^44,K.1^18,-1*K.1^12,-1*K.1^4,-1*K.1^24,K.1^34,K.1^14,K.1^6,-1*K.1^28,K.1^34,K.1^42,K.1^46,-1*K.1^48,-1*K.1^12,-1*K.1^32,K.1^42,K.1^42,K.1^2,-1*K.1^44,K.1^18,K.1^26,K.1^38,K.1^6,K.1^2,-1*K.1^36,-1*K.1^8,K.1^6,-1*K.1^28,-1*K.1^32,-1*K.1^28,-1*K.1^16,K.1^22,-1*K.1^12,K.1^46,-1*K.1^36,-1*K.1^8,-1*K.1^48,K.1^26,-1*K.1^16,-1*K.1^16,K.1^14,K.1^46,K.1^26,K.1^18,K.1^46,-1*K.1^48,-1*K.1^24,K.1^22,K.1^22,-1*K.1^12,K.1^2,K.1^42,-1*K.1^4,-1*K.1^28,-1*K.1^16,-1*K.1^44,K.1^38,-1*K.1^24,-1*K.1^36,K.1^18,K.1^26,K.1^22,-1*K.1^4,-1*K.1^8,K.1^34,K.1^14,K.1^14,-1*K.1^44,K.1^34,K.1^38,K.1^38,-1*K.1^24,K.1^2,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^32,K.1^2,-1*K.1^32,K.1^42,-1*K.1^16,K.1^18,-1*K.1^48,K.1^26,K.1^6,-1*K.1^28,-1*K.1^8,-1*K.1^4,-1*K.1^24,-1*K.1^44,-1*K.1^24,K.1^34,-1*K.1^8,K.1^26,-1*K.1^4,K.1^46,-1*K.1^28,-1*K.1^48,-1*K.1^36,K.1^6,K.1^18,K.1^38,K.1^42,K.1^22,K.1^2,K.1^22,-1*K.1^12,K.1^38,-1*K.1^36,K.1^46,K.1^34,K.1^14,-1*K.1^44,K.1^14,K.1^39,-1*K.1^13,-1*K.1^39,K.1^31,-1*K.1^49,-1*K.1^27,-1*K.1,K.1^37,K.1^33,K.1^43,K.1^23,-1*K.1,-1*K.1^41,K.1^29,K.1^3,-1*K.1^19,-1*K.1^47,-1*K.1^41,K.1^13,K.1^7,K.1^29,K.1^41,K.1^47,-1*K.1^23,K.1^47,-1*K.1^37,K.1^37,K.1^11,-1*K.1^27,-1*K.1^39,K.1^23,K.1^49,-1*K.1^21,-1*K.1^21,K.1^3,K.1^23,-1*K.1^3,K.1^13,-1*K.1^21,-1*K.1^47,K.1^27,-1*K.1^43,-1*K.1^17,K.1^17,K.1^49,K.1^29,-1*K.1^33,-1*K.1^43,-1*K.1^23,K.1^3,-1*K.1^33,-1*K.1^13,K.1^11,K.1^31,K.1^43,-1*K.1^13,K.1^9,-1*K.1^7,K.1^31,-1*K.1^7,K.1^19,K.1^11,K.1^9,-1*K.1^37,K.1,-1*K.1^9,K.1^41,K.1^47,K.1^27,-1*K.1^11,-1*K.1^37,K.1^37,-1*K.1^39,K.1^31,-1*K.1^39,-1*K.1^31,K.1^39,K.1^37,-1*K.1^9,-1*K.1^11,-1*K.1^31,K.1^39,K.1^13,-1*K.1^9,-1*K.1^11,-1*K.1^31,K.1^7,K.1^33,-1*K.1^41,K.1^39,K.1^17,-1*K.1^17,-1*K.1^3,-1*K.1^23,K.1^47,K.1^21,K.1^21,-1*K.1^49,-1*K.1^27,-1*K.1^49,-1*K.1^27,K.1^49,-1*K.1^21,K.1^33,K.1^43,K.1^23,-1*K.1^3,-1*K.1^29,K.1^29,-1*K.1^47,-1*K.1^33,-1*K.1^29,-1*K.1,-1*K.1^19,K.1^43,K.1^17,K.1^21,-1*K.1^49,-1*K.1^23,K.1^3,-1*K.1^13,K.1^9,-1*K.1,-1*K.1^19,-1*K.1^7,K.1^19,-1*K.1^47,-1*K.1^29,-1*K.1^37,K.1,K.1^27,-1*K.1^43,K.1^33,-1*K.1^41,K.1^49,-1*K.1^9,-1*K.1^17,-1*K.1^3,K.1^27,-1*K.1^11,K.1^41,-1*K.1^33,-1*K.1^43,K.1^19,K.1,K.1^41,-1*K.1^29,-1*K.1^7,K.1^19,K.1,-1*K.1^19,K.1^11,K.1^9,K.1^13,K.1^7,-1*K.1^31,K.1^7,-1*K.1^17,K.1^17,K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^2,-1*K.1^26,K.1^32,K.1^16,-1*K.1^46,-1*K.1^6,-1*K.1^42,K.1^24,K.1^48,K.1^4,-1*K.1^34,K.1^44,-1*K.1^18,-1*K.1^38,K.1^8,K.1^28,-1*K.1^22,-1*K.1^14,K.1^36,K.1^12,K.1^35,K.1^45,K.1^35,K.1^45,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^35,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5,K.1^35,K.1^35,K.1^5,-1*K.1^45,K.1^5,-1*K.1^15,-1*K.1^35,-1*K.1^45,-1*K.1^35,K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^45,K.1^45,-1*K.1^45,K.1^8,-1*K.1^6,-1*K.1^14,K.1^28,K.1^16,-1*K.1^18,-1*K.1^38,K.1^36,K.1^48,K.1^44,K.1^48,K.1^44,-1*K.1^22,K.1^32,K.1^8,K.1^4,K.1^36,-1*K.1^34,K.1^48,-1*K.1^14,K.1^4,K.1^24,-1*K.1^34,K.1^28,-1*K.1^14,-1*K.1^2,K.1^24,-1*K.1^38,K.1^12,-1*K.1^42,-1*K.1^18,-1*K.1^38,-1*K.1^6,-1*K.1^6,K.1^32,K.1^36,K.1^32,-1*K.1^46,-1*K.1^46,-1*K.1^42,-1*K.1^42,K.1^44,-1*K.1^46,K.1^8,-1*K.1^34,-1*K.1^26,-1*K.1^22,-1*K.1^22,K.1^16,-1*K.1^2,-1*K.1^2,K.1^16,K.1^12,-1*K.1^26,-1*K.1^26,K.1^12,K.1^28,K.1^24,-1*K.1^18,K.1^4,K.1^4,-1*K.1^46,-1*K.1^38,K.1^44,K.1^24,K.1^12,-1*K.1^42,-1*K.1^42,K.1^48,K.1^28,K.1^16,-1*K.1^26,-1*K.1^26,K.1^12,K.1^32,-1*K.1^6,K.1^36,-1*K.1^2,-1*K.1^38,-1*K.1^46,-1*K.1^6,K.1^36,K.1^8,-1*K.1^18,-1*K.1^22,K.1^16,-1*K.1^22,-1*K.1^14,K.1^8,K.1^28,K.1^44,K.1^24,K.1^48,-1*K.1^34,-1*K.1^34,-1*K.1^2,K.1^32,K.1^4,-1*K.1^14,-1*K.1^18,K.1^2,K.1^14,K.1^42,K.1^46,K.1^18,K.1^18,K.1^6,-1*K.1^32,K.1^38,K.1^46,K.1^26,-1*K.1^16,-1*K.1^36,-1*K.1^44,K.1^22,-1*K.1^16,-1*K.1^8,-1*K.1^4,K.1^2,K.1^38,K.1^18,-1*K.1^8,-1*K.1^8,-1*K.1^48,K.1^6,-1*K.1^32,-1*K.1^24,-1*K.1^12,-1*K.1^44,-1*K.1^48,K.1^14,K.1^42,-1*K.1^44,K.1^22,K.1^18,K.1^22,K.1^34,-1*K.1^28,K.1^38,-1*K.1^4,K.1^14,K.1^42,K.1^2,-1*K.1^24,K.1^34,K.1^34,-1*K.1^36,-1*K.1^4,-1*K.1^24,-1*K.1^32,-1*K.1^4,K.1^2,K.1^26,-1*K.1^28,-1*K.1^28,K.1^38,-1*K.1^48,-1*K.1^8,K.1^46,K.1^22,K.1^34,K.1^6,-1*K.1^12,K.1^26,K.1^14,-1*K.1^32,-1*K.1^24,-1*K.1^28,K.1^46,K.1^42,-1*K.1^16,-1*K.1^36,-1*K.1^36,K.1^6,-1*K.1^16,-1*K.1^12,-1*K.1^12,K.1^26,-1*K.1^48,-1*K.1^44,K.1^34,K.1^38,K.1^18,-1*K.1^48,K.1^18,-1*K.1^8,K.1^34,-1*K.1^32,K.1^2,-1*K.1^24,-1*K.1^44,K.1^22,K.1^42,K.1^46,K.1^26,K.1^6,K.1^26,-1*K.1^16,K.1^42,-1*K.1^24,K.1^46,-1*K.1^4,K.1^22,K.1^2,K.1^14,-1*K.1^44,-1*K.1^32,-1*K.1^12,-1*K.1^8,-1*K.1^28,-1*K.1^48,-1*K.1^28,K.1^38,-1*K.1^12,K.1^14,-1*K.1^4,-1*K.1^16,-1*K.1^36,K.1^6,-1*K.1^36,-1*K.1^11,K.1^37,K.1^11,-1*K.1^19,K.1,K.1^23,K.1^49,-1*K.1^13,-1*K.1^17,-1*K.1^7,-1*K.1^27,K.1^49,K.1^9,-1*K.1^21,-1*K.1^47,K.1^31,K.1^3,K.1^9,-1*K.1^37,-1*K.1^43,-1*K.1^21,-1*K.1^9,-1*K.1^3,K.1^27,-1*K.1^3,K.1^13,-1*K.1^13,-1*K.1^39,K.1^23,K.1^11,-1*K.1^27,-1*K.1,K.1^29,K.1^29,-1*K.1^47,-1*K.1^27,K.1^47,-1*K.1^37,K.1^29,K.1^3,-1*K.1^23,K.1^7,K.1^33,-1*K.1^33,-1*K.1,-1*K.1^21,K.1^17,K.1^7,K.1^27,-1*K.1^47,K.1^17,K.1^37,-1*K.1^39,-1*K.1^19,-1*K.1^7,K.1^37,-1*K.1^41,K.1^43,-1*K.1^19,K.1^43,-1*K.1^31,-1*K.1^39,-1*K.1^41,K.1^13,-1*K.1^49,K.1^41,-1*K.1^9,-1*K.1^3,-1*K.1^23,K.1^39,K.1^13,-1*K.1^13,K.1^11,-1*K.1^19,K.1^11,K.1^19,-1*K.1^11,-1*K.1^13,K.1^41,K.1^39,K.1^19,-1*K.1^11,-1*K.1^37,K.1^41,K.1^39,K.1^19,-1*K.1^43,-1*K.1^17,K.1^9,-1*K.1^11,-1*K.1^33,K.1^33,K.1^47,K.1^27,-1*K.1^3,-1*K.1^29,-1*K.1^29,K.1,K.1^23,K.1,K.1^23,-1*K.1,K.1^29,-1*K.1^17,-1*K.1^7,-1*K.1^27,K.1^47,K.1^21,-1*K.1^21,K.1^3,K.1^17,K.1^21,K.1^49,K.1^31,-1*K.1^7,-1*K.1^33,-1*K.1^29,K.1,K.1^27,-1*K.1^47,K.1^37,-1*K.1^41,K.1^49,K.1^31,K.1^43,-1*K.1^31,K.1^3,K.1^21,K.1^13,-1*K.1^49,-1*K.1^23,K.1^7,-1*K.1^17,K.1^9,-1*K.1,K.1^41,K.1^33,K.1^47,-1*K.1^23,K.1^39,-1*K.1^9,K.1^17,K.1^7,-1*K.1^31,-1*K.1^49,-1*K.1^9,K.1^21,K.1^43,-1*K.1^31,-1*K.1^49,K.1^31,-1*K.1^39,-1*K.1^41,-1*K.1^37,-1*K.1^43,K.1^19,-1*K.1^43,K.1^33,-1*K.1^33,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^18,-1*K.1^34,-1*K.1^38,K.1^44,-1*K.1^14,K.1^4,K.1^28,K.1^16,K.1^32,K.1^36,-1*K.1^6,-1*K.1^46,K.1^12,-1*K.1^42,-1*K.1^22,-1*K.1^2,K.1^48,-1*K.1^26,K.1^24,K.1^8,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^45,K.1^35,K.1^45,K.1^35,-1*K.1^5,K.1^15,K.1^45,K.1^15,-1*K.1^35,-1*K.1^35,K.1^35,K.1^45,-1*K.1^15,-1*K.1^15,-1*K.1^45,K.1^5,-1*K.1^45,K.1^35,K.1^15,K.1^5,K.1^15,-1*K.1^35,-1*K.1^45,K.1^45,-1*K.1^35,K.1^5,-1*K.1^5,K.1^5,-1*K.1^22,K.1^4,-1*K.1^26,-1*K.1^2,K.1^44,K.1^12,-1*K.1^42,K.1^24,K.1^32,-1*K.1^46,K.1^32,-1*K.1^46,K.1^48,-1*K.1^38,-1*K.1^22,K.1^36,K.1^24,-1*K.1^6,K.1^32,-1*K.1^26,K.1^36,K.1^16,-1*K.1^6,-1*K.1^2,-1*K.1^26,-1*K.1^18,K.1^16,-1*K.1^42,K.1^8,K.1^28,K.1^12,-1*K.1^42,K.1^4,K.1^4,-1*K.1^38,K.1^24,-1*K.1^38,-1*K.1^14,-1*K.1^14,K.1^28,K.1^28,-1*K.1^46,-1*K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^34,K.1^48,K.1^48,K.1^44,-1*K.1^18,-1*K.1^18,K.1^44,K.1^8,-1*K.1^34,-1*K.1^34,K.1^8,-1*K.1^2,K.1^16,K.1^12,K.1^36,K.1^36,-1*K.1^14,-1*K.1^42,-1*K.1^46,K.1^16,K.1^8,K.1^28,K.1^28,K.1^32,-1*K.1^2,K.1^44,-1*K.1^34,-1*K.1^34,K.1^8,-1*K.1^38,K.1^4,K.1^24,-1*K.1^18,-1*K.1^42,-1*K.1^14,K.1^4,K.1^24,-1*K.1^22,K.1^12,K.1^48,K.1^44,K.1^48,-1*K.1^26,-1*K.1^22,-1*K.1^2,-1*K.1^46,K.1^16,K.1^32,-1*K.1^6,-1*K.1^6,-1*K.1^18,-1*K.1^38,K.1^36,-1*K.1^26,K.1^12,K.1^18,K.1^26,-1*K.1^28,K.1^14,-1*K.1^12,-1*K.1^12,-1*K.1^4,K.1^38,K.1^42,K.1^14,K.1^34,-1*K.1^44,-1*K.1^24,K.1^46,-1*K.1^48,-1*K.1^44,K.1^22,-1*K.1^36,K.1^18,K.1^42,-1*K.1^12,K.1^22,K.1^22,-1*K.1^32,-1*K.1^4,K.1^38,-1*K.1^16,-1*K.1^8,K.1^46,-1*K.1^32,K.1^26,-1*K.1^28,K.1^46,-1*K.1^48,-1*K.1^12,-1*K.1^48,K.1^6,K.1^2,K.1^42,-1*K.1^36,K.1^26,-1*K.1^28,K.1^18,-1*K.1^16,K.1^6,K.1^6,-1*K.1^24,-1*K.1^36,-1*K.1^16,K.1^38,-1*K.1^36,K.1^18,K.1^34,K.1^2,K.1^2,K.1^42,-1*K.1^32,K.1^22,K.1^14,-1*K.1^48,K.1^6,-1*K.1^4,-1*K.1^8,K.1^34,K.1^26,K.1^38,-1*K.1^16,K.1^2,K.1^14,-1*K.1^28,-1*K.1^44,-1*K.1^24,-1*K.1^24,-1*K.1^4,-1*K.1^44,-1*K.1^8,-1*K.1^8,K.1^34,-1*K.1^32,K.1^46,K.1^6,K.1^42,-1*K.1^12,-1*K.1^32,-1*K.1^12,K.1^22,K.1^6,K.1^38,K.1^18,-1*K.1^16,K.1^46,-1*K.1^48,-1*K.1^28,K.1^14,K.1^34,-1*K.1^4,K.1^34,-1*K.1^44,-1*K.1^28,-1*K.1^16,K.1^14,-1*K.1^36,-1*K.1^48,K.1^18,K.1^26,K.1^46,K.1^38,-1*K.1^8,K.1^22,K.1^2,-1*K.1^32,K.1^2,K.1^42,-1*K.1^8,K.1^26,-1*K.1^36,-1*K.1^44,-1*K.1^24,-1*K.1^4,-1*K.1^24,-1*K.1^49,-1*K.1^33,K.1^49,-1*K.1^21,-1*K.1^9,-1*K.1^7,-1*K.1^41,K.1^17,-1*K.1^3,-1*K.1^13,K.1^43,-1*K.1^41,K.1^31,-1*K.1^39,K.1^23,K.1^29,-1*K.1^27,K.1^31,K.1^33,-1*K.1^37,-1*K.1^39,-1*K.1^31,K.1^27,-1*K.1^43,K.1^27,-1*K.1^17,K.1^17,-1*K.1,-1*K.1^7,K.1^49,K.1^43,K.1^9,K.1^11,K.1^11,K.1^23,K.1^43,-1*K.1^23,K.1^33,K.1^11,-1*K.1^27,K.1^7,K.1^13,K.1^47,-1*K.1^47,K.1^9,-1*K.1^39,K.1^3,K.1^13,-1*K.1^43,K.1^23,K.1^3,-1*K.1^33,-1*K.1,-1*K.1^21,-1*K.1^13,-1*K.1^33,-1*K.1^19,K.1^37,-1*K.1^21,K.1^37,-1*K.1^29,-1*K.1,-1*K.1^19,-1*K.1^17,K.1^41,K.1^19,-1*K.1^31,K.1^27,K.1^7,K.1,-1*K.1^17,K.1^17,K.1^49,-1*K.1^21,K.1^49,K.1^21,-1*K.1^49,K.1^17,K.1^19,K.1,K.1^21,-1*K.1^49,K.1^33,K.1^19,K.1,K.1^21,-1*K.1^37,-1*K.1^3,K.1^31,-1*K.1^49,-1*K.1^47,K.1^47,-1*K.1^23,-1*K.1^43,K.1^27,-1*K.1^11,-1*K.1^11,-1*K.1^9,-1*K.1^7,-1*K.1^9,-1*K.1^7,K.1^9,K.1^11,-1*K.1^3,-1*K.1^13,K.1^43,-1*K.1^23,K.1^39,-1*K.1^39,-1*K.1^27,K.1^3,K.1^39,-1*K.1^41,K.1^29,-1*K.1^13,-1*K.1^47,-1*K.1^11,-1*K.1^9,-1*K.1^43,K.1^23,-1*K.1^33,-1*K.1^19,-1*K.1^41,K.1^29,K.1^37,-1*K.1^29,-1*K.1^27,K.1^39,-1*K.1^17,K.1^41,K.1^7,K.1^13,-1*K.1^3,K.1^31,K.1^9,K.1^19,K.1^47,-1*K.1^23,K.1^7,K.1,-1*K.1^31,K.1^3,K.1^13,-1*K.1^29,K.1^41,-1*K.1^31,K.1^39,K.1^37,-1*K.1^29,K.1^41,K.1^29,-1*K.1,-1*K.1^19,K.1^33,-1*K.1^37,K.1^21,-1*K.1^37,K.1^47,-1*K.1^47,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,K.1^32,K.1^16,K.1^12,-1*K.1^6,K.1^36,-1*K.1^46,-1*K.1^22,-1*K.1^34,-1*K.1^18,-1*K.1^14,K.1^44,K.1^4,-1*K.1^38,K.1^8,K.1^28,K.1^48,-1*K.1^2,K.1^24,-1*K.1^26,-1*K.1^42,K.1^35,K.1^45,K.1^35,K.1^45,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^35,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5,K.1^35,K.1^35,K.1^5,-1*K.1^45,K.1^5,-1*K.1^15,-1*K.1^35,-1*K.1^45,-1*K.1^35,K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^45,K.1^45,-1*K.1^45,K.1^28,-1*K.1^46,K.1^24,K.1^48,-1*K.1^6,-1*K.1^38,K.1^8,-1*K.1^26,-1*K.1^18,K.1^4,-1*K.1^18,K.1^4,-1*K.1^2,K.1^12,K.1^28,-1*K.1^14,-1*K.1^26,K.1^44,-1*K.1^18,K.1^24,-1*K.1^14,-1*K.1^34,K.1^44,K.1^48,K.1^24,K.1^32,-1*K.1^34,K.1^8,-1*K.1^42,-1*K.1^22,-1*K.1^38,K.1^8,-1*K.1^46,-1*K.1^46,K.1^12,-1*K.1^26,K.1^12,K.1^36,K.1^36,-1*K.1^22,-1*K.1^22,K.1^4,K.1^36,K.1^28,K.1^44,K.1^16,-1*K.1^2,-1*K.1^2,-1*K.1^6,K.1^32,K.1^32,-1*K.1^6,-1*K.1^42,K.1^16,K.1^16,-1*K.1^42,K.1^48,-1*K.1^34,-1*K.1^38,-1*K.1^14,-1*K.1^14,K.1^36,K.1^8,K.1^4,-1*K.1^34,-1*K.1^42,-1*K.1^22,-1*K.1^22,-1*K.1^18,K.1^48,-1*K.1^6,K.1^16,K.1^16,-1*K.1^42,K.1^12,-1*K.1^46,-1*K.1^26,K.1^32,K.1^8,K.1^36,-1*K.1^46,-1*K.1^26,K.1^28,-1*K.1^38,-1*K.1^2,-1*K.1^6,-1*K.1^2,K.1^24,K.1^28,K.1^48,K.1^4,-1*K.1^34,-1*K.1^18,K.1^44,K.1^44,K.1^32,K.1^12,-1*K.1^14,K.1^24,-1*K.1^38,-1*K.1^32,-1*K.1^24,K.1^22,-1*K.1^36,K.1^38,K.1^38,K.1^46,-1*K.1^12,-1*K.1^8,-1*K.1^36,-1*K.1^16,K.1^6,K.1^26,-1*K.1^4,K.1^2,K.1^6,-1*K.1^28,K.1^14,-1*K.1^32,-1*K.1^8,K.1^38,-1*K.1^28,-1*K.1^28,K.1^18,K.1^46,-1*K.1^12,K.1^34,K.1^42,-1*K.1^4,K.1^18,-1*K.1^24,K.1^22,-1*K.1^4,K.1^2,K.1^38,K.1^2,-1*K.1^44,-1*K.1^48,-1*K.1^8,K.1^14,-1*K.1^24,K.1^22,-1*K.1^32,K.1^34,-1*K.1^44,-1*K.1^44,K.1^26,K.1^14,K.1^34,-1*K.1^12,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^8,K.1^18,-1*K.1^28,-1*K.1^36,K.1^2,-1*K.1^44,K.1^46,K.1^42,-1*K.1^16,-1*K.1^24,-1*K.1^12,K.1^34,-1*K.1^48,-1*K.1^36,K.1^22,K.1^6,K.1^26,K.1^26,K.1^46,K.1^6,K.1^42,K.1^42,-1*K.1^16,K.1^18,-1*K.1^4,-1*K.1^44,-1*K.1^8,K.1^38,K.1^18,K.1^38,-1*K.1^28,-1*K.1^44,-1*K.1^12,-1*K.1^32,K.1^34,-1*K.1^4,K.1^2,K.1^22,-1*K.1^36,-1*K.1^16,K.1^46,-1*K.1^16,K.1^6,K.1^22,K.1^34,-1*K.1^36,K.1^14,K.1^2,-1*K.1^32,-1*K.1^24,-1*K.1^4,-1*K.1^12,K.1^42,-1*K.1^28,-1*K.1^48,K.1^18,-1*K.1^48,-1*K.1^8,K.1^42,-1*K.1^24,K.1^14,K.1^6,K.1^26,K.1^46,K.1^26,K.1,K.1^17,-1*K.1,K.1^29,K.1^41,K.1^43,K.1^9,-1*K.1^33,K.1^47,K.1^37,-1*K.1^7,K.1^9,-1*K.1^19,K.1^11,-1*K.1^27,-1*K.1^21,K.1^23,-1*K.1^19,-1*K.1^17,K.1^13,K.1^11,K.1^19,-1*K.1^23,K.1^7,-1*K.1^23,K.1^33,-1*K.1^33,K.1^49,K.1^43,-1*K.1,-1*K.1^7,-1*K.1^41,-1*K.1^39,-1*K.1^39,-1*K.1^27,-1*K.1^7,K.1^27,-1*K.1^17,-1*K.1^39,K.1^23,-1*K.1^43,-1*K.1^37,-1*K.1^3,K.1^3,-1*K.1^41,K.1^11,-1*K.1^47,-1*K.1^37,K.1^7,-1*K.1^27,-1*K.1^47,K.1^17,K.1^49,K.1^29,K.1^37,K.1^17,K.1^31,-1*K.1^13,K.1^29,-1*K.1^13,K.1^21,K.1^49,K.1^31,K.1^33,-1*K.1^9,-1*K.1^31,K.1^19,-1*K.1^23,-1*K.1^43,-1*K.1^49,K.1^33,-1*K.1^33,-1*K.1,K.1^29,-1*K.1,-1*K.1^29,K.1,-1*K.1^33,-1*K.1^31,-1*K.1^49,-1*K.1^29,K.1,-1*K.1^17,-1*K.1^31,-1*K.1^49,-1*K.1^29,K.1^13,K.1^47,-1*K.1^19,K.1,K.1^3,-1*K.1^3,K.1^27,K.1^7,-1*K.1^23,K.1^39,K.1^39,K.1^41,K.1^43,K.1^41,K.1^43,-1*K.1^41,-1*K.1^39,K.1^47,K.1^37,-1*K.1^7,K.1^27,-1*K.1^11,K.1^11,K.1^23,-1*K.1^47,-1*K.1^11,K.1^9,-1*K.1^21,K.1^37,K.1^3,K.1^39,K.1^41,K.1^7,-1*K.1^27,K.1^17,K.1^31,K.1^9,-1*K.1^21,-1*K.1^13,K.1^21,K.1^23,-1*K.1^11,K.1^33,-1*K.1^9,-1*K.1^43,-1*K.1^37,K.1^47,-1*K.1^19,-1*K.1^41,-1*K.1^31,-1*K.1^3,K.1^27,-1*K.1^43,-1*K.1^49,K.1^19,-1*K.1^47,-1*K.1^37,K.1^21,-1*K.1^9,K.1^19,-1*K.1^11,-1*K.1^13,K.1^21,-1*K.1^9,-1*K.1^21,K.1^49,K.1^31,-1*K.1^17,K.1^13,-1*K.1^29,K.1^13,-1*K.1^3,K.1^3,K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^28,-1*K.1^14,K.1^48,K.1^24,K.1^44,-1*K.1^34,-1*K.1^38,K.1^36,-1*K.1^22,-1*K.1^6,-1*K.1^26,K.1^16,-1*K.1^2,K.1^32,K.1^12,-1*K.1^42,K.1^8,-1*K.1^46,K.1^4,-1*K.1^18,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^45,K.1^35,K.1^45,K.1^35,-1*K.1^5,K.1^15,K.1^45,K.1^15,-1*K.1^35,-1*K.1^35,K.1^35,K.1^45,-1*K.1^15,-1*K.1^15,-1*K.1^45,K.1^5,-1*K.1^45,K.1^35,K.1^15,K.1^5,K.1^15,-1*K.1^35,-1*K.1^45,K.1^45,-1*K.1^35,K.1^5,-1*K.1^5,K.1^5,K.1^12,-1*K.1^34,-1*K.1^46,-1*K.1^42,K.1^24,-1*K.1^2,K.1^32,K.1^4,-1*K.1^22,K.1^16,-1*K.1^22,K.1^16,K.1^8,K.1^48,K.1^12,-1*K.1^6,K.1^4,-1*K.1^26,-1*K.1^22,-1*K.1^46,-1*K.1^6,K.1^36,-1*K.1^26,-1*K.1^42,-1*K.1^46,K.1^28,K.1^36,K.1^32,-1*K.1^18,-1*K.1^38,-1*K.1^2,K.1^32,-1*K.1^34,-1*K.1^34,K.1^48,K.1^4,K.1^48,K.1^44,K.1^44,-1*K.1^38,-1*K.1^38,K.1^16,K.1^44,K.1^12,-1*K.1^26,-1*K.1^14,K.1^8,K.1^8,K.1^24,K.1^28,K.1^28,K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^14,-1*K.1^18,-1*K.1^42,K.1^36,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^44,K.1^32,K.1^16,K.1^36,-1*K.1^18,-1*K.1^38,-1*K.1^38,-1*K.1^22,-1*K.1^42,K.1^24,-1*K.1^14,-1*K.1^14,-1*K.1^18,K.1^48,-1*K.1^34,K.1^4,K.1^28,K.1^32,K.1^44,-1*K.1^34,K.1^4,K.1^12,-1*K.1^2,K.1^8,K.1^24,K.1^8,-1*K.1^46,K.1^12,-1*K.1^42,K.1^16,K.1^36,-1*K.1^22,-1*K.1^26,-1*K.1^26,K.1^28,K.1^48,-1*K.1^6,-1*K.1^46,-1*K.1^2,-1*K.1^28,K.1^46,K.1^38,-1*K.1^44,K.1^2,K.1^2,K.1^34,-1*K.1^48,-1*K.1^32,-1*K.1^44,K.1^14,-1*K.1^24,-1*K.1^4,-1*K.1^16,-1*K.1^8,-1*K.1^24,-1*K.1^12,K.1^6,-1*K.1^28,-1*K.1^32,K.1^2,-1*K.1^12,-1*K.1^12,K.1^22,K.1^34,-1*K.1^48,-1*K.1^36,K.1^18,-1*K.1^16,K.1^22,K.1^46,K.1^38,-1*K.1^16,-1*K.1^8,K.1^2,-1*K.1^8,K.1^26,K.1^42,-1*K.1^32,K.1^6,K.1^46,K.1^38,-1*K.1^28,-1*K.1^36,K.1^26,K.1^26,-1*K.1^4,K.1^6,-1*K.1^36,-1*K.1^48,K.1^6,-1*K.1^28,K.1^14,K.1^42,K.1^42,-1*K.1^32,K.1^22,-1*K.1^12,-1*K.1^44,-1*K.1^8,K.1^26,K.1^34,K.1^18,K.1^14,K.1^46,-1*K.1^48,-1*K.1^36,K.1^42,-1*K.1^44,K.1^38,-1*K.1^24,-1*K.1^4,-1*K.1^4,K.1^34,-1*K.1^24,K.1^18,K.1^18,K.1^14,K.1^22,-1*K.1^16,K.1^26,-1*K.1^32,K.1^2,K.1^22,K.1^2,-1*K.1^12,K.1^26,-1*K.1^48,-1*K.1^28,-1*K.1^36,-1*K.1^16,-1*K.1^8,K.1^38,-1*K.1^44,K.1^14,K.1^34,K.1^14,-1*K.1^24,K.1^38,-1*K.1^36,-1*K.1^44,K.1^6,-1*K.1^8,-1*K.1^28,K.1^46,-1*K.1^16,-1*K.1^48,K.1^18,-1*K.1^12,K.1^42,K.1^22,K.1^42,-1*K.1^32,K.1^18,K.1^46,K.1^6,-1*K.1^24,-1*K.1^4,K.1^34,-1*K.1^4,-1*K.1^29,K.1^43,K.1^29,-1*K.1^41,K.1^39,-1*K.1^47,K.1^11,-1*K.1^7,K.1^13,K.1^23,K.1^3,K.1^11,-1*K.1,-1*K.1^19,-1*K.1^33,K.1^9,K.1^17,-1*K.1,-1*K.1^43,K.1^27,-1*K.1^19,K.1,-1*K.1^17,-1*K.1^3,-1*K.1^17,K.1^7,-1*K.1^7,-1*K.1^21,-1*K.1^47,K.1^29,K.1^3,-1*K.1^39,K.1^31,K.1^31,-1*K.1^33,K.1^3,K.1^33,-1*K.1^43,K.1^31,K.1^17,K.1^47,-1*K.1^23,-1*K.1^37,K.1^37,-1*K.1^39,-1*K.1^19,-1*K.1^13,-1*K.1^23,-1*K.1^3,-1*K.1^33,-1*K.1^13,K.1^43,-1*K.1^21,-1*K.1^41,K.1^23,K.1^43,K.1^49,-1*K.1^27,-1*K.1^41,-1*K.1^27,-1*K.1^9,-1*K.1^21,K.1^49,K.1^7,-1*K.1^11,-1*K.1^49,K.1,-1*K.1^17,K.1^47,K.1^21,K.1^7,-1*K.1^7,K.1^29,-1*K.1^41,K.1^29,K.1^41,-1*K.1^29,-1*K.1^7,-1*K.1^49,K.1^21,K.1^41,-1*K.1^29,-1*K.1^43,-1*K.1^49,K.1^21,K.1^41,K.1^27,K.1^13,-1*K.1,-1*K.1^29,K.1^37,-1*K.1^37,K.1^33,-1*K.1^3,-1*K.1^17,-1*K.1^31,-1*K.1^31,K.1^39,-1*K.1^47,K.1^39,-1*K.1^47,-1*K.1^39,K.1^31,K.1^13,K.1^23,K.1^3,K.1^33,K.1^19,-1*K.1^19,K.1^17,-1*K.1^13,K.1^19,K.1^11,K.1^9,K.1^23,K.1^37,-1*K.1^31,K.1^39,-1*K.1^3,-1*K.1^33,K.1^43,K.1^49,K.1^11,K.1^9,-1*K.1^27,-1*K.1^9,K.1^17,K.1^19,K.1^7,-1*K.1^11,K.1^47,-1*K.1^23,K.1^13,-1*K.1,-1*K.1^39,-1*K.1^49,-1*K.1^37,K.1^33,K.1^47,K.1^21,K.1,-1*K.1^13,-1*K.1^23,-1*K.1^9,-1*K.1^11,K.1,K.1^19,-1*K.1^27,-1*K.1^9,-1*K.1^11,K.1^9,-1*K.1^21,K.1^49,-1*K.1^43,K.1^27,K.1^41,K.1^27,-1*K.1^37,K.1^37,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^22,K.1^36,-1*K.1^2,-1*K.1^26,-1*K.1^6,K.1^16,K.1^12,-1*K.1^14,K.1^28,K.1^44,K.1^24,-1*K.1^34,K.1^48,-1*K.1^18,-1*K.1^38,K.1^8,-1*K.1^42,K.1^4,-1*K.1^46,K.1^32,K.1^35,K.1^45,K.1^35,K.1^45,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^35,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5,K.1^35,K.1^35,K.1^5,-1*K.1^45,K.1^5,-1*K.1^15,-1*K.1^35,-1*K.1^45,-1*K.1^35,K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^45,K.1^45,-1*K.1^45,-1*K.1^38,K.1^16,K.1^4,K.1^8,-1*K.1^26,K.1^48,-1*K.1^18,-1*K.1^46,K.1^28,-1*K.1^34,K.1^28,-1*K.1^34,-1*K.1^42,-1*K.1^2,-1*K.1^38,K.1^44,-1*K.1^46,K.1^24,K.1^28,K.1^4,K.1^44,-1*K.1^14,K.1^24,K.1^8,K.1^4,-1*K.1^22,-1*K.1^14,-1*K.1^18,K.1^32,K.1^12,K.1^48,-1*K.1^18,K.1^16,K.1^16,-1*K.1^2,-1*K.1^46,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^12,K.1^12,-1*K.1^34,-1*K.1^6,-1*K.1^38,K.1^24,K.1^36,-1*K.1^42,-1*K.1^42,-1*K.1^26,-1*K.1^22,-1*K.1^22,-1*K.1^26,K.1^32,K.1^36,K.1^36,K.1^32,K.1^8,-1*K.1^14,K.1^48,K.1^44,K.1^44,-1*K.1^6,-1*K.1^18,-1*K.1^34,-1*K.1^14,K.1^32,K.1^12,K.1^12,K.1^28,K.1^8,-1*K.1^26,K.1^36,K.1^36,K.1^32,-1*K.1^2,K.1^16,-1*K.1^46,-1*K.1^22,-1*K.1^18,-1*K.1^6,K.1^16,-1*K.1^46,-1*K.1^38,K.1^48,-1*K.1^42,-1*K.1^26,-1*K.1^42,K.1^4,-1*K.1^38,K.1^8,-1*K.1^34,-1*K.1^14,K.1^28,K.1^24,K.1^24,-1*K.1^22,-1*K.1^2,K.1^44,K.1^4,K.1^48,K.1^22,-1*K.1^4,-1*K.1^12,K.1^6,-1*K.1^48,-1*K.1^48,-1*K.1^16,K.1^2,K.1^18,K.1^6,-1*K.1^36,K.1^26,K.1^46,K.1^34,K.1^42,K.1^26,K.1^38,-1*K.1^44,K.1^22,K.1^18,-1*K.1^48,K.1^38,K.1^38,-1*K.1^28,-1*K.1^16,K.1^2,K.1^14,-1*K.1^32,K.1^34,-1*K.1^28,-1*K.1^4,-1*K.1^12,K.1^34,K.1^42,-1*K.1^48,K.1^42,-1*K.1^24,-1*K.1^8,K.1^18,-1*K.1^44,-1*K.1^4,-1*K.1^12,K.1^22,K.1^14,-1*K.1^24,-1*K.1^24,K.1^46,-1*K.1^44,K.1^14,K.1^2,-1*K.1^44,K.1^22,-1*K.1^36,-1*K.1^8,-1*K.1^8,K.1^18,-1*K.1^28,K.1^38,K.1^6,K.1^42,-1*K.1^24,-1*K.1^16,-1*K.1^32,-1*K.1^36,-1*K.1^4,K.1^2,K.1^14,-1*K.1^8,K.1^6,-1*K.1^12,K.1^26,K.1^46,K.1^46,-1*K.1^16,K.1^26,-1*K.1^32,-1*K.1^32,-1*K.1^36,-1*K.1^28,K.1^34,-1*K.1^24,K.1^18,-1*K.1^48,-1*K.1^28,-1*K.1^48,K.1^38,-1*K.1^24,K.1^2,K.1^22,K.1^14,K.1^34,K.1^42,-1*K.1^12,K.1^6,-1*K.1^36,-1*K.1^16,-1*K.1^36,K.1^26,-1*K.1^12,K.1^14,K.1^6,-1*K.1^44,K.1^42,K.1^22,-1*K.1^4,K.1^34,K.1^2,-1*K.1^32,K.1^38,-1*K.1^8,-1*K.1^28,-1*K.1^8,K.1^18,-1*K.1^32,-1*K.1^4,-1*K.1^44,K.1^26,K.1^46,-1*K.1^16,K.1^46,K.1^21,-1*K.1^7,-1*K.1^21,K.1^9,-1*K.1^11,K.1^3,-1*K.1^39,K.1^43,-1*K.1^37,-1*K.1^27,-1*K.1^47,-1*K.1^39,K.1^49,K.1^31,K.1^17,-1*K.1^41,-1*K.1^33,K.1^49,K.1^7,-1*K.1^23,K.1^31,-1*K.1^49,K.1^33,K.1^47,K.1^33,-1*K.1^43,K.1^43,K.1^29,K.1^3,-1*K.1^21,-1*K.1^47,K.1^11,-1*K.1^19,-1*K.1^19,K.1^17,-1*K.1^47,-1*K.1^17,K.1^7,-1*K.1^19,-1*K.1^33,-1*K.1^3,K.1^27,K.1^13,-1*K.1^13,K.1^11,K.1^31,K.1^37,K.1^27,K.1^47,K.1^17,K.1^37,-1*K.1^7,K.1^29,K.1^9,-1*K.1^27,-1*K.1^7,-1*K.1,K.1^23,K.1^9,K.1^23,K.1^41,K.1^29,-1*K.1,-1*K.1^43,K.1^39,K.1,-1*K.1^49,K.1^33,-1*K.1^3,-1*K.1^29,-1*K.1^43,K.1^43,-1*K.1^21,K.1^9,-1*K.1^21,-1*K.1^9,K.1^21,K.1^43,K.1,-1*K.1^29,-1*K.1^9,K.1^21,K.1^7,K.1,-1*K.1^29,-1*K.1^9,-1*K.1^23,-1*K.1^37,K.1^49,K.1^21,-1*K.1^13,K.1^13,-1*K.1^17,K.1^47,K.1^33,K.1^19,K.1^19,-1*K.1^11,K.1^3,-1*K.1^11,K.1^3,K.1^11,-1*K.1^19,-1*K.1^37,-1*K.1^27,-1*K.1^47,-1*K.1^17,-1*K.1^31,K.1^31,-1*K.1^33,K.1^37,-1*K.1^31,-1*K.1^39,-1*K.1^41,-1*K.1^27,-1*K.1^13,K.1^19,-1*K.1^11,K.1^47,K.1^17,-1*K.1^7,-1*K.1,-1*K.1^39,-1*K.1^41,K.1^23,K.1^41,-1*K.1^33,-1*K.1^31,-1*K.1^43,K.1^39,-1*K.1^3,K.1^27,-1*K.1^37,K.1^49,K.1^11,K.1,K.1^13,-1*K.1^17,-1*K.1^3,-1*K.1^29,-1*K.1^49,K.1^37,K.1^27,K.1^41,K.1^39,-1*K.1^49,-1*K.1^31,K.1^23,K.1^41,K.1^39,-1*K.1^41,K.1^29,-1*K.1,K.1^7,-1*K.1^23,-1*K.1^9,-1*K.1^23,K.1^13,-1*K.1^13,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^38,K.1^44,K.1^8,K.1^4,K.1^24,-1*K.1^14,K.1^48,-1*K.1^6,K.1^12,-1*K.1^26,-1*K.1^46,K.1^36,-1*K.1^42,-1*K.1^22,-1*K.1^2,K.1^32,-1*K.1^18,K.1^16,-1*K.1^34,K.1^28,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^45,K.1^35,K.1^45,K.1^35,-1*K.1^5,K.1^15,K.1^45,K.1^15,-1*K.1^35,-1*K.1^35,K.1^35,K.1^45,-1*K.1^15,-1*K.1^15,-1*K.1^45,K.1^5,-1*K.1^45,K.1^35,K.1^15,K.1^5,K.1^15,-1*K.1^35,-1*K.1^45,K.1^45,-1*K.1^35,K.1^5,-1*K.1^5,K.1^5,-1*K.1^2,-1*K.1^14,K.1^16,K.1^32,K.1^4,-1*K.1^42,-1*K.1^22,-1*K.1^34,K.1^12,K.1^36,K.1^12,K.1^36,-1*K.1^18,K.1^8,-1*K.1^2,-1*K.1^26,-1*K.1^34,-1*K.1^46,K.1^12,K.1^16,-1*K.1^26,-1*K.1^6,-1*K.1^46,K.1^32,K.1^16,-1*K.1^38,-1*K.1^6,-1*K.1^22,K.1^28,K.1^48,-1*K.1^42,-1*K.1^22,-1*K.1^14,-1*K.1^14,K.1^8,-1*K.1^34,K.1^8,K.1^24,K.1^24,K.1^48,K.1^48,K.1^36,K.1^24,-1*K.1^2,-1*K.1^46,K.1^44,-1*K.1^18,-1*K.1^18,K.1^4,-1*K.1^38,-1*K.1^38,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^6,-1*K.1^42,-1*K.1^26,-1*K.1^26,K.1^24,-1*K.1^22,K.1^36,-1*K.1^6,K.1^28,K.1^48,K.1^48,K.1^12,K.1^32,K.1^4,K.1^44,K.1^44,K.1^28,K.1^8,-1*K.1^14,-1*K.1^34,-1*K.1^38,-1*K.1^22,K.1^24,-1*K.1^14,-1*K.1^34,-1*K.1^2,-1*K.1^42,-1*K.1^18,K.1^4,-1*K.1^18,K.1^16,-1*K.1^2,K.1^32,K.1^36,-1*K.1^6,K.1^12,-1*K.1^46,-1*K.1^46,-1*K.1^38,K.1^8,-1*K.1^26,K.1^16,-1*K.1^42,K.1^38,-1*K.1^16,-1*K.1^48,-1*K.1^24,K.1^42,K.1^42,K.1^14,-1*K.1^8,K.1^22,-1*K.1^24,-1*K.1^44,-1*K.1^4,K.1^34,-1*K.1^36,K.1^18,-1*K.1^4,K.1^2,K.1^26,K.1^38,K.1^22,K.1^42,K.1^2,K.1^2,-1*K.1^12,K.1^14,-1*K.1^8,K.1^6,-1*K.1^28,-1*K.1^36,-1*K.1^12,-1*K.1^16,-1*K.1^48,-1*K.1^36,K.1^18,K.1^42,K.1^18,K.1^46,-1*K.1^32,K.1^22,K.1^26,-1*K.1^16,-1*K.1^48,K.1^38,K.1^6,K.1^46,K.1^46,K.1^34,K.1^26,K.1^6,-1*K.1^8,K.1^26,K.1^38,-1*K.1^44,-1*K.1^32,-1*K.1^32,K.1^22,-1*K.1^12,K.1^2,-1*K.1^24,K.1^18,K.1^46,K.1^14,-1*K.1^28,-1*K.1^44,-1*K.1^16,-1*K.1^8,K.1^6,-1*K.1^32,-1*K.1^24,-1*K.1^48,-1*K.1^4,K.1^34,K.1^34,K.1^14,-1*K.1^4,-1*K.1^28,-1*K.1^28,-1*K.1^44,-1*K.1^12,-1*K.1^36,K.1^46,K.1^22,K.1^42,-1*K.1^12,K.1^42,K.1^2,K.1^46,-1*K.1^8,K.1^38,K.1^6,-1*K.1^36,K.1^18,-1*K.1^48,-1*K.1^24,-1*K.1^44,K.1^14,-1*K.1^44,-1*K.1^4,-1*K.1^48,K.1^6,-1*K.1^24,K.1^26,K.1^18,K.1^38,-1*K.1^16,-1*K.1^36,-1*K.1^8,-1*K.1^28,K.1^2,-1*K.1^32,-1*K.1^12,-1*K.1^32,K.1^22,-1*K.1^28,-1*K.1^16,K.1^26,-1*K.1^4,K.1^34,K.1^14,K.1^34,-1*K.1^9,K.1^3,K.1^9,K.1^11,K.1^19,K.1^37,K.1^31,-1*K.1^47,-1*K.1^23,-1*K.1^33,-1*K.1^13,K.1^31,-1*K.1^21,K.1^49,K.1^43,-1*K.1^39,-1*K.1^7,-1*K.1^21,-1*K.1^3,-1*K.1^17,K.1^49,K.1^21,K.1^7,K.1^13,K.1^7,K.1^47,-1*K.1^47,-1*K.1^41,K.1^37,K.1^9,-1*K.1^13,-1*K.1^19,-1*K.1,-1*K.1,K.1^43,-1*K.1^13,-1*K.1^43,-1*K.1^3,-1*K.1,-1*K.1^7,-1*K.1^37,K.1^33,K.1^27,-1*K.1^27,-1*K.1^19,K.1^49,K.1^23,K.1^33,K.1^13,K.1^43,K.1^23,K.1^3,-1*K.1^41,K.1^11,-1*K.1^33,K.1^3,K.1^29,K.1^17,K.1^11,K.1^17,K.1^39,-1*K.1^41,K.1^29,K.1^47,-1*K.1^31,-1*K.1^29,K.1^21,K.1^7,-1*K.1^37,K.1^41,K.1^47,-1*K.1^47,K.1^9,K.1^11,K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^47,-1*K.1^29,K.1^41,-1*K.1^11,-1*K.1^9,-1*K.1^3,-1*K.1^29,K.1^41,-1*K.1^11,-1*K.1^17,-1*K.1^23,-1*K.1^21,-1*K.1^9,-1*K.1^27,K.1^27,-1*K.1^43,K.1^13,K.1^7,K.1,K.1,K.1^19,K.1^37,K.1^19,K.1^37,-1*K.1^19,-1*K.1,-1*K.1^23,-1*K.1^33,-1*K.1^13,-1*K.1^43,-1*K.1^49,K.1^49,-1*K.1^7,K.1^23,-1*K.1^49,K.1^31,-1*K.1^39,-1*K.1^33,-1*K.1^27,K.1,K.1^19,K.1^13,K.1^43,K.1^3,K.1^29,K.1^31,-1*K.1^39,K.1^17,K.1^39,-1*K.1^7,-1*K.1^49,K.1^47,-1*K.1^31,-1*K.1^37,K.1^33,-1*K.1^23,-1*K.1^21,-1*K.1^19,-1*K.1^29,K.1^27,-1*K.1^43,-1*K.1^37,K.1^41,K.1^21,K.1^23,K.1^33,K.1^39,-1*K.1^31,K.1^21,-1*K.1^49,K.1^17,K.1^39,-1*K.1^31,-1*K.1^39,-1*K.1^41,K.1^29,-1*K.1^3,-1*K.1^17,-1*K.1^11,-1*K.1^17,K.1^27,-1*K.1^27,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,K.1^12,-1*K.1^6,-1*K.1^42,-1*K.1^46,-1*K.1^26,K.1^36,-1*K.1^2,K.1^44,-1*K.1^38,K.1^24,K.1^4,-1*K.1^14,K.1^8,K.1^28,K.1^48,-1*K.1^18,K.1^32,-1*K.1^34,K.1^16,-1*K.1^22,K.1^35,K.1^45,K.1^35,K.1^45,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^35,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5,K.1^35,K.1^35,K.1^5,-1*K.1^45,K.1^5,-1*K.1^15,-1*K.1^35,-1*K.1^45,-1*K.1^35,K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^45,K.1^45,-1*K.1^45,K.1^48,K.1^36,-1*K.1^34,-1*K.1^18,-1*K.1^46,K.1^8,K.1^28,K.1^16,-1*K.1^38,-1*K.1^14,-1*K.1^38,-1*K.1^14,K.1^32,-1*K.1^42,K.1^48,K.1^24,K.1^16,K.1^4,-1*K.1^38,-1*K.1^34,K.1^24,K.1^44,K.1^4,-1*K.1^18,-1*K.1^34,K.1^12,K.1^44,K.1^28,-1*K.1^22,-1*K.1^2,K.1^8,K.1^28,K.1^36,K.1^36,-1*K.1^42,K.1^16,-1*K.1^42,-1*K.1^26,-1*K.1^26,-1*K.1^2,-1*K.1^2,-1*K.1^14,-1*K.1^26,K.1^48,K.1^4,-1*K.1^6,K.1^32,K.1^32,-1*K.1^46,K.1^12,K.1^12,-1*K.1^46,-1*K.1^22,-1*K.1^6,-1*K.1^6,-1*K.1^22,-1*K.1^18,K.1^44,K.1^8,K.1^24,K.1^24,-1*K.1^26,K.1^28,-1*K.1^14,K.1^44,-1*K.1^22,-1*K.1^2,-1*K.1^2,-1*K.1^38,-1*K.1^18,-1*K.1^46,-1*K.1^6,-1*K.1^6,-1*K.1^22,-1*K.1^42,K.1^36,K.1^16,K.1^12,K.1^28,-1*K.1^26,K.1^36,K.1^16,K.1^48,K.1^8,K.1^32,-1*K.1^46,K.1^32,-1*K.1^34,K.1^48,-1*K.1^18,-1*K.1^14,K.1^44,-1*K.1^38,K.1^4,K.1^4,K.1^12,-1*K.1^42,K.1^24,-1*K.1^34,K.1^8,-1*K.1^12,K.1^34,K.1^2,K.1^26,-1*K.1^8,-1*K.1^8,-1*K.1^36,K.1^42,-1*K.1^28,K.1^26,K.1^6,K.1^46,-1*K.1^16,K.1^14,-1*K.1^32,K.1^46,-1*K.1^48,-1*K.1^24,-1*K.1^12,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^48,K.1^38,-1*K.1^36,K.1^42,-1*K.1^44,K.1^22,K.1^14,K.1^38,K.1^34,K.1^2,K.1^14,-1*K.1^32,-1*K.1^8,-1*K.1^32,-1*K.1^4,K.1^18,-1*K.1^28,-1*K.1^24,K.1^34,K.1^2,-1*K.1^12,-1*K.1^44,-1*K.1^4,-1*K.1^4,-1*K.1^16,-1*K.1^24,-1*K.1^44,K.1^42,-1*K.1^24,-1*K.1^12,K.1^6,K.1^18,K.1^18,-1*K.1^28,K.1^38,-1*K.1^48,K.1^26,-1*K.1^32,-1*K.1^4,-1*K.1^36,K.1^22,K.1^6,K.1^34,K.1^42,-1*K.1^44,K.1^18,K.1^26,K.1^2,K.1^46,-1*K.1^16,-1*K.1^16,-1*K.1^36,K.1^46,K.1^22,K.1^22,K.1^6,K.1^38,K.1^14,-1*K.1^4,-1*K.1^28,-1*K.1^8,K.1^38,-1*K.1^8,-1*K.1^48,-1*K.1^4,K.1^42,-1*K.1^12,-1*K.1^44,K.1^14,-1*K.1^32,K.1^2,K.1^26,K.1^6,-1*K.1^36,K.1^6,K.1^46,K.1^2,-1*K.1^44,K.1^26,-1*K.1^24,-1*K.1^32,-1*K.1^12,K.1^34,K.1^14,K.1^42,K.1^22,-1*K.1^48,K.1^18,K.1^38,K.1^18,-1*K.1^28,K.1^22,K.1^34,-1*K.1^24,K.1^46,-1*K.1^16,-1*K.1^36,-1*K.1^16,K.1^41,-1*K.1^47,-1*K.1^41,-1*K.1^39,-1*K.1^31,-1*K.1^13,-1*K.1^19,K.1^3,K.1^27,K.1^17,K.1^37,-1*K.1^19,K.1^29,-1*K.1,-1*K.1^7,K.1^11,K.1^43,K.1^29,K.1^47,K.1^33,-1*K.1,-1*K.1^29,-1*K.1^43,-1*K.1^37,-1*K.1^43,-1*K.1^3,K.1^3,K.1^9,-1*K.1^13,-1*K.1^41,K.1^37,K.1^31,K.1^49,K.1^49,-1*K.1^7,K.1^37,K.1^7,K.1^47,K.1^49,K.1^43,K.1^13,-1*K.1^17,-1*K.1^23,K.1^23,K.1^31,-1*K.1,-1*K.1^27,-1*K.1^17,-1*K.1^37,-1*K.1^7,-1*K.1^27,-1*K.1^47,K.1^9,-1*K.1^39,K.1^17,-1*K.1^47,-1*K.1^21,-1*K.1^33,-1*K.1^39,-1*K.1^33,-1*K.1^11,K.1^9,-1*K.1^21,-1*K.1^3,K.1^19,K.1^21,-1*K.1^29,-1*K.1^43,K.1^13,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1^41,-1*K.1^39,-1*K.1^41,K.1^39,K.1^41,K.1^3,K.1^21,-1*K.1^9,K.1^39,K.1^41,K.1^47,K.1^21,-1*K.1^9,K.1^39,K.1^33,K.1^27,K.1^29,K.1^41,K.1^23,-1*K.1^23,K.1^7,-1*K.1^37,-1*K.1^43,-1*K.1^49,-1*K.1^49,-1*K.1^31,-1*K.1^13,-1*K.1^31,-1*K.1^13,K.1^31,K.1^49,K.1^27,K.1^17,K.1^37,K.1^7,K.1,-1*K.1,K.1^43,-1*K.1^27,K.1,-1*K.1^19,K.1^11,K.1^17,K.1^23,-1*K.1^49,-1*K.1^31,-1*K.1^37,-1*K.1^7,-1*K.1^47,-1*K.1^21,-1*K.1^19,K.1^11,-1*K.1^33,-1*K.1^11,K.1^43,K.1,-1*K.1^3,K.1^19,K.1^13,-1*K.1^17,K.1^27,K.1^29,K.1^31,K.1^21,-1*K.1^23,K.1^7,K.1^13,-1*K.1^9,-1*K.1^29,-1*K.1^27,-1*K.1^17,-1*K.1^11,K.1^19,-1*K.1^29,K.1,-1*K.1^33,-1*K.1^11,K.1^19,K.1^11,K.1^9,-1*K.1^21,K.1^47,K.1^33,K.1^39,K.1^33,-1*K.1^23,K.1^23,-1*K.1^49]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1*K.1^30,K.1^20,-1*K.1^10,K.1^40,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^30,-1*K.1^10,K.1^20,-1*K.1^30,K.1^40,K.1^20,K.1^20,K.1^40,-1*K.1^30,-1*K.1^10,-1*K.1^10,K.1^40,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,-1*K.1^30,K.1^20,K.1^40,-1*K.1^10,K.1^10,K.1^10,K.1^30,K.1^30,-1*K.1^20,K.1^30,-1*K.1^20,K.1^10,K.1^30,-1*K.1^40,K.1^10,-1*K.1^20,-1*K.1^40,-1*K.1^20,-1*K.1^40,-1*K.1^40,K.1^30,-1*K.1^20,-1*K.1^40,K.1^30,K.1^10,-1*K.1^40,-1*K.1^20,K.1^10,K.1^8,K.1^4,K.1^28,-1*K.1^14,-1*K.1^34,K.1^24,-1*K.1^18,-1*K.1^46,-1*K.1^42,K.1^16,K.1^36,-1*K.1^26,-1*K.1^22,-1*K.1^2,K.1^32,K.1^12,-1*K.1^38,-1*K.1^6,K.1^44,K.1^48,-1*K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^45,K.1^35,K.1^45,K.1^35,-1*K.1^5,K.1^15,K.1^45,K.1^15,-1*K.1^35,-1*K.1^35,K.1^35,K.1^45,-1*K.1^15,-1*K.1^15,-1*K.1^45,K.1^5,-1*K.1^45,K.1^35,K.1^15,K.1^5,K.1^15,-1*K.1^35,-1*K.1^45,K.1^45,-1*K.1^35,K.1^5,-1*K.1^5,K.1^5,K.1^32,K.1^24,-1*K.1^6,K.1^12,-1*K.1^14,-1*K.1^22,-1*K.1^2,K.1^44,-1*K.1^42,-1*K.1^26,-1*K.1^42,-1*K.1^26,-1*K.1^38,K.1^28,K.1^32,K.1^16,K.1^44,K.1^36,-1*K.1^42,-1*K.1^6,K.1^16,-1*K.1^46,K.1^36,K.1^12,-1*K.1^6,K.1^8,-1*K.1^46,-1*K.1^2,K.1^48,-1*K.1^18,-1*K.1^22,-1*K.1^2,K.1^24,K.1^24,K.1^28,K.1^44,K.1^28,-1*K.1^34,-1*K.1^34,-1*K.1^18,-1*K.1^18,-1*K.1^26,-1*K.1^34,K.1^32,K.1^36,K.1^4,-1*K.1^38,-1*K.1^38,-1*K.1^14,K.1^8,K.1^8,-1*K.1^14,K.1^48,K.1^4,K.1^4,K.1^48,K.1^12,-1*K.1^46,-1*K.1^22,K.1^16,K.1^16,-1*K.1^34,-1*K.1^2,-1*K.1^26,-1*K.1^46,K.1^48,-1*K.1^18,-1*K.1^18,-1*K.1^42,K.1^12,-1*K.1^14,K.1^4,K.1^4,K.1^48,K.1^28,K.1^24,K.1^44,K.1^8,-1*K.1^2,-1*K.1^34,K.1^24,K.1^44,K.1^32,-1*K.1^22,-1*K.1^38,-1*K.1^14,-1*K.1^38,-1*K.1^6,K.1^32,K.1^12,-1*K.1^26,-1*K.1^46,-1*K.1^42,K.1^36,K.1^36,K.1^8,K.1^28,K.1^16,-1*K.1^6,-1*K.1^22,-1*K.1^8,K.1^6,K.1^18,K.1^34,K.1^22,K.1^22,-1*K.1^24,-1*K.1^28,K.1^2,K.1^34,-1*K.1^4,K.1^14,-1*K.1^44,K.1^26,K.1^38,K.1^14,-1*K.1^32,-1*K.1^16,-1*K.1^8,K.1^2,K.1^22,-1*K.1^32,-1*K.1^32,K.1^42,-1*K.1^24,-1*K.1^28,K.1^46,-1*K.1^48,K.1^26,K.1^42,K.1^6,K.1^18,K.1^26,K.1^38,K.1^22,K.1^38,-1*K.1^36,-1*K.1^12,K.1^2,-1*K.1^16,K.1^6,K.1^18,-1*K.1^8,K.1^46,-1*K.1^36,-1*K.1^36,-1*K.1^44,-1*K.1^16,K.1^46,-1*K.1^28,-1*K.1^16,-1*K.1^8,-1*K.1^4,-1*K.1^12,-1*K.1^12,K.1^2,K.1^42,-1*K.1^32,K.1^34,K.1^38,-1*K.1^36,-1*K.1^24,-1*K.1^48,-1*K.1^4,K.1^6,-1*K.1^28,K.1^46,-1*K.1^12,K.1^34,K.1^18,K.1^14,-1*K.1^44,-1*K.1^44,-1*K.1^24,K.1^14,-1*K.1^48,-1*K.1^48,-1*K.1^4,K.1^42,K.1^26,-1*K.1^36,K.1^2,K.1^22,K.1^42,K.1^22,-1*K.1^32,-1*K.1^36,-1*K.1^28,-1*K.1^8,K.1^46,K.1^26,K.1^38,K.1^18,K.1^34,-1*K.1^4,-1*K.1^24,-1*K.1^4,K.1^14,K.1^18,K.1^46,K.1^34,-1*K.1^16,K.1^38,-1*K.1^8,K.1^6,K.1^26,-1*K.1^28,-1*K.1^48,-1*K.1^32,-1*K.1^12,K.1^42,-1*K.1^12,K.1^2,-1*K.1^48,K.1^6,-1*K.1^16,K.1^14,-1*K.1^44,-1*K.1^24,-1*K.1^44,K.1^19,K.1^23,-1*K.1^19,-1*K.1,-1*K.1^29,K.1^17,-1*K.1^21,-1*K.1^27,-1*K.1^43,K.1^3,-1*K.1^33,-1*K.1^21,K.1^11,K.1^9,-1*K.1^13,K.1^49,K.1^37,K.1^11,-1*K.1^23,K.1^47,K.1^9,-1*K.1^11,-1*K.1^37,K.1^33,-1*K.1^37,K.1^27,-1*K.1^27,K.1^31,K.1^17,-1*K.1^19,-1*K.1^33,K.1^29,-1*K.1^41,-1*K.1^41,-1*K.1^13,-1*K.1^33,K.1^13,-1*K.1^23,-1*K.1^41,K.1^37,-1*K.1^17,-1*K.1^3,K.1^7,-1*K.1^7,K.1^29,K.1^9,K.1^43,-1*K.1^3,K.1^33,-1*K.1^13,K.1^43,K.1^23,K.1^31,-1*K.1,K.1^3,K.1^23,-1*K.1^39,-1*K.1^47,-1*K.1,-1*K.1^47,-1*K.1^49,K.1^31,-1*K.1^39,K.1^27,K.1^21,K.1^39,-1*K.1^11,-1*K.1^37,-1*K.1^17,-1*K.1^31,K.1^27,-1*K.1^27,-1*K.1^19,-1*K.1,-1*K.1^19,K.1,K.1^19,-1*K.1^27,K.1^39,-1*K.1^31,K.1,K.1^19,-1*K.1^23,K.1^39,-1*K.1^31,K.1,K.1^47,-1*K.1^43,K.1^11,K.1^19,-1*K.1^7,K.1^7,K.1^13,K.1^33,-1*K.1^37,K.1^41,K.1^41,-1*K.1^29,K.1^17,-1*K.1^29,K.1^17,K.1^29,-1*K.1^41,-1*K.1^43,K.1^3,-1*K.1^33,K.1^13,-1*K.1^9,K.1^9,K.1^37,K.1^43,-1*K.1^9,-1*K.1^21,K.1^49,K.1^3,-1*K.1^7,K.1^41,-1*K.1^29,K.1^33,-1*K.1^13,K.1^23,-1*K.1^39,-1*K.1^21,K.1^49,-1*K.1^47,-1*K.1^49,K.1^37,-1*K.1^9,K.1^27,K.1^21,-1*K.1^17,-1*K.1^3,-1*K.1^43,K.1^11,K.1^29,K.1^39,K.1^7,K.1^13,-1*K.1^17,-1*K.1^31,-1*K.1^11,K.1^43,-1*K.1^3,-1*K.1^49,K.1^21,-1*K.1^11,-1*K.1^9,-1*K.1^47,-1*K.1^49,K.1^21,K.1^49,K.1^31,-1*K.1^39,-1*K.1^23,K.1^47,K.1,K.1^47,K.1^7,-1*K.1^7,K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,K.1^20,-1*K.1^30,K.1^40,-1*K.1^10,-1*K.1^25,-1*K.1^25,K.1^25,K.1^25,K.1^25,-1*K.1^25,-1*K.1^25,K.1^25,K.1^20,K.1^40,-1*K.1^30,K.1^20,-1*K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^20,K.1^40,K.1^40,-1*K.1^10,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,K.1^20,-1*K.1^30,-1*K.1^10,K.1^40,-1*K.1^40,-1*K.1^40,-1*K.1^20,-1*K.1^20,K.1^30,-1*K.1^20,K.1^30,-1*K.1^40,-1*K.1^20,K.1^10,-1*K.1^40,K.1^30,K.1^10,K.1^30,K.1^10,K.1^10,-1*K.1^20,K.1^30,K.1^10,-1*K.1^20,-1*K.1^40,K.1^10,K.1^30,-1*K.1^40,-1*K.1^42,-1*K.1^46,-1*K.1^22,K.1^36,K.1^16,-1*K.1^26,K.1^32,K.1^4,K.1^8,-1*K.1^34,-1*K.1^14,K.1^24,K.1^28,K.1^48,-1*K.1^18,-1*K.1^38,K.1^12,K.1^44,-1*K.1^6,-1*K.1^2,K.1^35,K.1^45,K.1^35,K.1^45,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^15,K.1^45,-1*K.1^35,-1*K.1^5,-1*K.1^35,K.1^15,K.1^15,-1*K.1^15,-1*K.1^5,K.1^35,K.1^35,K.1^5,-1*K.1^45,K.1^5,-1*K.1^15,-1*K.1^35,-1*K.1^45,-1*K.1^35,K.1^15,K.1^5,-1*K.1^5,K.1^15,-1*K.1^45,K.1^45,-1*K.1^45,-1*K.1^18,-1*K.1^26,K.1^44,-1*K.1^38,K.1^36,K.1^28,K.1^48,-1*K.1^6,K.1^8,K.1^24,K.1^8,K.1^24,K.1^12,-1*K.1^22,-1*K.1^18,-1*K.1^34,-1*K.1^6,-1*K.1^14,K.1^8,K.1^44,-1*K.1^34,K.1^4,-1*K.1^14,-1*K.1^38,K.1^44,-1*K.1^42,K.1^4,K.1^48,-1*K.1^2,K.1^32,K.1^28,K.1^48,-1*K.1^26,-1*K.1^26,-1*K.1^22,-1*K.1^6,-1*K.1^22,K.1^16,K.1^16,K.1^32,K.1^32,K.1^24,K.1^16,-1*K.1^18,-1*K.1^14,-1*K.1^46,K.1^12,K.1^12,K.1^36,-1*K.1^42,-1*K.1^42,K.1^36,-1*K.1^2,-1*K.1^46,-1*K.1^46,-1*K.1^2,-1*K.1^38,K.1^4,K.1^28,-1*K.1^34,-1*K.1^34,K.1^16,K.1^48,K.1^24,K.1^4,-1*K.1^2,K.1^32,K.1^32,K.1^8,-1*K.1^38,K.1^36,-1*K.1^46,-1*K.1^46,-1*K.1^2,-1*K.1^22,-1*K.1^26,-1*K.1^6,-1*K.1^42,K.1^48,K.1^16,-1*K.1^26,-1*K.1^6,-1*K.1^18,K.1^28,K.1^12,K.1^36,K.1^12,K.1^44,-1*K.1^18,-1*K.1^38,K.1^24,K.1^4,K.1^8,-1*K.1^14,-1*K.1^14,-1*K.1^42,-1*K.1^22,-1*K.1^34,K.1^44,K.1^28,K.1^42,-1*K.1^44,-1*K.1^32,-1*K.1^16,-1*K.1^28,-1*K.1^28,K.1^26,K.1^22,-1*K.1^48,-1*K.1^16,K.1^46,-1*K.1^36,K.1^6,-1*K.1^24,-1*K.1^12,-1*K.1^36,K.1^18,K.1^34,K.1^42,-1*K.1^48,-1*K.1^28,K.1^18,K.1^18,-1*K.1^8,K.1^26,K.1^22,-1*K.1^4,K.1^2,-1*K.1^24,-1*K.1^8,-1*K.1^44,-1*K.1^32,-1*K.1^24,-1*K.1^12,-1*K.1^28,-1*K.1^12,K.1^14,K.1^38,-1*K.1^48,K.1^34,-1*K.1^44,-1*K.1^32,K.1^42,-1*K.1^4,K.1^14,K.1^14,K.1^6,K.1^34,-1*K.1^4,K.1^22,K.1^34,K.1^42,K.1^46,K.1^38,K.1^38,-1*K.1^48,-1*K.1^8,K.1^18,-1*K.1^16,-1*K.1^12,K.1^14,K.1^26,K.1^2,K.1^46,-1*K.1^44,K.1^22,-1*K.1^4,K.1^38,-1*K.1^16,-1*K.1^32,-1*K.1^36,K.1^6,K.1^6,K.1^26,-1*K.1^36,K.1^2,K.1^2,K.1^46,-1*K.1^8,-1*K.1^24,K.1^14,-1*K.1^48,-1*K.1^28,-1*K.1^8,-1*K.1^28,K.1^18,K.1^14,K.1^22,K.1^42,-1*K.1^4,-1*K.1^24,-1*K.1^12,-1*K.1^32,-1*K.1^16,K.1^46,K.1^26,K.1^46,-1*K.1^36,-1*K.1^32,-1*K.1^4,-1*K.1^16,K.1^34,-1*K.1^12,K.1^42,-1*K.1^44,-1*K.1^24,K.1^22,K.1^2,K.1^18,K.1^38,-1*K.1^8,K.1^38,-1*K.1^48,K.1^2,-1*K.1^44,K.1^34,-1*K.1^36,K.1^6,K.1^26,K.1^6,-1*K.1^31,-1*K.1^27,K.1^31,K.1^49,K.1^21,-1*K.1^33,K.1^29,K.1^23,K.1^7,-1*K.1^47,K.1^17,K.1^29,-1*K.1^39,-1*K.1^41,K.1^37,-1*K.1,-1*K.1^13,-1*K.1^39,K.1^27,-1*K.1^3,-1*K.1^41,K.1^39,K.1^13,-1*K.1^17,K.1^13,-1*K.1^23,K.1^23,-1*K.1^19,-1*K.1^33,K.1^31,K.1^17,-1*K.1^21,K.1^9,K.1^9,K.1^37,K.1^17,-1*K.1^37,K.1^27,K.1^9,-1*K.1^13,K.1^33,K.1^47,-1*K.1^43,K.1^43,-1*K.1^21,-1*K.1^41,-1*K.1^7,K.1^47,-1*K.1^17,K.1^37,-1*K.1^7,-1*K.1^27,-1*K.1^19,K.1^49,-1*K.1^47,-1*K.1^27,K.1^11,K.1^3,K.1^49,K.1^3,K.1,-1*K.1^19,K.1^11,-1*K.1^23,-1*K.1^29,-1*K.1^11,K.1^39,K.1^13,K.1^33,K.1^19,-1*K.1^23,K.1^23,K.1^31,K.1^49,K.1^31,-1*K.1^49,-1*K.1^31,K.1^23,-1*K.1^11,K.1^19,-1*K.1^49,-1*K.1^31,K.1^27,-1*K.1^11,K.1^19,-1*K.1^49,-1*K.1^3,K.1^7,-1*K.1^39,-1*K.1^31,K.1^43,-1*K.1^43,-1*K.1^37,-1*K.1^17,K.1^13,-1*K.1^9,-1*K.1^9,K.1^21,-1*K.1^33,K.1^21,-1*K.1^33,-1*K.1^21,K.1^9,K.1^7,-1*K.1^47,K.1^17,-1*K.1^37,K.1^41,-1*K.1^41,-1*K.1^13,-1*K.1^7,K.1^41,K.1^29,-1*K.1,-1*K.1^47,K.1^43,-1*K.1^9,K.1^21,-1*K.1^17,K.1^37,-1*K.1^27,K.1^11,K.1^29,-1*K.1,K.1^3,K.1,-1*K.1^13,K.1^41,-1*K.1^23,-1*K.1^29,K.1^33,K.1^47,K.1^7,-1*K.1^39,-1*K.1^21,-1*K.1^11,-1*K.1^43,-1*K.1^37,K.1^33,K.1^19,K.1^39,-1*K.1^7,K.1^47,K.1,-1*K.1^29,K.1^39,K.1^41,K.1^3,K.1,-1*K.1^29,-1*K.1,-1*K.1^19,K.1^11,K.1^27,-1*K.1^3,-1*K.1^49,-1*K.1^3,-1*K.1^43,K.1^43,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^12,K.1^56,-1*K.1^92,K.1^96,-1*K.1^76,-1*K.1^36,-1*K.1^52,-1*K.1^44,K.1^88,K.1^24,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,K.1^48,-1*K.1^68,K.1^32,-1*K.1^84,K.1^16,K.1^72,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^65,K.1^55,K.1^65,K.1^45,-1*K.1^85,K.1^55,-1*K.1^85,-1*K.1^15,K.1^15,-1*K.1^65,-1*K.1^55,K.1^35,K.1^35,-1*K.1^5,K.1^95,K.1^5,-1*K.1^65,K.1^85,-1*K.1^95,K.1^85,K.1^15,-1*K.1^5,-1*K.1^55,-1*K.1^15,K.1^95,K.1^45,-1*K.1^95,K.1^48,-1*K.1^36,K.1^84,K.1^68,K.1^96,K.1^8,-1*K.1^28,K.1^16,-1*K.1^88,-1*K.1^64,K.1^88,-1*K.1^64,K.1^32,-1*K.1^92,-1*K.1^48,K.1^24,-1*K.1^16,K.1^4,-1*K.1^88,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^4,K.1^68,K.1^84,-1*K.1^12,-1*K.1^44,K.1^28,K.1^72,-1*K.1^52,-1*K.1^8,K.1^28,K.1^36,K.1^36,K.1^92,-1*K.1^16,K.1^92,K.1^76,K.1^76,K.1^52,K.1^52,K.1^64,-1*K.1^76,-1*K.1^48,K.1^4,K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^96,K.1^12,K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^56,-1*K.1^56,-1*K.1^72,-1*K.1^68,K.1^44,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^76,-1*K.1^28,K.1^64,-1*K.1^44,K.1^72,-1*K.1^52,K.1^52,-1*K.1^88,K.1^68,-1*K.1^96,-1*K.1^56,K.1^56,-1*K.1^72,K.1^92,-1*K.1^36,K.1^16,K.1^12,K.1^28,-1*K.1^76,K.1^36,-1*K.1^16,-1*K.1^48,-1*K.1^8,-1*K.1^32,K.1^96,K.1^32,K.1^84,K.1^48,-1*K.1^68,-1*K.1^64,K.1^44,K.1^88,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,K.1^8,K.1^62,-1*K.1^34,-1*K.1^2,-1*K.1^26,-1*K.1^58,-1*K.1^58,K.1^86,-1*K.1^42,K.1^78,K.1^26,K.1^6,K.1^46,K.1^66,K.1^14,-1*K.1^82,K.1^46,-1*K.1^98,-1*K.1^74,K.1^62,-1*K.1^78,K.1^58,-1*K.1^98,K.1^98,-1*K.1^38,-1*K.1^86,K.1^42,-1*K.1^94,-1*K.1^22,-1*K.1^14,K.1^38,K.1^34,K.1^2,-1*K.1^14,-1*K.1^82,K.1^58,K.1^82,-1*K.1^54,-1*K.1^18,-1*K.1^78,-1*K.1^74,K.1^34,K.1^2,-1*K.1^62,K.1^94,K.1^54,K.1^54,-1*K.1^66,K.1^74,-1*K.1^94,K.1^42,K.1^74,-1*K.1^62,-1*K.1^6,K.1^18,K.1^18,K.1^78,-1*K.1^38,K.1^98,K.1^26,K.1^82,-1*K.1^54,-1*K.1^86,-1*K.1^22,-1*K.1^6,-1*K.1^34,-1*K.1^42,K.1^94,-1*K.1^18,-1*K.1^26,-1*K.1^2,-1*K.1^46,K.1^66,-1*K.1^66,K.1^86,-1*K.1^46,K.1^22,K.1^22,K.1^6,K.1^38,K.1^14,K.1^54,K.1^78,K.1^58,-1*K.1^38,-1*K.1^58,-1*K.1^98,-1*K.1^54,K.1^42,K.1^62,K.1^94,-1*K.1^14,K.1^82,-1*K.1^2,-1*K.1^26,-1*K.1^6,-1*K.1^86,K.1^6,K.1^46,K.1^2,-1*K.1^94,K.1^26,-1*K.1^74,-1*K.1^82,-1*K.1^62,K.1^34,K.1^14,-1*K.1^42,-1*K.1^22,K.1^98,-1*K.1^18,K.1^38,K.1^18,-1*K.1^78,K.1^22,-1*K.1^34,K.1^74,-1*K.1^46,-1*K.1^66,K.1^86,K.1^66,K.1^41,K.1^97,-1*K.1^91,K.1^89,-1*K.1^81,K.1^63,-1*K.1^69,K.1^3,K.1^27,K.1^17,K.1^37,K.1^69,K.1^29,-1*K.1^51,K.1^57,K.1^11,K.1^43,-1*K.1^29,K.1^47,K.1^33,K.1^51,-1*K.1^79,-1*K.1^93,K.1^87,-1*K.1^93,-1*K.1^53,-1*K.1^3,K.1^9,-1*K.1^63,K.1^91,-1*K.1^37,K.1^31,K.1^49,-1*K.1^49,-1*K.1^57,-1*K.1^37,-1*K.1^7,-1*K.1^47,K.1^49,-1*K.1^43,-1*K.1^13,-1*K.1^67,K.1^73,-1*K.1^23,-1*K.1^31,-1*K.1^51,-1*K.1^77,K.1^67,-1*K.1^87,K.1^57,-1*K.1^77,-1*K.1^97,-1*K.1^9,-1*K.1^89,-1*K.1^17,K.1^97,-1*K.1^71,K.1^83,K.1^89,-1*K.1^83,K.1^61,K.1^9,K.1^71,-1*K.1^53,K.1^19,-1*K.1^21,K.1^79,K.1^93,K.1^13,-1*K.1^59,K.1^53,K.1^3,K.1^91,-1*K.1^89,-1*K.1^91,-1*K.1^39,-1*K.1^41,-1*K.1^3,-1*K.1^21,-1*K.1^59,K.1^39,K.1^41,K.1^47,K.1^21,K.1^59,-1*K.1^39,K.1^33,-1*K.1^27,-1*K.1^29,-1*K.1^41,K.1^23,-1*K.1^73,-1*K.1^7,-1*K.1^87,K.1^93,-1*K.1^99,K.1^99,-1*K.1^81,K.1^63,K.1^81,-1*K.1^63,-1*K.1^31,-1*K.1^49,-1*K.1^27,-1*K.1^17,K.1^37,K.1^7,K.1,K.1^51,K.1^43,K.1^77,-1*K.1,-1*K.1^69,-1*K.1^11,K.1^17,-1*K.1^23,-1*K.1^99,K.1^81,K.1^87,-1*K.1^57,-1*K.1^97,K.1^71,K.1^69,K.1^11,K.1^83,-1*K.1^61,-1*K.1^43,-1*K.1,K.1^53,-1*K.1^19,K.1^13,K.1^67,K.1^27,K.1^29,K.1^31,K.1^21,K.1^73,K.1^7,-1*K.1^13,K.1^59,-1*K.1^79,K.1^77,-1*K.1^67,-1*K.1^61,-1*K.1^19,K.1^79,K.1,-1*K.1^83,K.1^61,K.1^19,-1*K.1^11,-1*K.1^9,-1*K.1^71,-1*K.1^47,-1*K.1^33,K.1^39,-1*K.1^33,-1*K.1^73,K.1^23,K.1^99]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^88,-1*K.1^44,K.1^8,-1*K.1^4,K.1^24,K.1^64,K.1^48,K.1^56,-1*K.1^12,-1*K.1^76,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,-1*K.1^52,K.1^32,-1*K.1^68,K.1^16,-1*K.1^84,-1*K.1^28,K.1^65,K.1^55,K.1^65,K.1^55,-1*K.1^95,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^55,K.1^15,-1*K.1^45,K.1^15,K.1^85,-1*K.1^85,K.1^35,K.1^45,-1*K.1^65,-1*K.1^65,K.1^95,-1*K.1^5,-1*K.1^95,K.1^35,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^85,K.1^95,K.1^45,K.1^85,-1*K.1^5,-1*K.1^55,K.1^5,-1*K.1^52,K.1^64,-1*K.1^16,-1*K.1^32,-1*K.1^4,-1*K.1^92,K.1^72,-1*K.1^84,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^68,K.1^8,K.1^52,-1*K.1^76,K.1^84,-1*K.1^96,K.1^12,K.1^16,K.1^76,-1*K.1^56,K.1^96,-1*K.1^32,-1*K.1^16,K.1^88,K.1^56,-1*K.1^72,-1*K.1^28,K.1^48,K.1^92,-1*K.1^72,-1*K.1^64,-1*K.1^64,-1*K.1^8,K.1^84,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^48,-1*K.1^48,-1*K.1^36,K.1^24,K.1^52,-1*K.1^96,-1*K.1^44,K.1^68,K.1^68,K.1^4,-1*K.1^88,-1*K.1^88,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^56,K.1^92,K.1^76,K.1^76,-1*K.1^24,K.1^72,-1*K.1^36,K.1^56,-1*K.1^28,K.1^48,-1*K.1^48,K.1^12,-1*K.1^32,K.1^4,K.1^44,-1*K.1^44,K.1^28,-1*K.1^8,K.1^64,-1*K.1^84,-1*K.1^88,-1*K.1^72,K.1^24,-1*K.1^64,K.1^84,K.1^52,K.1^92,K.1^68,-1*K.1^4,-1*K.1^68,-1*K.1^16,-1*K.1^52,K.1^32,K.1^36,-1*K.1^56,-1*K.1^12,K.1^96,-1*K.1^96,K.1^88,K.1^8,-1*K.1^76,K.1^16,-1*K.1^92,-1*K.1^38,K.1^66,K.1^98,K.1^74,K.1^42,K.1^42,-1*K.1^14,K.1^58,-1*K.1^22,-1*K.1^74,-1*K.1^94,-1*K.1^54,-1*K.1^34,-1*K.1^86,K.1^18,-1*K.1^54,K.1^2,K.1^26,-1*K.1^38,K.1^22,-1*K.1^42,K.1^2,-1*K.1^2,K.1^62,K.1^14,-1*K.1^58,K.1^6,K.1^78,K.1^86,-1*K.1^62,-1*K.1^66,-1*K.1^98,K.1^86,K.1^18,-1*K.1^42,-1*K.1^18,K.1^46,K.1^82,K.1^22,K.1^26,-1*K.1^66,-1*K.1^98,K.1^38,-1*K.1^6,-1*K.1^46,-1*K.1^46,K.1^34,-1*K.1^26,K.1^6,-1*K.1^58,-1*K.1^26,K.1^38,K.1^94,-1*K.1^82,-1*K.1^82,-1*K.1^22,K.1^62,-1*K.1^2,-1*K.1^74,-1*K.1^18,K.1^46,K.1^14,K.1^78,K.1^94,K.1^66,K.1^58,-1*K.1^6,K.1^82,K.1^74,K.1^98,K.1^54,-1*K.1^34,K.1^34,-1*K.1^14,K.1^54,-1*K.1^78,-1*K.1^78,-1*K.1^94,-1*K.1^62,-1*K.1^86,-1*K.1^46,-1*K.1^22,-1*K.1^42,K.1^62,K.1^42,K.1^2,K.1^46,-1*K.1^58,-1*K.1^38,-1*K.1^6,K.1^86,-1*K.1^18,K.1^98,K.1^74,K.1^94,K.1^14,-1*K.1^94,-1*K.1^54,-1*K.1^98,K.1^6,-1*K.1^74,K.1^26,K.1^18,K.1^38,-1*K.1^66,-1*K.1^86,K.1^58,K.1^78,-1*K.1^2,K.1^82,-1*K.1^62,-1*K.1^82,K.1^22,-1*K.1^78,K.1^66,-1*K.1^26,K.1^54,K.1^34,-1*K.1^14,-1*K.1^34,-1*K.1^59,-1*K.1^3,K.1^9,-1*K.1^11,K.1^19,-1*K.1^37,K.1^31,-1*K.1^97,-1*K.1^73,-1*K.1^83,-1*K.1^63,-1*K.1^31,-1*K.1^71,K.1^49,-1*K.1^43,-1*K.1^89,-1*K.1^57,K.1^71,-1*K.1^53,-1*K.1^67,-1*K.1^49,K.1^21,K.1^7,-1*K.1^13,K.1^7,K.1^47,K.1^97,-1*K.1^91,K.1^37,-1*K.1^9,K.1^63,-1*K.1^69,-1*K.1^51,K.1^51,K.1^43,K.1^63,K.1^93,K.1^53,-1*K.1^51,K.1^57,K.1^87,K.1^33,-1*K.1^27,K.1^77,K.1^69,K.1^49,K.1^23,-1*K.1^33,K.1^13,-1*K.1^43,K.1^23,K.1^3,K.1^91,K.1^11,K.1^83,-1*K.1^3,K.1^29,-1*K.1^17,-1*K.1^11,K.1^17,-1*K.1^39,-1*K.1^91,-1*K.1^29,K.1^47,-1*K.1^81,K.1^79,-1*K.1^21,-1*K.1^7,-1*K.1^87,K.1^41,-1*K.1^47,-1*K.1^97,-1*K.1^9,K.1^11,K.1^9,K.1^61,K.1^59,K.1^97,K.1^79,K.1^41,-1*K.1^61,-1*K.1^59,-1*K.1^53,-1*K.1^79,-1*K.1^41,K.1^61,-1*K.1^67,K.1^73,K.1^71,K.1^59,-1*K.1^77,K.1^27,K.1^93,K.1^13,-1*K.1^7,K.1,-1*K.1,K.1^19,-1*K.1^37,-1*K.1^19,K.1^37,K.1^69,K.1^51,K.1^73,K.1^83,-1*K.1^63,-1*K.1^93,-1*K.1^99,-1*K.1^49,-1*K.1^57,-1*K.1^23,K.1^99,K.1^31,K.1^89,-1*K.1^83,K.1^77,K.1,-1*K.1^19,-1*K.1^13,K.1^43,K.1^3,-1*K.1^29,-1*K.1^31,-1*K.1^89,-1*K.1^17,K.1^39,K.1^57,K.1^99,-1*K.1^47,K.1^81,-1*K.1^87,-1*K.1^33,-1*K.1^73,-1*K.1^71,-1*K.1^69,-1*K.1^79,-1*K.1^27,-1*K.1^93,K.1^87,-1*K.1^41,K.1^21,-1*K.1^23,K.1^33,K.1^39,K.1^81,-1*K.1^21,-1*K.1^99,K.1^17,-1*K.1^39,-1*K.1^81,K.1^89,K.1^91,K.1^29,K.1^53,K.1^67,-1*K.1^61,K.1^67,K.1^27,-1*K.1^77,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,K.1^72,-1*K.1^36,-1*K.1^52,-1*K.1^76,K.1^56,K.1^16,-1*K.1^12,K.1^64,-1*K.1^28,-1*K.1^44,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^88,K.1^8,-1*K.1^92,-1*K.1^4,K.1^96,K.1^32,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^65,K.1^55,K.1^65,K.1^45,-1*K.1^85,K.1^55,-1*K.1^85,-1*K.1^15,K.1^15,-1*K.1^65,-1*K.1^55,K.1^35,K.1^35,-1*K.1^5,K.1^95,K.1^5,-1*K.1^65,K.1^85,-1*K.1^95,K.1^85,K.1^15,-1*K.1^5,-1*K.1^55,-1*K.1^15,K.1^95,K.1^45,-1*K.1^95,K.1^88,K.1^16,K.1^4,-1*K.1^8,-1*K.1^76,K.1^48,-1*K.1^68,K.1^96,K.1^28,K.1^84,-1*K.1^28,K.1^84,-1*K.1^92,-1*K.1^52,-1*K.1^88,-1*K.1^44,-1*K.1^96,-1*K.1^24,K.1^28,-1*K.1^4,K.1^44,-1*K.1^64,K.1^24,-1*K.1^8,K.1^4,K.1^72,K.1^64,K.1^68,K.1^32,-1*K.1^12,-1*K.1^48,K.1^68,-1*K.1^16,-1*K.1^16,K.1^52,-1*K.1^96,K.1^52,-1*K.1^56,-1*K.1^56,K.1^12,K.1^12,-1*K.1^84,K.1^56,-1*K.1^88,-1*K.1^24,-1*K.1^36,K.1^92,K.1^92,K.1^76,-1*K.1^72,-1*K.1^72,K.1^76,-1*K.1^32,K.1^36,K.1^36,-1*K.1^32,K.1^8,-1*K.1^64,-1*K.1^48,K.1^44,K.1^44,-1*K.1^56,-1*K.1^68,-1*K.1^84,K.1^64,K.1^32,-1*K.1^12,K.1^12,K.1^28,-1*K.1^8,K.1^76,K.1^36,-1*K.1^36,-1*K.1^32,K.1^52,K.1^16,K.1^96,-1*K.1^72,K.1^68,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^88,-1*K.1^48,K.1^92,-1*K.1^76,-1*K.1^92,K.1^4,K.1^88,K.1^8,K.1^84,-1*K.1^64,-1*K.1^28,K.1^24,-1*K.1^24,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^48,K.1^22,K.1^54,K.1^62,K.1^6,-1*K.1^98,-1*K.1^98,-1*K.1^66,-1*K.1^2,-1*K.1^18,-1*K.1^6,K.1^86,-1*K.1^26,-1*K.1^46,-1*K.1^34,-1*K.1^42,-1*K.1^26,K.1^38,K.1^94,K.1^22,K.1^18,K.1^98,K.1^38,-1*K.1^38,-1*K.1^78,K.1^66,K.1^2,-1*K.1^14,K.1^82,K.1^34,K.1^78,-1*K.1^54,-1*K.1^62,K.1^34,-1*K.1^42,K.1^98,K.1^42,K.1^74,-1*K.1^58,K.1^18,K.1^94,-1*K.1^54,-1*K.1^62,-1*K.1^22,K.1^14,-1*K.1^74,-1*K.1^74,K.1^46,-1*K.1^94,-1*K.1^14,K.1^2,-1*K.1^94,-1*K.1^22,-1*K.1^86,K.1^58,K.1^58,-1*K.1^18,-1*K.1^78,-1*K.1^38,-1*K.1^6,K.1^42,K.1^74,K.1^66,K.1^82,-1*K.1^86,K.1^54,-1*K.1^2,K.1^14,-1*K.1^58,K.1^6,K.1^62,K.1^26,-1*K.1^46,K.1^46,-1*K.1^66,K.1^26,-1*K.1^82,-1*K.1^82,K.1^86,K.1^78,-1*K.1^34,-1*K.1^74,-1*K.1^18,K.1^98,-1*K.1^78,-1*K.1^98,K.1^38,K.1^74,K.1^2,K.1^22,K.1^14,K.1^34,K.1^42,K.1^62,K.1^6,-1*K.1^86,K.1^66,K.1^86,-1*K.1^26,-1*K.1^62,-1*K.1^14,-1*K.1^6,K.1^94,-1*K.1^42,-1*K.1^22,-1*K.1^54,-1*K.1^34,-1*K.1^2,K.1^82,-1*K.1^38,-1*K.1^58,K.1^78,K.1^58,K.1^18,-1*K.1^82,K.1^54,-1*K.1^94,K.1^26,K.1^46,-1*K.1^66,-1*K.1^46,-1*K.1^21,K.1^57,K.1^71,K.1^9,K.1^61,-1*K.1^3,K.1^89,K.1^43,-1*K.1^87,-1*K.1^77,-1*K.1^97,-1*K.1^89,-1*K.1^49,K.1^31,K.1^17,K.1^91,K.1^83,K.1^49,K.1^7,K.1^73,-1*K.1^31,K.1^99,K.1^33,K.1^47,K.1^33,-1*K.1^93,-1*K.1^43,-1*K.1^29,K.1^3,-1*K.1^71,K.1^97,-1*K.1^11,-1*K.1^69,K.1^69,-1*K.1^17,K.1^97,K.1^67,-1*K.1^7,-1*K.1^69,-1*K.1^83,-1*K.1^53,-1*K.1^27,-1*K.1^13,-1*K.1^63,K.1^11,K.1^31,-1*K.1^37,K.1^27,-1*K.1^47,K.1^17,-1*K.1^37,-1*K.1^57,K.1^29,-1*K.1^9,K.1^77,K.1^57,K.1^51,-1*K.1^23,K.1^9,K.1^23,-1*K.1^41,-1*K.1^29,-1*K.1^51,-1*K.1^93,-1*K.1^39,K.1,-1*K.1^99,-1*K.1^33,K.1^53,K.1^79,K.1^93,K.1^43,-1*K.1^71,-1*K.1^9,K.1^71,K.1^59,K.1^21,-1*K.1^43,K.1,K.1^79,-1*K.1^59,-1*K.1^21,K.1^7,-1*K.1,-1*K.1^79,K.1^59,K.1^73,K.1^87,K.1^49,K.1^21,K.1^63,K.1^13,K.1^67,-1*K.1^47,-1*K.1^33,-1*K.1^19,K.1^19,K.1^61,-1*K.1^3,-1*K.1^61,K.1^3,K.1^11,K.1^69,K.1^87,K.1^77,-1*K.1^97,-1*K.1^67,K.1^81,-1*K.1^31,K.1^83,K.1^37,-1*K.1^81,K.1^89,-1*K.1^91,-1*K.1^77,-1*K.1^63,-1*K.1^19,-1*K.1^61,K.1^47,-1*K.1^17,-1*K.1^57,-1*K.1^51,-1*K.1^89,K.1^91,-1*K.1^23,K.1^41,-1*K.1^83,-1*K.1^81,K.1^93,K.1^39,K.1^53,K.1^27,-1*K.1^87,-1*K.1^49,-1*K.1^11,-1*K.1,-1*K.1^13,-1*K.1^67,-1*K.1^53,-1*K.1^79,K.1^99,K.1^37,-1*K.1^27,K.1^41,K.1^39,-1*K.1^99,K.1^81,K.1^23,-1*K.1^41,-1*K.1^39,-1*K.1^91,K.1^29,K.1^51,-1*K.1^7,-1*K.1^73,-1*K.1^59,-1*K.1^73,K.1^13,K.1^63,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,-1*K.1^28,K.1^64,K.1^48,K.1^24,-1*K.1^44,-1*K.1^84,K.1^88,-1*K.1^36,K.1^72,K.1^56,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^12,-1*K.1^92,K.1^8,K.1^96,-1*K.1^4,-1*K.1^68,K.1^65,K.1^55,K.1^65,K.1^55,-1*K.1^95,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^55,K.1^15,-1*K.1^45,K.1^15,K.1^85,-1*K.1^85,K.1^35,K.1^45,-1*K.1^65,-1*K.1^65,K.1^95,-1*K.1^5,-1*K.1^95,K.1^35,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^85,K.1^95,K.1^45,K.1^85,-1*K.1^5,-1*K.1^55,K.1^5,-1*K.1^12,-1*K.1^84,-1*K.1^96,K.1^92,K.1^24,-1*K.1^52,K.1^32,-1*K.1^4,-1*K.1^72,-1*K.1^16,K.1^72,-1*K.1^16,K.1^8,K.1^48,K.1^12,K.1^56,K.1^4,K.1^76,-1*K.1^72,K.1^96,-1*K.1^56,K.1^36,-1*K.1^76,K.1^92,-1*K.1^96,-1*K.1^28,-1*K.1^36,-1*K.1^32,-1*K.1^68,K.1^88,K.1^52,-1*K.1^32,K.1^84,K.1^84,-1*K.1^48,K.1^4,-1*K.1^48,K.1^44,K.1^44,-1*K.1^88,-1*K.1^88,K.1^16,-1*K.1^44,K.1^12,K.1^76,K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^28,K.1^28,-1*K.1^24,K.1^68,-1*K.1^64,-1*K.1^64,K.1^68,-1*K.1^92,K.1^36,K.1^52,-1*K.1^56,-1*K.1^56,K.1^44,K.1^32,K.1^16,-1*K.1^36,-1*K.1^68,K.1^88,-1*K.1^88,-1*K.1^72,K.1^92,-1*K.1^24,-1*K.1^64,K.1^64,K.1^68,-1*K.1^48,-1*K.1^84,-1*K.1^4,K.1^28,-1*K.1^32,-1*K.1^44,K.1^84,K.1^4,K.1^12,K.1^52,-1*K.1^8,K.1^24,K.1^8,-1*K.1^96,-1*K.1^12,-1*K.1^92,-1*K.1^16,K.1^36,K.1^72,-1*K.1^76,K.1^76,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^52,-1*K.1^78,-1*K.1^46,-1*K.1^38,-1*K.1^94,K.1^2,K.1^2,K.1^34,K.1^98,K.1^82,K.1^94,-1*K.1^14,K.1^74,K.1^54,K.1^66,K.1^58,K.1^74,-1*K.1^62,-1*K.1^6,-1*K.1^78,-1*K.1^82,-1*K.1^2,-1*K.1^62,K.1^62,K.1^22,-1*K.1^34,-1*K.1^98,K.1^86,-1*K.1^18,-1*K.1^66,-1*K.1^22,K.1^46,K.1^38,-1*K.1^66,K.1^58,-1*K.1^2,-1*K.1^58,-1*K.1^26,K.1^42,-1*K.1^82,-1*K.1^6,K.1^46,K.1^38,K.1^78,-1*K.1^86,K.1^26,K.1^26,-1*K.1^54,K.1^6,K.1^86,-1*K.1^98,K.1^6,K.1^78,K.1^14,-1*K.1^42,-1*K.1^42,K.1^82,K.1^22,K.1^62,K.1^94,-1*K.1^58,-1*K.1^26,-1*K.1^34,-1*K.1^18,K.1^14,-1*K.1^46,K.1^98,-1*K.1^86,K.1^42,-1*K.1^94,-1*K.1^38,-1*K.1^74,K.1^54,-1*K.1^54,K.1^34,-1*K.1^74,K.1^18,K.1^18,-1*K.1^14,-1*K.1^22,K.1^66,K.1^26,K.1^82,-1*K.1^2,K.1^22,K.1^2,-1*K.1^62,-1*K.1^26,-1*K.1^98,-1*K.1^78,-1*K.1^86,-1*K.1^66,-1*K.1^58,-1*K.1^38,-1*K.1^94,K.1^14,-1*K.1^34,-1*K.1^14,K.1^74,K.1^38,K.1^86,K.1^94,-1*K.1^6,K.1^58,K.1^78,K.1^46,K.1^66,K.1^98,-1*K.1^18,K.1^62,K.1^42,-1*K.1^22,-1*K.1^42,-1*K.1^82,K.1^18,-1*K.1^46,K.1^6,-1*K.1^74,-1*K.1^54,K.1^34,K.1^54,K.1^79,-1*K.1^43,-1*K.1^29,-1*K.1^91,-1*K.1^39,K.1^97,-1*K.1^11,-1*K.1^57,K.1^13,K.1^23,K.1^3,K.1^11,K.1^51,-1*K.1^69,-1*K.1^83,-1*K.1^9,-1*K.1^17,-1*K.1^51,-1*K.1^93,-1*K.1^27,K.1^69,-1*K.1,-1*K.1^67,-1*K.1^53,-1*K.1^67,K.1^7,K.1^57,K.1^71,-1*K.1^97,K.1^29,-1*K.1^3,K.1^89,K.1^31,-1*K.1^31,K.1^83,-1*K.1^3,-1*K.1^33,K.1^93,K.1^31,K.1^17,K.1^47,K.1^73,K.1^87,K.1^37,-1*K.1^89,-1*K.1^69,K.1^63,-1*K.1^73,K.1^53,-1*K.1^83,K.1^63,K.1^43,-1*K.1^71,K.1^91,-1*K.1^23,-1*K.1^43,-1*K.1^49,K.1^77,-1*K.1^91,-1*K.1^77,K.1^59,K.1^71,K.1^49,K.1^7,K.1^61,-1*K.1^99,K.1,K.1^67,-1*K.1^47,-1*K.1^21,-1*K.1^7,-1*K.1^57,K.1^29,K.1^91,-1*K.1^29,-1*K.1^41,-1*K.1^79,K.1^57,-1*K.1^99,-1*K.1^21,K.1^41,K.1^79,-1*K.1^93,K.1^99,K.1^21,-1*K.1^41,-1*K.1^27,-1*K.1^13,-1*K.1^51,-1*K.1^79,-1*K.1^37,-1*K.1^87,-1*K.1^33,K.1^53,K.1^67,K.1^81,-1*K.1^81,-1*K.1^39,K.1^97,K.1^39,-1*K.1^97,-1*K.1^89,-1*K.1^31,-1*K.1^13,-1*K.1^23,K.1^3,K.1^33,-1*K.1^19,K.1^69,-1*K.1^17,-1*K.1^63,K.1^19,-1*K.1^11,K.1^9,K.1^23,K.1^37,K.1^81,K.1^39,-1*K.1^53,K.1^83,K.1^43,K.1^49,K.1^11,-1*K.1^9,K.1^77,-1*K.1^59,K.1^17,K.1^19,-1*K.1^7,-1*K.1^61,-1*K.1^47,-1*K.1^73,K.1^13,K.1^51,K.1^89,K.1^99,K.1^87,K.1^33,K.1^47,K.1^21,-1*K.1,-1*K.1^63,K.1^73,-1*K.1^59,-1*K.1^61,K.1,-1*K.1^19,-1*K.1^77,K.1^59,K.1^61,K.1^9,-1*K.1^71,-1*K.1^49,K.1^93,K.1^27,K.1^41,K.1^27,-1*K.1^87,-1*K.1^37,-1*K.1^81]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^52,-1*K.1^76,K.1^32,K.1^16,K.1^96,K.1^56,-1*K.1^92,K.1^24,K.1^48,-1*K.1^4,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^8,-1*K.1^28,K.1^72,K.1^64,-1*K.1^36,-1*K.1^12,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^65,K.1^55,K.1^65,K.1^45,-1*K.1^85,K.1^55,-1*K.1^85,-1*K.1^15,K.1^15,-1*K.1^65,-1*K.1^55,K.1^35,K.1^35,-1*K.1^5,K.1^95,K.1^5,-1*K.1^65,K.1^85,-1*K.1^95,K.1^85,K.1^15,-1*K.1^5,-1*K.1^55,-1*K.1^15,K.1^95,K.1^45,-1*K.1^95,K.1^8,K.1^56,-1*K.1^64,K.1^28,K.1^16,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^48,K.1^44,K.1^48,K.1^44,K.1^72,K.1^32,-1*K.1^8,-1*K.1^4,K.1^36,K.1^84,-1*K.1^48,K.1^64,K.1^4,-1*K.1^24,-1*K.1^84,K.1^28,-1*K.1^64,-1*K.1^52,K.1^24,-1*K.1^88,-1*K.1^12,-1*K.1^92,K.1^68,-1*K.1^88,-1*K.1^56,-1*K.1^56,-1*K.1^32,K.1^36,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^92,K.1^92,-1*K.1^44,K.1^96,-1*K.1^8,K.1^84,-1*K.1^76,-1*K.1^72,-1*K.1^72,-1*K.1^16,K.1^52,K.1^52,-1*K.1^16,K.1^12,K.1^76,K.1^76,K.1^12,-1*K.1^28,-1*K.1^24,K.1^68,K.1^4,K.1^4,-1*K.1^96,K.1^88,-1*K.1^44,K.1^24,-1*K.1^12,-1*K.1^92,K.1^92,-1*K.1^48,K.1^28,-1*K.1^16,K.1^76,-1*K.1^76,K.1^12,-1*K.1^32,K.1^56,-1*K.1^36,K.1^52,-1*K.1^88,K.1^96,-1*K.1^56,K.1^36,-1*K.1^8,K.1^68,-1*K.1^72,K.1^16,K.1^72,-1*K.1^64,K.1^8,-1*K.1^28,K.1^44,-1*K.1^24,K.1^48,-1*K.1^84,K.1^84,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,-1*K.1^68,-1*K.1^2,K.1^14,-1*K.1^42,K.1^46,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^82,K.1^38,-1*K.1^46,-1*K.1^26,-1*K.1^66,-1*K.1^86,K.1^94,K.1^22,-1*K.1^66,-1*K.1^58,K.1^54,-1*K.1^2,-1*K.1^38,K.1^18,-1*K.1^58,K.1^58,K.1^98,-1*K.1^6,K.1^82,K.1^74,-1*K.1^62,-1*K.1^94,-1*K.1^98,-1*K.1^14,K.1^42,-1*K.1^94,K.1^22,K.1^18,-1*K.1^22,K.1^34,K.1^78,-1*K.1^38,K.1^54,-1*K.1^14,K.1^42,K.1^2,-1*K.1^74,-1*K.1^34,-1*K.1^34,K.1^86,-1*K.1^54,K.1^74,K.1^82,-1*K.1^54,K.1^2,K.1^26,-1*K.1^78,-1*K.1^78,K.1^38,K.1^98,K.1^58,-1*K.1^46,-1*K.1^22,K.1^34,-1*K.1^6,-1*K.1^62,K.1^26,K.1^14,-1*K.1^82,-1*K.1^74,K.1^78,K.1^46,-1*K.1^42,K.1^66,-1*K.1^86,K.1^86,K.1^6,K.1^66,K.1^62,K.1^62,-1*K.1^26,-1*K.1^98,K.1^94,-1*K.1^34,K.1^38,K.1^18,K.1^98,-1*K.1^18,-1*K.1^58,K.1^34,K.1^82,-1*K.1^2,-1*K.1^74,-1*K.1^94,-1*K.1^22,-1*K.1^42,K.1^46,K.1^26,-1*K.1^6,-1*K.1^26,-1*K.1^66,K.1^42,K.1^74,-1*K.1^46,K.1^54,K.1^22,K.1^2,-1*K.1^14,K.1^94,-1*K.1^82,-1*K.1^62,K.1^58,K.1^78,-1*K.1^98,-1*K.1^78,-1*K.1^38,K.1^62,K.1^14,-1*K.1^54,K.1^66,K.1^86,K.1^6,-1*K.1^86,-1*K.1^61,-1*K.1^37,-1*K.1^11,-1*K.1^69,-1*K.1,K.1^23,K.1^49,-1*K.1^63,K.1^67,K.1^57,K.1^77,-1*K.1^49,-1*K.1^9,K.1^71,K.1^97,-1*K.1^31,K.1^3,K.1^9,K.1^87,-1*K.1^93,-1*K.1^71,K.1^59,-1*K.1^53,-1*K.1^27,-1*K.1^53,-1*K.1^13,K.1^63,K.1^89,-1*K.1^23,K.1^11,-1*K.1^77,-1*K.1^51,-1*K.1^29,K.1^29,-1*K.1^97,-1*K.1^77,-1*K.1^47,-1*K.1^87,-1*K.1^29,-1*K.1^3,K.1^73,K.1^7,K.1^33,K.1^83,K.1^51,K.1^71,K.1^17,-1*K.1^7,K.1^27,K.1^97,K.1^17,K.1^37,-1*K.1^89,K.1^69,-1*K.1^57,-1*K.1^37,K.1^91,K.1^43,-1*K.1^69,-1*K.1^43,-1*K.1^81,K.1^89,-1*K.1^91,-1*K.1^13,K.1^99,K.1^41,-1*K.1^59,K.1^53,-1*K.1^73,K.1^39,K.1^13,-1*K.1^63,K.1^11,K.1^69,-1*K.1^11,K.1^19,K.1^61,K.1^63,K.1^41,K.1^39,-1*K.1^19,-1*K.1^61,K.1^87,-1*K.1^41,-1*K.1^39,K.1^19,-1*K.1^93,-1*K.1^67,K.1^9,K.1^61,-1*K.1^83,-1*K.1^33,-1*K.1^47,K.1^27,K.1^53,K.1^79,-1*K.1^79,-1*K.1,K.1^23,K.1,-1*K.1^23,K.1^51,K.1^29,-1*K.1^67,-1*K.1^57,K.1^77,K.1^47,-1*K.1^21,-1*K.1^71,K.1^3,-1*K.1^17,K.1^21,K.1^49,K.1^31,K.1^57,K.1^83,K.1^79,K.1,-1*K.1^27,-1*K.1^97,K.1^37,-1*K.1^91,-1*K.1^49,-1*K.1^31,K.1^43,K.1^81,-1*K.1^3,K.1^21,K.1^13,-1*K.1^99,-1*K.1^73,-1*K.1^7,K.1^67,-1*K.1^9,-1*K.1^51,-1*K.1^41,K.1^33,K.1^47,K.1^73,-1*K.1^39,K.1^59,-1*K.1^17,K.1^7,K.1^81,-1*K.1^99,-1*K.1^59,-1*K.1^21,-1*K.1^43,-1*K.1^81,K.1^99,K.1^31,-1*K.1^89,K.1^91,-1*K.1^87,K.1^93,-1*K.1^19,K.1^93,-1*K.1^33,-1*K.1^83,-1*K.1^79]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^48,K.1^24,-1*K.1^68,-1*K.1^84,-1*K.1^4,-1*K.1^44,K.1^8,-1*K.1^76,-1*K.1^52,K.1^96,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^28,-1*K.1^36,K.1^64,K.1^88,K.1^65,K.1^55,K.1^65,K.1^55,-1*K.1^95,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^55,K.1^15,-1*K.1^45,K.1^15,K.1^85,-1*K.1^85,K.1^35,K.1^45,-1*K.1^65,-1*K.1^65,K.1^95,-1*K.1^5,-1*K.1^95,K.1^35,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^85,K.1^95,K.1^45,K.1^85,-1*K.1^5,-1*K.1^55,K.1^5,-1*K.1^92,-1*K.1^44,K.1^36,-1*K.1^72,-1*K.1^84,K.1^32,-1*K.1^12,K.1^64,K.1^52,-1*K.1^56,-1*K.1^52,-1*K.1^56,-1*K.1^28,-1*K.1^68,K.1^92,K.1^96,-1*K.1^64,-1*K.1^16,K.1^52,-1*K.1^36,-1*K.1^96,K.1^76,K.1^16,-1*K.1^72,K.1^36,K.1^48,-1*K.1^76,K.1^12,K.1^88,K.1^8,-1*K.1^32,K.1^12,K.1^44,K.1^44,K.1^68,-1*K.1^64,K.1^68,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^56,-1*K.1^4,K.1^92,-1*K.1^16,K.1^24,K.1^28,K.1^28,K.1^84,-1*K.1^48,-1*K.1^48,K.1^84,-1*K.1^88,-1*K.1^24,-1*K.1^24,-1*K.1^88,K.1^72,K.1^76,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^4,-1*K.1^12,K.1^56,-1*K.1^76,K.1^88,K.1^8,-1*K.1^8,K.1^52,-1*K.1^72,K.1^84,-1*K.1^24,K.1^24,-1*K.1^88,K.1^68,-1*K.1^44,K.1^64,-1*K.1^48,K.1^12,-1*K.1^4,K.1^44,-1*K.1^64,K.1^92,-1*K.1^32,K.1^28,-1*K.1^84,-1*K.1^28,K.1^36,-1*K.1^92,K.1^72,-1*K.1^56,K.1^76,-1*K.1^52,K.1^16,-1*K.1^16,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,K.1^32,K.1^98,-1*K.1^86,K.1^58,-1*K.1^54,K.1^82,K.1^82,-1*K.1^94,K.1^18,-1*K.1^62,K.1^54,K.1^74,K.1^34,K.1^14,-1*K.1^6,-1*K.1^78,K.1^34,K.1^42,-1*K.1^46,K.1^98,K.1^62,-1*K.1^82,K.1^42,-1*K.1^42,-1*K.1^2,K.1^94,-1*K.1^18,-1*K.1^26,K.1^38,K.1^6,K.1^2,K.1^86,-1*K.1^58,K.1^6,-1*K.1^78,-1*K.1^82,K.1^78,-1*K.1^66,-1*K.1^22,K.1^62,-1*K.1^46,K.1^86,-1*K.1^58,-1*K.1^98,K.1^26,K.1^66,K.1^66,-1*K.1^14,K.1^46,-1*K.1^26,-1*K.1^18,K.1^46,-1*K.1^98,-1*K.1^74,K.1^22,K.1^22,-1*K.1^62,-1*K.1^2,-1*K.1^42,K.1^54,K.1^78,-1*K.1^66,K.1^94,K.1^38,-1*K.1^74,-1*K.1^86,K.1^18,K.1^26,-1*K.1^22,-1*K.1^54,K.1^58,-1*K.1^34,K.1^14,-1*K.1^14,-1*K.1^94,-1*K.1^34,-1*K.1^38,-1*K.1^38,K.1^74,K.1^2,-1*K.1^6,K.1^66,-1*K.1^62,-1*K.1^82,-1*K.1^2,K.1^82,K.1^42,-1*K.1^66,-1*K.1^18,K.1^98,K.1^26,K.1^6,K.1^78,K.1^58,-1*K.1^54,-1*K.1^74,K.1^94,K.1^74,K.1^34,-1*K.1^58,-1*K.1^26,K.1^54,-1*K.1^46,-1*K.1^78,-1*K.1^98,K.1^86,-1*K.1^6,K.1^18,K.1^38,-1*K.1^42,-1*K.1^22,K.1^2,K.1^22,K.1^62,-1*K.1^38,-1*K.1^86,K.1^46,-1*K.1^34,-1*K.1^14,-1*K.1^94,K.1^14,K.1^39,K.1^63,K.1^89,K.1^31,K.1^99,-1*K.1^77,-1*K.1^51,K.1^37,-1*K.1^33,-1*K.1^43,-1*K.1^23,K.1^51,K.1^91,-1*K.1^29,-1*K.1^3,K.1^69,-1*K.1^97,-1*K.1^91,-1*K.1^13,K.1^7,K.1^29,-1*K.1^41,K.1^47,K.1^73,K.1^47,K.1^87,-1*K.1^37,-1*K.1^11,K.1^77,-1*K.1^89,K.1^23,K.1^49,K.1^71,-1*K.1^71,K.1^3,K.1^23,K.1^53,K.1^13,K.1^71,K.1^97,-1*K.1^27,-1*K.1^93,-1*K.1^67,-1*K.1^17,-1*K.1^49,-1*K.1^29,-1*K.1^83,K.1^93,-1*K.1^73,-1*K.1^3,-1*K.1^83,-1*K.1^63,K.1^11,-1*K.1^31,K.1^43,K.1^63,-1*K.1^9,-1*K.1^57,K.1^31,K.1^57,K.1^19,-1*K.1^11,K.1^9,K.1^87,-1*K.1,-1*K.1^59,K.1^41,-1*K.1^47,K.1^27,-1*K.1^61,-1*K.1^87,K.1^37,-1*K.1^89,-1*K.1^31,K.1^89,-1*K.1^81,-1*K.1^39,-1*K.1^37,-1*K.1^59,-1*K.1^61,K.1^81,K.1^39,-1*K.1^13,K.1^59,K.1^61,-1*K.1^81,K.1^7,K.1^33,-1*K.1^91,-1*K.1^39,K.1^17,K.1^67,K.1^53,-1*K.1^73,-1*K.1^47,-1*K.1^21,K.1^21,K.1^99,-1*K.1^77,-1*K.1^99,K.1^77,-1*K.1^49,-1*K.1^71,K.1^33,K.1^43,-1*K.1^23,-1*K.1^53,K.1^79,K.1^29,-1*K.1^97,K.1^83,-1*K.1^79,-1*K.1^51,-1*K.1^69,-1*K.1^43,-1*K.1^17,-1*K.1^21,-1*K.1^99,K.1^73,K.1^3,-1*K.1^63,K.1^9,K.1^51,K.1^69,-1*K.1^57,-1*K.1^19,K.1^97,-1*K.1^79,-1*K.1^87,K.1,K.1^27,K.1^93,-1*K.1^33,K.1^91,K.1^49,K.1^59,-1*K.1^67,-1*K.1^53,-1*K.1^27,K.1^61,-1*K.1^41,K.1^83,-1*K.1^93,-1*K.1^19,K.1,K.1^41,K.1^79,K.1^57,K.1^19,-1*K.1,-1*K.1^69,K.1^11,-1*K.1^9,K.1^13,-1*K.1^7,K.1^81,-1*K.1^7,K.1^67,K.1^17,K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,K.1^32,K.1^16,-1*K.1^12,K.1^56,-1*K.1^36,K.1^96,K.1^72,-1*K.1^84,-1*K.1^68,K.1^64,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,-1*K.1^28,K.1^48,-1*K.1^52,K.1^24,-1*K.1^76,-1*K.1^92,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^65,K.1^55,K.1^65,K.1^45,-1*K.1^85,K.1^55,-1*K.1^85,-1*K.1^15,K.1^15,-1*K.1^65,-1*K.1^55,K.1^35,K.1^35,-1*K.1^5,K.1^95,K.1^5,-1*K.1^65,K.1^85,-1*K.1^95,K.1^85,K.1^15,-1*K.1^5,-1*K.1^55,-1*K.1^15,K.1^95,K.1^45,-1*K.1^95,-1*K.1^28,K.1^96,-1*K.1^24,-1*K.1^48,K.1^56,K.1^88,K.1^8,-1*K.1^76,K.1^68,K.1^4,-1*K.1^68,K.1^4,-1*K.1^52,-1*K.1^12,K.1^28,K.1^64,K.1^76,K.1^44,K.1^68,K.1^24,-1*K.1^64,K.1^84,-1*K.1^44,-1*K.1^48,-1*K.1^24,K.1^32,-1*K.1^84,-1*K.1^8,-1*K.1^92,K.1^72,-1*K.1^88,-1*K.1^8,-1*K.1^96,-1*K.1^96,K.1^12,K.1^76,K.1^12,K.1^36,K.1^36,-1*K.1^72,-1*K.1^72,-1*K.1^4,-1*K.1^36,K.1^28,K.1^44,K.1^16,K.1^52,K.1^52,-1*K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^56,K.1^92,-1*K.1^16,-1*K.1^16,K.1^92,K.1^48,K.1^84,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^36,K.1^8,-1*K.1^4,-1*K.1^84,-1*K.1^92,K.1^72,-1*K.1^72,K.1^68,-1*K.1^48,-1*K.1^56,-1*K.1^16,K.1^16,K.1^92,K.1^12,K.1^96,-1*K.1^76,-1*K.1^32,-1*K.1^8,-1*K.1^36,-1*K.1^96,K.1^76,K.1^28,-1*K.1^88,K.1^52,K.1^56,-1*K.1^52,-1*K.1^24,-1*K.1^28,K.1^48,K.1^4,K.1^84,-1*K.1^68,-1*K.1^44,K.1^44,K.1^32,-1*K.1^12,K.1^64,K.1^24,K.1^88,-1*K.1^82,-1*K.1^74,K.1^22,K.1^86,K.1^38,K.1^38,K.1^46,K.1^62,-1*K.1^58,-1*K.1^86,-1*K.1^66,K.1^6,K.1^26,K.1^54,-1*K.1^2,K.1^6,K.1^78,K.1^14,-1*K.1^82,K.1^58,-1*K.1^38,K.1^78,-1*K.1^78,K.1^18,-1*K.1^46,-1*K.1^62,K.1^34,K.1^42,-1*K.1^54,-1*K.1^18,K.1^74,-1*K.1^22,-1*K.1^54,-1*K.1^2,-1*K.1^38,K.1^2,-1*K.1^94,-1*K.1^98,K.1^58,K.1^14,K.1^74,-1*K.1^22,K.1^82,-1*K.1^34,K.1^94,K.1^94,-1*K.1^26,-1*K.1^14,K.1^34,-1*K.1^62,-1*K.1^14,K.1^82,K.1^66,K.1^98,K.1^98,-1*K.1^58,K.1^18,-1*K.1^78,-1*K.1^86,K.1^2,-1*K.1^94,-1*K.1^46,K.1^42,K.1^66,-1*K.1^74,K.1^62,-1*K.1^34,-1*K.1^98,K.1^86,K.1^22,-1*K.1^6,K.1^26,-1*K.1^26,K.1^46,-1*K.1^6,-1*K.1^42,-1*K.1^42,-1*K.1^66,-1*K.1^18,K.1^54,K.1^94,-1*K.1^58,-1*K.1^38,K.1^18,K.1^38,K.1^78,-1*K.1^94,-1*K.1^62,-1*K.1^82,-1*K.1^34,-1*K.1^54,K.1^2,K.1^22,K.1^86,K.1^66,-1*K.1^46,-1*K.1^66,K.1^6,-1*K.1^22,K.1^34,-1*K.1^86,K.1^14,-1*K.1^2,K.1^82,K.1^74,K.1^54,K.1^62,K.1^42,-1*K.1^78,-1*K.1^98,-1*K.1^18,K.1^98,K.1^58,-1*K.1^42,-1*K.1^74,-1*K.1^14,-1*K.1^6,-1*K.1^26,K.1^46,K.1^26,K.1,K.1^17,-1*K.1^51,-1*K.1^29,-1*K.1^41,-1*K.1^43,K.1^9,K.1^83,-1*K.1^47,-1*K.1^37,-1*K.1^57,-1*K.1^9,K.1^69,-1*K.1^11,-1*K.1^77,-1*K.1^71,-1*K.1^23,-1*K.1^69,-1*K.1^67,-1*K.1^13,K.1^11,K.1^19,K.1^73,K.1^7,K.1^73,K.1^33,-1*K.1^83,K.1^49,K.1^43,K.1^51,K.1^57,-1*K.1^91,K.1^89,-1*K.1^89,K.1^77,K.1^57,K.1^27,K.1^67,K.1^89,K.1^23,-1*K.1^93,K.1^87,-1*K.1^53,K.1^3,K.1^91,-1*K.1^11,K.1^97,-1*K.1^87,-1*K.1^7,-1*K.1^77,K.1^97,-1*K.1^17,-1*K.1^49,K.1^29,K.1^37,K.1^17,-1*K.1^31,-1*K.1^63,-1*K.1^29,K.1^63,K.1^21,K.1^49,K.1^31,K.1^33,K.1^59,K.1^81,-1*K.1^19,-1*K.1^73,K.1^93,-1*K.1^99,-1*K.1^33,K.1^83,K.1^51,K.1^29,-1*K.1^51,-1*K.1^79,-1*K.1,-1*K.1^83,K.1^81,-1*K.1^99,K.1^79,K.1,-1*K.1^67,-1*K.1^81,K.1^99,-1*K.1^79,-1*K.1^13,K.1^47,-1*K.1^69,-1*K.1,-1*K.1^3,K.1^53,K.1^27,-1*K.1^7,-1*K.1^73,K.1^39,-1*K.1^39,-1*K.1^41,-1*K.1^43,K.1^41,K.1^43,K.1^91,-1*K.1^89,K.1^47,K.1^37,-1*K.1^57,-1*K.1^27,-1*K.1^61,K.1^11,-1*K.1^23,-1*K.1^97,K.1^61,K.1^9,K.1^71,-1*K.1^37,K.1^3,K.1^39,K.1^41,K.1^7,K.1^77,-1*K.1^17,K.1^31,-1*K.1^9,-1*K.1^71,-1*K.1^63,-1*K.1^21,K.1^23,K.1^61,-1*K.1^33,-1*K.1^59,K.1^93,-1*K.1^87,-1*K.1^47,K.1^69,-1*K.1^91,-1*K.1^81,-1*K.1^53,-1*K.1^27,-1*K.1^93,K.1^99,K.1^19,-1*K.1^97,K.1^87,-1*K.1^21,-1*K.1^59,-1*K.1^19,-1*K.1^61,K.1^63,K.1^21,K.1^59,K.1^71,-1*K.1^49,-1*K.1^31,K.1^67,K.1^13,K.1^79,K.1^13,K.1^53,-1*K.1^3,-1*K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,-1*K.1^68,-1*K.1^84,K.1^88,-1*K.1^44,K.1^64,-1*K.1^4,-1*K.1^28,K.1^16,K.1^32,-1*K.1^36,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^52,K.1^48,-1*K.1^76,K.1^24,K.1^8,K.1^65,K.1^55,K.1^65,K.1^55,-1*K.1^95,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^55,K.1^15,-1*K.1^45,K.1^15,K.1^85,-1*K.1^85,K.1^35,K.1^45,-1*K.1^65,-1*K.1^65,K.1^95,-1*K.1^5,-1*K.1^95,K.1^35,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^85,K.1^95,K.1^45,K.1^85,-1*K.1^5,-1*K.1^55,K.1^5,K.1^72,-1*K.1^4,K.1^76,K.1^52,-1*K.1^44,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^32,-1*K.1^96,K.1^32,-1*K.1^96,K.1^48,K.1^88,-1*K.1^72,-1*K.1^36,-1*K.1^24,-1*K.1^56,-1*K.1^32,-1*K.1^76,K.1^36,-1*K.1^16,K.1^56,K.1^52,K.1^76,-1*K.1^68,K.1^16,K.1^92,K.1^8,-1*K.1^28,K.1^12,K.1^92,K.1^4,K.1^4,-1*K.1^88,-1*K.1^24,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^28,K.1^28,K.1^96,K.1^64,-1*K.1^72,-1*K.1^56,-1*K.1^84,-1*K.1^48,-1*K.1^48,K.1^44,K.1^68,K.1^68,K.1^44,-1*K.1^8,K.1^84,K.1^84,-1*K.1^8,-1*K.1^52,-1*K.1^16,K.1^12,K.1^36,K.1^36,-1*K.1^64,-1*K.1^92,K.1^96,K.1^16,K.1^8,-1*K.1^28,K.1^28,-1*K.1^32,K.1^52,K.1^44,K.1^84,-1*K.1^84,-1*K.1^8,-1*K.1^88,-1*K.1^4,K.1^24,K.1^68,K.1^92,K.1^64,K.1^4,-1*K.1^24,-1*K.1^72,K.1^12,-1*K.1^48,-1*K.1^44,K.1^48,K.1^76,K.1^72,-1*K.1^52,-1*K.1^96,-1*K.1^16,K.1^32,K.1^56,-1*K.1^56,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,-1*K.1^12,K.1^18,K.1^26,-1*K.1^78,-1*K.1^14,-1*K.1^62,-1*K.1^62,-1*K.1^54,-1*K.1^38,K.1^42,K.1^14,K.1^34,-1*K.1^94,-1*K.1^74,-1*K.1^46,K.1^98,-1*K.1^94,-1*K.1^22,-1*K.1^86,K.1^18,-1*K.1^42,K.1^62,-1*K.1^22,K.1^22,-1*K.1^82,K.1^54,K.1^38,-1*K.1^66,-1*K.1^58,K.1^46,K.1^82,-1*K.1^26,K.1^78,K.1^46,K.1^98,K.1^62,-1*K.1^98,K.1^6,K.1^2,-1*K.1^42,-1*K.1^86,-1*K.1^26,K.1^78,-1*K.1^18,K.1^66,-1*K.1^6,-1*K.1^6,K.1^74,K.1^86,-1*K.1^66,K.1^38,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^2,-1*K.1^2,K.1^42,-1*K.1^82,K.1^22,K.1^14,-1*K.1^98,K.1^6,K.1^54,-1*K.1^58,-1*K.1^34,K.1^26,-1*K.1^38,K.1^66,K.1^2,-1*K.1^14,-1*K.1^78,K.1^94,-1*K.1^74,K.1^74,-1*K.1^54,K.1^94,K.1^58,K.1^58,K.1^34,K.1^82,-1*K.1^46,-1*K.1^6,K.1^42,K.1^62,-1*K.1^82,-1*K.1^62,-1*K.1^22,K.1^6,K.1^38,K.1^18,K.1^66,K.1^46,-1*K.1^98,-1*K.1^78,-1*K.1^14,-1*K.1^34,K.1^54,K.1^34,-1*K.1^94,K.1^78,-1*K.1^66,K.1^14,-1*K.1^86,K.1^98,-1*K.1^18,-1*K.1^26,-1*K.1^46,-1*K.1^38,-1*K.1^58,K.1^22,K.1^2,K.1^82,-1*K.1^2,-1*K.1^42,K.1^58,K.1^26,K.1^86,K.1^94,K.1^74,-1*K.1^54,-1*K.1^74,-1*K.1^99,-1*K.1^83,K.1^49,K.1^71,K.1^59,K.1^57,-1*K.1^91,-1*K.1^17,K.1^53,K.1^63,K.1^43,K.1^91,-1*K.1^31,K.1^89,K.1^23,K.1^29,K.1^77,K.1^31,K.1^33,K.1^87,-1*K.1^89,-1*K.1^81,-1*K.1^27,-1*K.1^93,-1*K.1^27,-1*K.1^67,K.1^17,-1*K.1^51,-1*K.1^57,-1*K.1^49,-1*K.1^43,K.1^9,-1*K.1^11,K.1^11,-1*K.1^23,-1*K.1^43,-1*K.1^73,-1*K.1^33,-1*K.1^11,-1*K.1^77,K.1^7,-1*K.1^13,K.1^47,-1*K.1^97,-1*K.1^9,K.1^89,-1*K.1^3,K.1^13,K.1^93,K.1^23,-1*K.1^3,K.1^83,K.1^51,-1*K.1^71,-1*K.1^63,-1*K.1^83,K.1^69,K.1^37,K.1^71,-1*K.1^37,-1*K.1^79,-1*K.1^51,-1*K.1^69,-1*K.1^67,-1*K.1^41,-1*K.1^19,K.1^81,K.1^27,-1*K.1^7,K.1,K.1^67,-1*K.1^17,-1*K.1^49,-1*K.1^71,K.1^49,K.1^21,K.1^99,K.1^17,-1*K.1^19,K.1,-1*K.1^21,-1*K.1^99,K.1^33,K.1^19,-1*K.1,K.1^21,K.1^87,-1*K.1^53,K.1^31,K.1^99,K.1^97,-1*K.1^47,-1*K.1^73,K.1^93,K.1^27,-1*K.1^61,K.1^61,K.1^59,K.1^57,-1*K.1^59,-1*K.1^57,-1*K.1^9,K.1^11,-1*K.1^53,-1*K.1^63,K.1^43,K.1^73,K.1^39,-1*K.1^89,K.1^77,K.1^3,-1*K.1^39,-1*K.1^91,-1*K.1^29,K.1^63,-1*K.1^97,-1*K.1^61,-1*K.1^59,-1*K.1^93,-1*K.1^23,K.1^83,-1*K.1^69,K.1^91,K.1^29,K.1^37,K.1^79,-1*K.1^77,-1*K.1^39,K.1^67,K.1^41,-1*K.1^7,K.1^13,K.1^53,-1*K.1^31,K.1^9,K.1^19,K.1^47,K.1^73,K.1^7,-1*K.1,-1*K.1^81,K.1^3,-1*K.1^13,K.1^79,K.1^41,K.1^81,K.1^39,-1*K.1^37,-1*K.1^79,-1*K.1^41,-1*K.1^29,K.1^51,K.1^69,-1*K.1^33,-1*K.1^87,-1*K.1^21,-1*K.1^87,-1*K.1^47,K.1^97,K.1^61]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^92,K.1^96,K.1^72,-1*K.1^36,K.1^16,-1*K.1^76,K.1^32,-1*K.1^4,K.1^8,-1*K.1^84,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^68,K.1^88,-1*K.1^12,-1*K.1^44,K.1^56,-1*K.1^52,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^65,K.1^55,K.1^65,K.1^45,-1*K.1^85,K.1^55,-1*K.1^85,-1*K.1^15,K.1^15,-1*K.1^65,-1*K.1^55,K.1^35,K.1^35,-1*K.1^5,K.1^95,K.1^5,-1*K.1^65,K.1^85,-1*K.1^95,K.1^85,K.1^15,-1*K.1^5,-1*K.1^55,-1*K.1^15,K.1^95,K.1^45,-1*K.1^95,-1*K.1^68,-1*K.1^76,K.1^44,-1*K.1^88,-1*K.1^36,-1*K.1^28,K.1^48,K.1^56,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^24,-1*K.1^12,K.1^72,K.1^68,-1*K.1^84,-1*K.1^56,-1*K.1^64,-1*K.1^8,-1*K.1^44,K.1^84,K.1^4,K.1^64,-1*K.1^88,K.1^44,-1*K.1^92,-1*K.1^4,-1*K.1^48,-1*K.1^52,K.1^32,K.1^28,-1*K.1^48,K.1^76,K.1^76,-1*K.1^72,-1*K.1^56,-1*K.1^72,-1*K.1^16,-1*K.1^16,-1*K.1^32,-1*K.1^32,K.1^24,K.1^16,K.1^68,-1*K.1^64,K.1^96,K.1^12,K.1^12,K.1^36,K.1^92,K.1^92,K.1^36,K.1^52,-1*K.1^96,-1*K.1^96,K.1^52,K.1^88,K.1^4,K.1^28,K.1^84,K.1^84,-1*K.1^16,K.1^48,K.1^24,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^32,-1*K.1^8,-1*K.1^88,K.1^36,-1*K.1^96,K.1^96,K.1^52,-1*K.1^72,-1*K.1^76,K.1^56,K.1^92,-1*K.1^48,K.1^16,K.1^76,-1*K.1^56,K.1^68,K.1^28,K.1^12,-1*K.1^36,-1*K.1^12,K.1^44,-1*K.1^68,K.1^88,-1*K.1^24,K.1^4,K.1^8,K.1^64,-1*K.1^64,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^28,-1*K.1^42,K.1^94,-1*K.1^82,-1*K.1^66,K.1^78,K.1^78,-1*K.1^26,K.1^22,-1*K.1^98,K.1^66,K.1^46,K.1^86,-1*K.1^6,-1*K.1^74,K.1^62,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^42,K.1^98,-1*K.1^78,-1*K.1^18,K.1^18,K.1^58,K.1^26,-1*K.1^22,-1*K.1^54,K.1^2,K.1^74,-1*K.1^58,-1*K.1^94,K.1^82,K.1^74,K.1^62,-1*K.1^78,-1*K.1^62,-1*K.1^14,K.1^38,K.1^98,-1*K.1^34,-1*K.1^94,K.1^82,K.1^42,K.1^54,K.1^14,K.1^14,K.1^6,K.1^34,-1*K.1^54,-1*K.1^22,K.1^34,K.1^42,-1*K.1^46,-1*K.1^38,-1*K.1^38,-1*K.1^98,K.1^58,K.1^18,K.1^66,-1*K.1^62,-1*K.1^14,K.1^26,K.1^2,-1*K.1^46,K.1^94,K.1^22,K.1^54,K.1^38,-1*K.1^66,-1*K.1^82,-1*K.1^86,-1*K.1^6,K.1^6,-1*K.1^26,-1*K.1^86,-1*K.1^2,-1*K.1^2,K.1^46,-1*K.1^58,-1*K.1^74,K.1^14,-1*K.1^98,-1*K.1^78,K.1^58,K.1^78,-1*K.1^18,-1*K.1^14,-1*K.1^22,-1*K.1^42,K.1^54,K.1^74,-1*K.1^62,-1*K.1^82,-1*K.1^66,-1*K.1^46,K.1^26,K.1^46,K.1^86,K.1^82,-1*K.1^54,K.1^66,-1*K.1^34,K.1^62,K.1^42,-1*K.1^94,-1*K.1^74,K.1^22,K.1^2,K.1^18,K.1^38,-1*K.1^58,-1*K.1^38,K.1^98,-1*K.1^2,K.1^94,K.1^34,-1*K.1^86,K.1^6,-1*K.1^26,-1*K.1^6,K.1^81,-1*K.1^77,K.1^31,K.1^49,K.1^21,-1*K.1^83,-1*K.1^29,-1*K.1^23,-1*K.1^7,K.1^97,-1*K.1^17,K.1^29,-1*K.1^89,-1*K.1^91,-1*K.1^37,K.1^51,-1*K.1^63,K.1^89,-1*K.1^27,-1*K.1^53,K.1^91,-1*K.1^39,-1*K.1^13,-1*K.1^67,-1*K.1^13,K.1^73,K.1^23,-1*K.1^69,K.1^83,-1*K.1^31,K.1^17,K.1^71,K.1^9,-1*K.1^9,K.1^37,K.1^17,-1*K.1^87,K.1^27,K.1^9,K.1^63,K.1^33,K.1^47,-1*K.1^93,K.1^43,-1*K.1^71,-1*K.1^91,K.1^57,-1*K.1^47,K.1^67,-1*K.1^37,K.1^57,K.1^77,K.1^69,-1*K.1^49,-1*K.1^97,-1*K.1^77,K.1^11,K.1^3,K.1^49,-1*K.1^3,-1*K.1,-1*K.1^69,-1*K.1^11,K.1^73,-1*K.1^79,-1*K.1^61,K.1^39,K.1^13,-1*K.1^33,-1*K.1^19,-1*K.1^73,-1*K.1^23,-1*K.1^31,-1*K.1^49,K.1^31,K.1^99,-1*K.1^81,K.1^23,-1*K.1^61,-1*K.1^19,-1*K.1^99,K.1^81,-1*K.1^27,K.1^61,K.1^19,K.1^99,-1*K.1^53,K.1^7,K.1^89,-1*K.1^81,-1*K.1^43,K.1^93,-1*K.1^87,K.1^67,K.1^13,-1*K.1^59,K.1^59,K.1^21,-1*K.1^83,-1*K.1^21,K.1^83,-1*K.1^71,-1*K.1^9,K.1^7,-1*K.1^97,-1*K.1^17,K.1^87,K.1^41,K.1^91,-1*K.1^63,-1*K.1^57,-1*K.1^41,-1*K.1^29,-1*K.1^51,K.1^97,K.1^43,-1*K.1^59,-1*K.1^21,-1*K.1^67,K.1^37,K.1^77,-1*K.1^11,K.1^29,K.1^51,K.1^3,K.1,K.1^63,-1*K.1^41,-1*K.1^73,K.1^79,-1*K.1^33,-1*K.1^47,-1*K.1^7,-1*K.1^89,K.1^71,K.1^61,-1*K.1^93,K.1^87,K.1^33,K.1^19,-1*K.1^39,-1*K.1^57,K.1^47,K.1,K.1^79,K.1^39,K.1^41,-1*K.1^3,-1*K.1,-1*K.1^79,-1*K.1^51,K.1^69,K.1^11,K.1^27,K.1^53,-1*K.1^99,K.1^53,K.1^93,-1*K.1^43,K.1^59]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^8,-1*K.1^4,-1*K.1^28,K.1^64,-1*K.1^84,K.1^24,-1*K.1^68,K.1^96,-1*K.1^92,K.1^16,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^32,-1*K.1^12,K.1^88,K.1^56,-1*K.1^44,K.1^48,K.1^65,K.1^55,K.1^65,K.1^55,-1*K.1^95,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^55,K.1^15,-1*K.1^45,K.1^15,K.1^85,-1*K.1^85,K.1^35,K.1^45,-1*K.1^65,-1*K.1^65,K.1^95,-1*K.1^5,-1*K.1^95,K.1^35,-1*K.1^15,K.1^5,-1*K.1^15,-1*K.1^85,K.1^95,K.1^45,K.1^85,-1*K.1^5,-1*K.1^55,K.1^5,K.1^32,K.1^24,-1*K.1^56,K.1^12,K.1^64,K.1^72,-1*K.1^52,-1*K.1^44,K.1^92,K.1^76,-1*K.1^92,K.1^76,K.1^88,-1*K.1^28,-1*K.1^32,K.1^16,K.1^44,K.1^36,K.1^92,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^36,K.1^12,-1*K.1^56,K.1^8,K.1^96,K.1^52,K.1^48,-1*K.1^68,-1*K.1^72,K.1^52,-1*K.1^24,-1*K.1^24,K.1^28,K.1^44,K.1^28,K.1^84,K.1^84,K.1^68,K.1^68,-1*K.1^76,-1*K.1^84,-1*K.1^32,K.1^36,-1*K.1^4,-1*K.1^88,-1*K.1^88,-1*K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^64,-1*K.1^48,K.1^4,K.1^4,-1*K.1^48,-1*K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^16,-1*K.1^16,K.1^84,-1*K.1^52,-1*K.1^76,K.1^96,K.1^48,-1*K.1^68,K.1^68,K.1^92,K.1^12,-1*K.1^64,K.1^4,-1*K.1^4,-1*K.1^48,K.1^28,K.1^24,-1*K.1^44,-1*K.1^8,K.1^52,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^32,-1*K.1^72,-1*K.1^88,K.1^64,K.1^88,-1*K.1^56,K.1^32,-1*K.1^12,K.1^76,-1*K.1^96,-1*K.1^92,-1*K.1^36,K.1^36,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^72,K.1^58,-1*K.1^6,K.1^18,K.1^34,-1*K.1^22,-1*K.1^22,K.1^74,-1*K.1^78,K.1^2,-1*K.1^34,-1*K.1^54,-1*K.1^14,K.1^94,K.1^26,-1*K.1^38,-1*K.1^14,K.1^82,K.1^66,K.1^58,-1*K.1^2,K.1^22,K.1^82,-1*K.1^82,-1*K.1^42,-1*K.1^74,K.1^78,K.1^46,-1*K.1^98,-1*K.1^26,K.1^42,K.1^6,-1*K.1^18,-1*K.1^26,-1*K.1^38,K.1^22,K.1^38,K.1^86,-1*K.1^62,-1*K.1^2,K.1^66,K.1^6,-1*K.1^18,-1*K.1^58,-1*K.1^46,-1*K.1^86,-1*K.1^86,-1*K.1^94,-1*K.1^66,K.1^46,K.1^78,-1*K.1^66,-1*K.1^58,K.1^54,K.1^62,K.1^62,K.1^2,-1*K.1^42,-1*K.1^82,-1*K.1^34,K.1^38,K.1^86,-1*K.1^74,-1*K.1^98,K.1^54,-1*K.1^6,-1*K.1^78,-1*K.1^46,-1*K.1^62,K.1^34,K.1^18,K.1^14,K.1^94,-1*K.1^94,K.1^74,K.1^14,K.1^98,K.1^98,-1*K.1^54,K.1^42,K.1^26,-1*K.1^86,K.1^2,K.1^22,-1*K.1^42,-1*K.1^22,K.1^82,K.1^86,K.1^78,K.1^58,-1*K.1^46,-1*K.1^26,K.1^38,K.1^18,K.1^34,K.1^54,-1*K.1^74,-1*K.1^54,-1*K.1^14,-1*K.1^18,K.1^46,-1*K.1^34,K.1^66,-1*K.1^38,-1*K.1^58,K.1^6,K.1^26,-1*K.1^78,-1*K.1^98,-1*K.1^82,-1*K.1^62,K.1^42,K.1^62,-1*K.1^2,K.1^98,-1*K.1^6,-1*K.1^66,K.1^14,-1*K.1^94,K.1^74,K.1^94,-1*K.1^19,K.1^23,-1*K.1^69,-1*K.1^51,-1*K.1^79,K.1^17,K.1^71,K.1^77,K.1^93,-1*K.1^3,K.1^83,-1*K.1^71,K.1^11,K.1^9,K.1^63,-1*K.1^49,K.1^37,-1*K.1^11,K.1^73,K.1^47,-1*K.1^9,K.1^61,K.1^87,K.1^33,K.1^87,-1*K.1^27,-1*K.1^77,K.1^31,-1*K.1^17,K.1^69,-1*K.1^83,-1*K.1^29,-1*K.1^91,K.1^91,-1*K.1^63,-1*K.1^83,K.1^13,-1*K.1^73,-1*K.1^91,-1*K.1^37,-1*K.1^67,-1*K.1^53,K.1^7,-1*K.1^57,K.1^29,K.1^9,-1*K.1^43,K.1^53,-1*K.1^33,K.1^63,-1*K.1^43,-1*K.1^23,-1*K.1^31,K.1^51,K.1^3,K.1^23,-1*K.1^89,-1*K.1^97,-1*K.1^51,K.1^97,K.1^99,K.1^31,K.1^89,-1*K.1^27,K.1^21,K.1^39,-1*K.1^61,-1*K.1^87,K.1^67,K.1^81,K.1^27,K.1^77,K.1^69,K.1^51,-1*K.1^69,-1*K.1,K.1^19,-1*K.1^77,K.1^39,K.1^81,K.1,-1*K.1^19,K.1^73,-1*K.1^39,-1*K.1^81,-1*K.1,K.1^47,-1*K.1^93,-1*K.1^11,K.1^19,K.1^57,-1*K.1^7,K.1^13,-1*K.1^33,-1*K.1^87,K.1^41,-1*K.1^41,-1*K.1^79,K.1^17,K.1^79,-1*K.1^17,K.1^29,K.1^91,-1*K.1^93,K.1^3,K.1^83,-1*K.1^13,-1*K.1^59,-1*K.1^9,K.1^37,K.1^43,K.1^59,K.1^71,K.1^49,-1*K.1^3,-1*K.1^57,K.1^41,K.1^79,K.1^33,-1*K.1^63,-1*K.1^23,K.1^89,-1*K.1^71,-1*K.1^49,-1*K.1^97,-1*K.1^99,-1*K.1^37,K.1^59,K.1^27,-1*K.1^21,K.1^67,K.1^53,K.1^93,K.1^11,-1*K.1^29,-1*K.1^39,K.1^7,-1*K.1^13,-1*K.1^67,-1*K.1^81,K.1^61,K.1^43,-1*K.1^53,-1*K.1^99,-1*K.1^21,-1*K.1^61,-1*K.1^59,K.1^97,K.1^99,K.1^21,K.1^49,-1*K.1^31,-1*K.1^89,-1*K.1^73,-1*K.1^47,K.1,-1*K.1^47,-1*K.1^7,K.1^57,-1*K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^12,K.1^56,-1*K.1^92,K.1^96,-1*K.1^76,-1*K.1^36,-1*K.1^52,-1*K.1^44,K.1^88,K.1^24,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,K.1^48,-1*K.1^68,K.1^32,-1*K.1^84,K.1^16,K.1^72,K.1^35,K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^45,K.1^85,-1*K.1^55,K.1^85,K.1^15,-1*K.1^15,K.1^65,K.1^55,-1*K.1^35,-1*K.1^35,K.1^5,-1*K.1^95,-1*K.1^5,K.1^65,-1*K.1^85,K.1^95,-1*K.1^85,-1*K.1^15,K.1^5,K.1^55,K.1^15,-1*K.1^95,-1*K.1^45,K.1^95,K.1^48,-1*K.1^36,K.1^84,K.1^68,K.1^96,K.1^8,-1*K.1^28,K.1^16,-1*K.1^88,-1*K.1^64,K.1^88,-1*K.1^64,K.1^32,-1*K.1^92,-1*K.1^48,K.1^24,-1*K.1^16,K.1^4,-1*K.1^88,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^4,K.1^68,K.1^84,-1*K.1^12,-1*K.1^44,K.1^28,K.1^72,-1*K.1^52,-1*K.1^8,K.1^28,K.1^36,K.1^36,K.1^92,-1*K.1^16,K.1^92,K.1^76,K.1^76,K.1^52,K.1^52,K.1^64,-1*K.1^76,-1*K.1^48,K.1^4,K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^96,K.1^12,K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^56,-1*K.1^56,-1*K.1^72,-1*K.1^68,K.1^44,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^76,-1*K.1^28,K.1^64,-1*K.1^44,K.1^72,-1*K.1^52,K.1^52,-1*K.1^88,K.1^68,-1*K.1^96,-1*K.1^56,K.1^56,-1*K.1^72,K.1^92,-1*K.1^36,K.1^16,K.1^12,K.1^28,-1*K.1^76,K.1^36,-1*K.1^16,-1*K.1^48,-1*K.1^8,-1*K.1^32,K.1^96,K.1^32,K.1^84,K.1^48,-1*K.1^68,-1*K.1^64,K.1^44,K.1^88,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,K.1^8,K.1^62,-1*K.1^34,-1*K.1^2,-1*K.1^26,-1*K.1^58,-1*K.1^58,K.1^86,-1*K.1^42,K.1^78,K.1^26,K.1^6,K.1^46,K.1^66,K.1^14,-1*K.1^82,K.1^46,-1*K.1^98,-1*K.1^74,K.1^62,-1*K.1^78,K.1^58,-1*K.1^98,K.1^98,-1*K.1^38,-1*K.1^86,K.1^42,-1*K.1^94,-1*K.1^22,-1*K.1^14,K.1^38,K.1^34,K.1^2,-1*K.1^14,-1*K.1^82,K.1^58,K.1^82,-1*K.1^54,-1*K.1^18,-1*K.1^78,-1*K.1^74,K.1^34,K.1^2,-1*K.1^62,K.1^94,K.1^54,K.1^54,-1*K.1^66,K.1^74,-1*K.1^94,K.1^42,K.1^74,-1*K.1^62,-1*K.1^6,K.1^18,K.1^18,K.1^78,-1*K.1^38,K.1^98,K.1^26,K.1^82,-1*K.1^54,-1*K.1^86,-1*K.1^22,-1*K.1^6,-1*K.1^34,-1*K.1^42,K.1^94,-1*K.1^18,-1*K.1^26,-1*K.1^2,-1*K.1^46,K.1^66,-1*K.1^66,K.1^86,-1*K.1^46,K.1^22,K.1^22,K.1^6,K.1^38,K.1^14,K.1^54,K.1^78,K.1^58,-1*K.1^38,-1*K.1^58,-1*K.1^98,-1*K.1^54,K.1^42,K.1^62,K.1^94,-1*K.1^14,K.1^82,-1*K.1^2,-1*K.1^26,-1*K.1^6,-1*K.1^86,K.1^6,K.1^46,K.1^2,-1*K.1^94,K.1^26,-1*K.1^74,-1*K.1^82,-1*K.1^62,K.1^34,K.1^14,-1*K.1^42,-1*K.1^22,K.1^98,-1*K.1^18,K.1^38,K.1^18,-1*K.1^78,K.1^22,-1*K.1^34,K.1^74,-1*K.1^46,-1*K.1^66,K.1^86,K.1^66,-1*K.1^41,-1*K.1^97,K.1^91,-1*K.1^89,K.1^81,-1*K.1^63,K.1^69,-1*K.1^3,-1*K.1^27,-1*K.1^17,-1*K.1^37,-1*K.1^69,-1*K.1^29,K.1^51,-1*K.1^57,-1*K.1^11,-1*K.1^43,K.1^29,-1*K.1^47,-1*K.1^33,-1*K.1^51,K.1^79,K.1^93,-1*K.1^87,K.1^93,K.1^53,K.1^3,-1*K.1^9,K.1^63,-1*K.1^91,K.1^37,-1*K.1^31,-1*K.1^49,K.1^49,K.1^57,K.1^37,K.1^7,K.1^47,-1*K.1^49,K.1^43,K.1^13,K.1^67,-1*K.1^73,K.1^23,K.1^31,K.1^51,K.1^77,-1*K.1^67,K.1^87,-1*K.1^57,K.1^77,K.1^97,K.1^9,K.1^89,K.1^17,-1*K.1^97,K.1^71,-1*K.1^83,-1*K.1^89,K.1^83,-1*K.1^61,-1*K.1^9,-1*K.1^71,K.1^53,-1*K.1^19,K.1^21,-1*K.1^79,-1*K.1^93,-1*K.1^13,K.1^59,-1*K.1^53,-1*K.1^3,-1*K.1^91,K.1^89,K.1^91,K.1^39,K.1^41,K.1^3,K.1^21,K.1^59,-1*K.1^39,-1*K.1^41,-1*K.1^47,-1*K.1^21,-1*K.1^59,K.1^39,-1*K.1^33,K.1^27,K.1^29,K.1^41,-1*K.1^23,K.1^73,K.1^7,K.1^87,-1*K.1^93,K.1^99,-1*K.1^99,K.1^81,-1*K.1^63,-1*K.1^81,K.1^63,K.1^31,K.1^49,K.1^27,K.1^17,-1*K.1^37,-1*K.1^7,-1*K.1,-1*K.1^51,-1*K.1^43,-1*K.1^77,K.1,K.1^69,K.1^11,-1*K.1^17,K.1^23,K.1^99,-1*K.1^81,-1*K.1^87,K.1^57,K.1^97,-1*K.1^71,-1*K.1^69,-1*K.1^11,-1*K.1^83,K.1^61,K.1^43,K.1,-1*K.1^53,K.1^19,-1*K.1^13,-1*K.1^67,-1*K.1^27,-1*K.1^29,-1*K.1^31,-1*K.1^21,-1*K.1^73,-1*K.1^7,K.1^13,-1*K.1^59,K.1^79,-1*K.1^77,K.1^67,K.1^61,K.1^19,-1*K.1^79,-1*K.1,K.1^83,-1*K.1^61,-1*K.1^19,K.1^11,K.1^9,K.1^71,K.1^47,K.1^33,-1*K.1^39,K.1^33,K.1^73,-1*K.1^23,-1*K.1^99]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^88,-1*K.1^44,K.1^8,-1*K.1^4,K.1^24,K.1^64,K.1^48,K.1^56,-1*K.1^12,-1*K.1^76,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,-1*K.1^52,K.1^32,-1*K.1^68,K.1^16,-1*K.1^84,-1*K.1^28,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^55,K.1^95,K.1^35,K.1^45,K.1^35,K.1^55,-1*K.1^15,K.1^45,-1*K.1^15,-1*K.1^85,K.1^85,-1*K.1^35,-1*K.1^45,K.1^65,K.1^65,-1*K.1^95,K.1^5,K.1^95,-1*K.1^35,K.1^15,-1*K.1^5,K.1^15,K.1^85,-1*K.1^95,-1*K.1^45,-1*K.1^85,K.1^5,K.1^55,-1*K.1^5,-1*K.1^52,K.1^64,-1*K.1^16,-1*K.1^32,-1*K.1^4,-1*K.1^92,K.1^72,-1*K.1^84,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^68,K.1^8,K.1^52,-1*K.1^76,K.1^84,-1*K.1^96,K.1^12,K.1^16,K.1^76,-1*K.1^56,K.1^96,-1*K.1^32,-1*K.1^16,K.1^88,K.1^56,-1*K.1^72,-1*K.1^28,K.1^48,K.1^92,-1*K.1^72,-1*K.1^64,-1*K.1^64,-1*K.1^8,K.1^84,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^48,-1*K.1^48,-1*K.1^36,K.1^24,K.1^52,-1*K.1^96,-1*K.1^44,K.1^68,K.1^68,K.1^4,-1*K.1^88,-1*K.1^88,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^56,K.1^92,K.1^76,K.1^76,-1*K.1^24,K.1^72,-1*K.1^36,K.1^56,-1*K.1^28,K.1^48,-1*K.1^48,K.1^12,-1*K.1^32,K.1^4,K.1^44,-1*K.1^44,K.1^28,-1*K.1^8,K.1^64,-1*K.1^84,-1*K.1^88,-1*K.1^72,K.1^24,-1*K.1^64,K.1^84,K.1^52,K.1^92,K.1^68,-1*K.1^4,-1*K.1^68,-1*K.1^16,-1*K.1^52,K.1^32,K.1^36,-1*K.1^56,-1*K.1^12,K.1^96,-1*K.1^96,K.1^88,K.1^8,-1*K.1^76,K.1^16,-1*K.1^92,-1*K.1^38,K.1^66,K.1^98,K.1^74,K.1^42,K.1^42,-1*K.1^14,K.1^58,-1*K.1^22,-1*K.1^74,-1*K.1^94,-1*K.1^54,-1*K.1^34,-1*K.1^86,K.1^18,-1*K.1^54,K.1^2,K.1^26,-1*K.1^38,K.1^22,-1*K.1^42,K.1^2,-1*K.1^2,K.1^62,K.1^14,-1*K.1^58,K.1^6,K.1^78,K.1^86,-1*K.1^62,-1*K.1^66,-1*K.1^98,K.1^86,K.1^18,-1*K.1^42,-1*K.1^18,K.1^46,K.1^82,K.1^22,K.1^26,-1*K.1^66,-1*K.1^98,K.1^38,-1*K.1^6,-1*K.1^46,-1*K.1^46,K.1^34,-1*K.1^26,K.1^6,-1*K.1^58,-1*K.1^26,K.1^38,K.1^94,-1*K.1^82,-1*K.1^82,-1*K.1^22,K.1^62,-1*K.1^2,-1*K.1^74,-1*K.1^18,K.1^46,K.1^14,K.1^78,K.1^94,K.1^66,K.1^58,-1*K.1^6,K.1^82,K.1^74,K.1^98,K.1^54,-1*K.1^34,K.1^34,-1*K.1^14,K.1^54,-1*K.1^78,-1*K.1^78,-1*K.1^94,-1*K.1^62,-1*K.1^86,-1*K.1^46,-1*K.1^22,-1*K.1^42,K.1^62,K.1^42,K.1^2,K.1^46,-1*K.1^58,-1*K.1^38,-1*K.1^6,K.1^86,-1*K.1^18,K.1^98,K.1^74,K.1^94,K.1^14,-1*K.1^94,-1*K.1^54,-1*K.1^98,K.1^6,-1*K.1^74,K.1^26,K.1^18,K.1^38,-1*K.1^66,-1*K.1^86,K.1^58,K.1^78,-1*K.1^2,K.1^82,-1*K.1^62,-1*K.1^82,K.1^22,-1*K.1^78,K.1^66,-1*K.1^26,K.1^54,K.1^34,-1*K.1^14,-1*K.1^34,K.1^59,K.1^3,-1*K.1^9,K.1^11,-1*K.1^19,K.1^37,-1*K.1^31,K.1^97,K.1^73,K.1^83,K.1^63,K.1^31,K.1^71,-1*K.1^49,K.1^43,K.1^89,K.1^57,-1*K.1^71,K.1^53,K.1^67,K.1^49,-1*K.1^21,-1*K.1^7,K.1^13,-1*K.1^7,-1*K.1^47,-1*K.1^97,K.1^91,-1*K.1^37,K.1^9,-1*K.1^63,K.1^69,K.1^51,-1*K.1^51,-1*K.1^43,-1*K.1^63,-1*K.1^93,-1*K.1^53,K.1^51,-1*K.1^57,-1*K.1^87,-1*K.1^33,K.1^27,-1*K.1^77,-1*K.1^69,-1*K.1^49,-1*K.1^23,K.1^33,-1*K.1^13,K.1^43,-1*K.1^23,-1*K.1^3,-1*K.1^91,-1*K.1^11,-1*K.1^83,K.1^3,-1*K.1^29,K.1^17,K.1^11,-1*K.1^17,K.1^39,K.1^91,K.1^29,-1*K.1^47,K.1^81,-1*K.1^79,K.1^21,K.1^7,K.1^87,-1*K.1^41,K.1^47,K.1^97,K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^61,-1*K.1^59,-1*K.1^97,-1*K.1^79,-1*K.1^41,K.1^61,K.1^59,K.1^53,K.1^79,K.1^41,-1*K.1^61,K.1^67,-1*K.1^73,-1*K.1^71,-1*K.1^59,K.1^77,-1*K.1^27,-1*K.1^93,-1*K.1^13,K.1^7,-1*K.1,K.1,-1*K.1^19,K.1^37,K.1^19,-1*K.1^37,-1*K.1^69,-1*K.1^51,-1*K.1^73,-1*K.1^83,K.1^63,K.1^93,K.1^99,K.1^49,K.1^57,K.1^23,-1*K.1^99,-1*K.1^31,-1*K.1^89,K.1^83,-1*K.1^77,-1*K.1,K.1^19,K.1^13,-1*K.1^43,-1*K.1^3,K.1^29,K.1^31,K.1^89,K.1^17,-1*K.1^39,-1*K.1^57,-1*K.1^99,K.1^47,-1*K.1^81,K.1^87,K.1^33,K.1^73,K.1^71,K.1^69,K.1^79,K.1^27,K.1^93,-1*K.1^87,K.1^41,-1*K.1^21,K.1^23,-1*K.1^33,-1*K.1^39,-1*K.1^81,K.1^21,K.1^99,-1*K.1^17,K.1^39,K.1^81,-1*K.1^89,-1*K.1^91,-1*K.1^29,-1*K.1^53,-1*K.1^67,K.1^61,-1*K.1^67,-1*K.1^27,K.1^77,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,K.1^72,-1*K.1^36,-1*K.1^52,-1*K.1^76,K.1^56,K.1^16,-1*K.1^12,K.1^64,-1*K.1^28,-1*K.1^44,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^88,K.1^8,-1*K.1^92,-1*K.1^4,K.1^96,K.1^32,K.1^35,K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^45,K.1^85,-1*K.1^55,K.1^85,K.1^15,-1*K.1^15,K.1^65,K.1^55,-1*K.1^35,-1*K.1^35,K.1^5,-1*K.1^95,-1*K.1^5,K.1^65,-1*K.1^85,K.1^95,-1*K.1^85,-1*K.1^15,K.1^5,K.1^55,K.1^15,-1*K.1^95,-1*K.1^45,K.1^95,K.1^88,K.1^16,K.1^4,-1*K.1^8,-1*K.1^76,K.1^48,-1*K.1^68,K.1^96,K.1^28,K.1^84,-1*K.1^28,K.1^84,-1*K.1^92,-1*K.1^52,-1*K.1^88,-1*K.1^44,-1*K.1^96,-1*K.1^24,K.1^28,-1*K.1^4,K.1^44,-1*K.1^64,K.1^24,-1*K.1^8,K.1^4,K.1^72,K.1^64,K.1^68,K.1^32,-1*K.1^12,-1*K.1^48,K.1^68,-1*K.1^16,-1*K.1^16,K.1^52,-1*K.1^96,K.1^52,-1*K.1^56,-1*K.1^56,K.1^12,K.1^12,-1*K.1^84,K.1^56,-1*K.1^88,-1*K.1^24,-1*K.1^36,K.1^92,K.1^92,K.1^76,-1*K.1^72,-1*K.1^72,K.1^76,-1*K.1^32,K.1^36,K.1^36,-1*K.1^32,K.1^8,-1*K.1^64,-1*K.1^48,K.1^44,K.1^44,-1*K.1^56,-1*K.1^68,-1*K.1^84,K.1^64,K.1^32,-1*K.1^12,K.1^12,K.1^28,-1*K.1^8,K.1^76,K.1^36,-1*K.1^36,-1*K.1^32,K.1^52,K.1^16,K.1^96,-1*K.1^72,K.1^68,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^88,-1*K.1^48,K.1^92,-1*K.1^76,-1*K.1^92,K.1^4,K.1^88,K.1^8,K.1^84,-1*K.1^64,-1*K.1^28,K.1^24,-1*K.1^24,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^48,K.1^22,K.1^54,K.1^62,K.1^6,-1*K.1^98,-1*K.1^98,-1*K.1^66,-1*K.1^2,-1*K.1^18,-1*K.1^6,K.1^86,-1*K.1^26,-1*K.1^46,-1*K.1^34,-1*K.1^42,-1*K.1^26,K.1^38,K.1^94,K.1^22,K.1^18,K.1^98,K.1^38,-1*K.1^38,-1*K.1^78,K.1^66,K.1^2,-1*K.1^14,K.1^82,K.1^34,K.1^78,-1*K.1^54,-1*K.1^62,K.1^34,-1*K.1^42,K.1^98,K.1^42,K.1^74,-1*K.1^58,K.1^18,K.1^94,-1*K.1^54,-1*K.1^62,-1*K.1^22,K.1^14,-1*K.1^74,-1*K.1^74,K.1^46,-1*K.1^94,-1*K.1^14,K.1^2,-1*K.1^94,-1*K.1^22,-1*K.1^86,K.1^58,K.1^58,-1*K.1^18,-1*K.1^78,-1*K.1^38,-1*K.1^6,K.1^42,K.1^74,K.1^66,K.1^82,-1*K.1^86,K.1^54,-1*K.1^2,K.1^14,-1*K.1^58,K.1^6,K.1^62,K.1^26,-1*K.1^46,K.1^46,-1*K.1^66,K.1^26,-1*K.1^82,-1*K.1^82,K.1^86,K.1^78,-1*K.1^34,-1*K.1^74,-1*K.1^18,K.1^98,-1*K.1^78,-1*K.1^98,K.1^38,K.1^74,K.1^2,K.1^22,K.1^14,K.1^34,K.1^42,K.1^62,K.1^6,-1*K.1^86,K.1^66,K.1^86,-1*K.1^26,-1*K.1^62,-1*K.1^14,-1*K.1^6,K.1^94,-1*K.1^42,-1*K.1^22,-1*K.1^54,-1*K.1^34,-1*K.1^2,K.1^82,-1*K.1^38,-1*K.1^58,K.1^78,K.1^58,K.1^18,-1*K.1^82,K.1^54,-1*K.1^94,K.1^26,K.1^46,-1*K.1^66,-1*K.1^46,K.1^21,-1*K.1^57,-1*K.1^71,-1*K.1^9,-1*K.1^61,K.1^3,-1*K.1^89,-1*K.1^43,K.1^87,K.1^77,K.1^97,K.1^89,K.1^49,-1*K.1^31,-1*K.1^17,-1*K.1^91,-1*K.1^83,-1*K.1^49,-1*K.1^7,-1*K.1^73,K.1^31,-1*K.1^99,-1*K.1^33,-1*K.1^47,-1*K.1^33,K.1^93,K.1^43,K.1^29,-1*K.1^3,K.1^71,-1*K.1^97,K.1^11,K.1^69,-1*K.1^69,K.1^17,-1*K.1^97,-1*K.1^67,K.1^7,K.1^69,K.1^83,K.1^53,K.1^27,K.1^13,K.1^63,-1*K.1^11,-1*K.1^31,K.1^37,-1*K.1^27,K.1^47,-1*K.1^17,K.1^37,K.1^57,-1*K.1^29,K.1^9,-1*K.1^77,-1*K.1^57,-1*K.1^51,K.1^23,-1*K.1^9,-1*K.1^23,K.1^41,K.1^29,K.1^51,K.1^93,K.1^39,-1*K.1,K.1^99,K.1^33,-1*K.1^53,-1*K.1^79,-1*K.1^93,-1*K.1^43,K.1^71,K.1^9,-1*K.1^71,-1*K.1^59,-1*K.1^21,K.1^43,-1*K.1,-1*K.1^79,K.1^59,K.1^21,-1*K.1^7,K.1,K.1^79,-1*K.1^59,-1*K.1^73,-1*K.1^87,-1*K.1^49,-1*K.1^21,-1*K.1^63,-1*K.1^13,-1*K.1^67,K.1^47,K.1^33,K.1^19,-1*K.1^19,-1*K.1^61,K.1^3,K.1^61,-1*K.1^3,-1*K.1^11,-1*K.1^69,-1*K.1^87,-1*K.1^77,K.1^97,K.1^67,-1*K.1^81,K.1^31,-1*K.1^83,-1*K.1^37,K.1^81,-1*K.1^89,K.1^91,K.1^77,K.1^63,K.1^19,K.1^61,-1*K.1^47,K.1^17,K.1^57,K.1^51,K.1^89,-1*K.1^91,K.1^23,-1*K.1^41,K.1^83,K.1^81,-1*K.1^93,-1*K.1^39,-1*K.1^53,-1*K.1^27,K.1^87,K.1^49,K.1^11,K.1,K.1^13,K.1^67,K.1^53,K.1^79,-1*K.1^99,-1*K.1^37,K.1^27,-1*K.1^41,-1*K.1^39,K.1^99,-1*K.1^81,-1*K.1^23,K.1^41,K.1^39,K.1^91,-1*K.1^29,-1*K.1^51,K.1^7,K.1^73,K.1^59,K.1^73,-1*K.1^13,-1*K.1^63,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,-1*K.1^28,K.1^64,K.1^48,K.1^24,-1*K.1^44,-1*K.1^84,K.1^88,-1*K.1^36,K.1^72,K.1^56,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^12,-1*K.1^92,K.1^8,K.1^96,-1*K.1^4,-1*K.1^68,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^55,K.1^95,K.1^35,K.1^45,K.1^35,K.1^55,-1*K.1^15,K.1^45,-1*K.1^15,-1*K.1^85,K.1^85,-1*K.1^35,-1*K.1^45,K.1^65,K.1^65,-1*K.1^95,K.1^5,K.1^95,-1*K.1^35,K.1^15,-1*K.1^5,K.1^15,K.1^85,-1*K.1^95,-1*K.1^45,-1*K.1^85,K.1^5,K.1^55,-1*K.1^5,-1*K.1^12,-1*K.1^84,-1*K.1^96,K.1^92,K.1^24,-1*K.1^52,K.1^32,-1*K.1^4,-1*K.1^72,-1*K.1^16,K.1^72,-1*K.1^16,K.1^8,K.1^48,K.1^12,K.1^56,K.1^4,K.1^76,-1*K.1^72,K.1^96,-1*K.1^56,K.1^36,-1*K.1^76,K.1^92,-1*K.1^96,-1*K.1^28,-1*K.1^36,-1*K.1^32,-1*K.1^68,K.1^88,K.1^52,-1*K.1^32,K.1^84,K.1^84,-1*K.1^48,K.1^4,-1*K.1^48,K.1^44,K.1^44,-1*K.1^88,-1*K.1^88,K.1^16,-1*K.1^44,K.1^12,K.1^76,K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^28,K.1^28,-1*K.1^24,K.1^68,-1*K.1^64,-1*K.1^64,K.1^68,-1*K.1^92,K.1^36,K.1^52,-1*K.1^56,-1*K.1^56,K.1^44,K.1^32,K.1^16,-1*K.1^36,-1*K.1^68,K.1^88,-1*K.1^88,-1*K.1^72,K.1^92,-1*K.1^24,-1*K.1^64,K.1^64,K.1^68,-1*K.1^48,-1*K.1^84,-1*K.1^4,K.1^28,-1*K.1^32,-1*K.1^44,K.1^84,K.1^4,K.1^12,K.1^52,-1*K.1^8,K.1^24,K.1^8,-1*K.1^96,-1*K.1^12,-1*K.1^92,-1*K.1^16,K.1^36,K.1^72,-1*K.1^76,K.1^76,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^52,-1*K.1^78,-1*K.1^46,-1*K.1^38,-1*K.1^94,K.1^2,K.1^2,K.1^34,K.1^98,K.1^82,K.1^94,-1*K.1^14,K.1^74,K.1^54,K.1^66,K.1^58,K.1^74,-1*K.1^62,-1*K.1^6,-1*K.1^78,-1*K.1^82,-1*K.1^2,-1*K.1^62,K.1^62,K.1^22,-1*K.1^34,-1*K.1^98,K.1^86,-1*K.1^18,-1*K.1^66,-1*K.1^22,K.1^46,K.1^38,-1*K.1^66,K.1^58,-1*K.1^2,-1*K.1^58,-1*K.1^26,K.1^42,-1*K.1^82,-1*K.1^6,K.1^46,K.1^38,K.1^78,-1*K.1^86,K.1^26,K.1^26,-1*K.1^54,K.1^6,K.1^86,-1*K.1^98,K.1^6,K.1^78,K.1^14,-1*K.1^42,-1*K.1^42,K.1^82,K.1^22,K.1^62,K.1^94,-1*K.1^58,-1*K.1^26,-1*K.1^34,-1*K.1^18,K.1^14,-1*K.1^46,K.1^98,-1*K.1^86,K.1^42,-1*K.1^94,-1*K.1^38,-1*K.1^74,K.1^54,-1*K.1^54,K.1^34,-1*K.1^74,K.1^18,K.1^18,-1*K.1^14,-1*K.1^22,K.1^66,K.1^26,K.1^82,-1*K.1^2,K.1^22,K.1^2,-1*K.1^62,-1*K.1^26,-1*K.1^98,-1*K.1^78,-1*K.1^86,-1*K.1^66,-1*K.1^58,-1*K.1^38,-1*K.1^94,K.1^14,-1*K.1^34,-1*K.1^14,K.1^74,K.1^38,K.1^86,K.1^94,-1*K.1^6,K.1^58,K.1^78,K.1^46,K.1^66,K.1^98,-1*K.1^18,K.1^62,K.1^42,-1*K.1^22,-1*K.1^42,-1*K.1^82,K.1^18,-1*K.1^46,K.1^6,-1*K.1^74,-1*K.1^54,K.1^34,K.1^54,-1*K.1^79,K.1^43,K.1^29,K.1^91,K.1^39,-1*K.1^97,K.1^11,K.1^57,-1*K.1^13,-1*K.1^23,-1*K.1^3,-1*K.1^11,-1*K.1^51,K.1^69,K.1^83,K.1^9,K.1^17,K.1^51,K.1^93,K.1^27,-1*K.1^69,K.1,K.1^67,K.1^53,K.1^67,-1*K.1^7,-1*K.1^57,-1*K.1^71,K.1^97,-1*K.1^29,K.1^3,-1*K.1^89,-1*K.1^31,K.1^31,-1*K.1^83,K.1^3,K.1^33,-1*K.1^93,-1*K.1^31,-1*K.1^17,-1*K.1^47,-1*K.1^73,-1*K.1^87,-1*K.1^37,K.1^89,K.1^69,-1*K.1^63,K.1^73,-1*K.1^53,K.1^83,-1*K.1^63,-1*K.1^43,K.1^71,-1*K.1^91,K.1^23,K.1^43,K.1^49,-1*K.1^77,K.1^91,K.1^77,-1*K.1^59,-1*K.1^71,-1*K.1^49,-1*K.1^7,-1*K.1^61,K.1^99,-1*K.1,-1*K.1^67,K.1^47,K.1^21,K.1^7,K.1^57,-1*K.1^29,-1*K.1^91,K.1^29,K.1^41,K.1^79,-1*K.1^57,K.1^99,K.1^21,-1*K.1^41,-1*K.1^79,K.1^93,-1*K.1^99,-1*K.1^21,K.1^41,K.1^27,K.1^13,K.1^51,K.1^79,K.1^37,K.1^87,K.1^33,-1*K.1^53,-1*K.1^67,-1*K.1^81,K.1^81,K.1^39,-1*K.1^97,-1*K.1^39,K.1^97,K.1^89,K.1^31,K.1^13,K.1^23,-1*K.1^3,-1*K.1^33,K.1^19,-1*K.1^69,K.1^17,K.1^63,-1*K.1^19,K.1^11,-1*K.1^9,-1*K.1^23,-1*K.1^37,-1*K.1^81,-1*K.1^39,K.1^53,-1*K.1^83,-1*K.1^43,-1*K.1^49,-1*K.1^11,K.1^9,-1*K.1^77,K.1^59,-1*K.1^17,-1*K.1^19,K.1^7,K.1^61,K.1^47,K.1^73,-1*K.1^13,-1*K.1^51,-1*K.1^89,-1*K.1^99,-1*K.1^87,-1*K.1^33,-1*K.1^47,-1*K.1^21,K.1,K.1^63,-1*K.1^73,K.1^59,K.1^61,-1*K.1,K.1^19,K.1^77,-1*K.1^59,-1*K.1^61,-1*K.1^9,K.1^71,K.1^49,-1*K.1^93,-1*K.1^27,-1*K.1^41,-1*K.1^27,K.1^87,K.1^37,K.1^81]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^52,-1*K.1^76,K.1^32,K.1^16,K.1^96,K.1^56,-1*K.1^92,K.1^24,K.1^48,-1*K.1^4,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^8,-1*K.1^28,K.1^72,K.1^64,-1*K.1^36,-1*K.1^12,K.1^35,K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^45,K.1^85,-1*K.1^55,K.1^85,K.1^15,-1*K.1^15,K.1^65,K.1^55,-1*K.1^35,-1*K.1^35,K.1^5,-1*K.1^95,-1*K.1^5,K.1^65,-1*K.1^85,K.1^95,-1*K.1^85,-1*K.1^15,K.1^5,K.1^55,K.1^15,-1*K.1^95,-1*K.1^45,K.1^95,K.1^8,K.1^56,-1*K.1^64,K.1^28,K.1^16,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^48,K.1^44,K.1^48,K.1^44,K.1^72,K.1^32,-1*K.1^8,-1*K.1^4,K.1^36,K.1^84,-1*K.1^48,K.1^64,K.1^4,-1*K.1^24,-1*K.1^84,K.1^28,-1*K.1^64,-1*K.1^52,K.1^24,-1*K.1^88,-1*K.1^12,-1*K.1^92,K.1^68,-1*K.1^88,-1*K.1^56,-1*K.1^56,-1*K.1^32,K.1^36,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^92,K.1^92,-1*K.1^44,K.1^96,-1*K.1^8,K.1^84,-1*K.1^76,-1*K.1^72,-1*K.1^72,-1*K.1^16,K.1^52,K.1^52,-1*K.1^16,K.1^12,K.1^76,K.1^76,K.1^12,-1*K.1^28,-1*K.1^24,K.1^68,K.1^4,K.1^4,-1*K.1^96,K.1^88,-1*K.1^44,K.1^24,-1*K.1^12,-1*K.1^92,K.1^92,-1*K.1^48,K.1^28,-1*K.1^16,K.1^76,-1*K.1^76,K.1^12,-1*K.1^32,K.1^56,-1*K.1^36,K.1^52,-1*K.1^88,K.1^96,-1*K.1^56,K.1^36,-1*K.1^8,K.1^68,-1*K.1^72,K.1^16,K.1^72,-1*K.1^64,K.1^8,-1*K.1^28,K.1^44,-1*K.1^24,K.1^48,-1*K.1^84,K.1^84,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,-1*K.1^68,-1*K.1^2,K.1^14,-1*K.1^42,K.1^46,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^82,K.1^38,-1*K.1^46,-1*K.1^26,-1*K.1^66,-1*K.1^86,K.1^94,K.1^22,-1*K.1^66,-1*K.1^58,K.1^54,-1*K.1^2,-1*K.1^38,K.1^18,-1*K.1^58,K.1^58,K.1^98,-1*K.1^6,K.1^82,K.1^74,-1*K.1^62,-1*K.1^94,-1*K.1^98,-1*K.1^14,K.1^42,-1*K.1^94,K.1^22,K.1^18,-1*K.1^22,K.1^34,K.1^78,-1*K.1^38,K.1^54,-1*K.1^14,K.1^42,K.1^2,-1*K.1^74,-1*K.1^34,-1*K.1^34,K.1^86,-1*K.1^54,K.1^74,K.1^82,-1*K.1^54,K.1^2,K.1^26,-1*K.1^78,-1*K.1^78,K.1^38,K.1^98,K.1^58,-1*K.1^46,-1*K.1^22,K.1^34,-1*K.1^6,-1*K.1^62,K.1^26,K.1^14,-1*K.1^82,-1*K.1^74,K.1^78,K.1^46,-1*K.1^42,K.1^66,-1*K.1^86,K.1^86,K.1^6,K.1^66,K.1^62,K.1^62,-1*K.1^26,-1*K.1^98,K.1^94,-1*K.1^34,K.1^38,K.1^18,K.1^98,-1*K.1^18,-1*K.1^58,K.1^34,K.1^82,-1*K.1^2,-1*K.1^74,-1*K.1^94,-1*K.1^22,-1*K.1^42,K.1^46,K.1^26,-1*K.1^6,-1*K.1^26,-1*K.1^66,K.1^42,K.1^74,-1*K.1^46,K.1^54,K.1^22,K.1^2,-1*K.1^14,K.1^94,-1*K.1^82,-1*K.1^62,K.1^58,K.1^78,-1*K.1^98,-1*K.1^78,-1*K.1^38,K.1^62,K.1^14,-1*K.1^54,K.1^66,K.1^86,K.1^6,-1*K.1^86,K.1^61,K.1^37,K.1^11,K.1^69,K.1,-1*K.1^23,-1*K.1^49,K.1^63,-1*K.1^67,-1*K.1^57,-1*K.1^77,K.1^49,K.1^9,-1*K.1^71,-1*K.1^97,K.1^31,-1*K.1^3,-1*K.1^9,-1*K.1^87,K.1^93,K.1^71,-1*K.1^59,K.1^53,K.1^27,K.1^53,K.1^13,-1*K.1^63,-1*K.1^89,K.1^23,-1*K.1^11,K.1^77,K.1^51,K.1^29,-1*K.1^29,K.1^97,K.1^77,K.1^47,K.1^87,K.1^29,K.1^3,-1*K.1^73,-1*K.1^7,-1*K.1^33,-1*K.1^83,-1*K.1^51,-1*K.1^71,-1*K.1^17,K.1^7,-1*K.1^27,-1*K.1^97,-1*K.1^17,-1*K.1^37,K.1^89,-1*K.1^69,K.1^57,K.1^37,-1*K.1^91,-1*K.1^43,K.1^69,K.1^43,K.1^81,-1*K.1^89,K.1^91,K.1^13,-1*K.1^99,-1*K.1^41,K.1^59,-1*K.1^53,K.1^73,-1*K.1^39,-1*K.1^13,K.1^63,-1*K.1^11,-1*K.1^69,K.1^11,-1*K.1^19,-1*K.1^61,-1*K.1^63,-1*K.1^41,-1*K.1^39,K.1^19,K.1^61,-1*K.1^87,K.1^41,K.1^39,-1*K.1^19,K.1^93,K.1^67,-1*K.1^9,-1*K.1^61,K.1^83,K.1^33,K.1^47,-1*K.1^27,-1*K.1^53,-1*K.1^79,K.1^79,K.1,-1*K.1^23,-1*K.1,K.1^23,-1*K.1^51,-1*K.1^29,K.1^67,K.1^57,-1*K.1^77,-1*K.1^47,K.1^21,K.1^71,-1*K.1^3,K.1^17,-1*K.1^21,-1*K.1^49,-1*K.1^31,-1*K.1^57,-1*K.1^83,-1*K.1^79,-1*K.1,K.1^27,K.1^97,-1*K.1^37,K.1^91,K.1^49,K.1^31,-1*K.1^43,-1*K.1^81,K.1^3,-1*K.1^21,-1*K.1^13,K.1^99,K.1^73,K.1^7,-1*K.1^67,K.1^9,K.1^51,K.1^41,-1*K.1^33,-1*K.1^47,-1*K.1^73,K.1^39,-1*K.1^59,K.1^17,-1*K.1^7,-1*K.1^81,K.1^99,K.1^59,K.1^21,K.1^43,K.1^81,-1*K.1^99,-1*K.1^31,K.1^89,-1*K.1^91,K.1^87,-1*K.1^93,K.1^19,-1*K.1^93,K.1^33,K.1^83,K.1^79]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^48,K.1^24,-1*K.1^68,-1*K.1^84,-1*K.1^4,-1*K.1^44,K.1^8,-1*K.1^76,-1*K.1^52,K.1^96,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^28,-1*K.1^36,K.1^64,K.1^88,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^55,K.1^95,K.1^35,K.1^45,K.1^35,K.1^55,-1*K.1^15,K.1^45,-1*K.1^15,-1*K.1^85,K.1^85,-1*K.1^35,-1*K.1^45,K.1^65,K.1^65,-1*K.1^95,K.1^5,K.1^95,-1*K.1^35,K.1^15,-1*K.1^5,K.1^15,K.1^85,-1*K.1^95,-1*K.1^45,-1*K.1^85,K.1^5,K.1^55,-1*K.1^5,-1*K.1^92,-1*K.1^44,K.1^36,-1*K.1^72,-1*K.1^84,K.1^32,-1*K.1^12,K.1^64,K.1^52,-1*K.1^56,-1*K.1^52,-1*K.1^56,-1*K.1^28,-1*K.1^68,K.1^92,K.1^96,-1*K.1^64,-1*K.1^16,K.1^52,-1*K.1^36,-1*K.1^96,K.1^76,K.1^16,-1*K.1^72,K.1^36,K.1^48,-1*K.1^76,K.1^12,K.1^88,K.1^8,-1*K.1^32,K.1^12,K.1^44,K.1^44,K.1^68,-1*K.1^64,K.1^68,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^56,-1*K.1^4,K.1^92,-1*K.1^16,K.1^24,K.1^28,K.1^28,K.1^84,-1*K.1^48,-1*K.1^48,K.1^84,-1*K.1^88,-1*K.1^24,-1*K.1^24,-1*K.1^88,K.1^72,K.1^76,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^4,-1*K.1^12,K.1^56,-1*K.1^76,K.1^88,K.1^8,-1*K.1^8,K.1^52,-1*K.1^72,K.1^84,-1*K.1^24,K.1^24,-1*K.1^88,K.1^68,-1*K.1^44,K.1^64,-1*K.1^48,K.1^12,-1*K.1^4,K.1^44,-1*K.1^64,K.1^92,-1*K.1^32,K.1^28,-1*K.1^84,-1*K.1^28,K.1^36,-1*K.1^92,K.1^72,-1*K.1^56,K.1^76,-1*K.1^52,K.1^16,-1*K.1^16,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,K.1^32,K.1^98,-1*K.1^86,K.1^58,-1*K.1^54,K.1^82,K.1^82,-1*K.1^94,K.1^18,-1*K.1^62,K.1^54,K.1^74,K.1^34,K.1^14,-1*K.1^6,-1*K.1^78,K.1^34,K.1^42,-1*K.1^46,K.1^98,K.1^62,-1*K.1^82,K.1^42,-1*K.1^42,-1*K.1^2,K.1^94,-1*K.1^18,-1*K.1^26,K.1^38,K.1^6,K.1^2,K.1^86,-1*K.1^58,K.1^6,-1*K.1^78,-1*K.1^82,K.1^78,-1*K.1^66,-1*K.1^22,K.1^62,-1*K.1^46,K.1^86,-1*K.1^58,-1*K.1^98,K.1^26,K.1^66,K.1^66,-1*K.1^14,K.1^46,-1*K.1^26,-1*K.1^18,K.1^46,-1*K.1^98,-1*K.1^74,K.1^22,K.1^22,-1*K.1^62,-1*K.1^2,-1*K.1^42,K.1^54,K.1^78,-1*K.1^66,K.1^94,K.1^38,-1*K.1^74,-1*K.1^86,K.1^18,K.1^26,-1*K.1^22,-1*K.1^54,K.1^58,-1*K.1^34,K.1^14,-1*K.1^14,-1*K.1^94,-1*K.1^34,-1*K.1^38,-1*K.1^38,K.1^74,K.1^2,-1*K.1^6,K.1^66,-1*K.1^62,-1*K.1^82,-1*K.1^2,K.1^82,K.1^42,-1*K.1^66,-1*K.1^18,K.1^98,K.1^26,K.1^6,K.1^78,K.1^58,-1*K.1^54,-1*K.1^74,K.1^94,K.1^74,K.1^34,-1*K.1^58,-1*K.1^26,K.1^54,-1*K.1^46,-1*K.1^78,-1*K.1^98,K.1^86,-1*K.1^6,K.1^18,K.1^38,-1*K.1^42,-1*K.1^22,K.1^2,K.1^22,K.1^62,-1*K.1^38,-1*K.1^86,K.1^46,-1*K.1^34,-1*K.1^14,-1*K.1^94,K.1^14,-1*K.1^39,-1*K.1^63,-1*K.1^89,-1*K.1^31,-1*K.1^99,K.1^77,K.1^51,-1*K.1^37,K.1^33,K.1^43,K.1^23,-1*K.1^51,-1*K.1^91,K.1^29,K.1^3,-1*K.1^69,K.1^97,K.1^91,K.1^13,-1*K.1^7,-1*K.1^29,K.1^41,-1*K.1^47,-1*K.1^73,-1*K.1^47,-1*K.1^87,K.1^37,K.1^11,-1*K.1^77,K.1^89,-1*K.1^23,-1*K.1^49,-1*K.1^71,K.1^71,-1*K.1^3,-1*K.1^23,-1*K.1^53,-1*K.1^13,-1*K.1^71,-1*K.1^97,K.1^27,K.1^93,K.1^67,K.1^17,K.1^49,K.1^29,K.1^83,-1*K.1^93,K.1^73,K.1^3,K.1^83,K.1^63,-1*K.1^11,K.1^31,-1*K.1^43,-1*K.1^63,K.1^9,K.1^57,-1*K.1^31,-1*K.1^57,-1*K.1^19,K.1^11,-1*K.1^9,-1*K.1^87,K.1,K.1^59,-1*K.1^41,K.1^47,-1*K.1^27,K.1^61,K.1^87,-1*K.1^37,K.1^89,K.1^31,-1*K.1^89,K.1^81,K.1^39,K.1^37,K.1^59,K.1^61,-1*K.1^81,-1*K.1^39,K.1^13,-1*K.1^59,-1*K.1^61,K.1^81,-1*K.1^7,-1*K.1^33,K.1^91,K.1^39,-1*K.1^17,-1*K.1^67,-1*K.1^53,K.1^73,K.1^47,K.1^21,-1*K.1^21,-1*K.1^99,K.1^77,K.1^99,-1*K.1^77,K.1^49,K.1^71,-1*K.1^33,-1*K.1^43,K.1^23,K.1^53,-1*K.1^79,-1*K.1^29,K.1^97,-1*K.1^83,K.1^79,K.1^51,K.1^69,K.1^43,K.1^17,K.1^21,K.1^99,-1*K.1^73,-1*K.1^3,K.1^63,-1*K.1^9,-1*K.1^51,-1*K.1^69,K.1^57,K.1^19,-1*K.1^97,K.1^79,K.1^87,-1*K.1,-1*K.1^27,-1*K.1^93,K.1^33,-1*K.1^91,-1*K.1^49,-1*K.1^59,K.1^67,K.1^53,K.1^27,-1*K.1^61,K.1^41,-1*K.1^83,K.1^93,K.1^19,-1*K.1,-1*K.1^41,-1*K.1^79,-1*K.1^57,-1*K.1^19,K.1,K.1^69,-1*K.1^11,K.1^9,-1*K.1^13,K.1^7,-1*K.1^81,K.1^7,-1*K.1^67,-1*K.1^17,-1*K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,K.1^32,K.1^16,-1*K.1^12,K.1^56,-1*K.1^36,K.1^96,K.1^72,-1*K.1^84,-1*K.1^68,K.1^64,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,-1*K.1^28,K.1^48,-1*K.1^52,K.1^24,-1*K.1^76,-1*K.1^92,K.1^35,K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^45,K.1^85,-1*K.1^55,K.1^85,K.1^15,-1*K.1^15,K.1^65,K.1^55,-1*K.1^35,-1*K.1^35,K.1^5,-1*K.1^95,-1*K.1^5,K.1^65,-1*K.1^85,K.1^95,-1*K.1^85,-1*K.1^15,K.1^5,K.1^55,K.1^15,-1*K.1^95,-1*K.1^45,K.1^95,-1*K.1^28,K.1^96,-1*K.1^24,-1*K.1^48,K.1^56,K.1^88,K.1^8,-1*K.1^76,K.1^68,K.1^4,-1*K.1^68,K.1^4,-1*K.1^52,-1*K.1^12,K.1^28,K.1^64,K.1^76,K.1^44,K.1^68,K.1^24,-1*K.1^64,K.1^84,-1*K.1^44,-1*K.1^48,-1*K.1^24,K.1^32,-1*K.1^84,-1*K.1^8,-1*K.1^92,K.1^72,-1*K.1^88,-1*K.1^8,-1*K.1^96,-1*K.1^96,K.1^12,K.1^76,K.1^12,K.1^36,K.1^36,-1*K.1^72,-1*K.1^72,-1*K.1^4,-1*K.1^36,K.1^28,K.1^44,K.1^16,K.1^52,K.1^52,-1*K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^56,K.1^92,-1*K.1^16,-1*K.1^16,K.1^92,K.1^48,K.1^84,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^36,K.1^8,-1*K.1^4,-1*K.1^84,-1*K.1^92,K.1^72,-1*K.1^72,K.1^68,-1*K.1^48,-1*K.1^56,-1*K.1^16,K.1^16,K.1^92,K.1^12,K.1^96,-1*K.1^76,-1*K.1^32,-1*K.1^8,-1*K.1^36,-1*K.1^96,K.1^76,K.1^28,-1*K.1^88,K.1^52,K.1^56,-1*K.1^52,-1*K.1^24,-1*K.1^28,K.1^48,K.1^4,K.1^84,-1*K.1^68,-1*K.1^44,K.1^44,K.1^32,-1*K.1^12,K.1^64,K.1^24,K.1^88,-1*K.1^82,-1*K.1^74,K.1^22,K.1^86,K.1^38,K.1^38,K.1^46,K.1^62,-1*K.1^58,-1*K.1^86,-1*K.1^66,K.1^6,K.1^26,K.1^54,-1*K.1^2,K.1^6,K.1^78,K.1^14,-1*K.1^82,K.1^58,-1*K.1^38,K.1^78,-1*K.1^78,K.1^18,-1*K.1^46,-1*K.1^62,K.1^34,K.1^42,-1*K.1^54,-1*K.1^18,K.1^74,-1*K.1^22,-1*K.1^54,-1*K.1^2,-1*K.1^38,K.1^2,-1*K.1^94,-1*K.1^98,K.1^58,K.1^14,K.1^74,-1*K.1^22,K.1^82,-1*K.1^34,K.1^94,K.1^94,-1*K.1^26,-1*K.1^14,K.1^34,-1*K.1^62,-1*K.1^14,K.1^82,K.1^66,K.1^98,K.1^98,-1*K.1^58,K.1^18,-1*K.1^78,-1*K.1^86,K.1^2,-1*K.1^94,-1*K.1^46,K.1^42,K.1^66,-1*K.1^74,K.1^62,-1*K.1^34,-1*K.1^98,K.1^86,K.1^22,-1*K.1^6,K.1^26,-1*K.1^26,K.1^46,-1*K.1^6,-1*K.1^42,-1*K.1^42,-1*K.1^66,-1*K.1^18,K.1^54,K.1^94,-1*K.1^58,-1*K.1^38,K.1^18,K.1^38,K.1^78,-1*K.1^94,-1*K.1^62,-1*K.1^82,-1*K.1^34,-1*K.1^54,K.1^2,K.1^22,K.1^86,K.1^66,-1*K.1^46,-1*K.1^66,K.1^6,-1*K.1^22,K.1^34,-1*K.1^86,K.1^14,-1*K.1^2,K.1^82,K.1^74,K.1^54,K.1^62,K.1^42,-1*K.1^78,-1*K.1^98,-1*K.1^18,K.1^98,K.1^58,-1*K.1^42,-1*K.1^74,-1*K.1^14,-1*K.1^6,-1*K.1^26,K.1^46,K.1^26,-1*K.1,-1*K.1^17,K.1^51,K.1^29,K.1^41,K.1^43,-1*K.1^9,-1*K.1^83,K.1^47,K.1^37,K.1^57,K.1^9,-1*K.1^69,K.1^11,K.1^77,K.1^71,K.1^23,K.1^69,K.1^67,K.1^13,-1*K.1^11,-1*K.1^19,-1*K.1^73,-1*K.1^7,-1*K.1^73,-1*K.1^33,K.1^83,-1*K.1^49,-1*K.1^43,-1*K.1^51,-1*K.1^57,K.1^91,-1*K.1^89,K.1^89,-1*K.1^77,-1*K.1^57,-1*K.1^27,-1*K.1^67,-1*K.1^89,-1*K.1^23,K.1^93,-1*K.1^87,K.1^53,-1*K.1^3,-1*K.1^91,K.1^11,-1*K.1^97,K.1^87,K.1^7,K.1^77,-1*K.1^97,K.1^17,K.1^49,-1*K.1^29,-1*K.1^37,-1*K.1^17,K.1^31,K.1^63,K.1^29,-1*K.1^63,-1*K.1^21,-1*K.1^49,-1*K.1^31,-1*K.1^33,-1*K.1^59,-1*K.1^81,K.1^19,K.1^73,-1*K.1^93,K.1^99,K.1^33,-1*K.1^83,-1*K.1^51,-1*K.1^29,K.1^51,K.1^79,K.1,K.1^83,-1*K.1^81,K.1^99,-1*K.1^79,-1*K.1,K.1^67,K.1^81,-1*K.1^99,K.1^79,K.1^13,-1*K.1^47,K.1^69,K.1,K.1^3,-1*K.1^53,-1*K.1^27,K.1^7,K.1^73,-1*K.1^39,K.1^39,K.1^41,K.1^43,-1*K.1^41,-1*K.1^43,-1*K.1^91,K.1^89,-1*K.1^47,-1*K.1^37,K.1^57,K.1^27,K.1^61,-1*K.1^11,K.1^23,K.1^97,-1*K.1^61,-1*K.1^9,-1*K.1^71,K.1^37,-1*K.1^3,-1*K.1^39,-1*K.1^41,-1*K.1^7,-1*K.1^77,K.1^17,-1*K.1^31,K.1^9,K.1^71,K.1^63,K.1^21,-1*K.1^23,-1*K.1^61,K.1^33,K.1^59,-1*K.1^93,K.1^87,K.1^47,-1*K.1^69,K.1^91,K.1^81,K.1^53,K.1^27,K.1^93,-1*K.1^99,-1*K.1^19,K.1^97,-1*K.1^87,K.1^21,K.1^59,K.1^19,K.1^61,-1*K.1^63,-1*K.1^21,-1*K.1^59,-1*K.1^71,K.1^49,K.1^31,-1*K.1^67,-1*K.1^13,-1*K.1^79,-1*K.1^13,-1*K.1^53,K.1^3,K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,-1*K.1^68,-1*K.1^84,K.1^88,-1*K.1^44,K.1^64,-1*K.1^4,-1*K.1^28,K.1^16,K.1^32,-1*K.1^36,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^52,K.1^48,-1*K.1^76,K.1^24,K.1^8,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^55,K.1^95,K.1^35,K.1^45,K.1^35,K.1^55,-1*K.1^15,K.1^45,-1*K.1^15,-1*K.1^85,K.1^85,-1*K.1^35,-1*K.1^45,K.1^65,K.1^65,-1*K.1^95,K.1^5,K.1^95,-1*K.1^35,K.1^15,-1*K.1^5,K.1^15,K.1^85,-1*K.1^95,-1*K.1^45,-1*K.1^85,K.1^5,K.1^55,-1*K.1^5,K.1^72,-1*K.1^4,K.1^76,K.1^52,-1*K.1^44,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^32,-1*K.1^96,K.1^32,-1*K.1^96,K.1^48,K.1^88,-1*K.1^72,-1*K.1^36,-1*K.1^24,-1*K.1^56,-1*K.1^32,-1*K.1^76,K.1^36,-1*K.1^16,K.1^56,K.1^52,K.1^76,-1*K.1^68,K.1^16,K.1^92,K.1^8,-1*K.1^28,K.1^12,K.1^92,K.1^4,K.1^4,-1*K.1^88,-1*K.1^24,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^28,K.1^28,K.1^96,K.1^64,-1*K.1^72,-1*K.1^56,-1*K.1^84,-1*K.1^48,-1*K.1^48,K.1^44,K.1^68,K.1^68,K.1^44,-1*K.1^8,K.1^84,K.1^84,-1*K.1^8,-1*K.1^52,-1*K.1^16,K.1^12,K.1^36,K.1^36,-1*K.1^64,-1*K.1^92,K.1^96,K.1^16,K.1^8,-1*K.1^28,K.1^28,-1*K.1^32,K.1^52,K.1^44,K.1^84,-1*K.1^84,-1*K.1^8,-1*K.1^88,-1*K.1^4,K.1^24,K.1^68,K.1^92,K.1^64,K.1^4,-1*K.1^24,-1*K.1^72,K.1^12,-1*K.1^48,-1*K.1^44,K.1^48,K.1^76,K.1^72,-1*K.1^52,-1*K.1^96,-1*K.1^16,K.1^32,K.1^56,-1*K.1^56,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,-1*K.1^12,K.1^18,K.1^26,-1*K.1^78,-1*K.1^14,-1*K.1^62,-1*K.1^62,-1*K.1^54,-1*K.1^38,K.1^42,K.1^14,K.1^34,-1*K.1^94,-1*K.1^74,-1*K.1^46,K.1^98,-1*K.1^94,-1*K.1^22,-1*K.1^86,K.1^18,-1*K.1^42,K.1^62,-1*K.1^22,K.1^22,-1*K.1^82,K.1^54,K.1^38,-1*K.1^66,-1*K.1^58,K.1^46,K.1^82,-1*K.1^26,K.1^78,K.1^46,K.1^98,K.1^62,-1*K.1^98,K.1^6,K.1^2,-1*K.1^42,-1*K.1^86,-1*K.1^26,K.1^78,-1*K.1^18,K.1^66,-1*K.1^6,-1*K.1^6,K.1^74,K.1^86,-1*K.1^66,K.1^38,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^2,-1*K.1^2,K.1^42,-1*K.1^82,K.1^22,K.1^14,-1*K.1^98,K.1^6,K.1^54,-1*K.1^58,-1*K.1^34,K.1^26,-1*K.1^38,K.1^66,K.1^2,-1*K.1^14,-1*K.1^78,K.1^94,-1*K.1^74,K.1^74,-1*K.1^54,K.1^94,K.1^58,K.1^58,K.1^34,K.1^82,-1*K.1^46,-1*K.1^6,K.1^42,K.1^62,-1*K.1^82,-1*K.1^62,-1*K.1^22,K.1^6,K.1^38,K.1^18,K.1^66,K.1^46,-1*K.1^98,-1*K.1^78,-1*K.1^14,-1*K.1^34,K.1^54,K.1^34,-1*K.1^94,K.1^78,-1*K.1^66,K.1^14,-1*K.1^86,K.1^98,-1*K.1^18,-1*K.1^26,-1*K.1^46,-1*K.1^38,-1*K.1^58,K.1^22,K.1^2,K.1^82,-1*K.1^2,-1*K.1^42,K.1^58,K.1^26,K.1^86,K.1^94,K.1^74,-1*K.1^54,-1*K.1^74,K.1^99,K.1^83,-1*K.1^49,-1*K.1^71,-1*K.1^59,-1*K.1^57,K.1^91,K.1^17,-1*K.1^53,-1*K.1^63,-1*K.1^43,-1*K.1^91,K.1^31,-1*K.1^89,-1*K.1^23,-1*K.1^29,-1*K.1^77,-1*K.1^31,-1*K.1^33,-1*K.1^87,K.1^89,K.1^81,K.1^27,K.1^93,K.1^27,K.1^67,-1*K.1^17,K.1^51,K.1^57,K.1^49,K.1^43,-1*K.1^9,K.1^11,-1*K.1^11,K.1^23,K.1^43,K.1^73,K.1^33,K.1^11,K.1^77,-1*K.1^7,K.1^13,-1*K.1^47,K.1^97,K.1^9,-1*K.1^89,K.1^3,-1*K.1^13,-1*K.1^93,-1*K.1^23,K.1^3,-1*K.1^83,-1*K.1^51,K.1^71,K.1^63,K.1^83,-1*K.1^69,-1*K.1^37,-1*K.1^71,K.1^37,K.1^79,K.1^51,K.1^69,K.1^67,K.1^41,K.1^19,-1*K.1^81,-1*K.1^27,K.1^7,-1*K.1,-1*K.1^67,K.1^17,K.1^49,K.1^71,-1*K.1^49,-1*K.1^21,-1*K.1^99,-1*K.1^17,K.1^19,-1*K.1,K.1^21,K.1^99,-1*K.1^33,-1*K.1^19,K.1,-1*K.1^21,-1*K.1^87,K.1^53,-1*K.1^31,-1*K.1^99,-1*K.1^97,K.1^47,K.1^73,-1*K.1^93,-1*K.1^27,K.1^61,-1*K.1^61,-1*K.1^59,-1*K.1^57,K.1^59,K.1^57,K.1^9,-1*K.1^11,K.1^53,K.1^63,-1*K.1^43,-1*K.1^73,-1*K.1^39,K.1^89,-1*K.1^77,-1*K.1^3,K.1^39,K.1^91,K.1^29,-1*K.1^63,K.1^97,K.1^61,K.1^59,K.1^93,K.1^23,-1*K.1^83,K.1^69,-1*K.1^91,-1*K.1^29,-1*K.1^37,-1*K.1^79,K.1^77,K.1^39,-1*K.1^67,-1*K.1^41,K.1^7,-1*K.1^13,-1*K.1^53,K.1^31,-1*K.1^9,-1*K.1^19,-1*K.1^47,-1*K.1^73,-1*K.1^7,K.1,K.1^81,-1*K.1^3,K.1^13,-1*K.1^79,-1*K.1^41,-1*K.1^81,-1*K.1^39,K.1^37,K.1^79,K.1^41,K.1^29,-1*K.1^51,-1*K.1^69,K.1^33,K.1^87,K.1^21,K.1^87,K.1^47,-1*K.1^97,-1*K.1^61]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^92,K.1^96,K.1^72,-1*K.1^36,K.1^16,-1*K.1^76,K.1^32,-1*K.1^4,K.1^8,-1*K.1^84,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^68,K.1^88,-1*K.1^12,-1*K.1^44,K.1^56,-1*K.1^52,K.1^35,K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^45,K.1^85,-1*K.1^55,K.1^85,K.1^15,-1*K.1^15,K.1^65,K.1^55,-1*K.1^35,-1*K.1^35,K.1^5,-1*K.1^95,-1*K.1^5,K.1^65,-1*K.1^85,K.1^95,-1*K.1^85,-1*K.1^15,K.1^5,K.1^55,K.1^15,-1*K.1^95,-1*K.1^45,K.1^95,-1*K.1^68,-1*K.1^76,K.1^44,-1*K.1^88,-1*K.1^36,-1*K.1^28,K.1^48,K.1^56,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^24,-1*K.1^12,K.1^72,K.1^68,-1*K.1^84,-1*K.1^56,-1*K.1^64,-1*K.1^8,-1*K.1^44,K.1^84,K.1^4,K.1^64,-1*K.1^88,K.1^44,-1*K.1^92,-1*K.1^4,-1*K.1^48,-1*K.1^52,K.1^32,K.1^28,-1*K.1^48,K.1^76,K.1^76,-1*K.1^72,-1*K.1^56,-1*K.1^72,-1*K.1^16,-1*K.1^16,-1*K.1^32,-1*K.1^32,K.1^24,K.1^16,K.1^68,-1*K.1^64,K.1^96,K.1^12,K.1^12,K.1^36,K.1^92,K.1^92,K.1^36,K.1^52,-1*K.1^96,-1*K.1^96,K.1^52,K.1^88,K.1^4,K.1^28,K.1^84,K.1^84,-1*K.1^16,K.1^48,K.1^24,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^32,-1*K.1^8,-1*K.1^88,K.1^36,-1*K.1^96,K.1^96,K.1^52,-1*K.1^72,-1*K.1^76,K.1^56,K.1^92,-1*K.1^48,K.1^16,K.1^76,-1*K.1^56,K.1^68,K.1^28,K.1^12,-1*K.1^36,-1*K.1^12,K.1^44,-1*K.1^68,K.1^88,-1*K.1^24,K.1^4,K.1^8,K.1^64,-1*K.1^64,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^28,-1*K.1^42,K.1^94,-1*K.1^82,-1*K.1^66,K.1^78,K.1^78,-1*K.1^26,K.1^22,-1*K.1^98,K.1^66,K.1^46,K.1^86,-1*K.1^6,-1*K.1^74,K.1^62,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^42,K.1^98,-1*K.1^78,-1*K.1^18,K.1^18,K.1^58,K.1^26,-1*K.1^22,-1*K.1^54,K.1^2,K.1^74,-1*K.1^58,-1*K.1^94,K.1^82,K.1^74,K.1^62,-1*K.1^78,-1*K.1^62,-1*K.1^14,K.1^38,K.1^98,-1*K.1^34,-1*K.1^94,K.1^82,K.1^42,K.1^54,K.1^14,K.1^14,K.1^6,K.1^34,-1*K.1^54,-1*K.1^22,K.1^34,K.1^42,-1*K.1^46,-1*K.1^38,-1*K.1^38,-1*K.1^98,K.1^58,K.1^18,K.1^66,-1*K.1^62,-1*K.1^14,K.1^26,K.1^2,-1*K.1^46,K.1^94,K.1^22,K.1^54,K.1^38,-1*K.1^66,-1*K.1^82,-1*K.1^86,-1*K.1^6,K.1^6,-1*K.1^26,-1*K.1^86,-1*K.1^2,-1*K.1^2,K.1^46,-1*K.1^58,-1*K.1^74,K.1^14,-1*K.1^98,-1*K.1^78,K.1^58,K.1^78,-1*K.1^18,-1*K.1^14,-1*K.1^22,-1*K.1^42,K.1^54,K.1^74,-1*K.1^62,-1*K.1^82,-1*K.1^66,-1*K.1^46,K.1^26,K.1^46,K.1^86,K.1^82,-1*K.1^54,K.1^66,-1*K.1^34,K.1^62,K.1^42,-1*K.1^94,-1*K.1^74,K.1^22,K.1^2,K.1^18,K.1^38,-1*K.1^58,-1*K.1^38,K.1^98,-1*K.1^2,K.1^94,K.1^34,-1*K.1^86,K.1^6,-1*K.1^26,-1*K.1^6,-1*K.1^81,K.1^77,-1*K.1^31,-1*K.1^49,-1*K.1^21,K.1^83,K.1^29,K.1^23,K.1^7,-1*K.1^97,K.1^17,-1*K.1^29,K.1^89,K.1^91,K.1^37,-1*K.1^51,K.1^63,-1*K.1^89,K.1^27,K.1^53,-1*K.1^91,K.1^39,K.1^13,K.1^67,K.1^13,-1*K.1^73,-1*K.1^23,K.1^69,-1*K.1^83,K.1^31,-1*K.1^17,-1*K.1^71,-1*K.1^9,K.1^9,-1*K.1^37,-1*K.1^17,K.1^87,-1*K.1^27,-1*K.1^9,-1*K.1^63,-1*K.1^33,-1*K.1^47,K.1^93,-1*K.1^43,K.1^71,K.1^91,-1*K.1^57,K.1^47,-1*K.1^67,K.1^37,-1*K.1^57,-1*K.1^77,-1*K.1^69,K.1^49,K.1^97,K.1^77,-1*K.1^11,-1*K.1^3,-1*K.1^49,K.1^3,K.1,K.1^69,K.1^11,-1*K.1^73,K.1^79,K.1^61,-1*K.1^39,-1*K.1^13,K.1^33,K.1^19,K.1^73,K.1^23,K.1^31,K.1^49,-1*K.1^31,-1*K.1^99,K.1^81,-1*K.1^23,K.1^61,K.1^19,K.1^99,-1*K.1^81,K.1^27,-1*K.1^61,-1*K.1^19,-1*K.1^99,K.1^53,-1*K.1^7,-1*K.1^89,K.1^81,K.1^43,-1*K.1^93,K.1^87,-1*K.1^67,-1*K.1^13,K.1^59,-1*K.1^59,-1*K.1^21,K.1^83,K.1^21,-1*K.1^83,K.1^71,K.1^9,-1*K.1^7,K.1^97,K.1^17,-1*K.1^87,-1*K.1^41,-1*K.1^91,K.1^63,K.1^57,K.1^41,K.1^29,K.1^51,-1*K.1^97,-1*K.1^43,K.1^59,K.1^21,K.1^67,-1*K.1^37,-1*K.1^77,K.1^11,-1*K.1^29,-1*K.1^51,-1*K.1^3,-1*K.1,-1*K.1^63,K.1^41,K.1^73,-1*K.1^79,K.1^33,K.1^47,K.1^7,K.1^89,-1*K.1^71,-1*K.1^61,K.1^93,-1*K.1^87,-1*K.1^33,-1*K.1^19,K.1^39,K.1^57,-1*K.1^47,-1*K.1,-1*K.1^79,-1*K.1^39,-1*K.1^41,K.1^3,K.1,K.1^79,K.1^51,-1*K.1^69,-1*K.1^11,-1*K.1^27,-1*K.1^53,K.1^99,-1*K.1^53,-1*K.1^93,K.1^43,-1*K.1^59]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^8,-1*K.1^4,-1*K.1^28,K.1^64,-1*K.1^84,K.1^24,-1*K.1^68,K.1^96,-1*K.1^92,K.1^16,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^32,-1*K.1^12,K.1^88,K.1^56,-1*K.1^44,K.1^48,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^55,K.1^95,K.1^35,K.1^45,K.1^35,K.1^55,-1*K.1^15,K.1^45,-1*K.1^15,-1*K.1^85,K.1^85,-1*K.1^35,-1*K.1^45,K.1^65,K.1^65,-1*K.1^95,K.1^5,K.1^95,-1*K.1^35,K.1^15,-1*K.1^5,K.1^15,K.1^85,-1*K.1^95,-1*K.1^45,-1*K.1^85,K.1^5,K.1^55,-1*K.1^5,K.1^32,K.1^24,-1*K.1^56,K.1^12,K.1^64,K.1^72,-1*K.1^52,-1*K.1^44,K.1^92,K.1^76,-1*K.1^92,K.1^76,K.1^88,-1*K.1^28,-1*K.1^32,K.1^16,K.1^44,K.1^36,K.1^92,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^36,K.1^12,-1*K.1^56,K.1^8,K.1^96,K.1^52,K.1^48,-1*K.1^68,-1*K.1^72,K.1^52,-1*K.1^24,-1*K.1^24,K.1^28,K.1^44,K.1^28,K.1^84,K.1^84,K.1^68,K.1^68,-1*K.1^76,-1*K.1^84,-1*K.1^32,K.1^36,-1*K.1^4,-1*K.1^88,-1*K.1^88,-1*K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^64,-1*K.1^48,K.1^4,K.1^4,-1*K.1^48,-1*K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^16,-1*K.1^16,K.1^84,-1*K.1^52,-1*K.1^76,K.1^96,K.1^48,-1*K.1^68,K.1^68,K.1^92,K.1^12,-1*K.1^64,K.1^4,-1*K.1^4,-1*K.1^48,K.1^28,K.1^24,-1*K.1^44,-1*K.1^8,K.1^52,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^32,-1*K.1^72,-1*K.1^88,K.1^64,K.1^88,-1*K.1^56,K.1^32,-1*K.1^12,K.1^76,-1*K.1^96,-1*K.1^92,-1*K.1^36,K.1^36,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^72,K.1^58,-1*K.1^6,K.1^18,K.1^34,-1*K.1^22,-1*K.1^22,K.1^74,-1*K.1^78,K.1^2,-1*K.1^34,-1*K.1^54,-1*K.1^14,K.1^94,K.1^26,-1*K.1^38,-1*K.1^14,K.1^82,K.1^66,K.1^58,-1*K.1^2,K.1^22,K.1^82,-1*K.1^82,-1*K.1^42,-1*K.1^74,K.1^78,K.1^46,-1*K.1^98,-1*K.1^26,K.1^42,K.1^6,-1*K.1^18,-1*K.1^26,-1*K.1^38,K.1^22,K.1^38,K.1^86,-1*K.1^62,-1*K.1^2,K.1^66,K.1^6,-1*K.1^18,-1*K.1^58,-1*K.1^46,-1*K.1^86,-1*K.1^86,-1*K.1^94,-1*K.1^66,K.1^46,K.1^78,-1*K.1^66,-1*K.1^58,K.1^54,K.1^62,K.1^62,K.1^2,-1*K.1^42,-1*K.1^82,-1*K.1^34,K.1^38,K.1^86,-1*K.1^74,-1*K.1^98,K.1^54,-1*K.1^6,-1*K.1^78,-1*K.1^46,-1*K.1^62,K.1^34,K.1^18,K.1^14,K.1^94,-1*K.1^94,K.1^74,K.1^14,K.1^98,K.1^98,-1*K.1^54,K.1^42,K.1^26,-1*K.1^86,K.1^2,K.1^22,-1*K.1^42,-1*K.1^22,K.1^82,K.1^86,K.1^78,K.1^58,-1*K.1^46,-1*K.1^26,K.1^38,K.1^18,K.1^34,K.1^54,-1*K.1^74,-1*K.1^54,-1*K.1^14,-1*K.1^18,K.1^46,-1*K.1^34,K.1^66,-1*K.1^38,-1*K.1^58,K.1^6,K.1^26,-1*K.1^78,-1*K.1^98,-1*K.1^82,-1*K.1^62,K.1^42,K.1^62,-1*K.1^2,K.1^98,-1*K.1^6,-1*K.1^66,K.1^14,-1*K.1^94,K.1^74,K.1^94,K.1^19,-1*K.1^23,K.1^69,K.1^51,K.1^79,-1*K.1^17,-1*K.1^71,-1*K.1^77,-1*K.1^93,K.1^3,-1*K.1^83,K.1^71,-1*K.1^11,-1*K.1^9,-1*K.1^63,K.1^49,-1*K.1^37,K.1^11,-1*K.1^73,-1*K.1^47,K.1^9,-1*K.1^61,-1*K.1^87,-1*K.1^33,-1*K.1^87,K.1^27,K.1^77,-1*K.1^31,K.1^17,-1*K.1^69,K.1^83,K.1^29,K.1^91,-1*K.1^91,K.1^63,K.1^83,-1*K.1^13,K.1^73,K.1^91,K.1^37,K.1^67,K.1^53,-1*K.1^7,K.1^57,-1*K.1^29,-1*K.1^9,K.1^43,-1*K.1^53,K.1^33,-1*K.1^63,K.1^43,K.1^23,K.1^31,-1*K.1^51,-1*K.1^3,-1*K.1^23,K.1^89,K.1^97,K.1^51,-1*K.1^97,-1*K.1^99,-1*K.1^31,-1*K.1^89,K.1^27,-1*K.1^21,-1*K.1^39,K.1^61,K.1^87,-1*K.1^67,-1*K.1^81,-1*K.1^27,-1*K.1^77,-1*K.1^69,-1*K.1^51,K.1^69,K.1,-1*K.1^19,K.1^77,-1*K.1^39,-1*K.1^81,-1*K.1,K.1^19,-1*K.1^73,K.1^39,K.1^81,K.1,-1*K.1^47,K.1^93,K.1^11,-1*K.1^19,-1*K.1^57,K.1^7,-1*K.1^13,K.1^33,K.1^87,-1*K.1^41,K.1^41,K.1^79,-1*K.1^17,-1*K.1^79,K.1^17,-1*K.1^29,-1*K.1^91,K.1^93,-1*K.1^3,-1*K.1^83,K.1^13,K.1^59,K.1^9,-1*K.1^37,-1*K.1^43,-1*K.1^59,-1*K.1^71,-1*K.1^49,K.1^3,K.1^57,-1*K.1^41,-1*K.1^79,-1*K.1^33,K.1^63,K.1^23,-1*K.1^89,K.1^71,K.1^49,K.1^97,K.1^99,K.1^37,-1*K.1^59,-1*K.1^27,K.1^21,-1*K.1^67,-1*K.1^53,-1*K.1^93,-1*K.1^11,K.1^29,K.1^39,-1*K.1^7,K.1^13,K.1^67,K.1^81,-1*K.1^61,-1*K.1^43,K.1^53,K.1^99,K.1^21,K.1^61,K.1^59,-1*K.1^97,-1*K.1^99,-1*K.1^21,-1*K.1^49,K.1^31,K.1^89,K.1^73,K.1^47,-1*K.1,K.1^47,K.1^7,-1*K.1^57,K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^88,-1*K.1^44,K.1^8,-1*K.1^4,K.1^24,K.1^64,K.1^48,K.1^56,-1*K.1^12,-1*K.1^76,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,-1*K.1^52,K.1^32,-1*K.1^68,K.1^16,-1*K.1^84,-1*K.1^28,K.1^15,-1*K.1^5,K.1^15,-1*K.1^5,K.1^45,-1*K.1^85,K.1^95,-1*K.1^85,K.1^5,K.1^65,K.1^95,K.1^65,K.1^35,-1*K.1^35,K.1^85,-1*K.1^95,-1*K.1^15,-1*K.1^15,-1*K.1^45,K.1^55,K.1^45,K.1^85,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^35,-1*K.1^45,-1*K.1^95,K.1^35,K.1^55,K.1^5,-1*K.1^55,-1*K.1^52,K.1^64,-1*K.1^16,-1*K.1^32,-1*K.1^4,-1*K.1^92,K.1^72,-1*K.1^84,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^68,K.1^8,K.1^52,-1*K.1^76,K.1^84,-1*K.1^96,K.1^12,K.1^16,K.1^76,-1*K.1^56,K.1^96,-1*K.1^32,-1*K.1^16,K.1^88,K.1^56,-1*K.1^72,-1*K.1^28,K.1^48,K.1^92,-1*K.1^72,-1*K.1^64,-1*K.1^64,-1*K.1^8,K.1^84,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^48,-1*K.1^48,-1*K.1^36,K.1^24,K.1^52,-1*K.1^96,-1*K.1^44,K.1^68,K.1^68,K.1^4,-1*K.1^88,-1*K.1^88,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^56,K.1^92,K.1^76,K.1^76,-1*K.1^24,K.1^72,-1*K.1^36,K.1^56,-1*K.1^28,K.1^48,-1*K.1^48,K.1^12,-1*K.1^32,K.1^4,K.1^44,-1*K.1^44,K.1^28,-1*K.1^8,K.1^64,-1*K.1^84,-1*K.1^88,-1*K.1^72,K.1^24,-1*K.1^64,K.1^84,K.1^52,K.1^92,K.1^68,-1*K.1^4,-1*K.1^68,-1*K.1^16,-1*K.1^52,K.1^32,K.1^36,-1*K.1^56,-1*K.1^12,K.1^96,-1*K.1^96,K.1^88,K.1^8,-1*K.1^76,K.1^16,-1*K.1^92,K.1^38,-1*K.1^66,-1*K.1^98,-1*K.1^74,-1*K.1^42,-1*K.1^42,K.1^14,-1*K.1^58,K.1^22,K.1^74,K.1^94,K.1^54,K.1^34,K.1^86,-1*K.1^18,K.1^54,-1*K.1^2,-1*K.1^26,K.1^38,-1*K.1^22,K.1^42,-1*K.1^2,K.1^2,-1*K.1^62,-1*K.1^14,K.1^58,-1*K.1^6,-1*K.1^78,-1*K.1^86,K.1^62,K.1^66,K.1^98,-1*K.1^86,-1*K.1^18,K.1^42,K.1^18,-1*K.1^46,-1*K.1^82,-1*K.1^22,-1*K.1^26,K.1^66,K.1^98,-1*K.1^38,K.1^6,K.1^46,K.1^46,-1*K.1^34,K.1^26,-1*K.1^6,K.1^58,K.1^26,-1*K.1^38,-1*K.1^94,K.1^82,K.1^82,K.1^22,-1*K.1^62,K.1^2,K.1^74,K.1^18,-1*K.1^46,-1*K.1^14,-1*K.1^78,-1*K.1^94,-1*K.1^66,-1*K.1^58,K.1^6,-1*K.1^82,-1*K.1^74,-1*K.1^98,-1*K.1^54,K.1^34,-1*K.1^34,K.1^14,-1*K.1^54,K.1^78,K.1^78,K.1^94,K.1^62,K.1^86,K.1^46,K.1^22,K.1^42,-1*K.1^62,-1*K.1^42,-1*K.1^2,-1*K.1^46,K.1^58,K.1^38,K.1^6,-1*K.1^86,K.1^18,-1*K.1^98,-1*K.1^74,-1*K.1^94,-1*K.1^14,K.1^94,K.1^54,K.1^98,-1*K.1^6,K.1^74,-1*K.1^26,-1*K.1^18,-1*K.1^38,K.1^66,K.1^86,-1*K.1^58,-1*K.1^78,K.1^2,-1*K.1^82,K.1^62,K.1^82,-1*K.1^22,K.1^78,-1*K.1^66,K.1^26,-1*K.1^54,-1*K.1^34,K.1^14,K.1^34,K.1^9,-1*K.1^53,-1*K.1^59,-1*K.1^61,K.1^69,K.1^87,K.1^81,-1*K.1^47,-1*K.1^23,K.1^33,K.1^13,-1*K.1^81,K.1^21,-1*K.1^99,-1*K.1^93,-1*K.1^39,-1*K.1^7,-1*K.1^21,-1*K.1^3,K.1^17,K.1^99,-1*K.1^71,K.1^57,K.1^63,K.1^57,K.1^97,K.1^47,K.1^41,-1*K.1^87,K.1^59,-1*K.1^13,-1*K.1^19,K.1,-1*K.1,K.1^93,-1*K.1^13,K.1^43,K.1^3,K.1,K.1^7,-1*K.1^37,-1*K.1^83,-1*K.1^77,K.1^27,K.1^19,-1*K.1^99,K.1^73,K.1^83,-1*K.1^63,-1*K.1^93,K.1^73,K.1^53,-1*K.1^41,K.1^61,-1*K.1^33,-1*K.1^53,-1*K.1^79,K.1^67,-1*K.1^61,-1*K.1^67,-1*K.1^89,K.1^41,K.1^79,K.1^97,-1*K.1^31,-1*K.1^29,K.1^71,-1*K.1^57,K.1^37,-1*K.1^91,-1*K.1^97,-1*K.1^47,K.1^59,K.1^61,-1*K.1^59,K.1^11,-1*K.1^9,K.1^47,-1*K.1^29,-1*K.1^91,-1*K.1^11,K.1^9,-1*K.1^3,K.1^29,K.1^91,K.1^11,K.1^17,K.1^23,-1*K.1^21,-1*K.1^9,-1*K.1^27,K.1^77,K.1^43,-1*K.1^63,-1*K.1^57,-1*K.1^51,K.1^51,K.1^69,K.1^87,-1*K.1^69,-1*K.1^87,K.1^19,-1*K.1,K.1^23,-1*K.1^33,K.1^13,-1*K.1^43,K.1^49,K.1^99,-1*K.1^7,-1*K.1^73,-1*K.1^49,K.1^81,K.1^39,K.1^33,K.1^27,-1*K.1^51,-1*K.1^69,K.1^63,K.1^93,K.1^53,K.1^79,-1*K.1^81,-1*K.1^39,K.1^67,K.1^89,K.1^7,-1*K.1^49,-1*K.1^97,K.1^31,K.1^37,K.1^83,-1*K.1^23,K.1^21,-1*K.1^19,K.1^29,-1*K.1^77,-1*K.1^43,-1*K.1^37,K.1^91,-1*K.1^71,-1*K.1^73,-1*K.1^83,K.1^89,K.1^31,K.1^71,K.1^49,-1*K.1^67,-1*K.1^89,-1*K.1^31,K.1^39,-1*K.1^41,-1*K.1^79,K.1^3,-1*K.1^17,-1*K.1^11,-1*K.1^17,K.1^77,-1*K.1^27,K.1^51]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^12,K.1^56,-1*K.1^92,K.1^96,-1*K.1^76,-1*K.1^36,-1*K.1^52,-1*K.1^44,K.1^88,K.1^24,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,K.1^48,-1*K.1^68,K.1^32,-1*K.1^84,K.1^16,K.1^72,-1*K.1^85,K.1^95,-1*K.1^85,K.1^95,-1*K.1^55,K.1^15,-1*K.1^5,K.1^15,-1*K.1^95,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^65,K.1^65,-1*K.1^15,K.1^5,K.1^85,K.1^85,K.1^55,-1*K.1^45,-1*K.1^55,-1*K.1^15,K.1^35,K.1^45,K.1^35,K.1^65,K.1^55,K.1^5,-1*K.1^65,-1*K.1^45,-1*K.1^95,K.1^45,K.1^48,-1*K.1^36,K.1^84,K.1^68,K.1^96,K.1^8,-1*K.1^28,K.1^16,-1*K.1^88,-1*K.1^64,K.1^88,-1*K.1^64,K.1^32,-1*K.1^92,-1*K.1^48,K.1^24,-1*K.1^16,K.1^4,-1*K.1^88,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^4,K.1^68,K.1^84,-1*K.1^12,-1*K.1^44,K.1^28,K.1^72,-1*K.1^52,-1*K.1^8,K.1^28,K.1^36,K.1^36,K.1^92,-1*K.1^16,K.1^92,K.1^76,K.1^76,K.1^52,K.1^52,K.1^64,-1*K.1^76,-1*K.1^48,K.1^4,K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^96,K.1^12,K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^56,-1*K.1^56,-1*K.1^72,-1*K.1^68,K.1^44,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^76,-1*K.1^28,K.1^64,-1*K.1^44,K.1^72,-1*K.1^52,K.1^52,-1*K.1^88,K.1^68,-1*K.1^96,-1*K.1^56,K.1^56,-1*K.1^72,K.1^92,-1*K.1^36,K.1^16,K.1^12,K.1^28,-1*K.1^76,K.1^36,-1*K.1^16,-1*K.1^48,-1*K.1^8,-1*K.1^32,K.1^96,K.1^32,K.1^84,K.1^48,-1*K.1^68,-1*K.1^64,K.1^44,K.1^88,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,K.1^8,-1*K.1^62,K.1^34,K.1^2,K.1^26,K.1^58,K.1^58,-1*K.1^86,K.1^42,-1*K.1^78,-1*K.1^26,-1*K.1^6,-1*K.1^46,-1*K.1^66,-1*K.1^14,K.1^82,-1*K.1^46,K.1^98,K.1^74,-1*K.1^62,K.1^78,-1*K.1^58,K.1^98,-1*K.1^98,K.1^38,K.1^86,-1*K.1^42,K.1^94,K.1^22,K.1^14,-1*K.1^38,-1*K.1^34,-1*K.1^2,K.1^14,K.1^82,-1*K.1^58,-1*K.1^82,K.1^54,K.1^18,K.1^78,K.1^74,-1*K.1^34,-1*K.1^2,K.1^62,-1*K.1^94,-1*K.1^54,-1*K.1^54,K.1^66,-1*K.1^74,K.1^94,-1*K.1^42,-1*K.1^74,K.1^62,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^78,K.1^38,-1*K.1^98,-1*K.1^26,-1*K.1^82,K.1^54,K.1^86,K.1^22,K.1^6,K.1^34,K.1^42,-1*K.1^94,K.1^18,K.1^26,K.1^2,K.1^46,-1*K.1^66,K.1^66,-1*K.1^86,K.1^46,-1*K.1^22,-1*K.1^22,-1*K.1^6,-1*K.1^38,-1*K.1^14,-1*K.1^54,-1*K.1^78,-1*K.1^58,K.1^38,K.1^58,K.1^98,K.1^54,-1*K.1^42,-1*K.1^62,-1*K.1^94,K.1^14,-1*K.1^82,K.1^2,K.1^26,K.1^6,K.1^86,-1*K.1^6,-1*K.1^46,-1*K.1^2,K.1^94,-1*K.1^26,K.1^74,K.1^82,K.1^62,-1*K.1^34,-1*K.1^14,K.1^42,K.1^22,-1*K.1^98,K.1^18,-1*K.1^38,-1*K.1^18,K.1^78,-1*K.1^22,K.1^34,-1*K.1^74,K.1^46,K.1^66,-1*K.1^86,-1*K.1^66,-1*K.1^91,K.1^47,K.1^41,K.1^39,-1*K.1^31,-1*K.1^13,-1*K.1^19,K.1^53,K.1^77,-1*K.1^67,-1*K.1^87,K.1^19,-1*K.1^79,K.1,K.1^7,K.1^61,K.1^93,K.1^79,K.1^97,-1*K.1^83,-1*K.1,K.1^29,-1*K.1^43,-1*K.1^37,-1*K.1^43,-1*K.1^3,-1*K.1^53,-1*K.1^59,K.1^13,-1*K.1^41,K.1^87,K.1^81,-1*K.1^99,K.1^99,-1*K.1^7,K.1^87,-1*K.1^57,-1*K.1^97,-1*K.1^99,-1*K.1^93,K.1^63,K.1^17,K.1^23,-1*K.1^73,-1*K.1^81,K.1,-1*K.1^27,-1*K.1^17,K.1^37,K.1^7,-1*K.1^27,-1*K.1^47,K.1^59,-1*K.1^39,K.1^67,K.1^47,K.1^21,-1*K.1^33,K.1^39,K.1^33,K.1^11,-1*K.1^59,-1*K.1^21,-1*K.1^3,K.1^69,K.1^71,-1*K.1^29,K.1^43,-1*K.1^63,K.1^9,K.1^3,K.1^53,-1*K.1^41,-1*K.1^39,K.1^41,-1*K.1^89,K.1^91,-1*K.1^53,K.1^71,K.1^9,K.1^89,-1*K.1^91,K.1^97,-1*K.1^71,-1*K.1^9,-1*K.1^89,-1*K.1^83,-1*K.1^77,K.1^79,K.1^91,K.1^73,-1*K.1^23,-1*K.1^57,K.1^37,K.1^43,K.1^49,-1*K.1^49,-1*K.1^31,-1*K.1^13,K.1^31,K.1^13,-1*K.1^81,K.1^99,-1*K.1^77,K.1^67,-1*K.1^87,K.1^57,-1*K.1^51,-1*K.1,K.1^93,K.1^27,K.1^51,-1*K.1^19,-1*K.1^61,-1*K.1^67,-1*K.1^73,K.1^49,K.1^31,-1*K.1^37,-1*K.1^7,-1*K.1^47,-1*K.1^21,K.1^19,K.1^61,-1*K.1^33,-1*K.1^11,-1*K.1^93,K.1^51,K.1^3,-1*K.1^69,-1*K.1^63,-1*K.1^17,K.1^77,-1*K.1^79,K.1^81,-1*K.1^71,K.1^23,K.1^57,K.1^63,-1*K.1^9,K.1^29,K.1^27,K.1^17,-1*K.1^11,-1*K.1^69,-1*K.1^29,-1*K.1^51,K.1^33,K.1^11,K.1^69,-1*K.1^61,K.1^59,K.1^21,-1*K.1^97,K.1^83,K.1^89,K.1^83,-1*K.1^23,K.1^73,-1*K.1^49]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,-1*K.1^28,K.1^64,K.1^48,K.1^24,-1*K.1^44,-1*K.1^84,K.1^88,-1*K.1^36,K.1^72,K.1^56,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^12,-1*K.1^92,K.1^8,K.1^96,-1*K.1^4,-1*K.1^68,K.1^15,-1*K.1^5,K.1^15,-1*K.1^5,K.1^45,-1*K.1^85,K.1^95,-1*K.1^85,K.1^5,K.1^65,K.1^95,K.1^65,K.1^35,-1*K.1^35,K.1^85,-1*K.1^95,-1*K.1^15,-1*K.1^15,-1*K.1^45,K.1^55,K.1^45,K.1^85,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^35,-1*K.1^45,-1*K.1^95,K.1^35,K.1^55,K.1^5,-1*K.1^55,-1*K.1^12,-1*K.1^84,-1*K.1^96,K.1^92,K.1^24,-1*K.1^52,K.1^32,-1*K.1^4,-1*K.1^72,-1*K.1^16,K.1^72,-1*K.1^16,K.1^8,K.1^48,K.1^12,K.1^56,K.1^4,K.1^76,-1*K.1^72,K.1^96,-1*K.1^56,K.1^36,-1*K.1^76,K.1^92,-1*K.1^96,-1*K.1^28,-1*K.1^36,-1*K.1^32,-1*K.1^68,K.1^88,K.1^52,-1*K.1^32,K.1^84,K.1^84,-1*K.1^48,K.1^4,-1*K.1^48,K.1^44,K.1^44,-1*K.1^88,-1*K.1^88,K.1^16,-1*K.1^44,K.1^12,K.1^76,K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^28,K.1^28,-1*K.1^24,K.1^68,-1*K.1^64,-1*K.1^64,K.1^68,-1*K.1^92,K.1^36,K.1^52,-1*K.1^56,-1*K.1^56,K.1^44,K.1^32,K.1^16,-1*K.1^36,-1*K.1^68,K.1^88,-1*K.1^88,-1*K.1^72,K.1^92,-1*K.1^24,-1*K.1^64,K.1^64,K.1^68,-1*K.1^48,-1*K.1^84,-1*K.1^4,K.1^28,-1*K.1^32,-1*K.1^44,K.1^84,K.1^4,K.1^12,K.1^52,-1*K.1^8,K.1^24,K.1^8,-1*K.1^96,-1*K.1^12,-1*K.1^92,-1*K.1^16,K.1^36,K.1^72,-1*K.1^76,K.1^76,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^52,K.1^78,K.1^46,K.1^38,K.1^94,-1*K.1^2,-1*K.1^2,-1*K.1^34,-1*K.1^98,-1*K.1^82,-1*K.1^94,K.1^14,-1*K.1^74,-1*K.1^54,-1*K.1^66,-1*K.1^58,-1*K.1^74,K.1^62,K.1^6,K.1^78,K.1^82,K.1^2,K.1^62,-1*K.1^62,-1*K.1^22,K.1^34,K.1^98,-1*K.1^86,K.1^18,K.1^66,K.1^22,-1*K.1^46,-1*K.1^38,K.1^66,-1*K.1^58,K.1^2,K.1^58,K.1^26,-1*K.1^42,K.1^82,K.1^6,-1*K.1^46,-1*K.1^38,-1*K.1^78,K.1^86,-1*K.1^26,-1*K.1^26,K.1^54,-1*K.1^6,-1*K.1^86,K.1^98,-1*K.1^6,-1*K.1^78,-1*K.1^14,K.1^42,K.1^42,-1*K.1^82,-1*K.1^22,-1*K.1^62,-1*K.1^94,K.1^58,K.1^26,K.1^34,K.1^18,-1*K.1^14,K.1^46,-1*K.1^98,K.1^86,-1*K.1^42,K.1^94,K.1^38,K.1^74,-1*K.1^54,K.1^54,-1*K.1^34,K.1^74,-1*K.1^18,-1*K.1^18,K.1^14,K.1^22,-1*K.1^66,-1*K.1^26,-1*K.1^82,K.1^2,-1*K.1^22,-1*K.1^2,K.1^62,K.1^26,K.1^98,K.1^78,K.1^86,K.1^66,K.1^58,K.1^38,K.1^94,-1*K.1^14,K.1^34,K.1^14,-1*K.1^74,-1*K.1^38,-1*K.1^86,-1*K.1^94,K.1^6,-1*K.1^58,-1*K.1^78,-1*K.1^46,-1*K.1^66,-1*K.1^98,K.1^18,-1*K.1^62,-1*K.1^42,K.1^22,K.1^42,K.1^82,-1*K.1^18,K.1^46,-1*K.1^6,K.1^74,K.1^54,-1*K.1^34,-1*K.1^54,-1*K.1^29,-1*K.1^93,K.1^79,K.1^41,-1*K.1^89,K.1^47,-1*K.1^61,-1*K.1^7,-1*K.1^63,K.1^73,K.1^53,K.1^61,-1*K.1,-1*K.1^19,K.1^33,K.1^59,K.1^67,K.1,-1*K.1^43,-1*K.1^77,K.1^19,K.1^51,K.1^17,-1*K.1^3,K.1^17,K.1^57,K.1^7,-1*K.1^21,-1*K.1^47,-1*K.1^79,-1*K.1^53,K.1^39,K.1^81,-1*K.1^81,-1*K.1^33,-1*K.1^53,K.1^83,K.1^43,K.1^81,-1*K.1^67,K.1^97,K.1^23,-1*K.1^37,-1*K.1^87,-1*K.1^39,-1*K.1^19,-1*K.1^13,-1*K.1^23,K.1^3,K.1^33,-1*K.1^13,K.1^93,K.1^21,-1*K.1^41,-1*K.1^73,-1*K.1^93,K.1^99,K.1^27,K.1^41,-1*K.1^27,-1*K.1^9,-1*K.1^21,-1*K.1^99,K.1^57,K.1^11,K.1^49,-1*K.1^51,-1*K.1^17,-1*K.1^97,K.1^71,-1*K.1^57,-1*K.1^7,-1*K.1^79,-1*K.1^41,K.1^79,K.1^91,K.1^29,K.1^7,K.1^49,K.1^71,-1*K.1^91,-1*K.1^29,-1*K.1^43,-1*K.1^49,-1*K.1^71,K.1^91,-1*K.1^77,K.1^63,K.1,K.1^29,K.1^87,K.1^37,K.1^83,K.1^3,-1*K.1^17,K.1^31,-1*K.1^31,-1*K.1^89,K.1^47,K.1^89,-1*K.1^47,-1*K.1^39,-1*K.1^81,K.1^63,-1*K.1^73,K.1^53,-1*K.1^83,-1*K.1^69,K.1^19,K.1^67,K.1^13,K.1^69,-1*K.1^61,-1*K.1^59,K.1^73,-1*K.1^87,K.1^31,K.1^89,-1*K.1^3,-1*K.1^33,K.1^93,-1*K.1^99,K.1^61,K.1^59,K.1^27,K.1^9,-1*K.1^67,K.1^69,-1*K.1^57,-1*K.1^11,-1*K.1^97,-1*K.1^23,-1*K.1^63,-1*K.1,K.1^39,-1*K.1^49,-1*K.1^37,-1*K.1^83,K.1^97,-1*K.1^71,K.1^51,K.1^13,K.1^23,K.1^9,-1*K.1^11,-1*K.1^51,-1*K.1^69,-1*K.1^27,-1*K.1^9,K.1^11,-1*K.1^59,K.1^21,K.1^99,K.1^43,K.1^77,-1*K.1^91,K.1^77,K.1^37,K.1^87,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,K.1^72,-1*K.1^36,-1*K.1^52,-1*K.1^76,K.1^56,K.1^16,-1*K.1^12,K.1^64,-1*K.1^28,-1*K.1^44,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^88,K.1^8,-1*K.1^92,-1*K.1^4,K.1^96,K.1^32,-1*K.1^85,K.1^95,-1*K.1^85,K.1^95,-1*K.1^55,K.1^15,-1*K.1^5,K.1^15,-1*K.1^95,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^65,K.1^65,-1*K.1^15,K.1^5,K.1^85,K.1^85,K.1^55,-1*K.1^45,-1*K.1^55,-1*K.1^15,K.1^35,K.1^45,K.1^35,K.1^65,K.1^55,K.1^5,-1*K.1^65,-1*K.1^45,-1*K.1^95,K.1^45,K.1^88,K.1^16,K.1^4,-1*K.1^8,-1*K.1^76,K.1^48,-1*K.1^68,K.1^96,K.1^28,K.1^84,-1*K.1^28,K.1^84,-1*K.1^92,-1*K.1^52,-1*K.1^88,-1*K.1^44,-1*K.1^96,-1*K.1^24,K.1^28,-1*K.1^4,K.1^44,-1*K.1^64,K.1^24,-1*K.1^8,K.1^4,K.1^72,K.1^64,K.1^68,K.1^32,-1*K.1^12,-1*K.1^48,K.1^68,-1*K.1^16,-1*K.1^16,K.1^52,-1*K.1^96,K.1^52,-1*K.1^56,-1*K.1^56,K.1^12,K.1^12,-1*K.1^84,K.1^56,-1*K.1^88,-1*K.1^24,-1*K.1^36,K.1^92,K.1^92,K.1^76,-1*K.1^72,-1*K.1^72,K.1^76,-1*K.1^32,K.1^36,K.1^36,-1*K.1^32,K.1^8,-1*K.1^64,-1*K.1^48,K.1^44,K.1^44,-1*K.1^56,-1*K.1^68,-1*K.1^84,K.1^64,K.1^32,-1*K.1^12,K.1^12,K.1^28,-1*K.1^8,K.1^76,K.1^36,-1*K.1^36,-1*K.1^32,K.1^52,K.1^16,K.1^96,-1*K.1^72,K.1^68,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^88,-1*K.1^48,K.1^92,-1*K.1^76,-1*K.1^92,K.1^4,K.1^88,K.1^8,K.1^84,-1*K.1^64,-1*K.1^28,K.1^24,-1*K.1^24,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^48,-1*K.1^22,-1*K.1^54,-1*K.1^62,-1*K.1^6,K.1^98,K.1^98,K.1^66,K.1^2,K.1^18,K.1^6,-1*K.1^86,K.1^26,K.1^46,K.1^34,K.1^42,K.1^26,-1*K.1^38,-1*K.1^94,-1*K.1^22,-1*K.1^18,-1*K.1^98,-1*K.1^38,K.1^38,K.1^78,-1*K.1^66,-1*K.1^2,K.1^14,-1*K.1^82,-1*K.1^34,-1*K.1^78,K.1^54,K.1^62,-1*K.1^34,K.1^42,-1*K.1^98,-1*K.1^42,-1*K.1^74,K.1^58,-1*K.1^18,-1*K.1^94,K.1^54,K.1^62,K.1^22,-1*K.1^14,K.1^74,K.1^74,-1*K.1^46,K.1^94,K.1^14,-1*K.1^2,K.1^94,K.1^22,K.1^86,-1*K.1^58,-1*K.1^58,K.1^18,K.1^78,K.1^38,K.1^6,-1*K.1^42,-1*K.1^74,-1*K.1^66,-1*K.1^82,K.1^86,-1*K.1^54,K.1^2,-1*K.1^14,K.1^58,-1*K.1^6,-1*K.1^62,-1*K.1^26,K.1^46,-1*K.1^46,K.1^66,-1*K.1^26,K.1^82,K.1^82,-1*K.1^86,-1*K.1^78,K.1^34,K.1^74,K.1^18,-1*K.1^98,K.1^78,K.1^98,-1*K.1^38,-1*K.1^74,-1*K.1^2,-1*K.1^22,-1*K.1^14,-1*K.1^34,-1*K.1^42,-1*K.1^62,-1*K.1^6,K.1^86,-1*K.1^66,-1*K.1^86,K.1^26,K.1^62,K.1^14,K.1^6,-1*K.1^94,K.1^42,K.1^22,K.1^54,K.1^34,K.1^2,-1*K.1^82,K.1^38,K.1^58,-1*K.1^78,-1*K.1^58,-1*K.1^18,K.1^82,-1*K.1^54,K.1^94,-1*K.1^26,-1*K.1^46,K.1^66,K.1^46,K.1^71,K.1^7,-1*K.1^21,-1*K.1^59,K.1^11,-1*K.1^53,K.1^39,K.1^93,K.1^37,-1*K.1^27,-1*K.1^47,-1*K.1^39,K.1^99,K.1^81,-1*K.1^67,-1*K.1^41,-1*K.1^33,-1*K.1^99,K.1^57,K.1^23,-1*K.1^81,-1*K.1^49,-1*K.1^83,K.1^97,-1*K.1^83,-1*K.1^43,-1*K.1^93,K.1^79,K.1^53,K.1^21,K.1^47,-1*K.1^61,-1*K.1^19,K.1^19,K.1^67,K.1^47,-1*K.1^17,-1*K.1^57,-1*K.1^19,K.1^33,-1*K.1^3,-1*K.1^77,K.1^63,K.1^13,K.1^61,K.1^81,K.1^87,K.1^77,-1*K.1^97,-1*K.1^67,K.1^87,-1*K.1^7,-1*K.1^79,K.1^59,K.1^27,K.1^7,-1*K.1,-1*K.1^73,-1*K.1^59,K.1^73,K.1^91,K.1^79,K.1,-1*K.1^43,-1*K.1^89,-1*K.1^51,K.1^49,K.1^83,K.1^3,-1*K.1^29,K.1^43,K.1^93,K.1^21,K.1^59,-1*K.1^21,-1*K.1^9,-1*K.1^71,-1*K.1^93,-1*K.1^51,-1*K.1^29,K.1^9,K.1^71,K.1^57,K.1^51,K.1^29,-1*K.1^9,K.1^23,-1*K.1^37,-1*K.1^99,-1*K.1^71,-1*K.1^13,-1*K.1^63,-1*K.1^17,-1*K.1^97,K.1^83,-1*K.1^69,K.1^69,K.1^11,-1*K.1^53,-1*K.1^11,K.1^53,K.1^61,K.1^19,-1*K.1^37,K.1^27,-1*K.1^47,K.1^17,K.1^31,-1*K.1^81,-1*K.1^33,-1*K.1^87,-1*K.1^31,K.1^39,K.1^41,-1*K.1^27,K.1^13,-1*K.1^69,-1*K.1^11,K.1^97,K.1^67,-1*K.1^7,K.1,-1*K.1^39,-1*K.1^41,-1*K.1^73,-1*K.1^91,K.1^33,-1*K.1^31,K.1^43,K.1^89,K.1^3,K.1^77,K.1^37,K.1^99,-1*K.1^61,K.1^51,K.1^63,K.1^17,-1*K.1^3,K.1^29,-1*K.1^49,-1*K.1^87,-1*K.1^77,-1*K.1^91,K.1^89,K.1^49,K.1^31,K.1^73,K.1^91,-1*K.1^89,K.1^41,-1*K.1^79,-1*K.1,-1*K.1^57,-1*K.1^23,K.1^9,-1*K.1^23,-1*K.1^63,-1*K.1^13,K.1^69]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^48,K.1^24,-1*K.1^68,-1*K.1^84,-1*K.1^4,-1*K.1^44,K.1^8,-1*K.1^76,-1*K.1^52,K.1^96,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^28,-1*K.1^36,K.1^64,K.1^88,K.1^15,-1*K.1^5,K.1^15,-1*K.1^5,K.1^45,-1*K.1^85,K.1^95,-1*K.1^85,K.1^5,K.1^65,K.1^95,K.1^65,K.1^35,-1*K.1^35,K.1^85,-1*K.1^95,-1*K.1^15,-1*K.1^15,-1*K.1^45,K.1^55,K.1^45,K.1^85,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^35,-1*K.1^45,-1*K.1^95,K.1^35,K.1^55,K.1^5,-1*K.1^55,-1*K.1^92,-1*K.1^44,K.1^36,-1*K.1^72,-1*K.1^84,K.1^32,-1*K.1^12,K.1^64,K.1^52,-1*K.1^56,-1*K.1^52,-1*K.1^56,-1*K.1^28,-1*K.1^68,K.1^92,K.1^96,-1*K.1^64,-1*K.1^16,K.1^52,-1*K.1^36,-1*K.1^96,K.1^76,K.1^16,-1*K.1^72,K.1^36,K.1^48,-1*K.1^76,K.1^12,K.1^88,K.1^8,-1*K.1^32,K.1^12,K.1^44,K.1^44,K.1^68,-1*K.1^64,K.1^68,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^56,-1*K.1^4,K.1^92,-1*K.1^16,K.1^24,K.1^28,K.1^28,K.1^84,-1*K.1^48,-1*K.1^48,K.1^84,-1*K.1^88,-1*K.1^24,-1*K.1^24,-1*K.1^88,K.1^72,K.1^76,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^4,-1*K.1^12,K.1^56,-1*K.1^76,K.1^88,K.1^8,-1*K.1^8,K.1^52,-1*K.1^72,K.1^84,-1*K.1^24,K.1^24,-1*K.1^88,K.1^68,-1*K.1^44,K.1^64,-1*K.1^48,K.1^12,-1*K.1^4,K.1^44,-1*K.1^64,K.1^92,-1*K.1^32,K.1^28,-1*K.1^84,-1*K.1^28,K.1^36,-1*K.1^92,K.1^72,-1*K.1^56,K.1^76,-1*K.1^52,K.1^16,-1*K.1^16,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,K.1^32,-1*K.1^98,K.1^86,-1*K.1^58,K.1^54,-1*K.1^82,-1*K.1^82,K.1^94,-1*K.1^18,K.1^62,-1*K.1^54,-1*K.1^74,-1*K.1^34,-1*K.1^14,K.1^6,K.1^78,-1*K.1^34,-1*K.1^42,K.1^46,-1*K.1^98,-1*K.1^62,K.1^82,-1*K.1^42,K.1^42,K.1^2,-1*K.1^94,K.1^18,K.1^26,-1*K.1^38,-1*K.1^6,-1*K.1^2,-1*K.1^86,K.1^58,-1*K.1^6,K.1^78,K.1^82,-1*K.1^78,K.1^66,K.1^22,-1*K.1^62,K.1^46,-1*K.1^86,K.1^58,K.1^98,-1*K.1^26,-1*K.1^66,-1*K.1^66,K.1^14,-1*K.1^46,K.1^26,K.1^18,-1*K.1^46,K.1^98,K.1^74,-1*K.1^22,-1*K.1^22,K.1^62,K.1^2,K.1^42,-1*K.1^54,-1*K.1^78,K.1^66,-1*K.1^94,-1*K.1^38,K.1^74,K.1^86,-1*K.1^18,-1*K.1^26,K.1^22,K.1^54,-1*K.1^58,K.1^34,-1*K.1^14,K.1^14,K.1^94,K.1^34,K.1^38,K.1^38,-1*K.1^74,-1*K.1^2,K.1^6,-1*K.1^66,K.1^62,K.1^82,K.1^2,-1*K.1^82,-1*K.1^42,K.1^66,K.1^18,-1*K.1^98,-1*K.1^26,-1*K.1^6,-1*K.1^78,-1*K.1^58,K.1^54,K.1^74,-1*K.1^94,-1*K.1^74,-1*K.1^34,K.1^58,K.1^26,-1*K.1^54,K.1^46,K.1^78,K.1^98,-1*K.1^86,K.1^6,-1*K.1^18,-1*K.1^38,K.1^42,K.1^22,-1*K.1^2,-1*K.1^22,-1*K.1^62,K.1^38,K.1^86,-1*K.1^46,K.1^34,K.1^14,K.1^94,-1*K.1^14,K.1^89,-1*K.1^13,K.1^39,K.1^81,-1*K.1^49,-1*K.1^27,K.1,-1*K.1^87,K.1^83,-1*K.1^93,-1*K.1^73,-1*K.1,-1*K.1^41,K.1^79,-1*K.1^53,K.1^19,-1*K.1^47,K.1^41,K.1^63,K.1^57,-1*K.1^79,K.1^91,K.1^97,K.1^23,K.1^97,-1*K.1^37,K.1^87,-1*K.1^61,K.1^27,-1*K.1^39,K.1^73,-1*K.1^99,-1*K.1^21,K.1^21,K.1^53,K.1^73,K.1^3,-1*K.1^63,-1*K.1^21,K.1^47,-1*K.1^77,-1*K.1^43,K.1^17,K.1^67,K.1^99,K.1^79,K.1^33,K.1^43,-1*K.1^23,-1*K.1^53,K.1^33,K.1^13,K.1^61,-1*K.1^81,K.1^93,-1*K.1^13,K.1^59,-1*K.1^7,K.1^81,K.1^7,K.1^69,-1*K.1^61,-1*K.1^59,-1*K.1^37,K.1^51,K.1^9,-1*K.1^91,-1*K.1^97,K.1^77,-1*K.1^11,K.1^37,-1*K.1^87,-1*K.1^39,-1*K.1^81,K.1^39,-1*K.1^31,-1*K.1^89,K.1^87,K.1^9,-1*K.1^11,K.1^31,K.1^89,K.1^63,-1*K.1^9,K.1^11,-1*K.1^31,K.1^57,-1*K.1^83,K.1^41,-1*K.1^89,-1*K.1^67,-1*K.1^17,K.1^3,-1*K.1^23,-1*K.1^97,K.1^71,-1*K.1^71,-1*K.1^49,-1*K.1^27,K.1^49,K.1^27,K.1^99,K.1^21,-1*K.1^83,K.1^93,-1*K.1^73,-1*K.1^3,-1*K.1^29,-1*K.1^79,-1*K.1^47,-1*K.1^33,K.1^29,K.1,-1*K.1^19,-1*K.1^93,K.1^67,K.1^71,K.1^49,K.1^23,K.1^53,K.1^13,-1*K.1^59,-1*K.1,K.1^19,-1*K.1^7,-1*K.1^69,K.1^47,K.1^29,K.1^37,-1*K.1^51,K.1^77,K.1^43,K.1^83,-1*K.1^41,-1*K.1^99,-1*K.1^9,K.1^17,-1*K.1^3,-1*K.1^77,K.1^11,K.1^91,-1*K.1^33,-1*K.1^43,-1*K.1^69,-1*K.1^51,-1*K.1^91,-1*K.1^29,K.1^7,K.1^69,K.1^51,-1*K.1^19,K.1^61,K.1^59,-1*K.1^63,-1*K.1^57,K.1^31,-1*K.1^57,-1*K.1^17,-1*K.1^67,-1*K.1^71]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^52,-1*K.1^76,K.1^32,K.1^16,K.1^96,K.1^56,-1*K.1^92,K.1^24,K.1^48,-1*K.1^4,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^8,-1*K.1^28,K.1^72,K.1^64,-1*K.1^36,-1*K.1^12,-1*K.1^85,K.1^95,-1*K.1^85,K.1^95,-1*K.1^55,K.1^15,-1*K.1^5,K.1^15,-1*K.1^95,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^65,K.1^65,-1*K.1^15,K.1^5,K.1^85,K.1^85,K.1^55,-1*K.1^45,-1*K.1^55,-1*K.1^15,K.1^35,K.1^45,K.1^35,K.1^65,K.1^55,K.1^5,-1*K.1^65,-1*K.1^45,-1*K.1^95,K.1^45,K.1^8,K.1^56,-1*K.1^64,K.1^28,K.1^16,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^48,K.1^44,K.1^48,K.1^44,K.1^72,K.1^32,-1*K.1^8,-1*K.1^4,K.1^36,K.1^84,-1*K.1^48,K.1^64,K.1^4,-1*K.1^24,-1*K.1^84,K.1^28,-1*K.1^64,-1*K.1^52,K.1^24,-1*K.1^88,-1*K.1^12,-1*K.1^92,K.1^68,-1*K.1^88,-1*K.1^56,-1*K.1^56,-1*K.1^32,K.1^36,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^92,K.1^92,-1*K.1^44,K.1^96,-1*K.1^8,K.1^84,-1*K.1^76,-1*K.1^72,-1*K.1^72,-1*K.1^16,K.1^52,K.1^52,-1*K.1^16,K.1^12,K.1^76,K.1^76,K.1^12,-1*K.1^28,-1*K.1^24,K.1^68,K.1^4,K.1^4,-1*K.1^96,K.1^88,-1*K.1^44,K.1^24,-1*K.1^12,-1*K.1^92,K.1^92,-1*K.1^48,K.1^28,-1*K.1^16,K.1^76,-1*K.1^76,K.1^12,-1*K.1^32,K.1^56,-1*K.1^36,K.1^52,-1*K.1^88,K.1^96,-1*K.1^56,K.1^36,-1*K.1^8,K.1^68,-1*K.1^72,K.1^16,K.1^72,-1*K.1^64,K.1^8,-1*K.1^28,K.1^44,-1*K.1^24,K.1^48,-1*K.1^84,K.1^84,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,-1*K.1^68,K.1^2,-1*K.1^14,K.1^42,-1*K.1^46,K.1^18,K.1^18,-1*K.1^6,K.1^82,-1*K.1^38,K.1^46,K.1^26,K.1^66,K.1^86,-1*K.1^94,-1*K.1^22,K.1^66,K.1^58,-1*K.1^54,K.1^2,K.1^38,-1*K.1^18,K.1^58,-1*K.1^58,-1*K.1^98,K.1^6,-1*K.1^82,-1*K.1^74,K.1^62,K.1^94,K.1^98,K.1^14,-1*K.1^42,K.1^94,-1*K.1^22,-1*K.1^18,K.1^22,-1*K.1^34,-1*K.1^78,K.1^38,-1*K.1^54,K.1^14,-1*K.1^42,-1*K.1^2,K.1^74,K.1^34,K.1^34,-1*K.1^86,K.1^54,-1*K.1^74,-1*K.1^82,K.1^54,-1*K.1^2,-1*K.1^26,K.1^78,K.1^78,-1*K.1^38,-1*K.1^98,-1*K.1^58,K.1^46,K.1^22,-1*K.1^34,K.1^6,K.1^62,-1*K.1^26,-1*K.1^14,K.1^82,K.1^74,-1*K.1^78,-1*K.1^46,K.1^42,-1*K.1^66,K.1^86,-1*K.1^86,-1*K.1^6,-1*K.1^66,-1*K.1^62,-1*K.1^62,K.1^26,K.1^98,-1*K.1^94,K.1^34,-1*K.1^38,-1*K.1^18,-1*K.1^98,K.1^18,K.1^58,-1*K.1^34,-1*K.1^82,K.1^2,K.1^74,K.1^94,K.1^22,K.1^42,-1*K.1^46,-1*K.1^26,K.1^6,K.1^26,K.1^66,-1*K.1^42,-1*K.1^74,K.1^46,-1*K.1^54,-1*K.1^22,-1*K.1^2,K.1^14,-1*K.1^94,K.1^82,K.1^62,-1*K.1^58,-1*K.1^78,K.1^98,K.1^78,K.1^38,-1*K.1^62,-1*K.1^14,K.1^54,-1*K.1^66,-1*K.1^86,-1*K.1^6,K.1^86,-1*K.1^11,K.1^87,-1*K.1^61,-1*K.1^19,K.1^51,K.1^73,-1*K.1^99,K.1^13,-1*K.1^17,K.1^7,K.1^27,K.1^99,K.1^59,-1*K.1^21,K.1^47,-1*K.1^81,K.1^53,-1*K.1^59,-1*K.1^37,-1*K.1^43,K.1^21,-1*K.1^9,-1*K.1^3,-1*K.1^77,-1*K.1^3,K.1^63,-1*K.1^13,K.1^39,-1*K.1^73,K.1^61,-1*K.1^27,K.1,K.1^79,-1*K.1^79,-1*K.1^47,-1*K.1^27,-1*K.1^97,K.1^37,K.1^79,-1*K.1^53,K.1^23,K.1^57,-1*K.1^83,-1*K.1^33,-1*K.1,-1*K.1^21,-1*K.1^67,-1*K.1^57,K.1^77,K.1^47,-1*K.1^67,-1*K.1^87,-1*K.1^39,K.1^19,-1*K.1^7,K.1^87,-1*K.1^41,K.1^93,-1*K.1^19,-1*K.1^93,-1*K.1^31,K.1^39,K.1^41,K.1^63,-1*K.1^49,-1*K.1^91,K.1^9,K.1^3,-1*K.1^23,K.1^89,-1*K.1^63,K.1^13,K.1^61,K.1^19,-1*K.1^61,K.1^69,K.1^11,-1*K.1^13,-1*K.1^91,K.1^89,-1*K.1^69,-1*K.1^11,-1*K.1^37,K.1^91,-1*K.1^89,K.1^69,-1*K.1^43,K.1^17,-1*K.1^59,K.1^11,K.1^33,K.1^83,-1*K.1^97,K.1^77,K.1^3,-1*K.1^29,K.1^29,K.1^51,K.1^73,-1*K.1^51,-1*K.1^73,-1*K.1,-1*K.1^79,K.1^17,-1*K.1^7,K.1^27,K.1^97,K.1^71,K.1^21,K.1^53,K.1^67,-1*K.1^71,-1*K.1^99,K.1^81,K.1^7,-1*K.1^33,-1*K.1^29,-1*K.1^51,-1*K.1^77,-1*K.1^47,-1*K.1^87,K.1^41,K.1^99,-1*K.1^81,K.1^93,K.1^31,-1*K.1^53,-1*K.1^71,-1*K.1^63,K.1^49,-1*K.1^23,-1*K.1^57,-1*K.1^17,K.1^59,K.1,K.1^91,-1*K.1^83,K.1^97,K.1^23,-1*K.1^89,-1*K.1^9,K.1^67,K.1^57,K.1^31,K.1^49,K.1^9,K.1^71,-1*K.1^93,-1*K.1^31,-1*K.1^49,K.1^81,-1*K.1^39,-1*K.1^41,K.1^37,K.1^43,-1*K.1^69,K.1^43,K.1^83,K.1^33,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,-1*K.1^68,-1*K.1^84,K.1^88,-1*K.1^44,K.1^64,-1*K.1^4,-1*K.1^28,K.1^16,K.1^32,-1*K.1^36,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^52,K.1^48,-1*K.1^76,K.1^24,K.1^8,K.1^15,-1*K.1^5,K.1^15,-1*K.1^5,K.1^45,-1*K.1^85,K.1^95,-1*K.1^85,K.1^5,K.1^65,K.1^95,K.1^65,K.1^35,-1*K.1^35,K.1^85,-1*K.1^95,-1*K.1^15,-1*K.1^15,-1*K.1^45,K.1^55,K.1^45,K.1^85,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^35,-1*K.1^45,-1*K.1^95,K.1^35,K.1^55,K.1^5,-1*K.1^55,K.1^72,-1*K.1^4,K.1^76,K.1^52,-1*K.1^44,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^32,-1*K.1^96,K.1^32,-1*K.1^96,K.1^48,K.1^88,-1*K.1^72,-1*K.1^36,-1*K.1^24,-1*K.1^56,-1*K.1^32,-1*K.1^76,K.1^36,-1*K.1^16,K.1^56,K.1^52,K.1^76,-1*K.1^68,K.1^16,K.1^92,K.1^8,-1*K.1^28,K.1^12,K.1^92,K.1^4,K.1^4,-1*K.1^88,-1*K.1^24,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^28,K.1^28,K.1^96,K.1^64,-1*K.1^72,-1*K.1^56,-1*K.1^84,-1*K.1^48,-1*K.1^48,K.1^44,K.1^68,K.1^68,K.1^44,-1*K.1^8,K.1^84,K.1^84,-1*K.1^8,-1*K.1^52,-1*K.1^16,K.1^12,K.1^36,K.1^36,-1*K.1^64,-1*K.1^92,K.1^96,K.1^16,K.1^8,-1*K.1^28,K.1^28,-1*K.1^32,K.1^52,K.1^44,K.1^84,-1*K.1^84,-1*K.1^8,-1*K.1^88,-1*K.1^4,K.1^24,K.1^68,K.1^92,K.1^64,K.1^4,-1*K.1^24,-1*K.1^72,K.1^12,-1*K.1^48,-1*K.1^44,K.1^48,K.1^76,K.1^72,-1*K.1^52,-1*K.1^96,-1*K.1^16,K.1^32,K.1^56,-1*K.1^56,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,-1*K.1^12,-1*K.1^18,-1*K.1^26,K.1^78,K.1^14,K.1^62,K.1^62,K.1^54,K.1^38,-1*K.1^42,-1*K.1^14,-1*K.1^34,K.1^94,K.1^74,K.1^46,-1*K.1^98,K.1^94,K.1^22,K.1^86,-1*K.1^18,K.1^42,-1*K.1^62,K.1^22,-1*K.1^22,K.1^82,-1*K.1^54,-1*K.1^38,K.1^66,K.1^58,-1*K.1^46,-1*K.1^82,K.1^26,-1*K.1^78,-1*K.1^46,-1*K.1^98,-1*K.1^62,K.1^98,-1*K.1^6,-1*K.1^2,K.1^42,K.1^86,K.1^26,-1*K.1^78,K.1^18,-1*K.1^66,K.1^6,K.1^6,-1*K.1^74,-1*K.1^86,K.1^66,-1*K.1^38,-1*K.1^86,K.1^18,K.1^34,K.1^2,K.1^2,-1*K.1^42,K.1^82,-1*K.1^22,-1*K.1^14,K.1^98,-1*K.1^6,-1*K.1^54,K.1^58,K.1^34,-1*K.1^26,K.1^38,-1*K.1^66,-1*K.1^2,K.1^14,K.1^78,-1*K.1^94,K.1^74,-1*K.1^74,K.1^54,-1*K.1^94,-1*K.1^58,-1*K.1^58,-1*K.1^34,-1*K.1^82,K.1^46,K.1^6,-1*K.1^42,-1*K.1^62,K.1^82,K.1^62,K.1^22,-1*K.1^6,-1*K.1^38,-1*K.1^18,-1*K.1^66,-1*K.1^46,K.1^98,K.1^78,K.1^14,K.1^34,-1*K.1^54,-1*K.1^34,K.1^94,-1*K.1^78,K.1^66,-1*K.1^14,K.1^86,-1*K.1^98,K.1^18,K.1^26,K.1^46,K.1^38,K.1^58,-1*K.1^22,-1*K.1^2,-1*K.1^82,K.1^2,K.1^42,-1*K.1^58,-1*K.1^26,-1*K.1^86,-1*K.1^94,-1*K.1^74,K.1^54,K.1^74,K.1^49,K.1^33,-1*K.1^99,-1*K.1^21,-1*K.1^9,K.1^7,K.1^41,K.1^67,K.1^3,-1*K.1^13,K.1^93,-1*K.1^41,-1*K.1^81,K.1^39,K.1^73,-1*K.1^79,K.1^27,K.1^81,-1*K.1^83,-1*K.1^37,-1*K.1^39,-1*K.1^31,-1*K.1^77,-1*K.1^43,-1*K.1^77,K.1^17,-1*K.1^67,K.1,-1*K.1^7,K.1^99,-1*K.1^93,-1*K.1^59,-1*K.1^61,K.1^61,-1*K.1^73,-1*K.1^93,-1*K.1^23,K.1^83,-1*K.1^61,-1*K.1^27,K.1^57,K.1^63,K.1^97,-1*K.1^47,K.1^59,K.1^39,-1*K.1^53,-1*K.1^63,K.1^43,K.1^73,-1*K.1^53,-1*K.1^33,-1*K.1,K.1^21,K.1^13,K.1^33,K.1^19,-1*K.1^87,-1*K.1^21,K.1^87,K.1^29,K.1,-1*K.1^19,K.1^17,K.1^91,-1*K.1^69,K.1^31,K.1^77,-1*K.1^57,-1*K.1^51,-1*K.1^17,K.1^67,K.1^99,K.1^21,-1*K.1^99,-1*K.1^71,-1*K.1^49,-1*K.1^67,-1*K.1^69,-1*K.1^51,K.1^71,K.1^49,-1*K.1^83,K.1^69,K.1^51,-1*K.1^71,-1*K.1^37,-1*K.1^3,K.1^81,-1*K.1^49,K.1^47,-1*K.1^97,-1*K.1^23,K.1^43,K.1^77,-1*K.1^11,K.1^11,-1*K.1^9,K.1^7,K.1^9,-1*K.1^7,K.1^59,K.1^61,-1*K.1^3,K.1^13,K.1^93,K.1^23,K.1^89,-1*K.1^39,K.1^27,K.1^53,-1*K.1^89,K.1^41,K.1^79,-1*K.1^13,-1*K.1^47,-1*K.1^11,K.1^9,-1*K.1^43,-1*K.1^73,-1*K.1^33,-1*K.1^19,-1*K.1^41,-1*K.1^79,-1*K.1^87,-1*K.1^29,-1*K.1^27,-1*K.1^89,-1*K.1^17,-1*K.1^91,-1*K.1^57,-1*K.1^63,K.1^3,-1*K.1^81,-1*K.1^59,K.1^69,K.1^97,K.1^23,K.1^57,K.1^51,-1*K.1^31,K.1^53,K.1^63,-1*K.1^29,-1*K.1^91,K.1^31,K.1^89,K.1^87,K.1^29,K.1^91,K.1^79,-1*K.1,K.1^19,K.1^83,K.1^37,K.1^71,K.1^37,-1*K.1^97,K.1^47,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,K.1^32,K.1^16,-1*K.1^12,K.1^56,-1*K.1^36,K.1^96,K.1^72,-1*K.1^84,-1*K.1^68,K.1^64,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,-1*K.1^28,K.1^48,-1*K.1^52,K.1^24,-1*K.1^76,-1*K.1^92,-1*K.1^85,K.1^95,-1*K.1^85,K.1^95,-1*K.1^55,K.1^15,-1*K.1^5,K.1^15,-1*K.1^95,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^65,K.1^65,-1*K.1^15,K.1^5,K.1^85,K.1^85,K.1^55,-1*K.1^45,-1*K.1^55,-1*K.1^15,K.1^35,K.1^45,K.1^35,K.1^65,K.1^55,K.1^5,-1*K.1^65,-1*K.1^45,-1*K.1^95,K.1^45,-1*K.1^28,K.1^96,-1*K.1^24,-1*K.1^48,K.1^56,K.1^88,K.1^8,-1*K.1^76,K.1^68,K.1^4,-1*K.1^68,K.1^4,-1*K.1^52,-1*K.1^12,K.1^28,K.1^64,K.1^76,K.1^44,K.1^68,K.1^24,-1*K.1^64,K.1^84,-1*K.1^44,-1*K.1^48,-1*K.1^24,K.1^32,-1*K.1^84,-1*K.1^8,-1*K.1^92,K.1^72,-1*K.1^88,-1*K.1^8,-1*K.1^96,-1*K.1^96,K.1^12,K.1^76,K.1^12,K.1^36,K.1^36,-1*K.1^72,-1*K.1^72,-1*K.1^4,-1*K.1^36,K.1^28,K.1^44,K.1^16,K.1^52,K.1^52,-1*K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^56,K.1^92,-1*K.1^16,-1*K.1^16,K.1^92,K.1^48,K.1^84,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^36,K.1^8,-1*K.1^4,-1*K.1^84,-1*K.1^92,K.1^72,-1*K.1^72,K.1^68,-1*K.1^48,-1*K.1^56,-1*K.1^16,K.1^16,K.1^92,K.1^12,K.1^96,-1*K.1^76,-1*K.1^32,-1*K.1^8,-1*K.1^36,-1*K.1^96,K.1^76,K.1^28,-1*K.1^88,K.1^52,K.1^56,-1*K.1^52,-1*K.1^24,-1*K.1^28,K.1^48,K.1^4,K.1^84,-1*K.1^68,-1*K.1^44,K.1^44,K.1^32,-1*K.1^12,K.1^64,K.1^24,K.1^88,K.1^82,K.1^74,-1*K.1^22,-1*K.1^86,-1*K.1^38,-1*K.1^38,-1*K.1^46,-1*K.1^62,K.1^58,K.1^86,K.1^66,-1*K.1^6,-1*K.1^26,-1*K.1^54,K.1^2,-1*K.1^6,-1*K.1^78,-1*K.1^14,K.1^82,-1*K.1^58,K.1^38,-1*K.1^78,K.1^78,-1*K.1^18,K.1^46,K.1^62,-1*K.1^34,-1*K.1^42,K.1^54,K.1^18,-1*K.1^74,K.1^22,K.1^54,K.1^2,K.1^38,-1*K.1^2,K.1^94,K.1^98,-1*K.1^58,-1*K.1^14,-1*K.1^74,K.1^22,-1*K.1^82,K.1^34,-1*K.1^94,-1*K.1^94,K.1^26,K.1^14,-1*K.1^34,K.1^62,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^98,-1*K.1^98,K.1^58,-1*K.1^18,K.1^78,K.1^86,-1*K.1^2,K.1^94,K.1^46,-1*K.1^42,-1*K.1^66,K.1^74,-1*K.1^62,K.1^34,K.1^98,-1*K.1^86,-1*K.1^22,K.1^6,-1*K.1^26,K.1^26,-1*K.1^46,K.1^6,K.1^42,K.1^42,K.1^66,K.1^18,-1*K.1^54,-1*K.1^94,K.1^58,K.1^38,-1*K.1^18,-1*K.1^38,-1*K.1^78,K.1^94,K.1^62,K.1^82,K.1^34,K.1^54,-1*K.1^2,-1*K.1^22,-1*K.1^86,-1*K.1^66,K.1^46,K.1^66,-1*K.1^6,K.1^22,-1*K.1^34,K.1^86,-1*K.1^14,K.1^2,-1*K.1^82,-1*K.1^74,-1*K.1^54,-1*K.1^62,-1*K.1^42,K.1^78,K.1^98,K.1^18,-1*K.1^98,-1*K.1^58,K.1^42,K.1^74,K.1^14,K.1^6,K.1^26,-1*K.1^46,-1*K.1^26,-1*K.1^51,-1*K.1^67,K.1,K.1^79,K.1^91,-1*K.1^93,-1*K.1^59,-1*K.1^33,-1*K.1^97,K.1^87,-1*K.1^7,K.1^59,K.1^19,-1*K.1^61,-1*K.1^27,K.1^21,-1*K.1^73,-1*K.1^19,K.1^17,K.1^63,K.1^61,K.1^69,K.1^23,K.1^57,K.1^23,-1*K.1^83,K.1^33,-1*K.1^99,K.1^93,-1*K.1,K.1^7,K.1^41,K.1^39,-1*K.1^39,K.1^27,K.1^7,K.1^77,-1*K.1^17,K.1^39,K.1^73,-1*K.1^43,-1*K.1^37,-1*K.1^3,K.1^53,-1*K.1^41,-1*K.1^61,K.1^47,K.1^37,-1*K.1^57,-1*K.1^27,K.1^47,K.1^67,K.1^99,-1*K.1^79,-1*K.1^87,-1*K.1^67,-1*K.1^81,K.1^13,K.1^79,-1*K.1^13,-1*K.1^71,-1*K.1^99,K.1^81,-1*K.1^83,-1*K.1^9,K.1^31,-1*K.1^69,-1*K.1^23,K.1^43,K.1^49,K.1^83,-1*K.1^33,-1*K.1,-1*K.1^79,K.1,K.1^29,K.1^51,K.1^33,K.1^31,K.1^49,-1*K.1^29,-1*K.1^51,K.1^17,-1*K.1^31,-1*K.1^49,K.1^29,K.1^63,K.1^97,-1*K.1^19,K.1^51,-1*K.1^53,K.1^3,K.1^77,-1*K.1^57,-1*K.1^23,K.1^89,-1*K.1^89,K.1^91,-1*K.1^93,-1*K.1^91,K.1^93,-1*K.1^41,-1*K.1^39,K.1^97,-1*K.1^87,-1*K.1^7,-1*K.1^77,-1*K.1^11,K.1^61,-1*K.1^73,-1*K.1^47,K.1^11,-1*K.1^59,-1*K.1^21,K.1^87,K.1^53,K.1^89,-1*K.1^91,K.1^57,K.1^27,K.1^67,K.1^81,K.1^59,K.1^21,K.1^13,K.1^71,K.1^73,K.1^11,K.1^83,K.1^9,K.1^43,K.1^37,-1*K.1^97,K.1^19,K.1^41,-1*K.1^31,-1*K.1^3,-1*K.1^77,-1*K.1^43,-1*K.1^49,K.1^69,-1*K.1^47,-1*K.1^37,K.1^71,K.1^9,-1*K.1^69,-1*K.1^11,-1*K.1^13,-1*K.1^71,-1*K.1^9,-1*K.1^21,K.1^99,-1*K.1^81,-1*K.1^17,-1*K.1^63,-1*K.1^29,-1*K.1^63,K.1^3,-1*K.1^53,-1*K.1^89]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^8,-1*K.1^4,-1*K.1^28,K.1^64,-1*K.1^84,K.1^24,-1*K.1^68,K.1^96,-1*K.1^92,K.1^16,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^32,-1*K.1^12,K.1^88,K.1^56,-1*K.1^44,K.1^48,K.1^15,-1*K.1^5,K.1^15,-1*K.1^5,K.1^45,-1*K.1^85,K.1^95,-1*K.1^85,K.1^5,K.1^65,K.1^95,K.1^65,K.1^35,-1*K.1^35,K.1^85,-1*K.1^95,-1*K.1^15,-1*K.1^15,-1*K.1^45,K.1^55,K.1^45,K.1^85,-1*K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^35,-1*K.1^45,-1*K.1^95,K.1^35,K.1^55,K.1^5,-1*K.1^55,K.1^32,K.1^24,-1*K.1^56,K.1^12,K.1^64,K.1^72,-1*K.1^52,-1*K.1^44,K.1^92,K.1^76,-1*K.1^92,K.1^76,K.1^88,-1*K.1^28,-1*K.1^32,K.1^16,K.1^44,K.1^36,K.1^92,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^36,K.1^12,-1*K.1^56,K.1^8,K.1^96,K.1^52,K.1^48,-1*K.1^68,-1*K.1^72,K.1^52,-1*K.1^24,-1*K.1^24,K.1^28,K.1^44,K.1^28,K.1^84,K.1^84,K.1^68,K.1^68,-1*K.1^76,-1*K.1^84,-1*K.1^32,K.1^36,-1*K.1^4,-1*K.1^88,-1*K.1^88,-1*K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^64,-1*K.1^48,K.1^4,K.1^4,-1*K.1^48,-1*K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^16,-1*K.1^16,K.1^84,-1*K.1^52,-1*K.1^76,K.1^96,K.1^48,-1*K.1^68,K.1^68,K.1^92,K.1^12,-1*K.1^64,K.1^4,-1*K.1^4,-1*K.1^48,K.1^28,K.1^24,-1*K.1^44,-1*K.1^8,K.1^52,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^32,-1*K.1^72,-1*K.1^88,K.1^64,K.1^88,-1*K.1^56,K.1^32,-1*K.1^12,K.1^76,-1*K.1^96,-1*K.1^92,-1*K.1^36,K.1^36,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^72,-1*K.1^58,K.1^6,-1*K.1^18,-1*K.1^34,K.1^22,K.1^22,-1*K.1^74,K.1^78,-1*K.1^2,K.1^34,K.1^54,K.1^14,-1*K.1^94,-1*K.1^26,K.1^38,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^58,K.1^2,-1*K.1^22,-1*K.1^82,K.1^82,K.1^42,K.1^74,-1*K.1^78,-1*K.1^46,K.1^98,K.1^26,-1*K.1^42,-1*K.1^6,K.1^18,K.1^26,K.1^38,-1*K.1^22,-1*K.1^38,-1*K.1^86,K.1^62,K.1^2,-1*K.1^66,-1*K.1^6,K.1^18,K.1^58,K.1^46,K.1^86,K.1^86,K.1^94,K.1^66,-1*K.1^46,-1*K.1^78,K.1^66,K.1^58,-1*K.1^54,-1*K.1^62,-1*K.1^62,-1*K.1^2,K.1^42,K.1^82,K.1^34,-1*K.1^38,-1*K.1^86,K.1^74,K.1^98,-1*K.1^54,K.1^6,K.1^78,K.1^46,K.1^62,-1*K.1^34,-1*K.1^18,-1*K.1^14,-1*K.1^94,K.1^94,-1*K.1^74,-1*K.1^14,-1*K.1^98,-1*K.1^98,K.1^54,-1*K.1^42,-1*K.1^26,K.1^86,-1*K.1^2,-1*K.1^22,K.1^42,K.1^22,-1*K.1^82,-1*K.1^86,-1*K.1^78,-1*K.1^58,K.1^46,K.1^26,-1*K.1^38,-1*K.1^18,-1*K.1^34,-1*K.1^54,K.1^74,K.1^54,K.1^14,K.1^18,-1*K.1^46,K.1^34,-1*K.1^66,K.1^38,K.1^58,-1*K.1^6,-1*K.1^26,K.1^78,K.1^98,K.1^82,K.1^62,-1*K.1^42,-1*K.1^62,K.1^2,-1*K.1^98,K.1^6,K.1^66,-1*K.1^14,K.1^94,-1*K.1^74,-1*K.1^94,-1*K.1^69,K.1^73,-1*K.1^19,K.1,K.1^29,-1*K.1^67,-1*K.1^21,K.1^27,K.1^43,-1*K.1^53,-1*K.1^33,K.1^21,K.1^61,-1*K.1^59,-1*K.1^13,K.1^99,-1*K.1^87,-1*K.1^61,K.1^23,K.1^97,K.1^59,K.1^11,-1*K.1^37,-1*K.1^83,-1*K.1^37,-1*K.1^77,-1*K.1^27,K.1^81,K.1^67,K.1^19,K.1^33,K.1^79,K.1^41,-1*K.1^41,K.1^13,K.1^33,-1*K.1^63,-1*K.1^23,K.1^41,K.1^87,K.1^17,-1*K.1^3,K.1^57,-1*K.1^7,-1*K.1^79,-1*K.1^59,-1*K.1^93,K.1^3,K.1^83,-1*K.1^13,-1*K.1^93,-1*K.1^73,-1*K.1^81,-1*K.1,K.1^53,K.1^73,-1*K.1^39,-1*K.1^47,K.1,K.1^47,-1*K.1^49,K.1^81,K.1^39,-1*K.1^77,-1*K.1^71,K.1^89,-1*K.1^11,K.1^37,-1*K.1^17,K.1^31,K.1^77,K.1^27,K.1^19,-1*K.1,-1*K.1^19,K.1^51,K.1^69,-1*K.1^27,K.1^89,K.1^31,-1*K.1^51,-1*K.1^69,K.1^23,-1*K.1^89,-1*K.1^31,K.1^51,K.1^97,-1*K.1^43,-1*K.1^61,K.1^69,K.1^7,-1*K.1^57,-1*K.1^63,K.1^83,K.1^37,-1*K.1^91,K.1^91,K.1^29,-1*K.1^67,-1*K.1^29,K.1^67,-1*K.1^79,-1*K.1^41,-1*K.1^43,K.1^53,-1*K.1^33,K.1^63,K.1^9,K.1^59,-1*K.1^87,K.1^93,-1*K.1^9,-1*K.1^21,-1*K.1^99,-1*K.1^53,-1*K.1^7,-1*K.1^91,-1*K.1^29,-1*K.1^83,K.1^13,-1*K.1^73,K.1^39,K.1^21,K.1^99,-1*K.1^47,K.1^49,K.1^87,-1*K.1^9,K.1^77,K.1^71,-1*K.1^17,K.1^3,K.1^43,K.1^61,K.1^79,-1*K.1^89,K.1^57,K.1^63,K.1^17,-1*K.1^31,K.1^11,K.1^93,-1*K.1^3,K.1^49,K.1^71,-1*K.1^11,K.1^9,K.1^47,-1*K.1^49,-1*K.1^71,-1*K.1^99,-1*K.1^81,-1*K.1^39,-1*K.1^23,-1*K.1^97,-1*K.1^51,-1*K.1^97,-1*K.1^57,K.1^7,K.1^91]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^92,K.1^96,K.1^72,-1*K.1^36,K.1^16,-1*K.1^76,K.1^32,-1*K.1^4,K.1^8,-1*K.1^84,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^68,K.1^88,-1*K.1^12,-1*K.1^44,K.1^56,-1*K.1^52,-1*K.1^85,K.1^95,-1*K.1^85,K.1^95,-1*K.1^55,K.1^15,-1*K.1^5,K.1^15,-1*K.1^95,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^65,K.1^65,-1*K.1^15,K.1^5,K.1^85,K.1^85,K.1^55,-1*K.1^45,-1*K.1^55,-1*K.1^15,K.1^35,K.1^45,K.1^35,K.1^65,K.1^55,K.1^5,-1*K.1^65,-1*K.1^45,-1*K.1^95,K.1^45,-1*K.1^68,-1*K.1^76,K.1^44,-1*K.1^88,-1*K.1^36,-1*K.1^28,K.1^48,K.1^56,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^24,-1*K.1^12,K.1^72,K.1^68,-1*K.1^84,-1*K.1^56,-1*K.1^64,-1*K.1^8,-1*K.1^44,K.1^84,K.1^4,K.1^64,-1*K.1^88,K.1^44,-1*K.1^92,-1*K.1^4,-1*K.1^48,-1*K.1^52,K.1^32,K.1^28,-1*K.1^48,K.1^76,K.1^76,-1*K.1^72,-1*K.1^56,-1*K.1^72,-1*K.1^16,-1*K.1^16,-1*K.1^32,-1*K.1^32,K.1^24,K.1^16,K.1^68,-1*K.1^64,K.1^96,K.1^12,K.1^12,K.1^36,K.1^92,K.1^92,K.1^36,K.1^52,-1*K.1^96,-1*K.1^96,K.1^52,K.1^88,K.1^4,K.1^28,K.1^84,K.1^84,-1*K.1^16,K.1^48,K.1^24,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^32,-1*K.1^8,-1*K.1^88,K.1^36,-1*K.1^96,K.1^96,K.1^52,-1*K.1^72,-1*K.1^76,K.1^56,K.1^92,-1*K.1^48,K.1^16,K.1^76,-1*K.1^56,K.1^68,K.1^28,K.1^12,-1*K.1^36,-1*K.1^12,K.1^44,-1*K.1^68,K.1^88,-1*K.1^24,K.1^4,K.1^8,K.1^64,-1*K.1^64,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^28,K.1^42,-1*K.1^94,K.1^82,K.1^66,-1*K.1^78,-1*K.1^78,K.1^26,-1*K.1^22,K.1^98,-1*K.1^66,-1*K.1^46,-1*K.1^86,K.1^6,K.1^74,-1*K.1^62,-1*K.1^86,K.1^18,K.1^34,K.1^42,-1*K.1^98,K.1^78,K.1^18,-1*K.1^18,-1*K.1^58,-1*K.1^26,K.1^22,K.1^54,-1*K.1^2,-1*K.1^74,K.1^58,K.1^94,-1*K.1^82,-1*K.1^74,-1*K.1^62,K.1^78,K.1^62,K.1^14,-1*K.1^38,-1*K.1^98,K.1^34,K.1^94,-1*K.1^82,-1*K.1^42,-1*K.1^54,-1*K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^34,K.1^54,K.1^22,-1*K.1^34,-1*K.1^42,K.1^46,K.1^38,K.1^38,K.1^98,-1*K.1^58,-1*K.1^18,-1*K.1^66,K.1^62,K.1^14,-1*K.1^26,-1*K.1^2,K.1^46,-1*K.1^94,-1*K.1^22,-1*K.1^54,-1*K.1^38,K.1^66,K.1^82,K.1^86,K.1^6,-1*K.1^6,K.1^26,K.1^86,K.1^2,K.1^2,-1*K.1^46,K.1^58,K.1^74,-1*K.1^14,K.1^98,K.1^78,-1*K.1^58,-1*K.1^78,K.1^18,K.1^14,K.1^22,K.1^42,-1*K.1^54,-1*K.1^74,K.1^62,K.1^82,K.1^66,K.1^46,-1*K.1^26,-1*K.1^46,-1*K.1^86,-1*K.1^82,K.1^54,-1*K.1^66,K.1^34,-1*K.1^62,-1*K.1^42,K.1^94,K.1^74,-1*K.1^22,-1*K.1^2,-1*K.1^18,-1*K.1^38,K.1^58,K.1^38,-1*K.1^98,K.1^2,-1*K.1^94,-1*K.1^34,K.1^86,-1*K.1^6,K.1^26,K.1^6,K.1^31,-1*K.1^27,K.1^81,-1*K.1^99,-1*K.1^71,K.1^33,K.1^79,-1*K.1^73,-1*K.1^57,K.1^47,K.1^67,-1*K.1^79,-1*K.1^39,K.1^41,K.1^87,-1*K.1,K.1^13,K.1^39,-1*K.1^77,-1*K.1^3,-1*K.1^41,-1*K.1^89,K.1^63,K.1^17,K.1^63,K.1^23,K.1^73,-1*K.1^19,-1*K.1^33,-1*K.1^81,-1*K.1^67,-1*K.1^21,-1*K.1^59,K.1^59,-1*K.1^87,-1*K.1^67,K.1^37,K.1^77,-1*K.1^59,-1*K.1^13,-1*K.1^83,K.1^97,-1*K.1^43,K.1^93,K.1^21,K.1^41,K.1^7,-1*K.1^97,-1*K.1^17,K.1^87,K.1^7,K.1^27,K.1^19,K.1^99,-1*K.1^47,-1*K.1^27,K.1^61,K.1^53,-1*K.1^99,-1*K.1^53,K.1^51,-1*K.1^19,-1*K.1^61,K.1^23,K.1^29,-1*K.1^11,K.1^89,-1*K.1^63,K.1^83,-1*K.1^69,-1*K.1^23,-1*K.1^73,-1*K.1^81,K.1^99,K.1^81,-1*K.1^49,-1*K.1^31,K.1^73,-1*K.1^11,-1*K.1^69,K.1^49,K.1^31,-1*K.1^77,K.1^11,K.1^69,-1*K.1^49,-1*K.1^3,K.1^57,K.1^39,-1*K.1^31,-1*K.1^93,K.1^43,K.1^37,-1*K.1^17,-1*K.1^63,K.1^9,-1*K.1^9,-1*K.1^71,K.1^33,K.1^71,-1*K.1^33,K.1^21,K.1^59,K.1^57,-1*K.1^47,K.1^67,-1*K.1^37,-1*K.1^91,-1*K.1^41,K.1^13,-1*K.1^7,K.1^91,K.1^79,K.1,K.1^47,K.1^93,K.1^9,K.1^71,K.1^17,-1*K.1^87,K.1^27,-1*K.1^61,-1*K.1^79,-1*K.1,K.1^53,-1*K.1^51,-1*K.1^13,K.1^91,-1*K.1^23,-1*K.1^29,K.1^83,-1*K.1^97,-1*K.1^57,-1*K.1^39,-1*K.1^21,K.1^11,-1*K.1^43,-1*K.1^37,-1*K.1^83,K.1^69,-1*K.1^89,-1*K.1^7,K.1^97,-1*K.1^51,-1*K.1^29,K.1^89,-1*K.1^91,-1*K.1^53,K.1^51,K.1^29,K.1,K.1^19,K.1^61,K.1^77,K.1^3,K.1^49,K.1^3,K.1^43,-1*K.1^93,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^88,-1*K.1^44,K.1^8,-1*K.1^4,K.1^24,K.1^64,K.1^48,K.1^56,-1*K.1^12,-1*K.1^76,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,-1*K.1^52,K.1^32,-1*K.1^68,K.1^16,-1*K.1^84,-1*K.1^28,-1*K.1^15,K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,K.1^85,-1*K.1^95,K.1^85,-1*K.1^5,-1*K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^35,K.1^35,-1*K.1^85,K.1^95,K.1^15,K.1^15,K.1^45,-1*K.1^55,-1*K.1^45,-1*K.1^85,K.1^65,K.1^55,K.1^65,K.1^35,K.1^45,K.1^95,-1*K.1^35,-1*K.1^55,-1*K.1^5,K.1^55,-1*K.1^52,K.1^64,-1*K.1^16,-1*K.1^32,-1*K.1^4,-1*K.1^92,K.1^72,-1*K.1^84,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^68,K.1^8,K.1^52,-1*K.1^76,K.1^84,-1*K.1^96,K.1^12,K.1^16,K.1^76,-1*K.1^56,K.1^96,-1*K.1^32,-1*K.1^16,K.1^88,K.1^56,-1*K.1^72,-1*K.1^28,K.1^48,K.1^92,-1*K.1^72,-1*K.1^64,-1*K.1^64,-1*K.1^8,K.1^84,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^48,-1*K.1^48,-1*K.1^36,K.1^24,K.1^52,-1*K.1^96,-1*K.1^44,K.1^68,K.1^68,K.1^4,-1*K.1^88,-1*K.1^88,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^56,K.1^92,K.1^76,K.1^76,-1*K.1^24,K.1^72,-1*K.1^36,K.1^56,-1*K.1^28,K.1^48,-1*K.1^48,K.1^12,-1*K.1^32,K.1^4,K.1^44,-1*K.1^44,K.1^28,-1*K.1^8,K.1^64,-1*K.1^84,-1*K.1^88,-1*K.1^72,K.1^24,-1*K.1^64,K.1^84,K.1^52,K.1^92,K.1^68,-1*K.1^4,-1*K.1^68,-1*K.1^16,-1*K.1^52,K.1^32,K.1^36,-1*K.1^56,-1*K.1^12,K.1^96,-1*K.1^96,K.1^88,K.1^8,-1*K.1^76,K.1^16,-1*K.1^92,K.1^38,-1*K.1^66,-1*K.1^98,-1*K.1^74,-1*K.1^42,-1*K.1^42,K.1^14,-1*K.1^58,K.1^22,K.1^74,K.1^94,K.1^54,K.1^34,K.1^86,-1*K.1^18,K.1^54,-1*K.1^2,-1*K.1^26,K.1^38,-1*K.1^22,K.1^42,-1*K.1^2,K.1^2,-1*K.1^62,-1*K.1^14,K.1^58,-1*K.1^6,-1*K.1^78,-1*K.1^86,K.1^62,K.1^66,K.1^98,-1*K.1^86,-1*K.1^18,K.1^42,K.1^18,-1*K.1^46,-1*K.1^82,-1*K.1^22,-1*K.1^26,K.1^66,K.1^98,-1*K.1^38,K.1^6,K.1^46,K.1^46,-1*K.1^34,K.1^26,-1*K.1^6,K.1^58,K.1^26,-1*K.1^38,-1*K.1^94,K.1^82,K.1^82,K.1^22,-1*K.1^62,K.1^2,K.1^74,K.1^18,-1*K.1^46,-1*K.1^14,-1*K.1^78,-1*K.1^94,-1*K.1^66,-1*K.1^58,K.1^6,-1*K.1^82,-1*K.1^74,-1*K.1^98,-1*K.1^54,K.1^34,-1*K.1^34,K.1^14,-1*K.1^54,K.1^78,K.1^78,K.1^94,K.1^62,K.1^86,K.1^46,K.1^22,K.1^42,-1*K.1^62,-1*K.1^42,-1*K.1^2,-1*K.1^46,K.1^58,K.1^38,K.1^6,-1*K.1^86,K.1^18,-1*K.1^98,-1*K.1^74,-1*K.1^94,-1*K.1^14,K.1^94,K.1^54,K.1^98,-1*K.1^6,K.1^74,-1*K.1^26,-1*K.1^18,-1*K.1^38,K.1^66,K.1^86,-1*K.1^58,-1*K.1^78,K.1^2,-1*K.1^82,K.1^62,K.1^82,-1*K.1^22,K.1^78,-1*K.1^66,K.1^26,-1*K.1^54,-1*K.1^34,K.1^14,K.1^34,-1*K.1^9,K.1^53,K.1^59,K.1^61,-1*K.1^69,-1*K.1^87,-1*K.1^81,K.1^47,K.1^23,-1*K.1^33,-1*K.1^13,K.1^81,-1*K.1^21,K.1^99,K.1^93,K.1^39,K.1^7,K.1^21,K.1^3,-1*K.1^17,-1*K.1^99,K.1^71,-1*K.1^57,-1*K.1^63,-1*K.1^57,-1*K.1^97,-1*K.1^47,-1*K.1^41,K.1^87,-1*K.1^59,K.1^13,K.1^19,-1*K.1,K.1,-1*K.1^93,K.1^13,-1*K.1^43,-1*K.1^3,-1*K.1,-1*K.1^7,K.1^37,K.1^83,K.1^77,-1*K.1^27,-1*K.1^19,K.1^99,-1*K.1^73,-1*K.1^83,K.1^63,K.1^93,-1*K.1^73,-1*K.1^53,K.1^41,-1*K.1^61,K.1^33,K.1^53,K.1^79,-1*K.1^67,K.1^61,K.1^67,K.1^89,-1*K.1^41,-1*K.1^79,-1*K.1^97,K.1^31,K.1^29,-1*K.1^71,K.1^57,-1*K.1^37,K.1^91,K.1^97,K.1^47,-1*K.1^59,-1*K.1^61,K.1^59,-1*K.1^11,K.1^9,-1*K.1^47,K.1^29,K.1^91,K.1^11,-1*K.1^9,K.1^3,-1*K.1^29,-1*K.1^91,-1*K.1^11,-1*K.1^17,-1*K.1^23,K.1^21,K.1^9,K.1^27,-1*K.1^77,-1*K.1^43,K.1^63,K.1^57,K.1^51,-1*K.1^51,-1*K.1^69,-1*K.1^87,K.1^69,K.1^87,-1*K.1^19,K.1,-1*K.1^23,K.1^33,-1*K.1^13,K.1^43,-1*K.1^49,-1*K.1^99,K.1^7,K.1^73,K.1^49,-1*K.1^81,-1*K.1^39,-1*K.1^33,-1*K.1^27,K.1^51,K.1^69,-1*K.1^63,-1*K.1^93,-1*K.1^53,-1*K.1^79,K.1^81,K.1^39,-1*K.1^67,-1*K.1^89,-1*K.1^7,K.1^49,K.1^97,-1*K.1^31,-1*K.1^37,-1*K.1^83,K.1^23,-1*K.1^21,K.1^19,-1*K.1^29,K.1^77,K.1^43,K.1^37,-1*K.1^91,K.1^71,K.1^73,K.1^83,-1*K.1^89,-1*K.1^31,-1*K.1^71,-1*K.1^49,K.1^67,K.1^89,K.1^31,-1*K.1^39,K.1^41,K.1^79,-1*K.1^3,K.1^17,K.1^11,K.1^17,-1*K.1^77,K.1^27,-1*K.1^51]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^12,K.1^56,-1*K.1^92,K.1^96,-1*K.1^76,-1*K.1^36,-1*K.1^52,-1*K.1^44,K.1^88,K.1^24,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,K.1^48,-1*K.1^68,K.1^32,-1*K.1^84,K.1^16,K.1^72,K.1^85,-1*K.1^95,K.1^85,-1*K.1^95,K.1^55,-1*K.1^15,K.1^5,-1*K.1^15,K.1^95,K.1^35,K.1^5,K.1^35,K.1^65,-1*K.1^65,K.1^15,-1*K.1^5,-1*K.1^85,-1*K.1^85,-1*K.1^55,K.1^45,K.1^55,K.1^15,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^65,-1*K.1^55,-1*K.1^5,K.1^65,K.1^45,K.1^95,-1*K.1^45,K.1^48,-1*K.1^36,K.1^84,K.1^68,K.1^96,K.1^8,-1*K.1^28,K.1^16,-1*K.1^88,-1*K.1^64,K.1^88,-1*K.1^64,K.1^32,-1*K.1^92,-1*K.1^48,K.1^24,-1*K.1^16,K.1^4,-1*K.1^88,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^4,K.1^68,K.1^84,-1*K.1^12,-1*K.1^44,K.1^28,K.1^72,-1*K.1^52,-1*K.1^8,K.1^28,K.1^36,K.1^36,K.1^92,-1*K.1^16,K.1^92,K.1^76,K.1^76,K.1^52,K.1^52,K.1^64,-1*K.1^76,-1*K.1^48,K.1^4,K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^96,K.1^12,K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^56,-1*K.1^56,-1*K.1^72,-1*K.1^68,K.1^44,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^76,-1*K.1^28,K.1^64,-1*K.1^44,K.1^72,-1*K.1^52,K.1^52,-1*K.1^88,K.1^68,-1*K.1^96,-1*K.1^56,K.1^56,-1*K.1^72,K.1^92,-1*K.1^36,K.1^16,K.1^12,K.1^28,-1*K.1^76,K.1^36,-1*K.1^16,-1*K.1^48,-1*K.1^8,-1*K.1^32,K.1^96,K.1^32,K.1^84,K.1^48,-1*K.1^68,-1*K.1^64,K.1^44,K.1^88,-1*K.1^4,K.1^4,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,K.1^8,-1*K.1^62,K.1^34,K.1^2,K.1^26,K.1^58,K.1^58,-1*K.1^86,K.1^42,-1*K.1^78,-1*K.1^26,-1*K.1^6,-1*K.1^46,-1*K.1^66,-1*K.1^14,K.1^82,-1*K.1^46,K.1^98,K.1^74,-1*K.1^62,K.1^78,-1*K.1^58,K.1^98,-1*K.1^98,K.1^38,K.1^86,-1*K.1^42,K.1^94,K.1^22,K.1^14,-1*K.1^38,-1*K.1^34,-1*K.1^2,K.1^14,K.1^82,-1*K.1^58,-1*K.1^82,K.1^54,K.1^18,K.1^78,K.1^74,-1*K.1^34,-1*K.1^2,K.1^62,-1*K.1^94,-1*K.1^54,-1*K.1^54,K.1^66,-1*K.1^74,K.1^94,-1*K.1^42,-1*K.1^74,K.1^62,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^78,K.1^38,-1*K.1^98,-1*K.1^26,-1*K.1^82,K.1^54,K.1^86,K.1^22,K.1^6,K.1^34,K.1^42,-1*K.1^94,K.1^18,K.1^26,K.1^2,K.1^46,-1*K.1^66,K.1^66,-1*K.1^86,K.1^46,-1*K.1^22,-1*K.1^22,-1*K.1^6,-1*K.1^38,-1*K.1^14,-1*K.1^54,-1*K.1^78,-1*K.1^58,K.1^38,K.1^58,K.1^98,K.1^54,-1*K.1^42,-1*K.1^62,-1*K.1^94,K.1^14,-1*K.1^82,K.1^2,K.1^26,K.1^6,K.1^86,-1*K.1^6,-1*K.1^46,-1*K.1^2,K.1^94,-1*K.1^26,K.1^74,K.1^82,K.1^62,-1*K.1^34,-1*K.1^14,K.1^42,K.1^22,-1*K.1^98,K.1^18,-1*K.1^38,-1*K.1^18,K.1^78,-1*K.1^22,K.1^34,-1*K.1^74,K.1^46,K.1^66,-1*K.1^86,-1*K.1^66,K.1^91,-1*K.1^47,-1*K.1^41,-1*K.1^39,K.1^31,K.1^13,K.1^19,-1*K.1^53,-1*K.1^77,K.1^67,K.1^87,-1*K.1^19,K.1^79,-1*K.1,-1*K.1^7,-1*K.1^61,-1*K.1^93,-1*K.1^79,-1*K.1^97,K.1^83,K.1,-1*K.1^29,K.1^43,K.1^37,K.1^43,K.1^3,K.1^53,K.1^59,-1*K.1^13,K.1^41,-1*K.1^87,-1*K.1^81,K.1^99,-1*K.1^99,K.1^7,-1*K.1^87,K.1^57,K.1^97,K.1^99,K.1^93,-1*K.1^63,-1*K.1^17,-1*K.1^23,K.1^73,K.1^81,-1*K.1,K.1^27,K.1^17,-1*K.1^37,-1*K.1^7,K.1^27,K.1^47,-1*K.1^59,K.1^39,-1*K.1^67,-1*K.1^47,-1*K.1^21,K.1^33,-1*K.1^39,-1*K.1^33,-1*K.1^11,K.1^59,K.1^21,K.1^3,-1*K.1^69,-1*K.1^71,K.1^29,-1*K.1^43,K.1^63,-1*K.1^9,-1*K.1^3,-1*K.1^53,K.1^41,K.1^39,-1*K.1^41,K.1^89,-1*K.1^91,K.1^53,-1*K.1^71,-1*K.1^9,-1*K.1^89,K.1^91,-1*K.1^97,K.1^71,K.1^9,K.1^89,K.1^83,K.1^77,-1*K.1^79,-1*K.1^91,-1*K.1^73,K.1^23,K.1^57,-1*K.1^37,-1*K.1^43,-1*K.1^49,K.1^49,K.1^31,K.1^13,-1*K.1^31,-1*K.1^13,K.1^81,-1*K.1^99,K.1^77,-1*K.1^67,K.1^87,-1*K.1^57,K.1^51,K.1,-1*K.1^93,-1*K.1^27,-1*K.1^51,K.1^19,K.1^61,K.1^67,K.1^73,-1*K.1^49,-1*K.1^31,K.1^37,K.1^7,K.1^47,K.1^21,-1*K.1^19,-1*K.1^61,K.1^33,K.1^11,K.1^93,-1*K.1^51,-1*K.1^3,K.1^69,K.1^63,K.1^17,-1*K.1^77,K.1^79,-1*K.1^81,K.1^71,-1*K.1^23,-1*K.1^57,-1*K.1^63,K.1^9,-1*K.1^29,-1*K.1^27,-1*K.1^17,K.1^11,K.1^69,K.1^29,K.1^51,-1*K.1^33,-1*K.1^11,-1*K.1^69,K.1^61,-1*K.1^59,-1*K.1^21,K.1^97,-1*K.1^83,-1*K.1^89,-1*K.1^83,K.1^23,-1*K.1^73,K.1^49]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,-1*K.1^28,K.1^64,K.1^48,K.1^24,-1*K.1^44,-1*K.1^84,K.1^88,-1*K.1^36,K.1^72,K.1^56,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^12,-1*K.1^92,K.1^8,K.1^96,-1*K.1^4,-1*K.1^68,-1*K.1^15,K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,K.1^85,-1*K.1^95,K.1^85,-1*K.1^5,-1*K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^35,K.1^35,-1*K.1^85,K.1^95,K.1^15,K.1^15,K.1^45,-1*K.1^55,-1*K.1^45,-1*K.1^85,K.1^65,K.1^55,K.1^65,K.1^35,K.1^45,K.1^95,-1*K.1^35,-1*K.1^55,-1*K.1^5,K.1^55,-1*K.1^12,-1*K.1^84,-1*K.1^96,K.1^92,K.1^24,-1*K.1^52,K.1^32,-1*K.1^4,-1*K.1^72,-1*K.1^16,K.1^72,-1*K.1^16,K.1^8,K.1^48,K.1^12,K.1^56,K.1^4,K.1^76,-1*K.1^72,K.1^96,-1*K.1^56,K.1^36,-1*K.1^76,K.1^92,-1*K.1^96,-1*K.1^28,-1*K.1^36,-1*K.1^32,-1*K.1^68,K.1^88,K.1^52,-1*K.1^32,K.1^84,K.1^84,-1*K.1^48,K.1^4,-1*K.1^48,K.1^44,K.1^44,-1*K.1^88,-1*K.1^88,K.1^16,-1*K.1^44,K.1^12,K.1^76,K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^28,K.1^28,-1*K.1^24,K.1^68,-1*K.1^64,-1*K.1^64,K.1^68,-1*K.1^92,K.1^36,K.1^52,-1*K.1^56,-1*K.1^56,K.1^44,K.1^32,K.1^16,-1*K.1^36,-1*K.1^68,K.1^88,-1*K.1^88,-1*K.1^72,K.1^92,-1*K.1^24,-1*K.1^64,K.1^64,K.1^68,-1*K.1^48,-1*K.1^84,-1*K.1^4,K.1^28,-1*K.1^32,-1*K.1^44,K.1^84,K.1^4,K.1^12,K.1^52,-1*K.1^8,K.1^24,K.1^8,-1*K.1^96,-1*K.1^12,-1*K.1^92,-1*K.1^16,K.1^36,K.1^72,-1*K.1^76,K.1^76,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^52,K.1^78,K.1^46,K.1^38,K.1^94,-1*K.1^2,-1*K.1^2,-1*K.1^34,-1*K.1^98,-1*K.1^82,-1*K.1^94,K.1^14,-1*K.1^74,-1*K.1^54,-1*K.1^66,-1*K.1^58,-1*K.1^74,K.1^62,K.1^6,K.1^78,K.1^82,K.1^2,K.1^62,-1*K.1^62,-1*K.1^22,K.1^34,K.1^98,-1*K.1^86,K.1^18,K.1^66,K.1^22,-1*K.1^46,-1*K.1^38,K.1^66,-1*K.1^58,K.1^2,K.1^58,K.1^26,-1*K.1^42,K.1^82,K.1^6,-1*K.1^46,-1*K.1^38,-1*K.1^78,K.1^86,-1*K.1^26,-1*K.1^26,K.1^54,-1*K.1^6,-1*K.1^86,K.1^98,-1*K.1^6,-1*K.1^78,-1*K.1^14,K.1^42,K.1^42,-1*K.1^82,-1*K.1^22,-1*K.1^62,-1*K.1^94,K.1^58,K.1^26,K.1^34,K.1^18,-1*K.1^14,K.1^46,-1*K.1^98,K.1^86,-1*K.1^42,K.1^94,K.1^38,K.1^74,-1*K.1^54,K.1^54,-1*K.1^34,K.1^74,-1*K.1^18,-1*K.1^18,K.1^14,K.1^22,-1*K.1^66,-1*K.1^26,-1*K.1^82,K.1^2,-1*K.1^22,-1*K.1^2,K.1^62,K.1^26,K.1^98,K.1^78,K.1^86,K.1^66,K.1^58,K.1^38,K.1^94,-1*K.1^14,K.1^34,K.1^14,-1*K.1^74,-1*K.1^38,-1*K.1^86,-1*K.1^94,K.1^6,-1*K.1^58,-1*K.1^78,-1*K.1^46,-1*K.1^66,-1*K.1^98,K.1^18,-1*K.1^62,-1*K.1^42,K.1^22,K.1^42,K.1^82,-1*K.1^18,K.1^46,-1*K.1^6,K.1^74,K.1^54,-1*K.1^34,-1*K.1^54,K.1^29,K.1^93,-1*K.1^79,-1*K.1^41,K.1^89,-1*K.1^47,K.1^61,K.1^7,K.1^63,-1*K.1^73,-1*K.1^53,-1*K.1^61,K.1,K.1^19,-1*K.1^33,-1*K.1^59,-1*K.1^67,-1*K.1,K.1^43,K.1^77,-1*K.1^19,-1*K.1^51,-1*K.1^17,K.1^3,-1*K.1^17,-1*K.1^57,-1*K.1^7,K.1^21,K.1^47,K.1^79,K.1^53,-1*K.1^39,-1*K.1^81,K.1^81,K.1^33,K.1^53,-1*K.1^83,-1*K.1^43,-1*K.1^81,K.1^67,-1*K.1^97,-1*K.1^23,K.1^37,K.1^87,K.1^39,K.1^19,K.1^13,K.1^23,-1*K.1^3,-1*K.1^33,K.1^13,-1*K.1^93,-1*K.1^21,K.1^41,K.1^73,K.1^93,-1*K.1^99,-1*K.1^27,-1*K.1^41,K.1^27,K.1^9,K.1^21,K.1^99,-1*K.1^57,-1*K.1^11,-1*K.1^49,K.1^51,K.1^17,K.1^97,-1*K.1^71,K.1^57,K.1^7,K.1^79,K.1^41,-1*K.1^79,-1*K.1^91,-1*K.1^29,-1*K.1^7,-1*K.1^49,-1*K.1^71,K.1^91,K.1^29,K.1^43,K.1^49,K.1^71,-1*K.1^91,K.1^77,-1*K.1^63,-1*K.1,-1*K.1^29,-1*K.1^87,-1*K.1^37,-1*K.1^83,-1*K.1^3,K.1^17,-1*K.1^31,K.1^31,K.1^89,-1*K.1^47,-1*K.1^89,K.1^47,K.1^39,K.1^81,-1*K.1^63,K.1^73,-1*K.1^53,K.1^83,K.1^69,-1*K.1^19,-1*K.1^67,-1*K.1^13,-1*K.1^69,K.1^61,K.1^59,-1*K.1^73,K.1^87,-1*K.1^31,-1*K.1^89,K.1^3,K.1^33,-1*K.1^93,K.1^99,-1*K.1^61,-1*K.1^59,-1*K.1^27,-1*K.1^9,K.1^67,-1*K.1^69,K.1^57,K.1^11,K.1^97,K.1^23,K.1^63,K.1,-1*K.1^39,K.1^49,K.1^37,K.1^83,-1*K.1^97,K.1^71,-1*K.1^51,-1*K.1^13,-1*K.1^23,-1*K.1^9,K.1^11,K.1^51,K.1^69,K.1^27,K.1^9,-1*K.1^11,K.1^59,-1*K.1^21,-1*K.1^99,-1*K.1^43,-1*K.1^77,K.1^91,-1*K.1^77,-1*K.1^37,-1*K.1^87,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,K.1^72,-1*K.1^36,-1*K.1^52,-1*K.1^76,K.1^56,K.1^16,-1*K.1^12,K.1^64,-1*K.1^28,-1*K.1^44,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^88,K.1^8,-1*K.1^92,-1*K.1^4,K.1^96,K.1^32,K.1^85,-1*K.1^95,K.1^85,-1*K.1^95,K.1^55,-1*K.1^15,K.1^5,-1*K.1^15,K.1^95,K.1^35,K.1^5,K.1^35,K.1^65,-1*K.1^65,K.1^15,-1*K.1^5,-1*K.1^85,-1*K.1^85,-1*K.1^55,K.1^45,K.1^55,K.1^15,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^65,-1*K.1^55,-1*K.1^5,K.1^65,K.1^45,K.1^95,-1*K.1^45,K.1^88,K.1^16,K.1^4,-1*K.1^8,-1*K.1^76,K.1^48,-1*K.1^68,K.1^96,K.1^28,K.1^84,-1*K.1^28,K.1^84,-1*K.1^92,-1*K.1^52,-1*K.1^88,-1*K.1^44,-1*K.1^96,-1*K.1^24,K.1^28,-1*K.1^4,K.1^44,-1*K.1^64,K.1^24,-1*K.1^8,K.1^4,K.1^72,K.1^64,K.1^68,K.1^32,-1*K.1^12,-1*K.1^48,K.1^68,-1*K.1^16,-1*K.1^16,K.1^52,-1*K.1^96,K.1^52,-1*K.1^56,-1*K.1^56,K.1^12,K.1^12,-1*K.1^84,K.1^56,-1*K.1^88,-1*K.1^24,-1*K.1^36,K.1^92,K.1^92,K.1^76,-1*K.1^72,-1*K.1^72,K.1^76,-1*K.1^32,K.1^36,K.1^36,-1*K.1^32,K.1^8,-1*K.1^64,-1*K.1^48,K.1^44,K.1^44,-1*K.1^56,-1*K.1^68,-1*K.1^84,K.1^64,K.1^32,-1*K.1^12,K.1^12,K.1^28,-1*K.1^8,K.1^76,K.1^36,-1*K.1^36,-1*K.1^32,K.1^52,K.1^16,K.1^96,-1*K.1^72,K.1^68,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^88,-1*K.1^48,K.1^92,-1*K.1^76,-1*K.1^92,K.1^4,K.1^88,K.1^8,K.1^84,-1*K.1^64,-1*K.1^28,K.1^24,-1*K.1^24,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^48,-1*K.1^22,-1*K.1^54,-1*K.1^62,-1*K.1^6,K.1^98,K.1^98,K.1^66,K.1^2,K.1^18,K.1^6,-1*K.1^86,K.1^26,K.1^46,K.1^34,K.1^42,K.1^26,-1*K.1^38,-1*K.1^94,-1*K.1^22,-1*K.1^18,-1*K.1^98,-1*K.1^38,K.1^38,K.1^78,-1*K.1^66,-1*K.1^2,K.1^14,-1*K.1^82,-1*K.1^34,-1*K.1^78,K.1^54,K.1^62,-1*K.1^34,K.1^42,-1*K.1^98,-1*K.1^42,-1*K.1^74,K.1^58,-1*K.1^18,-1*K.1^94,K.1^54,K.1^62,K.1^22,-1*K.1^14,K.1^74,K.1^74,-1*K.1^46,K.1^94,K.1^14,-1*K.1^2,K.1^94,K.1^22,K.1^86,-1*K.1^58,-1*K.1^58,K.1^18,K.1^78,K.1^38,K.1^6,-1*K.1^42,-1*K.1^74,-1*K.1^66,-1*K.1^82,K.1^86,-1*K.1^54,K.1^2,-1*K.1^14,K.1^58,-1*K.1^6,-1*K.1^62,-1*K.1^26,K.1^46,-1*K.1^46,K.1^66,-1*K.1^26,K.1^82,K.1^82,-1*K.1^86,-1*K.1^78,K.1^34,K.1^74,K.1^18,-1*K.1^98,K.1^78,K.1^98,-1*K.1^38,-1*K.1^74,-1*K.1^2,-1*K.1^22,-1*K.1^14,-1*K.1^34,-1*K.1^42,-1*K.1^62,-1*K.1^6,K.1^86,-1*K.1^66,-1*K.1^86,K.1^26,K.1^62,K.1^14,K.1^6,-1*K.1^94,K.1^42,K.1^22,K.1^54,K.1^34,K.1^2,-1*K.1^82,K.1^38,K.1^58,-1*K.1^78,-1*K.1^58,-1*K.1^18,K.1^82,-1*K.1^54,K.1^94,-1*K.1^26,-1*K.1^46,K.1^66,K.1^46,-1*K.1^71,-1*K.1^7,K.1^21,K.1^59,-1*K.1^11,K.1^53,-1*K.1^39,-1*K.1^93,-1*K.1^37,K.1^27,K.1^47,K.1^39,-1*K.1^99,-1*K.1^81,K.1^67,K.1^41,K.1^33,K.1^99,-1*K.1^57,-1*K.1^23,K.1^81,K.1^49,K.1^83,-1*K.1^97,K.1^83,K.1^43,K.1^93,-1*K.1^79,-1*K.1^53,-1*K.1^21,-1*K.1^47,K.1^61,K.1^19,-1*K.1^19,-1*K.1^67,-1*K.1^47,K.1^17,K.1^57,K.1^19,-1*K.1^33,K.1^3,K.1^77,-1*K.1^63,-1*K.1^13,-1*K.1^61,-1*K.1^81,-1*K.1^87,-1*K.1^77,K.1^97,K.1^67,-1*K.1^87,K.1^7,K.1^79,-1*K.1^59,-1*K.1^27,-1*K.1^7,K.1,K.1^73,K.1^59,-1*K.1^73,-1*K.1^91,-1*K.1^79,-1*K.1,K.1^43,K.1^89,K.1^51,-1*K.1^49,-1*K.1^83,-1*K.1^3,K.1^29,-1*K.1^43,-1*K.1^93,-1*K.1^21,-1*K.1^59,K.1^21,K.1^9,K.1^71,K.1^93,K.1^51,K.1^29,-1*K.1^9,-1*K.1^71,-1*K.1^57,-1*K.1^51,-1*K.1^29,K.1^9,-1*K.1^23,K.1^37,K.1^99,K.1^71,K.1^13,K.1^63,K.1^17,K.1^97,-1*K.1^83,K.1^69,-1*K.1^69,-1*K.1^11,K.1^53,K.1^11,-1*K.1^53,-1*K.1^61,-1*K.1^19,K.1^37,-1*K.1^27,K.1^47,-1*K.1^17,-1*K.1^31,K.1^81,K.1^33,K.1^87,K.1^31,-1*K.1^39,-1*K.1^41,K.1^27,-1*K.1^13,K.1^69,K.1^11,-1*K.1^97,-1*K.1^67,K.1^7,-1*K.1,K.1^39,K.1^41,K.1^73,K.1^91,-1*K.1^33,K.1^31,-1*K.1^43,-1*K.1^89,-1*K.1^3,-1*K.1^77,-1*K.1^37,-1*K.1^99,K.1^61,-1*K.1^51,-1*K.1^63,-1*K.1^17,K.1^3,-1*K.1^29,K.1^49,K.1^87,K.1^77,K.1^91,-1*K.1^89,-1*K.1^49,-1*K.1^31,-1*K.1^73,-1*K.1^91,K.1^89,-1*K.1^41,K.1^79,K.1,K.1^57,K.1^23,-1*K.1^9,K.1^23,K.1^63,K.1^13,-1*K.1^69]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^48,K.1^24,-1*K.1^68,-1*K.1^84,-1*K.1^4,-1*K.1^44,K.1^8,-1*K.1^76,-1*K.1^52,K.1^96,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^28,-1*K.1^36,K.1^64,K.1^88,-1*K.1^15,K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,K.1^85,-1*K.1^95,K.1^85,-1*K.1^5,-1*K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^35,K.1^35,-1*K.1^85,K.1^95,K.1^15,K.1^15,K.1^45,-1*K.1^55,-1*K.1^45,-1*K.1^85,K.1^65,K.1^55,K.1^65,K.1^35,K.1^45,K.1^95,-1*K.1^35,-1*K.1^55,-1*K.1^5,K.1^55,-1*K.1^92,-1*K.1^44,K.1^36,-1*K.1^72,-1*K.1^84,K.1^32,-1*K.1^12,K.1^64,K.1^52,-1*K.1^56,-1*K.1^52,-1*K.1^56,-1*K.1^28,-1*K.1^68,K.1^92,K.1^96,-1*K.1^64,-1*K.1^16,K.1^52,-1*K.1^36,-1*K.1^96,K.1^76,K.1^16,-1*K.1^72,K.1^36,K.1^48,-1*K.1^76,K.1^12,K.1^88,K.1^8,-1*K.1^32,K.1^12,K.1^44,K.1^44,K.1^68,-1*K.1^64,K.1^68,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^56,-1*K.1^4,K.1^92,-1*K.1^16,K.1^24,K.1^28,K.1^28,K.1^84,-1*K.1^48,-1*K.1^48,K.1^84,-1*K.1^88,-1*K.1^24,-1*K.1^24,-1*K.1^88,K.1^72,K.1^76,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^4,-1*K.1^12,K.1^56,-1*K.1^76,K.1^88,K.1^8,-1*K.1^8,K.1^52,-1*K.1^72,K.1^84,-1*K.1^24,K.1^24,-1*K.1^88,K.1^68,-1*K.1^44,K.1^64,-1*K.1^48,K.1^12,-1*K.1^4,K.1^44,-1*K.1^64,K.1^92,-1*K.1^32,K.1^28,-1*K.1^84,-1*K.1^28,K.1^36,-1*K.1^92,K.1^72,-1*K.1^56,K.1^76,-1*K.1^52,K.1^16,-1*K.1^16,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,K.1^32,-1*K.1^98,K.1^86,-1*K.1^58,K.1^54,-1*K.1^82,-1*K.1^82,K.1^94,-1*K.1^18,K.1^62,-1*K.1^54,-1*K.1^74,-1*K.1^34,-1*K.1^14,K.1^6,K.1^78,-1*K.1^34,-1*K.1^42,K.1^46,-1*K.1^98,-1*K.1^62,K.1^82,-1*K.1^42,K.1^42,K.1^2,-1*K.1^94,K.1^18,K.1^26,-1*K.1^38,-1*K.1^6,-1*K.1^2,-1*K.1^86,K.1^58,-1*K.1^6,K.1^78,K.1^82,-1*K.1^78,K.1^66,K.1^22,-1*K.1^62,K.1^46,-1*K.1^86,K.1^58,K.1^98,-1*K.1^26,-1*K.1^66,-1*K.1^66,K.1^14,-1*K.1^46,K.1^26,K.1^18,-1*K.1^46,K.1^98,K.1^74,-1*K.1^22,-1*K.1^22,K.1^62,K.1^2,K.1^42,-1*K.1^54,-1*K.1^78,K.1^66,-1*K.1^94,-1*K.1^38,K.1^74,K.1^86,-1*K.1^18,-1*K.1^26,K.1^22,K.1^54,-1*K.1^58,K.1^34,-1*K.1^14,K.1^14,K.1^94,K.1^34,K.1^38,K.1^38,-1*K.1^74,-1*K.1^2,K.1^6,-1*K.1^66,K.1^62,K.1^82,K.1^2,-1*K.1^82,-1*K.1^42,K.1^66,K.1^18,-1*K.1^98,-1*K.1^26,-1*K.1^6,-1*K.1^78,-1*K.1^58,K.1^54,K.1^74,-1*K.1^94,-1*K.1^74,-1*K.1^34,K.1^58,K.1^26,-1*K.1^54,K.1^46,K.1^78,K.1^98,-1*K.1^86,K.1^6,-1*K.1^18,-1*K.1^38,K.1^42,K.1^22,-1*K.1^2,-1*K.1^22,-1*K.1^62,K.1^38,K.1^86,-1*K.1^46,K.1^34,K.1^14,K.1^94,-1*K.1^14,-1*K.1^89,K.1^13,-1*K.1^39,-1*K.1^81,K.1^49,K.1^27,-1*K.1,K.1^87,-1*K.1^83,K.1^93,K.1^73,K.1,K.1^41,-1*K.1^79,K.1^53,-1*K.1^19,K.1^47,-1*K.1^41,-1*K.1^63,-1*K.1^57,K.1^79,-1*K.1^91,-1*K.1^97,-1*K.1^23,-1*K.1^97,K.1^37,-1*K.1^87,K.1^61,-1*K.1^27,K.1^39,-1*K.1^73,K.1^99,K.1^21,-1*K.1^21,-1*K.1^53,-1*K.1^73,-1*K.1^3,K.1^63,K.1^21,-1*K.1^47,K.1^77,K.1^43,-1*K.1^17,-1*K.1^67,-1*K.1^99,-1*K.1^79,-1*K.1^33,-1*K.1^43,K.1^23,K.1^53,-1*K.1^33,-1*K.1^13,-1*K.1^61,K.1^81,-1*K.1^93,K.1^13,-1*K.1^59,K.1^7,-1*K.1^81,-1*K.1^7,-1*K.1^69,K.1^61,K.1^59,K.1^37,-1*K.1^51,-1*K.1^9,K.1^91,K.1^97,-1*K.1^77,K.1^11,-1*K.1^37,K.1^87,K.1^39,K.1^81,-1*K.1^39,K.1^31,K.1^89,-1*K.1^87,-1*K.1^9,K.1^11,-1*K.1^31,-1*K.1^89,-1*K.1^63,K.1^9,-1*K.1^11,K.1^31,-1*K.1^57,K.1^83,-1*K.1^41,K.1^89,K.1^67,K.1^17,-1*K.1^3,K.1^23,K.1^97,-1*K.1^71,K.1^71,K.1^49,K.1^27,-1*K.1^49,-1*K.1^27,-1*K.1^99,-1*K.1^21,K.1^83,-1*K.1^93,K.1^73,K.1^3,K.1^29,K.1^79,K.1^47,K.1^33,-1*K.1^29,-1*K.1,K.1^19,K.1^93,-1*K.1^67,-1*K.1^71,-1*K.1^49,-1*K.1^23,-1*K.1^53,-1*K.1^13,K.1^59,K.1,-1*K.1^19,K.1^7,K.1^69,-1*K.1^47,-1*K.1^29,-1*K.1^37,K.1^51,-1*K.1^77,-1*K.1^43,-1*K.1^83,K.1^41,K.1^99,K.1^9,-1*K.1^17,K.1^3,K.1^77,-1*K.1^11,-1*K.1^91,K.1^33,K.1^43,K.1^69,K.1^51,K.1^91,K.1^29,-1*K.1^7,-1*K.1^69,-1*K.1^51,K.1^19,-1*K.1^61,-1*K.1^59,K.1^63,K.1^57,-1*K.1^31,K.1^57,K.1^17,K.1^67,K.1^71]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^52,-1*K.1^76,K.1^32,K.1^16,K.1^96,K.1^56,-1*K.1^92,K.1^24,K.1^48,-1*K.1^4,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^8,-1*K.1^28,K.1^72,K.1^64,-1*K.1^36,-1*K.1^12,K.1^85,-1*K.1^95,K.1^85,-1*K.1^95,K.1^55,-1*K.1^15,K.1^5,-1*K.1^15,K.1^95,K.1^35,K.1^5,K.1^35,K.1^65,-1*K.1^65,K.1^15,-1*K.1^5,-1*K.1^85,-1*K.1^85,-1*K.1^55,K.1^45,K.1^55,K.1^15,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^65,-1*K.1^55,-1*K.1^5,K.1^65,K.1^45,K.1^95,-1*K.1^45,K.1^8,K.1^56,-1*K.1^64,K.1^28,K.1^16,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^48,K.1^44,K.1^48,K.1^44,K.1^72,K.1^32,-1*K.1^8,-1*K.1^4,K.1^36,K.1^84,-1*K.1^48,K.1^64,K.1^4,-1*K.1^24,-1*K.1^84,K.1^28,-1*K.1^64,-1*K.1^52,K.1^24,-1*K.1^88,-1*K.1^12,-1*K.1^92,K.1^68,-1*K.1^88,-1*K.1^56,-1*K.1^56,-1*K.1^32,K.1^36,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^92,K.1^92,-1*K.1^44,K.1^96,-1*K.1^8,K.1^84,-1*K.1^76,-1*K.1^72,-1*K.1^72,-1*K.1^16,K.1^52,K.1^52,-1*K.1^16,K.1^12,K.1^76,K.1^76,K.1^12,-1*K.1^28,-1*K.1^24,K.1^68,K.1^4,K.1^4,-1*K.1^96,K.1^88,-1*K.1^44,K.1^24,-1*K.1^12,-1*K.1^92,K.1^92,-1*K.1^48,K.1^28,-1*K.1^16,K.1^76,-1*K.1^76,K.1^12,-1*K.1^32,K.1^56,-1*K.1^36,K.1^52,-1*K.1^88,K.1^96,-1*K.1^56,K.1^36,-1*K.1^8,K.1^68,-1*K.1^72,K.1^16,K.1^72,-1*K.1^64,K.1^8,-1*K.1^28,K.1^44,-1*K.1^24,K.1^48,-1*K.1^84,K.1^84,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,-1*K.1^68,K.1^2,-1*K.1^14,K.1^42,-1*K.1^46,K.1^18,K.1^18,-1*K.1^6,K.1^82,-1*K.1^38,K.1^46,K.1^26,K.1^66,K.1^86,-1*K.1^94,-1*K.1^22,K.1^66,K.1^58,-1*K.1^54,K.1^2,K.1^38,-1*K.1^18,K.1^58,-1*K.1^58,-1*K.1^98,K.1^6,-1*K.1^82,-1*K.1^74,K.1^62,K.1^94,K.1^98,K.1^14,-1*K.1^42,K.1^94,-1*K.1^22,-1*K.1^18,K.1^22,-1*K.1^34,-1*K.1^78,K.1^38,-1*K.1^54,K.1^14,-1*K.1^42,-1*K.1^2,K.1^74,K.1^34,K.1^34,-1*K.1^86,K.1^54,-1*K.1^74,-1*K.1^82,K.1^54,-1*K.1^2,-1*K.1^26,K.1^78,K.1^78,-1*K.1^38,-1*K.1^98,-1*K.1^58,K.1^46,K.1^22,-1*K.1^34,K.1^6,K.1^62,-1*K.1^26,-1*K.1^14,K.1^82,K.1^74,-1*K.1^78,-1*K.1^46,K.1^42,-1*K.1^66,K.1^86,-1*K.1^86,-1*K.1^6,-1*K.1^66,-1*K.1^62,-1*K.1^62,K.1^26,K.1^98,-1*K.1^94,K.1^34,-1*K.1^38,-1*K.1^18,-1*K.1^98,K.1^18,K.1^58,-1*K.1^34,-1*K.1^82,K.1^2,K.1^74,K.1^94,K.1^22,K.1^42,-1*K.1^46,-1*K.1^26,K.1^6,K.1^26,K.1^66,-1*K.1^42,-1*K.1^74,K.1^46,-1*K.1^54,-1*K.1^22,-1*K.1^2,K.1^14,-1*K.1^94,K.1^82,K.1^62,-1*K.1^58,-1*K.1^78,K.1^98,K.1^78,K.1^38,-1*K.1^62,-1*K.1^14,K.1^54,-1*K.1^66,-1*K.1^86,-1*K.1^6,K.1^86,K.1^11,-1*K.1^87,K.1^61,K.1^19,-1*K.1^51,-1*K.1^73,K.1^99,-1*K.1^13,K.1^17,-1*K.1^7,-1*K.1^27,-1*K.1^99,-1*K.1^59,K.1^21,-1*K.1^47,K.1^81,-1*K.1^53,K.1^59,K.1^37,K.1^43,-1*K.1^21,K.1^9,K.1^3,K.1^77,K.1^3,-1*K.1^63,K.1^13,-1*K.1^39,K.1^73,-1*K.1^61,K.1^27,-1*K.1,-1*K.1^79,K.1^79,K.1^47,K.1^27,K.1^97,-1*K.1^37,-1*K.1^79,K.1^53,-1*K.1^23,-1*K.1^57,K.1^83,K.1^33,K.1,K.1^21,K.1^67,K.1^57,-1*K.1^77,-1*K.1^47,K.1^67,K.1^87,K.1^39,-1*K.1^19,K.1^7,-1*K.1^87,K.1^41,-1*K.1^93,K.1^19,K.1^93,K.1^31,-1*K.1^39,-1*K.1^41,-1*K.1^63,K.1^49,K.1^91,-1*K.1^9,-1*K.1^3,K.1^23,-1*K.1^89,K.1^63,-1*K.1^13,-1*K.1^61,-1*K.1^19,K.1^61,-1*K.1^69,-1*K.1^11,K.1^13,K.1^91,-1*K.1^89,K.1^69,K.1^11,K.1^37,-1*K.1^91,K.1^89,-1*K.1^69,K.1^43,-1*K.1^17,K.1^59,-1*K.1^11,-1*K.1^33,-1*K.1^83,K.1^97,-1*K.1^77,-1*K.1^3,K.1^29,-1*K.1^29,-1*K.1^51,-1*K.1^73,K.1^51,K.1^73,K.1,K.1^79,-1*K.1^17,K.1^7,-1*K.1^27,-1*K.1^97,-1*K.1^71,-1*K.1^21,-1*K.1^53,-1*K.1^67,K.1^71,K.1^99,-1*K.1^81,-1*K.1^7,K.1^33,K.1^29,K.1^51,K.1^77,K.1^47,K.1^87,-1*K.1^41,-1*K.1^99,K.1^81,-1*K.1^93,-1*K.1^31,K.1^53,K.1^71,K.1^63,-1*K.1^49,K.1^23,K.1^57,K.1^17,-1*K.1^59,-1*K.1,-1*K.1^91,K.1^83,-1*K.1^97,-1*K.1^23,K.1^89,K.1^9,-1*K.1^67,-1*K.1^57,-1*K.1^31,-1*K.1^49,-1*K.1^9,-1*K.1^71,K.1^93,K.1^31,K.1^49,-1*K.1^81,K.1^39,K.1^41,-1*K.1^37,-1*K.1^43,K.1^69,-1*K.1^43,-1*K.1^83,-1*K.1^33,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,-1*K.1^68,-1*K.1^84,K.1^88,-1*K.1^44,K.1^64,-1*K.1^4,-1*K.1^28,K.1^16,K.1^32,-1*K.1^36,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^52,K.1^48,-1*K.1^76,K.1^24,K.1^8,-1*K.1^15,K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,K.1^85,-1*K.1^95,K.1^85,-1*K.1^5,-1*K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^35,K.1^35,-1*K.1^85,K.1^95,K.1^15,K.1^15,K.1^45,-1*K.1^55,-1*K.1^45,-1*K.1^85,K.1^65,K.1^55,K.1^65,K.1^35,K.1^45,K.1^95,-1*K.1^35,-1*K.1^55,-1*K.1^5,K.1^55,K.1^72,-1*K.1^4,K.1^76,K.1^52,-1*K.1^44,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^32,-1*K.1^96,K.1^32,-1*K.1^96,K.1^48,K.1^88,-1*K.1^72,-1*K.1^36,-1*K.1^24,-1*K.1^56,-1*K.1^32,-1*K.1^76,K.1^36,-1*K.1^16,K.1^56,K.1^52,K.1^76,-1*K.1^68,K.1^16,K.1^92,K.1^8,-1*K.1^28,K.1^12,K.1^92,K.1^4,K.1^4,-1*K.1^88,-1*K.1^24,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^28,K.1^28,K.1^96,K.1^64,-1*K.1^72,-1*K.1^56,-1*K.1^84,-1*K.1^48,-1*K.1^48,K.1^44,K.1^68,K.1^68,K.1^44,-1*K.1^8,K.1^84,K.1^84,-1*K.1^8,-1*K.1^52,-1*K.1^16,K.1^12,K.1^36,K.1^36,-1*K.1^64,-1*K.1^92,K.1^96,K.1^16,K.1^8,-1*K.1^28,K.1^28,-1*K.1^32,K.1^52,K.1^44,K.1^84,-1*K.1^84,-1*K.1^8,-1*K.1^88,-1*K.1^4,K.1^24,K.1^68,K.1^92,K.1^64,K.1^4,-1*K.1^24,-1*K.1^72,K.1^12,-1*K.1^48,-1*K.1^44,K.1^48,K.1^76,K.1^72,-1*K.1^52,-1*K.1^96,-1*K.1^16,K.1^32,K.1^56,-1*K.1^56,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,-1*K.1^12,-1*K.1^18,-1*K.1^26,K.1^78,K.1^14,K.1^62,K.1^62,K.1^54,K.1^38,-1*K.1^42,-1*K.1^14,-1*K.1^34,K.1^94,K.1^74,K.1^46,-1*K.1^98,K.1^94,K.1^22,K.1^86,-1*K.1^18,K.1^42,-1*K.1^62,K.1^22,-1*K.1^22,K.1^82,-1*K.1^54,-1*K.1^38,K.1^66,K.1^58,-1*K.1^46,-1*K.1^82,K.1^26,-1*K.1^78,-1*K.1^46,-1*K.1^98,-1*K.1^62,K.1^98,-1*K.1^6,-1*K.1^2,K.1^42,K.1^86,K.1^26,-1*K.1^78,K.1^18,-1*K.1^66,K.1^6,K.1^6,-1*K.1^74,-1*K.1^86,K.1^66,-1*K.1^38,-1*K.1^86,K.1^18,K.1^34,K.1^2,K.1^2,-1*K.1^42,K.1^82,-1*K.1^22,-1*K.1^14,K.1^98,-1*K.1^6,-1*K.1^54,K.1^58,K.1^34,-1*K.1^26,K.1^38,-1*K.1^66,-1*K.1^2,K.1^14,K.1^78,-1*K.1^94,K.1^74,-1*K.1^74,K.1^54,-1*K.1^94,-1*K.1^58,-1*K.1^58,-1*K.1^34,-1*K.1^82,K.1^46,K.1^6,-1*K.1^42,-1*K.1^62,K.1^82,K.1^62,K.1^22,-1*K.1^6,-1*K.1^38,-1*K.1^18,-1*K.1^66,-1*K.1^46,K.1^98,K.1^78,K.1^14,K.1^34,-1*K.1^54,-1*K.1^34,K.1^94,-1*K.1^78,K.1^66,-1*K.1^14,K.1^86,-1*K.1^98,K.1^18,K.1^26,K.1^46,K.1^38,K.1^58,-1*K.1^22,-1*K.1^2,-1*K.1^82,K.1^2,K.1^42,-1*K.1^58,-1*K.1^26,-1*K.1^86,-1*K.1^94,-1*K.1^74,K.1^54,K.1^74,-1*K.1^49,-1*K.1^33,K.1^99,K.1^21,K.1^9,-1*K.1^7,-1*K.1^41,-1*K.1^67,-1*K.1^3,K.1^13,-1*K.1^93,K.1^41,K.1^81,-1*K.1^39,-1*K.1^73,K.1^79,-1*K.1^27,-1*K.1^81,K.1^83,K.1^37,K.1^39,K.1^31,K.1^77,K.1^43,K.1^77,-1*K.1^17,K.1^67,-1*K.1,K.1^7,-1*K.1^99,K.1^93,K.1^59,K.1^61,-1*K.1^61,K.1^73,K.1^93,K.1^23,-1*K.1^83,K.1^61,K.1^27,-1*K.1^57,-1*K.1^63,-1*K.1^97,K.1^47,-1*K.1^59,-1*K.1^39,K.1^53,K.1^63,-1*K.1^43,-1*K.1^73,K.1^53,K.1^33,K.1,-1*K.1^21,-1*K.1^13,-1*K.1^33,-1*K.1^19,K.1^87,K.1^21,-1*K.1^87,-1*K.1^29,-1*K.1,K.1^19,-1*K.1^17,-1*K.1^91,K.1^69,-1*K.1^31,-1*K.1^77,K.1^57,K.1^51,K.1^17,-1*K.1^67,-1*K.1^99,-1*K.1^21,K.1^99,K.1^71,K.1^49,K.1^67,K.1^69,K.1^51,-1*K.1^71,-1*K.1^49,K.1^83,-1*K.1^69,-1*K.1^51,K.1^71,K.1^37,K.1^3,-1*K.1^81,K.1^49,-1*K.1^47,K.1^97,K.1^23,-1*K.1^43,-1*K.1^77,K.1^11,-1*K.1^11,K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^59,-1*K.1^61,K.1^3,-1*K.1^13,-1*K.1^93,-1*K.1^23,-1*K.1^89,K.1^39,-1*K.1^27,-1*K.1^53,K.1^89,-1*K.1^41,-1*K.1^79,K.1^13,K.1^47,K.1^11,-1*K.1^9,K.1^43,K.1^73,K.1^33,K.1^19,K.1^41,K.1^79,K.1^87,K.1^29,K.1^27,K.1^89,K.1^17,K.1^91,K.1^57,K.1^63,-1*K.1^3,K.1^81,K.1^59,-1*K.1^69,-1*K.1^97,-1*K.1^23,-1*K.1^57,-1*K.1^51,K.1^31,-1*K.1^53,-1*K.1^63,K.1^29,K.1^91,-1*K.1^31,-1*K.1^89,-1*K.1^87,-1*K.1^29,-1*K.1^91,-1*K.1^79,K.1,-1*K.1^19,-1*K.1^83,-1*K.1^37,-1*K.1^71,-1*K.1^37,K.1^97,-1*K.1^47,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,K.1^32,K.1^16,-1*K.1^12,K.1^56,-1*K.1^36,K.1^96,K.1^72,-1*K.1^84,-1*K.1^68,K.1^64,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,-1*K.1^28,K.1^48,-1*K.1^52,K.1^24,-1*K.1^76,-1*K.1^92,K.1^85,-1*K.1^95,K.1^85,-1*K.1^95,K.1^55,-1*K.1^15,K.1^5,-1*K.1^15,K.1^95,K.1^35,K.1^5,K.1^35,K.1^65,-1*K.1^65,K.1^15,-1*K.1^5,-1*K.1^85,-1*K.1^85,-1*K.1^55,K.1^45,K.1^55,K.1^15,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^65,-1*K.1^55,-1*K.1^5,K.1^65,K.1^45,K.1^95,-1*K.1^45,-1*K.1^28,K.1^96,-1*K.1^24,-1*K.1^48,K.1^56,K.1^88,K.1^8,-1*K.1^76,K.1^68,K.1^4,-1*K.1^68,K.1^4,-1*K.1^52,-1*K.1^12,K.1^28,K.1^64,K.1^76,K.1^44,K.1^68,K.1^24,-1*K.1^64,K.1^84,-1*K.1^44,-1*K.1^48,-1*K.1^24,K.1^32,-1*K.1^84,-1*K.1^8,-1*K.1^92,K.1^72,-1*K.1^88,-1*K.1^8,-1*K.1^96,-1*K.1^96,K.1^12,K.1^76,K.1^12,K.1^36,K.1^36,-1*K.1^72,-1*K.1^72,-1*K.1^4,-1*K.1^36,K.1^28,K.1^44,K.1^16,K.1^52,K.1^52,-1*K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^56,K.1^92,-1*K.1^16,-1*K.1^16,K.1^92,K.1^48,K.1^84,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^36,K.1^8,-1*K.1^4,-1*K.1^84,-1*K.1^92,K.1^72,-1*K.1^72,K.1^68,-1*K.1^48,-1*K.1^56,-1*K.1^16,K.1^16,K.1^92,K.1^12,K.1^96,-1*K.1^76,-1*K.1^32,-1*K.1^8,-1*K.1^36,-1*K.1^96,K.1^76,K.1^28,-1*K.1^88,K.1^52,K.1^56,-1*K.1^52,-1*K.1^24,-1*K.1^28,K.1^48,K.1^4,K.1^84,-1*K.1^68,-1*K.1^44,K.1^44,K.1^32,-1*K.1^12,K.1^64,K.1^24,K.1^88,K.1^82,K.1^74,-1*K.1^22,-1*K.1^86,-1*K.1^38,-1*K.1^38,-1*K.1^46,-1*K.1^62,K.1^58,K.1^86,K.1^66,-1*K.1^6,-1*K.1^26,-1*K.1^54,K.1^2,-1*K.1^6,-1*K.1^78,-1*K.1^14,K.1^82,-1*K.1^58,K.1^38,-1*K.1^78,K.1^78,-1*K.1^18,K.1^46,K.1^62,-1*K.1^34,-1*K.1^42,K.1^54,K.1^18,-1*K.1^74,K.1^22,K.1^54,K.1^2,K.1^38,-1*K.1^2,K.1^94,K.1^98,-1*K.1^58,-1*K.1^14,-1*K.1^74,K.1^22,-1*K.1^82,K.1^34,-1*K.1^94,-1*K.1^94,K.1^26,K.1^14,-1*K.1^34,K.1^62,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^98,-1*K.1^98,K.1^58,-1*K.1^18,K.1^78,K.1^86,-1*K.1^2,K.1^94,K.1^46,-1*K.1^42,-1*K.1^66,K.1^74,-1*K.1^62,K.1^34,K.1^98,-1*K.1^86,-1*K.1^22,K.1^6,-1*K.1^26,K.1^26,-1*K.1^46,K.1^6,K.1^42,K.1^42,K.1^66,K.1^18,-1*K.1^54,-1*K.1^94,K.1^58,K.1^38,-1*K.1^18,-1*K.1^38,-1*K.1^78,K.1^94,K.1^62,K.1^82,K.1^34,K.1^54,-1*K.1^2,-1*K.1^22,-1*K.1^86,-1*K.1^66,K.1^46,K.1^66,-1*K.1^6,K.1^22,-1*K.1^34,K.1^86,-1*K.1^14,K.1^2,-1*K.1^82,-1*K.1^74,-1*K.1^54,-1*K.1^62,-1*K.1^42,K.1^78,K.1^98,K.1^18,-1*K.1^98,-1*K.1^58,K.1^42,K.1^74,K.1^14,K.1^6,K.1^26,-1*K.1^46,-1*K.1^26,K.1^51,K.1^67,-1*K.1,-1*K.1^79,-1*K.1^91,K.1^93,K.1^59,K.1^33,K.1^97,-1*K.1^87,K.1^7,-1*K.1^59,-1*K.1^19,K.1^61,K.1^27,-1*K.1^21,K.1^73,K.1^19,-1*K.1^17,-1*K.1^63,-1*K.1^61,-1*K.1^69,-1*K.1^23,-1*K.1^57,-1*K.1^23,K.1^83,-1*K.1^33,K.1^99,-1*K.1^93,K.1,-1*K.1^7,-1*K.1^41,-1*K.1^39,K.1^39,-1*K.1^27,-1*K.1^7,-1*K.1^77,K.1^17,-1*K.1^39,-1*K.1^73,K.1^43,K.1^37,K.1^3,-1*K.1^53,K.1^41,K.1^61,-1*K.1^47,-1*K.1^37,K.1^57,K.1^27,-1*K.1^47,-1*K.1^67,-1*K.1^99,K.1^79,K.1^87,K.1^67,K.1^81,-1*K.1^13,-1*K.1^79,K.1^13,K.1^71,K.1^99,-1*K.1^81,K.1^83,K.1^9,-1*K.1^31,K.1^69,K.1^23,-1*K.1^43,-1*K.1^49,-1*K.1^83,K.1^33,K.1,K.1^79,-1*K.1,-1*K.1^29,-1*K.1^51,-1*K.1^33,-1*K.1^31,-1*K.1^49,K.1^29,K.1^51,-1*K.1^17,K.1^31,K.1^49,-1*K.1^29,-1*K.1^63,-1*K.1^97,K.1^19,-1*K.1^51,K.1^53,-1*K.1^3,-1*K.1^77,K.1^57,K.1^23,-1*K.1^89,K.1^89,-1*K.1^91,K.1^93,K.1^91,-1*K.1^93,K.1^41,K.1^39,-1*K.1^97,K.1^87,K.1^7,K.1^77,K.1^11,-1*K.1^61,K.1^73,K.1^47,-1*K.1^11,K.1^59,K.1^21,-1*K.1^87,-1*K.1^53,-1*K.1^89,K.1^91,-1*K.1^57,-1*K.1^27,-1*K.1^67,-1*K.1^81,-1*K.1^59,-1*K.1^21,-1*K.1^13,-1*K.1^71,-1*K.1^73,-1*K.1^11,-1*K.1^83,-1*K.1^9,-1*K.1^43,-1*K.1^37,K.1^97,-1*K.1^19,-1*K.1^41,K.1^31,K.1^3,K.1^77,K.1^43,K.1^49,-1*K.1^69,K.1^47,K.1^37,-1*K.1^71,-1*K.1^9,K.1^69,K.1^11,K.1^13,K.1^71,K.1^9,K.1^21,-1*K.1^99,K.1^81,K.1^17,K.1^63,K.1^29,K.1^63,-1*K.1^3,K.1^53,K.1^89]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^8,-1*K.1^4,-1*K.1^28,K.1^64,-1*K.1^84,K.1^24,-1*K.1^68,K.1^96,-1*K.1^92,K.1^16,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^32,-1*K.1^12,K.1^88,K.1^56,-1*K.1^44,K.1^48,-1*K.1^15,K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,K.1^85,-1*K.1^95,K.1^85,-1*K.1^5,-1*K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^35,K.1^35,-1*K.1^85,K.1^95,K.1^15,K.1^15,K.1^45,-1*K.1^55,-1*K.1^45,-1*K.1^85,K.1^65,K.1^55,K.1^65,K.1^35,K.1^45,K.1^95,-1*K.1^35,-1*K.1^55,-1*K.1^5,K.1^55,K.1^32,K.1^24,-1*K.1^56,K.1^12,K.1^64,K.1^72,-1*K.1^52,-1*K.1^44,K.1^92,K.1^76,-1*K.1^92,K.1^76,K.1^88,-1*K.1^28,-1*K.1^32,K.1^16,K.1^44,K.1^36,K.1^92,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^36,K.1^12,-1*K.1^56,K.1^8,K.1^96,K.1^52,K.1^48,-1*K.1^68,-1*K.1^72,K.1^52,-1*K.1^24,-1*K.1^24,K.1^28,K.1^44,K.1^28,K.1^84,K.1^84,K.1^68,K.1^68,-1*K.1^76,-1*K.1^84,-1*K.1^32,K.1^36,-1*K.1^4,-1*K.1^88,-1*K.1^88,-1*K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^64,-1*K.1^48,K.1^4,K.1^4,-1*K.1^48,-1*K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^16,-1*K.1^16,K.1^84,-1*K.1^52,-1*K.1^76,K.1^96,K.1^48,-1*K.1^68,K.1^68,K.1^92,K.1^12,-1*K.1^64,K.1^4,-1*K.1^4,-1*K.1^48,K.1^28,K.1^24,-1*K.1^44,-1*K.1^8,K.1^52,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^32,-1*K.1^72,-1*K.1^88,K.1^64,K.1^88,-1*K.1^56,K.1^32,-1*K.1^12,K.1^76,-1*K.1^96,-1*K.1^92,-1*K.1^36,K.1^36,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^72,-1*K.1^58,K.1^6,-1*K.1^18,-1*K.1^34,K.1^22,K.1^22,-1*K.1^74,K.1^78,-1*K.1^2,K.1^34,K.1^54,K.1^14,-1*K.1^94,-1*K.1^26,K.1^38,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^58,K.1^2,-1*K.1^22,-1*K.1^82,K.1^82,K.1^42,K.1^74,-1*K.1^78,-1*K.1^46,K.1^98,K.1^26,-1*K.1^42,-1*K.1^6,K.1^18,K.1^26,K.1^38,-1*K.1^22,-1*K.1^38,-1*K.1^86,K.1^62,K.1^2,-1*K.1^66,-1*K.1^6,K.1^18,K.1^58,K.1^46,K.1^86,K.1^86,K.1^94,K.1^66,-1*K.1^46,-1*K.1^78,K.1^66,K.1^58,-1*K.1^54,-1*K.1^62,-1*K.1^62,-1*K.1^2,K.1^42,K.1^82,K.1^34,-1*K.1^38,-1*K.1^86,K.1^74,K.1^98,-1*K.1^54,K.1^6,K.1^78,K.1^46,K.1^62,-1*K.1^34,-1*K.1^18,-1*K.1^14,-1*K.1^94,K.1^94,-1*K.1^74,-1*K.1^14,-1*K.1^98,-1*K.1^98,K.1^54,-1*K.1^42,-1*K.1^26,K.1^86,-1*K.1^2,-1*K.1^22,K.1^42,K.1^22,-1*K.1^82,-1*K.1^86,-1*K.1^78,-1*K.1^58,K.1^46,K.1^26,-1*K.1^38,-1*K.1^18,-1*K.1^34,-1*K.1^54,K.1^74,K.1^54,K.1^14,K.1^18,-1*K.1^46,K.1^34,-1*K.1^66,K.1^38,K.1^58,-1*K.1^6,-1*K.1^26,K.1^78,K.1^98,K.1^82,K.1^62,-1*K.1^42,-1*K.1^62,K.1^2,-1*K.1^98,K.1^6,K.1^66,-1*K.1^14,K.1^94,-1*K.1^74,-1*K.1^94,K.1^69,-1*K.1^73,K.1^19,-1*K.1,-1*K.1^29,K.1^67,K.1^21,-1*K.1^27,-1*K.1^43,K.1^53,K.1^33,-1*K.1^21,-1*K.1^61,K.1^59,K.1^13,-1*K.1^99,K.1^87,K.1^61,-1*K.1^23,-1*K.1^97,-1*K.1^59,-1*K.1^11,K.1^37,K.1^83,K.1^37,K.1^77,K.1^27,-1*K.1^81,-1*K.1^67,-1*K.1^19,-1*K.1^33,-1*K.1^79,-1*K.1^41,K.1^41,-1*K.1^13,-1*K.1^33,K.1^63,K.1^23,-1*K.1^41,-1*K.1^87,-1*K.1^17,K.1^3,-1*K.1^57,K.1^7,K.1^79,K.1^59,K.1^93,-1*K.1^3,-1*K.1^83,K.1^13,K.1^93,K.1^73,K.1^81,K.1,-1*K.1^53,-1*K.1^73,K.1^39,K.1^47,-1*K.1,-1*K.1^47,K.1^49,-1*K.1^81,-1*K.1^39,K.1^77,K.1^71,-1*K.1^89,K.1^11,-1*K.1^37,K.1^17,-1*K.1^31,-1*K.1^77,-1*K.1^27,-1*K.1^19,K.1,K.1^19,-1*K.1^51,-1*K.1^69,K.1^27,-1*K.1^89,-1*K.1^31,K.1^51,K.1^69,-1*K.1^23,K.1^89,K.1^31,-1*K.1^51,-1*K.1^97,K.1^43,K.1^61,-1*K.1^69,-1*K.1^7,K.1^57,K.1^63,-1*K.1^83,-1*K.1^37,K.1^91,-1*K.1^91,-1*K.1^29,K.1^67,K.1^29,-1*K.1^67,K.1^79,K.1^41,K.1^43,-1*K.1^53,K.1^33,-1*K.1^63,-1*K.1^9,-1*K.1^59,K.1^87,-1*K.1^93,K.1^9,K.1^21,K.1^99,K.1^53,K.1^7,K.1^91,K.1^29,K.1^83,-1*K.1^13,K.1^73,-1*K.1^39,-1*K.1^21,-1*K.1^99,K.1^47,-1*K.1^49,-1*K.1^87,K.1^9,-1*K.1^77,-1*K.1^71,K.1^17,-1*K.1^3,-1*K.1^43,-1*K.1^61,-1*K.1^79,K.1^89,-1*K.1^57,-1*K.1^63,-1*K.1^17,K.1^31,-1*K.1^11,-1*K.1^93,K.1^3,-1*K.1^49,-1*K.1^71,K.1^11,-1*K.1^9,-1*K.1^47,K.1^49,K.1^71,K.1^99,K.1^81,K.1^39,K.1^23,K.1^97,K.1^51,K.1^97,K.1^57,-1*K.1^7,-1*K.1^91]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^92,K.1^96,K.1^72,-1*K.1^36,K.1^16,-1*K.1^76,K.1^32,-1*K.1^4,K.1^8,-1*K.1^84,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^68,K.1^88,-1*K.1^12,-1*K.1^44,K.1^56,-1*K.1^52,K.1^85,-1*K.1^95,K.1^85,-1*K.1^95,K.1^55,-1*K.1^15,K.1^5,-1*K.1^15,K.1^95,K.1^35,K.1^5,K.1^35,K.1^65,-1*K.1^65,K.1^15,-1*K.1^5,-1*K.1^85,-1*K.1^85,-1*K.1^55,K.1^45,K.1^55,K.1^15,-1*K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^65,-1*K.1^55,-1*K.1^5,K.1^65,K.1^45,K.1^95,-1*K.1^45,-1*K.1^68,-1*K.1^76,K.1^44,-1*K.1^88,-1*K.1^36,-1*K.1^28,K.1^48,K.1^56,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^24,-1*K.1^12,K.1^72,K.1^68,-1*K.1^84,-1*K.1^56,-1*K.1^64,-1*K.1^8,-1*K.1^44,K.1^84,K.1^4,K.1^64,-1*K.1^88,K.1^44,-1*K.1^92,-1*K.1^4,-1*K.1^48,-1*K.1^52,K.1^32,K.1^28,-1*K.1^48,K.1^76,K.1^76,-1*K.1^72,-1*K.1^56,-1*K.1^72,-1*K.1^16,-1*K.1^16,-1*K.1^32,-1*K.1^32,K.1^24,K.1^16,K.1^68,-1*K.1^64,K.1^96,K.1^12,K.1^12,K.1^36,K.1^92,K.1^92,K.1^36,K.1^52,-1*K.1^96,-1*K.1^96,K.1^52,K.1^88,K.1^4,K.1^28,K.1^84,K.1^84,-1*K.1^16,K.1^48,K.1^24,-1*K.1^4,-1*K.1^52,K.1^32,-1*K.1^32,-1*K.1^8,-1*K.1^88,K.1^36,-1*K.1^96,K.1^96,K.1^52,-1*K.1^72,-1*K.1^76,K.1^56,K.1^92,-1*K.1^48,K.1^16,K.1^76,-1*K.1^56,K.1^68,K.1^28,K.1^12,-1*K.1^36,-1*K.1^12,K.1^44,-1*K.1^68,K.1^88,-1*K.1^24,K.1^4,K.1^8,K.1^64,-1*K.1^64,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^28,K.1^42,-1*K.1^94,K.1^82,K.1^66,-1*K.1^78,-1*K.1^78,K.1^26,-1*K.1^22,K.1^98,-1*K.1^66,-1*K.1^46,-1*K.1^86,K.1^6,K.1^74,-1*K.1^62,-1*K.1^86,K.1^18,K.1^34,K.1^42,-1*K.1^98,K.1^78,K.1^18,-1*K.1^18,-1*K.1^58,-1*K.1^26,K.1^22,K.1^54,-1*K.1^2,-1*K.1^74,K.1^58,K.1^94,-1*K.1^82,-1*K.1^74,-1*K.1^62,K.1^78,K.1^62,K.1^14,-1*K.1^38,-1*K.1^98,K.1^34,K.1^94,-1*K.1^82,-1*K.1^42,-1*K.1^54,-1*K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^34,K.1^54,K.1^22,-1*K.1^34,-1*K.1^42,K.1^46,K.1^38,K.1^38,K.1^98,-1*K.1^58,-1*K.1^18,-1*K.1^66,K.1^62,K.1^14,-1*K.1^26,-1*K.1^2,K.1^46,-1*K.1^94,-1*K.1^22,-1*K.1^54,-1*K.1^38,K.1^66,K.1^82,K.1^86,K.1^6,-1*K.1^6,K.1^26,K.1^86,K.1^2,K.1^2,-1*K.1^46,K.1^58,K.1^74,-1*K.1^14,K.1^98,K.1^78,-1*K.1^58,-1*K.1^78,K.1^18,K.1^14,K.1^22,K.1^42,-1*K.1^54,-1*K.1^74,K.1^62,K.1^82,K.1^66,K.1^46,-1*K.1^26,-1*K.1^46,-1*K.1^86,-1*K.1^82,K.1^54,-1*K.1^66,K.1^34,-1*K.1^62,-1*K.1^42,K.1^94,K.1^74,-1*K.1^22,-1*K.1^2,-1*K.1^18,-1*K.1^38,K.1^58,K.1^38,-1*K.1^98,K.1^2,-1*K.1^94,-1*K.1^34,K.1^86,-1*K.1^6,K.1^26,K.1^6,-1*K.1^31,K.1^27,-1*K.1^81,K.1^99,K.1^71,-1*K.1^33,-1*K.1^79,K.1^73,K.1^57,-1*K.1^47,-1*K.1^67,K.1^79,K.1^39,-1*K.1^41,-1*K.1^87,K.1,-1*K.1^13,-1*K.1^39,K.1^77,K.1^3,K.1^41,K.1^89,-1*K.1^63,-1*K.1^17,-1*K.1^63,-1*K.1^23,-1*K.1^73,K.1^19,K.1^33,K.1^81,K.1^67,K.1^21,K.1^59,-1*K.1^59,K.1^87,K.1^67,-1*K.1^37,-1*K.1^77,K.1^59,K.1^13,K.1^83,-1*K.1^97,K.1^43,-1*K.1^93,-1*K.1^21,-1*K.1^41,-1*K.1^7,K.1^97,K.1^17,-1*K.1^87,-1*K.1^7,-1*K.1^27,-1*K.1^19,-1*K.1^99,K.1^47,K.1^27,-1*K.1^61,-1*K.1^53,K.1^99,K.1^53,-1*K.1^51,K.1^19,K.1^61,-1*K.1^23,-1*K.1^29,K.1^11,-1*K.1^89,K.1^63,-1*K.1^83,K.1^69,K.1^23,K.1^73,K.1^81,-1*K.1^99,-1*K.1^81,K.1^49,K.1^31,-1*K.1^73,K.1^11,K.1^69,-1*K.1^49,-1*K.1^31,K.1^77,-1*K.1^11,-1*K.1^69,K.1^49,K.1^3,-1*K.1^57,-1*K.1^39,K.1^31,K.1^93,-1*K.1^43,-1*K.1^37,K.1^17,K.1^63,-1*K.1^9,K.1^9,K.1^71,-1*K.1^33,-1*K.1^71,K.1^33,-1*K.1^21,-1*K.1^59,-1*K.1^57,K.1^47,-1*K.1^67,K.1^37,K.1^91,K.1^41,-1*K.1^13,K.1^7,-1*K.1^91,-1*K.1^79,-1*K.1,-1*K.1^47,-1*K.1^93,-1*K.1^9,-1*K.1^71,-1*K.1^17,K.1^87,-1*K.1^27,K.1^61,K.1^79,K.1,-1*K.1^53,K.1^51,K.1^13,-1*K.1^91,K.1^23,K.1^29,-1*K.1^83,K.1^97,K.1^57,K.1^39,K.1^21,-1*K.1^11,K.1^43,K.1^37,K.1^83,-1*K.1^69,K.1^89,K.1^7,-1*K.1^97,K.1^51,K.1^29,-1*K.1^89,K.1^91,K.1^53,-1*K.1^51,-1*K.1^29,-1*K.1,-1*K.1^19,-1*K.1^61,-1*K.1^77,-1*K.1^3,-1*K.1^49,-1*K.1^3,-1*K.1^43,K.1^93,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^96,K.1^48,-1*K.1^36,-1*K.1^68,K.1^8,K.1^88,K.1^16,-1*K.1^52,-1*K.1^4,-1*K.1^92,K.1^32,-1*K.1^12,K.1^64,K.1^24,-1*K.1^84,-1*K.1^44,K.1^56,K.1^72,-1*K.1^28,-1*K.1^76,K.1^55,-1*K.1^85,K.1^55,-1*K.1^85,-1*K.1^65,-1*K.1^45,K.1^15,-1*K.1^45,K.1^85,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^95,K.1^95,K.1^45,-1*K.1^15,-1*K.1^55,-1*K.1^55,K.1^65,-1*K.1^35,-1*K.1^65,K.1^45,K.1^5,K.1^35,K.1^5,K.1^95,K.1^65,-1*K.1^15,-1*K.1^95,-1*K.1^35,K.1^85,K.1^35,-1*K.1^84,K.1^88,-1*K.1^72,K.1^44,-1*K.1^68,K.1^64,K.1^24,-1*K.1^28,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^56,-1*K.1^36,K.1^84,-1*K.1^92,K.1^28,-1*K.1^32,K.1^4,K.1^72,K.1^92,K.1^52,K.1^32,K.1^44,-1*K.1^72,K.1^96,-1*K.1^52,-1*K.1^24,-1*K.1^76,K.1^16,-1*K.1^64,-1*K.1^24,-1*K.1^88,-1*K.1^88,K.1^36,K.1^28,K.1^36,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^84,-1*K.1^32,K.1^48,-1*K.1^56,-1*K.1^56,K.1^68,-1*K.1^96,-1*K.1^96,K.1^68,K.1^76,-1*K.1^48,-1*K.1^48,K.1^76,-1*K.1^44,K.1^52,-1*K.1^64,K.1^92,K.1^92,-1*K.1^8,K.1^24,-1*K.1^12,-1*K.1^52,-1*K.1^76,K.1^16,-1*K.1^16,K.1^4,K.1^44,K.1^68,-1*K.1^48,K.1^48,K.1^76,K.1^36,K.1^88,-1*K.1^28,-1*K.1^96,-1*K.1^24,K.1^8,-1*K.1^88,K.1^28,K.1^84,-1*K.1^64,-1*K.1^56,-1*K.1^68,K.1^56,-1*K.1^72,-1*K.1^84,-1*K.1^44,K.1^12,K.1^52,-1*K.1^4,K.1^32,-1*K.1^32,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,K.1^64,K.1^46,K.1^22,-1*K.1^66,-1*K.1^58,K.1^14,K.1^14,K.1^38,K.1^86,-1*K.1^74,K.1^58,-1*K.1^98,-1*K.1^18,-1*K.1^78,K.1^62,K.1^6,-1*K.1^18,-1*K.1^34,-1*K.1^42,K.1^46,K.1^74,-1*K.1^14,-1*K.1^34,K.1^34,-1*K.1^54,-1*K.1^38,-1*K.1^86,K.1^2,K.1^26,-1*K.1^62,K.1^54,-1*K.1^22,K.1^66,-1*K.1^62,K.1^6,-1*K.1^14,-1*K.1^6,K.1^82,K.1^94,K.1^74,-1*K.1^42,-1*K.1^22,K.1^66,-1*K.1^46,-1*K.1^2,-1*K.1^82,-1*K.1^82,K.1^78,K.1^42,K.1^2,-1*K.1^86,K.1^42,-1*K.1^46,K.1^98,-1*K.1^94,-1*K.1^94,-1*K.1^74,-1*K.1^54,K.1^34,K.1^58,-1*K.1^6,K.1^82,-1*K.1^38,K.1^26,K.1^98,K.1^22,K.1^86,-1*K.1^2,K.1^94,-1*K.1^58,-1*K.1^66,K.1^18,-1*K.1^78,K.1^78,K.1^38,K.1^18,-1*K.1^26,-1*K.1^26,-1*K.1^98,K.1^54,K.1^62,-1*K.1^82,-1*K.1^74,-1*K.1^14,-1*K.1^54,K.1^14,-1*K.1^34,K.1^82,-1*K.1^86,K.1^46,-1*K.1^2,-1*K.1^62,-1*K.1^6,-1*K.1^66,-1*K.1^58,K.1^98,-1*K.1^38,-1*K.1^98,-1*K.1^18,K.1^66,K.1^2,K.1^58,-1*K.1^42,K.1^6,-1*K.1^46,-1*K.1^22,K.1^62,K.1^86,K.1^26,K.1^34,K.1^94,K.1^54,-1*K.1^94,K.1^74,-1*K.1^26,K.1^22,K.1^42,K.1^18,K.1^78,K.1^38,-1*K.1^78,-1*K.1^53,K.1,-1*K.1^3,-1*K.1^37,-1*K.1^73,K.1^79,-1*K.1^77,K.1^99,K.1^91,-1*K.1^61,K.1^21,K.1^77,-1*K.1^57,-1*K.1^83,K.1^81,-1*K.1^63,K.1^19,K.1^57,-1*K.1^51,K.1^89,K.1^83,-1*K.1^7,-1*K.1^69,K.1^71,-1*K.1^69,K.1^49,-1*K.1^99,K.1^97,-1*K.1^79,K.1^3,-1*K.1^21,K.1^23,K.1^17,-1*K.1^17,-1*K.1^81,-1*K.1^21,-1*K.1^31,K.1^51,K.1^17,-1*K.1^19,-1*K.1^29,-1*K.1^11,K.1^9,K.1^59,-1*K.1^23,-1*K.1^83,K.1^41,K.1^11,-1*K.1^71,K.1^81,K.1^41,-1*K.1,-1*K.1^97,K.1^37,K.1^61,K.1,K.1^43,-1*K.1^39,-1*K.1^37,K.1^39,K.1^13,K.1^97,-1*K.1^43,K.1^49,K.1^27,-1*K.1^93,K.1^7,K.1^69,K.1^29,K.1^47,-1*K.1^49,K.1^99,K.1^3,K.1^37,-1*K.1^3,-1*K.1^87,K.1^53,-1*K.1^99,-1*K.1^93,K.1^47,K.1^87,-1*K.1^53,-1*K.1^51,K.1^93,-1*K.1^47,-1*K.1^87,K.1^89,-1*K.1^91,K.1^57,K.1^53,-1*K.1^59,-1*K.1^9,-1*K.1^31,-1*K.1^71,K.1^69,-1*K.1^67,K.1^67,-1*K.1^73,K.1^79,K.1^73,-1*K.1^79,-1*K.1^23,-1*K.1^17,-1*K.1^91,K.1^61,K.1^21,K.1^31,K.1^33,K.1^83,K.1^19,-1*K.1^41,-1*K.1^33,-1*K.1^77,K.1^63,-1*K.1^61,K.1^59,-1*K.1^67,K.1^73,K.1^71,-1*K.1^81,-1*K.1,-1*K.1^43,K.1^77,-1*K.1^63,-1*K.1^39,-1*K.1^13,-1*K.1^19,-1*K.1^33,-1*K.1^49,-1*K.1^27,K.1^29,K.1^11,K.1^91,-1*K.1^57,K.1^23,K.1^93,K.1^9,K.1^31,-1*K.1^29,-1*K.1^47,-1*K.1^7,-1*K.1^41,-1*K.1^11,-1*K.1^13,-1*K.1^27,K.1^7,K.1^33,K.1^39,K.1^13,K.1^27,K.1^63,-1*K.1^97,K.1^43,K.1^51,-1*K.1^89,K.1^87,-1*K.1^89,-1*K.1^9,-1*K.1^59,K.1^67]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^4,-1*K.1^52,K.1^64,K.1^32,-1*K.1^92,-1*K.1^12,-1*K.1^84,K.1^48,K.1^96,K.1^8,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,K.1^16,K.1^56,-1*K.1^44,-1*K.1^28,K.1^72,K.1^24,-1*K.1^45,K.1^15,-1*K.1^45,K.1^15,K.1^35,K.1^55,-1*K.1^85,K.1^55,-1*K.1^15,K.1^95,-1*K.1^85,K.1^95,K.1^5,-1*K.1^5,-1*K.1^55,K.1^85,K.1^45,K.1^45,-1*K.1^35,K.1^65,K.1^35,-1*K.1^55,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^5,-1*K.1^35,K.1^85,K.1^5,K.1^65,-1*K.1^15,-1*K.1^65,K.1^16,-1*K.1^12,K.1^28,-1*K.1^56,K.1^32,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^96,-1*K.1^88,K.1^96,-1*K.1^88,-1*K.1^44,K.1^64,-1*K.1^16,K.1^8,-1*K.1^72,K.1^68,-1*K.1^96,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^68,-1*K.1^56,K.1^28,-1*K.1^4,K.1^48,K.1^76,K.1^24,-1*K.1^84,K.1^36,K.1^76,K.1^12,K.1^12,-1*K.1^64,-1*K.1^72,-1*K.1^64,K.1^92,K.1^92,K.1^84,K.1^84,K.1^88,-1*K.1^92,-1*K.1^16,K.1^68,-1*K.1^52,K.1^44,K.1^44,-1*K.1^32,K.1^4,K.1^4,-1*K.1^32,-1*K.1^24,K.1^52,K.1^52,-1*K.1^24,K.1^56,-1*K.1^48,K.1^36,-1*K.1^8,-1*K.1^8,K.1^92,-1*K.1^76,K.1^88,K.1^48,K.1^24,-1*K.1^84,K.1^84,-1*K.1^96,-1*K.1^56,-1*K.1^32,K.1^52,-1*K.1^52,-1*K.1^24,-1*K.1^64,-1*K.1^12,K.1^72,K.1^4,K.1^76,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^16,K.1^36,K.1^44,K.1^32,-1*K.1^44,K.1^28,K.1^16,K.1^56,-1*K.1^88,-1*K.1^48,K.1^96,-1*K.1^68,K.1^68,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,-1*K.1^36,-1*K.1^54,-1*K.1^78,K.1^34,K.1^42,-1*K.1^86,-1*K.1^86,-1*K.1^62,-1*K.1^14,K.1^26,-1*K.1^42,K.1^2,K.1^82,K.1^22,-1*K.1^38,-1*K.1^94,K.1^82,K.1^66,K.1^58,-1*K.1^54,-1*K.1^26,K.1^86,K.1^66,-1*K.1^66,K.1^46,K.1^62,K.1^14,-1*K.1^98,-1*K.1^74,K.1^38,-1*K.1^46,K.1^78,-1*K.1^34,K.1^38,-1*K.1^94,K.1^86,K.1^94,-1*K.1^18,-1*K.1^6,-1*K.1^26,K.1^58,K.1^78,-1*K.1^34,K.1^54,K.1^98,K.1^18,K.1^18,-1*K.1^22,-1*K.1^58,-1*K.1^98,K.1^14,-1*K.1^58,K.1^54,-1*K.1^2,K.1^6,K.1^6,K.1^26,K.1^46,-1*K.1^66,-1*K.1^42,K.1^94,-1*K.1^18,K.1^62,-1*K.1^74,-1*K.1^2,-1*K.1^78,-1*K.1^14,K.1^98,-1*K.1^6,K.1^42,K.1^34,-1*K.1^82,K.1^22,-1*K.1^22,-1*K.1^62,-1*K.1^82,K.1^74,K.1^74,K.1^2,-1*K.1^46,-1*K.1^38,K.1^18,K.1^26,K.1^86,K.1^46,-1*K.1^86,K.1^66,-1*K.1^18,K.1^14,-1*K.1^54,K.1^98,K.1^38,K.1^94,K.1^34,K.1^42,-1*K.1^2,K.1^62,K.1^2,K.1^82,-1*K.1^34,-1*K.1^98,-1*K.1^42,K.1^58,-1*K.1^94,K.1^54,K.1^78,-1*K.1^38,-1*K.1^14,-1*K.1^74,-1*K.1^66,-1*K.1^6,-1*K.1^46,K.1^6,-1*K.1^26,K.1^74,-1*K.1^78,-1*K.1^58,-1*K.1^82,-1*K.1^22,-1*K.1^62,K.1^22,K.1^47,-1*K.1^99,K.1^97,K.1^63,K.1^27,-1*K.1^21,K.1^23,-1*K.1,-1*K.1^9,K.1^39,-1*K.1^79,-1*K.1^23,K.1^43,K.1^17,-1*K.1^19,K.1^37,-1*K.1^81,-1*K.1^43,K.1^49,-1*K.1^11,-1*K.1^17,K.1^93,K.1^31,-1*K.1^29,K.1^31,-1*K.1^51,K.1,-1*K.1^3,K.1^21,-1*K.1^97,K.1^79,-1*K.1^77,-1*K.1^83,K.1^83,K.1^19,K.1^79,K.1^69,-1*K.1^49,-1*K.1^83,K.1^81,K.1^71,K.1^89,-1*K.1^91,-1*K.1^41,K.1^77,K.1^17,-1*K.1^59,-1*K.1^89,K.1^29,-1*K.1^19,-1*K.1^59,K.1^99,K.1^3,-1*K.1^63,-1*K.1^39,-1*K.1^99,-1*K.1^57,K.1^61,K.1^63,-1*K.1^61,-1*K.1^87,-1*K.1^3,K.1^57,-1*K.1^51,-1*K.1^73,K.1^7,-1*K.1^93,-1*K.1^31,-1*K.1^71,-1*K.1^53,K.1^51,-1*K.1,-1*K.1^97,-1*K.1^63,K.1^97,K.1^13,-1*K.1^47,K.1,K.1^7,-1*K.1^53,-1*K.1^13,K.1^47,K.1^49,-1*K.1^7,K.1^53,K.1^13,-1*K.1^11,K.1^9,-1*K.1^43,-1*K.1^47,K.1^41,K.1^91,K.1^69,K.1^29,-1*K.1^31,K.1^33,-1*K.1^33,K.1^27,-1*K.1^21,-1*K.1^27,K.1^21,K.1^77,K.1^83,K.1^9,-1*K.1^39,-1*K.1^79,-1*K.1^69,-1*K.1^67,-1*K.1^17,-1*K.1^81,K.1^59,K.1^67,K.1^23,-1*K.1^37,K.1^39,-1*K.1^41,K.1^33,-1*K.1^27,-1*K.1^29,K.1^19,K.1^99,K.1^57,-1*K.1^23,K.1^37,K.1^61,K.1^87,K.1^81,K.1^67,K.1^51,K.1^73,-1*K.1^71,-1*K.1^89,-1*K.1^9,K.1^43,-1*K.1^77,-1*K.1^7,-1*K.1^91,-1*K.1^69,K.1^71,K.1^53,K.1^93,K.1^59,K.1^89,K.1^87,K.1^73,-1*K.1^93,-1*K.1^67,-1*K.1^61,-1*K.1^87,-1*K.1^73,-1*K.1^37,K.1^3,-1*K.1^57,-1*K.1^49,K.1^11,-1*K.1^13,K.1^11,K.1^91,K.1^41,-1*K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,-1*K.1^36,-1*K.1^68,-1*K.1^76,K.1^88,-1*K.1^28,K.1^8,K.1^56,K.1^32,K.1^64,K.1^72,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^96,-1*K.1^52,K.1^48,K.1^16,K.1^55,-1*K.1^85,K.1^55,-1*K.1^85,-1*K.1^65,-1*K.1^45,K.1^15,-1*K.1^45,K.1^85,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^95,K.1^95,K.1^45,-1*K.1^15,-1*K.1^55,-1*K.1^55,K.1^65,-1*K.1^35,-1*K.1^65,K.1^45,K.1^5,K.1^35,K.1^5,K.1^95,K.1^65,-1*K.1^15,-1*K.1^95,-1*K.1^35,K.1^85,K.1^35,-1*K.1^44,K.1^8,K.1^52,K.1^4,K.1^88,K.1^24,-1*K.1^84,K.1^48,-1*K.1^64,K.1^92,K.1^64,K.1^92,K.1^96,-1*K.1^76,K.1^44,K.1^72,-1*K.1^48,K.1^12,-1*K.1^64,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^12,K.1^4,K.1^52,-1*K.1^36,K.1^32,K.1^84,K.1^16,K.1^56,-1*K.1^24,K.1^84,-1*K.1^8,-1*K.1^8,K.1^76,-1*K.1^48,K.1^76,K.1^28,K.1^28,-1*K.1^56,-1*K.1^56,-1*K.1^92,-1*K.1^28,K.1^44,K.1^12,-1*K.1^68,-1*K.1^96,-1*K.1^96,-1*K.1^88,K.1^36,K.1^36,-1*K.1^88,-1*K.1^16,K.1^68,K.1^68,-1*K.1^16,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^28,-1*K.1^84,-1*K.1^92,K.1^32,K.1^16,K.1^56,-1*K.1^56,-1*K.1^64,K.1^4,-1*K.1^88,K.1^68,-1*K.1^68,-1*K.1^16,K.1^76,K.1^8,K.1^48,K.1^36,K.1^84,-1*K.1^28,-1*K.1^8,-1*K.1^48,K.1^44,-1*K.1^24,-1*K.1^96,K.1^88,K.1^96,K.1^52,-1*K.1^44,-1*K.1^4,K.1^92,-1*K.1^32,K.1^64,-1*K.1^12,K.1^12,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^24,K.1^86,-1*K.1^2,K.1^6,K.1^78,-1*K.1^74,-1*K.1^74,-1*K.1^58,-1*K.1^26,-1*K.1^34,-1*K.1^78,-1*K.1^18,K.1^38,K.1^98,-1*K.1^42,K.1^46,K.1^38,K.1^94,K.1^22,K.1^86,K.1^34,K.1^74,K.1^94,-1*K.1^94,-1*K.1^14,K.1^58,K.1^26,K.1^82,K.1^66,K.1^42,K.1^14,K.1^2,-1*K.1^6,K.1^42,K.1^46,K.1^74,-1*K.1^46,-1*K.1^62,K.1^54,K.1^34,K.1^22,K.1^2,-1*K.1^6,-1*K.1^86,-1*K.1^82,K.1^62,K.1^62,-1*K.1^98,-1*K.1^22,K.1^82,K.1^26,-1*K.1^22,-1*K.1^86,K.1^18,-1*K.1^54,-1*K.1^54,-1*K.1^34,-1*K.1^14,-1*K.1^94,-1*K.1^78,-1*K.1^46,-1*K.1^62,K.1^58,K.1^66,K.1^18,-1*K.1^2,-1*K.1^26,-1*K.1^82,K.1^54,K.1^78,K.1^6,-1*K.1^38,K.1^98,-1*K.1^98,-1*K.1^58,-1*K.1^38,-1*K.1^66,-1*K.1^66,-1*K.1^18,K.1^14,-1*K.1^42,K.1^62,-1*K.1^34,K.1^74,-1*K.1^14,-1*K.1^74,K.1^94,-1*K.1^62,K.1^26,K.1^86,-1*K.1^82,K.1^42,-1*K.1^46,K.1^6,K.1^78,K.1^18,K.1^58,-1*K.1^18,K.1^38,-1*K.1^6,K.1^82,-1*K.1^78,K.1^22,K.1^46,-1*K.1^86,K.1^2,-1*K.1^42,-1*K.1^26,K.1^66,-1*K.1^94,K.1^54,K.1^14,-1*K.1^54,K.1^34,-1*K.1^66,-1*K.1^2,-1*K.1^22,-1*K.1^38,-1*K.1^98,-1*K.1^58,K.1^98,K.1^73,K.1^41,K.1^23,K.1^17,K.1^93,K.1^39,K.1^57,K.1^59,-1*K.1^31,K.1,K.1^61,-1*K.1^57,K.1^37,-1*K.1^3,-1*K.1^21,K.1^83,-1*K.1^79,-1*K.1^37,-1*K.1^91,K.1^49,K.1^3,-1*K.1^87,-1*K.1^29,-1*K.1^11,-1*K.1^29,K.1^9,-1*K.1^59,-1*K.1^77,-1*K.1^39,-1*K.1^23,-1*K.1^61,-1*K.1^43,K.1^97,-1*K.1^97,K.1^21,-1*K.1^61,-1*K.1^71,K.1^91,K.1^97,K.1^79,K.1^89,-1*K.1^51,-1*K.1^69,K.1^19,K.1^43,-1*K.1^3,K.1^81,K.1^51,K.1^11,-1*K.1^21,K.1^81,-1*K.1^41,K.1^77,-1*K.1^17,-1*K.1,K.1^41,-1*K.1^63,K.1^99,K.1^17,-1*K.1^99,-1*K.1^33,-1*K.1^77,K.1^63,K.1^9,-1*K.1^7,-1*K.1^13,K.1^87,K.1^29,-1*K.1^89,-1*K.1^27,-1*K.1^9,K.1^59,-1*K.1^23,-1*K.1^17,K.1^23,K.1^67,-1*K.1^73,-1*K.1^59,-1*K.1^13,-1*K.1^27,-1*K.1^67,K.1^73,-1*K.1^91,K.1^13,K.1^27,K.1^67,K.1^49,K.1^31,-1*K.1^37,-1*K.1^73,-1*K.1^19,K.1^69,-1*K.1^71,K.1^11,K.1^29,K.1^47,-1*K.1^47,K.1^93,K.1^39,-1*K.1^93,-1*K.1^39,K.1^43,-1*K.1^97,K.1^31,-1*K.1,K.1^61,K.1^71,-1*K.1^53,K.1^3,-1*K.1^79,-1*K.1^81,K.1^53,K.1^57,-1*K.1^83,K.1,K.1^19,K.1^47,-1*K.1^93,-1*K.1^11,K.1^21,-1*K.1^41,K.1^63,-1*K.1^57,K.1^83,K.1^99,K.1^33,K.1^79,K.1^53,-1*K.1^9,K.1^7,-1*K.1^89,K.1^51,-1*K.1^31,K.1^37,-1*K.1^43,K.1^13,-1*K.1^69,K.1^71,K.1^89,K.1^27,-1*K.1^87,-1*K.1^81,-1*K.1^51,K.1^33,K.1^7,K.1^87,-1*K.1^53,-1*K.1^99,-1*K.1^33,-1*K.1^7,-1*K.1^83,K.1^77,-1*K.1^63,K.1^91,-1*K.1^49,-1*K.1^67,-1*K.1^49,K.1^69,-1*K.1^19,-1*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,K.1^64,K.1^32,K.1^24,-1*K.1^12,K.1^72,-1*K.1^92,-1*K.1^44,-1*K.1^68,-1*K.1^36,-1*K.1^28,K.1^88,K.1^8,-1*K.1^76,K.1^16,K.1^56,K.1^96,-1*K.1^4,K.1^48,-1*K.1^52,-1*K.1^84,-1*K.1^45,K.1^15,-1*K.1^45,K.1^15,K.1^35,K.1^55,-1*K.1^85,K.1^55,-1*K.1^15,K.1^95,-1*K.1^85,K.1^95,K.1^5,-1*K.1^5,-1*K.1^55,K.1^85,K.1^45,K.1^45,-1*K.1^35,K.1^65,K.1^35,-1*K.1^55,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^5,-1*K.1^35,K.1^85,K.1^5,K.1^65,-1*K.1^15,-1*K.1^65,K.1^56,-1*K.1^92,-1*K.1^48,-1*K.1^96,-1*K.1^12,-1*K.1^76,K.1^16,-1*K.1^52,K.1^36,-1*K.1^8,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^24,-1*K.1^56,-1*K.1^28,K.1^52,-1*K.1^88,K.1^36,K.1^48,K.1^28,K.1^68,K.1^88,-1*K.1^96,-1*K.1^48,K.1^64,-1*K.1^68,-1*K.1^16,-1*K.1^84,-1*K.1^44,K.1^76,-1*K.1^16,K.1^92,K.1^92,-1*K.1^24,K.1^52,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^44,K.1^44,K.1^8,K.1^72,-1*K.1^56,-1*K.1^88,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^64,-1*K.1^64,K.1^12,K.1^84,-1*K.1^32,-1*K.1^32,K.1^84,K.1^96,K.1^68,K.1^76,K.1^28,K.1^28,-1*K.1^72,K.1^16,K.1^8,-1*K.1^68,-1*K.1^84,-1*K.1^44,K.1^44,K.1^36,-1*K.1^96,K.1^12,-1*K.1^32,K.1^32,K.1^84,-1*K.1^24,-1*K.1^92,-1*K.1^52,-1*K.1^64,-1*K.1^16,K.1^72,K.1^92,K.1^52,-1*K.1^56,K.1^76,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^48,K.1^56,K.1^96,-1*K.1^8,K.1^68,-1*K.1^36,K.1^88,-1*K.1^88,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^76,-1*K.1^14,K.1^98,-1*K.1^94,-1*K.1^22,K.1^26,K.1^26,K.1^42,K.1^74,K.1^66,K.1^22,K.1^82,-1*K.1^62,-1*K.1^2,K.1^58,-1*K.1^54,-1*K.1^62,-1*K.1^6,-1*K.1^78,-1*K.1^14,-1*K.1^66,-1*K.1^26,-1*K.1^6,K.1^6,K.1^86,-1*K.1^42,-1*K.1^74,-1*K.1^18,-1*K.1^34,-1*K.1^58,-1*K.1^86,-1*K.1^98,K.1^94,-1*K.1^58,-1*K.1^54,-1*K.1^26,K.1^54,K.1^38,-1*K.1^46,-1*K.1^66,-1*K.1^78,-1*K.1^98,K.1^94,K.1^14,K.1^18,-1*K.1^38,-1*K.1^38,K.1^2,K.1^78,-1*K.1^18,-1*K.1^74,K.1^78,K.1^14,-1*K.1^82,K.1^46,K.1^46,K.1^66,K.1^86,K.1^6,K.1^22,K.1^54,K.1^38,-1*K.1^42,-1*K.1^34,-1*K.1^82,K.1^98,K.1^74,K.1^18,-1*K.1^46,-1*K.1^22,-1*K.1^94,K.1^62,-1*K.1^2,K.1^2,K.1^42,K.1^62,K.1^34,K.1^34,K.1^82,-1*K.1^86,K.1^58,-1*K.1^38,K.1^66,-1*K.1^26,K.1^86,K.1^26,-1*K.1^6,K.1^38,-1*K.1^74,-1*K.1^14,K.1^18,-1*K.1^58,K.1^54,-1*K.1^94,-1*K.1^22,-1*K.1^82,-1*K.1^42,K.1^82,-1*K.1^62,K.1^94,-1*K.1^18,K.1^22,-1*K.1^78,-1*K.1^54,K.1^14,-1*K.1^98,K.1^58,K.1^74,-1*K.1^34,K.1^6,-1*K.1^46,-1*K.1^86,K.1^46,-1*K.1^66,K.1^34,K.1^98,K.1^78,K.1^62,K.1^2,K.1^42,-1*K.1^2,-1*K.1^27,-1*K.1^59,-1*K.1^77,-1*K.1^83,-1*K.1^7,-1*K.1^61,-1*K.1^43,-1*K.1^41,K.1^69,-1*K.1^99,-1*K.1^39,K.1^43,-1*K.1^63,K.1^97,K.1^79,-1*K.1^17,K.1^21,K.1^63,K.1^9,-1*K.1^51,-1*K.1^97,K.1^13,K.1^71,K.1^89,K.1^71,-1*K.1^91,K.1^41,K.1^23,K.1^61,K.1^77,K.1^39,K.1^57,-1*K.1^3,K.1^3,-1*K.1^79,K.1^39,K.1^29,-1*K.1^9,-1*K.1^3,-1*K.1^21,-1*K.1^11,K.1^49,K.1^31,-1*K.1^81,-1*K.1^57,K.1^97,-1*K.1^19,-1*K.1^49,-1*K.1^89,K.1^79,-1*K.1^19,K.1^59,-1*K.1^23,K.1^83,K.1^99,-1*K.1^59,K.1^37,-1*K.1,-1*K.1^83,K.1,K.1^67,K.1^23,-1*K.1^37,-1*K.1^91,K.1^93,K.1^87,-1*K.1^13,-1*K.1^71,K.1^11,K.1^73,K.1^91,-1*K.1^41,K.1^77,K.1^83,-1*K.1^77,-1*K.1^33,K.1^27,K.1^41,K.1^87,K.1^73,K.1^33,-1*K.1^27,K.1^9,-1*K.1^87,-1*K.1^73,-1*K.1^33,-1*K.1^51,-1*K.1^69,K.1^63,K.1^27,K.1^81,-1*K.1^31,K.1^29,-1*K.1^89,-1*K.1^71,-1*K.1^53,K.1^53,-1*K.1^7,-1*K.1^61,K.1^7,K.1^61,-1*K.1^57,K.1^3,-1*K.1^69,K.1^99,-1*K.1^39,-1*K.1^29,K.1^47,-1*K.1^97,K.1^21,K.1^19,-1*K.1^47,-1*K.1^43,K.1^17,-1*K.1^99,-1*K.1^81,-1*K.1^53,K.1^7,K.1^89,-1*K.1^79,K.1^59,-1*K.1^37,K.1^43,-1*K.1^17,-1*K.1,-1*K.1^67,-1*K.1^21,-1*K.1^47,K.1^91,-1*K.1^93,K.1^11,-1*K.1^49,K.1^69,-1*K.1^63,K.1^57,-1*K.1^87,K.1^31,-1*K.1^29,-1*K.1^11,-1*K.1^73,K.1^13,K.1^19,K.1^49,-1*K.1^67,-1*K.1^93,-1*K.1^13,K.1^47,K.1,K.1^67,K.1^93,K.1^17,-1*K.1^23,K.1^37,-1*K.1^9,K.1^51,K.1^33,K.1^51,-1*K.1^31,K.1^81,K.1^53]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^56,-1*K.1^28,K.1^96,K.1^48,K.1^88,-1*K.1^68,-1*K.1^76,K.1^72,-1*K.1^44,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,K.1^24,-1*K.1^84,K.1^16,-1*K.1^92,K.1^8,-1*K.1^36,K.1^55,-1*K.1^85,K.1^55,-1*K.1^85,-1*K.1^65,-1*K.1^45,K.1^15,-1*K.1^45,K.1^85,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^95,K.1^95,K.1^45,-1*K.1^15,-1*K.1^55,-1*K.1^55,K.1^65,-1*K.1^35,-1*K.1^65,K.1^45,K.1^5,K.1^35,K.1^5,K.1^95,K.1^65,-1*K.1^15,-1*K.1^95,-1*K.1^35,K.1^85,K.1^35,K.1^24,-1*K.1^68,K.1^92,K.1^84,K.1^48,-1*K.1^4,K.1^64,K.1^8,K.1^44,-1*K.1^32,-1*K.1^44,-1*K.1^32,K.1^16,K.1^96,-1*K.1^24,-1*K.1^12,-1*K.1^8,K.1^52,K.1^44,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^52,K.1^84,K.1^92,K.1^56,K.1^72,-1*K.1^64,-1*K.1^36,-1*K.1^76,K.1^4,-1*K.1^64,K.1^68,K.1^68,-1*K.1^96,-1*K.1^8,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^76,K.1^76,K.1^32,K.1^88,-1*K.1^24,K.1^52,-1*K.1^28,-1*K.1^16,-1*K.1^16,-1*K.1^48,-1*K.1^56,-1*K.1^56,-1*K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^84,-1*K.1^72,K.1^4,K.1^12,K.1^12,-1*K.1^88,K.1^64,K.1^32,K.1^72,-1*K.1^36,-1*K.1^76,K.1^76,K.1^44,K.1^84,-1*K.1^48,K.1^28,-1*K.1^28,K.1^36,-1*K.1^96,-1*K.1^68,K.1^8,-1*K.1^56,-1*K.1^64,K.1^88,K.1^68,-1*K.1^8,-1*K.1^24,K.1^4,-1*K.1^16,K.1^48,K.1^16,K.1^92,K.1^24,-1*K.1^84,-1*K.1^32,-1*K.1^72,-1*K.1^44,-1*K.1^52,K.1^52,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,-1*K.1^4,K.1^6,-1*K.1^42,-1*K.1^26,K.1^38,K.1^54,K.1^54,-1*K.1^18,K.1^46,K.1^14,-1*K.1^38,K.1^78,-1*K.1^98,K.1^58,-1*K.1^82,-1*K.1^66,-1*K.1^98,-1*K.1^74,K.1^62,K.1^6,-1*K.1^14,-1*K.1^54,-1*K.1^74,K.1^74,-1*K.1^94,K.1^18,-1*K.1^46,-1*K.1^22,-1*K.1^86,K.1^82,K.1^94,K.1^42,K.1^26,K.1^82,-1*K.1^66,-1*K.1^54,K.1^66,K.1^2,-1*K.1^34,-1*K.1^14,K.1^62,K.1^42,K.1^26,-1*K.1^6,K.1^22,-1*K.1^2,-1*K.1^2,-1*K.1^58,-1*K.1^62,-1*K.1^22,-1*K.1^46,-1*K.1^62,-1*K.1^6,-1*K.1^78,K.1^34,K.1^34,K.1^14,-1*K.1^94,K.1^74,-1*K.1^38,K.1^66,K.1^2,K.1^18,-1*K.1^86,-1*K.1^78,-1*K.1^42,K.1^46,K.1^22,-1*K.1^34,K.1^38,-1*K.1^26,K.1^98,K.1^58,-1*K.1^58,-1*K.1^18,K.1^98,K.1^86,K.1^86,K.1^78,K.1^94,-1*K.1^82,-1*K.1^2,K.1^14,-1*K.1^54,-1*K.1^94,K.1^54,-1*K.1^74,K.1^2,-1*K.1^46,K.1^6,K.1^22,K.1^82,K.1^66,-1*K.1^26,K.1^38,-1*K.1^78,K.1^18,K.1^78,-1*K.1^98,K.1^26,-1*K.1^22,-1*K.1^38,K.1^62,-1*K.1^66,-1*K.1^6,K.1^42,-1*K.1^82,K.1^46,-1*K.1^86,K.1^74,-1*K.1^34,K.1^94,K.1^34,-1*K.1^14,K.1^86,-1*K.1^42,-1*K.1^62,K.1^98,-1*K.1^58,-1*K.1^18,K.1^58,K.1^33,-1*K.1^61,-1*K.1^83,K.1^57,K.1^53,-1*K.1^19,K.1^97,-1*K.1^39,K.1^51,-1*K.1^21,-1*K.1^81,-1*K.1^97,K.1^77,K.1^63,K.1^41,K.1^43,K.1^59,-1*K.1^77,-1*K.1^11,-1*K.1^29,-1*K.1^63,K.1^27,K.1^9,K.1^31,K.1^9,K.1^89,K.1^39,K.1^17,K.1^19,K.1^83,K.1^81,-1*K.1^3,-1*K.1^37,K.1^37,-1*K.1^41,K.1^81,K.1^91,K.1^11,-1*K.1^37,-1*K.1^59,-1*K.1^69,K.1^71,K.1^49,K.1^99,K.1^3,K.1^63,K.1,-1*K.1^71,-1*K.1^31,K.1^41,K.1,K.1^61,-1*K.1^17,-1*K.1^57,K.1^21,-1*K.1^61,-1*K.1^23,-1*K.1^79,K.1^57,K.1^79,K.1^93,K.1^17,K.1^23,K.1^89,-1*K.1^47,K.1^73,-1*K.1^27,-1*K.1^9,K.1^69,-1*K.1^67,-1*K.1^89,-1*K.1^39,K.1^83,-1*K.1^57,-1*K.1^83,-1*K.1^7,-1*K.1^33,K.1^39,K.1^73,-1*K.1^67,K.1^7,K.1^33,-1*K.1^11,-1*K.1^73,K.1^67,-1*K.1^7,-1*K.1^29,-1*K.1^51,-1*K.1^77,-1*K.1^33,-1*K.1^99,-1*K.1^49,K.1^91,-1*K.1^31,-1*K.1^9,K.1^87,-1*K.1^87,K.1^53,-1*K.1^19,-1*K.1^53,K.1^19,K.1^3,K.1^37,-1*K.1^51,K.1^21,-1*K.1^81,-1*K.1^91,-1*K.1^13,-1*K.1^63,K.1^59,-1*K.1,K.1^13,K.1^97,-1*K.1^43,-1*K.1^21,K.1^99,K.1^87,-1*K.1^53,K.1^31,-1*K.1^41,K.1^61,K.1^23,-1*K.1^97,K.1^43,-1*K.1^79,-1*K.1^93,-1*K.1^59,K.1^13,-1*K.1^89,K.1^47,K.1^69,-1*K.1^71,K.1^51,K.1^77,-1*K.1^3,-1*K.1^73,K.1^49,-1*K.1^91,-1*K.1^69,K.1^67,K.1^27,-1*K.1,K.1^71,-1*K.1^93,K.1^47,-1*K.1^27,-1*K.1^13,K.1^79,K.1^93,-1*K.1^47,-1*K.1^43,-1*K.1^17,-1*K.1^23,K.1^11,K.1^29,K.1^7,K.1^29,-1*K.1^49,-1*K.1^99,-1*K.1^87]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^44,K.1^72,-1*K.1^4,-1*K.1^52,-1*K.1^12,K.1^32,K.1^24,-1*K.1^28,K.1^56,K.1^88,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,-1*K.1^76,K.1^16,-1*K.1^84,K.1^8,-1*K.1^92,K.1^64,-1*K.1^45,K.1^15,-1*K.1^45,K.1^15,K.1^35,K.1^55,-1*K.1^85,K.1^55,-1*K.1^15,K.1^95,-1*K.1^85,K.1^95,K.1^5,-1*K.1^5,-1*K.1^55,K.1^85,K.1^45,K.1^45,-1*K.1^35,K.1^65,K.1^35,-1*K.1^55,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^5,-1*K.1^35,K.1^85,K.1^5,K.1^65,-1*K.1^15,-1*K.1^65,-1*K.1^76,K.1^32,-1*K.1^8,-1*K.1^16,-1*K.1^52,K.1^96,-1*K.1^36,-1*K.1^92,-1*K.1^56,K.1^68,K.1^56,K.1^68,-1*K.1^84,-1*K.1^4,K.1^76,K.1^88,K.1^92,-1*K.1^48,-1*K.1^56,K.1^8,-1*K.1^88,K.1^28,K.1^48,-1*K.1^16,-1*K.1^8,-1*K.1^44,-1*K.1^28,K.1^36,K.1^64,K.1^24,-1*K.1^96,K.1^36,-1*K.1^32,-1*K.1^32,K.1^4,K.1^92,K.1^4,K.1^12,K.1^12,-1*K.1^24,-1*K.1^24,-1*K.1^68,-1*K.1^12,K.1^76,-1*K.1^48,K.1^72,K.1^84,K.1^84,K.1^52,K.1^44,K.1^44,K.1^52,-1*K.1^64,-1*K.1^72,-1*K.1^72,-1*K.1^64,K.1^16,K.1^28,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^12,-1*K.1^36,-1*K.1^68,-1*K.1^28,K.1^64,K.1^24,-1*K.1^24,-1*K.1^56,-1*K.1^16,K.1^52,-1*K.1^72,K.1^72,-1*K.1^64,K.1^4,K.1^32,-1*K.1^92,K.1^44,K.1^36,-1*K.1^12,-1*K.1^32,K.1^92,K.1^76,-1*K.1^96,K.1^84,-1*K.1^52,-1*K.1^84,-1*K.1^8,-1*K.1^76,K.1^16,K.1^68,K.1^28,K.1^56,K.1^48,-1*K.1^48,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,K.1^96,-1*K.1^94,K.1^58,K.1^74,-1*K.1^62,-1*K.1^46,-1*K.1^46,K.1^82,-1*K.1^54,-1*K.1^86,K.1^62,-1*K.1^22,K.1^2,-1*K.1^42,K.1^18,K.1^34,K.1^2,K.1^26,-1*K.1^38,-1*K.1^94,K.1^86,K.1^46,K.1^26,-1*K.1^26,K.1^6,-1*K.1^82,K.1^54,K.1^78,K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^58,-1*K.1^74,-1*K.1^18,K.1^34,K.1^46,-1*K.1^34,-1*K.1^98,K.1^66,K.1^86,-1*K.1^38,-1*K.1^58,-1*K.1^74,K.1^94,-1*K.1^78,K.1^98,K.1^98,K.1^42,K.1^38,K.1^78,K.1^54,K.1^38,K.1^94,K.1^22,-1*K.1^66,-1*K.1^66,-1*K.1^86,K.1^6,-1*K.1^26,K.1^62,-1*K.1^34,-1*K.1^98,-1*K.1^82,K.1^14,K.1^22,K.1^58,-1*K.1^54,-1*K.1^78,K.1^66,-1*K.1^62,K.1^74,-1*K.1^2,-1*K.1^42,K.1^42,K.1^82,-1*K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^18,K.1^98,-1*K.1^86,K.1^46,K.1^6,-1*K.1^46,K.1^26,-1*K.1^98,K.1^54,-1*K.1^94,-1*K.1^78,-1*K.1^18,-1*K.1^34,K.1^74,-1*K.1^62,K.1^22,-1*K.1^82,-1*K.1^22,K.1^2,-1*K.1^74,K.1^78,K.1^62,-1*K.1^38,K.1^34,K.1^94,-1*K.1^58,K.1^18,-1*K.1^54,K.1^14,-1*K.1^26,K.1^66,-1*K.1^6,-1*K.1^66,K.1^86,-1*K.1^14,K.1^58,K.1^38,-1*K.1^2,K.1^42,K.1^82,-1*K.1^42,-1*K.1^67,K.1^39,K.1^17,-1*K.1^43,-1*K.1^47,K.1^81,-1*K.1^3,K.1^61,-1*K.1^49,K.1^79,K.1^19,K.1^3,-1*K.1^23,-1*K.1^37,-1*K.1^59,-1*K.1^57,-1*K.1^41,K.1^23,K.1^89,K.1^71,K.1^37,-1*K.1^73,-1*K.1^91,-1*K.1^69,-1*K.1^91,-1*K.1^11,-1*K.1^61,-1*K.1^83,-1*K.1^81,-1*K.1^17,-1*K.1^19,K.1^97,K.1^63,-1*K.1^63,K.1^59,-1*K.1^19,-1*K.1^9,-1*K.1^89,K.1^63,K.1^41,K.1^31,-1*K.1^29,-1*K.1^51,-1*K.1,-1*K.1^97,-1*K.1^37,-1*K.1^99,K.1^29,K.1^69,-1*K.1^59,-1*K.1^99,-1*K.1^39,K.1^83,K.1^43,-1*K.1^79,K.1^39,K.1^77,K.1^21,-1*K.1^43,-1*K.1^21,-1*K.1^7,-1*K.1^83,-1*K.1^77,-1*K.1^11,K.1^53,-1*K.1^27,K.1^73,K.1^91,-1*K.1^31,K.1^33,K.1^11,K.1^61,-1*K.1^17,K.1^43,K.1^17,K.1^93,K.1^67,-1*K.1^61,-1*K.1^27,K.1^33,-1*K.1^93,-1*K.1^67,K.1^89,K.1^27,-1*K.1^33,K.1^93,K.1^71,K.1^49,K.1^23,K.1^67,K.1,K.1^51,-1*K.1^9,K.1^69,K.1^91,-1*K.1^13,K.1^13,-1*K.1^47,K.1^81,K.1^47,-1*K.1^81,-1*K.1^97,-1*K.1^63,K.1^49,-1*K.1^79,K.1^19,K.1^9,K.1^87,K.1^37,-1*K.1^41,K.1^99,-1*K.1^87,-1*K.1^3,K.1^57,K.1^79,-1*K.1,-1*K.1^13,K.1^47,-1*K.1^69,K.1^59,-1*K.1^39,-1*K.1^77,K.1^3,-1*K.1^57,K.1^21,K.1^7,K.1^41,-1*K.1^87,K.1^11,-1*K.1^53,-1*K.1^31,K.1^29,-1*K.1^49,-1*K.1^23,K.1^97,K.1^27,-1*K.1^51,K.1^9,K.1^31,-1*K.1^33,-1*K.1^73,K.1^99,-1*K.1^29,K.1^7,-1*K.1^53,K.1^73,K.1^87,-1*K.1^21,-1*K.1^7,K.1^53,K.1^57,K.1^83,K.1^77,-1*K.1^89,-1*K.1^71,-1*K.1^93,-1*K.1^71,K.1^51,K.1,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,-1*K.1^76,K.1^88,K.1^16,K.1^8,K.1^48,-1*K.1^28,K.1^96,-1*K.1^12,K.1^24,-1*K.1^52,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^64,-1*K.1^36,K.1^32,-1*K.1^68,K.1^56,K.1^55,-1*K.1^85,K.1^55,-1*K.1^85,-1*K.1^65,-1*K.1^45,K.1^15,-1*K.1^45,K.1^85,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^95,K.1^95,K.1^45,-1*K.1^15,-1*K.1^55,-1*K.1^55,K.1^65,-1*K.1^35,-1*K.1^65,K.1^45,K.1^5,K.1^35,K.1^5,K.1^95,K.1^65,-1*K.1^15,-1*K.1^95,-1*K.1^35,K.1^85,K.1^35,-1*K.1^4,-1*K.1^28,-1*K.1^32,-1*K.1^64,K.1^8,-1*K.1^84,-1*K.1^44,-1*K.1^68,-1*K.1^24,-1*K.1^72,K.1^24,-1*K.1^72,-1*K.1^36,K.1^16,K.1^4,-1*K.1^52,K.1^68,K.1^92,-1*K.1^24,K.1^32,K.1^52,K.1^12,-1*K.1^92,-1*K.1^64,-1*K.1^32,-1*K.1^76,-1*K.1^12,K.1^44,K.1^56,K.1^96,K.1^84,K.1^44,K.1^28,K.1^28,-1*K.1^16,K.1^68,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^96,-1*K.1^96,K.1^72,K.1^48,K.1^4,K.1^92,K.1^88,K.1^36,K.1^36,-1*K.1^8,K.1^76,K.1^76,-1*K.1^8,-1*K.1^56,-1*K.1^88,-1*K.1^88,-1*K.1^56,K.1^64,K.1^12,K.1^84,K.1^52,K.1^52,-1*K.1^48,-1*K.1^44,K.1^72,-1*K.1^12,K.1^56,K.1^96,-1*K.1^96,-1*K.1^24,-1*K.1^64,-1*K.1^8,-1*K.1^88,K.1^88,-1*K.1^56,-1*K.1^16,-1*K.1^28,-1*K.1^68,K.1^76,K.1^44,K.1^48,K.1^28,K.1^68,K.1^4,K.1^84,K.1^36,K.1^8,-1*K.1^36,-1*K.1^32,-1*K.1^4,K.1^64,-1*K.1^72,K.1^12,K.1^24,-1*K.1^92,K.1^92,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^84,-1*K.1^26,-1*K.1^82,K.1^46,-1*K.1^98,-1*K.1^34,-1*K.1^34,K.1^78,-1*K.1^66,K.1^94,K.1^98,K.1^38,-1*K.1^58,K.1^18,K.1^22,K.1^86,-1*K.1^58,K.1^54,-1*K.1^2,-1*K.1^26,-1*K.1^94,K.1^34,K.1^54,-1*K.1^54,K.1^74,-1*K.1^78,K.1^66,-1*K.1^62,-1*K.1^6,-1*K.1^22,-1*K.1^74,K.1^82,-1*K.1^46,-1*K.1^22,K.1^86,K.1^34,-1*K.1^86,K.1^42,K.1^14,-1*K.1^94,-1*K.1^2,K.1^82,-1*K.1^46,K.1^26,K.1^62,-1*K.1^42,-1*K.1^42,-1*K.1^18,K.1^2,-1*K.1^62,K.1^66,K.1^2,K.1^26,-1*K.1^38,-1*K.1^14,-1*K.1^14,K.1^94,K.1^74,-1*K.1^54,K.1^98,-1*K.1^86,K.1^42,-1*K.1^78,-1*K.1^6,-1*K.1^38,-1*K.1^82,-1*K.1^66,K.1^62,K.1^14,-1*K.1^98,K.1^46,K.1^58,K.1^18,-1*K.1^18,K.1^78,K.1^58,K.1^6,K.1^6,K.1^38,-1*K.1^74,K.1^22,-1*K.1^42,K.1^94,K.1^34,K.1^74,-1*K.1^34,K.1^54,K.1^42,K.1^66,-1*K.1^26,K.1^62,-1*K.1^22,-1*K.1^86,K.1^46,-1*K.1^98,-1*K.1^38,-1*K.1^78,K.1^38,-1*K.1^58,-1*K.1^46,-1*K.1^62,K.1^98,-1*K.1^2,K.1^86,K.1^26,K.1^82,K.1^22,-1*K.1^66,-1*K.1^6,-1*K.1^54,K.1^14,-1*K.1^74,-1*K.1^14,-1*K.1^94,K.1^6,-1*K.1^82,K.1^2,K.1^58,-1*K.1^18,K.1^78,K.1^18,-1*K.1^93,K.1^81,-1*K.1^43,K.1^97,K.1^13,-1*K.1^99,-1*K.1^37,K.1^19,-1*K.1^71,K.1^41,-1*K.1,K.1^37,-1*K.1^17,K.1^23,-1*K.1^61,K.1^3,-1*K.1^39,K.1^17,K.1^31,K.1^9,-1*K.1^23,K.1^67,K.1^89,-1*K.1^51,K.1^89,-1*K.1^69,-1*K.1^19,K.1^57,K.1^99,K.1^43,K.1,K.1^63,-1*K.1^77,K.1^77,K.1^61,K.1,K.1^11,-1*K.1^31,-1*K.1^77,K.1^39,K.1^49,-1*K.1^91,-1*K.1^29,-1*K.1^79,-1*K.1^63,K.1^23,-1*K.1^21,K.1^91,K.1^51,-1*K.1^61,-1*K.1^21,-1*K.1^81,-1*K.1^57,-1*K.1^97,-1*K.1^41,K.1^81,K.1^83,K.1^59,K.1^97,-1*K.1^59,K.1^53,K.1^57,-1*K.1^83,-1*K.1^69,-1*K.1^87,K.1^33,-1*K.1^67,-1*K.1^89,-1*K.1^49,K.1^7,K.1^69,K.1^19,K.1^43,-1*K.1^97,-1*K.1^43,-1*K.1^47,K.1^93,-1*K.1^19,K.1^33,K.1^7,K.1^47,-1*K.1^93,K.1^31,-1*K.1^33,-1*K.1^7,-1*K.1^47,K.1^9,K.1^71,K.1^17,K.1^93,K.1^79,K.1^29,K.1^11,K.1^51,-1*K.1^89,-1*K.1^27,K.1^27,K.1^13,-1*K.1^99,-1*K.1^13,K.1^99,-1*K.1^63,K.1^77,K.1^71,-1*K.1^41,-1*K.1,-1*K.1^11,K.1^73,-1*K.1^23,-1*K.1^39,K.1^21,-1*K.1^73,-1*K.1^37,-1*K.1^3,K.1^41,-1*K.1^79,-1*K.1^27,-1*K.1^13,-1*K.1^51,K.1^61,-1*K.1^81,-1*K.1^83,K.1^37,K.1^3,K.1^59,-1*K.1^53,K.1^39,-1*K.1^73,K.1^69,K.1^87,-1*K.1^49,K.1^91,-1*K.1^71,-1*K.1^17,K.1^63,-1*K.1^33,-1*K.1^29,-1*K.1^11,K.1^49,-1*K.1^7,K.1^67,K.1^21,-1*K.1^91,-1*K.1^53,K.1^87,-1*K.1^67,K.1^73,-1*K.1^59,K.1^53,-1*K.1^87,-1*K.1^3,-1*K.1^57,K.1^83,-1*K.1^31,-1*K.1^9,K.1^47,-1*K.1^9,K.1^29,K.1^79,K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,K.1^24,-1*K.1^12,-1*K.1^84,-1*K.1^92,-1*K.1^52,K.1^72,-1*K.1^4,K.1^88,-1*K.1^76,K.1^48,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^96,-1*K.1^36,K.1^64,-1*K.1^68,K.1^32,-1*K.1^44,-1*K.1^45,K.1^15,-1*K.1^45,K.1^15,K.1^35,K.1^55,-1*K.1^85,K.1^55,-1*K.1^15,K.1^95,-1*K.1^85,K.1^95,K.1^5,-1*K.1^5,-1*K.1^55,K.1^85,K.1^45,K.1^45,-1*K.1^35,K.1^65,K.1^35,-1*K.1^55,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^5,-1*K.1^35,K.1^85,K.1^5,K.1^65,-1*K.1^15,-1*K.1^65,K.1^96,K.1^72,K.1^68,K.1^36,-1*K.1^92,K.1^16,K.1^56,K.1^32,K.1^76,K.1^28,-1*K.1^76,K.1^28,K.1^64,-1*K.1^84,-1*K.1^96,K.1^48,-1*K.1^32,-1*K.1^8,K.1^76,-1*K.1^68,-1*K.1^48,-1*K.1^88,K.1^8,K.1^36,K.1^68,K.1^24,K.1^88,-1*K.1^56,-1*K.1^44,-1*K.1^4,-1*K.1^16,-1*K.1^56,-1*K.1^72,-1*K.1^72,K.1^84,-1*K.1^32,K.1^84,K.1^52,K.1^52,K.1^4,K.1^4,-1*K.1^28,-1*K.1^52,-1*K.1^96,-1*K.1^8,-1*K.1^12,-1*K.1^64,-1*K.1^64,K.1^92,-1*K.1^24,-1*K.1^24,K.1^92,K.1^44,K.1^12,K.1^12,K.1^44,-1*K.1^36,-1*K.1^88,-1*K.1^16,-1*K.1^48,-1*K.1^48,K.1^52,K.1^56,-1*K.1^28,K.1^88,-1*K.1^44,-1*K.1^4,K.1^4,K.1^76,K.1^36,K.1^92,K.1^12,-1*K.1^12,K.1^44,K.1^84,K.1^72,K.1^32,-1*K.1^24,-1*K.1^56,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^96,-1*K.1^16,-1*K.1^64,-1*K.1^92,K.1^64,K.1^68,K.1^96,-1*K.1^36,K.1^28,-1*K.1^88,-1*K.1^76,K.1^8,-1*K.1^8,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^16,K.1^74,K.1^18,-1*K.1^54,K.1^2,K.1^66,K.1^66,-1*K.1^22,K.1^34,-1*K.1^6,-1*K.1^2,-1*K.1^62,K.1^42,-1*K.1^82,-1*K.1^78,-1*K.1^14,K.1^42,-1*K.1^46,K.1^98,K.1^74,K.1^6,-1*K.1^66,-1*K.1^46,K.1^46,-1*K.1^26,K.1^22,-1*K.1^34,K.1^38,K.1^94,K.1^78,K.1^26,-1*K.1^18,K.1^54,K.1^78,-1*K.1^14,-1*K.1^66,K.1^14,-1*K.1^58,-1*K.1^86,K.1^6,K.1^98,-1*K.1^18,K.1^54,-1*K.1^74,-1*K.1^38,K.1^58,K.1^58,K.1^82,-1*K.1^98,K.1^38,-1*K.1^34,-1*K.1^98,-1*K.1^74,K.1^62,K.1^86,K.1^86,-1*K.1^6,-1*K.1^26,K.1^46,-1*K.1^2,K.1^14,-1*K.1^58,K.1^22,K.1^94,K.1^62,K.1^18,K.1^34,-1*K.1^38,-1*K.1^86,K.1^2,-1*K.1^54,-1*K.1^42,-1*K.1^82,K.1^82,-1*K.1^22,-1*K.1^42,-1*K.1^94,-1*K.1^94,-1*K.1^62,K.1^26,-1*K.1^78,K.1^58,-1*K.1^6,-1*K.1^66,-1*K.1^26,K.1^66,-1*K.1^46,-1*K.1^58,-1*K.1^34,K.1^74,-1*K.1^38,K.1^78,K.1^14,-1*K.1^54,K.1^2,K.1^62,K.1^22,-1*K.1^62,K.1^42,K.1^54,K.1^38,-1*K.1^2,K.1^98,-1*K.1^14,-1*K.1^74,-1*K.1^18,-1*K.1^78,K.1^34,K.1^94,K.1^46,-1*K.1^86,K.1^26,K.1^86,K.1^6,-1*K.1^94,K.1^18,-1*K.1^98,-1*K.1^42,K.1^82,-1*K.1^22,-1*K.1^82,K.1^7,-1*K.1^19,K.1^57,-1*K.1^3,-1*K.1^87,K.1,K.1^63,-1*K.1^81,K.1^29,-1*K.1^59,K.1^99,-1*K.1^63,K.1^83,-1*K.1^77,K.1^39,-1*K.1^97,K.1^61,-1*K.1^83,-1*K.1^69,-1*K.1^91,K.1^77,-1*K.1^33,-1*K.1^11,K.1^49,-1*K.1^11,K.1^31,K.1^81,-1*K.1^43,-1*K.1,-1*K.1^57,-1*K.1^99,-1*K.1^37,K.1^23,-1*K.1^23,-1*K.1^39,-1*K.1^99,-1*K.1^89,K.1^69,K.1^23,-1*K.1^61,-1*K.1^51,K.1^9,K.1^71,K.1^21,K.1^37,-1*K.1^77,K.1^79,-1*K.1^9,-1*K.1^49,K.1^39,K.1^79,K.1^19,K.1^43,K.1^3,K.1^59,-1*K.1^19,-1*K.1^17,-1*K.1^41,-1*K.1^3,K.1^41,-1*K.1^47,-1*K.1^43,K.1^17,K.1^31,K.1^13,-1*K.1^67,K.1^33,K.1^11,K.1^51,-1*K.1^93,-1*K.1^31,-1*K.1^81,-1*K.1^57,K.1^3,K.1^57,K.1^53,-1*K.1^7,K.1^81,-1*K.1^67,-1*K.1^93,-1*K.1^53,K.1^7,-1*K.1^69,K.1^67,K.1^93,K.1^53,-1*K.1^91,-1*K.1^29,-1*K.1^83,-1*K.1^7,-1*K.1^21,-1*K.1^71,-1*K.1^89,-1*K.1^49,K.1^11,K.1^73,-1*K.1^73,-1*K.1^87,K.1,K.1^87,-1*K.1,K.1^37,-1*K.1^23,-1*K.1^29,K.1^59,K.1^99,K.1^89,-1*K.1^27,K.1^77,K.1^61,-1*K.1^79,K.1^27,K.1^63,K.1^97,-1*K.1^59,K.1^21,K.1^73,K.1^87,K.1^49,-1*K.1^39,K.1^19,K.1^17,-1*K.1^63,-1*K.1^97,-1*K.1^41,K.1^47,-1*K.1^61,K.1^27,-1*K.1^31,-1*K.1^13,K.1^51,-1*K.1^9,K.1^29,K.1^83,-1*K.1^37,K.1^67,K.1^71,K.1^89,-1*K.1^51,K.1^93,-1*K.1^33,-1*K.1^79,K.1^9,K.1^47,-1*K.1^13,K.1^33,-1*K.1^27,K.1^41,-1*K.1^47,K.1^13,K.1^97,K.1^43,-1*K.1^17,K.1^69,K.1^91,-1*K.1^53,K.1^91,-1*K.1^71,-1*K.1^21,-1*K.1^73]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^16,K.1^8,K.1^56,-1*K.1^28,-1*K.1^68,K.1^48,-1*K.1^36,-1*K.1^92,-1*K.1^84,K.1^32,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^64,K.1^24,-1*K.1^76,-1*K.1^12,K.1^88,K.1^96,K.1^55,-1*K.1^85,K.1^55,-1*K.1^85,-1*K.1^65,-1*K.1^45,K.1^15,-1*K.1^45,K.1^85,-1*K.1^5,K.1^15,-1*K.1^5,-1*K.1^95,K.1^95,K.1^45,-1*K.1^15,-1*K.1^55,-1*K.1^55,K.1^65,-1*K.1^35,-1*K.1^65,K.1^45,K.1^5,K.1^35,K.1^5,K.1^95,K.1^65,-1*K.1^15,-1*K.1^95,-1*K.1^35,K.1^85,K.1^35,K.1^64,K.1^48,K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^44,-1*K.1^4,K.1^88,K.1^84,K.1^52,-1*K.1^84,K.1^52,-1*K.1^76,K.1^56,-1*K.1^64,K.1^32,-1*K.1^88,-1*K.1^72,K.1^84,-1*K.1^12,-1*K.1^32,K.1^92,K.1^72,-1*K.1^24,K.1^12,K.1^16,-1*K.1^92,K.1^4,K.1^96,-1*K.1^36,K.1^44,K.1^4,-1*K.1^48,-1*K.1^48,-1*K.1^56,-1*K.1^88,-1*K.1^56,K.1^68,K.1^68,K.1^36,K.1^36,-1*K.1^52,-1*K.1^68,-1*K.1^64,-1*K.1^72,K.1^8,K.1^76,K.1^76,K.1^28,-1*K.1^16,-1*K.1^16,K.1^28,-1*K.1^96,-1*K.1^8,-1*K.1^8,-1*K.1^96,K.1^24,K.1^92,K.1^44,-1*K.1^32,-1*K.1^32,K.1^68,-1*K.1^4,-1*K.1^52,-1*K.1^92,K.1^96,-1*K.1^36,K.1^36,K.1^84,-1*K.1^24,K.1^28,-1*K.1^8,K.1^8,-1*K.1^96,-1*K.1^56,K.1^48,K.1^88,-1*K.1^16,K.1^4,-1*K.1^68,-1*K.1^48,-1*K.1^88,-1*K.1^64,K.1^44,K.1^76,-1*K.1^28,-1*K.1^76,K.1^12,K.1^64,K.1^24,K.1^52,K.1^92,-1*K.1^84,K.1^72,-1*K.1^72,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^44,-1*K.1^66,K.1^62,K.1^86,-1*K.1^18,K.1^94,K.1^94,-1*K.1^98,K.1^6,K.1^54,K.1^18,-1*K.1^58,K.1^78,-1*K.1^38,-1*K.1^2,-1*K.1^26,K.1^78,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^54,-1*K.1^94,K.1^14,-1*K.1^14,K.1^34,K.1^98,-1*K.1^6,K.1^42,-1*K.1^46,K.1^2,-1*K.1^34,-1*K.1^62,-1*K.1^86,K.1^2,-1*K.1^26,-1*K.1^94,K.1^26,-1*K.1^22,-1*K.1^74,-1*K.1^54,-1*K.1^82,-1*K.1^62,-1*K.1^86,K.1^66,-1*K.1^42,K.1^22,K.1^22,K.1^38,K.1^82,K.1^42,-1*K.1^6,K.1^82,K.1^66,K.1^58,K.1^74,K.1^74,K.1^54,K.1^34,-1*K.1^14,K.1^18,K.1^26,-1*K.1^22,K.1^98,-1*K.1^46,K.1^58,K.1^62,K.1^6,-1*K.1^42,-1*K.1^74,-1*K.1^18,K.1^86,-1*K.1^78,-1*K.1^38,K.1^38,-1*K.1^98,-1*K.1^78,K.1^46,K.1^46,-1*K.1^58,-1*K.1^34,-1*K.1^2,K.1^22,K.1^54,-1*K.1^94,K.1^34,K.1^94,K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^66,-1*K.1^42,K.1^2,K.1^26,K.1^86,-1*K.1^18,K.1^58,K.1^98,-1*K.1^58,K.1^78,-1*K.1^86,K.1^42,K.1^18,-1*K.1^82,-1*K.1^26,K.1^66,-1*K.1^62,-1*K.1^2,K.1^6,-1*K.1^46,-1*K.1^14,-1*K.1^74,-1*K.1^34,K.1^74,-1*K.1^54,K.1^46,K.1^62,K.1^82,-1*K.1^78,K.1^38,-1*K.1^98,-1*K.1^38,-1*K.1^13,-1*K.1^21,K.1^63,-1*K.1^77,-1*K.1^33,-1*K.1^59,K.1^17,-1*K.1^79,K.1^11,K.1^81,-1*K.1^41,-1*K.1^17,-1*K.1^97,-1*K.1^43,K.1,-1*K.1^23,K.1^99,K.1^97,K.1^71,-1*K.1^69,K.1^43,-1*K.1^47,K.1^49,-1*K.1^91,K.1^49,-1*K.1^29,K.1^79,-1*K.1^37,K.1^59,-1*K.1^63,K.1^41,-1*K.1^83,K.1^57,-1*K.1^57,-1*K.1,K.1^41,K.1^51,-1*K.1^71,K.1^57,-1*K.1^99,K.1^9,K.1^31,K.1^89,-1*K.1^39,K.1^83,-1*K.1^43,-1*K.1^61,-1*K.1^31,K.1^91,K.1,-1*K.1^61,K.1^21,K.1^37,K.1^77,-1*K.1^81,-1*K.1^21,K.1^3,K.1^19,-1*K.1^77,-1*K.1^19,-1*K.1^73,-1*K.1^37,-1*K.1^3,-1*K.1^29,K.1^67,-1*K.1^53,K.1^47,-1*K.1^49,-1*K.1^9,K.1^87,K.1^29,-1*K.1^79,-1*K.1^63,K.1^77,K.1^63,K.1^27,K.1^13,K.1^79,-1*K.1^53,K.1^87,-1*K.1^27,-1*K.1^13,K.1^71,K.1^53,-1*K.1^87,K.1^27,-1*K.1^69,-1*K.1^11,K.1^97,K.1^13,K.1^39,-1*K.1^89,K.1^51,K.1^91,-1*K.1^49,K.1^7,-1*K.1^7,-1*K.1^33,-1*K.1^59,K.1^33,K.1^59,K.1^83,-1*K.1^57,-1*K.1^11,-1*K.1^81,-1*K.1^41,-1*K.1^51,-1*K.1^93,K.1^43,K.1^99,K.1^61,K.1^93,K.1^17,K.1^23,K.1^81,-1*K.1^39,K.1^7,K.1^33,-1*K.1^91,-1*K.1,K.1^21,-1*K.1^3,-1*K.1^17,-1*K.1^23,K.1^19,K.1^73,-1*K.1^99,K.1^93,K.1^29,-1*K.1^67,-1*K.1^9,-1*K.1^31,K.1^11,-1*K.1^97,-1*K.1^83,K.1^53,K.1^89,-1*K.1^51,K.1^9,-1*K.1^87,-1*K.1^47,K.1^61,K.1^31,K.1^73,-1*K.1^67,K.1^47,-1*K.1^93,-1*K.1^19,-1*K.1^73,K.1^67,K.1^23,K.1^37,K.1^3,-1*K.1^71,K.1^69,-1*K.1^27,K.1^69,-1*K.1^89,K.1^39,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^84,-1*K.1^92,-1*K.1^44,K.1^72,K.1^32,-1*K.1^52,K.1^64,K.1^8,K.1^16,-1*K.1^68,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^36,-1*K.1^76,K.1^24,K.1^88,-1*K.1^12,-1*K.1^4,-1*K.1^45,K.1^15,-1*K.1^45,K.1^15,K.1^35,K.1^55,-1*K.1^85,K.1^55,-1*K.1^15,K.1^95,-1*K.1^85,K.1^95,K.1^5,-1*K.1^5,-1*K.1^55,K.1^85,K.1^45,K.1^45,-1*K.1^35,K.1^65,K.1^35,-1*K.1^55,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^5,-1*K.1^35,K.1^85,K.1^5,K.1^65,-1*K.1^15,-1*K.1^65,-1*K.1^36,-1*K.1^52,-1*K.1^88,K.1^76,K.1^72,K.1^56,K.1^96,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^16,-1*K.1^48,K.1^24,-1*K.1^44,K.1^36,-1*K.1^68,K.1^12,K.1^28,-1*K.1^16,K.1^88,K.1^68,-1*K.1^8,-1*K.1^28,K.1^76,-1*K.1^88,-1*K.1^84,K.1^8,-1*K.1^96,-1*K.1^4,K.1^64,-1*K.1^56,-1*K.1^96,K.1^52,K.1^52,K.1^44,K.1^12,K.1^44,-1*K.1^32,-1*K.1^32,-1*K.1^64,-1*K.1^64,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^92,-1*K.1^24,-1*K.1^24,-1*K.1^72,K.1^84,K.1^84,-1*K.1^72,K.1^4,K.1^92,K.1^92,K.1^4,-1*K.1^76,-1*K.1^8,-1*K.1^56,K.1^68,K.1^68,-1*K.1^32,K.1^96,K.1^48,K.1^8,-1*K.1^4,K.1^64,-1*K.1^64,-1*K.1^16,K.1^76,-1*K.1^72,K.1^92,-1*K.1^92,K.1^4,K.1^44,-1*K.1^52,-1*K.1^12,K.1^84,-1*K.1^96,K.1^32,K.1^52,K.1^12,K.1^36,-1*K.1^56,-1*K.1^24,K.1^72,K.1^24,-1*K.1^88,-1*K.1^36,-1*K.1^76,-1*K.1^48,-1*K.1^8,K.1^16,-1*K.1^28,K.1^28,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^56,K.1^34,-1*K.1^38,-1*K.1^14,K.1^82,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^94,-1*K.1^46,-1*K.1^82,K.1^42,-1*K.1^22,K.1^62,K.1^98,K.1^74,-1*K.1^22,-1*K.1^86,K.1^18,K.1^34,K.1^46,K.1^6,-1*K.1^86,K.1^86,-1*K.1^66,-1*K.1^2,K.1^94,-1*K.1^58,K.1^54,-1*K.1^98,K.1^66,K.1^38,K.1^14,-1*K.1^98,K.1^74,K.1^6,-1*K.1^74,K.1^78,K.1^26,K.1^46,K.1^18,K.1^38,K.1^14,-1*K.1^34,K.1^58,-1*K.1^78,-1*K.1^78,-1*K.1^62,-1*K.1^18,-1*K.1^58,K.1^94,-1*K.1^18,-1*K.1^34,-1*K.1^42,-1*K.1^26,-1*K.1^26,-1*K.1^46,-1*K.1^66,K.1^86,-1*K.1^82,-1*K.1^74,K.1^78,-1*K.1^2,K.1^54,-1*K.1^42,-1*K.1^38,-1*K.1^94,K.1^58,K.1^26,K.1^82,-1*K.1^14,K.1^22,K.1^62,-1*K.1^62,K.1^2,K.1^22,-1*K.1^54,-1*K.1^54,K.1^42,K.1^66,K.1^98,-1*K.1^78,-1*K.1^46,K.1^6,-1*K.1^66,-1*K.1^6,-1*K.1^86,K.1^78,K.1^94,K.1^34,K.1^58,-1*K.1^98,-1*K.1^74,-1*K.1^14,K.1^82,-1*K.1^42,-1*K.1^2,K.1^42,-1*K.1^22,K.1^14,-1*K.1^58,-1*K.1^82,K.1^18,K.1^74,-1*K.1^34,K.1^38,K.1^98,-1*K.1^94,K.1^54,K.1^86,K.1^26,K.1^66,-1*K.1^26,K.1^46,-1*K.1^54,-1*K.1^38,-1*K.1^18,K.1^22,-1*K.1^62,K.1^2,K.1^62,K.1^87,K.1^79,-1*K.1^37,K.1^23,K.1^67,K.1^41,-1*K.1^83,K.1^21,-1*K.1^89,-1*K.1^19,K.1^59,K.1^83,K.1^3,K.1^57,-1*K.1^99,K.1^77,-1*K.1,-1*K.1^3,-1*K.1^29,K.1^31,-1*K.1^57,K.1^53,-1*K.1^51,K.1^9,-1*K.1^51,K.1^71,-1*K.1^21,K.1^63,-1*K.1^41,K.1^37,-1*K.1^59,K.1^17,-1*K.1^43,K.1^43,K.1^99,-1*K.1^59,-1*K.1^49,K.1^29,-1*K.1^43,K.1,-1*K.1^91,-1*K.1^69,-1*K.1^11,K.1^61,-1*K.1^17,K.1^57,K.1^39,K.1^69,-1*K.1^9,-1*K.1^99,K.1^39,-1*K.1^79,-1*K.1^63,-1*K.1^23,K.1^19,K.1^79,-1*K.1^97,-1*K.1^81,K.1^23,K.1^81,K.1^27,K.1^63,K.1^97,K.1^71,-1*K.1^33,K.1^47,-1*K.1^53,K.1^51,K.1^91,-1*K.1^13,-1*K.1^71,K.1^21,K.1^37,-1*K.1^23,-1*K.1^37,-1*K.1^73,-1*K.1^87,-1*K.1^21,K.1^47,-1*K.1^13,K.1^73,K.1^87,-1*K.1^29,-1*K.1^47,K.1^13,-1*K.1^73,K.1^31,K.1^89,-1*K.1^3,-1*K.1^87,-1*K.1^61,K.1^11,-1*K.1^49,-1*K.1^9,K.1^51,-1*K.1^93,K.1^93,K.1^67,K.1^41,-1*K.1^67,-1*K.1^41,-1*K.1^17,K.1^43,K.1^89,K.1^19,K.1^59,K.1^49,K.1^7,-1*K.1^57,-1*K.1,-1*K.1^39,-1*K.1^7,-1*K.1^83,-1*K.1^77,-1*K.1^19,K.1^61,-1*K.1^93,-1*K.1^67,K.1^9,K.1^99,-1*K.1^79,K.1^97,K.1^83,K.1^77,-1*K.1^81,-1*K.1^27,K.1,-1*K.1^7,-1*K.1^71,K.1^33,K.1^91,K.1^69,-1*K.1^89,K.1^3,K.1^17,-1*K.1^47,-1*K.1^11,K.1^49,-1*K.1^91,K.1^13,K.1^53,-1*K.1^39,-1*K.1^69,-1*K.1^27,K.1^33,-1*K.1^53,K.1^7,K.1^81,K.1^27,-1*K.1^33,-1*K.1^77,-1*K.1^63,-1*K.1^97,K.1^29,-1*K.1^31,K.1^73,-1*K.1^31,K.1^11,-1*K.1^61,K.1^93]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^96,K.1^48,-1*K.1^36,-1*K.1^68,K.1^8,K.1^88,K.1^16,-1*K.1^52,-1*K.1^4,-1*K.1^92,K.1^32,-1*K.1^12,K.1^64,K.1^24,-1*K.1^84,-1*K.1^44,K.1^56,K.1^72,-1*K.1^28,-1*K.1^76,-1*K.1^55,K.1^85,-1*K.1^55,K.1^85,K.1^65,K.1^45,-1*K.1^15,K.1^45,-1*K.1^85,K.1^5,-1*K.1^15,K.1^5,K.1^95,-1*K.1^95,-1*K.1^45,K.1^15,K.1^55,K.1^55,-1*K.1^65,K.1^35,K.1^65,-1*K.1^45,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^95,-1*K.1^65,K.1^15,K.1^95,K.1^35,-1*K.1^85,-1*K.1^35,-1*K.1^84,K.1^88,-1*K.1^72,K.1^44,-1*K.1^68,K.1^64,K.1^24,-1*K.1^28,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^56,-1*K.1^36,K.1^84,-1*K.1^92,K.1^28,-1*K.1^32,K.1^4,K.1^72,K.1^92,K.1^52,K.1^32,K.1^44,-1*K.1^72,K.1^96,-1*K.1^52,-1*K.1^24,-1*K.1^76,K.1^16,-1*K.1^64,-1*K.1^24,-1*K.1^88,-1*K.1^88,K.1^36,K.1^28,K.1^36,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^84,-1*K.1^32,K.1^48,-1*K.1^56,-1*K.1^56,K.1^68,-1*K.1^96,-1*K.1^96,K.1^68,K.1^76,-1*K.1^48,-1*K.1^48,K.1^76,-1*K.1^44,K.1^52,-1*K.1^64,K.1^92,K.1^92,-1*K.1^8,K.1^24,-1*K.1^12,-1*K.1^52,-1*K.1^76,K.1^16,-1*K.1^16,K.1^4,K.1^44,K.1^68,-1*K.1^48,K.1^48,K.1^76,K.1^36,K.1^88,-1*K.1^28,-1*K.1^96,-1*K.1^24,K.1^8,-1*K.1^88,K.1^28,K.1^84,-1*K.1^64,-1*K.1^56,-1*K.1^68,K.1^56,-1*K.1^72,-1*K.1^84,-1*K.1^44,K.1^12,K.1^52,-1*K.1^4,K.1^32,-1*K.1^32,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,K.1^64,K.1^46,K.1^22,-1*K.1^66,-1*K.1^58,K.1^14,K.1^14,K.1^38,K.1^86,-1*K.1^74,K.1^58,-1*K.1^98,-1*K.1^18,-1*K.1^78,K.1^62,K.1^6,-1*K.1^18,-1*K.1^34,-1*K.1^42,K.1^46,K.1^74,-1*K.1^14,-1*K.1^34,K.1^34,-1*K.1^54,-1*K.1^38,-1*K.1^86,K.1^2,K.1^26,-1*K.1^62,K.1^54,-1*K.1^22,K.1^66,-1*K.1^62,K.1^6,-1*K.1^14,-1*K.1^6,K.1^82,K.1^94,K.1^74,-1*K.1^42,-1*K.1^22,K.1^66,-1*K.1^46,-1*K.1^2,-1*K.1^82,-1*K.1^82,K.1^78,K.1^42,K.1^2,-1*K.1^86,K.1^42,-1*K.1^46,K.1^98,-1*K.1^94,-1*K.1^94,-1*K.1^74,-1*K.1^54,K.1^34,K.1^58,-1*K.1^6,K.1^82,-1*K.1^38,K.1^26,K.1^98,K.1^22,K.1^86,-1*K.1^2,K.1^94,-1*K.1^58,-1*K.1^66,K.1^18,-1*K.1^78,K.1^78,K.1^38,K.1^18,-1*K.1^26,-1*K.1^26,-1*K.1^98,K.1^54,K.1^62,-1*K.1^82,-1*K.1^74,-1*K.1^14,-1*K.1^54,K.1^14,-1*K.1^34,K.1^82,-1*K.1^86,K.1^46,-1*K.1^2,-1*K.1^62,-1*K.1^6,-1*K.1^66,-1*K.1^58,K.1^98,-1*K.1^38,-1*K.1^98,-1*K.1^18,K.1^66,K.1^2,K.1^58,-1*K.1^42,K.1^6,-1*K.1^46,-1*K.1^22,K.1^62,K.1^86,K.1^26,K.1^34,K.1^94,K.1^54,-1*K.1^94,K.1^74,-1*K.1^26,K.1^22,K.1^42,K.1^18,K.1^78,K.1^38,-1*K.1^78,K.1^53,-1*K.1,K.1^3,K.1^37,K.1^73,-1*K.1^79,K.1^77,-1*K.1^99,-1*K.1^91,K.1^61,-1*K.1^21,-1*K.1^77,K.1^57,K.1^83,-1*K.1^81,K.1^63,-1*K.1^19,-1*K.1^57,K.1^51,-1*K.1^89,-1*K.1^83,K.1^7,K.1^69,-1*K.1^71,K.1^69,-1*K.1^49,K.1^99,-1*K.1^97,K.1^79,-1*K.1^3,K.1^21,-1*K.1^23,-1*K.1^17,K.1^17,K.1^81,K.1^21,K.1^31,-1*K.1^51,-1*K.1^17,K.1^19,K.1^29,K.1^11,-1*K.1^9,-1*K.1^59,K.1^23,K.1^83,-1*K.1^41,-1*K.1^11,K.1^71,-1*K.1^81,-1*K.1^41,K.1,K.1^97,-1*K.1^37,-1*K.1^61,-1*K.1,-1*K.1^43,K.1^39,K.1^37,-1*K.1^39,-1*K.1^13,-1*K.1^97,K.1^43,-1*K.1^49,-1*K.1^27,K.1^93,-1*K.1^7,-1*K.1^69,-1*K.1^29,-1*K.1^47,K.1^49,-1*K.1^99,-1*K.1^3,-1*K.1^37,K.1^3,K.1^87,-1*K.1^53,K.1^99,K.1^93,-1*K.1^47,-1*K.1^87,K.1^53,K.1^51,-1*K.1^93,K.1^47,K.1^87,-1*K.1^89,K.1^91,-1*K.1^57,-1*K.1^53,K.1^59,K.1^9,K.1^31,K.1^71,-1*K.1^69,K.1^67,-1*K.1^67,K.1^73,-1*K.1^79,-1*K.1^73,K.1^79,K.1^23,K.1^17,K.1^91,-1*K.1^61,-1*K.1^21,-1*K.1^31,-1*K.1^33,-1*K.1^83,-1*K.1^19,K.1^41,K.1^33,K.1^77,-1*K.1^63,K.1^61,-1*K.1^59,K.1^67,-1*K.1^73,-1*K.1^71,K.1^81,K.1,K.1^43,-1*K.1^77,K.1^63,K.1^39,K.1^13,K.1^19,K.1^33,K.1^49,K.1^27,-1*K.1^29,-1*K.1^11,-1*K.1^91,K.1^57,-1*K.1^23,-1*K.1^93,-1*K.1^9,-1*K.1^31,K.1^29,K.1^47,K.1^7,K.1^41,K.1^11,K.1^13,K.1^27,-1*K.1^7,-1*K.1^33,-1*K.1^39,-1*K.1^13,-1*K.1^27,-1*K.1^63,K.1^97,-1*K.1^43,-1*K.1^51,K.1^89,-1*K.1^87,K.1^89,K.1^9,K.1^59,-1*K.1^67]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^4,-1*K.1^52,K.1^64,K.1^32,-1*K.1^92,-1*K.1^12,-1*K.1^84,K.1^48,K.1^96,K.1^8,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,K.1^16,K.1^56,-1*K.1^44,-1*K.1^28,K.1^72,K.1^24,K.1^45,-1*K.1^15,K.1^45,-1*K.1^15,-1*K.1^35,-1*K.1^55,K.1^85,-1*K.1^55,K.1^15,-1*K.1^95,K.1^85,-1*K.1^95,-1*K.1^5,K.1^5,K.1^55,-1*K.1^85,-1*K.1^45,-1*K.1^45,K.1^35,-1*K.1^65,-1*K.1^35,K.1^55,K.1^95,K.1^65,K.1^95,K.1^5,K.1^35,-1*K.1^85,-1*K.1^5,-1*K.1^65,K.1^15,K.1^65,K.1^16,-1*K.1^12,K.1^28,-1*K.1^56,K.1^32,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^96,-1*K.1^88,K.1^96,-1*K.1^88,-1*K.1^44,K.1^64,-1*K.1^16,K.1^8,-1*K.1^72,K.1^68,-1*K.1^96,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^68,-1*K.1^56,K.1^28,-1*K.1^4,K.1^48,K.1^76,K.1^24,-1*K.1^84,K.1^36,K.1^76,K.1^12,K.1^12,-1*K.1^64,-1*K.1^72,-1*K.1^64,K.1^92,K.1^92,K.1^84,K.1^84,K.1^88,-1*K.1^92,-1*K.1^16,K.1^68,-1*K.1^52,K.1^44,K.1^44,-1*K.1^32,K.1^4,K.1^4,-1*K.1^32,-1*K.1^24,K.1^52,K.1^52,-1*K.1^24,K.1^56,-1*K.1^48,K.1^36,-1*K.1^8,-1*K.1^8,K.1^92,-1*K.1^76,K.1^88,K.1^48,K.1^24,-1*K.1^84,K.1^84,-1*K.1^96,-1*K.1^56,-1*K.1^32,K.1^52,-1*K.1^52,-1*K.1^24,-1*K.1^64,-1*K.1^12,K.1^72,K.1^4,K.1^76,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^16,K.1^36,K.1^44,K.1^32,-1*K.1^44,K.1^28,K.1^16,K.1^56,-1*K.1^88,-1*K.1^48,K.1^96,-1*K.1^68,K.1^68,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,-1*K.1^36,-1*K.1^54,-1*K.1^78,K.1^34,K.1^42,-1*K.1^86,-1*K.1^86,-1*K.1^62,-1*K.1^14,K.1^26,-1*K.1^42,K.1^2,K.1^82,K.1^22,-1*K.1^38,-1*K.1^94,K.1^82,K.1^66,K.1^58,-1*K.1^54,-1*K.1^26,K.1^86,K.1^66,-1*K.1^66,K.1^46,K.1^62,K.1^14,-1*K.1^98,-1*K.1^74,K.1^38,-1*K.1^46,K.1^78,-1*K.1^34,K.1^38,-1*K.1^94,K.1^86,K.1^94,-1*K.1^18,-1*K.1^6,-1*K.1^26,K.1^58,K.1^78,-1*K.1^34,K.1^54,K.1^98,K.1^18,K.1^18,-1*K.1^22,-1*K.1^58,-1*K.1^98,K.1^14,-1*K.1^58,K.1^54,-1*K.1^2,K.1^6,K.1^6,K.1^26,K.1^46,-1*K.1^66,-1*K.1^42,K.1^94,-1*K.1^18,K.1^62,-1*K.1^74,-1*K.1^2,-1*K.1^78,-1*K.1^14,K.1^98,-1*K.1^6,K.1^42,K.1^34,-1*K.1^82,K.1^22,-1*K.1^22,-1*K.1^62,-1*K.1^82,K.1^74,K.1^74,K.1^2,-1*K.1^46,-1*K.1^38,K.1^18,K.1^26,K.1^86,K.1^46,-1*K.1^86,K.1^66,-1*K.1^18,K.1^14,-1*K.1^54,K.1^98,K.1^38,K.1^94,K.1^34,K.1^42,-1*K.1^2,K.1^62,K.1^2,K.1^82,-1*K.1^34,-1*K.1^98,-1*K.1^42,K.1^58,-1*K.1^94,K.1^54,K.1^78,-1*K.1^38,-1*K.1^14,-1*K.1^74,-1*K.1^66,-1*K.1^6,-1*K.1^46,K.1^6,-1*K.1^26,K.1^74,-1*K.1^78,-1*K.1^58,-1*K.1^82,-1*K.1^22,-1*K.1^62,K.1^22,-1*K.1^47,K.1^99,-1*K.1^97,-1*K.1^63,-1*K.1^27,K.1^21,-1*K.1^23,K.1,K.1^9,-1*K.1^39,K.1^79,K.1^23,-1*K.1^43,-1*K.1^17,K.1^19,-1*K.1^37,K.1^81,K.1^43,-1*K.1^49,K.1^11,K.1^17,-1*K.1^93,-1*K.1^31,K.1^29,-1*K.1^31,K.1^51,-1*K.1,K.1^3,-1*K.1^21,K.1^97,-1*K.1^79,K.1^77,K.1^83,-1*K.1^83,-1*K.1^19,-1*K.1^79,-1*K.1^69,K.1^49,K.1^83,-1*K.1^81,-1*K.1^71,-1*K.1^89,K.1^91,K.1^41,-1*K.1^77,-1*K.1^17,K.1^59,K.1^89,-1*K.1^29,K.1^19,K.1^59,-1*K.1^99,-1*K.1^3,K.1^63,K.1^39,K.1^99,K.1^57,-1*K.1^61,-1*K.1^63,K.1^61,K.1^87,K.1^3,-1*K.1^57,K.1^51,K.1^73,-1*K.1^7,K.1^93,K.1^31,K.1^71,K.1^53,-1*K.1^51,K.1,K.1^97,K.1^63,-1*K.1^97,-1*K.1^13,K.1^47,-1*K.1,-1*K.1^7,K.1^53,K.1^13,-1*K.1^47,-1*K.1^49,K.1^7,-1*K.1^53,-1*K.1^13,K.1^11,-1*K.1^9,K.1^43,K.1^47,-1*K.1^41,-1*K.1^91,-1*K.1^69,-1*K.1^29,K.1^31,-1*K.1^33,K.1^33,-1*K.1^27,K.1^21,K.1^27,-1*K.1^21,-1*K.1^77,-1*K.1^83,-1*K.1^9,K.1^39,K.1^79,K.1^69,K.1^67,K.1^17,K.1^81,-1*K.1^59,-1*K.1^67,-1*K.1^23,K.1^37,-1*K.1^39,K.1^41,-1*K.1^33,K.1^27,K.1^29,-1*K.1^19,-1*K.1^99,-1*K.1^57,K.1^23,-1*K.1^37,-1*K.1^61,-1*K.1^87,-1*K.1^81,-1*K.1^67,-1*K.1^51,-1*K.1^73,K.1^71,K.1^89,K.1^9,-1*K.1^43,K.1^77,K.1^7,K.1^91,K.1^69,-1*K.1^71,-1*K.1^53,-1*K.1^93,-1*K.1^59,-1*K.1^89,-1*K.1^87,-1*K.1^73,K.1^93,K.1^67,K.1^61,K.1^87,K.1^73,K.1^37,-1*K.1^3,K.1^57,K.1^49,-1*K.1^11,K.1^13,-1*K.1^11,-1*K.1^91,-1*K.1^41,K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,-1*K.1^36,-1*K.1^68,-1*K.1^76,K.1^88,-1*K.1^28,K.1^8,K.1^56,K.1^32,K.1^64,K.1^72,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^96,-1*K.1^52,K.1^48,K.1^16,-1*K.1^55,K.1^85,-1*K.1^55,K.1^85,K.1^65,K.1^45,-1*K.1^15,K.1^45,-1*K.1^85,K.1^5,-1*K.1^15,K.1^5,K.1^95,-1*K.1^95,-1*K.1^45,K.1^15,K.1^55,K.1^55,-1*K.1^65,K.1^35,K.1^65,-1*K.1^45,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^95,-1*K.1^65,K.1^15,K.1^95,K.1^35,-1*K.1^85,-1*K.1^35,-1*K.1^44,K.1^8,K.1^52,K.1^4,K.1^88,K.1^24,-1*K.1^84,K.1^48,-1*K.1^64,K.1^92,K.1^64,K.1^92,K.1^96,-1*K.1^76,K.1^44,K.1^72,-1*K.1^48,K.1^12,-1*K.1^64,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^12,K.1^4,K.1^52,-1*K.1^36,K.1^32,K.1^84,K.1^16,K.1^56,-1*K.1^24,K.1^84,-1*K.1^8,-1*K.1^8,K.1^76,-1*K.1^48,K.1^76,K.1^28,K.1^28,-1*K.1^56,-1*K.1^56,-1*K.1^92,-1*K.1^28,K.1^44,K.1^12,-1*K.1^68,-1*K.1^96,-1*K.1^96,-1*K.1^88,K.1^36,K.1^36,-1*K.1^88,-1*K.1^16,K.1^68,K.1^68,-1*K.1^16,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^28,-1*K.1^84,-1*K.1^92,K.1^32,K.1^16,K.1^56,-1*K.1^56,-1*K.1^64,K.1^4,-1*K.1^88,K.1^68,-1*K.1^68,-1*K.1^16,K.1^76,K.1^8,K.1^48,K.1^36,K.1^84,-1*K.1^28,-1*K.1^8,-1*K.1^48,K.1^44,-1*K.1^24,-1*K.1^96,K.1^88,K.1^96,K.1^52,-1*K.1^44,-1*K.1^4,K.1^92,-1*K.1^32,K.1^64,-1*K.1^12,K.1^12,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^24,K.1^86,-1*K.1^2,K.1^6,K.1^78,-1*K.1^74,-1*K.1^74,-1*K.1^58,-1*K.1^26,-1*K.1^34,-1*K.1^78,-1*K.1^18,K.1^38,K.1^98,-1*K.1^42,K.1^46,K.1^38,K.1^94,K.1^22,K.1^86,K.1^34,K.1^74,K.1^94,-1*K.1^94,-1*K.1^14,K.1^58,K.1^26,K.1^82,K.1^66,K.1^42,K.1^14,K.1^2,-1*K.1^6,K.1^42,K.1^46,K.1^74,-1*K.1^46,-1*K.1^62,K.1^54,K.1^34,K.1^22,K.1^2,-1*K.1^6,-1*K.1^86,-1*K.1^82,K.1^62,K.1^62,-1*K.1^98,-1*K.1^22,K.1^82,K.1^26,-1*K.1^22,-1*K.1^86,K.1^18,-1*K.1^54,-1*K.1^54,-1*K.1^34,-1*K.1^14,-1*K.1^94,-1*K.1^78,-1*K.1^46,-1*K.1^62,K.1^58,K.1^66,K.1^18,-1*K.1^2,-1*K.1^26,-1*K.1^82,K.1^54,K.1^78,K.1^6,-1*K.1^38,K.1^98,-1*K.1^98,-1*K.1^58,-1*K.1^38,-1*K.1^66,-1*K.1^66,-1*K.1^18,K.1^14,-1*K.1^42,K.1^62,-1*K.1^34,K.1^74,-1*K.1^14,-1*K.1^74,K.1^94,-1*K.1^62,K.1^26,K.1^86,-1*K.1^82,K.1^42,-1*K.1^46,K.1^6,K.1^78,K.1^18,K.1^58,-1*K.1^18,K.1^38,-1*K.1^6,K.1^82,-1*K.1^78,K.1^22,K.1^46,-1*K.1^86,K.1^2,-1*K.1^42,-1*K.1^26,K.1^66,-1*K.1^94,K.1^54,K.1^14,-1*K.1^54,K.1^34,-1*K.1^66,-1*K.1^2,-1*K.1^22,-1*K.1^38,-1*K.1^98,-1*K.1^58,K.1^98,-1*K.1^73,-1*K.1^41,-1*K.1^23,-1*K.1^17,-1*K.1^93,-1*K.1^39,-1*K.1^57,-1*K.1^59,K.1^31,-1*K.1,-1*K.1^61,K.1^57,-1*K.1^37,K.1^3,K.1^21,-1*K.1^83,K.1^79,K.1^37,K.1^91,-1*K.1^49,-1*K.1^3,K.1^87,K.1^29,K.1^11,K.1^29,-1*K.1^9,K.1^59,K.1^77,K.1^39,K.1^23,K.1^61,K.1^43,-1*K.1^97,K.1^97,-1*K.1^21,K.1^61,K.1^71,-1*K.1^91,-1*K.1^97,-1*K.1^79,-1*K.1^89,K.1^51,K.1^69,-1*K.1^19,-1*K.1^43,K.1^3,-1*K.1^81,-1*K.1^51,-1*K.1^11,K.1^21,-1*K.1^81,K.1^41,-1*K.1^77,K.1^17,K.1,-1*K.1^41,K.1^63,-1*K.1^99,-1*K.1^17,K.1^99,K.1^33,K.1^77,-1*K.1^63,-1*K.1^9,K.1^7,K.1^13,-1*K.1^87,-1*K.1^29,K.1^89,K.1^27,K.1^9,-1*K.1^59,K.1^23,K.1^17,-1*K.1^23,-1*K.1^67,K.1^73,K.1^59,K.1^13,K.1^27,K.1^67,-1*K.1^73,K.1^91,-1*K.1^13,-1*K.1^27,-1*K.1^67,-1*K.1^49,-1*K.1^31,K.1^37,K.1^73,K.1^19,-1*K.1^69,K.1^71,-1*K.1^11,-1*K.1^29,-1*K.1^47,K.1^47,-1*K.1^93,-1*K.1^39,K.1^93,K.1^39,-1*K.1^43,K.1^97,-1*K.1^31,K.1,-1*K.1^61,-1*K.1^71,K.1^53,-1*K.1^3,K.1^79,K.1^81,-1*K.1^53,-1*K.1^57,K.1^83,-1*K.1,-1*K.1^19,-1*K.1^47,K.1^93,K.1^11,-1*K.1^21,K.1^41,-1*K.1^63,K.1^57,-1*K.1^83,-1*K.1^99,-1*K.1^33,-1*K.1^79,-1*K.1^53,K.1^9,-1*K.1^7,K.1^89,-1*K.1^51,K.1^31,-1*K.1^37,K.1^43,-1*K.1^13,K.1^69,-1*K.1^71,-1*K.1^89,-1*K.1^27,K.1^87,K.1^81,K.1^51,-1*K.1^33,-1*K.1^7,-1*K.1^87,K.1^53,K.1^99,K.1^33,K.1^7,K.1^83,-1*K.1^77,K.1^63,-1*K.1^91,K.1^49,K.1^67,K.1^49,-1*K.1^69,K.1^19,K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,K.1^64,K.1^32,K.1^24,-1*K.1^12,K.1^72,-1*K.1^92,-1*K.1^44,-1*K.1^68,-1*K.1^36,-1*K.1^28,K.1^88,K.1^8,-1*K.1^76,K.1^16,K.1^56,K.1^96,-1*K.1^4,K.1^48,-1*K.1^52,-1*K.1^84,K.1^45,-1*K.1^15,K.1^45,-1*K.1^15,-1*K.1^35,-1*K.1^55,K.1^85,-1*K.1^55,K.1^15,-1*K.1^95,K.1^85,-1*K.1^95,-1*K.1^5,K.1^5,K.1^55,-1*K.1^85,-1*K.1^45,-1*K.1^45,K.1^35,-1*K.1^65,-1*K.1^35,K.1^55,K.1^95,K.1^65,K.1^95,K.1^5,K.1^35,-1*K.1^85,-1*K.1^5,-1*K.1^65,K.1^15,K.1^65,K.1^56,-1*K.1^92,-1*K.1^48,-1*K.1^96,-1*K.1^12,-1*K.1^76,K.1^16,-1*K.1^52,K.1^36,-1*K.1^8,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^24,-1*K.1^56,-1*K.1^28,K.1^52,-1*K.1^88,K.1^36,K.1^48,K.1^28,K.1^68,K.1^88,-1*K.1^96,-1*K.1^48,K.1^64,-1*K.1^68,-1*K.1^16,-1*K.1^84,-1*K.1^44,K.1^76,-1*K.1^16,K.1^92,K.1^92,-1*K.1^24,K.1^52,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^44,K.1^44,K.1^8,K.1^72,-1*K.1^56,-1*K.1^88,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^64,-1*K.1^64,K.1^12,K.1^84,-1*K.1^32,-1*K.1^32,K.1^84,K.1^96,K.1^68,K.1^76,K.1^28,K.1^28,-1*K.1^72,K.1^16,K.1^8,-1*K.1^68,-1*K.1^84,-1*K.1^44,K.1^44,K.1^36,-1*K.1^96,K.1^12,-1*K.1^32,K.1^32,K.1^84,-1*K.1^24,-1*K.1^92,-1*K.1^52,-1*K.1^64,-1*K.1^16,K.1^72,K.1^92,K.1^52,-1*K.1^56,K.1^76,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^48,K.1^56,K.1^96,-1*K.1^8,K.1^68,-1*K.1^36,K.1^88,-1*K.1^88,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^76,-1*K.1^14,K.1^98,-1*K.1^94,-1*K.1^22,K.1^26,K.1^26,K.1^42,K.1^74,K.1^66,K.1^22,K.1^82,-1*K.1^62,-1*K.1^2,K.1^58,-1*K.1^54,-1*K.1^62,-1*K.1^6,-1*K.1^78,-1*K.1^14,-1*K.1^66,-1*K.1^26,-1*K.1^6,K.1^6,K.1^86,-1*K.1^42,-1*K.1^74,-1*K.1^18,-1*K.1^34,-1*K.1^58,-1*K.1^86,-1*K.1^98,K.1^94,-1*K.1^58,-1*K.1^54,-1*K.1^26,K.1^54,K.1^38,-1*K.1^46,-1*K.1^66,-1*K.1^78,-1*K.1^98,K.1^94,K.1^14,K.1^18,-1*K.1^38,-1*K.1^38,K.1^2,K.1^78,-1*K.1^18,-1*K.1^74,K.1^78,K.1^14,-1*K.1^82,K.1^46,K.1^46,K.1^66,K.1^86,K.1^6,K.1^22,K.1^54,K.1^38,-1*K.1^42,-1*K.1^34,-1*K.1^82,K.1^98,K.1^74,K.1^18,-1*K.1^46,-1*K.1^22,-1*K.1^94,K.1^62,-1*K.1^2,K.1^2,K.1^42,K.1^62,K.1^34,K.1^34,K.1^82,-1*K.1^86,K.1^58,-1*K.1^38,K.1^66,-1*K.1^26,K.1^86,K.1^26,-1*K.1^6,K.1^38,-1*K.1^74,-1*K.1^14,K.1^18,-1*K.1^58,K.1^54,-1*K.1^94,-1*K.1^22,-1*K.1^82,-1*K.1^42,K.1^82,-1*K.1^62,K.1^94,-1*K.1^18,K.1^22,-1*K.1^78,-1*K.1^54,K.1^14,-1*K.1^98,K.1^58,K.1^74,-1*K.1^34,K.1^6,-1*K.1^46,-1*K.1^86,K.1^46,-1*K.1^66,K.1^34,K.1^98,K.1^78,K.1^62,K.1^2,K.1^42,-1*K.1^2,K.1^27,K.1^59,K.1^77,K.1^83,K.1^7,K.1^61,K.1^43,K.1^41,-1*K.1^69,K.1^99,K.1^39,-1*K.1^43,K.1^63,-1*K.1^97,-1*K.1^79,K.1^17,-1*K.1^21,-1*K.1^63,-1*K.1^9,K.1^51,K.1^97,-1*K.1^13,-1*K.1^71,-1*K.1^89,-1*K.1^71,K.1^91,-1*K.1^41,-1*K.1^23,-1*K.1^61,-1*K.1^77,-1*K.1^39,-1*K.1^57,K.1^3,-1*K.1^3,K.1^79,-1*K.1^39,-1*K.1^29,K.1^9,K.1^3,K.1^21,K.1^11,-1*K.1^49,-1*K.1^31,K.1^81,K.1^57,-1*K.1^97,K.1^19,K.1^49,K.1^89,-1*K.1^79,K.1^19,-1*K.1^59,K.1^23,-1*K.1^83,-1*K.1^99,K.1^59,-1*K.1^37,K.1,K.1^83,-1*K.1,-1*K.1^67,-1*K.1^23,K.1^37,K.1^91,-1*K.1^93,-1*K.1^87,K.1^13,K.1^71,-1*K.1^11,-1*K.1^73,-1*K.1^91,K.1^41,-1*K.1^77,-1*K.1^83,K.1^77,K.1^33,-1*K.1^27,-1*K.1^41,-1*K.1^87,-1*K.1^73,-1*K.1^33,K.1^27,-1*K.1^9,K.1^87,K.1^73,K.1^33,K.1^51,K.1^69,-1*K.1^63,-1*K.1^27,-1*K.1^81,K.1^31,-1*K.1^29,K.1^89,K.1^71,K.1^53,-1*K.1^53,K.1^7,K.1^61,-1*K.1^7,-1*K.1^61,K.1^57,-1*K.1^3,K.1^69,-1*K.1^99,K.1^39,K.1^29,-1*K.1^47,K.1^97,-1*K.1^21,-1*K.1^19,K.1^47,K.1^43,-1*K.1^17,K.1^99,K.1^81,K.1^53,-1*K.1^7,-1*K.1^89,K.1^79,-1*K.1^59,K.1^37,-1*K.1^43,K.1^17,K.1,K.1^67,K.1^21,K.1^47,-1*K.1^91,K.1^93,-1*K.1^11,K.1^49,-1*K.1^69,K.1^63,-1*K.1^57,K.1^87,-1*K.1^31,K.1^29,K.1^11,K.1^73,-1*K.1^13,-1*K.1^19,-1*K.1^49,K.1^67,K.1^93,K.1^13,-1*K.1^47,-1*K.1,-1*K.1^67,-1*K.1^93,-1*K.1^17,K.1^23,-1*K.1^37,K.1^9,-1*K.1^51,-1*K.1^33,-1*K.1^51,K.1^31,-1*K.1^81,-1*K.1^53]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^56,-1*K.1^28,K.1^96,K.1^48,K.1^88,-1*K.1^68,-1*K.1^76,K.1^72,-1*K.1^44,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,K.1^24,-1*K.1^84,K.1^16,-1*K.1^92,K.1^8,-1*K.1^36,-1*K.1^55,K.1^85,-1*K.1^55,K.1^85,K.1^65,K.1^45,-1*K.1^15,K.1^45,-1*K.1^85,K.1^5,-1*K.1^15,K.1^5,K.1^95,-1*K.1^95,-1*K.1^45,K.1^15,K.1^55,K.1^55,-1*K.1^65,K.1^35,K.1^65,-1*K.1^45,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^95,-1*K.1^65,K.1^15,K.1^95,K.1^35,-1*K.1^85,-1*K.1^35,K.1^24,-1*K.1^68,K.1^92,K.1^84,K.1^48,-1*K.1^4,K.1^64,K.1^8,K.1^44,-1*K.1^32,-1*K.1^44,-1*K.1^32,K.1^16,K.1^96,-1*K.1^24,-1*K.1^12,-1*K.1^8,K.1^52,K.1^44,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^52,K.1^84,K.1^92,K.1^56,K.1^72,-1*K.1^64,-1*K.1^36,-1*K.1^76,K.1^4,-1*K.1^64,K.1^68,K.1^68,-1*K.1^96,-1*K.1^8,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^76,K.1^76,K.1^32,K.1^88,-1*K.1^24,K.1^52,-1*K.1^28,-1*K.1^16,-1*K.1^16,-1*K.1^48,-1*K.1^56,-1*K.1^56,-1*K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^84,-1*K.1^72,K.1^4,K.1^12,K.1^12,-1*K.1^88,K.1^64,K.1^32,K.1^72,-1*K.1^36,-1*K.1^76,K.1^76,K.1^44,K.1^84,-1*K.1^48,K.1^28,-1*K.1^28,K.1^36,-1*K.1^96,-1*K.1^68,K.1^8,-1*K.1^56,-1*K.1^64,K.1^88,K.1^68,-1*K.1^8,-1*K.1^24,K.1^4,-1*K.1^16,K.1^48,K.1^16,K.1^92,K.1^24,-1*K.1^84,-1*K.1^32,-1*K.1^72,-1*K.1^44,-1*K.1^52,K.1^52,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,-1*K.1^4,K.1^6,-1*K.1^42,-1*K.1^26,K.1^38,K.1^54,K.1^54,-1*K.1^18,K.1^46,K.1^14,-1*K.1^38,K.1^78,-1*K.1^98,K.1^58,-1*K.1^82,-1*K.1^66,-1*K.1^98,-1*K.1^74,K.1^62,K.1^6,-1*K.1^14,-1*K.1^54,-1*K.1^74,K.1^74,-1*K.1^94,K.1^18,-1*K.1^46,-1*K.1^22,-1*K.1^86,K.1^82,K.1^94,K.1^42,K.1^26,K.1^82,-1*K.1^66,-1*K.1^54,K.1^66,K.1^2,-1*K.1^34,-1*K.1^14,K.1^62,K.1^42,K.1^26,-1*K.1^6,K.1^22,-1*K.1^2,-1*K.1^2,-1*K.1^58,-1*K.1^62,-1*K.1^22,-1*K.1^46,-1*K.1^62,-1*K.1^6,-1*K.1^78,K.1^34,K.1^34,K.1^14,-1*K.1^94,K.1^74,-1*K.1^38,K.1^66,K.1^2,K.1^18,-1*K.1^86,-1*K.1^78,-1*K.1^42,K.1^46,K.1^22,-1*K.1^34,K.1^38,-1*K.1^26,K.1^98,K.1^58,-1*K.1^58,-1*K.1^18,K.1^98,K.1^86,K.1^86,K.1^78,K.1^94,-1*K.1^82,-1*K.1^2,K.1^14,-1*K.1^54,-1*K.1^94,K.1^54,-1*K.1^74,K.1^2,-1*K.1^46,K.1^6,K.1^22,K.1^82,K.1^66,-1*K.1^26,K.1^38,-1*K.1^78,K.1^18,K.1^78,-1*K.1^98,K.1^26,-1*K.1^22,-1*K.1^38,K.1^62,-1*K.1^66,-1*K.1^6,K.1^42,-1*K.1^82,K.1^46,-1*K.1^86,K.1^74,-1*K.1^34,K.1^94,K.1^34,-1*K.1^14,K.1^86,-1*K.1^42,-1*K.1^62,K.1^98,-1*K.1^58,-1*K.1^18,K.1^58,-1*K.1^33,K.1^61,K.1^83,-1*K.1^57,-1*K.1^53,K.1^19,-1*K.1^97,K.1^39,-1*K.1^51,K.1^21,K.1^81,K.1^97,-1*K.1^77,-1*K.1^63,-1*K.1^41,-1*K.1^43,-1*K.1^59,K.1^77,K.1^11,K.1^29,K.1^63,-1*K.1^27,-1*K.1^9,-1*K.1^31,-1*K.1^9,-1*K.1^89,-1*K.1^39,-1*K.1^17,-1*K.1^19,-1*K.1^83,-1*K.1^81,K.1^3,K.1^37,-1*K.1^37,K.1^41,-1*K.1^81,-1*K.1^91,-1*K.1^11,K.1^37,K.1^59,K.1^69,-1*K.1^71,-1*K.1^49,-1*K.1^99,-1*K.1^3,-1*K.1^63,-1*K.1,K.1^71,K.1^31,-1*K.1^41,-1*K.1,-1*K.1^61,K.1^17,K.1^57,-1*K.1^21,K.1^61,K.1^23,K.1^79,-1*K.1^57,-1*K.1^79,-1*K.1^93,-1*K.1^17,-1*K.1^23,-1*K.1^89,K.1^47,-1*K.1^73,K.1^27,K.1^9,-1*K.1^69,K.1^67,K.1^89,K.1^39,-1*K.1^83,K.1^57,K.1^83,K.1^7,K.1^33,-1*K.1^39,-1*K.1^73,K.1^67,-1*K.1^7,-1*K.1^33,K.1^11,K.1^73,-1*K.1^67,K.1^7,K.1^29,K.1^51,K.1^77,K.1^33,K.1^99,K.1^49,-1*K.1^91,K.1^31,K.1^9,-1*K.1^87,K.1^87,-1*K.1^53,K.1^19,K.1^53,-1*K.1^19,-1*K.1^3,-1*K.1^37,K.1^51,-1*K.1^21,K.1^81,K.1^91,K.1^13,K.1^63,-1*K.1^59,K.1,-1*K.1^13,-1*K.1^97,K.1^43,K.1^21,-1*K.1^99,-1*K.1^87,K.1^53,-1*K.1^31,K.1^41,-1*K.1^61,-1*K.1^23,K.1^97,-1*K.1^43,K.1^79,K.1^93,K.1^59,-1*K.1^13,K.1^89,-1*K.1^47,-1*K.1^69,K.1^71,-1*K.1^51,-1*K.1^77,K.1^3,K.1^73,-1*K.1^49,K.1^91,K.1^69,-1*K.1^67,-1*K.1^27,K.1,-1*K.1^71,K.1^93,-1*K.1^47,K.1^27,K.1^13,-1*K.1^79,-1*K.1^93,K.1^47,K.1^43,K.1^17,K.1^23,-1*K.1^11,-1*K.1^29,-1*K.1^7,-1*K.1^29,K.1^49,K.1^99,K.1^87]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^44,K.1^72,-1*K.1^4,-1*K.1^52,-1*K.1^12,K.1^32,K.1^24,-1*K.1^28,K.1^56,K.1^88,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,-1*K.1^76,K.1^16,-1*K.1^84,K.1^8,-1*K.1^92,K.1^64,K.1^45,-1*K.1^15,K.1^45,-1*K.1^15,-1*K.1^35,-1*K.1^55,K.1^85,-1*K.1^55,K.1^15,-1*K.1^95,K.1^85,-1*K.1^95,-1*K.1^5,K.1^5,K.1^55,-1*K.1^85,-1*K.1^45,-1*K.1^45,K.1^35,-1*K.1^65,-1*K.1^35,K.1^55,K.1^95,K.1^65,K.1^95,K.1^5,K.1^35,-1*K.1^85,-1*K.1^5,-1*K.1^65,K.1^15,K.1^65,-1*K.1^76,K.1^32,-1*K.1^8,-1*K.1^16,-1*K.1^52,K.1^96,-1*K.1^36,-1*K.1^92,-1*K.1^56,K.1^68,K.1^56,K.1^68,-1*K.1^84,-1*K.1^4,K.1^76,K.1^88,K.1^92,-1*K.1^48,-1*K.1^56,K.1^8,-1*K.1^88,K.1^28,K.1^48,-1*K.1^16,-1*K.1^8,-1*K.1^44,-1*K.1^28,K.1^36,K.1^64,K.1^24,-1*K.1^96,K.1^36,-1*K.1^32,-1*K.1^32,K.1^4,K.1^92,K.1^4,K.1^12,K.1^12,-1*K.1^24,-1*K.1^24,-1*K.1^68,-1*K.1^12,K.1^76,-1*K.1^48,K.1^72,K.1^84,K.1^84,K.1^52,K.1^44,K.1^44,K.1^52,-1*K.1^64,-1*K.1^72,-1*K.1^72,-1*K.1^64,K.1^16,K.1^28,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^12,-1*K.1^36,-1*K.1^68,-1*K.1^28,K.1^64,K.1^24,-1*K.1^24,-1*K.1^56,-1*K.1^16,K.1^52,-1*K.1^72,K.1^72,-1*K.1^64,K.1^4,K.1^32,-1*K.1^92,K.1^44,K.1^36,-1*K.1^12,-1*K.1^32,K.1^92,K.1^76,-1*K.1^96,K.1^84,-1*K.1^52,-1*K.1^84,-1*K.1^8,-1*K.1^76,K.1^16,K.1^68,K.1^28,K.1^56,K.1^48,-1*K.1^48,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,K.1^96,-1*K.1^94,K.1^58,K.1^74,-1*K.1^62,-1*K.1^46,-1*K.1^46,K.1^82,-1*K.1^54,-1*K.1^86,K.1^62,-1*K.1^22,K.1^2,-1*K.1^42,K.1^18,K.1^34,K.1^2,K.1^26,-1*K.1^38,-1*K.1^94,K.1^86,K.1^46,K.1^26,-1*K.1^26,K.1^6,-1*K.1^82,K.1^54,K.1^78,K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^58,-1*K.1^74,-1*K.1^18,K.1^34,K.1^46,-1*K.1^34,-1*K.1^98,K.1^66,K.1^86,-1*K.1^38,-1*K.1^58,-1*K.1^74,K.1^94,-1*K.1^78,K.1^98,K.1^98,K.1^42,K.1^38,K.1^78,K.1^54,K.1^38,K.1^94,K.1^22,-1*K.1^66,-1*K.1^66,-1*K.1^86,K.1^6,-1*K.1^26,K.1^62,-1*K.1^34,-1*K.1^98,-1*K.1^82,K.1^14,K.1^22,K.1^58,-1*K.1^54,-1*K.1^78,K.1^66,-1*K.1^62,K.1^74,-1*K.1^2,-1*K.1^42,K.1^42,K.1^82,-1*K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^18,K.1^98,-1*K.1^86,K.1^46,K.1^6,-1*K.1^46,K.1^26,-1*K.1^98,K.1^54,-1*K.1^94,-1*K.1^78,-1*K.1^18,-1*K.1^34,K.1^74,-1*K.1^62,K.1^22,-1*K.1^82,-1*K.1^22,K.1^2,-1*K.1^74,K.1^78,K.1^62,-1*K.1^38,K.1^34,K.1^94,-1*K.1^58,K.1^18,-1*K.1^54,K.1^14,-1*K.1^26,K.1^66,-1*K.1^6,-1*K.1^66,K.1^86,-1*K.1^14,K.1^58,K.1^38,-1*K.1^2,K.1^42,K.1^82,-1*K.1^42,K.1^67,-1*K.1^39,-1*K.1^17,K.1^43,K.1^47,-1*K.1^81,K.1^3,-1*K.1^61,K.1^49,-1*K.1^79,-1*K.1^19,-1*K.1^3,K.1^23,K.1^37,K.1^59,K.1^57,K.1^41,-1*K.1^23,-1*K.1^89,-1*K.1^71,-1*K.1^37,K.1^73,K.1^91,K.1^69,K.1^91,K.1^11,K.1^61,K.1^83,K.1^81,K.1^17,K.1^19,-1*K.1^97,-1*K.1^63,K.1^63,-1*K.1^59,K.1^19,K.1^9,K.1^89,-1*K.1^63,-1*K.1^41,-1*K.1^31,K.1^29,K.1^51,K.1,K.1^97,K.1^37,K.1^99,-1*K.1^29,-1*K.1^69,K.1^59,K.1^99,K.1^39,-1*K.1^83,-1*K.1^43,K.1^79,-1*K.1^39,-1*K.1^77,-1*K.1^21,K.1^43,K.1^21,K.1^7,K.1^83,K.1^77,K.1^11,-1*K.1^53,K.1^27,-1*K.1^73,-1*K.1^91,K.1^31,-1*K.1^33,-1*K.1^11,-1*K.1^61,K.1^17,-1*K.1^43,-1*K.1^17,-1*K.1^93,-1*K.1^67,K.1^61,K.1^27,-1*K.1^33,K.1^93,K.1^67,-1*K.1^89,-1*K.1^27,K.1^33,-1*K.1^93,-1*K.1^71,-1*K.1^49,-1*K.1^23,-1*K.1^67,-1*K.1,-1*K.1^51,K.1^9,-1*K.1^69,-1*K.1^91,K.1^13,-1*K.1^13,K.1^47,-1*K.1^81,-1*K.1^47,K.1^81,K.1^97,K.1^63,-1*K.1^49,K.1^79,-1*K.1^19,-1*K.1^9,-1*K.1^87,-1*K.1^37,K.1^41,-1*K.1^99,K.1^87,K.1^3,-1*K.1^57,-1*K.1^79,K.1,K.1^13,-1*K.1^47,K.1^69,-1*K.1^59,K.1^39,K.1^77,-1*K.1^3,K.1^57,-1*K.1^21,-1*K.1^7,-1*K.1^41,K.1^87,-1*K.1^11,K.1^53,K.1^31,-1*K.1^29,K.1^49,K.1^23,-1*K.1^97,-1*K.1^27,K.1^51,-1*K.1^9,-1*K.1^31,K.1^33,K.1^73,-1*K.1^99,K.1^29,-1*K.1^7,K.1^53,-1*K.1^73,-1*K.1^87,K.1^21,K.1^7,-1*K.1^53,-1*K.1^57,-1*K.1^83,-1*K.1^77,K.1^89,K.1^71,K.1^93,K.1^71,-1*K.1^51,-1*K.1,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,-1*K.1^76,K.1^88,K.1^16,K.1^8,K.1^48,-1*K.1^28,K.1^96,-1*K.1^12,K.1^24,-1*K.1^52,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^64,-1*K.1^36,K.1^32,-1*K.1^68,K.1^56,-1*K.1^55,K.1^85,-1*K.1^55,K.1^85,K.1^65,K.1^45,-1*K.1^15,K.1^45,-1*K.1^85,K.1^5,-1*K.1^15,K.1^5,K.1^95,-1*K.1^95,-1*K.1^45,K.1^15,K.1^55,K.1^55,-1*K.1^65,K.1^35,K.1^65,-1*K.1^45,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^95,-1*K.1^65,K.1^15,K.1^95,K.1^35,-1*K.1^85,-1*K.1^35,-1*K.1^4,-1*K.1^28,-1*K.1^32,-1*K.1^64,K.1^8,-1*K.1^84,-1*K.1^44,-1*K.1^68,-1*K.1^24,-1*K.1^72,K.1^24,-1*K.1^72,-1*K.1^36,K.1^16,K.1^4,-1*K.1^52,K.1^68,K.1^92,-1*K.1^24,K.1^32,K.1^52,K.1^12,-1*K.1^92,-1*K.1^64,-1*K.1^32,-1*K.1^76,-1*K.1^12,K.1^44,K.1^56,K.1^96,K.1^84,K.1^44,K.1^28,K.1^28,-1*K.1^16,K.1^68,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^96,-1*K.1^96,K.1^72,K.1^48,K.1^4,K.1^92,K.1^88,K.1^36,K.1^36,-1*K.1^8,K.1^76,K.1^76,-1*K.1^8,-1*K.1^56,-1*K.1^88,-1*K.1^88,-1*K.1^56,K.1^64,K.1^12,K.1^84,K.1^52,K.1^52,-1*K.1^48,-1*K.1^44,K.1^72,-1*K.1^12,K.1^56,K.1^96,-1*K.1^96,-1*K.1^24,-1*K.1^64,-1*K.1^8,-1*K.1^88,K.1^88,-1*K.1^56,-1*K.1^16,-1*K.1^28,-1*K.1^68,K.1^76,K.1^44,K.1^48,K.1^28,K.1^68,K.1^4,K.1^84,K.1^36,K.1^8,-1*K.1^36,-1*K.1^32,-1*K.1^4,K.1^64,-1*K.1^72,K.1^12,K.1^24,-1*K.1^92,K.1^92,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^84,-1*K.1^26,-1*K.1^82,K.1^46,-1*K.1^98,-1*K.1^34,-1*K.1^34,K.1^78,-1*K.1^66,K.1^94,K.1^98,K.1^38,-1*K.1^58,K.1^18,K.1^22,K.1^86,-1*K.1^58,K.1^54,-1*K.1^2,-1*K.1^26,-1*K.1^94,K.1^34,K.1^54,-1*K.1^54,K.1^74,-1*K.1^78,K.1^66,-1*K.1^62,-1*K.1^6,-1*K.1^22,-1*K.1^74,K.1^82,-1*K.1^46,-1*K.1^22,K.1^86,K.1^34,-1*K.1^86,K.1^42,K.1^14,-1*K.1^94,-1*K.1^2,K.1^82,-1*K.1^46,K.1^26,K.1^62,-1*K.1^42,-1*K.1^42,-1*K.1^18,K.1^2,-1*K.1^62,K.1^66,K.1^2,K.1^26,-1*K.1^38,-1*K.1^14,-1*K.1^14,K.1^94,K.1^74,-1*K.1^54,K.1^98,-1*K.1^86,K.1^42,-1*K.1^78,-1*K.1^6,-1*K.1^38,-1*K.1^82,-1*K.1^66,K.1^62,K.1^14,-1*K.1^98,K.1^46,K.1^58,K.1^18,-1*K.1^18,K.1^78,K.1^58,K.1^6,K.1^6,K.1^38,-1*K.1^74,K.1^22,-1*K.1^42,K.1^94,K.1^34,K.1^74,-1*K.1^34,K.1^54,K.1^42,K.1^66,-1*K.1^26,K.1^62,-1*K.1^22,-1*K.1^86,K.1^46,-1*K.1^98,-1*K.1^38,-1*K.1^78,K.1^38,-1*K.1^58,-1*K.1^46,-1*K.1^62,K.1^98,-1*K.1^2,K.1^86,K.1^26,K.1^82,K.1^22,-1*K.1^66,-1*K.1^6,-1*K.1^54,K.1^14,-1*K.1^74,-1*K.1^14,-1*K.1^94,K.1^6,-1*K.1^82,K.1^2,K.1^58,-1*K.1^18,K.1^78,K.1^18,K.1^93,-1*K.1^81,K.1^43,-1*K.1^97,-1*K.1^13,K.1^99,K.1^37,-1*K.1^19,K.1^71,-1*K.1^41,K.1,-1*K.1^37,K.1^17,-1*K.1^23,K.1^61,-1*K.1^3,K.1^39,-1*K.1^17,-1*K.1^31,-1*K.1^9,K.1^23,-1*K.1^67,-1*K.1^89,K.1^51,-1*K.1^89,K.1^69,K.1^19,-1*K.1^57,-1*K.1^99,-1*K.1^43,-1*K.1,-1*K.1^63,K.1^77,-1*K.1^77,-1*K.1^61,-1*K.1,-1*K.1^11,K.1^31,K.1^77,-1*K.1^39,-1*K.1^49,K.1^91,K.1^29,K.1^79,K.1^63,-1*K.1^23,K.1^21,-1*K.1^91,-1*K.1^51,K.1^61,K.1^21,K.1^81,K.1^57,K.1^97,K.1^41,-1*K.1^81,-1*K.1^83,-1*K.1^59,-1*K.1^97,K.1^59,-1*K.1^53,-1*K.1^57,K.1^83,K.1^69,K.1^87,-1*K.1^33,K.1^67,K.1^89,K.1^49,-1*K.1^7,-1*K.1^69,-1*K.1^19,-1*K.1^43,K.1^97,K.1^43,K.1^47,-1*K.1^93,K.1^19,-1*K.1^33,-1*K.1^7,-1*K.1^47,K.1^93,-1*K.1^31,K.1^33,K.1^7,K.1^47,-1*K.1^9,-1*K.1^71,-1*K.1^17,-1*K.1^93,-1*K.1^79,-1*K.1^29,-1*K.1^11,-1*K.1^51,K.1^89,K.1^27,-1*K.1^27,-1*K.1^13,K.1^99,K.1^13,-1*K.1^99,K.1^63,-1*K.1^77,-1*K.1^71,K.1^41,K.1,K.1^11,-1*K.1^73,K.1^23,K.1^39,-1*K.1^21,K.1^73,K.1^37,K.1^3,-1*K.1^41,K.1^79,K.1^27,K.1^13,K.1^51,-1*K.1^61,K.1^81,K.1^83,-1*K.1^37,-1*K.1^3,-1*K.1^59,K.1^53,-1*K.1^39,K.1^73,-1*K.1^69,-1*K.1^87,K.1^49,-1*K.1^91,K.1^71,K.1^17,-1*K.1^63,K.1^33,K.1^29,K.1^11,-1*K.1^49,K.1^7,-1*K.1^67,-1*K.1^21,K.1^91,K.1^53,-1*K.1^87,K.1^67,-1*K.1^73,K.1^59,-1*K.1^53,K.1^87,K.1^3,K.1^57,-1*K.1^83,K.1^31,K.1^9,-1*K.1^47,K.1^9,-1*K.1^29,-1*K.1^79,-1*K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,K.1^24,-1*K.1^12,-1*K.1^84,-1*K.1^92,-1*K.1^52,K.1^72,-1*K.1^4,K.1^88,-1*K.1^76,K.1^48,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^96,-1*K.1^36,K.1^64,-1*K.1^68,K.1^32,-1*K.1^44,K.1^45,-1*K.1^15,K.1^45,-1*K.1^15,-1*K.1^35,-1*K.1^55,K.1^85,-1*K.1^55,K.1^15,-1*K.1^95,K.1^85,-1*K.1^95,-1*K.1^5,K.1^5,K.1^55,-1*K.1^85,-1*K.1^45,-1*K.1^45,K.1^35,-1*K.1^65,-1*K.1^35,K.1^55,K.1^95,K.1^65,K.1^95,K.1^5,K.1^35,-1*K.1^85,-1*K.1^5,-1*K.1^65,K.1^15,K.1^65,K.1^96,K.1^72,K.1^68,K.1^36,-1*K.1^92,K.1^16,K.1^56,K.1^32,K.1^76,K.1^28,-1*K.1^76,K.1^28,K.1^64,-1*K.1^84,-1*K.1^96,K.1^48,-1*K.1^32,-1*K.1^8,K.1^76,-1*K.1^68,-1*K.1^48,-1*K.1^88,K.1^8,K.1^36,K.1^68,K.1^24,K.1^88,-1*K.1^56,-1*K.1^44,-1*K.1^4,-1*K.1^16,-1*K.1^56,-1*K.1^72,-1*K.1^72,K.1^84,-1*K.1^32,K.1^84,K.1^52,K.1^52,K.1^4,K.1^4,-1*K.1^28,-1*K.1^52,-1*K.1^96,-1*K.1^8,-1*K.1^12,-1*K.1^64,-1*K.1^64,K.1^92,-1*K.1^24,-1*K.1^24,K.1^92,K.1^44,K.1^12,K.1^12,K.1^44,-1*K.1^36,-1*K.1^88,-1*K.1^16,-1*K.1^48,-1*K.1^48,K.1^52,K.1^56,-1*K.1^28,K.1^88,-1*K.1^44,-1*K.1^4,K.1^4,K.1^76,K.1^36,K.1^92,K.1^12,-1*K.1^12,K.1^44,K.1^84,K.1^72,K.1^32,-1*K.1^24,-1*K.1^56,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^96,-1*K.1^16,-1*K.1^64,-1*K.1^92,K.1^64,K.1^68,K.1^96,-1*K.1^36,K.1^28,-1*K.1^88,-1*K.1^76,K.1^8,-1*K.1^8,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^16,K.1^74,K.1^18,-1*K.1^54,K.1^2,K.1^66,K.1^66,-1*K.1^22,K.1^34,-1*K.1^6,-1*K.1^2,-1*K.1^62,K.1^42,-1*K.1^82,-1*K.1^78,-1*K.1^14,K.1^42,-1*K.1^46,K.1^98,K.1^74,K.1^6,-1*K.1^66,-1*K.1^46,K.1^46,-1*K.1^26,K.1^22,-1*K.1^34,K.1^38,K.1^94,K.1^78,K.1^26,-1*K.1^18,K.1^54,K.1^78,-1*K.1^14,-1*K.1^66,K.1^14,-1*K.1^58,-1*K.1^86,K.1^6,K.1^98,-1*K.1^18,K.1^54,-1*K.1^74,-1*K.1^38,K.1^58,K.1^58,K.1^82,-1*K.1^98,K.1^38,-1*K.1^34,-1*K.1^98,-1*K.1^74,K.1^62,K.1^86,K.1^86,-1*K.1^6,-1*K.1^26,K.1^46,-1*K.1^2,K.1^14,-1*K.1^58,K.1^22,K.1^94,K.1^62,K.1^18,K.1^34,-1*K.1^38,-1*K.1^86,K.1^2,-1*K.1^54,-1*K.1^42,-1*K.1^82,K.1^82,-1*K.1^22,-1*K.1^42,-1*K.1^94,-1*K.1^94,-1*K.1^62,K.1^26,-1*K.1^78,K.1^58,-1*K.1^6,-1*K.1^66,-1*K.1^26,K.1^66,-1*K.1^46,-1*K.1^58,-1*K.1^34,K.1^74,-1*K.1^38,K.1^78,K.1^14,-1*K.1^54,K.1^2,K.1^62,K.1^22,-1*K.1^62,K.1^42,K.1^54,K.1^38,-1*K.1^2,K.1^98,-1*K.1^14,-1*K.1^74,-1*K.1^18,-1*K.1^78,K.1^34,K.1^94,K.1^46,-1*K.1^86,K.1^26,K.1^86,K.1^6,-1*K.1^94,K.1^18,-1*K.1^98,-1*K.1^42,K.1^82,-1*K.1^22,-1*K.1^82,-1*K.1^7,K.1^19,-1*K.1^57,K.1^3,K.1^87,-1*K.1,-1*K.1^63,K.1^81,-1*K.1^29,K.1^59,-1*K.1^99,K.1^63,-1*K.1^83,K.1^77,-1*K.1^39,K.1^97,-1*K.1^61,K.1^83,K.1^69,K.1^91,-1*K.1^77,K.1^33,K.1^11,-1*K.1^49,K.1^11,-1*K.1^31,-1*K.1^81,K.1^43,K.1,K.1^57,K.1^99,K.1^37,-1*K.1^23,K.1^23,K.1^39,K.1^99,K.1^89,-1*K.1^69,-1*K.1^23,K.1^61,K.1^51,-1*K.1^9,-1*K.1^71,-1*K.1^21,-1*K.1^37,K.1^77,-1*K.1^79,K.1^9,K.1^49,-1*K.1^39,-1*K.1^79,-1*K.1^19,-1*K.1^43,-1*K.1^3,-1*K.1^59,K.1^19,K.1^17,K.1^41,K.1^3,-1*K.1^41,K.1^47,K.1^43,-1*K.1^17,-1*K.1^31,-1*K.1^13,K.1^67,-1*K.1^33,-1*K.1^11,-1*K.1^51,K.1^93,K.1^31,K.1^81,K.1^57,-1*K.1^3,-1*K.1^57,-1*K.1^53,K.1^7,-1*K.1^81,K.1^67,K.1^93,K.1^53,-1*K.1^7,K.1^69,-1*K.1^67,-1*K.1^93,-1*K.1^53,K.1^91,K.1^29,K.1^83,K.1^7,K.1^21,K.1^71,K.1^89,K.1^49,-1*K.1^11,-1*K.1^73,K.1^73,K.1^87,-1*K.1,-1*K.1^87,K.1,-1*K.1^37,K.1^23,K.1^29,-1*K.1^59,-1*K.1^99,-1*K.1^89,K.1^27,-1*K.1^77,-1*K.1^61,K.1^79,-1*K.1^27,-1*K.1^63,-1*K.1^97,K.1^59,-1*K.1^21,-1*K.1^73,-1*K.1^87,-1*K.1^49,K.1^39,-1*K.1^19,-1*K.1^17,K.1^63,K.1^97,K.1^41,-1*K.1^47,K.1^61,-1*K.1^27,K.1^31,K.1^13,-1*K.1^51,K.1^9,-1*K.1^29,-1*K.1^83,K.1^37,-1*K.1^67,-1*K.1^71,-1*K.1^89,K.1^51,-1*K.1^93,K.1^33,K.1^79,-1*K.1^9,-1*K.1^47,K.1^13,-1*K.1^33,K.1^27,-1*K.1^41,K.1^47,-1*K.1^13,-1*K.1^97,-1*K.1^43,K.1^17,-1*K.1^69,-1*K.1^91,K.1^53,-1*K.1^91,K.1^71,K.1^21,K.1^73]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^16,K.1^8,K.1^56,-1*K.1^28,-1*K.1^68,K.1^48,-1*K.1^36,-1*K.1^92,-1*K.1^84,K.1^32,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^64,K.1^24,-1*K.1^76,-1*K.1^12,K.1^88,K.1^96,-1*K.1^55,K.1^85,-1*K.1^55,K.1^85,K.1^65,K.1^45,-1*K.1^15,K.1^45,-1*K.1^85,K.1^5,-1*K.1^15,K.1^5,K.1^95,-1*K.1^95,-1*K.1^45,K.1^15,K.1^55,K.1^55,-1*K.1^65,K.1^35,K.1^65,-1*K.1^45,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^95,-1*K.1^65,K.1^15,K.1^95,K.1^35,-1*K.1^85,-1*K.1^35,K.1^64,K.1^48,K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^44,-1*K.1^4,K.1^88,K.1^84,K.1^52,-1*K.1^84,K.1^52,-1*K.1^76,K.1^56,-1*K.1^64,K.1^32,-1*K.1^88,-1*K.1^72,K.1^84,-1*K.1^12,-1*K.1^32,K.1^92,K.1^72,-1*K.1^24,K.1^12,K.1^16,-1*K.1^92,K.1^4,K.1^96,-1*K.1^36,K.1^44,K.1^4,-1*K.1^48,-1*K.1^48,-1*K.1^56,-1*K.1^88,-1*K.1^56,K.1^68,K.1^68,K.1^36,K.1^36,-1*K.1^52,-1*K.1^68,-1*K.1^64,-1*K.1^72,K.1^8,K.1^76,K.1^76,K.1^28,-1*K.1^16,-1*K.1^16,K.1^28,-1*K.1^96,-1*K.1^8,-1*K.1^8,-1*K.1^96,K.1^24,K.1^92,K.1^44,-1*K.1^32,-1*K.1^32,K.1^68,-1*K.1^4,-1*K.1^52,-1*K.1^92,K.1^96,-1*K.1^36,K.1^36,K.1^84,-1*K.1^24,K.1^28,-1*K.1^8,K.1^8,-1*K.1^96,-1*K.1^56,K.1^48,K.1^88,-1*K.1^16,K.1^4,-1*K.1^68,-1*K.1^48,-1*K.1^88,-1*K.1^64,K.1^44,K.1^76,-1*K.1^28,-1*K.1^76,K.1^12,K.1^64,K.1^24,K.1^52,K.1^92,-1*K.1^84,K.1^72,-1*K.1^72,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^44,-1*K.1^66,K.1^62,K.1^86,-1*K.1^18,K.1^94,K.1^94,-1*K.1^98,K.1^6,K.1^54,K.1^18,-1*K.1^58,K.1^78,-1*K.1^38,-1*K.1^2,-1*K.1^26,K.1^78,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^54,-1*K.1^94,K.1^14,-1*K.1^14,K.1^34,K.1^98,-1*K.1^6,K.1^42,-1*K.1^46,K.1^2,-1*K.1^34,-1*K.1^62,-1*K.1^86,K.1^2,-1*K.1^26,-1*K.1^94,K.1^26,-1*K.1^22,-1*K.1^74,-1*K.1^54,-1*K.1^82,-1*K.1^62,-1*K.1^86,K.1^66,-1*K.1^42,K.1^22,K.1^22,K.1^38,K.1^82,K.1^42,-1*K.1^6,K.1^82,K.1^66,K.1^58,K.1^74,K.1^74,K.1^54,K.1^34,-1*K.1^14,K.1^18,K.1^26,-1*K.1^22,K.1^98,-1*K.1^46,K.1^58,K.1^62,K.1^6,-1*K.1^42,-1*K.1^74,-1*K.1^18,K.1^86,-1*K.1^78,-1*K.1^38,K.1^38,-1*K.1^98,-1*K.1^78,K.1^46,K.1^46,-1*K.1^58,-1*K.1^34,-1*K.1^2,K.1^22,K.1^54,-1*K.1^94,K.1^34,K.1^94,K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^66,-1*K.1^42,K.1^2,K.1^26,K.1^86,-1*K.1^18,K.1^58,K.1^98,-1*K.1^58,K.1^78,-1*K.1^86,K.1^42,K.1^18,-1*K.1^82,-1*K.1^26,K.1^66,-1*K.1^62,-1*K.1^2,K.1^6,-1*K.1^46,-1*K.1^14,-1*K.1^74,-1*K.1^34,K.1^74,-1*K.1^54,K.1^46,K.1^62,K.1^82,-1*K.1^78,K.1^38,-1*K.1^98,-1*K.1^38,K.1^13,K.1^21,-1*K.1^63,K.1^77,K.1^33,K.1^59,-1*K.1^17,K.1^79,-1*K.1^11,-1*K.1^81,K.1^41,K.1^17,K.1^97,K.1^43,-1*K.1,K.1^23,-1*K.1^99,-1*K.1^97,-1*K.1^71,K.1^69,-1*K.1^43,K.1^47,-1*K.1^49,K.1^91,-1*K.1^49,K.1^29,-1*K.1^79,K.1^37,-1*K.1^59,K.1^63,-1*K.1^41,K.1^83,-1*K.1^57,K.1^57,K.1,-1*K.1^41,-1*K.1^51,K.1^71,-1*K.1^57,K.1^99,-1*K.1^9,-1*K.1^31,-1*K.1^89,K.1^39,-1*K.1^83,K.1^43,K.1^61,K.1^31,-1*K.1^91,-1*K.1,K.1^61,-1*K.1^21,-1*K.1^37,-1*K.1^77,K.1^81,K.1^21,-1*K.1^3,-1*K.1^19,K.1^77,K.1^19,K.1^73,K.1^37,K.1^3,K.1^29,-1*K.1^67,K.1^53,-1*K.1^47,K.1^49,K.1^9,-1*K.1^87,-1*K.1^29,K.1^79,K.1^63,-1*K.1^77,-1*K.1^63,-1*K.1^27,-1*K.1^13,-1*K.1^79,K.1^53,-1*K.1^87,K.1^27,K.1^13,-1*K.1^71,-1*K.1^53,K.1^87,-1*K.1^27,K.1^69,K.1^11,-1*K.1^97,-1*K.1^13,-1*K.1^39,K.1^89,-1*K.1^51,-1*K.1^91,K.1^49,-1*K.1^7,K.1^7,K.1^33,K.1^59,-1*K.1^33,-1*K.1^59,-1*K.1^83,K.1^57,K.1^11,K.1^81,K.1^41,K.1^51,K.1^93,-1*K.1^43,-1*K.1^99,-1*K.1^61,-1*K.1^93,-1*K.1^17,-1*K.1^23,-1*K.1^81,K.1^39,-1*K.1^7,-1*K.1^33,K.1^91,K.1,-1*K.1^21,K.1^3,K.1^17,K.1^23,-1*K.1^19,-1*K.1^73,K.1^99,-1*K.1^93,-1*K.1^29,K.1^67,K.1^9,K.1^31,-1*K.1^11,K.1^97,K.1^83,-1*K.1^53,-1*K.1^89,K.1^51,-1*K.1^9,K.1^87,K.1^47,-1*K.1^61,-1*K.1^31,-1*K.1^73,K.1^67,-1*K.1^47,K.1^93,K.1^19,K.1^73,-1*K.1^67,-1*K.1^23,-1*K.1^37,-1*K.1^3,K.1^71,-1*K.1^69,K.1^27,-1*K.1^69,K.1^89,-1*K.1^39,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^84,-1*K.1^92,-1*K.1^44,K.1^72,K.1^32,-1*K.1^52,K.1^64,K.1^8,K.1^16,-1*K.1^68,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^36,-1*K.1^76,K.1^24,K.1^88,-1*K.1^12,-1*K.1^4,K.1^45,-1*K.1^15,K.1^45,-1*K.1^15,-1*K.1^35,-1*K.1^55,K.1^85,-1*K.1^55,K.1^15,-1*K.1^95,K.1^85,-1*K.1^95,-1*K.1^5,K.1^5,K.1^55,-1*K.1^85,-1*K.1^45,-1*K.1^45,K.1^35,-1*K.1^65,-1*K.1^35,K.1^55,K.1^95,K.1^65,K.1^95,K.1^5,K.1^35,-1*K.1^85,-1*K.1^5,-1*K.1^65,K.1^15,K.1^65,-1*K.1^36,-1*K.1^52,-1*K.1^88,K.1^76,K.1^72,K.1^56,K.1^96,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^16,-1*K.1^48,K.1^24,-1*K.1^44,K.1^36,-1*K.1^68,K.1^12,K.1^28,-1*K.1^16,K.1^88,K.1^68,-1*K.1^8,-1*K.1^28,K.1^76,-1*K.1^88,-1*K.1^84,K.1^8,-1*K.1^96,-1*K.1^4,K.1^64,-1*K.1^56,-1*K.1^96,K.1^52,K.1^52,K.1^44,K.1^12,K.1^44,-1*K.1^32,-1*K.1^32,-1*K.1^64,-1*K.1^64,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^92,-1*K.1^24,-1*K.1^24,-1*K.1^72,K.1^84,K.1^84,-1*K.1^72,K.1^4,K.1^92,K.1^92,K.1^4,-1*K.1^76,-1*K.1^8,-1*K.1^56,K.1^68,K.1^68,-1*K.1^32,K.1^96,K.1^48,K.1^8,-1*K.1^4,K.1^64,-1*K.1^64,-1*K.1^16,K.1^76,-1*K.1^72,K.1^92,-1*K.1^92,K.1^4,K.1^44,-1*K.1^52,-1*K.1^12,K.1^84,-1*K.1^96,K.1^32,K.1^52,K.1^12,K.1^36,-1*K.1^56,-1*K.1^24,K.1^72,K.1^24,-1*K.1^88,-1*K.1^36,-1*K.1^76,-1*K.1^48,-1*K.1^8,K.1^16,-1*K.1^28,K.1^28,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^56,K.1^34,-1*K.1^38,-1*K.1^14,K.1^82,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^94,-1*K.1^46,-1*K.1^82,K.1^42,-1*K.1^22,K.1^62,K.1^98,K.1^74,-1*K.1^22,-1*K.1^86,K.1^18,K.1^34,K.1^46,K.1^6,-1*K.1^86,K.1^86,-1*K.1^66,-1*K.1^2,K.1^94,-1*K.1^58,K.1^54,-1*K.1^98,K.1^66,K.1^38,K.1^14,-1*K.1^98,K.1^74,K.1^6,-1*K.1^74,K.1^78,K.1^26,K.1^46,K.1^18,K.1^38,K.1^14,-1*K.1^34,K.1^58,-1*K.1^78,-1*K.1^78,-1*K.1^62,-1*K.1^18,-1*K.1^58,K.1^94,-1*K.1^18,-1*K.1^34,-1*K.1^42,-1*K.1^26,-1*K.1^26,-1*K.1^46,-1*K.1^66,K.1^86,-1*K.1^82,-1*K.1^74,K.1^78,-1*K.1^2,K.1^54,-1*K.1^42,-1*K.1^38,-1*K.1^94,K.1^58,K.1^26,K.1^82,-1*K.1^14,K.1^22,K.1^62,-1*K.1^62,K.1^2,K.1^22,-1*K.1^54,-1*K.1^54,K.1^42,K.1^66,K.1^98,-1*K.1^78,-1*K.1^46,K.1^6,-1*K.1^66,-1*K.1^6,-1*K.1^86,K.1^78,K.1^94,K.1^34,K.1^58,-1*K.1^98,-1*K.1^74,-1*K.1^14,K.1^82,-1*K.1^42,-1*K.1^2,K.1^42,-1*K.1^22,K.1^14,-1*K.1^58,-1*K.1^82,K.1^18,K.1^74,-1*K.1^34,K.1^38,K.1^98,-1*K.1^94,K.1^54,K.1^86,K.1^26,K.1^66,-1*K.1^26,K.1^46,-1*K.1^54,-1*K.1^38,-1*K.1^18,K.1^22,-1*K.1^62,K.1^2,K.1^62,-1*K.1^87,-1*K.1^79,K.1^37,-1*K.1^23,-1*K.1^67,-1*K.1^41,K.1^83,-1*K.1^21,K.1^89,K.1^19,-1*K.1^59,-1*K.1^83,-1*K.1^3,-1*K.1^57,K.1^99,-1*K.1^77,K.1,K.1^3,K.1^29,-1*K.1^31,K.1^57,-1*K.1^53,K.1^51,-1*K.1^9,K.1^51,-1*K.1^71,K.1^21,-1*K.1^63,K.1^41,-1*K.1^37,K.1^59,-1*K.1^17,K.1^43,-1*K.1^43,-1*K.1^99,K.1^59,K.1^49,-1*K.1^29,K.1^43,-1*K.1,K.1^91,K.1^69,K.1^11,-1*K.1^61,K.1^17,-1*K.1^57,-1*K.1^39,-1*K.1^69,K.1^9,K.1^99,-1*K.1^39,K.1^79,K.1^63,K.1^23,-1*K.1^19,-1*K.1^79,K.1^97,K.1^81,-1*K.1^23,-1*K.1^81,-1*K.1^27,-1*K.1^63,-1*K.1^97,-1*K.1^71,K.1^33,-1*K.1^47,K.1^53,-1*K.1^51,-1*K.1^91,K.1^13,K.1^71,-1*K.1^21,-1*K.1^37,K.1^23,K.1^37,K.1^73,K.1^87,K.1^21,-1*K.1^47,K.1^13,-1*K.1^73,-1*K.1^87,K.1^29,K.1^47,-1*K.1^13,K.1^73,-1*K.1^31,-1*K.1^89,K.1^3,K.1^87,K.1^61,-1*K.1^11,K.1^49,K.1^9,-1*K.1^51,K.1^93,-1*K.1^93,-1*K.1^67,-1*K.1^41,K.1^67,K.1^41,K.1^17,-1*K.1^43,-1*K.1^89,-1*K.1^19,-1*K.1^59,-1*K.1^49,-1*K.1^7,K.1^57,K.1,K.1^39,K.1^7,K.1^83,K.1^77,K.1^19,-1*K.1^61,K.1^93,K.1^67,-1*K.1^9,-1*K.1^99,K.1^79,-1*K.1^97,-1*K.1^83,-1*K.1^77,K.1^81,K.1^27,-1*K.1,K.1^7,K.1^71,-1*K.1^33,-1*K.1^91,-1*K.1^69,K.1^89,-1*K.1^3,-1*K.1^17,K.1^47,K.1^11,-1*K.1^49,K.1^91,-1*K.1^13,-1*K.1^53,K.1^39,K.1^69,K.1^27,-1*K.1^33,K.1^53,-1*K.1^7,-1*K.1^81,-1*K.1^27,K.1^33,K.1^77,K.1^63,K.1^97,-1*K.1^29,K.1^31,-1*K.1^73,K.1^31,-1*K.1^11,K.1^61,-1*K.1^93]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^4,-1*K.1^52,K.1^64,K.1^32,-1*K.1^92,-1*K.1^12,-1*K.1^84,K.1^48,K.1^96,K.1^8,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,K.1^16,K.1^56,-1*K.1^44,-1*K.1^28,K.1^72,K.1^24,K.1^95,K.1^65,K.1^95,K.1^65,K.1^85,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^65,-1*K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^55,K.1^55,K.1^5,K.1^35,-1*K.1^95,-1*K.1^95,-1*K.1^85,K.1^15,K.1^85,K.1^5,K.1^45,-1*K.1^15,K.1^45,K.1^55,-1*K.1^85,K.1^35,-1*K.1^55,K.1^15,-1*K.1^65,-1*K.1^15,K.1^16,-1*K.1^12,K.1^28,-1*K.1^56,K.1^32,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^96,-1*K.1^88,K.1^96,-1*K.1^88,-1*K.1^44,K.1^64,-1*K.1^16,K.1^8,-1*K.1^72,K.1^68,-1*K.1^96,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^68,-1*K.1^56,K.1^28,-1*K.1^4,K.1^48,K.1^76,K.1^24,-1*K.1^84,K.1^36,K.1^76,K.1^12,K.1^12,-1*K.1^64,-1*K.1^72,-1*K.1^64,K.1^92,K.1^92,K.1^84,K.1^84,K.1^88,-1*K.1^92,-1*K.1^16,K.1^68,-1*K.1^52,K.1^44,K.1^44,-1*K.1^32,K.1^4,K.1^4,-1*K.1^32,-1*K.1^24,K.1^52,K.1^52,-1*K.1^24,K.1^56,-1*K.1^48,K.1^36,-1*K.1^8,-1*K.1^8,K.1^92,-1*K.1^76,K.1^88,K.1^48,K.1^24,-1*K.1^84,K.1^84,-1*K.1^96,-1*K.1^56,-1*K.1^32,K.1^52,-1*K.1^52,-1*K.1^24,-1*K.1^64,-1*K.1^12,K.1^72,K.1^4,K.1^76,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^16,K.1^36,K.1^44,K.1^32,-1*K.1^44,K.1^28,K.1^16,K.1^56,-1*K.1^88,-1*K.1^48,K.1^96,-1*K.1^68,K.1^68,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,-1*K.1^36,K.1^54,K.1^78,-1*K.1^34,-1*K.1^42,K.1^86,K.1^86,K.1^62,K.1^14,-1*K.1^26,K.1^42,-1*K.1^2,-1*K.1^82,-1*K.1^22,K.1^38,K.1^94,-1*K.1^82,-1*K.1^66,-1*K.1^58,K.1^54,K.1^26,-1*K.1^86,-1*K.1^66,K.1^66,-1*K.1^46,-1*K.1^62,-1*K.1^14,K.1^98,K.1^74,-1*K.1^38,K.1^46,-1*K.1^78,K.1^34,-1*K.1^38,K.1^94,-1*K.1^86,-1*K.1^94,K.1^18,K.1^6,K.1^26,-1*K.1^58,-1*K.1^78,K.1^34,-1*K.1^54,-1*K.1^98,-1*K.1^18,-1*K.1^18,K.1^22,K.1^58,K.1^98,-1*K.1^14,K.1^58,-1*K.1^54,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^26,-1*K.1^46,K.1^66,K.1^42,-1*K.1^94,K.1^18,-1*K.1^62,K.1^74,K.1^2,K.1^78,K.1^14,-1*K.1^98,K.1^6,-1*K.1^42,-1*K.1^34,K.1^82,-1*K.1^22,K.1^22,K.1^62,K.1^82,-1*K.1^74,-1*K.1^74,-1*K.1^2,K.1^46,K.1^38,-1*K.1^18,-1*K.1^26,-1*K.1^86,-1*K.1^46,K.1^86,-1*K.1^66,K.1^18,-1*K.1^14,K.1^54,-1*K.1^98,-1*K.1^38,-1*K.1^94,-1*K.1^34,-1*K.1^42,K.1^2,-1*K.1^62,-1*K.1^2,-1*K.1^82,K.1^34,K.1^98,K.1^42,-1*K.1^58,K.1^94,-1*K.1^54,-1*K.1^78,K.1^38,K.1^14,K.1^74,K.1^66,K.1^6,K.1^46,-1*K.1^6,K.1^26,-1*K.1^74,K.1^78,K.1^58,K.1^82,K.1^22,K.1^62,-1*K.1^22,K.1^97,K.1^49,K.1^47,-1*K.1^13,K.1^77,K.1^71,K.1^73,K.1^51,K.1^59,K.1^89,K.1^29,-1*K.1^73,K.1^93,-1*K.1^67,-1*K.1^69,-1*K.1^87,-1*K.1^31,-1*K.1^93,-1*K.1^99,-1*K.1^61,K.1^67,K.1^43,K.1^81,K.1^79,K.1^81,K.1,-1*K.1^51,-1*K.1^53,-1*K.1^71,-1*K.1^47,-1*K.1^29,-1*K.1^27,K.1^33,-1*K.1^33,K.1^69,-1*K.1^29,K.1^19,K.1^99,K.1^33,K.1^31,-1*K.1^21,K.1^39,K.1^41,K.1^91,K.1^27,-1*K.1^67,K.1^9,-1*K.1^39,-1*K.1^79,-1*K.1^69,K.1^9,-1*K.1^49,K.1^53,K.1^13,-1*K.1^89,K.1^49,-1*K.1^7,K.1^11,-1*K.1^13,-1*K.1^11,K.1^37,-1*K.1^53,K.1^7,K.1,-1*K.1^23,K.1^57,-1*K.1^43,-1*K.1^81,K.1^21,-1*K.1^3,-1*K.1,K.1^51,-1*K.1^47,K.1^13,K.1^47,-1*K.1^63,-1*K.1^97,-1*K.1^51,K.1^57,-1*K.1^3,K.1^63,K.1^97,-1*K.1^99,-1*K.1^57,K.1^3,-1*K.1^63,-1*K.1^61,-1*K.1^59,-1*K.1^93,-1*K.1^97,-1*K.1^91,-1*K.1^41,K.1^19,-1*K.1^79,-1*K.1^81,-1*K.1^83,K.1^83,K.1^77,K.1^71,-1*K.1^77,-1*K.1^71,K.1^27,-1*K.1^33,-1*K.1^59,-1*K.1^89,K.1^29,-1*K.1^19,K.1^17,K.1^67,-1*K.1^31,-1*K.1^9,-1*K.1^17,K.1^73,K.1^87,K.1^89,K.1^91,-1*K.1^83,-1*K.1^77,K.1^79,K.1^69,-1*K.1^49,K.1^7,-1*K.1^73,-1*K.1^87,K.1^11,-1*K.1^37,K.1^31,-1*K.1^17,-1*K.1,K.1^23,K.1^21,-1*K.1^39,K.1^59,K.1^93,-1*K.1^27,-1*K.1^57,K.1^41,-1*K.1^19,-1*K.1^21,K.1^3,K.1^43,-1*K.1^9,K.1^39,-1*K.1^37,K.1^23,-1*K.1^43,K.1^17,-1*K.1^11,K.1^37,-1*K.1^23,K.1^87,K.1^53,-1*K.1^7,K.1^99,K.1^61,K.1^63,K.1^61,-1*K.1^41,-1*K.1^91,K.1^83]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^96,K.1^48,-1*K.1^36,-1*K.1^68,K.1^8,K.1^88,K.1^16,-1*K.1^52,-1*K.1^4,-1*K.1^92,K.1^32,-1*K.1^12,K.1^64,K.1^24,-1*K.1^84,-1*K.1^44,K.1^56,K.1^72,-1*K.1^28,-1*K.1^76,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^95,K.1^65,K.1^95,K.1^35,K.1^55,K.1^65,K.1^55,K.1^45,-1*K.1^45,-1*K.1^95,-1*K.1^65,K.1^5,K.1^5,K.1^15,-1*K.1^85,-1*K.1^15,-1*K.1^95,-1*K.1^55,K.1^85,-1*K.1^55,-1*K.1^45,K.1^15,-1*K.1^65,K.1^45,-1*K.1^85,K.1^35,K.1^85,-1*K.1^84,K.1^88,-1*K.1^72,K.1^44,-1*K.1^68,K.1^64,K.1^24,-1*K.1^28,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^56,-1*K.1^36,K.1^84,-1*K.1^92,K.1^28,-1*K.1^32,K.1^4,K.1^72,K.1^92,K.1^52,K.1^32,K.1^44,-1*K.1^72,K.1^96,-1*K.1^52,-1*K.1^24,-1*K.1^76,K.1^16,-1*K.1^64,-1*K.1^24,-1*K.1^88,-1*K.1^88,K.1^36,K.1^28,K.1^36,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^84,-1*K.1^32,K.1^48,-1*K.1^56,-1*K.1^56,K.1^68,-1*K.1^96,-1*K.1^96,K.1^68,K.1^76,-1*K.1^48,-1*K.1^48,K.1^76,-1*K.1^44,K.1^52,-1*K.1^64,K.1^92,K.1^92,-1*K.1^8,K.1^24,-1*K.1^12,-1*K.1^52,-1*K.1^76,K.1^16,-1*K.1^16,K.1^4,K.1^44,K.1^68,-1*K.1^48,K.1^48,K.1^76,K.1^36,K.1^88,-1*K.1^28,-1*K.1^96,-1*K.1^24,K.1^8,-1*K.1^88,K.1^28,K.1^84,-1*K.1^64,-1*K.1^56,-1*K.1^68,K.1^56,-1*K.1^72,-1*K.1^84,-1*K.1^44,K.1^12,K.1^52,-1*K.1^4,K.1^32,-1*K.1^32,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,K.1^64,-1*K.1^46,-1*K.1^22,K.1^66,K.1^58,-1*K.1^14,-1*K.1^14,-1*K.1^38,-1*K.1^86,K.1^74,-1*K.1^58,K.1^98,K.1^18,K.1^78,-1*K.1^62,-1*K.1^6,K.1^18,K.1^34,K.1^42,-1*K.1^46,-1*K.1^74,K.1^14,K.1^34,-1*K.1^34,K.1^54,K.1^38,K.1^86,-1*K.1^2,-1*K.1^26,K.1^62,-1*K.1^54,K.1^22,-1*K.1^66,K.1^62,-1*K.1^6,K.1^14,K.1^6,-1*K.1^82,-1*K.1^94,-1*K.1^74,K.1^42,K.1^22,-1*K.1^66,K.1^46,K.1^2,K.1^82,K.1^82,-1*K.1^78,-1*K.1^42,-1*K.1^2,K.1^86,-1*K.1^42,K.1^46,-1*K.1^98,K.1^94,K.1^94,K.1^74,K.1^54,-1*K.1^34,-1*K.1^58,K.1^6,-1*K.1^82,K.1^38,-1*K.1^26,-1*K.1^98,-1*K.1^22,-1*K.1^86,K.1^2,-1*K.1^94,K.1^58,K.1^66,-1*K.1^18,K.1^78,-1*K.1^78,-1*K.1^38,-1*K.1^18,K.1^26,K.1^26,K.1^98,-1*K.1^54,-1*K.1^62,K.1^82,K.1^74,K.1^14,K.1^54,-1*K.1^14,K.1^34,-1*K.1^82,K.1^86,-1*K.1^46,K.1^2,K.1^62,K.1^6,K.1^66,K.1^58,-1*K.1^98,K.1^38,K.1^98,K.1^18,-1*K.1^66,-1*K.1^2,-1*K.1^58,K.1^42,-1*K.1^6,K.1^46,K.1^22,-1*K.1^62,-1*K.1^86,-1*K.1^26,-1*K.1^34,-1*K.1^94,-1*K.1^54,K.1^94,-1*K.1^74,K.1^26,-1*K.1^22,-1*K.1^42,-1*K.1^18,-1*K.1^78,-1*K.1^38,K.1^78,-1*K.1^3,-1*K.1^51,-1*K.1^53,K.1^87,-1*K.1^23,-1*K.1^29,-1*K.1^27,-1*K.1^49,-1*K.1^41,-1*K.1^11,-1*K.1^71,K.1^27,-1*K.1^7,K.1^33,K.1^31,K.1^13,K.1^69,K.1^7,K.1,K.1^39,-1*K.1^33,-1*K.1^57,-1*K.1^19,-1*K.1^21,-1*K.1^19,-1*K.1^99,K.1^49,K.1^47,K.1^29,K.1^53,K.1^71,K.1^73,-1*K.1^67,K.1^67,-1*K.1^31,K.1^71,-1*K.1^81,-1*K.1,-1*K.1^67,-1*K.1^69,K.1^79,-1*K.1^61,-1*K.1^59,-1*K.1^9,-1*K.1^73,K.1^33,-1*K.1^91,K.1^61,K.1^21,K.1^31,-1*K.1^91,K.1^51,-1*K.1^47,-1*K.1^87,K.1^11,-1*K.1^51,K.1^93,-1*K.1^89,K.1^87,K.1^89,-1*K.1^63,K.1^47,-1*K.1^93,-1*K.1^99,K.1^77,-1*K.1^43,K.1^57,K.1^19,-1*K.1^79,K.1^97,K.1^99,-1*K.1^49,K.1^53,-1*K.1^87,-1*K.1^53,K.1^37,K.1^3,K.1^49,-1*K.1^43,K.1^97,-1*K.1^37,-1*K.1^3,K.1,K.1^43,-1*K.1^97,K.1^37,K.1^39,K.1^41,K.1^7,K.1^3,K.1^9,K.1^59,-1*K.1^81,K.1^21,K.1^19,K.1^17,-1*K.1^17,-1*K.1^23,-1*K.1^29,K.1^23,K.1^29,-1*K.1^73,K.1^67,K.1^41,K.1^11,-1*K.1^71,K.1^81,-1*K.1^83,-1*K.1^33,K.1^69,K.1^91,K.1^83,-1*K.1^27,-1*K.1^13,-1*K.1^11,-1*K.1^9,K.1^17,K.1^23,-1*K.1^21,-1*K.1^31,K.1^51,-1*K.1^93,K.1^27,K.1^13,-1*K.1^89,K.1^63,-1*K.1^69,K.1^83,K.1^99,-1*K.1^77,-1*K.1^79,K.1^61,-1*K.1^41,-1*K.1^7,K.1^73,K.1^43,-1*K.1^59,K.1^81,K.1^79,-1*K.1^97,-1*K.1^57,K.1^91,-1*K.1^61,K.1^63,-1*K.1^77,K.1^57,-1*K.1^83,K.1^89,-1*K.1^63,K.1^77,-1*K.1^13,-1*K.1^47,K.1^93,-1*K.1,-1*K.1^39,-1*K.1^37,-1*K.1^39,K.1^59,K.1^9,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,K.1^64,K.1^32,K.1^24,-1*K.1^12,K.1^72,-1*K.1^92,-1*K.1^44,-1*K.1^68,-1*K.1^36,-1*K.1^28,K.1^88,K.1^8,-1*K.1^76,K.1^16,K.1^56,K.1^96,-1*K.1^4,K.1^48,-1*K.1^52,-1*K.1^84,K.1^95,K.1^65,K.1^95,K.1^65,K.1^85,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^65,-1*K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^55,K.1^55,K.1^5,K.1^35,-1*K.1^95,-1*K.1^95,-1*K.1^85,K.1^15,K.1^85,K.1^5,K.1^45,-1*K.1^15,K.1^45,K.1^55,-1*K.1^85,K.1^35,-1*K.1^55,K.1^15,-1*K.1^65,-1*K.1^15,K.1^56,-1*K.1^92,-1*K.1^48,-1*K.1^96,-1*K.1^12,-1*K.1^76,K.1^16,-1*K.1^52,K.1^36,-1*K.1^8,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^24,-1*K.1^56,-1*K.1^28,K.1^52,-1*K.1^88,K.1^36,K.1^48,K.1^28,K.1^68,K.1^88,-1*K.1^96,-1*K.1^48,K.1^64,-1*K.1^68,-1*K.1^16,-1*K.1^84,-1*K.1^44,K.1^76,-1*K.1^16,K.1^92,K.1^92,-1*K.1^24,K.1^52,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^44,K.1^44,K.1^8,K.1^72,-1*K.1^56,-1*K.1^88,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^64,-1*K.1^64,K.1^12,K.1^84,-1*K.1^32,-1*K.1^32,K.1^84,K.1^96,K.1^68,K.1^76,K.1^28,K.1^28,-1*K.1^72,K.1^16,K.1^8,-1*K.1^68,-1*K.1^84,-1*K.1^44,K.1^44,K.1^36,-1*K.1^96,K.1^12,-1*K.1^32,K.1^32,K.1^84,-1*K.1^24,-1*K.1^92,-1*K.1^52,-1*K.1^64,-1*K.1^16,K.1^72,K.1^92,K.1^52,-1*K.1^56,K.1^76,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^48,K.1^56,K.1^96,-1*K.1^8,K.1^68,-1*K.1^36,K.1^88,-1*K.1^88,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^76,K.1^14,-1*K.1^98,K.1^94,K.1^22,-1*K.1^26,-1*K.1^26,-1*K.1^42,-1*K.1^74,-1*K.1^66,-1*K.1^22,-1*K.1^82,K.1^62,K.1^2,-1*K.1^58,K.1^54,K.1^62,K.1^6,K.1^78,K.1^14,K.1^66,K.1^26,K.1^6,-1*K.1^6,-1*K.1^86,K.1^42,K.1^74,K.1^18,K.1^34,K.1^58,K.1^86,K.1^98,-1*K.1^94,K.1^58,K.1^54,K.1^26,-1*K.1^54,-1*K.1^38,K.1^46,K.1^66,K.1^78,K.1^98,-1*K.1^94,-1*K.1^14,-1*K.1^18,K.1^38,K.1^38,-1*K.1^2,-1*K.1^78,K.1^18,K.1^74,-1*K.1^78,-1*K.1^14,K.1^82,-1*K.1^46,-1*K.1^46,-1*K.1^66,-1*K.1^86,-1*K.1^6,-1*K.1^22,-1*K.1^54,-1*K.1^38,K.1^42,K.1^34,K.1^82,-1*K.1^98,-1*K.1^74,-1*K.1^18,K.1^46,K.1^22,K.1^94,-1*K.1^62,K.1^2,-1*K.1^2,-1*K.1^42,-1*K.1^62,-1*K.1^34,-1*K.1^34,-1*K.1^82,K.1^86,-1*K.1^58,K.1^38,-1*K.1^66,K.1^26,-1*K.1^86,-1*K.1^26,K.1^6,-1*K.1^38,K.1^74,K.1^14,-1*K.1^18,K.1^58,-1*K.1^54,K.1^94,K.1^22,K.1^82,K.1^42,-1*K.1^82,K.1^62,-1*K.1^94,K.1^18,-1*K.1^22,K.1^78,K.1^54,-1*K.1^14,K.1^98,-1*K.1^58,-1*K.1^74,K.1^34,-1*K.1^6,K.1^46,K.1^86,-1*K.1^46,K.1^66,-1*K.1^34,-1*K.1^98,-1*K.1^78,-1*K.1^62,-1*K.1^2,-1*K.1^42,K.1^2,-1*K.1^77,K.1^9,-1*K.1^27,K.1^33,-1*K.1^57,-1*K.1^11,-1*K.1^93,K.1^91,K.1^19,K.1^49,-1*K.1^89,K.1^93,K.1^13,K.1^47,-1*K.1^29,K.1^67,-1*K.1^71,-1*K.1^13,-1*K.1^59,K.1,-1*K.1^47,-1*K.1^63,-1*K.1^21,K.1^39,-1*K.1^21,K.1^41,-1*K.1^91,K.1^73,K.1^11,K.1^27,K.1^89,K.1^7,-1*K.1^53,K.1^53,K.1^29,K.1^89,-1*K.1^79,K.1^59,-1*K.1^53,K.1^71,-1*K.1^61,-1*K.1^99,K.1^81,-1*K.1^31,-1*K.1^7,K.1^47,-1*K.1^69,K.1^99,-1*K.1^39,-1*K.1^29,-1*K.1^69,-1*K.1^9,-1*K.1^73,-1*K.1^33,-1*K.1^49,K.1^9,-1*K.1^87,K.1^51,K.1^33,-1*K.1^51,-1*K.1^17,K.1^73,K.1^87,K.1^41,K.1^43,-1*K.1^37,K.1^63,K.1^21,K.1^61,K.1^23,-1*K.1^41,K.1^91,K.1^27,-1*K.1^33,-1*K.1^27,K.1^83,K.1^77,-1*K.1^91,-1*K.1^37,K.1^23,-1*K.1^83,-1*K.1^77,-1*K.1^59,K.1^37,-1*K.1^23,K.1^83,K.1,-1*K.1^19,-1*K.1^13,K.1^77,K.1^31,-1*K.1^81,-1*K.1^79,-1*K.1^39,K.1^21,-1*K.1^3,K.1^3,-1*K.1^57,-1*K.1^11,K.1^57,K.1^11,-1*K.1^7,K.1^53,-1*K.1^19,-1*K.1^49,-1*K.1^89,K.1^79,K.1^97,-1*K.1^47,-1*K.1^71,K.1^69,-1*K.1^97,-1*K.1^93,-1*K.1^67,K.1^49,-1*K.1^31,-1*K.1^3,K.1^57,K.1^39,K.1^29,-1*K.1^9,K.1^87,K.1^93,K.1^67,K.1^51,K.1^17,K.1^71,-1*K.1^97,-1*K.1^41,-1*K.1^43,K.1^61,K.1^99,K.1^19,K.1^13,K.1^7,K.1^37,K.1^81,K.1^79,-1*K.1^61,-1*K.1^23,-1*K.1^63,K.1^69,-1*K.1^99,K.1^17,-1*K.1^43,K.1^63,K.1^97,-1*K.1^51,-1*K.1^17,K.1^43,-1*K.1^67,-1*K.1^73,-1*K.1^87,K.1^59,-1*K.1,-1*K.1^83,-1*K.1,-1*K.1^81,K.1^31,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,-1*K.1^36,-1*K.1^68,-1*K.1^76,K.1^88,-1*K.1^28,K.1^8,K.1^56,K.1^32,K.1^64,K.1^72,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^96,-1*K.1^52,K.1^48,K.1^16,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^95,K.1^65,K.1^95,K.1^35,K.1^55,K.1^65,K.1^55,K.1^45,-1*K.1^45,-1*K.1^95,-1*K.1^65,K.1^5,K.1^5,K.1^15,-1*K.1^85,-1*K.1^15,-1*K.1^95,-1*K.1^55,K.1^85,-1*K.1^55,-1*K.1^45,K.1^15,-1*K.1^65,K.1^45,-1*K.1^85,K.1^35,K.1^85,-1*K.1^44,K.1^8,K.1^52,K.1^4,K.1^88,K.1^24,-1*K.1^84,K.1^48,-1*K.1^64,K.1^92,K.1^64,K.1^92,K.1^96,-1*K.1^76,K.1^44,K.1^72,-1*K.1^48,K.1^12,-1*K.1^64,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^12,K.1^4,K.1^52,-1*K.1^36,K.1^32,K.1^84,K.1^16,K.1^56,-1*K.1^24,K.1^84,-1*K.1^8,-1*K.1^8,K.1^76,-1*K.1^48,K.1^76,K.1^28,K.1^28,-1*K.1^56,-1*K.1^56,-1*K.1^92,-1*K.1^28,K.1^44,K.1^12,-1*K.1^68,-1*K.1^96,-1*K.1^96,-1*K.1^88,K.1^36,K.1^36,-1*K.1^88,-1*K.1^16,K.1^68,K.1^68,-1*K.1^16,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^28,-1*K.1^84,-1*K.1^92,K.1^32,K.1^16,K.1^56,-1*K.1^56,-1*K.1^64,K.1^4,-1*K.1^88,K.1^68,-1*K.1^68,-1*K.1^16,K.1^76,K.1^8,K.1^48,K.1^36,K.1^84,-1*K.1^28,-1*K.1^8,-1*K.1^48,K.1^44,-1*K.1^24,-1*K.1^96,K.1^88,K.1^96,K.1^52,-1*K.1^44,-1*K.1^4,K.1^92,-1*K.1^32,K.1^64,-1*K.1^12,K.1^12,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^24,-1*K.1^86,K.1^2,-1*K.1^6,-1*K.1^78,K.1^74,K.1^74,K.1^58,K.1^26,K.1^34,K.1^78,K.1^18,-1*K.1^38,-1*K.1^98,K.1^42,-1*K.1^46,-1*K.1^38,-1*K.1^94,-1*K.1^22,-1*K.1^86,-1*K.1^34,-1*K.1^74,-1*K.1^94,K.1^94,K.1^14,-1*K.1^58,-1*K.1^26,-1*K.1^82,-1*K.1^66,-1*K.1^42,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^42,-1*K.1^46,-1*K.1^74,K.1^46,K.1^62,-1*K.1^54,-1*K.1^34,-1*K.1^22,-1*K.1^2,K.1^6,K.1^86,K.1^82,-1*K.1^62,-1*K.1^62,K.1^98,K.1^22,-1*K.1^82,-1*K.1^26,K.1^22,K.1^86,-1*K.1^18,K.1^54,K.1^54,K.1^34,K.1^14,K.1^94,K.1^78,K.1^46,K.1^62,-1*K.1^58,-1*K.1^66,-1*K.1^18,K.1^2,K.1^26,K.1^82,-1*K.1^54,-1*K.1^78,-1*K.1^6,K.1^38,-1*K.1^98,K.1^98,K.1^58,K.1^38,K.1^66,K.1^66,K.1^18,-1*K.1^14,K.1^42,-1*K.1^62,K.1^34,-1*K.1^74,K.1^14,K.1^74,-1*K.1^94,K.1^62,-1*K.1^26,-1*K.1^86,K.1^82,-1*K.1^42,K.1^46,-1*K.1^6,-1*K.1^78,-1*K.1^18,-1*K.1^58,K.1^18,-1*K.1^38,K.1^6,-1*K.1^82,K.1^78,-1*K.1^22,-1*K.1^46,K.1^86,-1*K.1^2,K.1^42,K.1^26,-1*K.1^66,K.1^94,-1*K.1^54,-1*K.1^14,K.1^54,-1*K.1^34,K.1^66,K.1^2,K.1^22,K.1^38,K.1^98,K.1^58,-1*K.1^98,K.1^23,-1*K.1^91,K.1^73,-1*K.1^67,K.1^43,K.1^89,K.1^7,-1*K.1^9,-1*K.1^81,-1*K.1^51,K.1^11,-1*K.1^7,-1*K.1^87,-1*K.1^53,K.1^71,-1*K.1^33,K.1^29,K.1^87,K.1^41,-1*K.1^99,K.1^53,K.1^37,K.1^79,-1*K.1^61,K.1^79,-1*K.1^59,K.1^9,-1*K.1^27,-1*K.1^89,-1*K.1^73,-1*K.1^11,-1*K.1^93,K.1^47,-1*K.1^47,-1*K.1^71,-1*K.1^11,K.1^21,-1*K.1^41,K.1^47,-1*K.1^29,K.1^39,K.1,-1*K.1^19,K.1^69,K.1^93,-1*K.1^53,K.1^31,-1*K.1,K.1^61,K.1^71,K.1^31,K.1^91,K.1^27,K.1^67,K.1^51,-1*K.1^91,K.1^13,-1*K.1^49,-1*K.1^67,K.1^49,K.1^83,-1*K.1^27,-1*K.1^13,-1*K.1^59,-1*K.1^57,K.1^63,-1*K.1^37,-1*K.1^79,-1*K.1^39,-1*K.1^77,K.1^59,-1*K.1^9,-1*K.1^73,K.1^67,K.1^73,-1*K.1^17,-1*K.1^23,K.1^9,K.1^63,-1*K.1^77,K.1^17,K.1^23,K.1^41,-1*K.1^63,K.1^77,-1*K.1^17,-1*K.1^99,K.1^81,K.1^87,-1*K.1^23,-1*K.1^69,K.1^19,K.1^21,K.1^61,-1*K.1^79,K.1^97,-1*K.1^97,K.1^43,K.1^89,-1*K.1^43,-1*K.1^89,K.1^93,-1*K.1^47,K.1^81,K.1^51,K.1^11,-1*K.1^21,-1*K.1^3,K.1^53,K.1^29,-1*K.1^31,K.1^3,K.1^7,K.1^33,-1*K.1^51,K.1^69,K.1^97,-1*K.1^43,-1*K.1^61,-1*K.1^71,K.1^91,-1*K.1^13,-1*K.1^7,-1*K.1^33,-1*K.1^49,-1*K.1^83,-1*K.1^29,K.1^3,K.1^59,K.1^57,-1*K.1^39,-1*K.1,-1*K.1^81,-1*K.1^87,-1*K.1^93,-1*K.1^63,-1*K.1^19,-1*K.1^21,K.1^39,K.1^77,K.1^37,-1*K.1^31,K.1,-1*K.1^83,K.1^57,-1*K.1^37,-1*K.1^3,K.1^49,K.1^83,-1*K.1^57,K.1^33,K.1^27,K.1^13,-1*K.1^41,K.1^99,K.1^17,K.1^99,K.1^19,-1*K.1^69,-1*K.1^97]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^44,K.1^72,-1*K.1^4,-1*K.1^52,-1*K.1^12,K.1^32,K.1^24,-1*K.1^28,K.1^56,K.1^88,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,-1*K.1^76,K.1^16,-1*K.1^84,K.1^8,-1*K.1^92,K.1^64,K.1^95,K.1^65,K.1^95,K.1^65,K.1^85,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^65,-1*K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^55,K.1^55,K.1^5,K.1^35,-1*K.1^95,-1*K.1^95,-1*K.1^85,K.1^15,K.1^85,K.1^5,K.1^45,-1*K.1^15,K.1^45,K.1^55,-1*K.1^85,K.1^35,-1*K.1^55,K.1^15,-1*K.1^65,-1*K.1^15,-1*K.1^76,K.1^32,-1*K.1^8,-1*K.1^16,-1*K.1^52,K.1^96,-1*K.1^36,-1*K.1^92,-1*K.1^56,K.1^68,K.1^56,K.1^68,-1*K.1^84,-1*K.1^4,K.1^76,K.1^88,K.1^92,-1*K.1^48,-1*K.1^56,K.1^8,-1*K.1^88,K.1^28,K.1^48,-1*K.1^16,-1*K.1^8,-1*K.1^44,-1*K.1^28,K.1^36,K.1^64,K.1^24,-1*K.1^96,K.1^36,-1*K.1^32,-1*K.1^32,K.1^4,K.1^92,K.1^4,K.1^12,K.1^12,-1*K.1^24,-1*K.1^24,-1*K.1^68,-1*K.1^12,K.1^76,-1*K.1^48,K.1^72,K.1^84,K.1^84,K.1^52,K.1^44,K.1^44,K.1^52,-1*K.1^64,-1*K.1^72,-1*K.1^72,-1*K.1^64,K.1^16,K.1^28,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^12,-1*K.1^36,-1*K.1^68,-1*K.1^28,K.1^64,K.1^24,-1*K.1^24,-1*K.1^56,-1*K.1^16,K.1^52,-1*K.1^72,K.1^72,-1*K.1^64,K.1^4,K.1^32,-1*K.1^92,K.1^44,K.1^36,-1*K.1^12,-1*K.1^32,K.1^92,K.1^76,-1*K.1^96,K.1^84,-1*K.1^52,-1*K.1^84,-1*K.1^8,-1*K.1^76,K.1^16,K.1^68,K.1^28,K.1^56,K.1^48,-1*K.1^48,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,K.1^96,K.1^94,-1*K.1^58,-1*K.1^74,K.1^62,K.1^46,K.1^46,-1*K.1^82,K.1^54,K.1^86,-1*K.1^62,K.1^22,-1*K.1^2,K.1^42,-1*K.1^18,-1*K.1^34,-1*K.1^2,-1*K.1^26,K.1^38,K.1^94,-1*K.1^86,-1*K.1^46,-1*K.1^26,K.1^26,-1*K.1^6,K.1^82,-1*K.1^54,-1*K.1^78,-1*K.1^14,K.1^18,K.1^6,K.1^58,K.1^74,K.1^18,-1*K.1^34,-1*K.1^46,K.1^34,K.1^98,-1*K.1^66,-1*K.1^86,K.1^38,K.1^58,K.1^74,-1*K.1^94,K.1^78,-1*K.1^98,-1*K.1^98,-1*K.1^42,-1*K.1^38,-1*K.1^78,-1*K.1^54,-1*K.1^38,-1*K.1^94,-1*K.1^22,K.1^66,K.1^66,K.1^86,-1*K.1^6,K.1^26,-1*K.1^62,K.1^34,K.1^98,K.1^82,-1*K.1^14,-1*K.1^22,-1*K.1^58,K.1^54,K.1^78,-1*K.1^66,K.1^62,-1*K.1^74,K.1^2,K.1^42,-1*K.1^42,-1*K.1^82,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,-1*K.1^18,-1*K.1^98,K.1^86,-1*K.1^46,-1*K.1^6,K.1^46,-1*K.1^26,K.1^98,-1*K.1^54,K.1^94,K.1^78,K.1^18,K.1^34,-1*K.1^74,K.1^62,-1*K.1^22,K.1^82,K.1^22,-1*K.1^2,K.1^74,-1*K.1^78,-1*K.1^62,K.1^38,-1*K.1^34,-1*K.1^94,K.1^58,-1*K.1^18,K.1^54,-1*K.1^14,K.1^26,-1*K.1^66,K.1^6,K.1^66,-1*K.1^86,K.1^14,-1*K.1^58,-1*K.1^38,K.1^2,-1*K.1^42,-1*K.1^82,K.1^42,K.1^17,K.1^89,-1*K.1^67,-1*K.1^93,-1*K.1^97,K.1^31,-1*K.1^53,K.1^11,K.1^99,-1*K.1^29,K.1^69,K.1^53,-1*K.1^73,K.1^87,K.1^9,-1*K.1^7,K.1^91,K.1^73,K.1^39,-1*K.1^21,-1*K.1^87,-1*K.1^23,K.1^41,-1*K.1^19,K.1^41,-1*K.1^61,-1*K.1^11,K.1^33,-1*K.1^31,K.1^67,-1*K.1^69,K.1^47,-1*K.1^13,K.1^13,-1*K.1^9,-1*K.1^69,K.1^59,-1*K.1^39,-1*K.1^13,-1*K.1^91,K.1^81,K.1^79,K.1,K.1^51,-1*K.1^47,K.1^87,K.1^49,-1*K.1^79,K.1^19,K.1^9,K.1^49,-1*K.1^89,-1*K.1^33,K.1^93,K.1^29,K.1^89,K.1^27,-1*K.1^71,-1*K.1^93,K.1^71,-1*K.1^57,K.1^33,-1*K.1^27,-1*K.1^61,K.1^3,-1*K.1^77,K.1^23,-1*K.1^41,-1*K.1^81,-1*K.1^83,K.1^61,K.1^11,K.1^67,K.1^93,-1*K.1^67,K.1^43,-1*K.1^17,-1*K.1^11,-1*K.1^77,-1*K.1^83,-1*K.1^43,K.1^17,K.1^39,K.1^77,K.1^83,K.1^43,-1*K.1^21,-1*K.1^99,K.1^73,-1*K.1^17,-1*K.1^51,-1*K.1,K.1^59,K.1^19,-1*K.1^41,K.1^63,-1*K.1^63,-1*K.1^97,K.1^31,K.1^97,-1*K.1^31,-1*K.1^47,K.1^13,-1*K.1^99,K.1^29,K.1^69,-1*K.1^59,-1*K.1^37,-1*K.1^87,K.1^91,-1*K.1^49,K.1^37,-1*K.1^53,K.1^7,-1*K.1^29,K.1^51,K.1^63,K.1^97,-1*K.1^19,-1*K.1^9,-1*K.1^89,-1*K.1^27,K.1^53,-1*K.1^7,-1*K.1^71,K.1^57,-1*K.1^91,K.1^37,K.1^61,-1*K.1^3,-1*K.1^81,-1*K.1^79,K.1^99,-1*K.1^73,K.1^47,K.1^77,K.1,-1*K.1^59,K.1^81,K.1^83,-1*K.1^23,-1*K.1^49,K.1^79,K.1^57,-1*K.1^3,K.1^23,-1*K.1^37,K.1^71,-1*K.1^57,K.1^3,K.1^7,-1*K.1^33,K.1^27,-1*K.1^39,K.1^21,-1*K.1^43,K.1^21,-1*K.1,-1*K.1^51,-1*K.1^63]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^56,-1*K.1^28,K.1^96,K.1^48,K.1^88,-1*K.1^68,-1*K.1^76,K.1^72,-1*K.1^44,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,K.1^24,-1*K.1^84,K.1^16,-1*K.1^92,K.1^8,-1*K.1^36,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^95,K.1^65,K.1^95,K.1^35,K.1^55,K.1^65,K.1^55,K.1^45,-1*K.1^45,-1*K.1^95,-1*K.1^65,K.1^5,K.1^5,K.1^15,-1*K.1^85,-1*K.1^15,-1*K.1^95,-1*K.1^55,K.1^85,-1*K.1^55,-1*K.1^45,K.1^15,-1*K.1^65,K.1^45,-1*K.1^85,K.1^35,K.1^85,K.1^24,-1*K.1^68,K.1^92,K.1^84,K.1^48,-1*K.1^4,K.1^64,K.1^8,K.1^44,-1*K.1^32,-1*K.1^44,-1*K.1^32,K.1^16,K.1^96,-1*K.1^24,-1*K.1^12,-1*K.1^8,K.1^52,K.1^44,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^52,K.1^84,K.1^92,K.1^56,K.1^72,-1*K.1^64,-1*K.1^36,-1*K.1^76,K.1^4,-1*K.1^64,K.1^68,K.1^68,-1*K.1^96,-1*K.1^8,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^76,K.1^76,K.1^32,K.1^88,-1*K.1^24,K.1^52,-1*K.1^28,-1*K.1^16,-1*K.1^16,-1*K.1^48,-1*K.1^56,-1*K.1^56,-1*K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^84,-1*K.1^72,K.1^4,K.1^12,K.1^12,-1*K.1^88,K.1^64,K.1^32,K.1^72,-1*K.1^36,-1*K.1^76,K.1^76,K.1^44,K.1^84,-1*K.1^48,K.1^28,-1*K.1^28,K.1^36,-1*K.1^96,-1*K.1^68,K.1^8,-1*K.1^56,-1*K.1^64,K.1^88,K.1^68,-1*K.1^8,-1*K.1^24,K.1^4,-1*K.1^16,K.1^48,K.1^16,K.1^92,K.1^24,-1*K.1^84,-1*K.1^32,-1*K.1^72,-1*K.1^44,-1*K.1^52,K.1^52,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,-1*K.1^4,-1*K.1^6,K.1^42,K.1^26,-1*K.1^38,-1*K.1^54,-1*K.1^54,K.1^18,-1*K.1^46,-1*K.1^14,K.1^38,-1*K.1^78,K.1^98,-1*K.1^58,K.1^82,K.1^66,K.1^98,K.1^74,-1*K.1^62,-1*K.1^6,K.1^14,K.1^54,K.1^74,-1*K.1^74,K.1^94,-1*K.1^18,K.1^46,K.1^22,K.1^86,-1*K.1^82,-1*K.1^94,-1*K.1^42,-1*K.1^26,-1*K.1^82,K.1^66,K.1^54,-1*K.1^66,-1*K.1^2,K.1^34,K.1^14,-1*K.1^62,-1*K.1^42,-1*K.1^26,K.1^6,-1*K.1^22,K.1^2,K.1^2,K.1^58,K.1^62,K.1^22,K.1^46,K.1^62,K.1^6,K.1^78,-1*K.1^34,-1*K.1^34,-1*K.1^14,K.1^94,-1*K.1^74,K.1^38,-1*K.1^66,-1*K.1^2,-1*K.1^18,K.1^86,K.1^78,K.1^42,-1*K.1^46,-1*K.1^22,K.1^34,-1*K.1^38,K.1^26,-1*K.1^98,-1*K.1^58,K.1^58,K.1^18,-1*K.1^98,-1*K.1^86,-1*K.1^86,-1*K.1^78,-1*K.1^94,K.1^82,K.1^2,-1*K.1^14,K.1^54,K.1^94,-1*K.1^54,K.1^74,-1*K.1^2,K.1^46,-1*K.1^6,-1*K.1^22,-1*K.1^82,-1*K.1^66,K.1^26,-1*K.1^38,K.1^78,-1*K.1^18,-1*K.1^78,K.1^98,-1*K.1^26,K.1^22,K.1^38,-1*K.1^62,K.1^66,K.1^6,-1*K.1^42,K.1^82,-1*K.1^46,K.1^86,-1*K.1^74,K.1^34,-1*K.1^94,-1*K.1^34,K.1^14,-1*K.1^86,K.1^42,K.1^62,-1*K.1^98,K.1^58,K.1^18,-1*K.1^58,-1*K.1^83,-1*K.1^11,K.1^33,K.1^7,K.1^3,-1*K.1^69,K.1^47,-1*K.1^89,-1*K.1,K.1^71,-1*K.1^31,-1*K.1^47,K.1^27,-1*K.1^13,-1*K.1^91,K.1^93,-1*K.1^9,-1*K.1^27,-1*K.1^61,K.1^79,K.1^13,K.1^77,-1*K.1^59,K.1^81,-1*K.1^59,K.1^39,K.1^89,-1*K.1^67,K.1^69,-1*K.1^33,K.1^31,-1*K.1^53,K.1^87,-1*K.1^87,K.1^91,K.1^31,-1*K.1^41,K.1^61,K.1^87,K.1^9,-1*K.1^19,-1*K.1^21,-1*K.1^99,-1*K.1^49,K.1^53,-1*K.1^13,-1*K.1^51,K.1^21,-1*K.1^81,-1*K.1^91,-1*K.1^51,K.1^11,K.1^67,-1*K.1^7,-1*K.1^71,-1*K.1^11,-1*K.1^73,K.1^29,K.1^7,-1*K.1^29,K.1^43,-1*K.1^67,K.1^73,K.1^39,-1*K.1^97,K.1^23,-1*K.1^77,K.1^59,K.1^19,K.1^17,-1*K.1^39,-1*K.1^89,-1*K.1^33,-1*K.1^7,K.1^33,-1*K.1^57,K.1^83,K.1^89,K.1^23,K.1^17,K.1^57,-1*K.1^83,-1*K.1^61,-1*K.1^23,-1*K.1^17,-1*K.1^57,K.1^79,K.1,-1*K.1^27,K.1^83,K.1^49,K.1^99,-1*K.1^41,-1*K.1^81,K.1^59,-1*K.1^37,K.1^37,K.1^3,-1*K.1^69,-1*K.1^3,K.1^69,K.1^53,-1*K.1^87,K.1,-1*K.1^71,-1*K.1^31,K.1^41,K.1^63,K.1^13,-1*K.1^9,K.1^51,-1*K.1^63,K.1^47,-1*K.1^93,K.1^71,-1*K.1^49,-1*K.1^37,-1*K.1^3,K.1^81,K.1^91,K.1^11,K.1^73,-1*K.1^47,K.1^93,K.1^29,-1*K.1^43,K.1^9,-1*K.1^63,-1*K.1^39,K.1^97,K.1^19,K.1^21,-1*K.1,K.1^27,-1*K.1^53,-1*K.1^23,-1*K.1^99,K.1^41,-1*K.1^19,-1*K.1^17,K.1^77,K.1^51,-1*K.1^21,-1*K.1^43,K.1^97,-1*K.1^77,K.1^63,-1*K.1^29,K.1^43,-1*K.1^97,-1*K.1^93,K.1^67,-1*K.1^73,K.1^61,-1*K.1^79,K.1^57,-1*K.1^79,K.1^99,K.1^49,K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,K.1^24,-1*K.1^12,-1*K.1^84,-1*K.1^92,-1*K.1^52,K.1^72,-1*K.1^4,K.1^88,-1*K.1^76,K.1^48,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^96,-1*K.1^36,K.1^64,-1*K.1^68,K.1^32,-1*K.1^44,K.1^95,K.1^65,K.1^95,K.1^65,K.1^85,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^65,-1*K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^55,K.1^55,K.1^5,K.1^35,-1*K.1^95,-1*K.1^95,-1*K.1^85,K.1^15,K.1^85,K.1^5,K.1^45,-1*K.1^15,K.1^45,K.1^55,-1*K.1^85,K.1^35,-1*K.1^55,K.1^15,-1*K.1^65,-1*K.1^15,K.1^96,K.1^72,K.1^68,K.1^36,-1*K.1^92,K.1^16,K.1^56,K.1^32,K.1^76,K.1^28,-1*K.1^76,K.1^28,K.1^64,-1*K.1^84,-1*K.1^96,K.1^48,-1*K.1^32,-1*K.1^8,K.1^76,-1*K.1^68,-1*K.1^48,-1*K.1^88,K.1^8,K.1^36,K.1^68,K.1^24,K.1^88,-1*K.1^56,-1*K.1^44,-1*K.1^4,-1*K.1^16,-1*K.1^56,-1*K.1^72,-1*K.1^72,K.1^84,-1*K.1^32,K.1^84,K.1^52,K.1^52,K.1^4,K.1^4,-1*K.1^28,-1*K.1^52,-1*K.1^96,-1*K.1^8,-1*K.1^12,-1*K.1^64,-1*K.1^64,K.1^92,-1*K.1^24,-1*K.1^24,K.1^92,K.1^44,K.1^12,K.1^12,K.1^44,-1*K.1^36,-1*K.1^88,-1*K.1^16,-1*K.1^48,-1*K.1^48,K.1^52,K.1^56,-1*K.1^28,K.1^88,-1*K.1^44,-1*K.1^4,K.1^4,K.1^76,K.1^36,K.1^92,K.1^12,-1*K.1^12,K.1^44,K.1^84,K.1^72,K.1^32,-1*K.1^24,-1*K.1^56,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^96,-1*K.1^16,-1*K.1^64,-1*K.1^92,K.1^64,K.1^68,K.1^96,-1*K.1^36,K.1^28,-1*K.1^88,-1*K.1^76,K.1^8,-1*K.1^8,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^16,-1*K.1^74,-1*K.1^18,K.1^54,-1*K.1^2,-1*K.1^66,-1*K.1^66,K.1^22,-1*K.1^34,K.1^6,K.1^2,K.1^62,-1*K.1^42,K.1^82,K.1^78,K.1^14,-1*K.1^42,K.1^46,-1*K.1^98,-1*K.1^74,-1*K.1^6,K.1^66,K.1^46,-1*K.1^46,K.1^26,-1*K.1^22,K.1^34,-1*K.1^38,-1*K.1^94,-1*K.1^78,-1*K.1^26,K.1^18,-1*K.1^54,-1*K.1^78,K.1^14,K.1^66,-1*K.1^14,K.1^58,K.1^86,-1*K.1^6,-1*K.1^98,K.1^18,-1*K.1^54,K.1^74,K.1^38,-1*K.1^58,-1*K.1^58,-1*K.1^82,K.1^98,-1*K.1^38,K.1^34,K.1^98,K.1^74,-1*K.1^62,-1*K.1^86,-1*K.1^86,K.1^6,K.1^26,-1*K.1^46,K.1^2,-1*K.1^14,K.1^58,-1*K.1^22,-1*K.1^94,-1*K.1^62,-1*K.1^18,-1*K.1^34,K.1^38,K.1^86,-1*K.1^2,K.1^54,K.1^42,K.1^82,-1*K.1^82,K.1^22,K.1^42,K.1^94,K.1^94,K.1^62,-1*K.1^26,K.1^78,-1*K.1^58,K.1^6,K.1^66,K.1^26,-1*K.1^66,K.1^46,K.1^58,K.1^34,-1*K.1^74,K.1^38,-1*K.1^78,-1*K.1^14,K.1^54,-1*K.1^2,-1*K.1^62,-1*K.1^22,K.1^62,-1*K.1^42,-1*K.1^54,-1*K.1^38,K.1^2,-1*K.1^98,K.1^14,K.1^74,K.1^18,K.1^78,-1*K.1^34,-1*K.1^94,-1*K.1^46,K.1^86,-1*K.1^26,-1*K.1^86,-1*K.1^6,K.1^94,-1*K.1^18,K.1^98,K.1^42,-1*K.1^82,K.1^22,K.1^82,K.1^57,-1*K.1^69,K.1^7,-1*K.1^53,K.1^37,-1*K.1^51,-1*K.1^13,-1*K.1^31,-1*K.1^79,K.1^9,-1*K.1^49,K.1^13,-1*K.1^33,-1*K.1^27,K.1^89,-1*K.1^47,K.1^11,K.1^33,-1*K.1^19,K.1^41,K.1^27,K.1^83,-1*K.1^61,-1*K.1^99,-1*K.1^61,K.1^81,K.1^31,-1*K.1^93,K.1^51,-1*K.1^7,K.1^49,K.1^87,K.1^73,-1*K.1^73,-1*K.1^89,K.1^49,-1*K.1^39,K.1^19,K.1^73,-1*K.1^11,K.1,-1*K.1^59,-1*K.1^21,-1*K.1^71,-1*K.1^87,-1*K.1^27,-1*K.1^29,K.1^59,K.1^99,K.1^89,-1*K.1^29,K.1^69,K.1^93,K.1^53,-1*K.1^9,-1*K.1^69,K.1^67,K.1^91,-1*K.1^53,-1*K.1^91,-1*K.1^97,-1*K.1^93,-1*K.1^67,K.1^81,-1*K.1^63,K.1^17,-1*K.1^83,K.1^61,-1*K.1,-1*K.1^43,-1*K.1^81,-1*K.1^31,-1*K.1^7,K.1^53,K.1^7,K.1^3,-1*K.1^57,K.1^31,K.1^17,-1*K.1^43,-1*K.1^3,K.1^57,-1*K.1^19,-1*K.1^17,K.1^43,K.1^3,K.1^41,K.1^79,K.1^33,-1*K.1^57,K.1^71,K.1^21,-1*K.1^39,K.1^99,K.1^61,K.1^23,-1*K.1^23,K.1^37,-1*K.1^51,-1*K.1^37,K.1^51,-1*K.1^87,-1*K.1^73,K.1^79,-1*K.1^9,-1*K.1^49,K.1^39,-1*K.1^77,K.1^27,K.1^11,K.1^29,K.1^77,-1*K.1^13,K.1^47,K.1^9,-1*K.1^71,K.1^23,-1*K.1^37,-1*K.1^99,-1*K.1^89,K.1^69,-1*K.1^67,K.1^13,-1*K.1^47,K.1^91,K.1^97,-1*K.1^11,K.1^77,-1*K.1^81,K.1^63,-1*K.1,K.1^59,-1*K.1^79,-1*K.1^33,K.1^87,-1*K.1^17,-1*K.1^21,K.1^39,K.1,K.1^43,K.1^83,K.1^29,-1*K.1^59,K.1^97,K.1^63,-1*K.1^83,-1*K.1^77,-1*K.1^91,-1*K.1^97,-1*K.1^63,K.1^47,K.1^93,K.1^67,K.1^19,-1*K.1^41,-1*K.1^3,-1*K.1^41,K.1^21,K.1^71,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,-1*K.1^76,K.1^88,K.1^16,K.1^8,K.1^48,-1*K.1^28,K.1^96,-1*K.1^12,K.1^24,-1*K.1^52,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^64,-1*K.1^36,K.1^32,-1*K.1^68,K.1^56,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^95,K.1^65,K.1^95,K.1^35,K.1^55,K.1^65,K.1^55,K.1^45,-1*K.1^45,-1*K.1^95,-1*K.1^65,K.1^5,K.1^5,K.1^15,-1*K.1^85,-1*K.1^15,-1*K.1^95,-1*K.1^55,K.1^85,-1*K.1^55,-1*K.1^45,K.1^15,-1*K.1^65,K.1^45,-1*K.1^85,K.1^35,K.1^85,-1*K.1^4,-1*K.1^28,-1*K.1^32,-1*K.1^64,K.1^8,-1*K.1^84,-1*K.1^44,-1*K.1^68,-1*K.1^24,-1*K.1^72,K.1^24,-1*K.1^72,-1*K.1^36,K.1^16,K.1^4,-1*K.1^52,K.1^68,K.1^92,-1*K.1^24,K.1^32,K.1^52,K.1^12,-1*K.1^92,-1*K.1^64,-1*K.1^32,-1*K.1^76,-1*K.1^12,K.1^44,K.1^56,K.1^96,K.1^84,K.1^44,K.1^28,K.1^28,-1*K.1^16,K.1^68,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^96,-1*K.1^96,K.1^72,K.1^48,K.1^4,K.1^92,K.1^88,K.1^36,K.1^36,-1*K.1^8,K.1^76,K.1^76,-1*K.1^8,-1*K.1^56,-1*K.1^88,-1*K.1^88,-1*K.1^56,K.1^64,K.1^12,K.1^84,K.1^52,K.1^52,-1*K.1^48,-1*K.1^44,K.1^72,-1*K.1^12,K.1^56,K.1^96,-1*K.1^96,-1*K.1^24,-1*K.1^64,-1*K.1^8,-1*K.1^88,K.1^88,-1*K.1^56,-1*K.1^16,-1*K.1^28,-1*K.1^68,K.1^76,K.1^44,K.1^48,K.1^28,K.1^68,K.1^4,K.1^84,K.1^36,K.1^8,-1*K.1^36,-1*K.1^32,-1*K.1^4,K.1^64,-1*K.1^72,K.1^12,K.1^24,-1*K.1^92,K.1^92,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^84,K.1^26,K.1^82,-1*K.1^46,K.1^98,K.1^34,K.1^34,-1*K.1^78,K.1^66,-1*K.1^94,-1*K.1^98,-1*K.1^38,K.1^58,-1*K.1^18,-1*K.1^22,-1*K.1^86,K.1^58,-1*K.1^54,K.1^2,K.1^26,K.1^94,-1*K.1^34,-1*K.1^54,K.1^54,-1*K.1^74,K.1^78,-1*K.1^66,K.1^62,K.1^6,K.1^22,K.1^74,-1*K.1^82,K.1^46,K.1^22,-1*K.1^86,-1*K.1^34,K.1^86,-1*K.1^42,-1*K.1^14,K.1^94,K.1^2,-1*K.1^82,K.1^46,-1*K.1^26,-1*K.1^62,K.1^42,K.1^42,K.1^18,-1*K.1^2,K.1^62,-1*K.1^66,-1*K.1^2,-1*K.1^26,K.1^38,K.1^14,K.1^14,-1*K.1^94,-1*K.1^74,K.1^54,-1*K.1^98,K.1^86,-1*K.1^42,K.1^78,K.1^6,K.1^38,K.1^82,K.1^66,-1*K.1^62,-1*K.1^14,K.1^98,-1*K.1^46,-1*K.1^58,-1*K.1^18,K.1^18,-1*K.1^78,-1*K.1^58,-1*K.1^6,-1*K.1^6,-1*K.1^38,K.1^74,-1*K.1^22,K.1^42,-1*K.1^94,-1*K.1^34,-1*K.1^74,K.1^34,-1*K.1^54,-1*K.1^42,-1*K.1^66,K.1^26,-1*K.1^62,K.1^22,K.1^86,-1*K.1^46,K.1^98,K.1^38,K.1^78,-1*K.1^38,K.1^58,K.1^46,K.1^62,-1*K.1^98,K.1^2,-1*K.1^86,-1*K.1^26,-1*K.1^82,-1*K.1^22,K.1^66,K.1^6,K.1^54,-1*K.1^14,K.1^74,K.1^14,K.1^94,-1*K.1^6,K.1^82,-1*K.1^2,-1*K.1^58,K.1^18,-1*K.1^78,-1*K.1^18,-1*K.1^43,K.1^31,-1*K.1^93,K.1^47,-1*K.1^63,K.1^49,K.1^87,K.1^69,K.1^21,-1*K.1^91,K.1^51,-1*K.1^87,K.1^67,K.1^73,-1*K.1^11,K.1^53,-1*K.1^89,-1*K.1^67,K.1^81,-1*K.1^59,-1*K.1^73,-1*K.1^17,K.1^39,K.1,K.1^39,-1*K.1^19,-1*K.1^69,K.1^7,-1*K.1^49,K.1^93,-1*K.1^51,-1*K.1^13,-1*K.1^27,K.1^27,K.1^11,-1*K.1^51,K.1^61,-1*K.1^81,-1*K.1^27,K.1^89,-1*K.1^99,K.1^41,K.1^79,K.1^29,K.1^13,K.1^73,K.1^71,-1*K.1^41,-1*K.1,-1*K.1^11,K.1^71,-1*K.1^31,-1*K.1^7,-1*K.1^47,K.1^91,K.1^31,-1*K.1^33,-1*K.1^9,K.1^47,K.1^9,K.1^3,K.1^7,K.1^33,-1*K.1^19,K.1^37,-1*K.1^83,K.1^17,-1*K.1^39,K.1^99,K.1^57,K.1^19,K.1^69,K.1^93,-1*K.1^47,-1*K.1^93,-1*K.1^97,K.1^43,-1*K.1^69,-1*K.1^83,K.1^57,K.1^97,-1*K.1^43,K.1^81,K.1^83,-1*K.1^57,-1*K.1^97,-1*K.1^59,-1*K.1^21,-1*K.1^67,K.1^43,-1*K.1^29,-1*K.1^79,K.1^61,-1*K.1,-1*K.1^39,-1*K.1^77,K.1^77,-1*K.1^63,K.1^49,K.1^63,-1*K.1^49,K.1^13,K.1^27,-1*K.1^21,K.1^91,K.1^51,-1*K.1^61,K.1^23,-1*K.1^73,-1*K.1^89,-1*K.1^71,-1*K.1^23,K.1^87,-1*K.1^53,-1*K.1^91,K.1^29,-1*K.1^77,K.1^63,K.1,K.1^11,-1*K.1^31,K.1^33,-1*K.1^87,K.1^53,-1*K.1^9,-1*K.1^3,K.1^89,-1*K.1^23,K.1^19,-1*K.1^37,K.1^99,-1*K.1^41,K.1^21,K.1^67,-1*K.1^13,K.1^83,K.1^79,-1*K.1^61,-1*K.1^99,-1*K.1^57,-1*K.1^17,-1*K.1^71,K.1^41,-1*K.1^3,-1*K.1^37,K.1^17,K.1^23,K.1^9,K.1^3,K.1^37,-1*K.1^53,-1*K.1^7,-1*K.1^33,-1*K.1^81,K.1^59,K.1^97,K.1^59,-1*K.1^79,-1*K.1^29,K.1^77]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^84,-1*K.1^92,-1*K.1^44,K.1^72,K.1^32,-1*K.1^52,K.1^64,K.1^8,K.1^16,-1*K.1^68,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^36,-1*K.1^76,K.1^24,K.1^88,-1*K.1^12,-1*K.1^4,K.1^95,K.1^65,K.1^95,K.1^65,K.1^85,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^65,-1*K.1^45,-1*K.1^35,-1*K.1^45,-1*K.1^55,K.1^55,K.1^5,K.1^35,-1*K.1^95,-1*K.1^95,-1*K.1^85,K.1^15,K.1^85,K.1^5,K.1^45,-1*K.1^15,K.1^45,K.1^55,-1*K.1^85,K.1^35,-1*K.1^55,K.1^15,-1*K.1^65,-1*K.1^15,-1*K.1^36,-1*K.1^52,-1*K.1^88,K.1^76,K.1^72,K.1^56,K.1^96,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^16,-1*K.1^48,K.1^24,-1*K.1^44,K.1^36,-1*K.1^68,K.1^12,K.1^28,-1*K.1^16,K.1^88,K.1^68,-1*K.1^8,-1*K.1^28,K.1^76,-1*K.1^88,-1*K.1^84,K.1^8,-1*K.1^96,-1*K.1^4,K.1^64,-1*K.1^56,-1*K.1^96,K.1^52,K.1^52,K.1^44,K.1^12,K.1^44,-1*K.1^32,-1*K.1^32,-1*K.1^64,-1*K.1^64,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^92,-1*K.1^24,-1*K.1^24,-1*K.1^72,K.1^84,K.1^84,-1*K.1^72,K.1^4,K.1^92,K.1^92,K.1^4,-1*K.1^76,-1*K.1^8,-1*K.1^56,K.1^68,K.1^68,-1*K.1^32,K.1^96,K.1^48,K.1^8,-1*K.1^4,K.1^64,-1*K.1^64,-1*K.1^16,K.1^76,-1*K.1^72,K.1^92,-1*K.1^92,K.1^4,K.1^44,-1*K.1^52,-1*K.1^12,K.1^84,-1*K.1^96,K.1^32,K.1^52,K.1^12,K.1^36,-1*K.1^56,-1*K.1^24,K.1^72,K.1^24,-1*K.1^88,-1*K.1^36,-1*K.1^76,-1*K.1^48,-1*K.1^8,K.1^16,-1*K.1^28,K.1^28,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^56,-1*K.1^34,K.1^38,K.1^14,-1*K.1^82,K.1^6,K.1^6,-1*K.1^2,K.1^94,K.1^46,K.1^82,-1*K.1^42,K.1^22,-1*K.1^62,-1*K.1^98,-1*K.1^74,K.1^22,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^46,-1*K.1^6,K.1^86,-1*K.1^86,K.1^66,K.1^2,-1*K.1^94,K.1^58,-1*K.1^54,K.1^98,-1*K.1^66,-1*K.1^38,-1*K.1^14,K.1^98,-1*K.1^74,-1*K.1^6,K.1^74,-1*K.1^78,-1*K.1^26,-1*K.1^46,-1*K.1^18,-1*K.1^38,-1*K.1^14,K.1^34,-1*K.1^58,K.1^78,K.1^78,K.1^62,K.1^18,K.1^58,-1*K.1^94,K.1^18,K.1^34,K.1^42,K.1^26,K.1^26,K.1^46,K.1^66,-1*K.1^86,K.1^82,K.1^74,-1*K.1^78,K.1^2,-1*K.1^54,K.1^42,K.1^38,K.1^94,-1*K.1^58,-1*K.1^26,-1*K.1^82,K.1^14,-1*K.1^22,-1*K.1^62,K.1^62,-1*K.1^2,-1*K.1^22,K.1^54,K.1^54,-1*K.1^42,-1*K.1^66,-1*K.1^98,K.1^78,K.1^46,-1*K.1^6,K.1^66,K.1^6,K.1^86,-1*K.1^78,-1*K.1^94,-1*K.1^34,-1*K.1^58,K.1^98,K.1^74,K.1^14,-1*K.1^82,K.1^42,K.1^2,-1*K.1^42,K.1^22,-1*K.1^14,K.1^58,K.1^82,-1*K.1^18,-1*K.1^74,K.1^34,-1*K.1^38,-1*K.1^98,K.1^94,-1*K.1^54,-1*K.1^86,-1*K.1^26,-1*K.1^66,K.1^26,-1*K.1^46,K.1^54,K.1^38,K.1^18,-1*K.1^22,K.1^62,-1*K.1^2,-1*K.1^62,-1*K.1^37,-1*K.1^29,K.1^87,K.1^73,-1*K.1^17,-1*K.1^91,K.1^33,-1*K.1^71,-1*K.1^39,-1*K.1^69,-1*K.1^9,-1*K.1^33,K.1^53,K.1^7,K.1^49,K.1^27,K.1^51,-1*K.1^53,K.1^79,K.1^81,-1*K.1^7,K.1^3,K.1,-1*K.1^59,K.1,-1*K.1^21,K.1^71,-1*K.1^13,K.1^91,-1*K.1^87,K.1^9,-1*K.1^67,-1*K.1^93,K.1^93,-1*K.1^49,K.1^9,K.1^99,-1*K.1^79,-1*K.1^93,-1*K.1^51,K.1^41,-1*K.1^19,-1*K.1^61,K.1^11,K.1^67,K.1^7,K.1^89,K.1^19,K.1^59,K.1^49,K.1^89,K.1^29,K.1^13,-1*K.1^73,K.1^69,-1*K.1^29,-1*K.1^47,-1*K.1^31,K.1^73,K.1^31,K.1^77,-1*K.1^13,K.1^47,-1*K.1^21,K.1^83,K.1^97,-1*K.1^3,-1*K.1,-1*K.1^41,K.1^63,K.1^21,-1*K.1^71,-1*K.1^87,-1*K.1^73,K.1^87,-1*K.1^23,K.1^37,K.1^71,K.1^97,K.1^63,K.1^23,-1*K.1^37,K.1^79,-1*K.1^97,-1*K.1^63,-1*K.1^23,K.1^81,K.1^39,-1*K.1^53,K.1^37,-1*K.1^11,K.1^61,K.1^99,K.1^59,-1*K.1,-1*K.1^43,K.1^43,-1*K.1^17,-1*K.1^91,K.1^17,K.1^91,K.1^67,K.1^93,K.1^39,K.1^69,-1*K.1^9,-1*K.1^99,K.1^57,-1*K.1^7,K.1^51,-1*K.1^89,-1*K.1^57,K.1^33,-1*K.1^27,-1*K.1^69,K.1^11,-1*K.1^43,K.1^17,-1*K.1^59,-1*K.1^49,K.1^29,K.1^47,-1*K.1^33,K.1^27,-1*K.1^31,-1*K.1^77,-1*K.1^51,-1*K.1^57,K.1^21,-1*K.1^83,-1*K.1^41,K.1^19,-1*K.1^39,K.1^53,-1*K.1^67,-1*K.1^97,-1*K.1^61,-1*K.1^99,K.1^41,-1*K.1^63,K.1^3,-1*K.1^89,-1*K.1^19,-1*K.1^77,-1*K.1^83,-1*K.1^3,K.1^57,K.1^31,K.1^77,K.1^83,-1*K.1^27,K.1^13,-1*K.1^47,-1*K.1^79,-1*K.1^81,K.1^23,-1*K.1^81,K.1^61,-1*K.1^11,K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^16,K.1^8,K.1^56,-1*K.1^28,-1*K.1^68,K.1^48,-1*K.1^36,-1*K.1^92,-1*K.1^84,K.1^32,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^64,K.1^24,-1*K.1^76,-1*K.1^12,K.1^88,K.1^96,-1*K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^95,K.1^65,K.1^95,K.1^35,K.1^55,K.1^65,K.1^55,K.1^45,-1*K.1^45,-1*K.1^95,-1*K.1^65,K.1^5,K.1^5,K.1^15,-1*K.1^85,-1*K.1^15,-1*K.1^95,-1*K.1^55,K.1^85,-1*K.1^55,-1*K.1^45,K.1^15,-1*K.1^65,K.1^45,-1*K.1^85,K.1^35,K.1^85,K.1^64,K.1^48,K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^44,-1*K.1^4,K.1^88,K.1^84,K.1^52,-1*K.1^84,K.1^52,-1*K.1^76,K.1^56,-1*K.1^64,K.1^32,-1*K.1^88,-1*K.1^72,K.1^84,-1*K.1^12,-1*K.1^32,K.1^92,K.1^72,-1*K.1^24,K.1^12,K.1^16,-1*K.1^92,K.1^4,K.1^96,-1*K.1^36,K.1^44,K.1^4,-1*K.1^48,-1*K.1^48,-1*K.1^56,-1*K.1^88,-1*K.1^56,K.1^68,K.1^68,K.1^36,K.1^36,-1*K.1^52,-1*K.1^68,-1*K.1^64,-1*K.1^72,K.1^8,K.1^76,K.1^76,K.1^28,-1*K.1^16,-1*K.1^16,K.1^28,-1*K.1^96,-1*K.1^8,-1*K.1^8,-1*K.1^96,K.1^24,K.1^92,K.1^44,-1*K.1^32,-1*K.1^32,K.1^68,-1*K.1^4,-1*K.1^52,-1*K.1^92,K.1^96,-1*K.1^36,K.1^36,K.1^84,-1*K.1^24,K.1^28,-1*K.1^8,K.1^8,-1*K.1^96,-1*K.1^56,K.1^48,K.1^88,-1*K.1^16,K.1^4,-1*K.1^68,-1*K.1^48,-1*K.1^88,-1*K.1^64,K.1^44,K.1^76,-1*K.1^28,-1*K.1^76,K.1^12,K.1^64,K.1^24,K.1^52,K.1^92,-1*K.1^84,K.1^72,-1*K.1^72,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^44,K.1^66,-1*K.1^62,-1*K.1^86,K.1^18,-1*K.1^94,-1*K.1^94,K.1^98,-1*K.1^6,-1*K.1^54,-1*K.1^18,K.1^58,-1*K.1^78,K.1^38,K.1^2,K.1^26,-1*K.1^78,-1*K.1^14,K.1^82,K.1^66,K.1^54,K.1^94,-1*K.1^14,K.1^14,-1*K.1^34,-1*K.1^98,K.1^6,-1*K.1^42,K.1^46,-1*K.1^2,K.1^34,K.1^62,K.1^86,-1*K.1^2,K.1^26,K.1^94,-1*K.1^26,K.1^22,K.1^74,K.1^54,K.1^82,K.1^62,K.1^86,-1*K.1^66,K.1^42,-1*K.1^22,-1*K.1^22,-1*K.1^38,-1*K.1^82,-1*K.1^42,K.1^6,-1*K.1^82,-1*K.1^66,-1*K.1^58,-1*K.1^74,-1*K.1^74,-1*K.1^54,-1*K.1^34,K.1^14,-1*K.1^18,-1*K.1^26,K.1^22,-1*K.1^98,K.1^46,-1*K.1^58,-1*K.1^62,-1*K.1^6,K.1^42,K.1^74,K.1^18,-1*K.1^86,K.1^78,K.1^38,-1*K.1^38,K.1^98,K.1^78,-1*K.1^46,-1*K.1^46,K.1^58,K.1^34,K.1^2,-1*K.1^22,-1*K.1^54,K.1^94,-1*K.1^34,-1*K.1^94,-1*K.1^14,K.1^22,K.1^6,K.1^66,K.1^42,-1*K.1^2,-1*K.1^26,-1*K.1^86,K.1^18,-1*K.1^58,-1*K.1^98,K.1^58,-1*K.1^78,K.1^86,-1*K.1^42,-1*K.1^18,K.1^82,K.1^26,-1*K.1^66,K.1^62,K.1^2,-1*K.1^6,K.1^46,K.1^14,K.1^74,K.1^34,-1*K.1^74,K.1^54,-1*K.1^46,-1*K.1^62,-1*K.1^82,K.1^78,-1*K.1^38,K.1^98,K.1^38,K.1^63,K.1^71,-1*K.1^13,-1*K.1^27,K.1^83,K.1^9,-1*K.1^67,K.1^29,K.1^61,K.1^31,K.1^91,K.1^67,-1*K.1^47,-1*K.1^93,-1*K.1^51,-1*K.1^73,-1*K.1^49,K.1^47,-1*K.1^21,-1*K.1^19,K.1^93,-1*K.1^97,-1*K.1^99,K.1^41,-1*K.1^99,K.1^79,-1*K.1^29,K.1^87,-1*K.1^9,K.1^13,-1*K.1^91,K.1^33,K.1^7,-1*K.1^7,K.1^51,-1*K.1^91,-1*K.1,K.1^21,K.1^7,K.1^49,-1*K.1^59,K.1^81,K.1^39,-1*K.1^89,-1*K.1^33,-1*K.1^93,-1*K.1^11,-1*K.1^81,-1*K.1^41,-1*K.1^51,-1*K.1^11,-1*K.1^71,-1*K.1^87,K.1^27,-1*K.1^31,K.1^71,K.1^53,K.1^69,-1*K.1^27,-1*K.1^69,-1*K.1^23,K.1^87,-1*K.1^53,K.1^79,-1*K.1^17,-1*K.1^3,K.1^97,K.1^99,K.1^59,-1*K.1^37,-1*K.1^79,K.1^29,K.1^13,K.1^27,-1*K.1^13,K.1^77,-1*K.1^63,-1*K.1^29,-1*K.1^3,-1*K.1^37,-1*K.1^77,K.1^63,-1*K.1^21,K.1^3,K.1^37,K.1^77,-1*K.1^19,-1*K.1^61,K.1^47,-1*K.1^63,K.1^89,-1*K.1^39,-1*K.1,-1*K.1^41,K.1^99,K.1^57,-1*K.1^57,K.1^83,K.1^9,-1*K.1^83,-1*K.1^9,-1*K.1^33,-1*K.1^7,-1*K.1^61,-1*K.1^31,K.1^91,K.1,-1*K.1^43,K.1^93,-1*K.1^49,K.1^11,K.1^43,-1*K.1^67,K.1^73,K.1^31,-1*K.1^89,K.1^57,-1*K.1^83,K.1^41,K.1^51,-1*K.1^71,-1*K.1^53,K.1^67,-1*K.1^73,K.1^69,K.1^23,K.1^49,K.1^43,-1*K.1^79,K.1^17,K.1^59,-1*K.1^81,K.1^61,-1*K.1^47,K.1^33,K.1^3,K.1^39,K.1,-1*K.1^59,K.1^37,-1*K.1^97,K.1^11,K.1^81,K.1^23,K.1^17,K.1^97,-1*K.1^43,-1*K.1^69,-1*K.1^23,-1*K.1^17,K.1^73,-1*K.1^87,K.1^53,K.1^21,K.1^19,-1*K.1^77,K.1^19,-1*K.1^39,K.1^89,-1*K.1^57]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^4,-1*K.1^52,K.1^64,K.1^32,-1*K.1^92,-1*K.1^12,-1*K.1^84,K.1^48,K.1^96,K.1^8,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,K.1^16,K.1^56,-1*K.1^44,-1*K.1^28,K.1^72,K.1^24,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^85,K.1^5,K.1^35,K.1^5,K.1^65,K.1^45,K.1^35,K.1^45,K.1^55,-1*K.1^55,-1*K.1^5,-1*K.1^35,K.1^95,K.1^95,K.1^85,-1*K.1^15,-1*K.1^85,-1*K.1^5,-1*K.1^45,K.1^15,-1*K.1^45,-1*K.1^55,K.1^85,-1*K.1^35,K.1^55,-1*K.1^15,K.1^65,K.1^15,K.1^16,-1*K.1^12,K.1^28,-1*K.1^56,K.1^32,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^96,-1*K.1^88,K.1^96,-1*K.1^88,-1*K.1^44,K.1^64,-1*K.1^16,K.1^8,-1*K.1^72,K.1^68,-1*K.1^96,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^68,-1*K.1^56,K.1^28,-1*K.1^4,K.1^48,K.1^76,K.1^24,-1*K.1^84,K.1^36,K.1^76,K.1^12,K.1^12,-1*K.1^64,-1*K.1^72,-1*K.1^64,K.1^92,K.1^92,K.1^84,K.1^84,K.1^88,-1*K.1^92,-1*K.1^16,K.1^68,-1*K.1^52,K.1^44,K.1^44,-1*K.1^32,K.1^4,K.1^4,-1*K.1^32,-1*K.1^24,K.1^52,K.1^52,-1*K.1^24,K.1^56,-1*K.1^48,K.1^36,-1*K.1^8,-1*K.1^8,K.1^92,-1*K.1^76,K.1^88,K.1^48,K.1^24,-1*K.1^84,K.1^84,-1*K.1^96,-1*K.1^56,-1*K.1^32,K.1^52,-1*K.1^52,-1*K.1^24,-1*K.1^64,-1*K.1^12,K.1^72,K.1^4,K.1^76,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^16,K.1^36,K.1^44,K.1^32,-1*K.1^44,K.1^28,K.1^16,K.1^56,-1*K.1^88,-1*K.1^48,K.1^96,-1*K.1^68,K.1^68,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,-1*K.1^36,K.1^54,K.1^78,-1*K.1^34,-1*K.1^42,K.1^86,K.1^86,K.1^62,K.1^14,-1*K.1^26,K.1^42,-1*K.1^2,-1*K.1^82,-1*K.1^22,K.1^38,K.1^94,-1*K.1^82,-1*K.1^66,-1*K.1^58,K.1^54,K.1^26,-1*K.1^86,-1*K.1^66,K.1^66,-1*K.1^46,-1*K.1^62,-1*K.1^14,K.1^98,K.1^74,-1*K.1^38,K.1^46,-1*K.1^78,K.1^34,-1*K.1^38,K.1^94,-1*K.1^86,-1*K.1^94,K.1^18,K.1^6,K.1^26,-1*K.1^58,-1*K.1^78,K.1^34,-1*K.1^54,-1*K.1^98,-1*K.1^18,-1*K.1^18,K.1^22,K.1^58,K.1^98,-1*K.1^14,K.1^58,-1*K.1^54,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^26,-1*K.1^46,K.1^66,K.1^42,-1*K.1^94,K.1^18,-1*K.1^62,K.1^74,K.1^2,K.1^78,K.1^14,-1*K.1^98,K.1^6,-1*K.1^42,-1*K.1^34,K.1^82,-1*K.1^22,K.1^22,K.1^62,K.1^82,-1*K.1^74,-1*K.1^74,-1*K.1^2,K.1^46,K.1^38,-1*K.1^18,-1*K.1^26,-1*K.1^86,-1*K.1^46,K.1^86,-1*K.1^66,K.1^18,-1*K.1^14,K.1^54,-1*K.1^98,-1*K.1^38,-1*K.1^94,-1*K.1^34,-1*K.1^42,K.1^2,-1*K.1^62,-1*K.1^2,-1*K.1^82,K.1^34,K.1^98,K.1^42,-1*K.1^58,K.1^94,-1*K.1^54,-1*K.1^78,K.1^38,K.1^14,K.1^74,K.1^66,K.1^6,K.1^46,-1*K.1^6,K.1^26,-1*K.1^74,K.1^78,K.1^58,K.1^82,K.1^22,K.1^62,-1*K.1^22,-1*K.1^97,-1*K.1^49,-1*K.1^47,K.1^13,-1*K.1^77,-1*K.1^71,-1*K.1^73,-1*K.1^51,-1*K.1^59,-1*K.1^89,-1*K.1^29,K.1^73,-1*K.1^93,K.1^67,K.1^69,K.1^87,K.1^31,K.1^93,K.1^99,K.1^61,-1*K.1^67,-1*K.1^43,-1*K.1^81,-1*K.1^79,-1*K.1^81,-1*K.1,K.1^51,K.1^53,K.1^71,K.1^47,K.1^29,K.1^27,-1*K.1^33,K.1^33,-1*K.1^69,K.1^29,-1*K.1^19,-1*K.1^99,-1*K.1^33,-1*K.1^31,K.1^21,-1*K.1^39,-1*K.1^41,-1*K.1^91,-1*K.1^27,K.1^67,-1*K.1^9,K.1^39,K.1^79,K.1^69,-1*K.1^9,K.1^49,-1*K.1^53,-1*K.1^13,K.1^89,-1*K.1^49,K.1^7,-1*K.1^11,K.1^13,K.1^11,-1*K.1^37,K.1^53,-1*K.1^7,-1*K.1,K.1^23,-1*K.1^57,K.1^43,K.1^81,-1*K.1^21,K.1^3,K.1,-1*K.1^51,K.1^47,-1*K.1^13,-1*K.1^47,K.1^63,K.1^97,K.1^51,-1*K.1^57,K.1^3,-1*K.1^63,-1*K.1^97,K.1^99,K.1^57,-1*K.1^3,K.1^63,K.1^61,K.1^59,K.1^93,K.1^97,K.1^91,K.1^41,-1*K.1^19,K.1^79,K.1^81,K.1^83,-1*K.1^83,-1*K.1^77,-1*K.1^71,K.1^77,K.1^71,-1*K.1^27,K.1^33,K.1^59,K.1^89,-1*K.1^29,K.1^19,-1*K.1^17,-1*K.1^67,K.1^31,K.1^9,K.1^17,-1*K.1^73,-1*K.1^87,-1*K.1^89,-1*K.1^91,K.1^83,K.1^77,-1*K.1^79,-1*K.1^69,K.1^49,-1*K.1^7,K.1^73,K.1^87,-1*K.1^11,K.1^37,-1*K.1^31,K.1^17,K.1,-1*K.1^23,-1*K.1^21,K.1^39,-1*K.1^59,-1*K.1^93,K.1^27,K.1^57,-1*K.1^41,K.1^19,K.1^21,-1*K.1^3,-1*K.1^43,K.1^9,-1*K.1^39,K.1^37,-1*K.1^23,K.1^43,-1*K.1^17,K.1^11,-1*K.1^37,K.1^23,-1*K.1^87,-1*K.1^53,K.1^7,-1*K.1^99,-1*K.1^61,-1*K.1^63,-1*K.1^61,K.1^41,K.1^91,-1*K.1^83]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^96,K.1^48,-1*K.1^36,-1*K.1^68,K.1^8,K.1^88,K.1^16,-1*K.1^52,-1*K.1^4,-1*K.1^92,K.1^32,-1*K.1^12,K.1^64,K.1^24,-1*K.1^84,-1*K.1^44,K.1^56,K.1^72,-1*K.1^28,-1*K.1^76,K.1^5,K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^35,-1*K.1^55,-1*K.1^65,-1*K.1^55,-1*K.1^45,K.1^45,K.1^95,K.1^65,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^85,K.1^15,K.1^95,K.1^55,-1*K.1^85,K.1^55,K.1^45,-1*K.1^15,K.1^65,-1*K.1^45,K.1^85,-1*K.1^35,-1*K.1^85,-1*K.1^84,K.1^88,-1*K.1^72,K.1^44,-1*K.1^68,K.1^64,K.1^24,-1*K.1^28,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^56,-1*K.1^36,K.1^84,-1*K.1^92,K.1^28,-1*K.1^32,K.1^4,K.1^72,K.1^92,K.1^52,K.1^32,K.1^44,-1*K.1^72,K.1^96,-1*K.1^52,-1*K.1^24,-1*K.1^76,K.1^16,-1*K.1^64,-1*K.1^24,-1*K.1^88,-1*K.1^88,K.1^36,K.1^28,K.1^36,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^84,-1*K.1^32,K.1^48,-1*K.1^56,-1*K.1^56,K.1^68,-1*K.1^96,-1*K.1^96,K.1^68,K.1^76,-1*K.1^48,-1*K.1^48,K.1^76,-1*K.1^44,K.1^52,-1*K.1^64,K.1^92,K.1^92,-1*K.1^8,K.1^24,-1*K.1^12,-1*K.1^52,-1*K.1^76,K.1^16,-1*K.1^16,K.1^4,K.1^44,K.1^68,-1*K.1^48,K.1^48,K.1^76,K.1^36,K.1^88,-1*K.1^28,-1*K.1^96,-1*K.1^24,K.1^8,-1*K.1^88,K.1^28,K.1^84,-1*K.1^64,-1*K.1^56,-1*K.1^68,K.1^56,-1*K.1^72,-1*K.1^84,-1*K.1^44,K.1^12,K.1^52,-1*K.1^4,K.1^32,-1*K.1^32,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,K.1^64,-1*K.1^46,-1*K.1^22,K.1^66,K.1^58,-1*K.1^14,-1*K.1^14,-1*K.1^38,-1*K.1^86,K.1^74,-1*K.1^58,K.1^98,K.1^18,K.1^78,-1*K.1^62,-1*K.1^6,K.1^18,K.1^34,K.1^42,-1*K.1^46,-1*K.1^74,K.1^14,K.1^34,-1*K.1^34,K.1^54,K.1^38,K.1^86,-1*K.1^2,-1*K.1^26,K.1^62,-1*K.1^54,K.1^22,-1*K.1^66,K.1^62,-1*K.1^6,K.1^14,K.1^6,-1*K.1^82,-1*K.1^94,-1*K.1^74,K.1^42,K.1^22,-1*K.1^66,K.1^46,K.1^2,K.1^82,K.1^82,-1*K.1^78,-1*K.1^42,-1*K.1^2,K.1^86,-1*K.1^42,K.1^46,-1*K.1^98,K.1^94,K.1^94,K.1^74,K.1^54,-1*K.1^34,-1*K.1^58,K.1^6,-1*K.1^82,K.1^38,-1*K.1^26,-1*K.1^98,-1*K.1^22,-1*K.1^86,K.1^2,-1*K.1^94,K.1^58,K.1^66,-1*K.1^18,K.1^78,-1*K.1^78,-1*K.1^38,-1*K.1^18,K.1^26,K.1^26,K.1^98,-1*K.1^54,-1*K.1^62,K.1^82,K.1^74,K.1^14,K.1^54,-1*K.1^14,K.1^34,-1*K.1^82,K.1^86,-1*K.1^46,K.1^2,K.1^62,K.1^6,K.1^66,K.1^58,-1*K.1^98,K.1^38,K.1^98,K.1^18,-1*K.1^66,-1*K.1^2,-1*K.1^58,K.1^42,-1*K.1^6,K.1^46,K.1^22,-1*K.1^62,-1*K.1^86,-1*K.1^26,-1*K.1^34,-1*K.1^94,-1*K.1^54,K.1^94,-1*K.1^74,K.1^26,-1*K.1^22,-1*K.1^42,-1*K.1^18,-1*K.1^78,-1*K.1^38,K.1^78,K.1^3,K.1^51,K.1^53,-1*K.1^87,K.1^23,K.1^29,K.1^27,K.1^49,K.1^41,K.1^11,K.1^71,-1*K.1^27,K.1^7,-1*K.1^33,-1*K.1^31,-1*K.1^13,-1*K.1^69,-1*K.1^7,-1*K.1,-1*K.1^39,K.1^33,K.1^57,K.1^19,K.1^21,K.1^19,K.1^99,-1*K.1^49,-1*K.1^47,-1*K.1^29,-1*K.1^53,-1*K.1^71,-1*K.1^73,K.1^67,-1*K.1^67,K.1^31,-1*K.1^71,K.1^81,K.1,K.1^67,K.1^69,-1*K.1^79,K.1^61,K.1^59,K.1^9,K.1^73,-1*K.1^33,K.1^91,-1*K.1^61,-1*K.1^21,-1*K.1^31,K.1^91,-1*K.1^51,K.1^47,K.1^87,-1*K.1^11,K.1^51,-1*K.1^93,K.1^89,-1*K.1^87,-1*K.1^89,K.1^63,-1*K.1^47,K.1^93,K.1^99,-1*K.1^77,K.1^43,-1*K.1^57,-1*K.1^19,K.1^79,-1*K.1^97,-1*K.1^99,K.1^49,-1*K.1^53,K.1^87,K.1^53,-1*K.1^37,-1*K.1^3,-1*K.1^49,K.1^43,-1*K.1^97,K.1^37,K.1^3,-1*K.1,-1*K.1^43,K.1^97,-1*K.1^37,-1*K.1^39,-1*K.1^41,-1*K.1^7,-1*K.1^3,-1*K.1^9,-1*K.1^59,K.1^81,-1*K.1^21,-1*K.1^19,-1*K.1^17,K.1^17,K.1^23,K.1^29,-1*K.1^23,-1*K.1^29,K.1^73,-1*K.1^67,-1*K.1^41,-1*K.1^11,K.1^71,-1*K.1^81,K.1^83,K.1^33,-1*K.1^69,-1*K.1^91,-1*K.1^83,K.1^27,K.1^13,K.1^11,K.1^9,-1*K.1^17,-1*K.1^23,K.1^21,K.1^31,-1*K.1^51,K.1^93,-1*K.1^27,-1*K.1^13,K.1^89,-1*K.1^63,K.1^69,-1*K.1^83,-1*K.1^99,K.1^77,K.1^79,-1*K.1^61,K.1^41,K.1^7,-1*K.1^73,-1*K.1^43,K.1^59,-1*K.1^81,-1*K.1^79,K.1^97,K.1^57,-1*K.1^91,K.1^61,-1*K.1^63,K.1^77,-1*K.1^57,K.1^83,-1*K.1^89,K.1^63,-1*K.1^77,K.1^13,K.1^47,-1*K.1^93,K.1,K.1^39,K.1^37,K.1^39,-1*K.1^59,-1*K.1^9,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,K.1^64,K.1^32,K.1^24,-1*K.1^12,K.1^72,-1*K.1^92,-1*K.1^44,-1*K.1^68,-1*K.1^36,-1*K.1^28,K.1^88,K.1^8,-1*K.1^76,K.1^16,K.1^56,K.1^96,-1*K.1^4,K.1^48,-1*K.1^52,-1*K.1^84,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^85,K.1^5,K.1^35,K.1^5,K.1^65,K.1^45,K.1^35,K.1^45,K.1^55,-1*K.1^55,-1*K.1^5,-1*K.1^35,K.1^95,K.1^95,K.1^85,-1*K.1^15,-1*K.1^85,-1*K.1^5,-1*K.1^45,K.1^15,-1*K.1^45,-1*K.1^55,K.1^85,-1*K.1^35,K.1^55,-1*K.1^15,K.1^65,K.1^15,K.1^56,-1*K.1^92,-1*K.1^48,-1*K.1^96,-1*K.1^12,-1*K.1^76,K.1^16,-1*K.1^52,K.1^36,-1*K.1^8,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^24,-1*K.1^56,-1*K.1^28,K.1^52,-1*K.1^88,K.1^36,K.1^48,K.1^28,K.1^68,K.1^88,-1*K.1^96,-1*K.1^48,K.1^64,-1*K.1^68,-1*K.1^16,-1*K.1^84,-1*K.1^44,K.1^76,-1*K.1^16,K.1^92,K.1^92,-1*K.1^24,K.1^52,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^44,K.1^44,K.1^8,K.1^72,-1*K.1^56,-1*K.1^88,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^64,-1*K.1^64,K.1^12,K.1^84,-1*K.1^32,-1*K.1^32,K.1^84,K.1^96,K.1^68,K.1^76,K.1^28,K.1^28,-1*K.1^72,K.1^16,K.1^8,-1*K.1^68,-1*K.1^84,-1*K.1^44,K.1^44,K.1^36,-1*K.1^96,K.1^12,-1*K.1^32,K.1^32,K.1^84,-1*K.1^24,-1*K.1^92,-1*K.1^52,-1*K.1^64,-1*K.1^16,K.1^72,K.1^92,K.1^52,-1*K.1^56,K.1^76,K.1^4,-1*K.1^12,-1*K.1^4,-1*K.1^48,K.1^56,K.1^96,-1*K.1^8,K.1^68,-1*K.1^36,K.1^88,-1*K.1^88,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^76,K.1^14,-1*K.1^98,K.1^94,K.1^22,-1*K.1^26,-1*K.1^26,-1*K.1^42,-1*K.1^74,-1*K.1^66,-1*K.1^22,-1*K.1^82,K.1^62,K.1^2,-1*K.1^58,K.1^54,K.1^62,K.1^6,K.1^78,K.1^14,K.1^66,K.1^26,K.1^6,-1*K.1^6,-1*K.1^86,K.1^42,K.1^74,K.1^18,K.1^34,K.1^58,K.1^86,K.1^98,-1*K.1^94,K.1^58,K.1^54,K.1^26,-1*K.1^54,-1*K.1^38,K.1^46,K.1^66,K.1^78,K.1^98,-1*K.1^94,-1*K.1^14,-1*K.1^18,K.1^38,K.1^38,-1*K.1^2,-1*K.1^78,K.1^18,K.1^74,-1*K.1^78,-1*K.1^14,K.1^82,-1*K.1^46,-1*K.1^46,-1*K.1^66,-1*K.1^86,-1*K.1^6,-1*K.1^22,-1*K.1^54,-1*K.1^38,K.1^42,K.1^34,K.1^82,-1*K.1^98,-1*K.1^74,-1*K.1^18,K.1^46,K.1^22,K.1^94,-1*K.1^62,K.1^2,-1*K.1^2,-1*K.1^42,-1*K.1^62,-1*K.1^34,-1*K.1^34,-1*K.1^82,K.1^86,-1*K.1^58,K.1^38,-1*K.1^66,K.1^26,-1*K.1^86,-1*K.1^26,K.1^6,-1*K.1^38,K.1^74,K.1^14,-1*K.1^18,K.1^58,-1*K.1^54,K.1^94,K.1^22,K.1^82,K.1^42,-1*K.1^82,K.1^62,-1*K.1^94,K.1^18,-1*K.1^22,K.1^78,K.1^54,-1*K.1^14,K.1^98,-1*K.1^58,-1*K.1^74,K.1^34,-1*K.1^6,K.1^46,K.1^86,-1*K.1^46,K.1^66,-1*K.1^34,-1*K.1^98,-1*K.1^78,-1*K.1^62,-1*K.1^2,-1*K.1^42,K.1^2,K.1^77,-1*K.1^9,K.1^27,-1*K.1^33,K.1^57,K.1^11,K.1^93,-1*K.1^91,-1*K.1^19,-1*K.1^49,K.1^89,-1*K.1^93,-1*K.1^13,-1*K.1^47,K.1^29,-1*K.1^67,K.1^71,K.1^13,K.1^59,-1*K.1,K.1^47,K.1^63,K.1^21,-1*K.1^39,K.1^21,-1*K.1^41,K.1^91,-1*K.1^73,-1*K.1^11,-1*K.1^27,-1*K.1^89,-1*K.1^7,K.1^53,-1*K.1^53,-1*K.1^29,-1*K.1^89,K.1^79,-1*K.1^59,K.1^53,-1*K.1^71,K.1^61,K.1^99,-1*K.1^81,K.1^31,K.1^7,-1*K.1^47,K.1^69,-1*K.1^99,K.1^39,K.1^29,K.1^69,K.1^9,K.1^73,K.1^33,K.1^49,-1*K.1^9,K.1^87,-1*K.1^51,-1*K.1^33,K.1^51,K.1^17,-1*K.1^73,-1*K.1^87,-1*K.1^41,-1*K.1^43,K.1^37,-1*K.1^63,-1*K.1^21,-1*K.1^61,-1*K.1^23,K.1^41,-1*K.1^91,-1*K.1^27,K.1^33,K.1^27,-1*K.1^83,-1*K.1^77,K.1^91,K.1^37,-1*K.1^23,K.1^83,K.1^77,K.1^59,-1*K.1^37,K.1^23,-1*K.1^83,-1*K.1,K.1^19,K.1^13,-1*K.1^77,-1*K.1^31,K.1^81,K.1^79,K.1^39,-1*K.1^21,K.1^3,-1*K.1^3,K.1^57,K.1^11,-1*K.1^57,-1*K.1^11,K.1^7,-1*K.1^53,K.1^19,K.1^49,K.1^89,-1*K.1^79,-1*K.1^97,K.1^47,K.1^71,-1*K.1^69,K.1^97,K.1^93,K.1^67,-1*K.1^49,K.1^31,K.1^3,-1*K.1^57,-1*K.1^39,-1*K.1^29,K.1^9,-1*K.1^87,-1*K.1^93,-1*K.1^67,-1*K.1^51,-1*K.1^17,-1*K.1^71,K.1^97,K.1^41,K.1^43,-1*K.1^61,-1*K.1^99,-1*K.1^19,-1*K.1^13,-1*K.1^7,-1*K.1^37,-1*K.1^81,-1*K.1^79,K.1^61,K.1^23,K.1^63,-1*K.1^69,K.1^99,-1*K.1^17,K.1^43,-1*K.1^63,-1*K.1^97,K.1^51,K.1^17,-1*K.1^43,K.1^67,K.1^73,K.1^87,-1*K.1^59,K.1,K.1^83,K.1,K.1^81,-1*K.1^31,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,-1*K.1^36,-1*K.1^68,-1*K.1^76,K.1^88,-1*K.1^28,K.1^8,K.1^56,K.1^32,K.1^64,K.1^72,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^96,-1*K.1^52,K.1^48,K.1^16,K.1^5,K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^35,-1*K.1^55,-1*K.1^65,-1*K.1^55,-1*K.1^45,K.1^45,K.1^95,K.1^65,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^85,K.1^15,K.1^95,K.1^55,-1*K.1^85,K.1^55,K.1^45,-1*K.1^15,K.1^65,-1*K.1^45,K.1^85,-1*K.1^35,-1*K.1^85,-1*K.1^44,K.1^8,K.1^52,K.1^4,K.1^88,K.1^24,-1*K.1^84,K.1^48,-1*K.1^64,K.1^92,K.1^64,K.1^92,K.1^96,-1*K.1^76,K.1^44,K.1^72,-1*K.1^48,K.1^12,-1*K.1^64,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^12,K.1^4,K.1^52,-1*K.1^36,K.1^32,K.1^84,K.1^16,K.1^56,-1*K.1^24,K.1^84,-1*K.1^8,-1*K.1^8,K.1^76,-1*K.1^48,K.1^76,K.1^28,K.1^28,-1*K.1^56,-1*K.1^56,-1*K.1^92,-1*K.1^28,K.1^44,K.1^12,-1*K.1^68,-1*K.1^96,-1*K.1^96,-1*K.1^88,K.1^36,K.1^36,-1*K.1^88,-1*K.1^16,K.1^68,K.1^68,-1*K.1^16,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^28,-1*K.1^84,-1*K.1^92,K.1^32,K.1^16,K.1^56,-1*K.1^56,-1*K.1^64,K.1^4,-1*K.1^88,K.1^68,-1*K.1^68,-1*K.1^16,K.1^76,K.1^8,K.1^48,K.1^36,K.1^84,-1*K.1^28,-1*K.1^8,-1*K.1^48,K.1^44,-1*K.1^24,-1*K.1^96,K.1^88,K.1^96,K.1^52,-1*K.1^44,-1*K.1^4,K.1^92,-1*K.1^32,K.1^64,-1*K.1^12,K.1^12,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^24,-1*K.1^86,K.1^2,-1*K.1^6,-1*K.1^78,K.1^74,K.1^74,K.1^58,K.1^26,K.1^34,K.1^78,K.1^18,-1*K.1^38,-1*K.1^98,K.1^42,-1*K.1^46,-1*K.1^38,-1*K.1^94,-1*K.1^22,-1*K.1^86,-1*K.1^34,-1*K.1^74,-1*K.1^94,K.1^94,K.1^14,-1*K.1^58,-1*K.1^26,-1*K.1^82,-1*K.1^66,-1*K.1^42,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^42,-1*K.1^46,-1*K.1^74,K.1^46,K.1^62,-1*K.1^54,-1*K.1^34,-1*K.1^22,-1*K.1^2,K.1^6,K.1^86,K.1^82,-1*K.1^62,-1*K.1^62,K.1^98,K.1^22,-1*K.1^82,-1*K.1^26,K.1^22,K.1^86,-1*K.1^18,K.1^54,K.1^54,K.1^34,K.1^14,K.1^94,K.1^78,K.1^46,K.1^62,-1*K.1^58,-1*K.1^66,-1*K.1^18,K.1^2,K.1^26,K.1^82,-1*K.1^54,-1*K.1^78,-1*K.1^6,K.1^38,-1*K.1^98,K.1^98,K.1^58,K.1^38,K.1^66,K.1^66,K.1^18,-1*K.1^14,K.1^42,-1*K.1^62,K.1^34,-1*K.1^74,K.1^14,K.1^74,-1*K.1^94,K.1^62,-1*K.1^26,-1*K.1^86,K.1^82,-1*K.1^42,K.1^46,-1*K.1^6,-1*K.1^78,-1*K.1^18,-1*K.1^58,K.1^18,-1*K.1^38,K.1^6,-1*K.1^82,K.1^78,-1*K.1^22,-1*K.1^46,K.1^86,-1*K.1^2,K.1^42,K.1^26,-1*K.1^66,K.1^94,-1*K.1^54,-1*K.1^14,K.1^54,-1*K.1^34,K.1^66,K.1^2,K.1^22,K.1^38,K.1^98,K.1^58,-1*K.1^98,-1*K.1^23,K.1^91,-1*K.1^73,K.1^67,-1*K.1^43,-1*K.1^89,-1*K.1^7,K.1^9,K.1^81,K.1^51,-1*K.1^11,K.1^7,K.1^87,K.1^53,-1*K.1^71,K.1^33,-1*K.1^29,-1*K.1^87,-1*K.1^41,K.1^99,-1*K.1^53,-1*K.1^37,-1*K.1^79,K.1^61,-1*K.1^79,K.1^59,-1*K.1^9,K.1^27,K.1^89,K.1^73,K.1^11,K.1^93,-1*K.1^47,K.1^47,K.1^71,K.1^11,-1*K.1^21,K.1^41,-1*K.1^47,K.1^29,-1*K.1^39,-1*K.1,K.1^19,-1*K.1^69,-1*K.1^93,K.1^53,-1*K.1^31,K.1,-1*K.1^61,-1*K.1^71,-1*K.1^31,-1*K.1^91,-1*K.1^27,-1*K.1^67,-1*K.1^51,K.1^91,-1*K.1^13,K.1^49,K.1^67,-1*K.1^49,-1*K.1^83,K.1^27,K.1^13,K.1^59,K.1^57,-1*K.1^63,K.1^37,K.1^79,K.1^39,K.1^77,-1*K.1^59,K.1^9,K.1^73,-1*K.1^67,-1*K.1^73,K.1^17,K.1^23,-1*K.1^9,-1*K.1^63,K.1^77,-1*K.1^17,-1*K.1^23,-1*K.1^41,K.1^63,-1*K.1^77,K.1^17,K.1^99,-1*K.1^81,-1*K.1^87,K.1^23,K.1^69,-1*K.1^19,-1*K.1^21,-1*K.1^61,K.1^79,-1*K.1^97,K.1^97,-1*K.1^43,-1*K.1^89,K.1^43,K.1^89,-1*K.1^93,K.1^47,-1*K.1^81,-1*K.1^51,-1*K.1^11,K.1^21,K.1^3,-1*K.1^53,-1*K.1^29,K.1^31,-1*K.1^3,-1*K.1^7,-1*K.1^33,K.1^51,-1*K.1^69,-1*K.1^97,K.1^43,K.1^61,K.1^71,-1*K.1^91,K.1^13,K.1^7,K.1^33,K.1^49,K.1^83,K.1^29,-1*K.1^3,-1*K.1^59,-1*K.1^57,K.1^39,K.1,K.1^81,K.1^87,K.1^93,K.1^63,K.1^19,K.1^21,-1*K.1^39,-1*K.1^77,-1*K.1^37,K.1^31,-1*K.1,K.1^83,-1*K.1^57,K.1^37,K.1^3,-1*K.1^49,-1*K.1^83,K.1^57,-1*K.1^33,-1*K.1^27,-1*K.1^13,K.1^41,-1*K.1^99,-1*K.1^17,-1*K.1^99,-1*K.1^19,K.1^69,K.1^97]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^44,K.1^72,-1*K.1^4,-1*K.1^52,-1*K.1^12,K.1^32,K.1^24,-1*K.1^28,K.1^56,K.1^88,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,-1*K.1^76,K.1^16,-1*K.1^84,K.1^8,-1*K.1^92,K.1^64,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^85,K.1^5,K.1^35,K.1^5,K.1^65,K.1^45,K.1^35,K.1^45,K.1^55,-1*K.1^55,-1*K.1^5,-1*K.1^35,K.1^95,K.1^95,K.1^85,-1*K.1^15,-1*K.1^85,-1*K.1^5,-1*K.1^45,K.1^15,-1*K.1^45,-1*K.1^55,K.1^85,-1*K.1^35,K.1^55,-1*K.1^15,K.1^65,K.1^15,-1*K.1^76,K.1^32,-1*K.1^8,-1*K.1^16,-1*K.1^52,K.1^96,-1*K.1^36,-1*K.1^92,-1*K.1^56,K.1^68,K.1^56,K.1^68,-1*K.1^84,-1*K.1^4,K.1^76,K.1^88,K.1^92,-1*K.1^48,-1*K.1^56,K.1^8,-1*K.1^88,K.1^28,K.1^48,-1*K.1^16,-1*K.1^8,-1*K.1^44,-1*K.1^28,K.1^36,K.1^64,K.1^24,-1*K.1^96,K.1^36,-1*K.1^32,-1*K.1^32,K.1^4,K.1^92,K.1^4,K.1^12,K.1^12,-1*K.1^24,-1*K.1^24,-1*K.1^68,-1*K.1^12,K.1^76,-1*K.1^48,K.1^72,K.1^84,K.1^84,K.1^52,K.1^44,K.1^44,K.1^52,-1*K.1^64,-1*K.1^72,-1*K.1^72,-1*K.1^64,K.1^16,K.1^28,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^12,-1*K.1^36,-1*K.1^68,-1*K.1^28,K.1^64,K.1^24,-1*K.1^24,-1*K.1^56,-1*K.1^16,K.1^52,-1*K.1^72,K.1^72,-1*K.1^64,K.1^4,K.1^32,-1*K.1^92,K.1^44,K.1^36,-1*K.1^12,-1*K.1^32,K.1^92,K.1^76,-1*K.1^96,K.1^84,-1*K.1^52,-1*K.1^84,-1*K.1^8,-1*K.1^76,K.1^16,K.1^68,K.1^28,K.1^56,K.1^48,-1*K.1^48,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,K.1^96,K.1^94,-1*K.1^58,-1*K.1^74,K.1^62,K.1^46,K.1^46,-1*K.1^82,K.1^54,K.1^86,-1*K.1^62,K.1^22,-1*K.1^2,K.1^42,-1*K.1^18,-1*K.1^34,-1*K.1^2,-1*K.1^26,K.1^38,K.1^94,-1*K.1^86,-1*K.1^46,-1*K.1^26,K.1^26,-1*K.1^6,K.1^82,-1*K.1^54,-1*K.1^78,-1*K.1^14,K.1^18,K.1^6,K.1^58,K.1^74,K.1^18,-1*K.1^34,-1*K.1^46,K.1^34,K.1^98,-1*K.1^66,-1*K.1^86,K.1^38,K.1^58,K.1^74,-1*K.1^94,K.1^78,-1*K.1^98,-1*K.1^98,-1*K.1^42,-1*K.1^38,-1*K.1^78,-1*K.1^54,-1*K.1^38,-1*K.1^94,-1*K.1^22,K.1^66,K.1^66,K.1^86,-1*K.1^6,K.1^26,-1*K.1^62,K.1^34,K.1^98,K.1^82,-1*K.1^14,-1*K.1^22,-1*K.1^58,K.1^54,K.1^78,-1*K.1^66,K.1^62,-1*K.1^74,K.1^2,K.1^42,-1*K.1^42,-1*K.1^82,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,-1*K.1^18,-1*K.1^98,K.1^86,-1*K.1^46,-1*K.1^6,K.1^46,-1*K.1^26,K.1^98,-1*K.1^54,K.1^94,K.1^78,K.1^18,K.1^34,-1*K.1^74,K.1^62,-1*K.1^22,K.1^82,K.1^22,-1*K.1^2,K.1^74,-1*K.1^78,-1*K.1^62,K.1^38,-1*K.1^34,-1*K.1^94,K.1^58,-1*K.1^18,K.1^54,-1*K.1^14,K.1^26,-1*K.1^66,K.1^6,K.1^66,-1*K.1^86,K.1^14,-1*K.1^58,-1*K.1^38,K.1^2,-1*K.1^42,-1*K.1^82,K.1^42,-1*K.1^17,-1*K.1^89,K.1^67,K.1^93,K.1^97,-1*K.1^31,K.1^53,-1*K.1^11,-1*K.1^99,K.1^29,-1*K.1^69,-1*K.1^53,K.1^73,-1*K.1^87,-1*K.1^9,K.1^7,-1*K.1^91,-1*K.1^73,-1*K.1^39,K.1^21,K.1^87,K.1^23,-1*K.1^41,K.1^19,-1*K.1^41,K.1^61,K.1^11,-1*K.1^33,K.1^31,-1*K.1^67,K.1^69,-1*K.1^47,K.1^13,-1*K.1^13,K.1^9,K.1^69,-1*K.1^59,K.1^39,K.1^13,K.1^91,-1*K.1^81,-1*K.1^79,-1*K.1,-1*K.1^51,K.1^47,-1*K.1^87,-1*K.1^49,K.1^79,-1*K.1^19,-1*K.1^9,-1*K.1^49,K.1^89,K.1^33,-1*K.1^93,-1*K.1^29,-1*K.1^89,-1*K.1^27,K.1^71,K.1^93,-1*K.1^71,K.1^57,-1*K.1^33,K.1^27,K.1^61,-1*K.1^3,K.1^77,-1*K.1^23,K.1^41,K.1^81,K.1^83,-1*K.1^61,-1*K.1^11,-1*K.1^67,-1*K.1^93,K.1^67,-1*K.1^43,K.1^17,K.1^11,K.1^77,K.1^83,K.1^43,-1*K.1^17,-1*K.1^39,-1*K.1^77,-1*K.1^83,-1*K.1^43,K.1^21,K.1^99,-1*K.1^73,K.1^17,K.1^51,K.1,-1*K.1^59,-1*K.1^19,K.1^41,-1*K.1^63,K.1^63,K.1^97,-1*K.1^31,-1*K.1^97,K.1^31,K.1^47,-1*K.1^13,K.1^99,-1*K.1^29,-1*K.1^69,K.1^59,K.1^37,K.1^87,-1*K.1^91,K.1^49,-1*K.1^37,K.1^53,-1*K.1^7,K.1^29,-1*K.1^51,-1*K.1^63,-1*K.1^97,K.1^19,K.1^9,K.1^89,K.1^27,-1*K.1^53,K.1^7,K.1^71,-1*K.1^57,K.1^91,-1*K.1^37,-1*K.1^61,K.1^3,K.1^81,K.1^79,-1*K.1^99,K.1^73,-1*K.1^47,-1*K.1^77,-1*K.1,K.1^59,-1*K.1^81,-1*K.1^83,K.1^23,K.1^49,-1*K.1^79,-1*K.1^57,K.1^3,-1*K.1^23,K.1^37,-1*K.1^71,K.1^57,-1*K.1^3,-1*K.1^7,K.1^33,-1*K.1^27,K.1^39,-1*K.1^21,K.1^43,-1*K.1^21,K.1,K.1^51,K.1^63]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^56,-1*K.1^28,K.1^96,K.1^48,K.1^88,-1*K.1^68,-1*K.1^76,K.1^72,-1*K.1^44,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,K.1^24,-1*K.1^84,K.1^16,-1*K.1^92,K.1^8,-1*K.1^36,K.1^5,K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^35,-1*K.1^55,-1*K.1^65,-1*K.1^55,-1*K.1^45,K.1^45,K.1^95,K.1^65,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^85,K.1^15,K.1^95,K.1^55,-1*K.1^85,K.1^55,K.1^45,-1*K.1^15,K.1^65,-1*K.1^45,K.1^85,-1*K.1^35,-1*K.1^85,K.1^24,-1*K.1^68,K.1^92,K.1^84,K.1^48,-1*K.1^4,K.1^64,K.1^8,K.1^44,-1*K.1^32,-1*K.1^44,-1*K.1^32,K.1^16,K.1^96,-1*K.1^24,-1*K.1^12,-1*K.1^8,K.1^52,K.1^44,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^52,K.1^84,K.1^92,K.1^56,K.1^72,-1*K.1^64,-1*K.1^36,-1*K.1^76,K.1^4,-1*K.1^64,K.1^68,K.1^68,-1*K.1^96,-1*K.1^8,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^76,K.1^76,K.1^32,K.1^88,-1*K.1^24,K.1^52,-1*K.1^28,-1*K.1^16,-1*K.1^16,-1*K.1^48,-1*K.1^56,-1*K.1^56,-1*K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^84,-1*K.1^72,K.1^4,K.1^12,K.1^12,-1*K.1^88,K.1^64,K.1^32,K.1^72,-1*K.1^36,-1*K.1^76,K.1^76,K.1^44,K.1^84,-1*K.1^48,K.1^28,-1*K.1^28,K.1^36,-1*K.1^96,-1*K.1^68,K.1^8,-1*K.1^56,-1*K.1^64,K.1^88,K.1^68,-1*K.1^8,-1*K.1^24,K.1^4,-1*K.1^16,K.1^48,K.1^16,K.1^92,K.1^24,-1*K.1^84,-1*K.1^32,-1*K.1^72,-1*K.1^44,-1*K.1^52,K.1^52,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,-1*K.1^4,-1*K.1^6,K.1^42,K.1^26,-1*K.1^38,-1*K.1^54,-1*K.1^54,K.1^18,-1*K.1^46,-1*K.1^14,K.1^38,-1*K.1^78,K.1^98,-1*K.1^58,K.1^82,K.1^66,K.1^98,K.1^74,-1*K.1^62,-1*K.1^6,K.1^14,K.1^54,K.1^74,-1*K.1^74,K.1^94,-1*K.1^18,K.1^46,K.1^22,K.1^86,-1*K.1^82,-1*K.1^94,-1*K.1^42,-1*K.1^26,-1*K.1^82,K.1^66,K.1^54,-1*K.1^66,-1*K.1^2,K.1^34,K.1^14,-1*K.1^62,-1*K.1^42,-1*K.1^26,K.1^6,-1*K.1^22,K.1^2,K.1^2,K.1^58,K.1^62,K.1^22,K.1^46,K.1^62,K.1^6,K.1^78,-1*K.1^34,-1*K.1^34,-1*K.1^14,K.1^94,-1*K.1^74,K.1^38,-1*K.1^66,-1*K.1^2,-1*K.1^18,K.1^86,K.1^78,K.1^42,-1*K.1^46,-1*K.1^22,K.1^34,-1*K.1^38,K.1^26,-1*K.1^98,-1*K.1^58,K.1^58,K.1^18,-1*K.1^98,-1*K.1^86,-1*K.1^86,-1*K.1^78,-1*K.1^94,K.1^82,K.1^2,-1*K.1^14,K.1^54,K.1^94,-1*K.1^54,K.1^74,-1*K.1^2,K.1^46,-1*K.1^6,-1*K.1^22,-1*K.1^82,-1*K.1^66,K.1^26,-1*K.1^38,K.1^78,-1*K.1^18,-1*K.1^78,K.1^98,-1*K.1^26,K.1^22,K.1^38,-1*K.1^62,K.1^66,K.1^6,-1*K.1^42,K.1^82,-1*K.1^46,K.1^86,-1*K.1^74,K.1^34,-1*K.1^94,-1*K.1^34,K.1^14,-1*K.1^86,K.1^42,K.1^62,-1*K.1^98,K.1^58,K.1^18,-1*K.1^58,K.1^83,K.1^11,-1*K.1^33,-1*K.1^7,-1*K.1^3,K.1^69,-1*K.1^47,K.1^89,K.1,-1*K.1^71,K.1^31,K.1^47,-1*K.1^27,K.1^13,K.1^91,-1*K.1^93,K.1^9,K.1^27,K.1^61,-1*K.1^79,-1*K.1^13,-1*K.1^77,K.1^59,-1*K.1^81,K.1^59,-1*K.1^39,-1*K.1^89,K.1^67,-1*K.1^69,K.1^33,-1*K.1^31,K.1^53,-1*K.1^87,K.1^87,-1*K.1^91,-1*K.1^31,K.1^41,-1*K.1^61,-1*K.1^87,-1*K.1^9,K.1^19,K.1^21,K.1^99,K.1^49,-1*K.1^53,K.1^13,K.1^51,-1*K.1^21,K.1^81,K.1^91,K.1^51,-1*K.1^11,-1*K.1^67,K.1^7,K.1^71,K.1^11,K.1^73,-1*K.1^29,-1*K.1^7,K.1^29,-1*K.1^43,K.1^67,-1*K.1^73,-1*K.1^39,K.1^97,-1*K.1^23,K.1^77,-1*K.1^59,-1*K.1^19,-1*K.1^17,K.1^39,K.1^89,K.1^33,K.1^7,-1*K.1^33,K.1^57,-1*K.1^83,-1*K.1^89,-1*K.1^23,-1*K.1^17,-1*K.1^57,K.1^83,K.1^61,K.1^23,K.1^17,K.1^57,-1*K.1^79,-1*K.1,K.1^27,-1*K.1^83,-1*K.1^49,-1*K.1^99,K.1^41,K.1^81,-1*K.1^59,K.1^37,-1*K.1^37,-1*K.1^3,K.1^69,K.1^3,-1*K.1^69,-1*K.1^53,K.1^87,-1*K.1,K.1^71,K.1^31,-1*K.1^41,-1*K.1^63,-1*K.1^13,K.1^9,-1*K.1^51,K.1^63,-1*K.1^47,K.1^93,-1*K.1^71,K.1^49,K.1^37,K.1^3,-1*K.1^81,-1*K.1^91,-1*K.1^11,-1*K.1^73,K.1^47,-1*K.1^93,-1*K.1^29,K.1^43,-1*K.1^9,K.1^63,K.1^39,-1*K.1^97,-1*K.1^19,-1*K.1^21,K.1,-1*K.1^27,K.1^53,K.1^23,K.1^99,-1*K.1^41,K.1^19,K.1^17,-1*K.1^77,-1*K.1^51,K.1^21,K.1^43,-1*K.1^97,K.1^77,-1*K.1^63,K.1^29,-1*K.1^43,K.1^97,K.1^93,-1*K.1^67,K.1^73,-1*K.1^61,K.1^79,-1*K.1^57,K.1^79,-1*K.1^99,-1*K.1^49,-1*K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,K.1^24,-1*K.1^12,-1*K.1^84,-1*K.1^92,-1*K.1^52,K.1^72,-1*K.1^4,K.1^88,-1*K.1^76,K.1^48,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^96,-1*K.1^36,K.1^64,-1*K.1^68,K.1^32,-1*K.1^44,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^85,K.1^5,K.1^35,K.1^5,K.1^65,K.1^45,K.1^35,K.1^45,K.1^55,-1*K.1^55,-1*K.1^5,-1*K.1^35,K.1^95,K.1^95,K.1^85,-1*K.1^15,-1*K.1^85,-1*K.1^5,-1*K.1^45,K.1^15,-1*K.1^45,-1*K.1^55,K.1^85,-1*K.1^35,K.1^55,-1*K.1^15,K.1^65,K.1^15,K.1^96,K.1^72,K.1^68,K.1^36,-1*K.1^92,K.1^16,K.1^56,K.1^32,K.1^76,K.1^28,-1*K.1^76,K.1^28,K.1^64,-1*K.1^84,-1*K.1^96,K.1^48,-1*K.1^32,-1*K.1^8,K.1^76,-1*K.1^68,-1*K.1^48,-1*K.1^88,K.1^8,K.1^36,K.1^68,K.1^24,K.1^88,-1*K.1^56,-1*K.1^44,-1*K.1^4,-1*K.1^16,-1*K.1^56,-1*K.1^72,-1*K.1^72,K.1^84,-1*K.1^32,K.1^84,K.1^52,K.1^52,K.1^4,K.1^4,-1*K.1^28,-1*K.1^52,-1*K.1^96,-1*K.1^8,-1*K.1^12,-1*K.1^64,-1*K.1^64,K.1^92,-1*K.1^24,-1*K.1^24,K.1^92,K.1^44,K.1^12,K.1^12,K.1^44,-1*K.1^36,-1*K.1^88,-1*K.1^16,-1*K.1^48,-1*K.1^48,K.1^52,K.1^56,-1*K.1^28,K.1^88,-1*K.1^44,-1*K.1^4,K.1^4,K.1^76,K.1^36,K.1^92,K.1^12,-1*K.1^12,K.1^44,K.1^84,K.1^72,K.1^32,-1*K.1^24,-1*K.1^56,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^96,-1*K.1^16,-1*K.1^64,-1*K.1^92,K.1^64,K.1^68,K.1^96,-1*K.1^36,K.1^28,-1*K.1^88,-1*K.1^76,K.1^8,-1*K.1^8,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^16,-1*K.1^74,-1*K.1^18,K.1^54,-1*K.1^2,-1*K.1^66,-1*K.1^66,K.1^22,-1*K.1^34,K.1^6,K.1^2,K.1^62,-1*K.1^42,K.1^82,K.1^78,K.1^14,-1*K.1^42,K.1^46,-1*K.1^98,-1*K.1^74,-1*K.1^6,K.1^66,K.1^46,-1*K.1^46,K.1^26,-1*K.1^22,K.1^34,-1*K.1^38,-1*K.1^94,-1*K.1^78,-1*K.1^26,K.1^18,-1*K.1^54,-1*K.1^78,K.1^14,K.1^66,-1*K.1^14,K.1^58,K.1^86,-1*K.1^6,-1*K.1^98,K.1^18,-1*K.1^54,K.1^74,K.1^38,-1*K.1^58,-1*K.1^58,-1*K.1^82,K.1^98,-1*K.1^38,K.1^34,K.1^98,K.1^74,-1*K.1^62,-1*K.1^86,-1*K.1^86,K.1^6,K.1^26,-1*K.1^46,K.1^2,-1*K.1^14,K.1^58,-1*K.1^22,-1*K.1^94,-1*K.1^62,-1*K.1^18,-1*K.1^34,K.1^38,K.1^86,-1*K.1^2,K.1^54,K.1^42,K.1^82,-1*K.1^82,K.1^22,K.1^42,K.1^94,K.1^94,K.1^62,-1*K.1^26,K.1^78,-1*K.1^58,K.1^6,K.1^66,K.1^26,-1*K.1^66,K.1^46,K.1^58,K.1^34,-1*K.1^74,K.1^38,-1*K.1^78,-1*K.1^14,K.1^54,-1*K.1^2,-1*K.1^62,-1*K.1^22,K.1^62,-1*K.1^42,-1*K.1^54,-1*K.1^38,K.1^2,-1*K.1^98,K.1^14,K.1^74,K.1^18,K.1^78,-1*K.1^34,-1*K.1^94,-1*K.1^46,K.1^86,-1*K.1^26,-1*K.1^86,-1*K.1^6,K.1^94,-1*K.1^18,K.1^98,K.1^42,-1*K.1^82,K.1^22,K.1^82,-1*K.1^57,K.1^69,-1*K.1^7,K.1^53,-1*K.1^37,K.1^51,K.1^13,K.1^31,K.1^79,-1*K.1^9,K.1^49,-1*K.1^13,K.1^33,K.1^27,-1*K.1^89,K.1^47,-1*K.1^11,-1*K.1^33,K.1^19,-1*K.1^41,-1*K.1^27,-1*K.1^83,K.1^61,K.1^99,K.1^61,-1*K.1^81,-1*K.1^31,K.1^93,-1*K.1^51,K.1^7,-1*K.1^49,-1*K.1^87,-1*K.1^73,K.1^73,K.1^89,-1*K.1^49,K.1^39,-1*K.1^19,-1*K.1^73,K.1^11,-1*K.1,K.1^59,K.1^21,K.1^71,K.1^87,K.1^27,K.1^29,-1*K.1^59,-1*K.1^99,-1*K.1^89,K.1^29,-1*K.1^69,-1*K.1^93,-1*K.1^53,K.1^9,K.1^69,-1*K.1^67,-1*K.1^91,K.1^53,K.1^91,K.1^97,K.1^93,K.1^67,-1*K.1^81,K.1^63,-1*K.1^17,K.1^83,-1*K.1^61,K.1,K.1^43,K.1^81,K.1^31,K.1^7,-1*K.1^53,-1*K.1^7,-1*K.1^3,K.1^57,-1*K.1^31,-1*K.1^17,K.1^43,K.1^3,-1*K.1^57,K.1^19,K.1^17,-1*K.1^43,-1*K.1^3,-1*K.1^41,-1*K.1^79,-1*K.1^33,K.1^57,-1*K.1^71,-1*K.1^21,K.1^39,-1*K.1^99,-1*K.1^61,-1*K.1^23,K.1^23,-1*K.1^37,K.1^51,K.1^37,-1*K.1^51,K.1^87,K.1^73,-1*K.1^79,K.1^9,K.1^49,-1*K.1^39,K.1^77,-1*K.1^27,-1*K.1^11,-1*K.1^29,-1*K.1^77,K.1^13,-1*K.1^47,-1*K.1^9,K.1^71,-1*K.1^23,K.1^37,K.1^99,K.1^89,-1*K.1^69,K.1^67,-1*K.1^13,K.1^47,-1*K.1^91,-1*K.1^97,K.1^11,-1*K.1^77,K.1^81,-1*K.1^63,K.1,-1*K.1^59,K.1^79,K.1^33,-1*K.1^87,K.1^17,K.1^21,-1*K.1^39,-1*K.1,-1*K.1^43,-1*K.1^83,-1*K.1^29,K.1^59,-1*K.1^97,-1*K.1^63,K.1^83,K.1^77,K.1^91,K.1^97,K.1^63,-1*K.1^47,-1*K.1^93,-1*K.1^67,-1*K.1^19,K.1^41,K.1^3,K.1^41,-1*K.1^21,-1*K.1^71,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,-1*K.1^76,K.1^88,K.1^16,K.1^8,K.1^48,-1*K.1^28,K.1^96,-1*K.1^12,K.1^24,-1*K.1^52,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^64,-1*K.1^36,K.1^32,-1*K.1^68,K.1^56,K.1^5,K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^35,-1*K.1^55,-1*K.1^65,-1*K.1^55,-1*K.1^45,K.1^45,K.1^95,K.1^65,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^85,K.1^15,K.1^95,K.1^55,-1*K.1^85,K.1^55,K.1^45,-1*K.1^15,K.1^65,-1*K.1^45,K.1^85,-1*K.1^35,-1*K.1^85,-1*K.1^4,-1*K.1^28,-1*K.1^32,-1*K.1^64,K.1^8,-1*K.1^84,-1*K.1^44,-1*K.1^68,-1*K.1^24,-1*K.1^72,K.1^24,-1*K.1^72,-1*K.1^36,K.1^16,K.1^4,-1*K.1^52,K.1^68,K.1^92,-1*K.1^24,K.1^32,K.1^52,K.1^12,-1*K.1^92,-1*K.1^64,-1*K.1^32,-1*K.1^76,-1*K.1^12,K.1^44,K.1^56,K.1^96,K.1^84,K.1^44,K.1^28,K.1^28,-1*K.1^16,K.1^68,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^96,-1*K.1^96,K.1^72,K.1^48,K.1^4,K.1^92,K.1^88,K.1^36,K.1^36,-1*K.1^8,K.1^76,K.1^76,-1*K.1^8,-1*K.1^56,-1*K.1^88,-1*K.1^88,-1*K.1^56,K.1^64,K.1^12,K.1^84,K.1^52,K.1^52,-1*K.1^48,-1*K.1^44,K.1^72,-1*K.1^12,K.1^56,K.1^96,-1*K.1^96,-1*K.1^24,-1*K.1^64,-1*K.1^8,-1*K.1^88,K.1^88,-1*K.1^56,-1*K.1^16,-1*K.1^28,-1*K.1^68,K.1^76,K.1^44,K.1^48,K.1^28,K.1^68,K.1^4,K.1^84,K.1^36,K.1^8,-1*K.1^36,-1*K.1^32,-1*K.1^4,K.1^64,-1*K.1^72,K.1^12,K.1^24,-1*K.1^92,K.1^92,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^84,K.1^26,K.1^82,-1*K.1^46,K.1^98,K.1^34,K.1^34,-1*K.1^78,K.1^66,-1*K.1^94,-1*K.1^98,-1*K.1^38,K.1^58,-1*K.1^18,-1*K.1^22,-1*K.1^86,K.1^58,-1*K.1^54,K.1^2,K.1^26,K.1^94,-1*K.1^34,-1*K.1^54,K.1^54,-1*K.1^74,K.1^78,-1*K.1^66,K.1^62,K.1^6,K.1^22,K.1^74,-1*K.1^82,K.1^46,K.1^22,-1*K.1^86,-1*K.1^34,K.1^86,-1*K.1^42,-1*K.1^14,K.1^94,K.1^2,-1*K.1^82,K.1^46,-1*K.1^26,-1*K.1^62,K.1^42,K.1^42,K.1^18,-1*K.1^2,K.1^62,-1*K.1^66,-1*K.1^2,-1*K.1^26,K.1^38,K.1^14,K.1^14,-1*K.1^94,-1*K.1^74,K.1^54,-1*K.1^98,K.1^86,-1*K.1^42,K.1^78,K.1^6,K.1^38,K.1^82,K.1^66,-1*K.1^62,-1*K.1^14,K.1^98,-1*K.1^46,-1*K.1^58,-1*K.1^18,K.1^18,-1*K.1^78,-1*K.1^58,-1*K.1^6,-1*K.1^6,-1*K.1^38,K.1^74,-1*K.1^22,K.1^42,-1*K.1^94,-1*K.1^34,-1*K.1^74,K.1^34,-1*K.1^54,-1*K.1^42,-1*K.1^66,K.1^26,-1*K.1^62,K.1^22,K.1^86,-1*K.1^46,K.1^98,K.1^38,K.1^78,-1*K.1^38,K.1^58,K.1^46,K.1^62,-1*K.1^98,K.1^2,-1*K.1^86,-1*K.1^26,-1*K.1^82,-1*K.1^22,K.1^66,K.1^6,K.1^54,-1*K.1^14,K.1^74,K.1^14,K.1^94,-1*K.1^6,K.1^82,-1*K.1^2,-1*K.1^58,K.1^18,-1*K.1^78,-1*K.1^18,K.1^43,-1*K.1^31,K.1^93,-1*K.1^47,K.1^63,-1*K.1^49,-1*K.1^87,-1*K.1^69,-1*K.1^21,K.1^91,-1*K.1^51,K.1^87,-1*K.1^67,-1*K.1^73,K.1^11,-1*K.1^53,K.1^89,K.1^67,-1*K.1^81,K.1^59,K.1^73,K.1^17,-1*K.1^39,-1*K.1,-1*K.1^39,K.1^19,K.1^69,-1*K.1^7,K.1^49,-1*K.1^93,K.1^51,K.1^13,K.1^27,-1*K.1^27,-1*K.1^11,K.1^51,-1*K.1^61,K.1^81,K.1^27,-1*K.1^89,K.1^99,-1*K.1^41,-1*K.1^79,-1*K.1^29,-1*K.1^13,-1*K.1^73,-1*K.1^71,K.1^41,K.1,K.1^11,-1*K.1^71,K.1^31,K.1^7,K.1^47,-1*K.1^91,-1*K.1^31,K.1^33,K.1^9,-1*K.1^47,-1*K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^33,K.1^19,-1*K.1^37,K.1^83,-1*K.1^17,K.1^39,-1*K.1^99,-1*K.1^57,-1*K.1^19,-1*K.1^69,-1*K.1^93,K.1^47,K.1^93,K.1^97,-1*K.1^43,K.1^69,K.1^83,-1*K.1^57,-1*K.1^97,K.1^43,-1*K.1^81,-1*K.1^83,K.1^57,K.1^97,K.1^59,K.1^21,K.1^67,-1*K.1^43,K.1^29,K.1^79,-1*K.1^61,K.1,K.1^39,K.1^77,-1*K.1^77,K.1^63,-1*K.1^49,-1*K.1^63,K.1^49,-1*K.1^13,-1*K.1^27,K.1^21,-1*K.1^91,-1*K.1^51,K.1^61,-1*K.1^23,K.1^73,K.1^89,K.1^71,K.1^23,-1*K.1^87,K.1^53,K.1^91,-1*K.1^29,K.1^77,-1*K.1^63,-1*K.1,-1*K.1^11,K.1^31,-1*K.1^33,K.1^87,-1*K.1^53,K.1^9,K.1^3,-1*K.1^89,K.1^23,-1*K.1^19,K.1^37,-1*K.1^99,K.1^41,-1*K.1^21,-1*K.1^67,K.1^13,-1*K.1^83,-1*K.1^79,K.1^61,K.1^99,K.1^57,K.1^17,K.1^71,-1*K.1^41,K.1^3,K.1^37,-1*K.1^17,-1*K.1^23,-1*K.1^9,-1*K.1^3,-1*K.1^37,K.1^53,K.1^7,K.1^33,K.1^81,-1*K.1^59,-1*K.1^97,-1*K.1^59,K.1^79,K.1^29,-1*K.1^77]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^84,-1*K.1^92,-1*K.1^44,K.1^72,K.1^32,-1*K.1^52,K.1^64,K.1^8,K.1^16,-1*K.1^68,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^36,-1*K.1^76,K.1^24,K.1^88,-1*K.1^12,-1*K.1^4,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^85,K.1^5,K.1^35,K.1^5,K.1^65,K.1^45,K.1^35,K.1^45,K.1^55,-1*K.1^55,-1*K.1^5,-1*K.1^35,K.1^95,K.1^95,K.1^85,-1*K.1^15,-1*K.1^85,-1*K.1^5,-1*K.1^45,K.1^15,-1*K.1^45,-1*K.1^55,K.1^85,-1*K.1^35,K.1^55,-1*K.1^15,K.1^65,K.1^15,-1*K.1^36,-1*K.1^52,-1*K.1^88,K.1^76,K.1^72,K.1^56,K.1^96,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^16,-1*K.1^48,K.1^24,-1*K.1^44,K.1^36,-1*K.1^68,K.1^12,K.1^28,-1*K.1^16,K.1^88,K.1^68,-1*K.1^8,-1*K.1^28,K.1^76,-1*K.1^88,-1*K.1^84,K.1^8,-1*K.1^96,-1*K.1^4,K.1^64,-1*K.1^56,-1*K.1^96,K.1^52,K.1^52,K.1^44,K.1^12,K.1^44,-1*K.1^32,-1*K.1^32,-1*K.1^64,-1*K.1^64,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^92,-1*K.1^24,-1*K.1^24,-1*K.1^72,K.1^84,K.1^84,-1*K.1^72,K.1^4,K.1^92,K.1^92,K.1^4,-1*K.1^76,-1*K.1^8,-1*K.1^56,K.1^68,K.1^68,-1*K.1^32,K.1^96,K.1^48,K.1^8,-1*K.1^4,K.1^64,-1*K.1^64,-1*K.1^16,K.1^76,-1*K.1^72,K.1^92,-1*K.1^92,K.1^4,K.1^44,-1*K.1^52,-1*K.1^12,K.1^84,-1*K.1^96,K.1^32,K.1^52,K.1^12,K.1^36,-1*K.1^56,-1*K.1^24,K.1^72,K.1^24,-1*K.1^88,-1*K.1^36,-1*K.1^76,-1*K.1^48,-1*K.1^8,K.1^16,-1*K.1^28,K.1^28,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^56,-1*K.1^34,K.1^38,K.1^14,-1*K.1^82,K.1^6,K.1^6,-1*K.1^2,K.1^94,K.1^46,K.1^82,-1*K.1^42,K.1^22,-1*K.1^62,-1*K.1^98,-1*K.1^74,K.1^22,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^46,-1*K.1^6,K.1^86,-1*K.1^86,K.1^66,K.1^2,-1*K.1^94,K.1^58,-1*K.1^54,K.1^98,-1*K.1^66,-1*K.1^38,-1*K.1^14,K.1^98,-1*K.1^74,-1*K.1^6,K.1^74,-1*K.1^78,-1*K.1^26,-1*K.1^46,-1*K.1^18,-1*K.1^38,-1*K.1^14,K.1^34,-1*K.1^58,K.1^78,K.1^78,K.1^62,K.1^18,K.1^58,-1*K.1^94,K.1^18,K.1^34,K.1^42,K.1^26,K.1^26,K.1^46,K.1^66,-1*K.1^86,K.1^82,K.1^74,-1*K.1^78,K.1^2,-1*K.1^54,K.1^42,K.1^38,K.1^94,-1*K.1^58,-1*K.1^26,-1*K.1^82,K.1^14,-1*K.1^22,-1*K.1^62,K.1^62,-1*K.1^2,-1*K.1^22,K.1^54,K.1^54,-1*K.1^42,-1*K.1^66,-1*K.1^98,K.1^78,K.1^46,-1*K.1^6,K.1^66,K.1^6,K.1^86,-1*K.1^78,-1*K.1^94,-1*K.1^34,-1*K.1^58,K.1^98,K.1^74,K.1^14,-1*K.1^82,K.1^42,K.1^2,-1*K.1^42,K.1^22,-1*K.1^14,K.1^58,K.1^82,-1*K.1^18,-1*K.1^74,K.1^34,-1*K.1^38,-1*K.1^98,K.1^94,-1*K.1^54,-1*K.1^86,-1*K.1^26,-1*K.1^66,K.1^26,-1*K.1^46,K.1^54,K.1^38,K.1^18,-1*K.1^22,K.1^62,-1*K.1^2,-1*K.1^62,K.1^37,K.1^29,-1*K.1^87,-1*K.1^73,K.1^17,K.1^91,-1*K.1^33,K.1^71,K.1^39,K.1^69,K.1^9,K.1^33,-1*K.1^53,-1*K.1^7,-1*K.1^49,-1*K.1^27,-1*K.1^51,K.1^53,-1*K.1^79,-1*K.1^81,K.1^7,-1*K.1^3,-1*K.1,K.1^59,-1*K.1,K.1^21,-1*K.1^71,K.1^13,-1*K.1^91,K.1^87,-1*K.1^9,K.1^67,K.1^93,-1*K.1^93,K.1^49,-1*K.1^9,-1*K.1^99,K.1^79,K.1^93,K.1^51,-1*K.1^41,K.1^19,K.1^61,-1*K.1^11,-1*K.1^67,-1*K.1^7,-1*K.1^89,-1*K.1^19,-1*K.1^59,-1*K.1^49,-1*K.1^89,-1*K.1^29,-1*K.1^13,K.1^73,-1*K.1^69,K.1^29,K.1^47,K.1^31,-1*K.1^73,-1*K.1^31,-1*K.1^77,K.1^13,-1*K.1^47,K.1^21,-1*K.1^83,-1*K.1^97,K.1^3,K.1,K.1^41,-1*K.1^63,-1*K.1^21,K.1^71,K.1^87,K.1^73,-1*K.1^87,K.1^23,-1*K.1^37,-1*K.1^71,-1*K.1^97,-1*K.1^63,-1*K.1^23,K.1^37,-1*K.1^79,K.1^97,K.1^63,K.1^23,-1*K.1^81,-1*K.1^39,K.1^53,-1*K.1^37,K.1^11,-1*K.1^61,-1*K.1^99,-1*K.1^59,K.1,K.1^43,-1*K.1^43,K.1^17,K.1^91,-1*K.1^17,-1*K.1^91,-1*K.1^67,-1*K.1^93,-1*K.1^39,-1*K.1^69,K.1^9,K.1^99,-1*K.1^57,K.1^7,-1*K.1^51,K.1^89,K.1^57,-1*K.1^33,K.1^27,K.1^69,-1*K.1^11,K.1^43,-1*K.1^17,K.1^59,K.1^49,-1*K.1^29,-1*K.1^47,K.1^33,-1*K.1^27,K.1^31,K.1^77,K.1^51,K.1^57,-1*K.1^21,K.1^83,K.1^41,-1*K.1^19,K.1^39,-1*K.1^53,K.1^67,K.1^97,K.1^61,K.1^99,-1*K.1^41,K.1^63,-1*K.1^3,K.1^89,K.1^19,K.1^77,K.1^83,K.1^3,-1*K.1^57,-1*K.1^31,-1*K.1^77,-1*K.1^83,K.1^27,-1*K.1^13,K.1^47,K.1^79,K.1^81,-1*K.1^23,K.1^81,-1*K.1^61,K.1^11,-1*K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,-1,1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^16,K.1^8,K.1^56,-1*K.1^28,-1*K.1^68,K.1^48,-1*K.1^36,-1*K.1^92,-1*K.1^84,K.1^32,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^64,K.1^24,-1*K.1^76,-1*K.1^12,K.1^88,K.1^96,K.1^5,K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^35,-1*K.1^55,-1*K.1^65,-1*K.1^55,-1*K.1^45,K.1^45,K.1^95,K.1^65,-1*K.1^5,-1*K.1^5,-1*K.1^15,K.1^85,K.1^15,K.1^95,K.1^55,-1*K.1^85,K.1^55,K.1^45,-1*K.1^15,K.1^65,-1*K.1^45,K.1^85,-1*K.1^35,-1*K.1^85,K.1^64,K.1^48,K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^44,-1*K.1^4,K.1^88,K.1^84,K.1^52,-1*K.1^84,K.1^52,-1*K.1^76,K.1^56,-1*K.1^64,K.1^32,-1*K.1^88,-1*K.1^72,K.1^84,-1*K.1^12,-1*K.1^32,K.1^92,K.1^72,-1*K.1^24,K.1^12,K.1^16,-1*K.1^92,K.1^4,K.1^96,-1*K.1^36,K.1^44,K.1^4,-1*K.1^48,-1*K.1^48,-1*K.1^56,-1*K.1^88,-1*K.1^56,K.1^68,K.1^68,K.1^36,K.1^36,-1*K.1^52,-1*K.1^68,-1*K.1^64,-1*K.1^72,K.1^8,K.1^76,K.1^76,K.1^28,-1*K.1^16,-1*K.1^16,K.1^28,-1*K.1^96,-1*K.1^8,-1*K.1^8,-1*K.1^96,K.1^24,K.1^92,K.1^44,-1*K.1^32,-1*K.1^32,K.1^68,-1*K.1^4,-1*K.1^52,-1*K.1^92,K.1^96,-1*K.1^36,K.1^36,K.1^84,-1*K.1^24,K.1^28,-1*K.1^8,K.1^8,-1*K.1^96,-1*K.1^56,K.1^48,K.1^88,-1*K.1^16,K.1^4,-1*K.1^68,-1*K.1^48,-1*K.1^88,-1*K.1^64,K.1^44,K.1^76,-1*K.1^28,-1*K.1^76,K.1^12,K.1^64,K.1^24,K.1^52,K.1^92,-1*K.1^84,K.1^72,-1*K.1^72,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^44,K.1^66,-1*K.1^62,-1*K.1^86,K.1^18,-1*K.1^94,-1*K.1^94,K.1^98,-1*K.1^6,-1*K.1^54,-1*K.1^18,K.1^58,-1*K.1^78,K.1^38,K.1^2,K.1^26,-1*K.1^78,-1*K.1^14,K.1^82,K.1^66,K.1^54,K.1^94,-1*K.1^14,K.1^14,-1*K.1^34,-1*K.1^98,K.1^6,-1*K.1^42,K.1^46,-1*K.1^2,K.1^34,K.1^62,K.1^86,-1*K.1^2,K.1^26,K.1^94,-1*K.1^26,K.1^22,K.1^74,K.1^54,K.1^82,K.1^62,K.1^86,-1*K.1^66,K.1^42,-1*K.1^22,-1*K.1^22,-1*K.1^38,-1*K.1^82,-1*K.1^42,K.1^6,-1*K.1^82,-1*K.1^66,-1*K.1^58,-1*K.1^74,-1*K.1^74,-1*K.1^54,-1*K.1^34,K.1^14,-1*K.1^18,-1*K.1^26,K.1^22,-1*K.1^98,K.1^46,-1*K.1^58,-1*K.1^62,-1*K.1^6,K.1^42,K.1^74,K.1^18,-1*K.1^86,K.1^78,K.1^38,-1*K.1^38,K.1^98,K.1^78,-1*K.1^46,-1*K.1^46,K.1^58,K.1^34,K.1^2,-1*K.1^22,-1*K.1^54,K.1^94,-1*K.1^34,-1*K.1^94,-1*K.1^14,K.1^22,K.1^6,K.1^66,K.1^42,-1*K.1^2,-1*K.1^26,-1*K.1^86,K.1^18,-1*K.1^58,-1*K.1^98,K.1^58,-1*K.1^78,K.1^86,-1*K.1^42,-1*K.1^18,K.1^82,K.1^26,-1*K.1^66,K.1^62,K.1^2,-1*K.1^6,K.1^46,K.1^14,K.1^74,K.1^34,-1*K.1^74,K.1^54,-1*K.1^46,-1*K.1^62,-1*K.1^82,K.1^78,-1*K.1^38,K.1^98,K.1^38,-1*K.1^63,-1*K.1^71,K.1^13,K.1^27,-1*K.1^83,-1*K.1^9,K.1^67,-1*K.1^29,-1*K.1^61,-1*K.1^31,-1*K.1^91,-1*K.1^67,K.1^47,K.1^93,K.1^51,K.1^73,K.1^49,-1*K.1^47,K.1^21,K.1^19,-1*K.1^93,K.1^97,K.1^99,-1*K.1^41,K.1^99,-1*K.1^79,K.1^29,-1*K.1^87,K.1^9,-1*K.1^13,K.1^91,-1*K.1^33,-1*K.1^7,K.1^7,-1*K.1^51,K.1^91,K.1,-1*K.1^21,-1*K.1^7,-1*K.1^49,K.1^59,-1*K.1^81,-1*K.1^39,K.1^89,K.1^33,K.1^93,K.1^11,K.1^81,K.1^41,K.1^51,K.1^11,K.1^71,K.1^87,-1*K.1^27,K.1^31,-1*K.1^71,-1*K.1^53,-1*K.1^69,K.1^27,K.1^69,K.1^23,-1*K.1^87,K.1^53,-1*K.1^79,K.1^17,K.1^3,-1*K.1^97,-1*K.1^99,-1*K.1^59,K.1^37,K.1^79,-1*K.1^29,-1*K.1^13,-1*K.1^27,K.1^13,-1*K.1^77,K.1^63,K.1^29,K.1^3,K.1^37,K.1^77,-1*K.1^63,K.1^21,-1*K.1^3,-1*K.1^37,-1*K.1^77,K.1^19,K.1^61,-1*K.1^47,K.1^63,-1*K.1^89,K.1^39,K.1,K.1^41,-1*K.1^99,-1*K.1^57,K.1^57,-1*K.1^83,-1*K.1^9,K.1^83,K.1^9,K.1^33,K.1^7,K.1^61,K.1^31,-1*K.1^91,-1*K.1,K.1^43,-1*K.1^93,K.1^49,-1*K.1^11,-1*K.1^43,K.1^67,-1*K.1^73,-1*K.1^31,K.1^89,-1*K.1^57,K.1^83,-1*K.1^41,-1*K.1^51,K.1^71,K.1^53,-1*K.1^67,K.1^73,-1*K.1^69,-1*K.1^23,-1*K.1^49,-1*K.1^43,K.1^79,-1*K.1^17,-1*K.1^59,K.1^81,-1*K.1^61,K.1^47,-1*K.1^33,-1*K.1^3,-1*K.1^39,-1*K.1,K.1^59,-1*K.1^37,K.1^97,-1*K.1^11,-1*K.1^81,-1*K.1^23,-1*K.1^17,-1*K.1^97,K.1^43,K.1^69,K.1^23,K.1^17,-1*K.1^73,K.1^87,-1*K.1^53,-1*K.1^21,-1*K.1^19,K.1^77,-1*K.1^19,K.1^39,-1*K.1^89,K.1^57]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^12,K.1^56,-1*K.1^92,K.1^96,-1*K.1^76,-1*K.1^36,-1*K.1^52,-1*K.1^44,K.1^88,K.1^24,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,K.1^48,-1*K.1^68,K.1^32,-1*K.1^84,K.1^16,K.1^72,K.1^35,K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^65,K.1^55,-1*K.1^65,K.1^45,K.1^85,-1*K.1^55,-1*K.1^85,-1*K.1^15,K.1^15,K.1^65,K.1^55,-1*K.1^35,K.1^35,K.1^5,-1*K.1^95,-1*K.1^5,-1*K.1^65,K.1^85,K.1^95,-1*K.1^85,-1*K.1^15,-1*K.1^5,-1*K.1^55,K.1^15,K.1^95,-1*K.1^45,-1*K.1^95,K.1^48,-1*K.1^36,K.1^84,K.1^68,K.1^96,K.1^8,-1*K.1^28,K.1^16,-1*K.1^88,-1*K.1^64,K.1^88,-1*K.1^64,K.1^32,-1*K.1^92,-1*K.1^48,K.1^24,-1*K.1^16,K.1^4,-1*K.1^88,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^4,K.1^68,K.1^84,-1*K.1^12,-1*K.1^44,K.1^28,K.1^72,-1*K.1^52,-1*K.1^8,K.1^28,K.1^36,K.1^36,K.1^92,-1*K.1^16,K.1^92,K.1^76,K.1^76,K.1^52,K.1^52,K.1^64,-1*K.1^76,-1*K.1^48,K.1^4,K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^96,K.1^12,K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^56,-1*K.1^56,-1*K.1^72,-1*K.1^68,K.1^44,-1*K.1^8,-1*K.1^24,K.1^24,-1*K.1^76,K.1^28,-1*K.1^64,K.1^44,-1*K.1^72,K.1^52,-1*K.1^52,K.1^88,-1*K.1^68,K.1^96,K.1^56,-1*K.1^56,K.1^72,-1*K.1^92,K.1^36,-1*K.1^16,-1*K.1^12,-1*K.1^28,K.1^76,-1*K.1^36,K.1^16,K.1^48,K.1^8,K.1^32,-1*K.1^96,-1*K.1^32,-1*K.1^84,-1*K.1^48,K.1^68,K.1^64,-1*K.1^44,-1*K.1^88,K.1^4,-1*K.1^4,K.1^12,K.1^92,-1*K.1^24,K.1^84,-1*K.1^8,K.1^62,-1*K.1^34,-1*K.1^2,-1*K.1^26,-1*K.1^58,-1*K.1^58,K.1^86,-1*K.1^42,K.1^78,K.1^26,K.1^6,K.1^46,K.1^66,K.1^14,-1*K.1^82,K.1^46,-1*K.1^98,-1*K.1^74,K.1^62,-1*K.1^78,K.1^58,-1*K.1^98,K.1^98,-1*K.1^38,-1*K.1^86,K.1^42,-1*K.1^94,-1*K.1^22,-1*K.1^14,K.1^38,K.1^34,K.1^2,-1*K.1^14,-1*K.1^82,K.1^58,K.1^82,-1*K.1^54,-1*K.1^18,-1*K.1^78,-1*K.1^74,K.1^34,K.1^2,-1*K.1^62,K.1^94,K.1^54,K.1^54,-1*K.1^66,K.1^74,-1*K.1^94,K.1^42,K.1^74,-1*K.1^62,-1*K.1^6,K.1^18,K.1^18,K.1^78,-1*K.1^38,K.1^98,K.1^26,K.1^82,-1*K.1^54,-1*K.1^86,-1*K.1^22,-1*K.1^6,-1*K.1^34,-1*K.1^42,K.1^94,-1*K.1^18,-1*K.1^26,-1*K.1^2,-1*K.1^46,K.1^66,-1*K.1^66,K.1^86,-1*K.1^46,K.1^22,K.1^22,K.1^6,K.1^38,K.1^14,-1*K.1^54,-1*K.1^78,-1*K.1^58,K.1^38,K.1^58,K.1^98,K.1^54,-1*K.1^42,-1*K.1^62,-1*K.1^94,K.1^14,-1*K.1^82,K.1^2,K.1^26,K.1^6,K.1^86,-1*K.1^6,-1*K.1^46,-1*K.1^2,K.1^94,-1*K.1^26,K.1^74,K.1^82,K.1^62,-1*K.1^34,-1*K.1^14,K.1^42,K.1^22,-1*K.1^98,K.1^18,-1*K.1^38,-1*K.1^18,K.1^78,-1*K.1^22,K.1^34,-1*K.1^74,K.1^46,K.1^66,-1*K.1^86,-1*K.1^66,-1*K.1^41,-1*K.1^97,-1*K.1^91,K.1^89,-1*K.1^81,K.1^63,K.1^69,K.1^3,K.1^27,K.1^17,K.1^37,K.1^69,K.1^29,-1*K.1^51,-1*K.1^57,K.1^11,K.1^43,K.1^29,K.1^47,K.1^33,K.1^51,-1*K.1^79,K.1^93,K.1^87,-1*K.1^93,-1*K.1^53,-1*K.1^3,-1*K.1^9,-1*K.1^63,K.1^91,K.1^37,K.1^31,K.1^49,-1*K.1^49,-1*K.1^57,-1*K.1^37,-1*K.1^7,-1*K.1^47,-1*K.1^49,-1*K.1^43,-1*K.1^13,-1*K.1^67,-1*K.1^73,-1*K.1^23,-1*K.1^31,K.1^51,-1*K.1^77,K.1^67,-1*K.1^87,K.1^57,K.1^77,-1*K.1^97,-1*K.1^9,-1*K.1^89,-1*K.1^17,K.1^97,-1*K.1^71,K.1^83,-1*K.1^89,-1*K.1^83,K.1^61,K.1^9,K.1^71,K.1^53,K.1^19,K.1^21,-1*K.1^79,K.1^93,K.1^13,K.1^59,-1*K.1^53,-1*K.1^3,-1*K.1^91,K.1^89,K.1^91,K.1^39,K.1^41,K.1^3,-1*K.1^21,-1*K.1^59,K.1^39,K.1^41,-1*K.1^47,-1*K.1^21,-1*K.1^59,-1*K.1^39,-1*K.1^33,-1*K.1^27,-1*K.1^29,-1*K.1^41,K.1^23,K.1^73,K.1^7,K.1^87,-1*K.1^93,K.1^99,-1*K.1^99,K.1^81,-1*K.1^63,-1*K.1^81,K.1^63,K.1^31,K.1^49,K.1^27,K.1^17,-1*K.1^37,-1*K.1^7,K.1,-1*K.1^51,-1*K.1^43,K.1^77,-1*K.1,-1*K.1^69,-1*K.1^11,-1*K.1^17,K.1^23,-1*K.1^99,K.1^81,-1*K.1^87,K.1^57,K.1^97,-1*K.1^71,-1*K.1^69,-1*K.1^11,-1*K.1^83,K.1^61,K.1^43,K.1,K.1^53,K.1^19,-1*K.1^13,-1*K.1^67,-1*K.1^27,-1*K.1^29,-1*K.1^31,K.1^21,K.1^73,K.1^7,K.1^13,K.1^59,K.1^79,-1*K.1^77,K.1^67,-1*K.1^61,-1*K.1^19,K.1^79,-1*K.1,K.1^83,-1*K.1^61,-1*K.1^19,K.1^11,K.1^9,K.1^71,K.1^47,K.1^33,-1*K.1^39,-1*K.1^33,-1*K.1^73,-1*K.1^23,K.1^99]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^88,-1*K.1^44,K.1^8,-1*K.1^4,K.1^24,K.1^64,K.1^48,K.1^56,-1*K.1^12,-1*K.1^76,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,-1*K.1^52,K.1^32,-1*K.1^68,K.1^16,-1*K.1^84,-1*K.1^28,-1*K.1^65,-1*K.1^55,K.1^65,K.1^55,-1*K.1^95,-1*K.1^35,-1*K.1^45,K.1^35,-1*K.1^55,-1*K.1^15,K.1^45,K.1^15,K.1^85,-1*K.1^85,-1*K.1^35,-1*K.1^45,K.1^65,-1*K.1^65,-1*K.1^95,K.1^5,K.1^95,K.1^35,-1*K.1^15,-1*K.1^5,K.1^15,K.1^85,K.1^95,K.1^45,-1*K.1^85,-1*K.1^5,K.1^55,K.1^5,-1*K.1^52,K.1^64,-1*K.1^16,-1*K.1^32,-1*K.1^4,-1*K.1^92,K.1^72,-1*K.1^84,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^68,K.1^8,K.1^52,-1*K.1^76,K.1^84,-1*K.1^96,K.1^12,K.1^16,K.1^76,-1*K.1^56,K.1^96,-1*K.1^32,-1*K.1^16,K.1^88,K.1^56,-1*K.1^72,-1*K.1^28,K.1^48,K.1^92,-1*K.1^72,-1*K.1^64,-1*K.1^64,-1*K.1^8,K.1^84,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^48,-1*K.1^48,-1*K.1^36,K.1^24,K.1^52,-1*K.1^96,-1*K.1^44,K.1^68,K.1^68,K.1^4,-1*K.1^88,-1*K.1^88,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^56,K.1^92,K.1^76,-1*K.1^76,K.1^24,-1*K.1^72,K.1^36,-1*K.1^56,K.1^28,-1*K.1^48,K.1^48,-1*K.1^12,K.1^32,-1*K.1^4,-1*K.1^44,K.1^44,-1*K.1^28,K.1^8,-1*K.1^64,K.1^84,K.1^88,K.1^72,-1*K.1^24,K.1^64,-1*K.1^84,-1*K.1^52,-1*K.1^92,-1*K.1^68,K.1^4,K.1^68,K.1^16,K.1^52,-1*K.1^32,-1*K.1^36,K.1^56,K.1^12,-1*K.1^96,K.1^96,-1*K.1^88,-1*K.1^8,K.1^76,-1*K.1^16,K.1^92,-1*K.1^38,K.1^66,K.1^98,K.1^74,K.1^42,K.1^42,-1*K.1^14,K.1^58,-1*K.1^22,-1*K.1^74,-1*K.1^94,-1*K.1^54,-1*K.1^34,-1*K.1^86,K.1^18,-1*K.1^54,K.1^2,K.1^26,-1*K.1^38,K.1^22,-1*K.1^42,K.1^2,-1*K.1^2,K.1^62,K.1^14,-1*K.1^58,K.1^6,K.1^78,K.1^86,-1*K.1^62,-1*K.1^66,-1*K.1^98,K.1^86,K.1^18,-1*K.1^42,-1*K.1^18,K.1^46,K.1^82,K.1^22,K.1^26,-1*K.1^66,-1*K.1^98,K.1^38,-1*K.1^6,-1*K.1^46,-1*K.1^46,K.1^34,-1*K.1^26,K.1^6,-1*K.1^58,-1*K.1^26,K.1^38,K.1^94,-1*K.1^82,-1*K.1^82,-1*K.1^22,K.1^62,-1*K.1^2,-1*K.1^74,-1*K.1^18,K.1^46,K.1^14,K.1^78,K.1^94,K.1^66,K.1^58,-1*K.1^6,K.1^82,K.1^74,K.1^98,K.1^54,-1*K.1^34,K.1^34,-1*K.1^14,K.1^54,-1*K.1^78,-1*K.1^78,-1*K.1^94,-1*K.1^62,-1*K.1^86,K.1^46,K.1^22,K.1^42,-1*K.1^62,-1*K.1^42,-1*K.1^2,-1*K.1^46,K.1^58,K.1^38,K.1^6,-1*K.1^86,K.1^18,-1*K.1^98,-1*K.1^74,-1*K.1^94,-1*K.1^14,K.1^94,K.1^54,K.1^98,-1*K.1^6,K.1^74,-1*K.1^26,-1*K.1^18,-1*K.1^38,K.1^66,K.1^86,-1*K.1^58,-1*K.1^78,K.1^2,-1*K.1^82,K.1^62,K.1^82,-1*K.1^22,K.1^78,-1*K.1^66,K.1^26,-1*K.1^54,-1*K.1^34,K.1^14,K.1^34,K.1^59,K.1^3,K.1^9,-1*K.1^11,K.1^19,-1*K.1^37,-1*K.1^31,-1*K.1^97,-1*K.1^73,-1*K.1^83,-1*K.1^63,-1*K.1^31,-1*K.1^71,K.1^49,K.1^43,-1*K.1^89,-1*K.1^57,-1*K.1^71,-1*K.1^53,-1*K.1^67,-1*K.1^49,K.1^21,-1*K.1^7,-1*K.1^13,K.1^7,K.1^47,K.1^97,K.1^91,K.1^37,-1*K.1^9,-1*K.1^63,-1*K.1^69,-1*K.1^51,K.1^51,K.1^43,K.1^63,K.1^93,K.1^53,K.1^51,K.1^57,K.1^87,K.1^33,K.1^27,K.1^77,K.1^69,-1*K.1^49,K.1^23,-1*K.1^33,K.1^13,-1*K.1^43,-1*K.1^23,K.1^3,K.1^91,K.1^11,K.1^83,-1*K.1^3,K.1^29,-1*K.1^17,K.1^11,K.1^17,-1*K.1^39,-1*K.1^91,-1*K.1^29,-1*K.1^47,-1*K.1^81,-1*K.1^79,K.1^21,-1*K.1^7,-1*K.1^87,-1*K.1^41,K.1^47,K.1^97,K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^61,-1*K.1^59,-1*K.1^97,K.1^79,K.1^41,-1*K.1^61,-1*K.1^59,K.1^53,K.1^79,K.1^41,K.1^61,K.1^67,K.1^73,K.1^71,K.1^59,-1*K.1^77,-1*K.1^27,-1*K.1^93,-1*K.1^13,K.1^7,-1*K.1,K.1,-1*K.1^19,K.1^37,K.1^19,-1*K.1^37,-1*K.1^69,-1*K.1^51,-1*K.1^73,-1*K.1^83,K.1^63,K.1^93,-1*K.1^99,K.1^49,K.1^57,-1*K.1^23,K.1^99,K.1^31,K.1^89,K.1^83,-1*K.1^77,K.1,-1*K.1^19,K.1^13,-1*K.1^43,-1*K.1^3,K.1^29,K.1^31,K.1^89,K.1^17,-1*K.1^39,-1*K.1^57,-1*K.1^99,-1*K.1^47,-1*K.1^81,K.1^87,K.1^33,K.1^73,K.1^71,K.1^69,-1*K.1^79,-1*K.1^27,-1*K.1^93,-1*K.1^87,-1*K.1^41,-1*K.1^21,K.1^23,-1*K.1^33,K.1^39,K.1^81,-1*K.1^21,K.1^99,-1*K.1^17,K.1^39,K.1^81,-1*K.1^89,-1*K.1^91,-1*K.1^29,-1*K.1^53,-1*K.1^67,K.1^61,K.1^67,K.1^27,K.1^77,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,K.1^72,-1*K.1^36,-1*K.1^52,-1*K.1^76,K.1^56,K.1^16,-1*K.1^12,K.1^64,-1*K.1^28,-1*K.1^44,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^88,K.1^8,-1*K.1^92,-1*K.1^4,K.1^96,K.1^32,K.1^35,K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^65,K.1^55,-1*K.1^65,K.1^45,K.1^85,-1*K.1^55,-1*K.1^85,-1*K.1^15,K.1^15,K.1^65,K.1^55,-1*K.1^35,K.1^35,K.1^5,-1*K.1^95,-1*K.1^5,-1*K.1^65,K.1^85,K.1^95,-1*K.1^85,-1*K.1^15,-1*K.1^5,-1*K.1^55,K.1^15,K.1^95,-1*K.1^45,-1*K.1^95,K.1^88,K.1^16,K.1^4,-1*K.1^8,-1*K.1^76,K.1^48,-1*K.1^68,K.1^96,K.1^28,K.1^84,-1*K.1^28,K.1^84,-1*K.1^92,-1*K.1^52,-1*K.1^88,-1*K.1^44,-1*K.1^96,-1*K.1^24,K.1^28,-1*K.1^4,K.1^44,-1*K.1^64,K.1^24,-1*K.1^8,K.1^4,K.1^72,K.1^64,K.1^68,K.1^32,-1*K.1^12,-1*K.1^48,K.1^68,-1*K.1^16,-1*K.1^16,K.1^52,-1*K.1^96,K.1^52,-1*K.1^56,-1*K.1^56,K.1^12,K.1^12,-1*K.1^84,K.1^56,-1*K.1^88,-1*K.1^24,-1*K.1^36,K.1^92,K.1^92,K.1^76,-1*K.1^72,-1*K.1^72,K.1^76,-1*K.1^32,K.1^36,K.1^36,-1*K.1^32,K.1^8,-1*K.1^64,-1*K.1^48,K.1^44,-1*K.1^44,K.1^56,K.1^68,K.1^84,-1*K.1^64,-1*K.1^32,K.1^12,-1*K.1^12,-1*K.1^28,K.1^8,-1*K.1^76,-1*K.1^36,K.1^36,K.1^32,-1*K.1^52,-1*K.1^16,-1*K.1^96,K.1^72,-1*K.1^68,-1*K.1^56,K.1^16,K.1^96,K.1^88,K.1^48,-1*K.1^92,K.1^76,K.1^92,-1*K.1^4,-1*K.1^88,-1*K.1^8,-1*K.1^84,K.1^64,K.1^28,-1*K.1^24,K.1^24,-1*K.1^72,K.1^52,K.1^44,K.1^4,-1*K.1^48,K.1^22,K.1^54,K.1^62,K.1^6,-1*K.1^98,-1*K.1^98,-1*K.1^66,-1*K.1^2,-1*K.1^18,-1*K.1^6,K.1^86,-1*K.1^26,-1*K.1^46,-1*K.1^34,-1*K.1^42,-1*K.1^26,K.1^38,K.1^94,K.1^22,K.1^18,K.1^98,K.1^38,-1*K.1^38,-1*K.1^78,K.1^66,K.1^2,-1*K.1^14,K.1^82,K.1^34,K.1^78,-1*K.1^54,-1*K.1^62,K.1^34,-1*K.1^42,K.1^98,K.1^42,K.1^74,-1*K.1^58,K.1^18,K.1^94,-1*K.1^54,-1*K.1^62,-1*K.1^22,K.1^14,-1*K.1^74,-1*K.1^74,K.1^46,-1*K.1^94,-1*K.1^14,K.1^2,-1*K.1^94,-1*K.1^22,-1*K.1^86,K.1^58,K.1^58,-1*K.1^18,-1*K.1^78,-1*K.1^38,-1*K.1^6,K.1^42,K.1^74,K.1^66,K.1^82,-1*K.1^86,K.1^54,-1*K.1^2,K.1^14,-1*K.1^58,K.1^6,K.1^62,K.1^26,-1*K.1^46,K.1^46,-1*K.1^66,K.1^26,-1*K.1^82,-1*K.1^82,K.1^86,K.1^78,-1*K.1^34,K.1^74,K.1^18,-1*K.1^98,K.1^78,K.1^98,-1*K.1^38,-1*K.1^74,-1*K.1^2,-1*K.1^22,-1*K.1^14,-1*K.1^34,-1*K.1^42,-1*K.1^62,-1*K.1^6,K.1^86,-1*K.1^66,-1*K.1^86,K.1^26,K.1^62,K.1^14,K.1^6,-1*K.1^94,K.1^42,K.1^22,K.1^54,K.1^34,K.1^2,-1*K.1^82,K.1^38,K.1^58,-1*K.1^78,-1*K.1^58,-1*K.1^18,K.1^82,-1*K.1^54,K.1^94,-1*K.1^26,-1*K.1^46,K.1^66,K.1^46,K.1^21,-1*K.1^57,K.1^71,K.1^9,K.1^61,-1*K.1^3,-1*K.1^89,K.1^43,-1*K.1^87,-1*K.1^77,-1*K.1^97,-1*K.1^89,-1*K.1^49,K.1^31,-1*K.1^17,K.1^91,K.1^83,-1*K.1^49,K.1^7,K.1^73,-1*K.1^31,K.1^99,-1*K.1^33,K.1^47,K.1^33,-1*K.1^93,-1*K.1^43,K.1^29,K.1^3,-1*K.1^71,-1*K.1^97,-1*K.1^11,-1*K.1^69,K.1^69,-1*K.1^17,K.1^97,K.1^67,-1*K.1^7,K.1^69,-1*K.1^83,-1*K.1^53,-1*K.1^27,K.1^13,-1*K.1^63,K.1^11,-1*K.1^31,-1*K.1^37,K.1^27,-1*K.1^47,K.1^17,K.1^37,-1*K.1^57,K.1^29,-1*K.1^9,K.1^77,K.1^57,K.1^51,-1*K.1^23,-1*K.1^9,K.1^23,-1*K.1^41,-1*K.1^29,-1*K.1^51,K.1^93,-1*K.1^39,-1*K.1,K.1^99,-1*K.1^33,K.1^53,-1*K.1^79,-1*K.1^93,-1*K.1^43,K.1^71,K.1^9,-1*K.1^71,-1*K.1^59,-1*K.1^21,K.1^43,K.1,K.1^79,-1*K.1^59,-1*K.1^21,-1*K.1^7,K.1,K.1^79,K.1^59,-1*K.1^73,K.1^87,K.1^49,K.1^21,K.1^63,-1*K.1^13,-1*K.1^67,K.1^47,K.1^33,K.1^19,-1*K.1^19,-1*K.1^61,K.1^3,K.1^61,-1*K.1^3,-1*K.1^11,-1*K.1^69,-1*K.1^87,-1*K.1^77,K.1^97,K.1^67,K.1^81,K.1^31,-1*K.1^83,K.1^37,-1*K.1^81,K.1^89,-1*K.1^91,K.1^77,K.1^63,-1*K.1^19,-1*K.1^61,-1*K.1^47,K.1^17,K.1^57,K.1^51,K.1^89,-1*K.1^91,K.1^23,-1*K.1^41,K.1^83,K.1^81,K.1^93,-1*K.1^39,-1*K.1^53,-1*K.1^27,K.1^87,K.1^49,K.1^11,-1*K.1,-1*K.1^13,-1*K.1^67,K.1^53,-1*K.1^79,-1*K.1^99,-1*K.1^37,K.1^27,K.1^41,K.1^39,-1*K.1^99,-1*K.1^81,-1*K.1^23,K.1^41,K.1^39,K.1^91,-1*K.1^29,-1*K.1^51,K.1^7,K.1^73,K.1^59,-1*K.1^73,K.1^13,-1*K.1^63,K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,-1*K.1^28,K.1^64,K.1^48,K.1^24,-1*K.1^44,-1*K.1^84,K.1^88,-1*K.1^36,K.1^72,K.1^56,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^12,-1*K.1^92,K.1^8,K.1^96,-1*K.1^4,-1*K.1^68,-1*K.1^65,-1*K.1^55,K.1^65,K.1^55,-1*K.1^95,-1*K.1^35,-1*K.1^45,K.1^35,-1*K.1^55,-1*K.1^15,K.1^45,K.1^15,K.1^85,-1*K.1^85,-1*K.1^35,-1*K.1^45,K.1^65,-1*K.1^65,-1*K.1^95,K.1^5,K.1^95,K.1^35,-1*K.1^15,-1*K.1^5,K.1^15,K.1^85,K.1^95,K.1^45,-1*K.1^85,-1*K.1^5,K.1^55,K.1^5,-1*K.1^12,-1*K.1^84,-1*K.1^96,K.1^92,K.1^24,-1*K.1^52,K.1^32,-1*K.1^4,-1*K.1^72,-1*K.1^16,K.1^72,-1*K.1^16,K.1^8,K.1^48,K.1^12,K.1^56,K.1^4,K.1^76,-1*K.1^72,K.1^96,-1*K.1^56,K.1^36,-1*K.1^76,K.1^92,-1*K.1^96,-1*K.1^28,-1*K.1^36,-1*K.1^32,-1*K.1^68,K.1^88,K.1^52,-1*K.1^32,K.1^84,K.1^84,-1*K.1^48,K.1^4,-1*K.1^48,K.1^44,K.1^44,-1*K.1^88,-1*K.1^88,K.1^16,-1*K.1^44,K.1^12,K.1^76,K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^28,K.1^28,-1*K.1^24,K.1^68,-1*K.1^64,-1*K.1^64,K.1^68,-1*K.1^92,K.1^36,K.1^52,-1*K.1^56,K.1^56,-1*K.1^44,-1*K.1^32,-1*K.1^16,K.1^36,K.1^68,-1*K.1^88,K.1^88,K.1^72,-1*K.1^92,K.1^24,K.1^64,-1*K.1^64,-1*K.1^68,K.1^48,K.1^84,K.1^4,-1*K.1^28,K.1^32,K.1^44,-1*K.1^84,-1*K.1^4,-1*K.1^12,-1*K.1^52,K.1^8,-1*K.1^24,-1*K.1^8,K.1^96,K.1^12,K.1^92,K.1^16,-1*K.1^36,-1*K.1^72,K.1^76,-1*K.1^76,K.1^28,-1*K.1^48,-1*K.1^56,-1*K.1^96,K.1^52,-1*K.1^78,-1*K.1^46,-1*K.1^38,-1*K.1^94,K.1^2,K.1^2,K.1^34,K.1^98,K.1^82,K.1^94,-1*K.1^14,K.1^74,K.1^54,K.1^66,K.1^58,K.1^74,-1*K.1^62,-1*K.1^6,-1*K.1^78,-1*K.1^82,-1*K.1^2,-1*K.1^62,K.1^62,K.1^22,-1*K.1^34,-1*K.1^98,K.1^86,-1*K.1^18,-1*K.1^66,-1*K.1^22,K.1^46,K.1^38,-1*K.1^66,K.1^58,-1*K.1^2,-1*K.1^58,-1*K.1^26,K.1^42,-1*K.1^82,-1*K.1^6,K.1^46,K.1^38,K.1^78,-1*K.1^86,K.1^26,K.1^26,-1*K.1^54,K.1^6,K.1^86,-1*K.1^98,K.1^6,K.1^78,K.1^14,-1*K.1^42,-1*K.1^42,K.1^82,K.1^22,K.1^62,K.1^94,-1*K.1^58,-1*K.1^26,-1*K.1^34,-1*K.1^18,K.1^14,-1*K.1^46,K.1^98,-1*K.1^86,K.1^42,-1*K.1^94,-1*K.1^38,-1*K.1^74,K.1^54,-1*K.1^54,K.1^34,-1*K.1^74,K.1^18,K.1^18,-1*K.1^14,-1*K.1^22,K.1^66,-1*K.1^26,-1*K.1^82,K.1^2,-1*K.1^22,-1*K.1^2,K.1^62,K.1^26,K.1^98,K.1^78,K.1^86,K.1^66,K.1^58,K.1^38,K.1^94,-1*K.1^14,K.1^34,K.1^14,-1*K.1^74,-1*K.1^38,-1*K.1^86,-1*K.1^94,K.1^6,-1*K.1^58,-1*K.1^78,-1*K.1^46,-1*K.1^66,-1*K.1^98,K.1^18,-1*K.1^62,-1*K.1^42,K.1^22,K.1^42,K.1^82,-1*K.1^18,K.1^46,-1*K.1^6,K.1^74,K.1^54,-1*K.1^34,-1*K.1^54,-1*K.1^79,K.1^43,-1*K.1^29,-1*K.1^91,-1*K.1^39,K.1^97,K.1^11,-1*K.1^57,K.1^13,K.1^23,K.1^3,K.1^11,K.1^51,-1*K.1^69,K.1^83,-1*K.1^9,-1*K.1^17,K.1^51,-1*K.1^93,-1*K.1^27,K.1^69,-1*K.1,K.1^67,-1*K.1^53,-1*K.1^67,K.1^7,K.1^57,-1*K.1^71,-1*K.1^97,K.1^29,K.1^3,K.1^89,K.1^31,-1*K.1^31,K.1^83,-1*K.1^3,-1*K.1^33,K.1^93,-1*K.1^31,K.1^17,K.1^47,K.1^73,-1*K.1^87,K.1^37,-1*K.1^89,K.1^69,K.1^63,-1*K.1^73,K.1^53,-1*K.1^83,-1*K.1^63,K.1^43,-1*K.1^71,K.1^91,-1*K.1^23,-1*K.1^43,-1*K.1^49,K.1^77,K.1^91,-1*K.1^77,K.1^59,K.1^71,K.1^49,-1*K.1^7,K.1^61,K.1^99,-1*K.1,K.1^67,-1*K.1^47,K.1^21,K.1^7,K.1^57,-1*K.1^29,-1*K.1^91,K.1^29,K.1^41,K.1^79,-1*K.1^57,-1*K.1^99,-1*K.1^21,K.1^41,K.1^79,K.1^93,-1*K.1^99,-1*K.1^21,-1*K.1^41,K.1^27,-1*K.1^13,-1*K.1^51,-1*K.1^79,-1*K.1^37,K.1^87,K.1^33,-1*K.1^53,-1*K.1^67,-1*K.1^81,K.1^81,K.1^39,-1*K.1^97,-1*K.1^39,K.1^97,K.1^89,K.1^31,K.1^13,K.1^23,-1*K.1^3,-1*K.1^33,-1*K.1^19,-1*K.1^69,K.1^17,-1*K.1^63,K.1^19,-1*K.1^11,K.1^9,-1*K.1^23,-1*K.1^37,K.1^81,K.1^39,K.1^53,-1*K.1^83,-1*K.1^43,-1*K.1^49,-1*K.1^11,K.1^9,-1*K.1^77,K.1^59,-1*K.1^17,-1*K.1^19,-1*K.1^7,K.1^61,K.1^47,K.1^73,-1*K.1^13,-1*K.1^51,-1*K.1^89,K.1^99,K.1^87,K.1^33,-1*K.1^47,K.1^21,K.1,K.1^63,-1*K.1^73,-1*K.1^59,-1*K.1^61,K.1,K.1^19,K.1^77,-1*K.1^59,-1*K.1^61,-1*K.1^9,K.1^71,K.1^49,-1*K.1^93,-1*K.1^27,-1*K.1^41,K.1^27,-1*K.1^87,K.1^37,-1*K.1^81]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^52,-1*K.1^76,K.1^32,K.1^16,K.1^96,K.1^56,-1*K.1^92,K.1^24,K.1^48,-1*K.1^4,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^8,-1*K.1^28,K.1^72,K.1^64,-1*K.1^36,-1*K.1^12,K.1^35,K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^65,K.1^55,-1*K.1^65,K.1^45,K.1^85,-1*K.1^55,-1*K.1^85,-1*K.1^15,K.1^15,K.1^65,K.1^55,-1*K.1^35,K.1^35,K.1^5,-1*K.1^95,-1*K.1^5,-1*K.1^65,K.1^85,K.1^95,-1*K.1^85,-1*K.1^15,-1*K.1^5,-1*K.1^55,K.1^15,K.1^95,-1*K.1^45,-1*K.1^95,K.1^8,K.1^56,-1*K.1^64,K.1^28,K.1^16,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^48,K.1^44,K.1^48,K.1^44,K.1^72,K.1^32,-1*K.1^8,-1*K.1^4,K.1^36,K.1^84,-1*K.1^48,K.1^64,K.1^4,-1*K.1^24,-1*K.1^84,K.1^28,-1*K.1^64,-1*K.1^52,K.1^24,-1*K.1^88,-1*K.1^12,-1*K.1^92,K.1^68,-1*K.1^88,-1*K.1^56,-1*K.1^56,-1*K.1^32,K.1^36,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^92,K.1^92,-1*K.1^44,K.1^96,-1*K.1^8,K.1^84,-1*K.1^76,-1*K.1^72,-1*K.1^72,-1*K.1^16,K.1^52,K.1^52,-1*K.1^16,K.1^12,K.1^76,K.1^76,K.1^12,-1*K.1^28,-1*K.1^24,K.1^68,K.1^4,-1*K.1^4,K.1^96,-1*K.1^88,K.1^44,-1*K.1^24,K.1^12,K.1^92,-1*K.1^92,K.1^48,-1*K.1^28,K.1^16,-1*K.1^76,K.1^76,-1*K.1^12,K.1^32,-1*K.1^56,K.1^36,-1*K.1^52,K.1^88,-1*K.1^96,K.1^56,-1*K.1^36,K.1^8,-1*K.1^68,K.1^72,-1*K.1^16,-1*K.1^72,K.1^64,-1*K.1^8,K.1^28,-1*K.1^44,K.1^24,-1*K.1^48,K.1^84,-1*K.1^84,K.1^52,-1*K.1^32,K.1^4,-1*K.1^64,K.1^68,-1*K.1^2,K.1^14,-1*K.1^42,K.1^46,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^82,K.1^38,-1*K.1^46,-1*K.1^26,-1*K.1^66,-1*K.1^86,K.1^94,K.1^22,-1*K.1^66,-1*K.1^58,K.1^54,-1*K.1^2,-1*K.1^38,K.1^18,-1*K.1^58,K.1^58,K.1^98,-1*K.1^6,K.1^82,K.1^74,-1*K.1^62,-1*K.1^94,-1*K.1^98,-1*K.1^14,K.1^42,-1*K.1^94,K.1^22,K.1^18,-1*K.1^22,K.1^34,K.1^78,-1*K.1^38,K.1^54,-1*K.1^14,K.1^42,K.1^2,-1*K.1^74,-1*K.1^34,-1*K.1^34,K.1^86,-1*K.1^54,K.1^74,K.1^82,-1*K.1^54,K.1^2,K.1^26,-1*K.1^78,-1*K.1^78,K.1^38,K.1^98,K.1^58,-1*K.1^46,-1*K.1^22,K.1^34,-1*K.1^6,-1*K.1^62,K.1^26,K.1^14,-1*K.1^82,-1*K.1^74,K.1^78,K.1^46,-1*K.1^42,K.1^66,-1*K.1^86,K.1^86,K.1^6,K.1^66,K.1^62,K.1^62,-1*K.1^26,-1*K.1^98,K.1^94,K.1^34,-1*K.1^38,-1*K.1^18,-1*K.1^98,K.1^18,K.1^58,-1*K.1^34,-1*K.1^82,K.1^2,K.1^74,K.1^94,K.1^22,K.1^42,-1*K.1^46,-1*K.1^26,K.1^6,K.1^26,K.1^66,-1*K.1^42,-1*K.1^74,K.1^46,-1*K.1^54,-1*K.1^22,-1*K.1^2,K.1^14,-1*K.1^94,K.1^82,K.1^62,-1*K.1^58,-1*K.1^78,K.1^98,K.1^78,K.1^38,-1*K.1^62,-1*K.1^14,K.1^54,-1*K.1^66,-1*K.1^86,-1*K.1^6,K.1^86,K.1^61,K.1^37,-1*K.1^11,-1*K.1^69,-1*K.1,K.1^23,-1*K.1^49,-1*K.1^63,K.1^67,K.1^57,K.1^77,-1*K.1^49,-1*K.1^9,K.1^71,-1*K.1^97,-1*K.1^31,K.1^3,-1*K.1^9,K.1^87,-1*K.1^93,-1*K.1^71,K.1^59,K.1^53,-1*K.1^27,-1*K.1^53,-1*K.1^13,K.1^63,-1*K.1^89,-1*K.1^23,K.1^11,K.1^77,-1*K.1^51,-1*K.1^29,K.1^29,-1*K.1^97,-1*K.1^77,-1*K.1^47,-1*K.1^87,K.1^29,-1*K.1^3,K.1^73,K.1^7,-1*K.1^33,K.1^83,K.1^51,-1*K.1^71,K.1^17,-1*K.1^7,K.1^27,K.1^97,-1*K.1^17,K.1^37,-1*K.1^89,K.1^69,-1*K.1^57,-1*K.1^37,K.1^91,K.1^43,K.1^69,-1*K.1^43,-1*K.1^81,K.1^89,-1*K.1^91,K.1^13,K.1^99,-1*K.1^41,K.1^59,K.1^53,-1*K.1^73,-1*K.1^39,-1*K.1^13,K.1^63,-1*K.1^11,-1*K.1^69,K.1^11,-1*K.1^19,-1*K.1^61,-1*K.1^63,K.1^41,K.1^39,-1*K.1^19,-1*K.1^61,-1*K.1^87,K.1^41,K.1^39,K.1^19,K.1^93,-1*K.1^67,K.1^9,K.1^61,-1*K.1^83,K.1^33,K.1^47,-1*K.1^27,-1*K.1^53,-1*K.1^79,K.1^79,K.1,-1*K.1^23,-1*K.1,K.1^23,-1*K.1^51,-1*K.1^29,K.1^67,K.1^57,-1*K.1^77,-1*K.1^47,-1*K.1^21,K.1^71,-1*K.1^3,-1*K.1^17,K.1^21,K.1^49,K.1^31,-1*K.1^57,-1*K.1^83,K.1^79,K.1,K.1^27,K.1^97,-1*K.1^37,K.1^91,K.1^49,K.1^31,-1*K.1^43,-1*K.1^81,K.1^3,-1*K.1^21,K.1^13,K.1^99,K.1^73,K.1^7,-1*K.1^67,K.1^9,K.1^51,-1*K.1^41,K.1^33,K.1^47,-1*K.1^73,-1*K.1^39,-1*K.1^59,K.1^17,-1*K.1^7,K.1^81,-1*K.1^99,-1*K.1^59,K.1^21,K.1^43,K.1^81,-1*K.1^99,-1*K.1^31,K.1^89,-1*K.1^91,K.1^87,-1*K.1^93,K.1^19,K.1^93,-1*K.1^33,K.1^83,-1*K.1^79]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^48,K.1^24,-1*K.1^68,-1*K.1^84,-1*K.1^4,-1*K.1^44,K.1^8,-1*K.1^76,-1*K.1^52,K.1^96,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^28,-1*K.1^36,K.1^64,K.1^88,-1*K.1^65,-1*K.1^55,K.1^65,K.1^55,-1*K.1^95,-1*K.1^35,-1*K.1^45,K.1^35,-1*K.1^55,-1*K.1^15,K.1^45,K.1^15,K.1^85,-1*K.1^85,-1*K.1^35,-1*K.1^45,K.1^65,-1*K.1^65,-1*K.1^95,K.1^5,K.1^95,K.1^35,-1*K.1^15,-1*K.1^5,K.1^15,K.1^85,K.1^95,K.1^45,-1*K.1^85,-1*K.1^5,K.1^55,K.1^5,-1*K.1^92,-1*K.1^44,K.1^36,-1*K.1^72,-1*K.1^84,K.1^32,-1*K.1^12,K.1^64,K.1^52,-1*K.1^56,-1*K.1^52,-1*K.1^56,-1*K.1^28,-1*K.1^68,K.1^92,K.1^96,-1*K.1^64,-1*K.1^16,K.1^52,-1*K.1^36,-1*K.1^96,K.1^76,K.1^16,-1*K.1^72,K.1^36,K.1^48,-1*K.1^76,K.1^12,K.1^88,K.1^8,-1*K.1^32,K.1^12,K.1^44,K.1^44,K.1^68,-1*K.1^64,K.1^68,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^56,-1*K.1^4,K.1^92,-1*K.1^16,K.1^24,K.1^28,K.1^28,K.1^84,-1*K.1^48,-1*K.1^48,K.1^84,-1*K.1^88,-1*K.1^24,-1*K.1^24,-1*K.1^88,K.1^72,K.1^76,-1*K.1^32,-1*K.1^96,K.1^96,-1*K.1^4,K.1^12,-1*K.1^56,K.1^76,-1*K.1^88,-1*K.1^8,K.1^8,-1*K.1^52,K.1^72,-1*K.1^84,K.1^24,-1*K.1^24,K.1^88,-1*K.1^68,K.1^44,-1*K.1^64,K.1^48,-1*K.1^12,K.1^4,-1*K.1^44,K.1^64,-1*K.1^92,K.1^32,-1*K.1^28,K.1^84,K.1^28,-1*K.1^36,K.1^92,-1*K.1^72,K.1^56,-1*K.1^76,K.1^52,-1*K.1^16,K.1^16,-1*K.1^48,K.1^68,-1*K.1^96,K.1^36,-1*K.1^32,K.1^98,-1*K.1^86,K.1^58,-1*K.1^54,K.1^82,K.1^82,-1*K.1^94,K.1^18,-1*K.1^62,K.1^54,K.1^74,K.1^34,K.1^14,-1*K.1^6,-1*K.1^78,K.1^34,K.1^42,-1*K.1^46,K.1^98,K.1^62,-1*K.1^82,K.1^42,-1*K.1^42,-1*K.1^2,K.1^94,-1*K.1^18,-1*K.1^26,K.1^38,K.1^6,K.1^2,K.1^86,-1*K.1^58,K.1^6,-1*K.1^78,-1*K.1^82,K.1^78,-1*K.1^66,-1*K.1^22,K.1^62,-1*K.1^46,K.1^86,-1*K.1^58,-1*K.1^98,K.1^26,K.1^66,K.1^66,-1*K.1^14,K.1^46,-1*K.1^26,-1*K.1^18,K.1^46,-1*K.1^98,-1*K.1^74,K.1^22,K.1^22,-1*K.1^62,-1*K.1^2,-1*K.1^42,K.1^54,K.1^78,-1*K.1^66,K.1^94,K.1^38,-1*K.1^74,-1*K.1^86,K.1^18,K.1^26,-1*K.1^22,-1*K.1^54,K.1^58,-1*K.1^34,K.1^14,-1*K.1^14,-1*K.1^94,-1*K.1^34,-1*K.1^38,-1*K.1^38,K.1^74,K.1^2,-1*K.1^6,-1*K.1^66,K.1^62,K.1^82,K.1^2,-1*K.1^82,-1*K.1^42,K.1^66,K.1^18,-1*K.1^98,-1*K.1^26,-1*K.1^6,-1*K.1^78,-1*K.1^58,K.1^54,K.1^74,-1*K.1^94,-1*K.1^74,-1*K.1^34,K.1^58,K.1^26,-1*K.1^54,K.1^46,K.1^78,K.1^98,-1*K.1^86,K.1^6,-1*K.1^18,-1*K.1^38,K.1^42,K.1^22,-1*K.1^2,-1*K.1^22,-1*K.1^62,K.1^38,K.1^86,-1*K.1^46,K.1^34,K.1^14,K.1^94,-1*K.1^14,-1*K.1^39,-1*K.1^63,K.1^89,K.1^31,K.1^99,-1*K.1^77,K.1^51,K.1^37,-1*K.1^33,-1*K.1^43,-1*K.1^23,K.1^51,K.1^91,-1*K.1^29,K.1^3,K.1^69,-1*K.1^97,K.1^91,-1*K.1^13,K.1^7,K.1^29,-1*K.1^41,-1*K.1^47,K.1^73,K.1^47,K.1^87,-1*K.1^37,K.1^11,K.1^77,-1*K.1^89,-1*K.1^23,K.1^49,K.1^71,-1*K.1^71,K.1^3,K.1^23,K.1^53,K.1^13,-1*K.1^71,K.1^97,-1*K.1^27,-1*K.1^93,K.1^67,-1*K.1^17,-1*K.1^49,K.1^29,-1*K.1^83,K.1^93,-1*K.1^73,-1*K.1^3,K.1^83,-1*K.1^63,K.1^11,-1*K.1^31,K.1^43,K.1^63,-1*K.1^9,-1*K.1^57,-1*K.1^31,K.1^57,K.1^19,-1*K.1^11,K.1^9,-1*K.1^87,-1*K.1,K.1^59,-1*K.1^41,-1*K.1^47,K.1^27,K.1^61,K.1^87,-1*K.1^37,K.1^89,K.1^31,-1*K.1^89,K.1^81,K.1^39,K.1^37,-1*K.1^59,-1*K.1^61,K.1^81,K.1^39,K.1^13,-1*K.1^59,-1*K.1^61,-1*K.1^81,-1*K.1^7,K.1^33,-1*K.1^91,-1*K.1^39,K.1^17,-1*K.1^67,-1*K.1^53,K.1^73,K.1^47,K.1^21,-1*K.1^21,-1*K.1^99,K.1^77,K.1^99,-1*K.1^77,K.1^49,K.1^71,-1*K.1^33,-1*K.1^43,K.1^23,K.1^53,K.1^79,-1*K.1^29,K.1^97,K.1^83,-1*K.1^79,-1*K.1^51,-1*K.1^69,K.1^43,K.1^17,-1*K.1^21,-1*K.1^99,-1*K.1^73,-1*K.1^3,K.1^63,-1*K.1^9,-1*K.1^51,-1*K.1^69,K.1^57,K.1^19,-1*K.1^97,K.1^79,-1*K.1^87,-1*K.1,-1*K.1^27,-1*K.1^93,K.1^33,-1*K.1^91,-1*K.1^49,K.1^59,-1*K.1^67,-1*K.1^53,K.1^27,K.1^61,K.1^41,-1*K.1^83,K.1^93,-1*K.1^19,K.1,K.1^41,-1*K.1^79,-1*K.1^57,-1*K.1^19,K.1,K.1^69,-1*K.1^11,K.1^9,-1*K.1^13,K.1^7,-1*K.1^81,-1*K.1^7,K.1^67,-1*K.1^17,K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,K.1^32,K.1^16,-1*K.1^12,K.1^56,-1*K.1^36,K.1^96,K.1^72,-1*K.1^84,-1*K.1^68,K.1^64,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,-1*K.1^28,K.1^48,-1*K.1^52,K.1^24,-1*K.1^76,-1*K.1^92,K.1^35,K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^65,K.1^55,-1*K.1^65,K.1^45,K.1^85,-1*K.1^55,-1*K.1^85,-1*K.1^15,K.1^15,K.1^65,K.1^55,-1*K.1^35,K.1^35,K.1^5,-1*K.1^95,-1*K.1^5,-1*K.1^65,K.1^85,K.1^95,-1*K.1^85,-1*K.1^15,-1*K.1^5,-1*K.1^55,K.1^15,K.1^95,-1*K.1^45,-1*K.1^95,-1*K.1^28,K.1^96,-1*K.1^24,-1*K.1^48,K.1^56,K.1^88,K.1^8,-1*K.1^76,K.1^68,K.1^4,-1*K.1^68,K.1^4,-1*K.1^52,-1*K.1^12,K.1^28,K.1^64,K.1^76,K.1^44,K.1^68,K.1^24,-1*K.1^64,K.1^84,-1*K.1^44,-1*K.1^48,-1*K.1^24,K.1^32,-1*K.1^84,-1*K.1^8,-1*K.1^92,K.1^72,-1*K.1^88,-1*K.1^8,-1*K.1^96,-1*K.1^96,K.1^12,K.1^76,K.1^12,K.1^36,K.1^36,-1*K.1^72,-1*K.1^72,-1*K.1^4,-1*K.1^36,K.1^28,K.1^44,K.1^16,K.1^52,K.1^52,-1*K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^56,K.1^92,-1*K.1^16,-1*K.1^16,K.1^92,K.1^48,K.1^84,-1*K.1^88,-1*K.1^64,K.1^64,-1*K.1^36,-1*K.1^8,K.1^4,K.1^84,K.1^92,-1*K.1^72,K.1^72,-1*K.1^68,K.1^48,K.1^56,K.1^16,-1*K.1^16,-1*K.1^92,-1*K.1^12,-1*K.1^96,K.1^76,K.1^32,K.1^8,K.1^36,K.1^96,-1*K.1^76,-1*K.1^28,K.1^88,-1*K.1^52,-1*K.1^56,K.1^52,K.1^24,K.1^28,-1*K.1^48,-1*K.1^4,-1*K.1^84,K.1^68,K.1^44,-1*K.1^44,-1*K.1^32,K.1^12,-1*K.1^64,-1*K.1^24,-1*K.1^88,-1*K.1^82,-1*K.1^74,K.1^22,K.1^86,K.1^38,K.1^38,K.1^46,K.1^62,-1*K.1^58,-1*K.1^86,-1*K.1^66,K.1^6,K.1^26,K.1^54,-1*K.1^2,K.1^6,K.1^78,K.1^14,-1*K.1^82,K.1^58,-1*K.1^38,K.1^78,-1*K.1^78,K.1^18,-1*K.1^46,-1*K.1^62,K.1^34,K.1^42,-1*K.1^54,-1*K.1^18,K.1^74,-1*K.1^22,-1*K.1^54,-1*K.1^2,-1*K.1^38,K.1^2,-1*K.1^94,-1*K.1^98,K.1^58,K.1^14,K.1^74,-1*K.1^22,K.1^82,-1*K.1^34,K.1^94,K.1^94,-1*K.1^26,-1*K.1^14,K.1^34,-1*K.1^62,-1*K.1^14,K.1^82,K.1^66,K.1^98,K.1^98,-1*K.1^58,K.1^18,-1*K.1^78,-1*K.1^86,K.1^2,-1*K.1^94,-1*K.1^46,K.1^42,K.1^66,-1*K.1^74,K.1^62,-1*K.1^34,-1*K.1^98,K.1^86,K.1^22,-1*K.1^6,K.1^26,-1*K.1^26,K.1^46,-1*K.1^6,-1*K.1^42,-1*K.1^42,-1*K.1^66,-1*K.1^18,K.1^54,-1*K.1^94,K.1^58,K.1^38,-1*K.1^18,-1*K.1^38,-1*K.1^78,K.1^94,K.1^62,K.1^82,K.1^34,K.1^54,-1*K.1^2,-1*K.1^22,-1*K.1^86,-1*K.1^66,K.1^46,K.1^66,-1*K.1^6,K.1^22,-1*K.1^34,K.1^86,-1*K.1^14,K.1^2,-1*K.1^82,-1*K.1^74,-1*K.1^54,-1*K.1^62,-1*K.1^42,K.1^78,K.1^98,K.1^18,-1*K.1^98,-1*K.1^58,K.1^42,K.1^74,K.1^14,K.1^6,K.1^26,-1*K.1^46,-1*K.1^26,-1*K.1,-1*K.1^17,-1*K.1^51,-1*K.1^29,-1*K.1^41,-1*K.1^43,-1*K.1^9,K.1^83,-1*K.1^47,-1*K.1^37,-1*K.1^57,-1*K.1^9,K.1^69,-1*K.1^11,K.1^77,-1*K.1^71,-1*K.1^23,K.1^69,-1*K.1^67,-1*K.1^13,K.1^11,K.1^19,-1*K.1^73,K.1^7,K.1^73,K.1^33,-1*K.1^83,-1*K.1^49,K.1^43,K.1^51,-1*K.1^57,-1*K.1^91,K.1^89,-1*K.1^89,K.1^77,K.1^57,K.1^27,K.1^67,-1*K.1^89,K.1^23,-1*K.1^93,K.1^87,K.1^53,K.1^3,K.1^91,K.1^11,K.1^97,-1*K.1^87,-1*K.1^7,-1*K.1^77,-1*K.1^97,-1*K.1^17,-1*K.1^49,K.1^29,K.1^37,K.1^17,-1*K.1^31,-1*K.1^63,K.1^29,K.1^63,K.1^21,K.1^49,K.1^31,-1*K.1^33,K.1^59,-1*K.1^81,K.1^19,-1*K.1^73,K.1^93,K.1^99,K.1^33,-1*K.1^83,-1*K.1^51,-1*K.1^29,K.1^51,K.1^79,K.1,K.1^83,K.1^81,-1*K.1^99,K.1^79,K.1,K.1^67,K.1^81,-1*K.1^99,-1*K.1^79,K.1^13,K.1^47,-1*K.1^69,-1*K.1,-1*K.1^3,-1*K.1^53,-1*K.1^27,K.1^7,K.1^73,-1*K.1^39,K.1^39,K.1^41,K.1^43,-1*K.1^41,-1*K.1^43,-1*K.1^91,K.1^89,-1*K.1^47,-1*K.1^37,K.1^57,K.1^27,-1*K.1^61,-1*K.1^11,K.1^23,-1*K.1^97,K.1^61,K.1^9,K.1^71,K.1^37,-1*K.1^3,K.1^39,K.1^41,-1*K.1^7,-1*K.1^77,K.1^17,-1*K.1^31,K.1^9,K.1^71,K.1^63,K.1^21,-1*K.1^23,-1*K.1^61,-1*K.1^33,K.1^59,-1*K.1^93,K.1^87,K.1^47,-1*K.1^69,K.1^91,-1*K.1^81,-1*K.1^53,-1*K.1^27,K.1^93,K.1^99,-1*K.1^19,K.1^97,-1*K.1^87,-1*K.1^21,-1*K.1^59,-1*K.1^19,K.1^61,-1*K.1^63,-1*K.1^21,-1*K.1^59,-1*K.1^71,K.1^49,K.1^31,-1*K.1^67,-1*K.1^13,-1*K.1^79,K.1^13,K.1^53,K.1^3,-1*K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,-1*K.1^68,-1*K.1^84,K.1^88,-1*K.1^44,K.1^64,-1*K.1^4,-1*K.1^28,K.1^16,K.1^32,-1*K.1^36,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^52,K.1^48,-1*K.1^76,K.1^24,K.1^8,-1*K.1^65,-1*K.1^55,K.1^65,K.1^55,-1*K.1^95,-1*K.1^35,-1*K.1^45,K.1^35,-1*K.1^55,-1*K.1^15,K.1^45,K.1^15,K.1^85,-1*K.1^85,-1*K.1^35,-1*K.1^45,K.1^65,-1*K.1^65,-1*K.1^95,K.1^5,K.1^95,K.1^35,-1*K.1^15,-1*K.1^5,K.1^15,K.1^85,K.1^95,K.1^45,-1*K.1^85,-1*K.1^5,K.1^55,K.1^5,K.1^72,-1*K.1^4,K.1^76,K.1^52,-1*K.1^44,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^32,-1*K.1^96,K.1^32,-1*K.1^96,K.1^48,K.1^88,-1*K.1^72,-1*K.1^36,-1*K.1^24,-1*K.1^56,-1*K.1^32,-1*K.1^76,K.1^36,-1*K.1^16,K.1^56,K.1^52,K.1^76,-1*K.1^68,K.1^16,K.1^92,K.1^8,-1*K.1^28,K.1^12,K.1^92,K.1^4,K.1^4,-1*K.1^88,-1*K.1^24,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^28,K.1^28,K.1^96,K.1^64,-1*K.1^72,-1*K.1^56,-1*K.1^84,-1*K.1^48,-1*K.1^48,K.1^44,K.1^68,K.1^68,K.1^44,-1*K.1^8,K.1^84,K.1^84,-1*K.1^8,-1*K.1^52,-1*K.1^16,K.1^12,K.1^36,-1*K.1^36,K.1^64,K.1^92,-1*K.1^96,-1*K.1^16,-1*K.1^8,K.1^28,-1*K.1^28,K.1^32,-1*K.1^52,-1*K.1^44,-1*K.1^84,K.1^84,K.1^8,K.1^88,K.1^4,-1*K.1^24,-1*K.1^68,-1*K.1^92,-1*K.1^64,-1*K.1^4,K.1^24,K.1^72,-1*K.1^12,K.1^48,K.1^44,-1*K.1^48,-1*K.1^76,-1*K.1^72,K.1^52,K.1^96,K.1^16,-1*K.1^32,-1*K.1^56,K.1^56,K.1^68,-1*K.1^88,K.1^36,K.1^76,K.1^12,K.1^18,K.1^26,-1*K.1^78,-1*K.1^14,-1*K.1^62,-1*K.1^62,-1*K.1^54,-1*K.1^38,K.1^42,K.1^14,K.1^34,-1*K.1^94,-1*K.1^74,-1*K.1^46,K.1^98,-1*K.1^94,-1*K.1^22,-1*K.1^86,K.1^18,-1*K.1^42,K.1^62,-1*K.1^22,K.1^22,-1*K.1^82,K.1^54,K.1^38,-1*K.1^66,-1*K.1^58,K.1^46,K.1^82,-1*K.1^26,K.1^78,K.1^46,K.1^98,K.1^62,-1*K.1^98,K.1^6,K.1^2,-1*K.1^42,-1*K.1^86,-1*K.1^26,K.1^78,-1*K.1^18,K.1^66,-1*K.1^6,-1*K.1^6,K.1^74,K.1^86,-1*K.1^66,K.1^38,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^2,-1*K.1^2,K.1^42,-1*K.1^82,K.1^22,K.1^14,-1*K.1^98,K.1^6,K.1^54,-1*K.1^58,-1*K.1^34,K.1^26,-1*K.1^38,K.1^66,K.1^2,-1*K.1^14,-1*K.1^78,K.1^94,-1*K.1^74,K.1^74,-1*K.1^54,K.1^94,K.1^58,K.1^58,K.1^34,K.1^82,-1*K.1^46,K.1^6,-1*K.1^42,-1*K.1^62,K.1^82,K.1^62,K.1^22,-1*K.1^6,-1*K.1^38,-1*K.1^18,-1*K.1^66,-1*K.1^46,K.1^98,K.1^78,K.1^14,K.1^34,-1*K.1^54,-1*K.1^34,K.1^94,-1*K.1^78,K.1^66,-1*K.1^14,K.1^86,-1*K.1^98,K.1^18,K.1^26,K.1^46,K.1^38,K.1^58,-1*K.1^22,-1*K.1^2,-1*K.1^82,K.1^2,K.1^42,-1*K.1^58,-1*K.1^26,-1*K.1^86,-1*K.1^94,-1*K.1^74,K.1^54,K.1^74,K.1^99,K.1^83,K.1^49,K.1^71,K.1^59,K.1^57,K.1^91,-1*K.1^17,K.1^53,K.1^63,K.1^43,K.1^91,-1*K.1^31,K.1^89,-1*K.1^23,K.1^29,K.1^77,-1*K.1^31,K.1^33,K.1^87,-1*K.1^89,-1*K.1^81,K.1^27,-1*K.1^93,-1*K.1^27,-1*K.1^67,K.1^17,K.1^51,-1*K.1^57,-1*K.1^49,K.1^43,K.1^9,-1*K.1^11,K.1^11,-1*K.1^23,-1*K.1^43,-1*K.1^73,-1*K.1^33,K.1^11,-1*K.1^77,K.1^7,-1*K.1^13,-1*K.1^47,-1*K.1^97,-1*K.1^9,-1*K.1^89,-1*K.1^3,K.1^13,K.1^93,K.1^23,K.1^3,K.1^83,K.1^51,-1*K.1^71,-1*K.1^63,-1*K.1^83,K.1^69,K.1^37,-1*K.1^71,-1*K.1^37,-1*K.1^79,-1*K.1^51,-1*K.1^69,K.1^67,-1*K.1^41,K.1^19,-1*K.1^81,K.1^27,-1*K.1^7,-1*K.1,-1*K.1^67,K.1^17,K.1^49,K.1^71,-1*K.1^49,-1*K.1^21,-1*K.1^99,-1*K.1^17,-1*K.1^19,K.1,-1*K.1^21,-1*K.1^99,-1*K.1^33,-1*K.1^19,K.1,K.1^21,-1*K.1^87,-1*K.1^53,K.1^31,K.1^99,K.1^97,K.1^47,K.1^73,-1*K.1^93,-1*K.1^27,K.1^61,-1*K.1^61,-1*K.1^59,-1*K.1^57,K.1^59,K.1^57,K.1^9,-1*K.1^11,K.1^53,K.1^63,-1*K.1^43,-1*K.1^73,K.1^39,K.1^89,-1*K.1^77,K.1^3,-1*K.1^39,-1*K.1^91,-1*K.1^29,-1*K.1^63,K.1^97,-1*K.1^61,-1*K.1^59,K.1^93,K.1^23,-1*K.1^83,K.1^69,-1*K.1^91,-1*K.1^29,-1*K.1^37,-1*K.1^79,K.1^77,K.1^39,K.1^67,-1*K.1^41,K.1^7,-1*K.1^13,-1*K.1^53,K.1^31,-1*K.1^9,K.1^19,K.1^47,K.1^73,-1*K.1^7,-1*K.1,K.1^81,-1*K.1^3,K.1^13,K.1^79,K.1^41,K.1^81,-1*K.1^39,K.1^37,K.1^79,K.1^41,K.1^29,-1*K.1^51,-1*K.1^69,K.1^33,K.1^87,K.1^21,-1*K.1^87,-1*K.1^47,-1*K.1^97,K.1^61]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^92,K.1^96,K.1^72,-1*K.1^36,K.1^16,-1*K.1^76,K.1^32,-1*K.1^4,K.1^8,-1*K.1^84,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^68,K.1^88,-1*K.1^12,-1*K.1^44,K.1^56,-1*K.1^52,K.1^35,K.1^45,-1*K.1^35,-1*K.1^45,K.1^5,K.1^65,K.1^55,-1*K.1^65,K.1^45,K.1^85,-1*K.1^55,-1*K.1^85,-1*K.1^15,K.1^15,K.1^65,K.1^55,-1*K.1^35,K.1^35,K.1^5,-1*K.1^95,-1*K.1^5,-1*K.1^65,K.1^85,K.1^95,-1*K.1^85,-1*K.1^15,-1*K.1^5,-1*K.1^55,K.1^15,K.1^95,-1*K.1^45,-1*K.1^95,-1*K.1^68,-1*K.1^76,K.1^44,-1*K.1^88,-1*K.1^36,-1*K.1^28,K.1^48,K.1^56,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^24,-1*K.1^12,K.1^72,K.1^68,-1*K.1^84,-1*K.1^56,-1*K.1^64,-1*K.1^8,-1*K.1^44,K.1^84,K.1^4,K.1^64,-1*K.1^88,K.1^44,-1*K.1^92,-1*K.1^4,-1*K.1^48,-1*K.1^52,K.1^32,K.1^28,-1*K.1^48,K.1^76,K.1^76,-1*K.1^72,-1*K.1^56,-1*K.1^72,-1*K.1^16,-1*K.1^16,-1*K.1^32,-1*K.1^32,K.1^24,K.1^16,K.1^68,-1*K.1^64,K.1^96,K.1^12,K.1^12,K.1^36,K.1^92,K.1^92,K.1^36,K.1^52,-1*K.1^96,-1*K.1^96,K.1^52,K.1^88,K.1^4,K.1^28,K.1^84,-1*K.1^84,K.1^16,-1*K.1^48,-1*K.1^24,K.1^4,K.1^52,-1*K.1^32,K.1^32,K.1^8,K.1^88,-1*K.1^36,K.1^96,-1*K.1^96,-1*K.1^52,K.1^72,K.1^76,-1*K.1^56,-1*K.1^92,K.1^48,-1*K.1^16,-1*K.1^76,K.1^56,-1*K.1^68,-1*K.1^28,-1*K.1^12,K.1^36,K.1^12,-1*K.1^44,K.1^68,-1*K.1^88,K.1^24,-1*K.1^4,-1*K.1^8,-1*K.1^64,K.1^64,K.1^92,-1*K.1^72,K.1^84,K.1^44,K.1^28,-1*K.1^42,K.1^94,-1*K.1^82,-1*K.1^66,K.1^78,K.1^78,-1*K.1^26,K.1^22,-1*K.1^98,K.1^66,K.1^46,K.1^86,-1*K.1^6,-1*K.1^74,K.1^62,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^42,K.1^98,-1*K.1^78,-1*K.1^18,K.1^18,K.1^58,K.1^26,-1*K.1^22,-1*K.1^54,K.1^2,K.1^74,-1*K.1^58,-1*K.1^94,K.1^82,K.1^74,K.1^62,-1*K.1^78,-1*K.1^62,-1*K.1^14,K.1^38,K.1^98,-1*K.1^34,-1*K.1^94,K.1^82,K.1^42,K.1^54,K.1^14,K.1^14,K.1^6,K.1^34,-1*K.1^54,-1*K.1^22,K.1^34,K.1^42,-1*K.1^46,-1*K.1^38,-1*K.1^38,-1*K.1^98,K.1^58,K.1^18,K.1^66,-1*K.1^62,-1*K.1^14,K.1^26,K.1^2,-1*K.1^46,K.1^94,K.1^22,K.1^54,K.1^38,-1*K.1^66,-1*K.1^82,-1*K.1^86,-1*K.1^6,K.1^6,-1*K.1^26,-1*K.1^86,-1*K.1^2,-1*K.1^2,K.1^46,-1*K.1^58,-1*K.1^74,-1*K.1^14,K.1^98,K.1^78,-1*K.1^58,-1*K.1^78,K.1^18,K.1^14,K.1^22,K.1^42,-1*K.1^54,-1*K.1^74,K.1^62,K.1^82,K.1^66,K.1^46,-1*K.1^26,-1*K.1^46,-1*K.1^86,-1*K.1^82,K.1^54,-1*K.1^66,K.1^34,-1*K.1^62,-1*K.1^42,K.1^94,K.1^74,-1*K.1^22,-1*K.1^2,-1*K.1^18,-1*K.1^38,K.1^58,K.1^38,-1*K.1^98,K.1^2,-1*K.1^94,-1*K.1^34,K.1^86,-1*K.1^6,K.1^26,K.1^6,-1*K.1^81,K.1^77,K.1^31,K.1^49,K.1^21,-1*K.1^83,K.1^29,-1*K.1^23,-1*K.1^7,K.1^97,-1*K.1^17,K.1^29,-1*K.1^89,-1*K.1^91,K.1^37,K.1^51,-1*K.1^63,-1*K.1^89,-1*K.1^27,-1*K.1^53,K.1^91,-1*K.1^39,K.1^13,-1*K.1^67,-1*K.1^13,K.1^73,K.1^23,K.1^69,K.1^83,-1*K.1^31,-1*K.1^17,K.1^71,K.1^9,-1*K.1^9,K.1^37,K.1^17,-1*K.1^87,K.1^27,-1*K.1^9,K.1^63,K.1^33,K.1^47,K.1^93,K.1^43,-1*K.1^71,K.1^91,K.1^57,-1*K.1^47,K.1^67,-1*K.1^37,-1*K.1^57,K.1^77,K.1^69,-1*K.1^49,-1*K.1^97,-1*K.1^77,K.1^11,K.1^3,-1*K.1^49,-1*K.1^3,-1*K.1,-1*K.1^69,-1*K.1^11,-1*K.1^73,-1*K.1^79,K.1^61,-1*K.1^39,K.1^13,-1*K.1^33,K.1^19,K.1^73,K.1^23,K.1^31,K.1^49,-1*K.1^31,-1*K.1^99,K.1^81,-1*K.1^23,-1*K.1^61,-1*K.1^19,-1*K.1^99,K.1^81,K.1^27,-1*K.1^61,-1*K.1^19,K.1^99,K.1^53,K.1^7,K.1^89,-1*K.1^81,-1*K.1^43,-1*K.1^93,K.1^87,-1*K.1^67,-1*K.1^13,K.1^59,-1*K.1^59,-1*K.1^21,K.1^83,K.1^21,-1*K.1^83,K.1^71,K.1^9,-1*K.1^7,K.1^97,K.1^17,-1*K.1^87,K.1^41,-1*K.1^91,K.1^63,-1*K.1^57,-1*K.1^41,-1*K.1^29,-1*K.1^51,-1*K.1^97,-1*K.1^43,-1*K.1^59,-1*K.1^21,K.1^67,-1*K.1^37,-1*K.1^77,K.1^11,-1*K.1^29,-1*K.1^51,-1*K.1^3,-1*K.1,-1*K.1^63,K.1^41,-1*K.1^73,-1*K.1^79,K.1^33,K.1^47,K.1^7,K.1^89,-1*K.1^71,K.1^61,-1*K.1^93,K.1^87,-1*K.1^33,K.1^19,K.1^39,K.1^57,-1*K.1^47,K.1,K.1^79,K.1^39,-1*K.1^41,K.1^3,K.1,K.1^79,K.1^51,-1*K.1^69,-1*K.1^11,-1*K.1^27,-1*K.1^53,K.1^99,K.1^53,K.1^93,K.1^43,K.1^59]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^8,-1*K.1^4,-1*K.1^28,K.1^64,-1*K.1^84,K.1^24,-1*K.1^68,K.1^96,-1*K.1^92,K.1^16,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^32,-1*K.1^12,K.1^88,K.1^56,-1*K.1^44,K.1^48,-1*K.1^65,-1*K.1^55,K.1^65,K.1^55,-1*K.1^95,-1*K.1^35,-1*K.1^45,K.1^35,-1*K.1^55,-1*K.1^15,K.1^45,K.1^15,K.1^85,-1*K.1^85,-1*K.1^35,-1*K.1^45,K.1^65,-1*K.1^65,-1*K.1^95,K.1^5,K.1^95,K.1^35,-1*K.1^15,-1*K.1^5,K.1^15,K.1^85,K.1^95,K.1^45,-1*K.1^85,-1*K.1^5,K.1^55,K.1^5,K.1^32,K.1^24,-1*K.1^56,K.1^12,K.1^64,K.1^72,-1*K.1^52,-1*K.1^44,K.1^92,K.1^76,-1*K.1^92,K.1^76,K.1^88,-1*K.1^28,-1*K.1^32,K.1^16,K.1^44,K.1^36,K.1^92,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^36,K.1^12,-1*K.1^56,K.1^8,K.1^96,K.1^52,K.1^48,-1*K.1^68,-1*K.1^72,K.1^52,-1*K.1^24,-1*K.1^24,K.1^28,K.1^44,K.1^28,K.1^84,K.1^84,K.1^68,K.1^68,-1*K.1^76,-1*K.1^84,-1*K.1^32,K.1^36,-1*K.1^4,-1*K.1^88,-1*K.1^88,-1*K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^64,-1*K.1^48,K.1^4,K.1^4,-1*K.1^48,-1*K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^16,K.1^16,-1*K.1^84,K.1^52,K.1^76,-1*K.1^96,-1*K.1^48,K.1^68,-1*K.1^68,-1*K.1^92,-1*K.1^12,K.1^64,-1*K.1^4,K.1^4,K.1^48,-1*K.1^28,-1*K.1^24,K.1^44,K.1^8,-1*K.1^52,K.1^84,K.1^24,-1*K.1^44,K.1^32,K.1^72,K.1^88,-1*K.1^64,-1*K.1^88,K.1^56,-1*K.1^32,K.1^12,-1*K.1^76,K.1^96,K.1^92,K.1^36,-1*K.1^36,-1*K.1^8,K.1^28,-1*K.1^16,-1*K.1^56,-1*K.1^72,K.1^58,-1*K.1^6,K.1^18,K.1^34,-1*K.1^22,-1*K.1^22,K.1^74,-1*K.1^78,K.1^2,-1*K.1^34,-1*K.1^54,-1*K.1^14,K.1^94,K.1^26,-1*K.1^38,-1*K.1^14,K.1^82,K.1^66,K.1^58,-1*K.1^2,K.1^22,K.1^82,-1*K.1^82,-1*K.1^42,-1*K.1^74,K.1^78,K.1^46,-1*K.1^98,-1*K.1^26,K.1^42,K.1^6,-1*K.1^18,-1*K.1^26,-1*K.1^38,K.1^22,K.1^38,K.1^86,-1*K.1^62,-1*K.1^2,K.1^66,K.1^6,-1*K.1^18,-1*K.1^58,-1*K.1^46,-1*K.1^86,-1*K.1^86,-1*K.1^94,-1*K.1^66,K.1^46,K.1^78,-1*K.1^66,-1*K.1^58,K.1^54,K.1^62,K.1^62,K.1^2,-1*K.1^42,-1*K.1^82,-1*K.1^34,K.1^38,K.1^86,-1*K.1^74,-1*K.1^98,K.1^54,-1*K.1^6,-1*K.1^78,-1*K.1^46,-1*K.1^62,K.1^34,K.1^18,K.1^14,K.1^94,-1*K.1^94,K.1^74,K.1^14,K.1^98,K.1^98,-1*K.1^54,K.1^42,K.1^26,K.1^86,-1*K.1^2,-1*K.1^22,K.1^42,K.1^22,-1*K.1^82,-1*K.1^86,-1*K.1^78,-1*K.1^58,K.1^46,K.1^26,-1*K.1^38,-1*K.1^18,-1*K.1^34,-1*K.1^54,K.1^74,K.1^54,K.1^14,K.1^18,-1*K.1^46,K.1^34,-1*K.1^66,K.1^38,K.1^58,-1*K.1^6,-1*K.1^26,K.1^78,K.1^98,K.1^82,K.1^62,-1*K.1^42,-1*K.1^62,K.1^2,-1*K.1^98,K.1^6,K.1^66,-1*K.1^14,K.1^94,-1*K.1^74,-1*K.1^94,K.1^19,-1*K.1^23,-1*K.1^69,-1*K.1^51,-1*K.1^79,K.1^17,-1*K.1^71,K.1^77,K.1^93,-1*K.1^3,K.1^83,-1*K.1^71,K.1^11,K.1^9,-1*K.1^63,-1*K.1^49,K.1^37,K.1^11,K.1^73,K.1^47,-1*K.1^9,K.1^61,-1*K.1^87,K.1^33,K.1^87,-1*K.1^27,-1*K.1^77,-1*K.1^31,-1*K.1^17,K.1^69,K.1^83,-1*K.1^29,-1*K.1^91,K.1^91,-1*K.1^63,-1*K.1^83,K.1^13,-1*K.1^73,K.1^91,-1*K.1^37,-1*K.1^67,-1*K.1^53,-1*K.1^7,-1*K.1^57,K.1^29,-1*K.1^9,-1*K.1^43,K.1^53,-1*K.1^33,K.1^63,K.1^43,-1*K.1^23,-1*K.1^31,K.1^51,K.1^3,K.1^23,-1*K.1^89,-1*K.1^97,K.1^51,K.1^97,K.1^99,K.1^31,K.1^89,K.1^27,K.1^21,-1*K.1^39,K.1^61,-1*K.1^87,K.1^67,-1*K.1^81,-1*K.1^27,-1*K.1^77,-1*K.1^69,-1*K.1^51,K.1^69,K.1,-1*K.1^19,K.1^77,K.1^39,K.1^81,K.1,-1*K.1^19,-1*K.1^73,K.1^39,K.1^81,-1*K.1,-1*K.1^47,-1*K.1^93,-1*K.1^11,K.1^19,K.1^57,K.1^7,-1*K.1^13,K.1^33,K.1^87,-1*K.1^41,K.1^41,K.1^79,-1*K.1^17,-1*K.1^79,K.1^17,-1*K.1^29,-1*K.1^91,K.1^93,-1*K.1^3,-1*K.1^83,K.1^13,-1*K.1^59,K.1^9,-1*K.1^37,K.1^43,K.1^59,K.1^71,K.1^49,K.1^3,K.1^57,K.1^41,K.1^79,-1*K.1^33,K.1^63,K.1^23,-1*K.1^89,K.1^71,K.1^49,K.1^97,K.1^99,K.1^37,-1*K.1^59,K.1^27,K.1^21,-1*K.1^67,-1*K.1^53,-1*K.1^93,-1*K.1^11,K.1^29,-1*K.1^39,K.1^7,-1*K.1^13,K.1^67,-1*K.1^81,-1*K.1^61,-1*K.1^43,K.1^53,-1*K.1^99,-1*K.1^21,-1*K.1^61,K.1^59,-1*K.1^97,-1*K.1^99,-1*K.1^21,-1*K.1^49,K.1^31,K.1^89,K.1^73,K.1^47,-1*K.1,-1*K.1^47,-1*K.1^7,-1*K.1^57,-1*K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^12,K.1^56,-1*K.1^92,K.1^96,-1*K.1^76,-1*K.1^36,-1*K.1^52,-1*K.1^44,K.1^88,K.1^24,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,K.1^48,-1*K.1^68,K.1^32,-1*K.1^84,K.1^16,K.1^72,-1*K.1^35,-1*K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^65,-1*K.1^55,K.1^65,-1*K.1^45,-1*K.1^85,K.1^55,K.1^85,K.1^15,-1*K.1^15,-1*K.1^65,-1*K.1^55,K.1^35,-1*K.1^35,-1*K.1^5,K.1^95,K.1^5,K.1^65,-1*K.1^85,-1*K.1^95,K.1^85,K.1^15,K.1^5,K.1^55,-1*K.1^15,-1*K.1^95,K.1^45,K.1^95,K.1^48,-1*K.1^36,K.1^84,K.1^68,K.1^96,K.1^8,-1*K.1^28,K.1^16,-1*K.1^88,-1*K.1^64,K.1^88,-1*K.1^64,K.1^32,-1*K.1^92,-1*K.1^48,K.1^24,-1*K.1^16,K.1^4,-1*K.1^88,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^4,K.1^68,K.1^84,-1*K.1^12,-1*K.1^44,K.1^28,K.1^72,-1*K.1^52,-1*K.1^8,K.1^28,K.1^36,K.1^36,K.1^92,-1*K.1^16,K.1^92,K.1^76,K.1^76,K.1^52,K.1^52,K.1^64,-1*K.1^76,-1*K.1^48,K.1^4,K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^96,K.1^12,K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^56,-1*K.1^56,-1*K.1^72,-1*K.1^68,K.1^44,-1*K.1^8,-1*K.1^24,K.1^24,-1*K.1^76,K.1^28,-1*K.1^64,K.1^44,-1*K.1^72,K.1^52,-1*K.1^52,K.1^88,-1*K.1^68,K.1^96,K.1^56,-1*K.1^56,K.1^72,-1*K.1^92,K.1^36,-1*K.1^16,-1*K.1^12,-1*K.1^28,K.1^76,-1*K.1^36,K.1^16,K.1^48,K.1^8,K.1^32,-1*K.1^96,-1*K.1^32,-1*K.1^84,-1*K.1^48,K.1^68,K.1^64,-1*K.1^44,-1*K.1^88,K.1^4,-1*K.1^4,K.1^12,K.1^92,-1*K.1^24,K.1^84,-1*K.1^8,K.1^62,-1*K.1^34,-1*K.1^2,-1*K.1^26,-1*K.1^58,-1*K.1^58,K.1^86,-1*K.1^42,K.1^78,K.1^26,K.1^6,K.1^46,K.1^66,K.1^14,-1*K.1^82,K.1^46,-1*K.1^98,-1*K.1^74,K.1^62,-1*K.1^78,K.1^58,-1*K.1^98,K.1^98,-1*K.1^38,-1*K.1^86,K.1^42,-1*K.1^94,-1*K.1^22,-1*K.1^14,K.1^38,K.1^34,K.1^2,-1*K.1^14,-1*K.1^82,K.1^58,K.1^82,-1*K.1^54,-1*K.1^18,-1*K.1^78,-1*K.1^74,K.1^34,K.1^2,-1*K.1^62,K.1^94,K.1^54,K.1^54,-1*K.1^66,K.1^74,-1*K.1^94,K.1^42,K.1^74,-1*K.1^62,-1*K.1^6,K.1^18,K.1^18,K.1^78,-1*K.1^38,K.1^98,K.1^26,K.1^82,-1*K.1^54,-1*K.1^86,-1*K.1^22,-1*K.1^6,-1*K.1^34,-1*K.1^42,K.1^94,-1*K.1^18,-1*K.1^26,-1*K.1^2,-1*K.1^46,K.1^66,-1*K.1^66,K.1^86,-1*K.1^46,K.1^22,K.1^22,K.1^6,K.1^38,K.1^14,-1*K.1^54,-1*K.1^78,-1*K.1^58,K.1^38,K.1^58,K.1^98,K.1^54,-1*K.1^42,-1*K.1^62,-1*K.1^94,K.1^14,-1*K.1^82,K.1^2,K.1^26,K.1^6,K.1^86,-1*K.1^6,-1*K.1^46,-1*K.1^2,K.1^94,-1*K.1^26,K.1^74,K.1^82,K.1^62,-1*K.1^34,-1*K.1^14,K.1^42,K.1^22,-1*K.1^98,K.1^18,-1*K.1^38,-1*K.1^18,K.1^78,-1*K.1^22,K.1^34,-1*K.1^74,K.1^46,K.1^66,-1*K.1^86,-1*K.1^66,K.1^41,K.1^97,K.1^91,-1*K.1^89,K.1^81,-1*K.1^63,-1*K.1^69,-1*K.1^3,-1*K.1^27,-1*K.1^17,-1*K.1^37,-1*K.1^69,-1*K.1^29,K.1^51,K.1^57,-1*K.1^11,-1*K.1^43,-1*K.1^29,-1*K.1^47,-1*K.1^33,-1*K.1^51,K.1^79,-1*K.1^93,-1*K.1^87,K.1^93,K.1^53,K.1^3,K.1^9,K.1^63,-1*K.1^91,-1*K.1^37,-1*K.1^31,-1*K.1^49,K.1^49,K.1^57,K.1^37,K.1^7,K.1^47,K.1^49,K.1^43,K.1^13,K.1^67,K.1^73,K.1^23,K.1^31,-1*K.1^51,K.1^77,-1*K.1^67,K.1^87,-1*K.1^57,-1*K.1^77,K.1^97,K.1^9,K.1^89,K.1^17,-1*K.1^97,K.1^71,-1*K.1^83,K.1^89,K.1^83,-1*K.1^61,-1*K.1^9,-1*K.1^71,-1*K.1^53,-1*K.1^19,-1*K.1^21,K.1^79,-1*K.1^93,-1*K.1^13,-1*K.1^59,K.1^53,K.1^3,K.1^91,-1*K.1^89,-1*K.1^91,-1*K.1^39,-1*K.1^41,-1*K.1^3,K.1^21,K.1^59,-1*K.1^39,-1*K.1^41,K.1^47,K.1^21,K.1^59,K.1^39,K.1^33,K.1^27,K.1^29,K.1^41,-1*K.1^23,-1*K.1^73,-1*K.1^7,-1*K.1^87,K.1^93,-1*K.1^99,K.1^99,-1*K.1^81,K.1^63,K.1^81,-1*K.1^63,-1*K.1^31,-1*K.1^49,-1*K.1^27,-1*K.1^17,K.1^37,K.1^7,-1*K.1,K.1^51,K.1^43,-1*K.1^77,K.1,K.1^69,K.1^11,K.1^17,-1*K.1^23,K.1^99,-1*K.1^81,K.1^87,-1*K.1^57,-1*K.1^97,K.1^71,K.1^69,K.1^11,K.1^83,-1*K.1^61,-1*K.1^43,-1*K.1,-1*K.1^53,-1*K.1^19,K.1^13,K.1^67,K.1^27,K.1^29,K.1^31,-1*K.1^21,-1*K.1^73,-1*K.1^7,-1*K.1^13,-1*K.1^59,-1*K.1^79,K.1^77,-1*K.1^67,K.1^61,K.1^19,-1*K.1^79,K.1,-1*K.1^83,K.1^61,K.1^19,-1*K.1^11,-1*K.1^9,-1*K.1^71,-1*K.1^47,-1*K.1^33,K.1^39,K.1^33,K.1^73,K.1^23,-1*K.1^99]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^88,-1*K.1^44,K.1^8,-1*K.1^4,K.1^24,K.1^64,K.1^48,K.1^56,-1*K.1^12,-1*K.1^76,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,-1*K.1^52,K.1^32,-1*K.1^68,K.1^16,-1*K.1^84,-1*K.1^28,K.1^65,K.1^55,-1*K.1^65,-1*K.1^55,K.1^95,K.1^35,K.1^45,-1*K.1^35,K.1^55,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^85,K.1^85,K.1^35,K.1^45,-1*K.1^65,K.1^65,K.1^95,-1*K.1^5,-1*K.1^95,-1*K.1^35,K.1^15,K.1^5,-1*K.1^15,-1*K.1^85,-1*K.1^95,-1*K.1^45,K.1^85,K.1^5,-1*K.1^55,-1*K.1^5,-1*K.1^52,K.1^64,-1*K.1^16,-1*K.1^32,-1*K.1^4,-1*K.1^92,K.1^72,-1*K.1^84,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^68,K.1^8,K.1^52,-1*K.1^76,K.1^84,-1*K.1^96,K.1^12,K.1^16,K.1^76,-1*K.1^56,K.1^96,-1*K.1^32,-1*K.1^16,K.1^88,K.1^56,-1*K.1^72,-1*K.1^28,K.1^48,K.1^92,-1*K.1^72,-1*K.1^64,-1*K.1^64,-1*K.1^8,K.1^84,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^48,-1*K.1^48,-1*K.1^36,K.1^24,K.1^52,-1*K.1^96,-1*K.1^44,K.1^68,K.1^68,K.1^4,-1*K.1^88,-1*K.1^88,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^56,K.1^92,K.1^76,-1*K.1^76,K.1^24,-1*K.1^72,K.1^36,-1*K.1^56,K.1^28,-1*K.1^48,K.1^48,-1*K.1^12,K.1^32,-1*K.1^4,-1*K.1^44,K.1^44,-1*K.1^28,K.1^8,-1*K.1^64,K.1^84,K.1^88,K.1^72,-1*K.1^24,K.1^64,-1*K.1^84,-1*K.1^52,-1*K.1^92,-1*K.1^68,K.1^4,K.1^68,K.1^16,K.1^52,-1*K.1^32,-1*K.1^36,K.1^56,K.1^12,-1*K.1^96,K.1^96,-1*K.1^88,-1*K.1^8,K.1^76,-1*K.1^16,K.1^92,-1*K.1^38,K.1^66,K.1^98,K.1^74,K.1^42,K.1^42,-1*K.1^14,K.1^58,-1*K.1^22,-1*K.1^74,-1*K.1^94,-1*K.1^54,-1*K.1^34,-1*K.1^86,K.1^18,-1*K.1^54,K.1^2,K.1^26,-1*K.1^38,K.1^22,-1*K.1^42,K.1^2,-1*K.1^2,K.1^62,K.1^14,-1*K.1^58,K.1^6,K.1^78,K.1^86,-1*K.1^62,-1*K.1^66,-1*K.1^98,K.1^86,K.1^18,-1*K.1^42,-1*K.1^18,K.1^46,K.1^82,K.1^22,K.1^26,-1*K.1^66,-1*K.1^98,K.1^38,-1*K.1^6,-1*K.1^46,-1*K.1^46,K.1^34,-1*K.1^26,K.1^6,-1*K.1^58,-1*K.1^26,K.1^38,K.1^94,-1*K.1^82,-1*K.1^82,-1*K.1^22,K.1^62,-1*K.1^2,-1*K.1^74,-1*K.1^18,K.1^46,K.1^14,K.1^78,K.1^94,K.1^66,K.1^58,-1*K.1^6,K.1^82,K.1^74,K.1^98,K.1^54,-1*K.1^34,K.1^34,-1*K.1^14,K.1^54,-1*K.1^78,-1*K.1^78,-1*K.1^94,-1*K.1^62,-1*K.1^86,K.1^46,K.1^22,K.1^42,-1*K.1^62,-1*K.1^42,-1*K.1^2,-1*K.1^46,K.1^58,K.1^38,K.1^6,-1*K.1^86,K.1^18,-1*K.1^98,-1*K.1^74,-1*K.1^94,-1*K.1^14,K.1^94,K.1^54,K.1^98,-1*K.1^6,K.1^74,-1*K.1^26,-1*K.1^18,-1*K.1^38,K.1^66,K.1^86,-1*K.1^58,-1*K.1^78,K.1^2,-1*K.1^82,K.1^62,K.1^82,-1*K.1^22,K.1^78,-1*K.1^66,K.1^26,-1*K.1^54,-1*K.1^34,K.1^14,K.1^34,-1*K.1^59,-1*K.1^3,-1*K.1^9,K.1^11,-1*K.1^19,K.1^37,K.1^31,K.1^97,K.1^73,K.1^83,K.1^63,K.1^31,K.1^71,-1*K.1^49,-1*K.1^43,K.1^89,K.1^57,K.1^71,K.1^53,K.1^67,K.1^49,-1*K.1^21,K.1^7,K.1^13,-1*K.1^7,-1*K.1^47,-1*K.1^97,-1*K.1^91,-1*K.1^37,K.1^9,K.1^63,K.1^69,K.1^51,-1*K.1^51,-1*K.1^43,-1*K.1^63,-1*K.1^93,-1*K.1^53,-1*K.1^51,-1*K.1^57,-1*K.1^87,-1*K.1^33,-1*K.1^27,-1*K.1^77,-1*K.1^69,K.1^49,-1*K.1^23,K.1^33,-1*K.1^13,K.1^43,K.1^23,-1*K.1^3,-1*K.1^91,-1*K.1^11,-1*K.1^83,K.1^3,-1*K.1^29,K.1^17,-1*K.1^11,-1*K.1^17,K.1^39,K.1^91,K.1^29,K.1^47,K.1^81,K.1^79,-1*K.1^21,K.1^7,K.1^87,K.1^41,-1*K.1^47,-1*K.1^97,-1*K.1^9,K.1^11,K.1^9,K.1^61,K.1^59,K.1^97,-1*K.1^79,-1*K.1^41,K.1^61,K.1^59,-1*K.1^53,-1*K.1^79,-1*K.1^41,-1*K.1^61,-1*K.1^67,-1*K.1^73,-1*K.1^71,-1*K.1^59,K.1^77,K.1^27,K.1^93,K.1^13,-1*K.1^7,K.1,-1*K.1,K.1^19,-1*K.1^37,-1*K.1^19,K.1^37,K.1^69,K.1^51,K.1^73,K.1^83,-1*K.1^63,-1*K.1^93,K.1^99,-1*K.1^49,-1*K.1^57,K.1^23,-1*K.1^99,-1*K.1^31,-1*K.1^89,-1*K.1^83,K.1^77,-1*K.1,K.1^19,-1*K.1^13,K.1^43,K.1^3,-1*K.1^29,-1*K.1^31,-1*K.1^89,-1*K.1^17,K.1^39,K.1^57,K.1^99,K.1^47,K.1^81,-1*K.1^87,-1*K.1^33,-1*K.1^73,-1*K.1^71,-1*K.1^69,K.1^79,K.1^27,K.1^93,K.1^87,K.1^41,K.1^21,-1*K.1^23,K.1^33,-1*K.1^39,-1*K.1^81,K.1^21,-1*K.1^99,K.1^17,-1*K.1^39,-1*K.1^81,K.1^89,K.1^91,K.1^29,K.1^53,K.1^67,-1*K.1^61,-1*K.1^67,-1*K.1^27,-1*K.1^77,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,K.1^72,-1*K.1^36,-1*K.1^52,-1*K.1^76,K.1^56,K.1^16,-1*K.1^12,K.1^64,-1*K.1^28,-1*K.1^44,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^88,K.1^8,-1*K.1^92,-1*K.1^4,K.1^96,K.1^32,-1*K.1^35,-1*K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^65,-1*K.1^55,K.1^65,-1*K.1^45,-1*K.1^85,K.1^55,K.1^85,K.1^15,-1*K.1^15,-1*K.1^65,-1*K.1^55,K.1^35,-1*K.1^35,-1*K.1^5,K.1^95,K.1^5,K.1^65,-1*K.1^85,-1*K.1^95,K.1^85,K.1^15,K.1^5,K.1^55,-1*K.1^15,-1*K.1^95,K.1^45,K.1^95,K.1^88,K.1^16,K.1^4,-1*K.1^8,-1*K.1^76,K.1^48,-1*K.1^68,K.1^96,K.1^28,K.1^84,-1*K.1^28,K.1^84,-1*K.1^92,-1*K.1^52,-1*K.1^88,-1*K.1^44,-1*K.1^96,-1*K.1^24,K.1^28,-1*K.1^4,K.1^44,-1*K.1^64,K.1^24,-1*K.1^8,K.1^4,K.1^72,K.1^64,K.1^68,K.1^32,-1*K.1^12,-1*K.1^48,K.1^68,-1*K.1^16,-1*K.1^16,K.1^52,-1*K.1^96,K.1^52,-1*K.1^56,-1*K.1^56,K.1^12,K.1^12,-1*K.1^84,K.1^56,-1*K.1^88,-1*K.1^24,-1*K.1^36,K.1^92,K.1^92,K.1^76,-1*K.1^72,-1*K.1^72,K.1^76,-1*K.1^32,K.1^36,K.1^36,-1*K.1^32,K.1^8,-1*K.1^64,-1*K.1^48,K.1^44,-1*K.1^44,K.1^56,K.1^68,K.1^84,-1*K.1^64,-1*K.1^32,K.1^12,-1*K.1^12,-1*K.1^28,K.1^8,-1*K.1^76,-1*K.1^36,K.1^36,K.1^32,-1*K.1^52,-1*K.1^16,-1*K.1^96,K.1^72,-1*K.1^68,-1*K.1^56,K.1^16,K.1^96,K.1^88,K.1^48,-1*K.1^92,K.1^76,K.1^92,-1*K.1^4,-1*K.1^88,-1*K.1^8,-1*K.1^84,K.1^64,K.1^28,-1*K.1^24,K.1^24,-1*K.1^72,K.1^52,K.1^44,K.1^4,-1*K.1^48,K.1^22,K.1^54,K.1^62,K.1^6,-1*K.1^98,-1*K.1^98,-1*K.1^66,-1*K.1^2,-1*K.1^18,-1*K.1^6,K.1^86,-1*K.1^26,-1*K.1^46,-1*K.1^34,-1*K.1^42,-1*K.1^26,K.1^38,K.1^94,K.1^22,K.1^18,K.1^98,K.1^38,-1*K.1^38,-1*K.1^78,K.1^66,K.1^2,-1*K.1^14,K.1^82,K.1^34,K.1^78,-1*K.1^54,-1*K.1^62,K.1^34,-1*K.1^42,K.1^98,K.1^42,K.1^74,-1*K.1^58,K.1^18,K.1^94,-1*K.1^54,-1*K.1^62,-1*K.1^22,K.1^14,-1*K.1^74,-1*K.1^74,K.1^46,-1*K.1^94,-1*K.1^14,K.1^2,-1*K.1^94,-1*K.1^22,-1*K.1^86,K.1^58,K.1^58,-1*K.1^18,-1*K.1^78,-1*K.1^38,-1*K.1^6,K.1^42,K.1^74,K.1^66,K.1^82,-1*K.1^86,K.1^54,-1*K.1^2,K.1^14,-1*K.1^58,K.1^6,K.1^62,K.1^26,-1*K.1^46,K.1^46,-1*K.1^66,K.1^26,-1*K.1^82,-1*K.1^82,K.1^86,K.1^78,-1*K.1^34,K.1^74,K.1^18,-1*K.1^98,K.1^78,K.1^98,-1*K.1^38,-1*K.1^74,-1*K.1^2,-1*K.1^22,-1*K.1^14,-1*K.1^34,-1*K.1^42,-1*K.1^62,-1*K.1^6,K.1^86,-1*K.1^66,-1*K.1^86,K.1^26,K.1^62,K.1^14,K.1^6,-1*K.1^94,K.1^42,K.1^22,K.1^54,K.1^34,K.1^2,-1*K.1^82,K.1^38,K.1^58,-1*K.1^78,-1*K.1^58,-1*K.1^18,K.1^82,-1*K.1^54,K.1^94,-1*K.1^26,-1*K.1^46,K.1^66,K.1^46,-1*K.1^21,K.1^57,-1*K.1^71,-1*K.1^9,-1*K.1^61,K.1^3,K.1^89,-1*K.1^43,K.1^87,K.1^77,K.1^97,K.1^89,K.1^49,-1*K.1^31,K.1^17,-1*K.1^91,-1*K.1^83,K.1^49,-1*K.1^7,-1*K.1^73,K.1^31,-1*K.1^99,K.1^33,-1*K.1^47,-1*K.1^33,K.1^93,K.1^43,-1*K.1^29,-1*K.1^3,K.1^71,K.1^97,K.1^11,K.1^69,-1*K.1^69,K.1^17,-1*K.1^97,-1*K.1^67,K.1^7,-1*K.1^69,K.1^83,K.1^53,K.1^27,-1*K.1^13,K.1^63,-1*K.1^11,K.1^31,K.1^37,-1*K.1^27,K.1^47,-1*K.1^17,-1*K.1^37,K.1^57,-1*K.1^29,K.1^9,-1*K.1^77,-1*K.1^57,-1*K.1^51,K.1^23,K.1^9,-1*K.1^23,K.1^41,K.1^29,K.1^51,-1*K.1^93,K.1^39,K.1,-1*K.1^99,K.1^33,-1*K.1^53,K.1^79,K.1^93,K.1^43,-1*K.1^71,-1*K.1^9,K.1^71,K.1^59,K.1^21,-1*K.1^43,-1*K.1,-1*K.1^79,K.1^59,K.1^21,K.1^7,-1*K.1,-1*K.1^79,-1*K.1^59,K.1^73,-1*K.1^87,-1*K.1^49,-1*K.1^21,-1*K.1^63,K.1^13,K.1^67,-1*K.1^47,-1*K.1^33,-1*K.1^19,K.1^19,K.1^61,-1*K.1^3,-1*K.1^61,K.1^3,K.1^11,K.1^69,K.1^87,K.1^77,-1*K.1^97,-1*K.1^67,-1*K.1^81,-1*K.1^31,K.1^83,-1*K.1^37,K.1^81,-1*K.1^89,K.1^91,-1*K.1^77,-1*K.1^63,K.1^19,K.1^61,K.1^47,-1*K.1^17,-1*K.1^57,-1*K.1^51,-1*K.1^89,K.1^91,-1*K.1^23,K.1^41,-1*K.1^83,-1*K.1^81,-1*K.1^93,K.1^39,K.1^53,K.1^27,-1*K.1^87,-1*K.1^49,-1*K.1^11,K.1,K.1^13,K.1^67,-1*K.1^53,K.1^79,K.1^99,K.1^37,-1*K.1^27,-1*K.1^41,-1*K.1^39,K.1^99,K.1^81,K.1^23,-1*K.1^41,-1*K.1^39,-1*K.1^91,K.1^29,K.1^51,-1*K.1^7,-1*K.1^73,-1*K.1^59,K.1^73,-1*K.1^13,K.1^63,-1*K.1^19]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,-1*K.1^28,K.1^64,K.1^48,K.1^24,-1*K.1^44,-1*K.1^84,K.1^88,-1*K.1^36,K.1^72,K.1^56,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^12,-1*K.1^92,K.1^8,K.1^96,-1*K.1^4,-1*K.1^68,K.1^65,K.1^55,-1*K.1^65,-1*K.1^55,K.1^95,K.1^35,K.1^45,-1*K.1^35,K.1^55,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^85,K.1^85,K.1^35,K.1^45,-1*K.1^65,K.1^65,K.1^95,-1*K.1^5,-1*K.1^95,-1*K.1^35,K.1^15,K.1^5,-1*K.1^15,-1*K.1^85,-1*K.1^95,-1*K.1^45,K.1^85,K.1^5,-1*K.1^55,-1*K.1^5,-1*K.1^12,-1*K.1^84,-1*K.1^96,K.1^92,K.1^24,-1*K.1^52,K.1^32,-1*K.1^4,-1*K.1^72,-1*K.1^16,K.1^72,-1*K.1^16,K.1^8,K.1^48,K.1^12,K.1^56,K.1^4,K.1^76,-1*K.1^72,K.1^96,-1*K.1^56,K.1^36,-1*K.1^76,K.1^92,-1*K.1^96,-1*K.1^28,-1*K.1^36,-1*K.1^32,-1*K.1^68,K.1^88,K.1^52,-1*K.1^32,K.1^84,K.1^84,-1*K.1^48,K.1^4,-1*K.1^48,K.1^44,K.1^44,-1*K.1^88,-1*K.1^88,K.1^16,-1*K.1^44,K.1^12,K.1^76,K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^28,K.1^28,-1*K.1^24,K.1^68,-1*K.1^64,-1*K.1^64,K.1^68,-1*K.1^92,K.1^36,K.1^52,-1*K.1^56,K.1^56,-1*K.1^44,-1*K.1^32,-1*K.1^16,K.1^36,K.1^68,-1*K.1^88,K.1^88,K.1^72,-1*K.1^92,K.1^24,K.1^64,-1*K.1^64,-1*K.1^68,K.1^48,K.1^84,K.1^4,-1*K.1^28,K.1^32,K.1^44,-1*K.1^84,-1*K.1^4,-1*K.1^12,-1*K.1^52,K.1^8,-1*K.1^24,-1*K.1^8,K.1^96,K.1^12,K.1^92,K.1^16,-1*K.1^36,-1*K.1^72,K.1^76,-1*K.1^76,K.1^28,-1*K.1^48,-1*K.1^56,-1*K.1^96,K.1^52,-1*K.1^78,-1*K.1^46,-1*K.1^38,-1*K.1^94,K.1^2,K.1^2,K.1^34,K.1^98,K.1^82,K.1^94,-1*K.1^14,K.1^74,K.1^54,K.1^66,K.1^58,K.1^74,-1*K.1^62,-1*K.1^6,-1*K.1^78,-1*K.1^82,-1*K.1^2,-1*K.1^62,K.1^62,K.1^22,-1*K.1^34,-1*K.1^98,K.1^86,-1*K.1^18,-1*K.1^66,-1*K.1^22,K.1^46,K.1^38,-1*K.1^66,K.1^58,-1*K.1^2,-1*K.1^58,-1*K.1^26,K.1^42,-1*K.1^82,-1*K.1^6,K.1^46,K.1^38,K.1^78,-1*K.1^86,K.1^26,K.1^26,-1*K.1^54,K.1^6,K.1^86,-1*K.1^98,K.1^6,K.1^78,K.1^14,-1*K.1^42,-1*K.1^42,K.1^82,K.1^22,K.1^62,K.1^94,-1*K.1^58,-1*K.1^26,-1*K.1^34,-1*K.1^18,K.1^14,-1*K.1^46,K.1^98,-1*K.1^86,K.1^42,-1*K.1^94,-1*K.1^38,-1*K.1^74,K.1^54,-1*K.1^54,K.1^34,-1*K.1^74,K.1^18,K.1^18,-1*K.1^14,-1*K.1^22,K.1^66,-1*K.1^26,-1*K.1^82,K.1^2,-1*K.1^22,-1*K.1^2,K.1^62,K.1^26,K.1^98,K.1^78,K.1^86,K.1^66,K.1^58,K.1^38,K.1^94,-1*K.1^14,K.1^34,K.1^14,-1*K.1^74,-1*K.1^38,-1*K.1^86,-1*K.1^94,K.1^6,-1*K.1^58,-1*K.1^78,-1*K.1^46,-1*K.1^66,-1*K.1^98,K.1^18,-1*K.1^62,-1*K.1^42,K.1^22,K.1^42,K.1^82,-1*K.1^18,K.1^46,-1*K.1^6,K.1^74,K.1^54,-1*K.1^34,-1*K.1^54,K.1^79,-1*K.1^43,K.1^29,K.1^91,K.1^39,-1*K.1^97,-1*K.1^11,K.1^57,-1*K.1^13,-1*K.1^23,-1*K.1^3,-1*K.1^11,-1*K.1^51,K.1^69,-1*K.1^83,K.1^9,K.1^17,-1*K.1^51,K.1^93,K.1^27,-1*K.1^69,K.1,-1*K.1^67,K.1^53,K.1^67,-1*K.1^7,-1*K.1^57,K.1^71,K.1^97,-1*K.1^29,-1*K.1^3,-1*K.1^89,-1*K.1^31,K.1^31,-1*K.1^83,K.1^3,K.1^33,-1*K.1^93,K.1^31,-1*K.1^17,-1*K.1^47,-1*K.1^73,K.1^87,-1*K.1^37,K.1^89,-1*K.1^69,-1*K.1^63,K.1^73,-1*K.1^53,K.1^83,K.1^63,-1*K.1^43,K.1^71,-1*K.1^91,K.1^23,K.1^43,K.1^49,-1*K.1^77,-1*K.1^91,K.1^77,-1*K.1^59,-1*K.1^71,-1*K.1^49,K.1^7,-1*K.1^61,-1*K.1^99,K.1,-1*K.1^67,K.1^47,-1*K.1^21,-1*K.1^7,-1*K.1^57,K.1^29,K.1^91,-1*K.1^29,-1*K.1^41,-1*K.1^79,K.1^57,K.1^99,K.1^21,-1*K.1^41,-1*K.1^79,-1*K.1^93,K.1^99,K.1^21,K.1^41,-1*K.1^27,K.1^13,K.1^51,K.1^79,K.1^37,-1*K.1^87,-1*K.1^33,K.1^53,K.1^67,K.1^81,-1*K.1^81,-1*K.1^39,K.1^97,K.1^39,-1*K.1^97,-1*K.1^89,-1*K.1^31,-1*K.1^13,-1*K.1^23,K.1^3,K.1^33,K.1^19,K.1^69,-1*K.1^17,K.1^63,-1*K.1^19,K.1^11,-1*K.1^9,K.1^23,K.1^37,-1*K.1^81,-1*K.1^39,-1*K.1^53,K.1^83,K.1^43,K.1^49,K.1^11,-1*K.1^9,K.1^77,-1*K.1^59,K.1^17,K.1^19,K.1^7,-1*K.1^61,-1*K.1^47,-1*K.1^73,K.1^13,K.1^51,K.1^89,-1*K.1^99,-1*K.1^87,-1*K.1^33,K.1^47,-1*K.1^21,-1*K.1,-1*K.1^63,K.1^73,K.1^59,K.1^61,-1*K.1,-1*K.1^19,-1*K.1^77,K.1^59,K.1^61,K.1^9,-1*K.1^71,-1*K.1^49,K.1^93,K.1^27,K.1^41,-1*K.1^27,K.1^87,-1*K.1^37,K.1^81]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^52,-1*K.1^76,K.1^32,K.1^16,K.1^96,K.1^56,-1*K.1^92,K.1^24,K.1^48,-1*K.1^4,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^8,-1*K.1^28,K.1^72,K.1^64,-1*K.1^36,-1*K.1^12,-1*K.1^35,-1*K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^65,-1*K.1^55,K.1^65,-1*K.1^45,-1*K.1^85,K.1^55,K.1^85,K.1^15,-1*K.1^15,-1*K.1^65,-1*K.1^55,K.1^35,-1*K.1^35,-1*K.1^5,K.1^95,K.1^5,K.1^65,-1*K.1^85,-1*K.1^95,K.1^85,K.1^15,K.1^5,K.1^55,-1*K.1^15,-1*K.1^95,K.1^45,K.1^95,K.1^8,K.1^56,-1*K.1^64,K.1^28,K.1^16,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^48,K.1^44,K.1^48,K.1^44,K.1^72,K.1^32,-1*K.1^8,-1*K.1^4,K.1^36,K.1^84,-1*K.1^48,K.1^64,K.1^4,-1*K.1^24,-1*K.1^84,K.1^28,-1*K.1^64,-1*K.1^52,K.1^24,-1*K.1^88,-1*K.1^12,-1*K.1^92,K.1^68,-1*K.1^88,-1*K.1^56,-1*K.1^56,-1*K.1^32,K.1^36,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^92,K.1^92,-1*K.1^44,K.1^96,-1*K.1^8,K.1^84,-1*K.1^76,-1*K.1^72,-1*K.1^72,-1*K.1^16,K.1^52,K.1^52,-1*K.1^16,K.1^12,K.1^76,K.1^76,K.1^12,-1*K.1^28,-1*K.1^24,K.1^68,K.1^4,-1*K.1^4,K.1^96,-1*K.1^88,K.1^44,-1*K.1^24,K.1^12,K.1^92,-1*K.1^92,K.1^48,-1*K.1^28,K.1^16,-1*K.1^76,K.1^76,-1*K.1^12,K.1^32,-1*K.1^56,K.1^36,-1*K.1^52,K.1^88,-1*K.1^96,K.1^56,-1*K.1^36,K.1^8,-1*K.1^68,K.1^72,-1*K.1^16,-1*K.1^72,K.1^64,-1*K.1^8,K.1^28,-1*K.1^44,K.1^24,-1*K.1^48,K.1^84,-1*K.1^84,K.1^52,-1*K.1^32,K.1^4,-1*K.1^64,K.1^68,-1*K.1^2,K.1^14,-1*K.1^42,K.1^46,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^82,K.1^38,-1*K.1^46,-1*K.1^26,-1*K.1^66,-1*K.1^86,K.1^94,K.1^22,-1*K.1^66,-1*K.1^58,K.1^54,-1*K.1^2,-1*K.1^38,K.1^18,-1*K.1^58,K.1^58,K.1^98,-1*K.1^6,K.1^82,K.1^74,-1*K.1^62,-1*K.1^94,-1*K.1^98,-1*K.1^14,K.1^42,-1*K.1^94,K.1^22,K.1^18,-1*K.1^22,K.1^34,K.1^78,-1*K.1^38,K.1^54,-1*K.1^14,K.1^42,K.1^2,-1*K.1^74,-1*K.1^34,-1*K.1^34,K.1^86,-1*K.1^54,K.1^74,K.1^82,-1*K.1^54,K.1^2,K.1^26,-1*K.1^78,-1*K.1^78,K.1^38,K.1^98,K.1^58,-1*K.1^46,-1*K.1^22,K.1^34,-1*K.1^6,-1*K.1^62,K.1^26,K.1^14,-1*K.1^82,-1*K.1^74,K.1^78,K.1^46,-1*K.1^42,K.1^66,-1*K.1^86,K.1^86,K.1^6,K.1^66,K.1^62,K.1^62,-1*K.1^26,-1*K.1^98,K.1^94,K.1^34,-1*K.1^38,-1*K.1^18,-1*K.1^98,K.1^18,K.1^58,-1*K.1^34,-1*K.1^82,K.1^2,K.1^74,K.1^94,K.1^22,K.1^42,-1*K.1^46,-1*K.1^26,K.1^6,K.1^26,K.1^66,-1*K.1^42,-1*K.1^74,K.1^46,-1*K.1^54,-1*K.1^22,-1*K.1^2,K.1^14,-1*K.1^94,K.1^82,K.1^62,-1*K.1^58,-1*K.1^78,K.1^98,K.1^78,K.1^38,-1*K.1^62,-1*K.1^14,K.1^54,-1*K.1^66,-1*K.1^86,-1*K.1^6,K.1^86,-1*K.1^61,-1*K.1^37,K.1^11,K.1^69,K.1,-1*K.1^23,K.1^49,K.1^63,-1*K.1^67,-1*K.1^57,-1*K.1^77,K.1^49,K.1^9,-1*K.1^71,K.1^97,K.1^31,-1*K.1^3,K.1^9,-1*K.1^87,K.1^93,K.1^71,-1*K.1^59,-1*K.1^53,K.1^27,K.1^53,K.1^13,-1*K.1^63,K.1^89,K.1^23,-1*K.1^11,-1*K.1^77,K.1^51,K.1^29,-1*K.1^29,K.1^97,K.1^77,K.1^47,K.1^87,-1*K.1^29,K.1^3,-1*K.1^73,-1*K.1^7,K.1^33,-1*K.1^83,-1*K.1^51,K.1^71,-1*K.1^17,K.1^7,-1*K.1^27,-1*K.1^97,K.1^17,-1*K.1^37,K.1^89,-1*K.1^69,K.1^57,K.1^37,-1*K.1^91,-1*K.1^43,-1*K.1^69,K.1^43,K.1^81,-1*K.1^89,K.1^91,-1*K.1^13,-1*K.1^99,K.1^41,-1*K.1^59,-1*K.1^53,K.1^73,K.1^39,K.1^13,-1*K.1^63,K.1^11,K.1^69,-1*K.1^11,K.1^19,K.1^61,K.1^63,-1*K.1^41,-1*K.1^39,K.1^19,K.1^61,K.1^87,-1*K.1^41,-1*K.1^39,-1*K.1^19,-1*K.1^93,K.1^67,-1*K.1^9,-1*K.1^61,K.1^83,-1*K.1^33,-1*K.1^47,K.1^27,K.1^53,K.1^79,-1*K.1^79,-1*K.1,K.1^23,K.1,-1*K.1^23,K.1^51,K.1^29,-1*K.1^67,-1*K.1^57,K.1^77,K.1^47,K.1^21,-1*K.1^71,K.1^3,K.1^17,-1*K.1^21,-1*K.1^49,-1*K.1^31,K.1^57,K.1^83,-1*K.1^79,-1*K.1,-1*K.1^27,-1*K.1^97,K.1^37,-1*K.1^91,-1*K.1^49,-1*K.1^31,K.1^43,K.1^81,-1*K.1^3,K.1^21,-1*K.1^13,-1*K.1^99,-1*K.1^73,-1*K.1^7,K.1^67,-1*K.1^9,-1*K.1^51,K.1^41,-1*K.1^33,-1*K.1^47,K.1^73,K.1^39,K.1^59,-1*K.1^17,K.1^7,-1*K.1^81,K.1^99,K.1^59,-1*K.1^21,-1*K.1^43,-1*K.1^81,K.1^99,K.1^31,-1*K.1^89,K.1^91,-1*K.1^87,K.1^93,-1*K.1^19,-1*K.1^93,K.1^33,-1*K.1^83,K.1^79]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^48,K.1^24,-1*K.1^68,-1*K.1^84,-1*K.1^4,-1*K.1^44,K.1^8,-1*K.1^76,-1*K.1^52,K.1^96,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^28,-1*K.1^36,K.1^64,K.1^88,K.1^65,K.1^55,-1*K.1^65,-1*K.1^55,K.1^95,K.1^35,K.1^45,-1*K.1^35,K.1^55,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^85,K.1^85,K.1^35,K.1^45,-1*K.1^65,K.1^65,K.1^95,-1*K.1^5,-1*K.1^95,-1*K.1^35,K.1^15,K.1^5,-1*K.1^15,-1*K.1^85,-1*K.1^95,-1*K.1^45,K.1^85,K.1^5,-1*K.1^55,-1*K.1^5,-1*K.1^92,-1*K.1^44,K.1^36,-1*K.1^72,-1*K.1^84,K.1^32,-1*K.1^12,K.1^64,K.1^52,-1*K.1^56,-1*K.1^52,-1*K.1^56,-1*K.1^28,-1*K.1^68,K.1^92,K.1^96,-1*K.1^64,-1*K.1^16,K.1^52,-1*K.1^36,-1*K.1^96,K.1^76,K.1^16,-1*K.1^72,K.1^36,K.1^48,-1*K.1^76,K.1^12,K.1^88,K.1^8,-1*K.1^32,K.1^12,K.1^44,K.1^44,K.1^68,-1*K.1^64,K.1^68,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^56,-1*K.1^4,K.1^92,-1*K.1^16,K.1^24,K.1^28,K.1^28,K.1^84,-1*K.1^48,-1*K.1^48,K.1^84,-1*K.1^88,-1*K.1^24,-1*K.1^24,-1*K.1^88,K.1^72,K.1^76,-1*K.1^32,-1*K.1^96,K.1^96,-1*K.1^4,K.1^12,-1*K.1^56,K.1^76,-1*K.1^88,-1*K.1^8,K.1^8,-1*K.1^52,K.1^72,-1*K.1^84,K.1^24,-1*K.1^24,K.1^88,-1*K.1^68,K.1^44,-1*K.1^64,K.1^48,-1*K.1^12,K.1^4,-1*K.1^44,K.1^64,-1*K.1^92,K.1^32,-1*K.1^28,K.1^84,K.1^28,-1*K.1^36,K.1^92,-1*K.1^72,K.1^56,-1*K.1^76,K.1^52,-1*K.1^16,K.1^16,-1*K.1^48,K.1^68,-1*K.1^96,K.1^36,-1*K.1^32,K.1^98,-1*K.1^86,K.1^58,-1*K.1^54,K.1^82,K.1^82,-1*K.1^94,K.1^18,-1*K.1^62,K.1^54,K.1^74,K.1^34,K.1^14,-1*K.1^6,-1*K.1^78,K.1^34,K.1^42,-1*K.1^46,K.1^98,K.1^62,-1*K.1^82,K.1^42,-1*K.1^42,-1*K.1^2,K.1^94,-1*K.1^18,-1*K.1^26,K.1^38,K.1^6,K.1^2,K.1^86,-1*K.1^58,K.1^6,-1*K.1^78,-1*K.1^82,K.1^78,-1*K.1^66,-1*K.1^22,K.1^62,-1*K.1^46,K.1^86,-1*K.1^58,-1*K.1^98,K.1^26,K.1^66,K.1^66,-1*K.1^14,K.1^46,-1*K.1^26,-1*K.1^18,K.1^46,-1*K.1^98,-1*K.1^74,K.1^22,K.1^22,-1*K.1^62,-1*K.1^2,-1*K.1^42,K.1^54,K.1^78,-1*K.1^66,K.1^94,K.1^38,-1*K.1^74,-1*K.1^86,K.1^18,K.1^26,-1*K.1^22,-1*K.1^54,K.1^58,-1*K.1^34,K.1^14,-1*K.1^14,-1*K.1^94,-1*K.1^34,-1*K.1^38,-1*K.1^38,K.1^74,K.1^2,-1*K.1^6,-1*K.1^66,K.1^62,K.1^82,K.1^2,-1*K.1^82,-1*K.1^42,K.1^66,K.1^18,-1*K.1^98,-1*K.1^26,-1*K.1^6,-1*K.1^78,-1*K.1^58,K.1^54,K.1^74,-1*K.1^94,-1*K.1^74,-1*K.1^34,K.1^58,K.1^26,-1*K.1^54,K.1^46,K.1^78,K.1^98,-1*K.1^86,K.1^6,-1*K.1^18,-1*K.1^38,K.1^42,K.1^22,-1*K.1^2,-1*K.1^22,-1*K.1^62,K.1^38,K.1^86,-1*K.1^46,K.1^34,K.1^14,K.1^94,-1*K.1^14,K.1^39,K.1^63,-1*K.1^89,-1*K.1^31,-1*K.1^99,K.1^77,-1*K.1^51,-1*K.1^37,K.1^33,K.1^43,K.1^23,-1*K.1^51,-1*K.1^91,K.1^29,-1*K.1^3,-1*K.1^69,K.1^97,-1*K.1^91,K.1^13,-1*K.1^7,-1*K.1^29,K.1^41,K.1^47,-1*K.1^73,-1*K.1^47,-1*K.1^87,K.1^37,-1*K.1^11,-1*K.1^77,K.1^89,K.1^23,-1*K.1^49,-1*K.1^71,K.1^71,-1*K.1^3,-1*K.1^23,-1*K.1^53,-1*K.1^13,K.1^71,-1*K.1^97,K.1^27,K.1^93,-1*K.1^67,K.1^17,K.1^49,-1*K.1^29,K.1^83,-1*K.1^93,K.1^73,K.1^3,-1*K.1^83,K.1^63,-1*K.1^11,K.1^31,-1*K.1^43,-1*K.1^63,K.1^9,K.1^57,K.1^31,-1*K.1^57,-1*K.1^19,K.1^11,-1*K.1^9,K.1^87,K.1,-1*K.1^59,K.1^41,K.1^47,-1*K.1^27,-1*K.1^61,-1*K.1^87,K.1^37,-1*K.1^89,-1*K.1^31,K.1^89,-1*K.1^81,-1*K.1^39,-1*K.1^37,K.1^59,K.1^61,-1*K.1^81,-1*K.1^39,-1*K.1^13,K.1^59,K.1^61,K.1^81,K.1^7,-1*K.1^33,K.1^91,K.1^39,-1*K.1^17,K.1^67,K.1^53,-1*K.1^73,-1*K.1^47,-1*K.1^21,K.1^21,K.1^99,-1*K.1^77,-1*K.1^99,K.1^77,-1*K.1^49,-1*K.1^71,K.1^33,K.1^43,-1*K.1^23,-1*K.1^53,-1*K.1^79,K.1^29,-1*K.1^97,-1*K.1^83,K.1^79,K.1^51,K.1^69,-1*K.1^43,-1*K.1^17,K.1^21,K.1^99,K.1^73,K.1^3,-1*K.1^63,K.1^9,K.1^51,K.1^69,-1*K.1^57,-1*K.1^19,K.1^97,-1*K.1^79,K.1^87,K.1,K.1^27,K.1^93,-1*K.1^33,K.1^91,K.1^49,-1*K.1^59,K.1^67,K.1^53,-1*K.1^27,-1*K.1^61,-1*K.1^41,K.1^83,-1*K.1^93,K.1^19,-1*K.1,-1*K.1^41,K.1^79,K.1^57,K.1^19,-1*K.1,-1*K.1^69,K.1^11,-1*K.1^9,K.1^13,-1*K.1^7,K.1^81,K.1^7,-1*K.1^67,K.1^17,-1*K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,K.1^32,K.1^16,-1*K.1^12,K.1^56,-1*K.1^36,K.1^96,K.1^72,-1*K.1^84,-1*K.1^68,K.1^64,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,-1*K.1^28,K.1^48,-1*K.1^52,K.1^24,-1*K.1^76,-1*K.1^92,-1*K.1^35,-1*K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^65,-1*K.1^55,K.1^65,-1*K.1^45,-1*K.1^85,K.1^55,K.1^85,K.1^15,-1*K.1^15,-1*K.1^65,-1*K.1^55,K.1^35,-1*K.1^35,-1*K.1^5,K.1^95,K.1^5,K.1^65,-1*K.1^85,-1*K.1^95,K.1^85,K.1^15,K.1^5,K.1^55,-1*K.1^15,-1*K.1^95,K.1^45,K.1^95,-1*K.1^28,K.1^96,-1*K.1^24,-1*K.1^48,K.1^56,K.1^88,K.1^8,-1*K.1^76,K.1^68,K.1^4,-1*K.1^68,K.1^4,-1*K.1^52,-1*K.1^12,K.1^28,K.1^64,K.1^76,K.1^44,K.1^68,K.1^24,-1*K.1^64,K.1^84,-1*K.1^44,-1*K.1^48,-1*K.1^24,K.1^32,-1*K.1^84,-1*K.1^8,-1*K.1^92,K.1^72,-1*K.1^88,-1*K.1^8,-1*K.1^96,-1*K.1^96,K.1^12,K.1^76,K.1^12,K.1^36,K.1^36,-1*K.1^72,-1*K.1^72,-1*K.1^4,-1*K.1^36,K.1^28,K.1^44,K.1^16,K.1^52,K.1^52,-1*K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^56,K.1^92,-1*K.1^16,-1*K.1^16,K.1^92,K.1^48,K.1^84,-1*K.1^88,-1*K.1^64,K.1^64,-1*K.1^36,-1*K.1^8,K.1^4,K.1^84,K.1^92,-1*K.1^72,K.1^72,-1*K.1^68,K.1^48,K.1^56,K.1^16,-1*K.1^16,-1*K.1^92,-1*K.1^12,-1*K.1^96,K.1^76,K.1^32,K.1^8,K.1^36,K.1^96,-1*K.1^76,-1*K.1^28,K.1^88,-1*K.1^52,-1*K.1^56,K.1^52,K.1^24,K.1^28,-1*K.1^48,-1*K.1^4,-1*K.1^84,K.1^68,K.1^44,-1*K.1^44,-1*K.1^32,K.1^12,-1*K.1^64,-1*K.1^24,-1*K.1^88,-1*K.1^82,-1*K.1^74,K.1^22,K.1^86,K.1^38,K.1^38,K.1^46,K.1^62,-1*K.1^58,-1*K.1^86,-1*K.1^66,K.1^6,K.1^26,K.1^54,-1*K.1^2,K.1^6,K.1^78,K.1^14,-1*K.1^82,K.1^58,-1*K.1^38,K.1^78,-1*K.1^78,K.1^18,-1*K.1^46,-1*K.1^62,K.1^34,K.1^42,-1*K.1^54,-1*K.1^18,K.1^74,-1*K.1^22,-1*K.1^54,-1*K.1^2,-1*K.1^38,K.1^2,-1*K.1^94,-1*K.1^98,K.1^58,K.1^14,K.1^74,-1*K.1^22,K.1^82,-1*K.1^34,K.1^94,K.1^94,-1*K.1^26,-1*K.1^14,K.1^34,-1*K.1^62,-1*K.1^14,K.1^82,K.1^66,K.1^98,K.1^98,-1*K.1^58,K.1^18,-1*K.1^78,-1*K.1^86,K.1^2,-1*K.1^94,-1*K.1^46,K.1^42,K.1^66,-1*K.1^74,K.1^62,-1*K.1^34,-1*K.1^98,K.1^86,K.1^22,-1*K.1^6,K.1^26,-1*K.1^26,K.1^46,-1*K.1^6,-1*K.1^42,-1*K.1^42,-1*K.1^66,-1*K.1^18,K.1^54,-1*K.1^94,K.1^58,K.1^38,-1*K.1^18,-1*K.1^38,-1*K.1^78,K.1^94,K.1^62,K.1^82,K.1^34,K.1^54,-1*K.1^2,-1*K.1^22,-1*K.1^86,-1*K.1^66,K.1^46,K.1^66,-1*K.1^6,K.1^22,-1*K.1^34,K.1^86,-1*K.1^14,K.1^2,-1*K.1^82,-1*K.1^74,-1*K.1^54,-1*K.1^62,-1*K.1^42,K.1^78,K.1^98,K.1^18,-1*K.1^98,-1*K.1^58,K.1^42,K.1^74,K.1^14,K.1^6,K.1^26,-1*K.1^46,-1*K.1^26,K.1,K.1^17,K.1^51,K.1^29,K.1^41,K.1^43,K.1^9,-1*K.1^83,K.1^47,K.1^37,K.1^57,K.1^9,-1*K.1^69,K.1^11,-1*K.1^77,K.1^71,K.1^23,-1*K.1^69,K.1^67,K.1^13,-1*K.1^11,-1*K.1^19,K.1^73,-1*K.1^7,-1*K.1^73,-1*K.1^33,K.1^83,K.1^49,-1*K.1^43,-1*K.1^51,K.1^57,K.1^91,-1*K.1^89,K.1^89,-1*K.1^77,-1*K.1^57,-1*K.1^27,-1*K.1^67,K.1^89,-1*K.1^23,K.1^93,-1*K.1^87,-1*K.1^53,-1*K.1^3,-1*K.1^91,-1*K.1^11,-1*K.1^97,K.1^87,K.1^7,K.1^77,K.1^97,K.1^17,K.1^49,-1*K.1^29,-1*K.1^37,-1*K.1^17,K.1^31,K.1^63,-1*K.1^29,-1*K.1^63,-1*K.1^21,-1*K.1^49,-1*K.1^31,K.1^33,-1*K.1^59,K.1^81,-1*K.1^19,K.1^73,-1*K.1^93,-1*K.1^99,-1*K.1^33,K.1^83,K.1^51,K.1^29,-1*K.1^51,-1*K.1^79,-1*K.1,-1*K.1^83,-1*K.1^81,K.1^99,-1*K.1^79,-1*K.1,-1*K.1^67,-1*K.1^81,K.1^99,K.1^79,-1*K.1^13,-1*K.1^47,K.1^69,K.1,K.1^3,K.1^53,K.1^27,-1*K.1^7,-1*K.1^73,K.1^39,-1*K.1^39,-1*K.1^41,-1*K.1^43,K.1^41,K.1^43,K.1^91,-1*K.1^89,K.1^47,K.1^37,-1*K.1^57,-1*K.1^27,K.1^61,K.1^11,-1*K.1^23,K.1^97,-1*K.1^61,-1*K.1^9,-1*K.1^71,-1*K.1^37,K.1^3,-1*K.1^39,-1*K.1^41,K.1^7,K.1^77,-1*K.1^17,K.1^31,-1*K.1^9,-1*K.1^71,-1*K.1^63,-1*K.1^21,K.1^23,K.1^61,K.1^33,-1*K.1^59,K.1^93,-1*K.1^87,-1*K.1^47,K.1^69,-1*K.1^91,K.1^81,K.1^53,K.1^27,-1*K.1^93,-1*K.1^99,K.1^19,-1*K.1^97,K.1^87,K.1^21,K.1^59,K.1^19,-1*K.1^61,K.1^63,K.1^21,K.1^59,K.1^71,-1*K.1^49,-1*K.1^31,K.1^67,K.1^13,K.1^79,-1*K.1^13,-1*K.1^53,-1*K.1^3,K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,-1*K.1^68,-1*K.1^84,K.1^88,-1*K.1^44,K.1^64,-1*K.1^4,-1*K.1^28,K.1^16,K.1^32,-1*K.1^36,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^52,K.1^48,-1*K.1^76,K.1^24,K.1^8,K.1^65,K.1^55,-1*K.1^65,-1*K.1^55,K.1^95,K.1^35,K.1^45,-1*K.1^35,K.1^55,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^85,K.1^85,K.1^35,K.1^45,-1*K.1^65,K.1^65,K.1^95,-1*K.1^5,-1*K.1^95,-1*K.1^35,K.1^15,K.1^5,-1*K.1^15,-1*K.1^85,-1*K.1^95,-1*K.1^45,K.1^85,K.1^5,-1*K.1^55,-1*K.1^5,K.1^72,-1*K.1^4,K.1^76,K.1^52,-1*K.1^44,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^32,-1*K.1^96,K.1^32,-1*K.1^96,K.1^48,K.1^88,-1*K.1^72,-1*K.1^36,-1*K.1^24,-1*K.1^56,-1*K.1^32,-1*K.1^76,K.1^36,-1*K.1^16,K.1^56,K.1^52,K.1^76,-1*K.1^68,K.1^16,K.1^92,K.1^8,-1*K.1^28,K.1^12,K.1^92,K.1^4,K.1^4,-1*K.1^88,-1*K.1^24,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^28,K.1^28,K.1^96,K.1^64,-1*K.1^72,-1*K.1^56,-1*K.1^84,-1*K.1^48,-1*K.1^48,K.1^44,K.1^68,K.1^68,K.1^44,-1*K.1^8,K.1^84,K.1^84,-1*K.1^8,-1*K.1^52,-1*K.1^16,K.1^12,K.1^36,-1*K.1^36,K.1^64,K.1^92,-1*K.1^96,-1*K.1^16,-1*K.1^8,K.1^28,-1*K.1^28,K.1^32,-1*K.1^52,-1*K.1^44,-1*K.1^84,K.1^84,K.1^8,K.1^88,K.1^4,-1*K.1^24,-1*K.1^68,-1*K.1^92,-1*K.1^64,-1*K.1^4,K.1^24,K.1^72,-1*K.1^12,K.1^48,K.1^44,-1*K.1^48,-1*K.1^76,-1*K.1^72,K.1^52,K.1^96,K.1^16,-1*K.1^32,-1*K.1^56,K.1^56,K.1^68,-1*K.1^88,K.1^36,K.1^76,K.1^12,K.1^18,K.1^26,-1*K.1^78,-1*K.1^14,-1*K.1^62,-1*K.1^62,-1*K.1^54,-1*K.1^38,K.1^42,K.1^14,K.1^34,-1*K.1^94,-1*K.1^74,-1*K.1^46,K.1^98,-1*K.1^94,-1*K.1^22,-1*K.1^86,K.1^18,-1*K.1^42,K.1^62,-1*K.1^22,K.1^22,-1*K.1^82,K.1^54,K.1^38,-1*K.1^66,-1*K.1^58,K.1^46,K.1^82,-1*K.1^26,K.1^78,K.1^46,K.1^98,K.1^62,-1*K.1^98,K.1^6,K.1^2,-1*K.1^42,-1*K.1^86,-1*K.1^26,K.1^78,-1*K.1^18,K.1^66,-1*K.1^6,-1*K.1^6,K.1^74,K.1^86,-1*K.1^66,K.1^38,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^2,-1*K.1^2,K.1^42,-1*K.1^82,K.1^22,K.1^14,-1*K.1^98,K.1^6,K.1^54,-1*K.1^58,-1*K.1^34,K.1^26,-1*K.1^38,K.1^66,K.1^2,-1*K.1^14,-1*K.1^78,K.1^94,-1*K.1^74,K.1^74,-1*K.1^54,K.1^94,K.1^58,K.1^58,K.1^34,K.1^82,-1*K.1^46,K.1^6,-1*K.1^42,-1*K.1^62,K.1^82,K.1^62,K.1^22,-1*K.1^6,-1*K.1^38,-1*K.1^18,-1*K.1^66,-1*K.1^46,K.1^98,K.1^78,K.1^14,K.1^34,-1*K.1^54,-1*K.1^34,K.1^94,-1*K.1^78,K.1^66,-1*K.1^14,K.1^86,-1*K.1^98,K.1^18,K.1^26,K.1^46,K.1^38,K.1^58,-1*K.1^22,-1*K.1^2,-1*K.1^82,K.1^2,K.1^42,-1*K.1^58,-1*K.1^26,-1*K.1^86,-1*K.1^94,-1*K.1^74,K.1^54,K.1^74,-1*K.1^99,-1*K.1^83,-1*K.1^49,-1*K.1^71,-1*K.1^59,-1*K.1^57,-1*K.1^91,K.1^17,-1*K.1^53,-1*K.1^63,-1*K.1^43,-1*K.1^91,K.1^31,-1*K.1^89,K.1^23,-1*K.1^29,-1*K.1^77,K.1^31,-1*K.1^33,-1*K.1^87,K.1^89,K.1^81,-1*K.1^27,K.1^93,K.1^27,K.1^67,-1*K.1^17,-1*K.1^51,K.1^57,K.1^49,-1*K.1^43,-1*K.1^9,K.1^11,-1*K.1^11,K.1^23,K.1^43,K.1^73,K.1^33,-1*K.1^11,K.1^77,-1*K.1^7,K.1^13,K.1^47,K.1^97,K.1^9,K.1^89,K.1^3,-1*K.1^13,-1*K.1^93,-1*K.1^23,-1*K.1^3,-1*K.1^83,-1*K.1^51,K.1^71,K.1^63,K.1^83,-1*K.1^69,-1*K.1^37,K.1^71,K.1^37,K.1^79,K.1^51,K.1^69,-1*K.1^67,K.1^41,-1*K.1^19,K.1^81,-1*K.1^27,K.1^7,K.1,K.1^67,-1*K.1^17,-1*K.1^49,-1*K.1^71,K.1^49,K.1^21,K.1^99,K.1^17,K.1^19,-1*K.1,K.1^21,K.1^99,K.1^33,K.1^19,-1*K.1,-1*K.1^21,K.1^87,K.1^53,-1*K.1^31,-1*K.1^99,-1*K.1^97,-1*K.1^47,-1*K.1^73,K.1^93,K.1^27,-1*K.1^61,K.1^61,K.1^59,K.1^57,-1*K.1^59,-1*K.1^57,-1*K.1^9,K.1^11,-1*K.1^53,-1*K.1^63,K.1^43,K.1^73,-1*K.1^39,-1*K.1^89,K.1^77,-1*K.1^3,K.1^39,K.1^91,K.1^29,K.1^63,-1*K.1^97,K.1^61,K.1^59,-1*K.1^93,-1*K.1^23,K.1^83,-1*K.1^69,K.1^91,K.1^29,K.1^37,K.1^79,-1*K.1^77,-1*K.1^39,-1*K.1^67,K.1^41,-1*K.1^7,K.1^13,K.1^53,-1*K.1^31,K.1^9,-1*K.1^19,-1*K.1^47,-1*K.1^73,K.1^7,K.1,-1*K.1^81,K.1^3,-1*K.1^13,-1*K.1^79,-1*K.1^41,-1*K.1^81,K.1^39,-1*K.1^37,-1*K.1^79,-1*K.1^41,-1*K.1^29,K.1^51,K.1^69,-1*K.1^33,-1*K.1^87,-1*K.1^21,K.1^87,K.1^47,K.1^97,-1*K.1^61]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,-1*K.1^90,-1*K.1^90,K.1^70,K.1^70,K.1^30,-1*K.1^70,-1*K.1^30,K.1^90,-1*K.1^70,-1*K.1^10,K.1^90,K.1^30,-1*K.1^10,-1*K.1^30,K.1^10,K.1^10,-1*K.1^70,K.1^30,K.1^10,K.1^70,-1*K.1^90,-1*K.1^10,-1*K.1^30,K.1^90,-1*K.1^92,K.1^96,K.1^72,-1*K.1^36,K.1^16,-1*K.1^76,K.1^32,-1*K.1^4,K.1^8,-1*K.1^84,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^68,K.1^88,-1*K.1^12,-1*K.1^44,K.1^56,-1*K.1^52,-1*K.1^35,-1*K.1^45,K.1^35,K.1^45,-1*K.1^5,-1*K.1^65,-1*K.1^55,K.1^65,-1*K.1^45,-1*K.1^85,K.1^55,K.1^85,K.1^15,-1*K.1^15,-1*K.1^65,-1*K.1^55,K.1^35,-1*K.1^35,-1*K.1^5,K.1^95,K.1^5,K.1^65,-1*K.1^85,-1*K.1^95,K.1^85,K.1^15,K.1^5,K.1^55,-1*K.1^15,-1*K.1^95,K.1^45,K.1^95,-1*K.1^68,-1*K.1^76,K.1^44,-1*K.1^88,-1*K.1^36,-1*K.1^28,K.1^48,K.1^56,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^24,-1*K.1^12,K.1^72,K.1^68,-1*K.1^84,-1*K.1^56,-1*K.1^64,-1*K.1^8,-1*K.1^44,K.1^84,K.1^4,K.1^64,-1*K.1^88,K.1^44,-1*K.1^92,-1*K.1^4,-1*K.1^48,-1*K.1^52,K.1^32,K.1^28,-1*K.1^48,K.1^76,K.1^76,-1*K.1^72,-1*K.1^56,-1*K.1^72,-1*K.1^16,-1*K.1^16,-1*K.1^32,-1*K.1^32,K.1^24,K.1^16,K.1^68,-1*K.1^64,K.1^96,K.1^12,K.1^12,K.1^36,K.1^92,K.1^92,K.1^36,K.1^52,-1*K.1^96,-1*K.1^96,K.1^52,K.1^88,K.1^4,K.1^28,K.1^84,-1*K.1^84,K.1^16,-1*K.1^48,-1*K.1^24,K.1^4,K.1^52,-1*K.1^32,K.1^32,K.1^8,K.1^88,-1*K.1^36,K.1^96,-1*K.1^96,-1*K.1^52,K.1^72,K.1^76,-1*K.1^56,-1*K.1^92,K.1^48,-1*K.1^16,-1*K.1^76,K.1^56,-1*K.1^68,-1*K.1^28,-1*K.1^12,K.1^36,K.1^12,-1*K.1^44,K.1^68,-1*K.1^88,K.1^24,-1*K.1^4,-1*K.1^8,-1*K.1^64,K.1^64,K.1^92,-1*K.1^72,K.1^84,K.1^44,K.1^28,-1*K.1^42,K.1^94,-1*K.1^82,-1*K.1^66,K.1^78,K.1^78,-1*K.1^26,K.1^22,-1*K.1^98,K.1^66,K.1^46,K.1^86,-1*K.1^6,-1*K.1^74,K.1^62,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^42,K.1^98,-1*K.1^78,-1*K.1^18,K.1^18,K.1^58,K.1^26,-1*K.1^22,-1*K.1^54,K.1^2,K.1^74,-1*K.1^58,-1*K.1^94,K.1^82,K.1^74,K.1^62,-1*K.1^78,-1*K.1^62,-1*K.1^14,K.1^38,K.1^98,-1*K.1^34,-1*K.1^94,K.1^82,K.1^42,K.1^54,K.1^14,K.1^14,K.1^6,K.1^34,-1*K.1^54,-1*K.1^22,K.1^34,K.1^42,-1*K.1^46,-1*K.1^38,-1*K.1^38,-1*K.1^98,K.1^58,K.1^18,K.1^66,-1*K.1^62,-1*K.1^14,K.1^26,K.1^2,-1*K.1^46,K.1^94,K.1^22,K.1^54,K.1^38,-1*K.1^66,-1*K.1^82,-1*K.1^86,-1*K.1^6,K.1^6,-1*K.1^26,-1*K.1^86,-1*K.1^2,-1*K.1^2,K.1^46,-1*K.1^58,-1*K.1^74,-1*K.1^14,K.1^98,K.1^78,-1*K.1^58,-1*K.1^78,K.1^18,K.1^14,K.1^22,K.1^42,-1*K.1^54,-1*K.1^74,K.1^62,K.1^82,K.1^66,K.1^46,-1*K.1^26,-1*K.1^46,-1*K.1^86,-1*K.1^82,K.1^54,-1*K.1^66,K.1^34,-1*K.1^62,-1*K.1^42,K.1^94,K.1^74,-1*K.1^22,-1*K.1^2,-1*K.1^18,-1*K.1^38,K.1^58,K.1^38,-1*K.1^98,K.1^2,-1*K.1^94,-1*K.1^34,K.1^86,-1*K.1^6,K.1^26,K.1^6,K.1^81,-1*K.1^77,-1*K.1^31,-1*K.1^49,-1*K.1^21,K.1^83,-1*K.1^29,K.1^23,K.1^7,-1*K.1^97,K.1^17,-1*K.1^29,K.1^89,K.1^91,-1*K.1^37,-1*K.1^51,K.1^63,K.1^89,K.1^27,K.1^53,-1*K.1^91,K.1^39,-1*K.1^13,K.1^67,K.1^13,-1*K.1^73,-1*K.1^23,-1*K.1^69,-1*K.1^83,K.1^31,K.1^17,-1*K.1^71,-1*K.1^9,K.1^9,-1*K.1^37,-1*K.1^17,K.1^87,-1*K.1^27,K.1^9,-1*K.1^63,-1*K.1^33,-1*K.1^47,-1*K.1^93,-1*K.1^43,K.1^71,-1*K.1^91,-1*K.1^57,K.1^47,-1*K.1^67,K.1^37,K.1^57,-1*K.1^77,-1*K.1^69,K.1^49,K.1^97,K.1^77,-1*K.1^11,-1*K.1^3,K.1^49,K.1^3,K.1,K.1^69,K.1^11,K.1^73,K.1^79,-1*K.1^61,K.1^39,-1*K.1^13,K.1^33,-1*K.1^19,-1*K.1^73,-1*K.1^23,-1*K.1^31,-1*K.1^49,K.1^31,K.1^99,-1*K.1^81,K.1^23,K.1^61,K.1^19,K.1^99,-1*K.1^81,-1*K.1^27,K.1^61,K.1^19,-1*K.1^99,-1*K.1^53,-1*K.1^7,-1*K.1^89,K.1^81,K.1^43,K.1^93,-1*K.1^87,K.1^67,K.1^13,-1*K.1^59,K.1^59,K.1^21,-1*K.1^83,-1*K.1^21,K.1^83,-1*K.1^71,-1*K.1^9,K.1^7,-1*K.1^97,-1*K.1^17,K.1^87,-1*K.1^41,K.1^91,-1*K.1^63,K.1^57,K.1^41,K.1^29,K.1^51,K.1^97,K.1^43,K.1^59,K.1^21,-1*K.1^67,K.1^37,K.1^77,-1*K.1^11,K.1^29,K.1^51,K.1^3,K.1,K.1^63,-1*K.1^41,K.1^73,K.1^79,-1*K.1^33,-1*K.1^47,-1*K.1^7,-1*K.1^89,K.1^71,-1*K.1^61,K.1^93,-1*K.1^87,K.1^33,-1*K.1^19,-1*K.1^39,-1*K.1^57,K.1^47,-1*K.1,-1*K.1^79,-1*K.1^39,K.1^41,-1*K.1^3,-1*K.1,-1*K.1^79,-1*K.1^51,K.1^69,K.1^11,K.1^27,K.1^53,-1*K.1^99,-1*K.1^53,-1*K.1^93,-1*K.1^43,-1*K.1^59]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,K.1^10,K.1^10,-1*K.1^30,-1*K.1^30,-1*K.1^70,K.1^30,K.1^70,-1*K.1^10,K.1^30,K.1^90,-1*K.1^10,-1*K.1^70,K.1^90,K.1^70,-1*K.1^90,-1*K.1^90,K.1^30,-1*K.1^70,-1*K.1^90,-1*K.1^30,K.1^10,K.1^90,K.1^70,-1*K.1^10,K.1^8,-1*K.1^4,-1*K.1^28,K.1^64,-1*K.1^84,K.1^24,-1*K.1^68,K.1^96,-1*K.1^92,K.1^16,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^32,-1*K.1^12,K.1^88,K.1^56,-1*K.1^44,K.1^48,K.1^65,K.1^55,-1*K.1^65,-1*K.1^55,K.1^95,K.1^35,K.1^45,-1*K.1^35,K.1^55,K.1^15,-1*K.1^45,-1*K.1^15,-1*K.1^85,K.1^85,K.1^35,K.1^45,-1*K.1^65,K.1^65,K.1^95,-1*K.1^5,-1*K.1^95,-1*K.1^35,K.1^15,K.1^5,-1*K.1^15,-1*K.1^85,-1*K.1^95,-1*K.1^45,K.1^85,K.1^5,-1*K.1^55,-1*K.1^5,K.1^32,K.1^24,-1*K.1^56,K.1^12,K.1^64,K.1^72,-1*K.1^52,-1*K.1^44,K.1^92,K.1^76,-1*K.1^92,K.1^76,K.1^88,-1*K.1^28,-1*K.1^32,K.1^16,K.1^44,K.1^36,K.1^92,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^36,K.1^12,-1*K.1^56,K.1^8,K.1^96,K.1^52,K.1^48,-1*K.1^68,-1*K.1^72,K.1^52,-1*K.1^24,-1*K.1^24,K.1^28,K.1^44,K.1^28,K.1^84,K.1^84,K.1^68,K.1^68,-1*K.1^76,-1*K.1^84,-1*K.1^32,K.1^36,-1*K.1^4,-1*K.1^88,-1*K.1^88,-1*K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^64,-1*K.1^48,K.1^4,K.1^4,-1*K.1^48,-1*K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^16,K.1^16,-1*K.1^84,K.1^52,K.1^76,-1*K.1^96,-1*K.1^48,K.1^68,-1*K.1^68,-1*K.1^92,-1*K.1^12,K.1^64,-1*K.1^4,K.1^4,K.1^48,-1*K.1^28,-1*K.1^24,K.1^44,K.1^8,-1*K.1^52,K.1^84,K.1^24,-1*K.1^44,K.1^32,K.1^72,K.1^88,-1*K.1^64,-1*K.1^88,K.1^56,-1*K.1^32,K.1^12,-1*K.1^76,K.1^96,K.1^92,K.1^36,-1*K.1^36,-1*K.1^8,K.1^28,-1*K.1^16,-1*K.1^56,-1*K.1^72,K.1^58,-1*K.1^6,K.1^18,K.1^34,-1*K.1^22,-1*K.1^22,K.1^74,-1*K.1^78,K.1^2,-1*K.1^34,-1*K.1^54,-1*K.1^14,K.1^94,K.1^26,-1*K.1^38,-1*K.1^14,K.1^82,K.1^66,K.1^58,-1*K.1^2,K.1^22,K.1^82,-1*K.1^82,-1*K.1^42,-1*K.1^74,K.1^78,K.1^46,-1*K.1^98,-1*K.1^26,K.1^42,K.1^6,-1*K.1^18,-1*K.1^26,-1*K.1^38,K.1^22,K.1^38,K.1^86,-1*K.1^62,-1*K.1^2,K.1^66,K.1^6,-1*K.1^18,-1*K.1^58,-1*K.1^46,-1*K.1^86,-1*K.1^86,-1*K.1^94,-1*K.1^66,K.1^46,K.1^78,-1*K.1^66,-1*K.1^58,K.1^54,K.1^62,K.1^62,K.1^2,-1*K.1^42,-1*K.1^82,-1*K.1^34,K.1^38,K.1^86,-1*K.1^74,-1*K.1^98,K.1^54,-1*K.1^6,-1*K.1^78,-1*K.1^46,-1*K.1^62,K.1^34,K.1^18,K.1^14,K.1^94,-1*K.1^94,K.1^74,K.1^14,K.1^98,K.1^98,-1*K.1^54,K.1^42,K.1^26,K.1^86,-1*K.1^2,-1*K.1^22,K.1^42,K.1^22,-1*K.1^82,-1*K.1^86,-1*K.1^78,-1*K.1^58,K.1^46,K.1^26,-1*K.1^38,-1*K.1^18,-1*K.1^34,-1*K.1^54,K.1^74,K.1^54,K.1^14,K.1^18,-1*K.1^46,K.1^34,-1*K.1^66,K.1^38,K.1^58,-1*K.1^6,-1*K.1^26,K.1^78,K.1^98,K.1^82,K.1^62,-1*K.1^42,-1*K.1^62,K.1^2,-1*K.1^98,K.1^6,K.1^66,-1*K.1^14,K.1^94,-1*K.1^74,-1*K.1^94,-1*K.1^19,K.1^23,K.1^69,K.1^51,K.1^79,-1*K.1^17,K.1^71,-1*K.1^77,-1*K.1^93,K.1^3,-1*K.1^83,K.1^71,-1*K.1^11,-1*K.1^9,K.1^63,K.1^49,-1*K.1^37,-1*K.1^11,-1*K.1^73,-1*K.1^47,K.1^9,-1*K.1^61,K.1^87,-1*K.1^33,-1*K.1^87,K.1^27,K.1^77,K.1^31,K.1^17,-1*K.1^69,-1*K.1^83,K.1^29,K.1^91,-1*K.1^91,K.1^63,K.1^83,-1*K.1^13,K.1^73,-1*K.1^91,K.1^37,K.1^67,K.1^53,K.1^7,K.1^57,-1*K.1^29,K.1^9,K.1^43,-1*K.1^53,K.1^33,-1*K.1^63,-1*K.1^43,K.1^23,K.1^31,-1*K.1^51,-1*K.1^3,-1*K.1^23,K.1^89,K.1^97,-1*K.1^51,-1*K.1^97,-1*K.1^99,-1*K.1^31,-1*K.1^89,-1*K.1^27,-1*K.1^21,K.1^39,-1*K.1^61,K.1^87,-1*K.1^67,K.1^81,K.1^27,K.1^77,K.1^69,K.1^51,-1*K.1^69,-1*K.1,K.1^19,-1*K.1^77,-1*K.1^39,-1*K.1^81,-1*K.1,K.1^19,K.1^73,-1*K.1^39,-1*K.1^81,K.1,K.1^47,K.1^93,K.1^11,-1*K.1^19,-1*K.1^57,-1*K.1^7,K.1^13,-1*K.1^33,-1*K.1^87,K.1^41,-1*K.1^41,-1*K.1^79,K.1^17,K.1^79,-1*K.1^17,K.1^29,K.1^91,-1*K.1^93,K.1^3,K.1^83,-1*K.1^13,K.1^59,-1*K.1^9,K.1^37,-1*K.1^43,-1*K.1^59,-1*K.1^71,-1*K.1^49,-1*K.1^3,-1*K.1^57,-1*K.1^41,-1*K.1^79,K.1^33,-1*K.1^63,-1*K.1^23,K.1^89,-1*K.1^71,-1*K.1^49,-1*K.1^97,-1*K.1^99,-1*K.1^37,K.1^59,-1*K.1^27,-1*K.1^21,K.1^67,K.1^53,K.1^93,K.1^11,-1*K.1^29,K.1^39,-1*K.1^7,K.1^13,-1*K.1^67,K.1^81,K.1^61,K.1^43,-1*K.1^53,K.1^99,K.1^21,K.1^61,-1*K.1^59,K.1^97,K.1^99,K.1^21,K.1^49,-1*K.1^31,-1*K.1^89,-1*K.1^73,-1*K.1^47,K.1,K.1^47,K.1^7,K.1^57,K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^88,-1*K.1^44,K.1^8,-1*K.1^4,K.1^24,K.1^64,K.1^48,K.1^56,-1*K.1^12,-1*K.1^76,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,-1*K.1^52,K.1^32,-1*K.1^68,K.1^16,-1*K.1^84,-1*K.1^28,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,K.1^45,-1*K.1^85,K.1^95,K.1^85,K.1^5,-1*K.1^65,-1*K.1^95,K.1^65,K.1^35,-1*K.1^35,-1*K.1^85,K.1^95,K.1^15,-1*K.1^15,K.1^45,-1*K.1^55,-1*K.1^45,K.1^85,-1*K.1^65,K.1^55,K.1^65,K.1^35,-1*K.1^45,-1*K.1^95,-1*K.1^35,K.1^55,-1*K.1^5,-1*K.1^55,-1*K.1^52,K.1^64,-1*K.1^16,-1*K.1^32,-1*K.1^4,-1*K.1^92,K.1^72,-1*K.1^84,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^68,K.1^8,K.1^52,-1*K.1^76,K.1^84,-1*K.1^96,K.1^12,K.1^16,K.1^76,-1*K.1^56,K.1^96,-1*K.1^32,-1*K.1^16,K.1^88,K.1^56,-1*K.1^72,-1*K.1^28,K.1^48,K.1^92,-1*K.1^72,-1*K.1^64,-1*K.1^64,-1*K.1^8,K.1^84,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^48,-1*K.1^48,-1*K.1^36,K.1^24,K.1^52,-1*K.1^96,-1*K.1^44,K.1^68,K.1^68,K.1^4,-1*K.1^88,-1*K.1^88,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^56,K.1^92,K.1^76,-1*K.1^76,K.1^24,-1*K.1^72,K.1^36,-1*K.1^56,K.1^28,-1*K.1^48,K.1^48,-1*K.1^12,K.1^32,-1*K.1^4,-1*K.1^44,K.1^44,-1*K.1^28,K.1^8,-1*K.1^64,K.1^84,K.1^88,K.1^72,-1*K.1^24,K.1^64,-1*K.1^84,-1*K.1^52,-1*K.1^92,-1*K.1^68,K.1^4,K.1^68,K.1^16,K.1^52,-1*K.1^32,-1*K.1^36,K.1^56,K.1^12,-1*K.1^96,K.1^96,-1*K.1^88,-1*K.1^8,K.1^76,-1*K.1^16,K.1^92,K.1^38,-1*K.1^66,-1*K.1^98,-1*K.1^74,-1*K.1^42,-1*K.1^42,K.1^14,-1*K.1^58,K.1^22,K.1^74,K.1^94,K.1^54,K.1^34,K.1^86,-1*K.1^18,K.1^54,-1*K.1^2,-1*K.1^26,K.1^38,-1*K.1^22,K.1^42,-1*K.1^2,K.1^2,-1*K.1^62,-1*K.1^14,K.1^58,-1*K.1^6,-1*K.1^78,-1*K.1^86,K.1^62,K.1^66,K.1^98,-1*K.1^86,-1*K.1^18,K.1^42,K.1^18,-1*K.1^46,-1*K.1^82,-1*K.1^22,-1*K.1^26,K.1^66,K.1^98,-1*K.1^38,K.1^6,K.1^46,K.1^46,-1*K.1^34,K.1^26,-1*K.1^6,K.1^58,K.1^26,-1*K.1^38,-1*K.1^94,K.1^82,K.1^82,K.1^22,-1*K.1^62,K.1^2,K.1^74,K.1^18,-1*K.1^46,-1*K.1^14,-1*K.1^78,-1*K.1^94,-1*K.1^66,-1*K.1^58,K.1^6,-1*K.1^82,-1*K.1^74,-1*K.1^98,-1*K.1^54,K.1^34,-1*K.1^34,K.1^14,-1*K.1^54,K.1^78,K.1^78,K.1^94,K.1^62,K.1^86,-1*K.1^46,-1*K.1^22,-1*K.1^42,K.1^62,K.1^42,K.1^2,K.1^46,-1*K.1^58,-1*K.1^38,-1*K.1^6,K.1^86,-1*K.1^18,K.1^98,K.1^74,K.1^94,K.1^14,-1*K.1^94,-1*K.1^54,-1*K.1^98,K.1^6,-1*K.1^74,K.1^26,K.1^18,K.1^38,-1*K.1^66,-1*K.1^86,K.1^58,K.1^78,-1*K.1^2,K.1^82,-1*K.1^62,-1*K.1^82,K.1^22,-1*K.1^78,K.1^66,-1*K.1^26,K.1^54,K.1^34,-1*K.1^14,-1*K.1^34,-1*K.1^9,K.1^53,-1*K.1^59,-1*K.1^61,K.1^69,K.1^87,-1*K.1^81,-1*K.1^47,-1*K.1^23,K.1^33,K.1^13,-1*K.1^81,K.1^21,-1*K.1^99,K.1^93,-1*K.1^39,-1*K.1^7,K.1^21,-1*K.1^3,K.1^17,K.1^99,-1*K.1^71,-1*K.1^57,K.1^63,K.1^57,K.1^97,K.1^47,-1*K.1^41,-1*K.1^87,K.1^59,K.1^13,-1*K.1^19,K.1,-1*K.1,K.1^93,-1*K.1^13,K.1^43,K.1^3,-1*K.1,K.1^7,-1*K.1^37,-1*K.1^83,K.1^77,K.1^27,K.1^19,K.1^99,K.1^73,K.1^83,-1*K.1^63,-1*K.1^93,-1*K.1^73,K.1^53,-1*K.1^41,K.1^61,-1*K.1^33,-1*K.1^53,-1*K.1^79,K.1^67,K.1^61,-1*K.1^67,-1*K.1^89,K.1^41,K.1^79,-1*K.1^97,-1*K.1^31,K.1^29,-1*K.1^71,-1*K.1^57,K.1^37,K.1^91,K.1^97,K.1^47,-1*K.1^59,-1*K.1^61,K.1^59,-1*K.1^11,K.1^9,-1*K.1^47,-1*K.1^29,-1*K.1^91,-1*K.1^11,K.1^9,K.1^3,-1*K.1^29,-1*K.1^91,K.1^11,-1*K.1^17,K.1^23,-1*K.1^21,-1*K.1^9,-1*K.1^27,-1*K.1^77,-1*K.1^43,K.1^63,K.1^57,K.1^51,-1*K.1^51,-1*K.1^69,-1*K.1^87,K.1^69,K.1^87,-1*K.1^19,K.1,-1*K.1^23,K.1^33,-1*K.1^13,K.1^43,K.1^49,-1*K.1^99,K.1^7,-1*K.1^73,-1*K.1^49,K.1^81,K.1^39,-1*K.1^33,-1*K.1^27,-1*K.1^51,-1*K.1^69,-1*K.1^63,-1*K.1^93,-1*K.1^53,-1*K.1^79,K.1^81,K.1^39,-1*K.1^67,-1*K.1^89,-1*K.1^7,K.1^49,-1*K.1^97,-1*K.1^31,-1*K.1^37,-1*K.1^83,K.1^23,-1*K.1^21,K.1^19,K.1^29,-1*K.1^77,-1*K.1^43,K.1^37,K.1^91,K.1^71,K.1^73,K.1^83,K.1^89,K.1^31,K.1^71,-1*K.1^49,K.1^67,K.1^89,K.1^31,-1*K.1^39,K.1^41,K.1^79,-1*K.1^3,K.1^17,K.1^11,-1*K.1^17,K.1^77,K.1^27,K.1^51]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^12,K.1^56,-1*K.1^92,K.1^96,-1*K.1^76,-1*K.1^36,-1*K.1^52,-1*K.1^44,K.1^88,K.1^24,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,K.1^48,-1*K.1^68,K.1^32,-1*K.1^84,K.1^16,K.1^72,K.1^85,-1*K.1^95,-1*K.1^85,K.1^95,-1*K.1^55,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^95,K.1^35,K.1^5,-1*K.1^35,-1*K.1^65,K.1^65,K.1^15,-1*K.1^5,-1*K.1^85,K.1^85,-1*K.1^55,K.1^45,K.1^55,-1*K.1^15,K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^65,K.1^55,K.1^5,K.1^65,-1*K.1^45,K.1^95,K.1^45,K.1^48,-1*K.1^36,K.1^84,K.1^68,K.1^96,K.1^8,-1*K.1^28,K.1^16,-1*K.1^88,-1*K.1^64,K.1^88,-1*K.1^64,K.1^32,-1*K.1^92,-1*K.1^48,K.1^24,-1*K.1^16,K.1^4,-1*K.1^88,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^4,K.1^68,K.1^84,-1*K.1^12,-1*K.1^44,K.1^28,K.1^72,-1*K.1^52,-1*K.1^8,K.1^28,K.1^36,K.1^36,K.1^92,-1*K.1^16,K.1^92,K.1^76,K.1^76,K.1^52,K.1^52,K.1^64,-1*K.1^76,-1*K.1^48,K.1^4,K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^96,K.1^12,K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^56,-1*K.1^56,-1*K.1^72,-1*K.1^68,K.1^44,-1*K.1^8,-1*K.1^24,K.1^24,-1*K.1^76,K.1^28,-1*K.1^64,K.1^44,-1*K.1^72,K.1^52,-1*K.1^52,K.1^88,-1*K.1^68,K.1^96,K.1^56,-1*K.1^56,K.1^72,-1*K.1^92,K.1^36,-1*K.1^16,-1*K.1^12,-1*K.1^28,K.1^76,-1*K.1^36,K.1^16,K.1^48,K.1^8,K.1^32,-1*K.1^96,-1*K.1^32,-1*K.1^84,-1*K.1^48,K.1^68,K.1^64,-1*K.1^44,-1*K.1^88,K.1^4,-1*K.1^4,K.1^12,K.1^92,-1*K.1^24,K.1^84,-1*K.1^8,-1*K.1^62,K.1^34,K.1^2,K.1^26,K.1^58,K.1^58,-1*K.1^86,K.1^42,-1*K.1^78,-1*K.1^26,-1*K.1^6,-1*K.1^46,-1*K.1^66,-1*K.1^14,K.1^82,-1*K.1^46,K.1^98,K.1^74,-1*K.1^62,K.1^78,-1*K.1^58,K.1^98,-1*K.1^98,K.1^38,K.1^86,-1*K.1^42,K.1^94,K.1^22,K.1^14,-1*K.1^38,-1*K.1^34,-1*K.1^2,K.1^14,K.1^82,-1*K.1^58,-1*K.1^82,K.1^54,K.1^18,K.1^78,K.1^74,-1*K.1^34,-1*K.1^2,K.1^62,-1*K.1^94,-1*K.1^54,-1*K.1^54,K.1^66,-1*K.1^74,K.1^94,-1*K.1^42,-1*K.1^74,K.1^62,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^78,K.1^38,-1*K.1^98,-1*K.1^26,-1*K.1^82,K.1^54,K.1^86,K.1^22,K.1^6,K.1^34,K.1^42,-1*K.1^94,K.1^18,K.1^26,K.1^2,K.1^46,-1*K.1^66,K.1^66,-1*K.1^86,K.1^46,-1*K.1^22,-1*K.1^22,-1*K.1^6,-1*K.1^38,-1*K.1^14,K.1^54,K.1^78,K.1^58,-1*K.1^38,-1*K.1^58,-1*K.1^98,-1*K.1^54,K.1^42,K.1^62,K.1^94,-1*K.1^14,K.1^82,-1*K.1^2,-1*K.1^26,-1*K.1^6,-1*K.1^86,K.1^6,K.1^46,K.1^2,-1*K.1^94,K.1^26,-1*K.1^74,-1*K.1^82,-1*K.1^62,K.1^34,K.1^14,-1*K.1^42,-1*K.1^22,K.1^98,-1*K.1^18,K.1^38,K.1^18,-1*K.1^78,K.1^22,-1*K.1^34,K.1^74,-1*K.1^46,-1*K.1^66,K.1^86,K.1^66,K.1^91,-1*K.1^47,K.1^41,K.1^39,-1*K.1^31,-1*K.1^13,K.1^19,K.1^53,K.1^77,-1*K.1^67,-1*K.1^87,K.1^19,-1*K.1^79,K.1,-1*K.1^7,K.1^61,K.1^93,-1*K.1^79,K.1^97,-1*K.1^83,-1*K.1,K.1^29,K.1^43,-1*K.1^37,-1*K.1^43,-1*K.1^3,-1*K.1^53,K.1^59,K.1^13,-1*K.1^41,-1*K.1^87,K.1^81,-1*K.1^99,K.1^99,-1*K.1^7,K.1^87,-1*K.1^57,-1*K.1^97,K.1^99,-1*K.1^93,K.1^63,K.1^17,-1*K.1^23,-1*K.1^73,-1*K.1^81,-1*K.1,-1*K.1^27,-1*K.1^17,K.1^37,K.1^7,K.1^27,-1*K.1^47,K.1^59,-1*K.1^39,K.1^67,K.1^47,K.1^21,-1*K.1^33,-1*K.1^39,K.1^33,K.1^11,-1*K.1^59,-1*K.1^21,K.1^3,K.1^69,-1*K.1^71,K.1^29,K.1^43,-1*K.1^63,-1*K.1^9,-1*K.1^3,-1*K.1^53,K.1^41,K.1^39,-1*K.1^41,K.1^89,-1*K.1^91,K.1^53,K.1^71,K.1^9,K.1^89,-1*K.1^91,-1*K.1^97,K.1^71,K.1^9,-1*K.1^89,K.1^83,-1*K.1^77,K.1^79,K.1^91,K.1^73,K.1^23,K.1^57,-1*K.1^37,-1*K.1^43,-1*K.1^49,K.1^49,K.1^31,K.1^13,-1*K.1^31,-1*K.1^13,K.1^81,-1*K.1^99,K.1^77,-1*K.1^67,K.1^87,-1*K.1^57,-1*K.1^51,K.1,-1*K.1^93,K.1^27,K.1^51,-1*K.1^19,-1*K.1^61,K.1^67,K.1^73,K.1^49,K.1^31,K.1^37,K.1^7,K.1^47,K.1^21,-1*K.1^19,-1*K.1^61,K.1^33,K.1^11,K.1^93,-1*K.1^51,K.1^3,K.1^69,K.1^63,K.1^17,-1*K.1^77,K.1^79,-1*K.1^81,-1*K.1^71,K.1^23,K.1^57,-1*K.1^63,-1*K.1^9,-1*K.1^29,-1*K.1^27,-1*K.1^17,-1*K.1^11,-1*K.1^69,-1*K.1^29,K.1^51,-1*K.1^33,-1*K.1^11,-1*K.1^69,K.1^61,-1*K.1^59,-1*K.1^21,K.1^97,-1*K.1^83,-1*K.1^89,K.1^83,-1*K.1^23,-1*K.1^73,-1*K.1^49]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,-1*K.1^28,K.1^64,K.1^48,K.1^24,-1*K.1^44,-1*K.1^84,K.1^88,-1*K.1^36,K.1^72,K.1^56,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^12,-1*K.1^92,K.1^8,K.1^96,-1*K.1^4,-1*K.1^68,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,K.1^45,-1*K.1^85,K.1^95,K.1^85,K.1^5,-1*K.1^65,-1*K.1^95,K.1^65,K.1^35,-1*K.1^35,-1*K.1^85,K.1^95,K.1^15,-1*K.1^15,K.1^45,-1*K.1^55,-1*K.1^45,K.1^85,-1*K.1^65,K.1^55,K.1^65,K.1^35,-1*K.1^45,-1*K.1^95,-1*K.1^35,K.1^55,-1*K.1^5,-1*K.1^55,-1*K.1^12,-1*K.1^84,-1*K.1^96,K.1^92,K.1^24,-1*K.1^52,K.1^32,-1*K.1^4,-1*K.1^72,-1*K.1^16,K.1^72,-1*K.1^16,K.1^8,K.1^48,K.1^12,K.1^56,K.1^4,K.1^76,-1*K.1^72,K.1^96,-1*K.1^56,K.1^36,-1*K.1^76,K.1^92,-1*K.1^96,-1*K.1^28,-1*K.1^36,-1*K.1^32,-1*K.1^68,K.1^88,K.1^52,-1*K.1^32,K.1^84,K.1^84,-1*K.1^48,K.1^4,-1*K.1^48,K.1^44,K.1^44,-1*K.1^88,-1*K.1^88,K.1^16,-1*K.1^44,K.1^12,K.1^76,K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^28,K.1^28,-1*K.1^24,K.1^68,-1*K.1^64,-1*K.1^64,K.1^68,-1*K.1^92,K.1^36,K.1^52,-1*K.1^56,K.1^56,-1*K.1^44,-1*K.1^32,-1*K.1^16,K.1^36,K.1^68,-1*K.1^88,K.1^88,K.1^72,-1*K.1^92,K.1^24,K.1^64,-1*K.1^64,-1*K.1^68,K.1^48,K.1^84,K.1^4,-1*K.1^28,K.1^32,K.1^44,-1*K.1^84,-1*K.1^4,-1*K.1^12,-1*K.1^52,K.1^8,-1*K.1^24,-1*K.1^8,K.1^96,K.1^12,K.1^92,K.1^16,-1*K.1^36,-1*K.1^72,K.1^76,-1*K.1^76,K.1^28,-1*K.1^48,-1*K.1^56,-1*K.1^96,K.1^52,K.1^78,K.1^46,K.1^38,K.1^94,-1*K.1^2,-1*K.1^2,-1*K.1^34,-1*K.1^98,-1*K.1^82,-1*K.1^94,K.1^14,-1*K.1^74,-1*K.1^54,-1*K.1^66,-1*K.1^58,-1*K.1^74,K.1^62,K.1^6,K.1^78,K.1^82,K.1^2,K.1^62,-1*K.1^62,-1*K.1^22,K.1^34,K.1^98,-1*K.1^86,K.1^18,K.1^66,K.1^22,-1*K.1^46,-1*K.1^38,K.1^66,-1*K.1^58,K.1^2,K.1^58,K.1^26,-1*K.1^42,K.1^82,K.1^6,-1*K.1^46,-1*K.1^38,-1*K.1^78,K.1^86,-1*K.1^26,-1*K.1^26,K.1^54,-1*K.1^6,-1*K.1^86,K.1^98,-1*K.1^6,-1*K.1^78,-1*K.1^14,K.1^42,K.1^42,-1*K.1^82,-1*K.1^22,-1*K.1^62,-1*K.1^94,K.1^58,K.1^26,K.1^34,K.1^18,-1*K.1^14,K.1^46,-1*K.1^98,K.1^86,-1*K.1^42,K.1^94,K.1^38,K.1^74,-1*K.1^54,K.1^54,-1*K.1^34,K.1^74,-1*K.1^18,-1*K.1^18,K.1^14,K.1^22,-1*K.1^66,K.1^26,K.1^82,-1*K.1^2,K.1^22,K.1^2,-1*K.1^62,-1*K.1^26,-1*K.1^98,-1*K.1^78,-1*K.1^86,-1*K.1^66,-1*K.1^58,-1*K.1^38,-1*K.1^94,K.1^14,-1*K.1^34,-1*K.1^14,K.1^74,K.1^38,K.1^86,K.1^94,-1*K.1^6,K.1^58,K.1^78,K.1^46,K.1^66,K.1^98,-1*K.1^18,K.1^62,K.1^42,-1*K.1^22,-1*K.1^42,-1*K.1^82,K.1^18,-1*K.1^46,K.1^6,-1*K.1^74,-1*K.1^54,K.1^34,K.1^54,K.1^29,K.1^93,K.1^79,K.1^41,-1*K.1^89,K.1^47,K.1^61,-1*K.1^7,-1*K.1^63,K.1^73,K.1^53,K.1^61,-1*K.1,-1*K.1^19,-1*K.1^33,K.1^59,K.1^67,-1*K.1,-1*K.1^43,-1*K.1^77,K.1^19,K.1^51,-1*K.1^17,-1*K.1^3,K.1^17,K.1^57,K.1^7,K.1^21,-1*K.1^47,-1*K.1^79,K.1^53,K.1^39,K.1^81,-1*K.1^81,-1*K.1^33,-1*K.1^53,K.1^83,K.1^43,-1*K.1^81,-1*K.1^67,K.1^97,K.1^23,K.1^37,-1*K.1^87,-1*K.1^39,K.1^19,-1*K.1^13,-1*K.1^23,K.1^3,K.1^33,K.1^13,K.1^93,K.1^21,-1*K.1^41,-1*K.1^73,-1*K.1^93,K.1^99,K.1^27,-1*K.1^41,-1*K.1^27,-1*K.1^9,-1*K.1^21,-1*K.1^99,-1*K.1^57,K.1^11,-1*K.1^49,K.1^51,-1*K.1^17,-1*K.1^97,-1*K.1^71,K.1^57,K.1^7,K.1^79,K.1^41,-1*K.1^79,-1*K.1^91,-1*K.1^29,-1*K.1^7,K.1^49,K.1^71,-1*K.1^91,-1*K.1^29,K.1^43,K.1^49,K.1^71,K.1^91,K.1^77,K.1^63,K.1,K.1^29,K.1^87,-1*K.1^37,-1*K.1^83,-1*K.1^3,K.1^17,-1*K.1^31,K.1^31,K.1^89,-1*K.1^47,-1*K.1^89,K.1^47,K.1^39,K.1^81,-1*K.1^63,K.1^73,-1*K.1^53,K.1^83,-1*K.1^69,-1*K.1^19,-1*K.1^67,K.1^13,K.1^69,-1*K.1^61,-1*K.1^59,-1*K.1^73,K.1^87,K.1^31,K.1^89,K.1^3,K.1^33,-1*K.1^93,K.1^99,-1*K.1^61,-1*K.1^59,-1*K.1^27,-1*K.1^9,K.1^67,-1*K.1^69,-1*K.1^57,K.1^11,K.1^97,K.1^23,K.1^63,K.1,-1*K.1^39,-1*K.1^49,-1*K.1^37,-1*K.1^83,-1*K.1^97,-1*K.1^71,-1*K.1^51,-1*K.1^13,-1*K.1^23,K.1^9,-1*K.1^11,-1*K.1^51,K.1^69,K.1^27,K.1^9,-1*K.1^11,K.1^59,-1*K.1^21,-1*K.1^99,-1*K.1^43,-1*K.1^77,K.1^91,K.1^77,K.1^37,-1*K.1^87,-1*K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,K.1^72,-1*K.1^36,-1*K.1^52,-1*K.1^76,K.1^56,K.1^16,-1*K.1^12,K.1^64,-1*K.1^28,-1*K.1^44,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^88,K.1^8,-1*K.1^92,-1*K.1^4,K.1^96,K.1^32,K.1^85,-1*K.1^95,-1*K.1^85,K.1^95,-1*K.1^55,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^95,K.1^35,K.1^5,-1*K.1^35,-1*K.1^65,K.1^65,K.1^15,-1*K.1^5,-1*K.1^85,K.1^85,-1*K.1^55,K.1^45,K.1^55,-1*K.1^15,K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^65,K.1^55,K.1^5,K.1^65,-1*K.1^45,K.1^95,K.1^45,K.1^88,K.1^16,K.1^4,-1*K.1^8,-1*K.1^76,K.1^48,-1*K.1^68,K.1^96,K.1^28,K.1^84,-1*K.1^28,K.1^84,-1*K.1^92,-1*K.1^52,-1*K.1^88,-1*K.1^44,-1*K.1^96,-1*K.1^24,K.1^28,-1*K.1^4,K.1^44,-1*K.1^64,K.1^24,-1*K.1^8,K.1^4,K.1^72,K.1^64,K.1^68,K.1^32,-1*K.1^12,-1*K.1^48,K.1^68,-1*K.1^16,-1*K.1^16,K.1^52,-1*K.1^96,K.1^52,-1*K.1^56,-1*K.1^56,K.1^12,K.1^12,-1*K.1^84,K.1^56,-1*K.1^88,-1*K.1^24,-1*K.1^36,K.1^92,K.1^92,K.1^76,-1*K.1^72,-1*K.1^72,K.1^76,-1*K.1^32,K.1^36,K.1^36,-1*K.1^32,K.1^8,-1*K.1^64,-1*K.1^48,K.1^44,-1*K.1^44,K.1^56,K.1^68,K.1^84,-1*K.1^64,-1*K.1^32,K.1^12,-1*K.1^12,-1*K.1^28,K.1^8,-1*K.1^76,-1*K.1^36,K.1^36,K.1^32,-1*K.1^52,-1*K.1^16,-1*K.1^96,K.1^72,-1*K.1^68,-1*K.1^56,K.1^16,K.1^96,K.1^88,K.1^48,-1*K.1^92,K.1^76,K.1^92,-1*K.1^4,-1*K.1^88,-1*K.1^8,-1*K.1^84,K.1^64,K.1^28,-1*K.1^24,K.1^24,-1*K.1^72,K.1^52,K.1^44,K.1^4,-1*K.1^48,-1*K.1^22,-1*K.1^54,-1*K.1^62,-1*K.1^6,K.1^98,K.1^98,K.1^66,K.1^2,K.1^18,K.1^6,-1*K.1^86,K.1^26,K.1^46,K.1^34,K.1^42,K.1^26,-1*K.1^38,-1*K.1^94,-1*K.1^22,-1*K.1^18,-1*K.1^98,-1*K.1^38,K.1^38,K.1^78,-1*K.1^66,-1*K.1^2,K.1^14,-1*K.1^82,-1*K.1^34,-1*K.1^78,K.1^54,K.1^62,-1*K.1^34,K.1^42,-1*K.1^98,-1*K.1^42,-1*K.1^74,K.1^58,-1*K.1^18,-1*K.1^94,K.1^54,K.1^62,K.1^22,-1*K.1^14,K.1^74,K.1^74,-1*K.1^46,K.1^94,K.1^14,-1*K.1^2,K.1^94,K.1^22,K.1^86,-1*K.1^58,-1*K.1^58,K.1^18,K.1^78,K.1^38,K.1^6,-1*K.1^42,-1*K.1^74,-1*K.1^66,-1*K.1^82,K.1^86,-1*K.1^54,K.1^2,-1*K.1^14,K.1^58,-1*K.1^6,-1*K.1^62,-1*K.1^26,K.1^46,-1*K.1^46,K.1^66,-1*K.1^26,K.1^82,K.1^82,-1*K.1^86,-1*K.1^78,K.1^34,-1*K.1^74,-1*K.1^18,K.1^98,-1*K.1^78,-1*K.1^98,K.1^38,K.1^74,K.1^2,K.1^22,K.1^14,K.1^34,K.1^42,K.1^62,K.1^6,-1*K.1^86,K.1^66,K.1^86,-1*K.1^26,-1*K.1^62,-1*K.1^14,-1*K.1^6,K.1^94,-1*K.1^42,-1*K.1^22,-1*K.1^54,-1*K.1^34,-1*K.1^2,K.1^82,-1*K.1^38,-1*K.1^58,K.1^78,K.1^58,K.1^18,-1*K.1^82,K.1^54,-1*K.1^94,K.1^26,K.1^46,-1*K.1^66,-1*K.1^46,-1*K.1^71,-1*K.1^7,-1*K.1^21,-1*K.1^59,K.1^11,-1*K.1^53,-1*K.1^39,K.1^93,K.1^37,-1*K.1^27,-1*K.1^47,-1*K.1^39,K.1^99,K.1^81,K.1^67,-1*K.1^41,-1*K.1^33,K.1^99,K.1^57,K.1^23,-1*K.1^81,-1*K.1^49,K.1^83,K.1^97,-1*K.1^83,-1*K.1^43,-1*K.1^93,-1*K.1^79,K.1^53,K.1^21,-1*K.1^47,-1*K.1^61,-1*K.1^19,K.1^19,K.1^67,K.1^47,-1*K.1^17,-1*K.1^57,K.1^19,K.1^33,-1*K.1^3,-1*K.1^77,-1*K.1^63,K.1^13,K.1^61,-1*K.1^81,K.1^87,K.1^77,-1*K.1^97,-1*K.1^67,-1*K.1^87,-1*K.1^7,-1*K.1^79,K.1^59,K.1^27,K.1^7,-1*K.1,-1*K.1^73,K.1^59,K.1^73,K.1^91,K.1^79,K.1,K.1^43,-1*K.1^89,K.1^51,-1*K.1^49,K.1^83,K.1^3,K.1^29,-1*K.1^43,-1*K.1^93,-1*K.1^21,-1*K.1^59,K.1^21,K.1^9,K.1^71,K.1^93,-1*K.1^51,-1*K.1^29,K.1^9,K.1^71,-1*K.1^57,-1*K.1^51,-1*K.1^29,-1*K.1^9,-1*K.1^23,-1*K.1^37,-1*K.1^99,-1*K.1^71,-1*K.1^13,K.1^63,K.1^17,K.1^97,-1*K.1^83,K.1^69,-1*K.1^69,-1*K.1^11,K.1^53,K.1^11,-1*K.1^53,-1*K.1^61,-1*K.1^19,K.1^37,-1*K.1^27,K.1^47,-1*K.1^17,K.1^31,K.1^81,K.1^33,-1*K.1^87,-1*K.1^31,K.1^39,K.1^41,K.1^27,-1*K.1^13,-1*K.1^69,-1*K.1^11,-1*K.1^97,-1*K.1^67,K.1^7,-1*K.1,K.1^39,K.1^41,K.1^73,K.1^91,-1*K.1^33,K.1^31,K.1^43,-1*K.1^89,-1*K.1^3,-1*K.1^77,-1*K.1^37,-1*K.1^99,K.1^61,K.1^51,K.1^63,K.1^17,K.1^3,K.1^29,K.1^49,K.1^87,K.1^77,-1*K.1^91,K.1^89,K.1^49,-1*K.1^31,-1*K.1^73,-1*K.1^91,K.1^89,-1*K.1^41,K.1^79,K.1,K.1^57,K.1^23,-1*K.1^9,-1*K.1^23,-1*K.1^63,K.1^13,K.1^69]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^48,K.1^24,-1*K.1^68,-1*K.1^84,-1*K.1^4,-1*K.1^44,K.1^8,-1*K.1^76,-1*K.1^52,K.1^96,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^28,-1*K.1^36,K.1^64,K.1^88,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,K.1^45,-1*K.1^85,K.1^95,K.1^85,K.1^5,-1*K.1^65,-1*K.1^95,K.1^65,K.1^35,-1*K.1^35,-1*K.1^85,K.1^95,K.1^15,-1*K.1^15,K.1^45,-1*K.1^55,-1*K.1^45,K.1^85,-1*K.1^65,K.1^55,K.1^65,K.1^35,-1*K.1^45,-1*K.1^95,-1*K.1^35,K.1^55,-1*K.1^5,-1*K.1^55,-1*K.1^92,-1*K.1^44,K.1^36,-1*K.1^72,-1*K.1^84,K.1^32,-1*K.1^12,K.1^64,K.1^52,-1*K.1^56,-1*K.1^52,-1*K.1^56,-1*K.1^28,-1*K.1^68,K.1^92,K.1^96,-1*K.1^64,-1*K.1^16,K.1^52,-1*K.1^36,-1*K.1^96,K.1^76,K.1^16,-1*K.1^72,K.1^36,K.1^48,-1*K.1^76,K.1^12,K.1^88,K.1^8,-1*K.1^32,K.1^12,K.1^44,K.1^44,K.1^68,-1*K.1^64,K.1^68,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^56,-1*K.1^4,K.1^92,-1*K.1^16,K.1^24,K.1^28,K.1^28,K.1^84,-1*K.1^48,-1*K.1^48,K.1^84,-1*K.1^88,-1*K.1^24,-1*K.1^24,-1*K.1^88,K.1^72,K.1^76,-1*K.1^32,-1*K.1^96,K.1^96,-1*K.1^4,K.1^12,-1*K.1^56,K.1^76,-1*K.1^88,-1*K.1^8,K.1^8,-1*K.1^52,K.1^72,-1*K.1^84,K.1^24,-1*K.1^24,K.1^88,-1*K.1^68,K.1^44,-1*K.1^64,K.1^48,-1*K.1^12,K.1^4,-1*K.1^44,K.1^64,-1*K.1^92,K.1^32,-1*K.1^28,K.1^84,K.1^28,-1*K.1^36,K.1^92,-1*K.1^72,K.1^56,-1*K.1^76,K.1^52,-1*K.1^16,K.1^16,-1*K.1^48,K.1^68,-1*K.1^96,K.1^36,-1*K.1^32,-1*K.1^98,K.1^86,-1*K.1^58,K.1^54,-1*K.1^82,-1*K.1^82,K.1^94,-1*K.1^18,K.1^62,-1*K.1^54,-1*K.1^74,-1*K.1^34,-1*K.1^14,K.1^6,K.1^78,-1*K.1^34,-1*K.1^42,K.1^46,-1*K.1^98,-1*K.1^62,K.1^82,-1*K.1^42,K.1^42,K.1^2,-1*K.1^94,K.1^18,K.1^26,-1*K.1^38,-1*K.1^6,-1*K.1^2,-1*K.1^86,K.1^58,-1*K.1^6,K.1^78,K.1^82,-1*K.1^78,K.1^66,K.1^22,-1*K.1^62,K.1^46,-1*K.1^86,K.1^58,K.1^98,-1*K.1^26,-1*K.1^66,-1*K.1^66,K.1^14,-1*K.1^46,K.1^26,K.1^18,-1*K.1^46,K.1^98,K.1^74,-1*K.1^22,-1*K.1^22,K.1^62,K.1^2,K.1^42,-1*K.1^54,-1*K.1^78,K.1^66,-1*K.1^94,-1*K.1^38,K.1^74,K.1^86,-1*K.1^18,-1*K.1^26,K.1^22,K.1^54,-1*K.1^58,K.1^34,-1*K.1^14,K.1^14,K.1^94,K.1^34,K.1^38,K.1^38,-1*K.1^74,-1*K.1^2,K.1^6,K.1^66,-1*K.1^62,-1*K.1^82,-1*K.1^2,K.1^82,K.1^42,-1*K.1^66,-1*K.1^18,K.1^98,K.1^26,K.1^6,K.1^78,K.1^58,-1*K.1^54,-1*K.1^74,K.1^94,K.1^74,K.1^34,-1*K.1^58,-1*K.1^26,K.1^54,-1*K.1^46,-1*K.1^78,-1*K.1^98,K.1^86,-1*K.1^6,K.1^18,K.1^38,-1*K.1^42,-1*K.1^22,K.1^2,K.1^22,K.1^62,-1*K.1^38,-1*K.1^86,K.1^46,-1*K.1^34,-1*K.1^14,-1*K.1^94,K.1^14,-1*K.1^89,K.1^13,K.1^39,K.1^81,-1*K.1^49,-1*K.1^27,-1*K.1,-1*K.1^87,K.1^83,-1*K.1^93,-1*K.1^73,-1*K.1,-1*K.1^41,K.1^79,K.1^53,K.1^19,-1*K.1^47,-1*K.1^41,K.1^63,K.1^57,-1*K.1^79,K.1^91,-1*K.1^97,K.1^23,K.1^97,-1*K.1^37,K.1^87,K.1^61,K.1^27,-1*K.1^39,-1*K.1^73,-1*K.1^99,-1*K.1^21,K.1^21,K.1^53,K.1^73,K.1^3,-1*K.1^63,K.1^21,K.1^47,-1*K.1^77,-1*K.1^43,-1*K.1^17,K.1^67,K.1^99,-1*K.1^79,K.1^33,K.1^43,-1*K.1^23,-1*K.1^53,-1*K.1^33,K.1^13,K.1^61,-1*K.1^81,K.1^93,-1*K.1^13,K.1^59,-1*K.1^7,-1*K.1^81,K.1^7,K.1^69,-1*K.1^61,-1*K.1^59,K.1^37,K.1^51,-1*K.1^9,K.1^91,-1*K.1^97,K.1^77,K.1^11,-1*K.1^37,K.1^87,K.1^39,K.1^81,-1*K.1^39,K.1^31,K.1^89,-1*K.1^87,K.1^9,-1*K.1^11,K.1^31,K.1^89,-1*K.1^63,K.1^9,-1*K.1^11,-1*K.1^31,-1*K.1^57,-1*K.1^83,K.1^41,-1*K.1^89,-1*K.1^67,K.1^17,-1*K.1^3,K.1^23,K.1^97,-1*K.1^71,K.1^71,K.1^49,K.1^27,-1*K.1^49,-1*K.1^27,-1*K.1^99,-1*K.1^21,K.1^83,-1*K.1^93,K.1^73,K.1^3,-1*K.1^29,K.1^79,K.1^47,-1*K.1^33,K.1^29,K.1,-1*K.1^19,K.1^93,-1*K.1^67,K.1^71,K.1^49,-1*K.1^23,-1*K.1^53,-1*K.1^13,K.1^59,K.1,-1*K.1^19,K.1^7,K.1^69,-1*K.1^47,-1*K.1^29,K.1^37,K.1^51,-1*K.1^77,-1*K.1^43,-1*K.1^83,K.1^41,K.1^99,-1*K.1^9,K.1^17,-1*K.1^3,K.1^77,K.1^11,-1*K.1^91,K.1^33,K.1^43,-1*K.1^69,-1*K.1^51,-1*K.1^91,K.1^29,-1*K.1^7,-1*K.1^69,-1*K.1^51,K.1^19,-1*K.1^61,-1*K.1^59,K.1^63,K.1^57,-1*K.1^31,-1*K.1^57,-1*K.1^17,K.1^67,-1*K.1^71]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^52,-1*K.1^76,K.1^32,K.1^16,K.1^96,K.1^56,-1*K.1^92,K.1^24,K.1^48,-1*K.1^4,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^8,-1*K.1^28,K.1^72,K.1^64,-1*K.1^36,-1*K.1^12,K.1^85,-1*K.1^95,-1*K.1^85,K.1^95,-1*K.1^55,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^95,K.1^35,K.1^5,-1*K.1^35,-1*K.1^65,K.1^65,K.1^15,-1*K.1^5,-1*K.1^85,K.1^85,-1*K.1^55,K.1^45,K.1^55,-1*K.1^15,K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^65,K.1^55,K.1^5,K.1^65,-1*K.1^45,K.1^95,K.1^45,K.1^8,K.1^56,-1*K.1^64,K.1^28,K.1^16,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^48,K.1^44,K.1^48,K.1^44,K.1^72,K.1^32,-1*K.1^8,-1*K.1^4,K.1^36,K.1^84,-1*K.1^48,K.1^64,K.1^4,-1*K.1^24,-1*K.1^84,K.1^28,-1*K.1^64,-1*K.1^52,K.1^24,-1*K.1^88,-1*K.1^12,-1*K.1^92,K.1^68,-1*K.1^88,-1*K.1^56,-1*K.1^56,-1*K.1^32,K.1^36,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^92,K.1^92,-1*K.1^44,K.1^96,-1*K.1^8,K.1^84,-1*K.1^76,-1*K.1^72,-1*K.1^72,-1*K.1^16,K.1^52,K.1^52,-1*K.1^16,K.1^12,K.1^76,K.1^76,K.1^12,-1*K.1^28,-1*K.1^24,K.1^68,K.1^4,-1*K.1^4,K.1^96,-1*K.1^88,K.1^44,-1*K.1^24,K.1^12,K.1^92,-1*K.1^92,K.1^48,-1*K.1^28,K.1^16,-1*K.1^76,K.1^76,-1*K.1^12,K.1^32,-1*K.1^56,K.1^36,-1*K.1^52,K.1^88,-1*K.1^96,K.1^56,-1*K.1^36,K.1^8,-1*K.1^68,K.1^72,-1*K.1^16,-1*K.1^72,K.1^64,-1*K.1^8,K.1^28,-1*K.1^44,K.1^24,-1*K.1^48,K.1^84,-1*K.1^84,K.1^52,-1*K.1^32,K.1^4,-1*K.1^64,K.1^68,K.1^2,-1*K.1^14,K.1^42,-1*K.1^46,K.1^18,K.1^18,-1*K.1^6,K.1^82,-1*K.1^38,K.1^46,K.1^26,K.1^66,K.1^86,-1*K.1^94,-1*K.1^22,K.1^66,K.1^58,-1*K.1^54,K.1^2,K.1^38,-1*K.1^18,K.1^58,-1*K.1^58,-1*K.1^98,K.1^6,-1*K.1^82,-1*K.1^74,K.1^62,K.1^94,K.1^98,K.1^14,-1*K.1^42,K.1^94,-1*K.1^22,-1*K.1^18,K.1^22,-1*K.1^34,-1*K.1^78,K.1^38,-1*K.1^54,K.1^14,-1*K.1^42,-1*K.1^2,K.1^74,K.1^34,K.1^34,-1*K.1^86,K.1^54,-1*K.1^74,-1*K.1^82,K.1^54,-1*K.1^2,-1*K.1^26,K.1^78,K.1^78,-1*K.1^38,-1*K.1^98,-1*K.1^58,K.1^46,K.1^22,-1*K.1^34,K.1^6,K.1^62,-1*K.1^26,-1*K.1^14,K.1^82,K.1^74,-1*K.1^78,-1*K.1^46,K.1^42,-1*K.1^66,K.1^86,-1*K.1^86,-1*K.1^6,-1*K.1^66,-1*K.1^62,-1*K.1^62,K.1^26,K.1^98,-1*K.1^94,-1*K.1^34,K.1^38,K.1^18,K.1^98,-1*K.1^18,-1*K.1^58,K.1^34,K.1^82,-1*K.1^2,-1*K.1^74,-1*K.1^94,-1*K.1^22,-1*K.1^42,K.1^46,K.1^26,-1*K.1^6,-1*K.1^26,-1*K.1^66,K.1^42,K.1^74,-1*K.1^46,K.1^54,K.1^22,K.1^2,-1*K.1^14,K.1^94,-1*K.1^82,-1*K.1^62,K.1^58,K.1^78,-1*K.1^98,-1*K.1^78,-1*K.1^38,K.1^62,K.1^14,-1*K.1^54,K.1^66,K.1^86,K.1^6,-1*K.1^86,K.1^11,-1*K.1^87,-1*K.1^61,-1*K.1^19,K.1^51,K.1^73,K.1^99,K.1^13,-1*K.1^17,K.1^7,K.1^27,K.1^99,K.1^59,-1*K.1^21,-1*K.1^47,-1*K.1^81,K.1^53,K.1^59,-1*K.1^37,-1*K.1^43,K.1^21,-1*K.1^9,K.1^3,-1*K.1^77,-1*K.1^3,K.1^63,-1*K.1^13,-1*K.1^39,-1*K.1^73,K.1^61,K.1^27,K.1,K.1^79,-1*K.1^79,-1*K.1^47,-1*K.1^27,-1*K.1^97,K.1^37,-1*K.1^79,-1*K.1^53,K.1^23,K.1^57,K.1^83,-1*K.1^33,-1*K.1,K.1^21,-1*K.1^67,-1*K.1^57,K.1^77,K.1^47,K.1^67,-1*K.1^87,-1*K.1^39,K.1^19,-1*K.1^7,K.1^87,-1*K.1^41,K.1^93,K.1^19,-1*K.1^93,-1*K.1^31,K.1^39,K.1^41,-1*K.1^63,-1*K.1^49,K.1^91,-1*K.1^9,K.1^3,-1*K.1^23,-1*K.1^89,K.1^63,-1*K.1^13,-1*K.1^61,-1*K.1^19,K.1^61,-1*K.1^69,-1*K.1^11,K.1^13,-1*K.1^91,K.1^89,-1*K.1^69,-1*K.1^11,K.1^37,-1*K.1^91,K.1^89,K.1^69,K.1^43,K.1^17,-1*K.1^59,K.1^11,K.1^33,-1*K.1^83,K.1^97,-1*K.1^77,-1*K.1^3,K.1^29,-1*K.1^29,-1*K.1^51,-1*K.1^73,K.1^51,K.1^73,K.1,K.1^79,-1*K.1^17,K.1^7,-1*K.1^27,-1*K.1^97,K.1^71,-1*K.1^21,-1*K.1^53,K.1^67,-1*K.1^71,-1*K.1^99,K.1^81,-1*K.1^7,K.1^33,-1*K.1^29,-1*K.1^51,K.1^77,K.1^47,K.1^87,-1*K.1^41,-1*K.1^99,K.1^81,-1*K.1^93,-1*K.1^31,K.1^53,K.1^71,-1*K.1^63,-1*K.1^49,K.1^23,K.1^57,K.1^17,-1*K.1^59,-1*K.1,K.1^91,-1*K.1^83,K.1^97,-1*K.1^23,-1*K.1^89,K.1^9,-1*K.1^67,-1*K.1^57,K.1^31,K.1^49,K.1^9,-1*K.1^71,K.1^93,K.1^31,K.1^49,-1*K.1^81,K.1^39,K.1^41,-1*K.1^37,-1*K.1^43,K.1^69,K.1^43,K.1^83,-1*K.1^33,K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,-1*K.1^68,-1*K.1^84,K.1^88,-1*K.1^44,K.1^64,-1*K.1^4,-1*K.1^28,K.1^16,K.1^32,-1*K.1^36,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^52,K.1^48,-1*K.1^76,K.1^24,K.1^8,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,K.1^45,-1*K.1^85,K.1^95,K.1^85,K.1^5,-1*K.1^65,-1*K.1^95,K.1^65,K.1^35,-1*K.1^35,-1*K.1^85,K.1^95,K.1^15,-1*K.1^15,K.1^45,-1*K.1^55,-1*K.1^45,K.1^85,-1*K.1^65,K.1^55,K.1^65,K.1^35,-1*K.1^45,-1*K.1^95,-1*K.1^35,K.1^55,-1*K.1^5,-1*K.1^55,K.1^72,-1*K.1^4,K.1^76,K.1^52,-1*K.1^44,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^32,-1*K.1^96,K.1^32,-1*K.1^96,K.1^48,K.1^88,-1*K.1^72,-1*K.1^36,-1*K.1^24,-1*K.1^56,-1*K.1^32,-1*K.1^76,K.1^36,-1*K.1^16,K.1^56,K.1^52,K.1^76,-1*K.1^68,K.1^16,K.1^92,K.1^8,-1*K.1^28,K.1^12,K.1^92,K.1^4,K.1^4,-1*K.1^88,-1*K.1^24,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^28,K.1^28,K.1^96,K.1^64,-1*K.1^72,-1*K.1^56,-1*K.1^84,-1*K.1^48,-1*K.1^48,K.1^44,K.1^68,K.1^68,K.1^44,-1*K.1^8,K.1^84,K.1^84,-1*K.1^8,-1*K.1^52,-1*K.1^16,K.1^12,K.1^36,-1*K.1^36,K.1^64,K.1^92,-1*K.1^96,-1*K.1^16,-1*K.1^8,K.1^28,-1*K.1^28,K.1^32,-1*K.1^52,-1*K.1^44,-1*K.1^84,K.1^84,K.1^8,K.1^88,K.1^4,-1*K.1^24,-1*K.1^68,-1*K.1^92,-1*K.1^64,-1*K.1^4,K.1^24,K.1^72,-1*K.1^12,K.1^48,K.1^44,-1*K.1^48,-1*K.1^76,-1*K.1^72,K.1^52,K.1^96,K.1^16,-1*K.1^32,-1*K.1^56,K.1^56,K.1^68,-1*K.1^88,K.1^36,K.1^76,K.1^12,-1*K.1^18,-1*K.1^26,K.1^78,K.1^14,K.1^62,K.1^62,K.1^54,K.1^38,-1*K.1^42,-1*K.1^14,-1*K.1^34,K.1^94,K.1^74,K.1^46,-1*K.1^98,K.1^94,K.1^22,K.1^86,-1*K.1^18,K.1^42,-1*K.1^62,K.1^22,-1*K.1^22,K.1^82,-1*K.1^54,-1*K.1^38,K.1^66,K.1^58,-1*K.1^46,-1*K.1^82,K.1^26,-1*K.1^78,-1*K.1^46,-1*K.1^98,-1*K.1^62,K.1^98,-1*K.1^6,-1*K.1^2,K.1^42,K.1^86,K.1^26,-1*K.1^78,K.1^18,-1*K.1^66,K.1^6,K.1^6,-1*K.1^74,-1*K.1^86,K.1^66,-1*K.1^38,-1*K.1^86,K.1^18,K.1^34,K.1^2,K.1^2,-1*K.1^42,K.1^82,-1*K.1^22,-1*K.1^14,K.1^98,-1*K.1^6,-1*K.1^54,K.1^58,K.1^34,-1*K.1^26,K.1^38,-1*K.1^66,-1*K.1^2,K.1^14,K.1^78,-1*K.1^94,K.1^74,-1*K.1^74,K.1^54,-1*K.1^94,-1*K.1^58,-1*K.1^58,-1*K.1^34,-1*K.1^82,K.1^46,-1*K.1^6,K.1^42,K.1^62,-1*K.1^82,-1*K.1^62,-1*K.1^22,K.1^6,K.1^38,K.1^18,K.1^66,K.1^46,-1*K.1^98,-1*K.1^78,-1*K.1^14,-1*K.1^34,K.1^54,K.1^34,-1*K.1^94,K.1^78,-1*K.1^66,K.1^14,-1*K.1^86,K.1^98,-1*K.1^18,-1*K.1^26,-1*K.1^46,-1*K.1^38,-1*K.1^58,K.1^22,K.1^2,K.1^82,-1*K.1^2,-1*K.1^42,K.1^58,K.1^26,K.1^86,K.1^94,K.1^74,-1*K.1^54,-1*K.1^74,-1*K.1^49,-1*K.1^33,-1*K.1^99,-1*K.1^21,-1*K.1^9,K.1^7,-1*K.1^41,K.1^67,K.1^3,-1*K.1^13,K.1^93,-1*K.1^41,-1*K.1^81,K.1^39,-1*K.1^73,-1*K.1^79,K.1^27,-1*K.1^81,-1*K.1^83,-1*K.1^37,-1*K.1^39,-1*K.1^31,K.1^77,-1*K.1^43,-1*K.1^77,K.1^17,-1*K.1^67,-1*K.1,-1*K.1^7,K.1^99,K.1^93,-1*K.1^59,-1*K.1^61,K.1^61,-1*K.1^73,-1*K.1^93,-1*K.1^23,K.1^83,K.1^61,-1*K.1^27,K.1^57,K.1^63,-1*K.1^97,-1*K.1^47,K.1^59,-1*K.1^39,-1*K.1^53,-1*K.1^63,K.1^43,K.1^73,K.1^53,-1*K.1^33,-1*K.1,K.1^21,K.1^13,K.1^33,K.1^19,-1*K.1^87,K.1^21,K.1^87,K.1^29,K.1,-1*K.1^19,-1*K.1^17,K.1^91,K.1^69,-1*K.1^31,K.1^77,-1*K.1^57,K.1^51,K.1^17,-1*K.1^67,-1*K.1^99,-1*K.1^21,K.1^99,K.1^71,K.1^49,K.1^67,-1*K.1^69,-1*K.1^51,K.1^71,K.1^49,K.1^83,-1*K.1^69,-1*K.1^51,-1*K.1^71,K.1^37,-1*K.1^3,K.1^81,-1*K.1^49,K.1^47,K.1^97,K.1^23,-1*K.1^43,-1*K.1^77,K.1^11,-1*K.1^11,K.1^9,-1*K.1^7,-1*K.1^9,K.1^7,-1*K.1^59,-1*K.1^61,K.1^3,-1*K.1^13,-1*K.1^93,-1*K.1^23,K.1^89,K.1^39,-1*K.1^27,K.1^53,-1*K.1^89,K.1^41,K.1^79,K.1^13,K.1^47,-1*K.1^11,K.1^9,K.1^43,K.1^73,K.1^33,K.1^19,K.1^41,K.1^79,K.1^87,K.1^29,K.1^27,K.1^89,-1*K.1^17,K.1^91,K.1^57,K.1^63,-1*K.1^3,K.1^81,K.1^59,K.1^69,K.1^97,K.1^23,-1*K.1^57,K.1^51,K.1^31,-1*K.1^53,-1*K.1^63,-1*K.1^29,-1*K.1^91,K.1^31,-1*K.1^89,-1*K.1^87,-1*K.1^29,-1*K.1^91,-1*K.1^79,K.1,-1*K.1^19,-1*K.1^83,-1*K.1^37,-1*K.1^71,K.1^37,-1*K.1^97,-1*K.1^47,K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,K.1^32,K.1^16,-1*K.1^12,K.1^56,-1*K.1^36,K.1^96,K.1^72,-1*K.1^84,-1*K.1^68,K.1^64,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,-1*K.1^28,K.1^48,-1*K.1^52,K.1^24,-1*K.1^76,-1*K.1^92,K.1^85,-1*K.1^95,-1*K.1^85,K.1^95,-1*K.1^55,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^95,K.1^35,K.1^5,-1*K.1^35,-1*K.1^65,K.1^65,K.1^15,-1*K.1^5,-1*K.1^85,K.1^85,-1*K.1^55,K.1^45,K.1^55,-1*K.1^15,K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^65,K.1^55,K.1^5,K.1^65,-1*K.1^45,K.1^95,K.1^45,-1*K.1^28,K.1^96,-1*K.1^24,-1*K.1^48,K.1^56,K.1^88,K.1^8,-1*K.1^76,K.1^68,K.1^4,-1*K.1^68,K.1^4,-1*K.1^52,-1*K.1^12,K.1^28,K.1^64,K.1^76,K.1^44,K.1^68,K.1^24,-1*K.1^64,K.1^84,-1*K.1^44,-1*K.1^48,-1*K.1^24,K.1^32,-1*K.1^84,-1*K.1^8,-1*K.1^92,K.1^72,-1*K.1^88,-1*K.1^8,-1*K.1^96,-1*K.1^96,K.1^12,K.1^76,K.1^12,K.1^36,K.1^36,-1*K.1^72,-1*K.1^72,-1*K.1^4,-1*K.1^36,K.1^28,K.1^44,K.1^16,K.1^52,K.1^52,-1*K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^56,K.1^92,-1*K.1^16,-1*K.1^16,K.1^92,K.1^48,K.1^84,-1*K.1^88,-1*K.1^64,K.1^64,-1*K.1^36,-1*K.1^8,K.1^4,K.1^84,K.1^92,-1*K.1^72,K.1^72,-1*K.1^68,K.1^48,K.1^56,K.1^16,-1*K.1^16,-1*K.1^92,-1*K.1^12,-1*K.1^96,K.1^76,K.1^32,K.1^8,K.1^36,K.1^96,-1*K.1^76,-1*K.1^28,K.1^88,-1*K.1^52,-1*K.1^56,K.1^52,K.1^24,K.1^28,-1*K.1^48,-1*K.1^4,-1*K.1^84,K.1^68,K.1^44,-1*K.1^44,-1*K.1^32,K.1^12,-1*K.1^64,-1*K.1^24,-1*K.1^88,K.1^82,K.1^74,-1*K.1^22,-1*K.1^86,-1*K.1^38,-1*K.1^38,-1*K.1^46,-1*K.1^62,K.1^58,K.1^86,K.1^66,-1*K.1^6,-1*K.1^26,-1*K.1^54,K.1^2,-1*K.1^6,-1*K.1^78,-1*K.1^14,K.1^82,-1*K.1^58,K.1^38,-1*K.1^78,K.1^78,-1*K.1^18,K.1^46,K.1^62,-1*K.1^34,-1*K.1^42,K.1^54,K.1^18,-1*K.1^74,K.1^22,K.1^54,K.1^2,K.1^38,-1*K.1^2,K.1^94,K.1^98,-1*K.1^58,-1*K.1^14,-1*K.1^74,K.1^22,-1*K.1^82,K.1^34,-1*K.1^94,-1*K.1^94,K.1^26,K.1^14,-1*K.1^34,K.1^62,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^98,-1*K.1^98,K.1^58,-1*K.1^18,K.1^78,K.1^86,-1*K.1^2,K.1^94,K.1^46,-1*K.1^42,-1*K.1^66,K.1^74,-1*K.1^62,K.1^34,K.1^98,-1*K.1^86,-1*K.1^22,K.1^6,-1*K.1^26,K.1^26,-1*K.1^46,K.1^6,K.1^42,K.1^42,K.1^66,K.1^18,-1*K.1^54,K.1^94,-1*K.1^58,-1*K.1^38,K.1^18,K.1^38,K.1^78,-1*K.1^94,-1*K.1^62,-1*K.1^82,-1*K.1^34,-1*K.1^54,K.1^2,K.1^22,K.1^86,K.1^66,-1*K.1^46,-1*K.1^66,K.1^6,-1*K.1^22,K.1^34,-1*K.1^86,K.1^14,-1*K.1^2,K.1^82,K.1^74,K.1^54,K.1^62,K.1^42,-1*K.1^78,-1*K.1^98,-1*K.1^18,K.1^98,K.1^58,-1*K.1^42,-1*K.1^74,-1*K.1^14,-1*K.1^6,-1*K.1^26,K.1^46,K.1^26,K.1^51,K.1^67,K.1,K.1^79,K.1^91,-1*K.1^93,K.1^59,-1*K.1^33,-1*K.1^97,K.1^87,-1*K.1^7,K.1^59,K.1^19,-1*K.1^61,K.1^27,K.1^21,-1*K.1^73,K.1^19,K.1^17,K.1^63,K.1^61,K.1^69,-1*K.1^23,K.1^57,K.1^23,-1*K.1^83,K.1^33,K.1^99,K.1^93,-1*K.1,-1*K.1^7,K.1^41,K.1^39,-1*K.1^39,K.1^27,K.1^7,K.1^77,-1*K.1^17,-1*K.1^39,K.1^73,-1*K.1^43,-1*K.1^37,K.1^3,K.1^53,-1*K.1^41,K.1^61,K.1^47,K.1^37,-1*K.1^57,-1*K.1^27,-1*K.1^47,K.1^67,K.1^99,-1*K.1^79,-1*K.1^87,-1*K.1^67,-1*K.1^81,K.1^13,-1*K.1^79,-1*K.1^13,-1*K.1^71,-1*K.1^99,K.1^81,K.1^83,-1*K.1^9,-1*K.1^31,K.1^69,-1*K.1^23,K.1^43,-1*K.1^49,-1*K.1^83,K.1^33,K.1,K.1^79,-1*K.1,-1*K.1^29,-1*K.1^51,-1*K.1^33,K.1^31,K.1^49,-1*K.1^29,-1*K.1^51,-1*K.1^17,K.1^31,K.1^49,K.1^29,-1*K.1^63,K.1^97,-1*K.1^19,K.1^51,-1*K.1^53,-1*K.1^3,-1*K.1^77,K.1^57,K.1^23,-1*K.1^89,K.1^89,-1*K.1^91,K.1^93,K.1^91,-1*K.1^93,K.1^41,K.1^39,-1*K.1^97,K.1^87,K.1^7,K.1^77,-1*K.1^11,-1*K.1^61,K.1^73,-1*K.1^47,K.1^11,-1*K.1^59,-1*K.1^21,-1*K.1^87,-1*K.1^53,K.1^89,-1*K.1^91,-1*K.1^57,-1*K.1^27,-1*K.1^67,-1*K.1^81,-1*K.1^59,-1*K.1^21,-1*K.1^13,-1*K.1^71,-1*K.1^73,-1*K.1^11,K.1^83,-1*K.1^9,-1*K.1^43,-1*K.1^37,K.1^97,-1*K.1^19,-1*K.1^41,-1*K.1^31,-1*K.1^3,-1*K.1^77,K.1^43,-1*K.1^49,-1*K.1^69,K.1^47,K.1^37,K.1^71,K.1^9,-1*K.1^69,K.1^11,K.1^13,K.1^71,K.1^9,K.1^21,-1*K.1^99,K.1^81,K.1^17,K.1^63,K.1^29,-1*K.1^63,K.1^3,K.1^53,-1*K.1^89]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^8,-1*K.1^4,-1*K.1^28,K.1^64,-1*K.1^84,K.1^24,-1*K.1^68,K.1^96,-1*K.1^92,K.1^16,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^32,-1*K.1^12,K.1^88,K.1^56,-1*K.1^44,K.1^48,-1*K.1^15,K.1^5,K.1^15,-1*K.1^5,K.1^45,-1*K.1^85,K.1^95,K.1^85,K.1^5,-1*K.1^65,-1*K.1^95,K.1^65,K.1^35,-1*K.1^35,-1*K.1^85,K.1^95,K.1^15,-1*K.1^15,K.1^45,-1*K.1^55,-1*K.1^45,K.1^85,-1*K.1^65,K.1^55,K.1^65,K.1^35,-1*K.1^45,-1*K.1^95,-1*K.1^35,K.1^55,-1*K.1^5,-1*K.1^55,K.1^32,K.1^24,-1*K.1^56,K.1^12,K.1^64,K.1^72,-1*K.1^52,-1*K.1^44,K.1^92,K.1^76,-1*K.1^92,K.1^76,K.1^88,-1*K.1^28,-1*K.1^32,K.1^16,K.1^44,K.1^36,K.1^92,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^36,K.1^12,-1*K.1^56,K.1^8,K.1^96,K.1^52,K.1^48,-1*K.1^68,-1*K.1^72,K.1^52,-1*K.1^24,-1*K.1^24,K.1^28,K.1^44,K.1^28,K.1^84,K.1^84,K.1^68,K.1^68,-1*K.1^76,-1*K.1^84,-1*K.1^32,K.1^36,-1*K.1^4,-1*K.1^88,-1*K.1^88,-1*K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^64,-1*K.1^48,K.1^4,K.1^4,-1*K.1^48,-1*K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^16,K.1^16,-1*K.1^84,K.1^52,K.1^76,-1*K.1^96,-1*K.1^48,K.1^68,-1*K.1^68,-1*K.1^92,-1*K.1^12,K.1^64,-1*K.1^4,K.1^4,K.1^48,-1*K.1^28,-1*K.1^24,K.1^44,K.1^8,-1*K.1^52,K.1^84,K.1^24,-1*K.1^44,K.1^32,K.1^72,K.1^88,-1*K.1^64,-1*K.1^88,K.1^56,-1*K.1^32,K.1^12,-1*K.1^76,K.1^96,K.1^92,K.1^36,-1*K.1^36,-1*K.1^8,K.1^28,-1*K.1^16,-1*K.1^56,-1*K.1^72,-1*K.1^58,K.1^6,-1*K.1^18,-1*K.1^34,K.1^22,K.1^22,-1*K.1^74,K.1^78,-1*K.1^2,K.1^34,K.1^54,K.1^14,-1*K.1^94,-1*K.1^26,K.1^38,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^58,K.1^2,-1*K.1^22,-1*K.1^82,K.1^82,K.1^42,K.1^74,-1*K.1^78,-1*K.1^46,K.1^98,K.1^26,-1*K.1^42,-1*K.1^6,K.1^18,K.1^26,K.1^38,-1*K.1^22,-1*K.1^38,-1*K.1^86,K.1^62,K.1^2,-1*K.1^66,-1*K.1^6,K.1^18,K.1^58,K.1^46,K.1^86,K.1^86,K.1^94,K.1^66,-1*K.1^46,-1*K.1^78,K.1^66,K.1^58,-1*K.1^54,-1*K.1^62,-1*K.1^62,-1*K.1^2,K.1^42,K.1^82,K.1^34,-1*K.1^38,-1*K.1^86,K.1^74,K.1^98,-1*K.1^54,K.1^6,K.1^78,K.1^46,K.1^62,-1*K.1^34,-1*K.1^18,-1*K.1^14,-1*K.1^94,K.1^94,-1*K.1^74,-1*K.1^14,-1*K.1^98,-1*K.1^98,K.1^54,-1*K.1^42,-1*K.1^26,-1*K.1^86,K.1^2,K.1^22,-1*K.1^42,-1*K.1^22,K.1^82,K.1^86,K.1^78,K.1^58,-1*K.1^46,-1*K.1^26,K.1^38,K.1^18,K.1^34,K.1^54,-1*K.1^74,-1*K.1^54,-1*K.1^14,-1*K.1^18,K.1^46,-1*K.1^34,K.1^66,-1*K.1^38,-1*K.1^58,K.1^6,K.1^26,-1*K.1^78,-1*K.1^98,-1*K.1^82,-1*K.1^62,K.1^42,K.1^62,-1*K.1^2,K.1^98,-1*K.1^6,-1*K.1^66,K.1^14,-1*K.1^94,K.1^74,K.1^94,K.1^69,-1*K.1^73,-1*K.1^19,K.1,K.1^29,-1*K.1^67,K.1^21,K.1^27,K.1^43,-1*K.1^53,-1*K.1^33,K.1^21,K.1^61,-1*K.1^59,K.1^13,K.1^99,-1*K.1^87,K.1^61,K.1^23,K.1^97,K.1^59,K.1^11,K.1^37,-1*K.1^83,-1*K.1^37,-1*K.1^77,-1*K.1^27,-1*K.1^81,K.1^67,K.1^19,-1*K.1^33,K.1^79,K.1^41,-1*K.1^41,K.1^13,K.1^33,-1*K.1^63,-1*K.1^23,-1*K.1^41,K.1^87,K.1^17,-1*K.1^3,-1*K.1^57,-1*K.1^7,-1*K.1^79,K.1^59,-1*K.1^93,K.1^3,K.1^83,-1*K.1^13,K.1^93,-1*K.1^73,-1*K.1^81,-1*K.1,K.1^53,K.1^73,-1*K.1^39,-1*K.1^47,-1*K.1,K.1^47,-1*K.1^49,K.1^81,K.1^39,K.1^77,-1*K.1^71,-1*K.1^89,K.1^11,K.1^37,-1*K.1^17,-1*K.1^31,-1*K.1^77,-1*K.1^27,-1*K.1^19,K.1,K.1^19,-1*K.1^51,-1*K.1^69,K.1^27,K.1^89,K.1^31,-1*K.1^51,-1*K.1^69,-1*K.1^23,K.1^89,K.1^31,K.1^51,-1*K.1^97,-1*K.1^43,-1*K.1^61,K.1^69,K.1^7,K.1^57,K.1^63,-1*K.1^83,-1*K.1^37,K.1^91,-1*K.1^91,-1*K.1^29,K.1^67,K.1^29,-1*K.1^67,K.1^79,K.1^41,K.1^43,-1*K.1^53,K.1^33,-1*K.1^63,K.1^9,-1*K.1^59,K.1^87,K.1^93,-1*K.1^9,-1*K.1^21,-1*K.1^99,K.1^53,K.1^7,-1*K.1^91,-1*K.1^29,K.1^83,-1*K.1^13,K.1^73,-1*K.1^39,-1*K.1^21,-1*K.1^99,K.1^47,-1*K.1^49,-1*K.1^87,K.1^9,K.1^77,-1*K.1^71,K.1^17,-1*K.1^3,-1*K.1^43,-1*K.1^61,-1*K.1^79,-1*K.1^89,K.1^57,K.1^63,-1*K.1^17,-1*K.1^31,-1*K.1^11,-1*K.1^93,K.1^3,K.1^49,K.1^71,-1*K.1^11,-1*K.1^9,-1*K.1^47,K.1^49,K.1^71,K.1^99,K.1^81,K.1^39,K.1^23,K.1^97,K.1^51,-1*K.1^97,-1*K.1^57,-1*K.1^7,K.1^91]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^92,K.1^96,K.1^72,-1*K.1^36,K.1^16,-1*K.1^76,K.1^32,-1*K.1^4,K.1^8,-1*K.1^84,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^68,K.1^88,-1*K.1^12,-1*K.1^44,K.1^56,-1*K.1^52,K.1^85,-1*K.1^95,-1*K.1^85,K.1^95,-1*K.1^55,K.1^15,-1*K.1^5,-1*K.1^15,-1*K.1^95,K.1^35,K.1^5,-1*K.1^35,-1*K.1^65,K.1^65,K.1^15,-1*K.1^5,-1*K.1^85,K.1^85,-1*K.1^55,K.1^45,K.1^55,-1*K.1^15,K.1^35,-1*K.1^45,-1*K.1^35,-1*K.1^65,K.1^55,K.1^5,K.1^65,-1*K.1^45,K.1^95,K.1^45,-1*K.1^68,-1*K.1^76,K.1^44,-1*K.1^88,-1*K.1^36,-1*K.1^28,K.1^48,K.1^56,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^24,-1*K.1^12,K.1^72,K.1^68,-1*K.1^84,-1*K.1^56,-1*K.1^64,-1*K.1^8,-1*K.1^44,K.1^84,K.1^4,K.1^64,-1*K.1^88,K.1^44,-1*K.1^92,-1*K.1^4,-1*K.1^48,-1*K.1^52,K.1^32,K.1^28,-1*K.1^48,K.1^76,K.1^76,-1*K.1^72,-1*K.1^56,-1*K.1^72,-1*K.1^16,-1*K.1^16,-1*K.1^32,-1*K.1^32,K.1^24,K.1^16,K.1^68,-1*K.1^64,K.1^96,K.1^12,K.1^12,K.1^36,K.1^92,K.1^92,K.1^36,K.1^52,-1*K.1^96,-1*K.1^96,K.1^52,K.1^88,K.1^4,K.1^28,K.1^84,-1*K.1^84,K.1^16,-1*K.1^48,-1*K.1^24,K.1^4,K.1^52,-1*K.1^32,K.1^32,K.1^8,K.1^88,-1*K.1^36,K.1^96,-1*K.1^96,-1*K.1^52,K.1^72,K.1^76,-1*K.1^56,-1*K.1^92,K.1^48,-1*K.1^16,-1*K.1^76,K.1^56,-1*K.1^68,-1*K.1^28,-1*K.1^12,K.1^36,K.1^12,-1*K.1^44,K.1^68,-1*K.1^88,K.1^24,-1*K.1^4,-1*K.1^8,-1*K.1^64,K.1^64,K.1^92,-1*K.1^72,K.1^84,K.1^44,K.1^28,K.1^42,-1*K.1^94,K.1^82,K.1^66,-1*K.1^78,-1*K.1^78,K.1^26,-1*K.1^22,K.1^98,-1*K.1^66,-1*K.1^46,-1*K.1^86,K.1^6,K.1^74,-1*K.1^62,-1*K.1^86,K.1^18,K.1^34,K.1^42,-1*K.1^98,K.1^78,K.1^18,-1*K.1^18,-1*K.1^58,-1*K.1^26,K.1^22,K.1^54,-1*K.1^2,-1*K.1^74,K.1^58,K.1^94,-1*K.1^82,-1*K.1^74,-1*K.1^62,K.1^78,K.1^62,K.1^14,-1*K.1^38,-1*K.1^98,K.1^34,K.1^94,-1*K.1^82,-1*K.1^42,-1*K.1^54,-1*K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^34,K.1^54,K.1^22,-1*K.1^34,-1*K.1^42,K.1^46,K.1^38,K.1^38,K.1^98,-1*K.1^58,-1*K.1^18,-1*K.1^66,K.1^62,K.1^14,-1*K.1^26,-1*K.1^2,K.1^46,-1*K.1^94,-1*K.1^22,-1*K.1^54,-1*K.1^38,K.1^66,K.1^82,K.1^86,K.1^6,-1*K.1^6,K.1^26,K.1^86,K.1^2,K.1^2,-1*K.1^46,K.1^58,K.1^74,K.1^14,-1*K.1^98,-1*K.1^78,K.1^58,K.1^78,-1*K.1^18,-1*K.1^14,-1*K.1^22,-1*K.1^42,K.1^54,K.1^74,-1*K.1^62,-1*K.1^82,-1*K.1^66,-1*K.1^46,K.1^26,K.1^46,K.1^86,K.1^82,-1*K.1^54,K.1^66,-1*K.1^34,K.1^62,K.1^42,-1*K.1^94,-1*K.1^74,K.1^22,K.1^2,K.1^18,K.1^38,-1*K.1^58,-1*K.1^38,K.1^98,-1*K.1^2,K.1^94,K.1^34,-1*K.1^86,K.1^6,-1*K.1^26,-1*K.1^6,-1*K.1^31,K.1^27,K.1^81,-1*K.1^99,-1*K.1^71,K.1^33,-1*K.1^79,-1*K.1^73,-1*K.1^57,K.1^47,K.1^67,-1*K.1^79,-1*K.1^39,K.1^41,-1*K.1^87,-1*K.1,K.1^13,-1*K.1^39,-1*K.1^77,-1*K.1^3,-1*K.1^41,-1*K.1^89,-1*K.1^63,K.1^17,K.1^63,K.1^23,K.1^73,K.1^19,-1*K.1^33,-1*K.1^81,K.1^67,-1*K.1^21,-1*K.1^59,K.1^59,-1*K.1^87,-1*K.1^67,K.1^37,K.1^77,K.1^59,-1*K.1^13,-1*K.1^83,K.1^97,K.1^43,K.1^93,K.1^21,-1*K.1^41,K.1^7,-1*K.1^97,-1*K.1^17,K.1^87,-1*K.1^7,K.1^27,K.1^19,K.1^99,-1*K.1^47,-1*K.1^27,K.1^61,K.1^53,K.1^99,-1*K.1^53,K.1^51,-1*K.1^19,-1*K.1^61,-1*K.1^23,K.1^29,K.1^11,-1*K.1^89,-1*K.1^63,K.1^83,K.1^69,K.1^23,K.1^73,K.1^81,-1*K.1^99,-1*K.1^81,K.1^49,K.1^31,-1*K.1^73,-1*K.1^11,-1*K.1^69,K.1^49,K.1^31,K.1^77,-1*K.1^11,-1*K.1^69,-1*K.1^49,K.1^3,K.1^57,K.1^39,-1*K.1^31,-1*K.1^93,-1*K.1^43,-1*K.1^37,K.1^17,K.1^63,-1*K.1^9,K.1^9,K.1^71,-1*K.1^33,-1*K.1^71,K.1^33,-1*K.1^21,-1*K.1^59,-1*K.1^57,K.1^47,-1*K.1^67,K.1^37,-1*K.1^91,K.1^41,-1*K.1^13,-1*K.1^7,K.1^91,K.1^79,K.1,-1*K.1^47,-1*K.1^93,K.1^9,K.1^71,-1*K.1^17,K.1^87,-1*K.1^27,K.1^61,K.1^79,K.1,-1*K.1^53,K.1^51,K.1^13,-1*K.1^91,-1*K.1^23,K.1^29,-1*K.1^83,K.1^97,K.1^57,K.1^39,K.1^21,K.1^11,-1*K.1^43,-1*K.1^37,K.1^83,K.1^69,K.1^89,K.1^7,-1*K.1^97,-1*K.1^51,-1*K.1^29,K.1^89,K.1^91,K.1^53,-1*K.1^51,-1*K.1^29,-1*K.1,-1*K.1^19,-1*K.1^61,-1*K.1^77,-1*K.1^3,-1*K.1^49,K.1^3,K.1^43,K.1^93,-1*K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^88,-1*K.1^44,K.1^8,-1*K.1^4,K.1^24,K.1^64,K.1^48,K.1^56,-1*K.1^12,-1*K.1^76,K.1^96,-1*K.1^36,-1*K.1^92,K.1^72,-1*K.1^52,K.1^32,-1*K.1^68,K.1^16,-1*K.1^84,-1*K.1^28,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,K.1^85,-1*K.1^95,-1*K.1^85,-1*K.1^5,K.1^65,K.1^95,-1*K.1^65,-1*K.1^35,K.1^35,K.1^85,-1*K.1^95,-1*K.1^15,K.1^15,-1*K.1^45,K.1^55,K.1^45,-1*K.1^85,K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^35,K.1^45,K.1^95,K.1^35,-1*K.1^55,K.1^5,K.1^55,-1*K.1^52,K.1^64,-1*K.1^16,-1*K.1^32,-1*K.1^4,-1*K.1^92,K.1^72,-1*K.1^84,K.1^12,K.1^36,-1*K.1^12,K.1^36,-1*K.1^68,K.1^8,K.1^52,-1*K.1^76,K.1^84,-1*K.1^96,K.1^12,K.1^16,K.1^76,-1*K.1^56,K.1^96,-1*K.1^32,-1*K.1^16,K.1^88,K.1^56,-1*K.1^72,-1*K.1^28,K.1^48,K.1^92,-1*K.1^72,-1*K.1^64,-1*K.1^64,-1*K.1^8,K.1^84,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^48,-1*K.1^48,-1*K.1^36,K.1^24,K.1^52,-1*K.1^96,-1*K.1^44,K.1^68,K.1^68,K.1^4,-1*K.1^88,-1*K.1^88,K.1^4,K.1^28,K.1^44,K.1^44,K.1^28,K.1^32,-1*K.1^56,K.1^92,K.1^76,-1*K.1^76,K.1^24,-1*K.1^72,K.1^36,-1*K.1^56,K.1^28,-1*K.1^48,K.1^48,-1*K.1^12,K.1^32,-1*K.1^4,-1*K.1^44,K.1^44,-1*K.1^28,K.1^8,-1*K.1^64,K.1^84,K.1^88,K.1^72,-1*K.1^24,K.1^64,-1*K.1^84,-1*K.1^52,-1*K.1^92,-1*K.1^68,K.1^4,K.1^68,K.1^16,K.1^52,-1*K.1^32,-1*K.1^36,K.1^56,K.1^12,-1*K.1^96,K.1^96,-1*K.1^88,-1*K.1^8,K.1^76,-1*K.1^16,K.1^92,K.1^38,-1*K.1^66,-1*K.1^98,-1*K.1^74,-1*K.1^42,-1*K.1^42,K.1^14,-1*K.1^58,K.1^22,K.1^74,K.1^94,K.1^54,K.1^34,K.1^86,-1*K.1^18,K.1^54,-1*K.1^2,-1*K.1^26,K.1^38,-1*K.1^22,K.1^42,-1*K.1^2,K.1^2,-1*K.1^62,-1*K.1^14,K.1^58,-1*K.1^6,-1*K.1^78,-1*K.1^86,K.1^62,K.1^66,K.1^98,-1*K.1^86,-1*K.1^18,K.1^42,K.1^18,-1*K.1^46,-1*K.1^82,-1*K.1^22,-1*K.1^26,K.1^66,K.1^98,-1*K.1^38,K.1^6,K.1^46,K.1^46,-1*K.1^34,K.1^26,-1*K.1^6,K.1^58,K.1^26,-1*K.1^38,-1*K.1^94,K.1^82,K.1^82,K.1^22,-1*K.1^62,K.1^2,K.1^74,K.1^18,-1*K.1^46,-1*K.1^14,-1*K.1^78,-1*K.1^94,-1*K.1^66,-1*K.1^58,K.1^6,-1*K.1^82,-1*K.1^74,-1*K.1^98,-1*K.1^54,K.1^34,-1*K.1^34,K.1^14,-1*K.1^54,K.1^78,K.1^78,K.1^94,K.1^62,K.1^86,-1*K.1^46,-1*K.1^22,-1*K.1^42,K.1^62,K.1^42,K.1^2,K.1^46,-1*K.1^58,-1*K.1^38,-1*K.1^6,K.1^86,-1*K.1^18,K.1^98,K.1^74,K.1^94,K.1^14,-1*K.1^94,-1*K.1^54,-1*K.1^98,K.1^6,-1*K.1^74,K.1^26,K.1^18,K.1^38,-1*K.1^66,-1*K.1^86,K.1^58,K.1^78,-1*K.1^2,K.1^82,-1*K.1^62,-1*K.1^82,K.1^22,-1*K.1^78,K.1^66,-1*K.1^26,K.1^54,K.1^34,-1*K.1^14,-1*K.1^34,K.1^9,-1*K.1^53,K.1^59,K.1^61,-1*K.1^69,-1*K.1^87,K.1^81,K.1^47,K.1^23,-1*K.1^33,-1*K.1^13,K.1^81,-1*K.1^21,K.1^99,-1*K.1^93,K.1^39,K.1^7,-1*K.1^21,K.1^3,-1*K.1^17,-1*K.1^99,K.1^71,K.1^57,-1*K.1^63,-1*K.1^57,-1*K.1^97,-1*K.1^47,K.1^41,K.1^87,-1*K.1^59,-1*K.1^13,K.1^19,-1*K.1,K.1,-1*K.1^93,K.1^13,-1*K.1^43,-1*K.1^3,K.1,-1*K.1^7,K.1^37,K.1^83,-1*K.1^77,-1*K.1^27,-1*K.1^19,-1*K.1^99,-1*K.1^73,-1*K.1^83,K.1^63,K.1^93,K.1^73,-1*K.1^53,K.1^41,-1*K.1^61,K.1^33,K.1^53,K.1^79,-1*K.1^67,-1*K.1^61,K.1^67,K.1^89,-1*K.1^41,-1*K.1^79,K.1^97,K.1^31,-1*K.1^29,K.1^71,K.1^57,-1*K.1^37,-1*K.1^91,-1*K.1^97,-1*K.1^47,K.1^59,K.1^61,-1*K.1^59,K.1^11,-1*K.1^9,K.1^47,K.1^29,K.1^91,K.1^11,-1*K.1^9,-1*K.1^3,K.1^29,K.1^91,-1*K.1^11,K.1^17,-1*K.1^23,K.1^21,K.1^9,K.1^27,K.1^77,K.1^43,-1*K.1^63,-1*K.1^57,-1*K.1^51,K.1^51,K.1^69,K.1^87,-1*K.1^69,-1*K.1^87,K.1^19,-1*K.1,K.1^23,-1*K.1^33,K.1^13,-1*K.1^43,-1*K.1^49,K.1^99,-1*K.1^7,K.1^73,K.1^49,-1*K.1^81,-1*K.1^39,K.1^33,K.1^27,K.1^51,K.1^69,K.1^63,K.1^93,K.1^53,K.1^79,-1*K.1^81,-1*K.1^39,K.1^67,K.1^89,K.1^7,-1*K.1^49,K.1^97,K.1^31,K.1^37,K.1^83,-1*K.1^23,K.1^21,-1*K.1^19,-1*K.1^29,K.1^77,K.1^43,-1*K.1^37,-1*K.1^91,-1*K.1^71,-1*K.1^73,-1*K.1^83,-1*K.1^89,-1*K.1^31,-1*K.1^71,K.1^49,-1*K.1^67,-1*K.1^89,-1*K.1^31,K.1^39,-1*K.1^41,-1*K.1^79,K.1^3,-1*K.1^17,-1*K.1^11,K.1^17,-1*K.1^77,-1*K.1^27,-1*K.1^51]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^12,K.1^56,-1*K.1^92,K.1^96,-1*K.1^76,-1*K.1^36,-1*K.1^52,-1*K.1^44,K.1^88,K.1^24,-1*K.1^4,K.1^64,K.1^8,-1*K.1^28,K.1^48,-1*K.1^68,K.1^32,-1*K.1^84,K.1^16,K.1^72,-1*K.1^85,K.1^95,K.1^85,-1*K.1^95,K.1^55,-1*K.1^15,K.1^5,K.1^15,K.1^95,-1*K.1^35,-1*K.1^5,K.1^35,K.1^65,-1*K.1^65,-1*K.1^15,K.1^5,K.1^85,-1*K.1^85,K.1^55,-1*K.1^45,-1*K.1^55,K.1^15,-1*K.1^35,K.1^45,K.1^35,K.1^65,-1*K.1^55,-1*K.1^5,-1*K.1^65,K.1^45,-1*K.1^95,-1*K.1^45,K.1^48,-1*K.1^36,K.1^84,K.1^68,K.1^96,K.1^8,-1*K.1^28,K.1^16,-1*K.1^88,-1*K.1^64,K.1^88,-1*K.1^64,K.1^32,-1*K.1^92,-1*K.1^48,K.1^24,-1*K.1^16,K.1^4,-1*K.1^88,-1*K.1^84,-1*K.1^24,K.1^44,-1*K.1^4,K.1^68,K.1^84,-1*K.1^12,-1*K.1^44,K.1^28,K.1^72,-1*K.1^52,-1*K.1^8,K.1^28,K.1^36,K.1^36,K.1^92,-1*K.1^16,K.1^92,K.1^76,K.1^76,K.1^52,K.1^52,K.1^64,-1*K.1^76,-1*K.1^48,K.1^4,K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^96,K.1^12,K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^56,-1*K.1^56,-1*K.1^72,-1*K.1^68,K.1^44,-1*K.1^8,-1*K.1^24,K.1^24,-1*K.1^76,K.1^28,-1*K.1^64,K.1^44,-1*K.1^72,K.1^52,-1*K.1^52,K.1^88,-1*K.1^68,K.1^96,K.1^56,-1*K.1^56,K.1^72,-1*K.1^92,K.1^36,-1*K.1^16,-1*K.1^12,-1*K.1^28,K.1^76,-1*K.1^36,K.1^16,K.1^48,K.1^8,K.1^32,-1*K.1^96,-1*K.1^32,-1*K.1^84,-1*K.1^48,K.1^68,K.1^64,-1*K.1^44,-1*K.1^88,K.1^4,-1*K.1^4,K.1^12,K.1^92,-1*K.1^24,K.1^84,-1*K.1^8,-1*K.1^62,K.1^34,K.1^2,K.1^26,K.1^58,K.1^58,-1*K.1^86,K.1^42,-1*K.1^78,-1*K.1^26,-1*K.1^6,-1*K.1^46,-1*K.1^66,-1*K.1^14,K.1^82,-1*K.1^46,K.1^98,K.1^74,-1*K.1^62,K.1^78,-1*K.1^58,K.1^98,-1*K.1^98,K.1^38,K.1^86,-1*K.1^42,K.1^94,K.1^22,K.1^14,-1*K.1^38,-1*K.1^34,-1*K.1^2,K.1^14,K.1^82,-1*K.1^58,-1*K.1^82,K.1^54,K.1^18,K.1^78,K.1^74,-1*K.1^34,-1*K.1^2,K.1^62,-1*K.1^94,-1*K.1^54,-1*K.1^54,K.1^66,-1*K.1^74,K.1^94,-1*K.1^42,-1*K.1^74,K.1^62,K.1^6,-1*K.1^18,-1*K.1^18,-1*K.1^78,K.1^38,-1*K.1^98,-1*K.1^26,-1*K.1^82,K.1^54,K.1^86,K.1^22,K.1^6,K.1^34,K.1^42,-1*K.1^94,K.1^18,K.1^26,K.1^2,K.1^46,-1*K.1^66,K.1^66,-1*K.1^86,K.1^46,-1*K.1^22,-1*K.1^22,-1*K.1^6,-1*K.1^38,-1*K.1^14,K.1^54,K.1^78,K.1^58,-1*K.1^38,-1*K.1^58,-1*K.1^98,-1*K.1^54,K.1^42,K.1^62,K.1^94,-1*K.1^14,K.1^82,-1*K.1^2,-1*K.1^26,-1*K.1^6,-1*K.1^86,K.1^6,K.1^46,K.1^2,-1*K.1^94,K.1^26,-1*K.1^74,-1*K.1^82,-1*K.1^62,K.1^34,K.1^14,-1*K.1^42,-1*K.1^22,K.1^98,-1*K.1^18,K.1^38,K.1^18,-1*K.1^78,K.1^22,-1*K.1^34,K.1^74,-1*K.1^46,-1*K.1^66,K.1^86,K.1^66,-1*K.1^91,K.1^47,-1*K.1^41,-1*K.1^39,K.1^31,K.1^13,-1*K.1^19,-1*K.1^53,-1*K.1^77,K.1^67,K.1^87,-1*K.1^19,K.1^79,-1*K.1,K.1^7,-1*K.1^61,-1*K.1^93,K.1^79,-1*K.1^97,K.1^83,K.1,-1*K.1^29,-1*K.1^43,K.1^37,K.1^43,K.1^3,K.1^53,-1*K.1^59,-1*K.1^13,K.1^41,K.1^87,-1*K.1^81,K.1^99,-1*K.1^99,K.1^7,-1*K.1^87,K.1^57,K.1^97,-1*K.1^99,K.1^93,-1*K.1^63,-1*K.1^17,K.1^23,K.1^73,K.1^81,K.1,K.1^27,K.1^17,-1*K.1^37,-1*K.1^7,-1*K.1^27,K.1^47,-1*K.1^59,K.1^39,-1*K.1^67,-1*K.1^47,-1*K.1^21,K.1^33,K.1^39,-1*K.1^33,-1*K.1^11,K.1^59,K.1^21,-1*K.1^3,-1*K.1^69,K.1^71,-1*K.1^29,-1*K.1^43,K.1^63,K.1^9,K.1^3,K.1^53,-1*K.1^41,-1*K.1^39,K.1^41,-1*K.1^89,K.1^91,-1*K.1^53,-1*K.1^71,-1*K.1^9,-1*K.1^89,K.1^91,K.1^97,-1*K.1^71,-1*K.1^9,K.1^89,-1*K.1^83,K.1^77,-1*K.1^79,-1*K.1^91,-1*K.1^73,-1*K.1^23,-1*K.1^57,K.1^37,K.1^43,K.1^49,-1*K.1^49,-1*K.1^31,-1*K.1^13,K.1^31,K.1^13,-1*K.1^81,K.1^99,-1*K.1^77,K.1^67,-1*K.1^87,K.1^57,K.1^51,-1*K.1,K.1^93,-1*K.1^27,-1*K.1^51,K.1^19,K.1^61,-1*K.1^67,-1*K.1^73,-1*K.1^49,-1*K.1^31,-1*K.1^37,-1*K.1^7,-1*K.1^47,-1*K.1^21,K.1^19,K.1^61,-1*K.1^33,-1*K.1^11,-1*K.1^93,K.1^51,-1*K.1^3,-1*K.1^69,-1*K.1^63,-1*K.1^17,K.1^77,-1*K.1^79,K.1^81,K.1^71,-1*K.1^23,-1*K.1^57,K.1^63,K.1^9,K.1^29,K.1^27,K.1^17,K.1^11,K.1^69,K.1^29,-1*K.1^51,K.1^33,K.1^11,K.1^69,-1*K.1^61,K.1^59,K.1^21,-1*K.1^97,K.1^83,K.1^89,-1*K.1^83,K.1^23,K.1^73,K.1^49]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,-1*K.1^28,K.1^64,K.1^48,K.1^24,-1*K.1^44,-1*K.1^84,K.1^88,-1*K.1^36,K.1^72,K.1^56,-1*K.1^76,K.1^16,-1*K.1^52,K.1^32,-1*K.1^12,-1*K.1^92,K.1^8,K.1^96,-1*K.1^4,-1*K.1^68,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,K.1^85,-1*K.1^95,-1*K.1^85,-1*K.1^5,K.1^65,K.1^95,-1*K.1^65,-1*K.1^35,K.1^35,K.1^85,-1*K.1^95,-1*K.1^15,K.1^15,-1*K.1^45,K.1^55,K.1^45,-1*K.1^85,K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^35,K.1^45,K.1^95,K.1^35,-1*K.1^55,K.1^5,K.1^55,-1*K.1^12,-1*K.1^84,-1*K.1^96,K.1^92,K.1^24,-1*K.1^52,K.1^32,-1*K.1^4,-1*K.1^72,-1*K.1^16,K.1^72,-1*K.1^16,K.1^8,K.1^48,K.1^12,K.1^56,K.1^4,K.1^76,-1*K.1^72,K.1^96,-1*K.1^56,K.1^36,-1*K.1^76,K.1^92,-1*K.1^96,-1*K.1^28,-1*K.1^36,-1*K.1^32,-1*K.1^68,K.1^88,K.1^52,-1*K.1^32,K.1^84,K.1^84,-1*K.1^48,K.1^4,-1*K.1^48,K.1^44,K.1^44,-1*K.1^88,-1*K.1^88,K.1^16,-1*K.1^44,K.1^12,K.1^76,K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^28,K.1^28,-1*K.1^24,K.1^68,-1*K.1^64,-1*K.1^64,K.1^68,-1*K.1^92,K.1^36,K.1^52,-1*K.1^56,K.1^56,-1*K.1^44,-1*K.1^32,-1*K.1^16,K.1^36,K.1^68,-1*K.1^88,K.1^88,K.1^72,-1*K.1^92,K.1^24,K.1^64,-1*K.1^64,-1*K.1^68,K.1^48,K.1^84,K.1^4,-1*K.1^28,K.1^32,K.1^44,-1*K.1^84,-1*K.1^4,-1*K.1^12,-1*K.1^52,K.1^8,-1*K.1^24,-1*K.1^8,K.1^96,K.1^12,K.1^92,K.1^16,-1*K.1^36,-1*K.1^72,K.1^76,-1*K.1^76,K.1^28,-1*K.1^48,-1*K.1^56,-1*K.1^96,K.1^52,K.1^78,K.1^46,K.1^38,K.1^94,-1*K.1^2,-1*K.1^2,-1*K.1^34,-1*K.1^98,-1*K.1^82,-1*K.1^94,K.1^14,-1*K.1^74,-1*K.1^54,-1*K.1^66,-1*K.1^58,-1*K.1^74,K.1^62,K.1^6,K.1^78,K.1^82,K.1^2,K.1^62,-1*K.1^62,-1*K.1^22,K.1^34,K.1^98,-1*K.1^86,K.1^18,K.1^66,K.1^22,-1*K.1^46,-1*K.1^38,K.1^66,-1*K.1^58,K.1^2,K.1^58,K.1^26,-1*K.1^42,K.1^82,K.1^6,-1*K.1^46,-1*K.1^38,-1*K.1^78,K.1^86,-1*K.1^26,-1*K.1^26,K.1^54,-1*K.1^6,-1*K.1^86,K.1^98,-1*K.1^6,-1*K.1^78,-1*K.1^14,K.1^42,K.1^42,-1*K.1^82,-1*K.1^22,-1*K.1^62,-1*K.1^94,K.1^58,K.1^26,K.1^34,K.1^18,-1*K.1^14,K.1^46,-1*K.1^98,K.1^86,-1*K.1^42,K.1^94,K.1^38,K.1^74,-1*K.1^54,K.1^54,-1*K.1^34,K.1^74,-1*K.1^18,-1*K.1^18,K.1^14,K.1^22,-1*K.1^66,K.1^26,K.1^82,-1*K.1^2,K.1^22,K.1^2,-1*K.1^62,-1*K.1^26,-1*K.1^98,-1*K.1^78,-1*K.1^86,-1*K.1^66,-1*K.1^58,-1*K.1^38,-1*K.1^94,K.1^14,-1*K.1^34,-1*K.1^14,K.1^74,K.1^38,K.1^86,K.1^94,-1*K.1^6,K.1^58,K.1^78,K.1^46,K.1^66,K.1^98,-1*K.1^18,K.1^62,K.1^42,-1*K.1^22,-1*K.1^42,-1*K.1^82,K.1^18,-1*K.1^46,K.1^6,-1*K.1^74,-1*K.1^54,K.1^34,K.1^54,-1*K.1^29,-1*K.1^93,-1*K.1^79,-1*K.1^41,K.1^89,-1*K.1^47,-1*K.1^61,K.1^7,K.1^63,-1*K.1^73,-1*K.1^53,-1*K.1^61,K.1,K.1^19,K.1^33,-1*K.1^59,-1*K.1^67,K.1,K.1^43,K.1^77,-1*K.1^19,-1*K.1^51,K.1^17,K.1^3,-1*K.1^17,-1*K.1^57,-1*K.1^7,-1*K.1^21,K.1^47,K.1^79,-1*K.1^53,-1*K.1^39,-1*K.1^81,K.1^81,K.1^33,K.1^53,-1*K.1^83,-1*K.1^43,K.1^81,K.1^67,-1*K.1^97,-1*K.1^23,-1*K.1^37,K.1^87,K.1^39,-1*K.1^19,K.1^13,K.1^23,-1*K.1^3,-1*K.1^33,-1*K.1^13,-1*K.1^93,-1*K.1^21,K.1^41,K.1^73,K.1^93,-1*K.1^99,-1*K.1^27,K.1^41,K.1^27,K.1^9,K.1^21,K.1^99,K.1^57,-1*K.1^11,K.1^49,-1*K.1^51,K.1^17,K.1^97,K.1^71,-1*K.1^57,-1*K.1^7,-1*K.1^79,-1*K.1^41,K.1^79,K.1^91,K.1^29,K.1^7,-1*K.1^49,-1*K.1^71,K.1^91,K.1^29,-1*K.1^43,-1*K.1^49,-1*K.1^71,-1*K.1^91,-1*K.1^77,-1*K.1^63,-1*K.1,-1*K.1^29,-1*K.1^87,K.1^37,K.1^83,K.1^3,-1*K.1^17,K.1^31,-1*K.1^31,-1*K.1^89,K.1^47,K.1^89,-1*K.1^47,-1*K.1^39,-1*K.1^81,K.1^63,-1*K.1^73,K.1^53,-1*K.1^83,K.1^69,K.1^19,K.1^67,-1*K.1^13,-1*K.1^69,K.1^61,K.1^59,K.1^73,-1*K.1^87,-1*K.1^31,-1*K.1^89,-1*K.1^3,-1*K.1^33,K.1^93,-1*K.1^99,K.1^61,K.1^59,K.1^27,K.1^9,-1*K.1^67,K.1^69,K.1^57,-1*K.1^11,-1*K.1^97,-1*K.1^23,-1*K.1^63,-1*K.1,K.1^39,K.1^49,K.1^37,K.1^83,K.1^97,K.1^71,K.1^51,K.1^13,K.1^23,-1*K.1^9,K.1^11,K.1^51,-1*K.1^69,-1*K.1^27,-1*K.1^9,K.1^11,-1*K.1^59,K.1^21,K.1^99,K.1^43,K.1^77,-1*K.1^91,-1*K.1^77,-1*K.1^37,K.1^87,K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,K.1^72,-1*K.1^36,-1*K.1^52,-1*K.1^76,K.1^56,K.1^16,-1*K.1^12,K.1^64,-1*K.1^28,-1*K.1^44,K.1^24,-1*K.1^84,K.1^48,-1*K.1^68,K.1^88,K.1^8,-1*K.1^92,-1*K.1^4,K.1^96,K.1^32,-1*K.1^85,K.1^95,K.1^85,-1*K.1^95,K.1^55,-1*K.1^15,K.1^5,K.1^15,K.1^95,-1*K.1^35,-1*K.1^5,K.1^35,K.1^65,-1*K.1^65,-1*K.1^15,K.1^5,K.1^85,-1*K.1^85,K.1^55,-1*K.1^45,-1*K.1^55,K.1^15,-1*K.1^35,K.1^45,K.1^35,K.1^65,-1*K.1^55,-1*K.1^5,-1*K.1^65,K.1^45,-1*K.1^95,-1*K.1^45,K.1^88,K.1^16,K.1^4,-1*K.1^8,-1*K.1^76,K.1^48,-1*K.1^68,K.1^96,K.1^28,K.1^84,-1*K.1^28,K.1^84,-1*K.1^92,-1*K.1^52,-1*K.1^88,-1*K.1^44,-1*K.1^96,-1*K.1^24,K.1^28,-1*K.1^4,K.1^44,-1*K.1^64,K.1^24,-1*K.1^8,K.1^4,K.1^72,K.1^64,K.1^68,K.1^32,-1*K.1^12,-1*K.1^48,K.1^68,-1*K.1^16,-1*K.1^16,K.1^52,-1*K.1^96,K.1^52,-1*K.1^56,-1*K.1^56,K.1^12,K.1^12,-1*K.1^84,K.1^56,-1*K.1^88,-1*K.1^24,-1*K.1^36,K.1^92,K.1^92,K.1^76,-1*K.1^72,-1*K.1^72,K.1^76,-1*K.1^32,K.1^36,K.1^36,-1*K.1^32,K.1^8,-1*K.1^64,-1*K.1^48,K.1^44,-1*K.1^44,K.1^56,K.1^68,K.1^84,-1*K.1^64,-1*K.1^32,K.1^12,-1*K.1^12,-1*K.1^28,K.1^8,-1*K.1^76,-1*K.1^36,K.1^36,K.1^32,-1*K.1^52,-1*K.1^16,-1*K.1^96,K.1^72,-1*K.1^68,-1*K.1^56,K.1^16,K.1^96,K.1^88,K.1^48,-1*K.1^92,K.1^76,K.1^92,-1*K.1^4,-1*K.1^88,-1*K.1^8,-1*K.1^84,K.1^64,K.1^28,-1*K.1^24,K.1^24,-1*K.1^72,K.1^52,K.1^44,K.1^4,-1*K.1^48,-1*K.1^22,-1*K.1^54,-1*K.1^62,-1*K.1^6,K.1^98,K.1^98,K.1^66,K.1^2,K.1^18,K.1^6,-1*K.1^86,K.1^26,K.1^46,K.1^34,K.1^42,K.1^26,-1*K.1^38,-1*K.1^94,-1*K.1^22,-1*K.1^18,-1*K.1^98,-1*K.1^38,K.1^38,K.1^78,-1*K.1^66,-1*K.1^2,K.1^14,-1*K.1^82,-1*K.1^34,-1*K.1^78,K.1^54,K.1^62,-1*K.1^34,K.1^42,-1*K.1^98,-1*K.1^42,-1*K.1^74,K.1^58,-1*K.1^18,-1*K.1^94,K.1^54,K.1^62,K.1^22,-1*K.1^14,K.1^74,K.1^74,-1*K.1^46,K.1^94,K.1^14,-1*K.1^2,K.1^94,K.1^22,K.1^86,-1*K.1^58,-1*K.1^58,K.1^18,K.1^78,K.1^38,K.1^6,-1*K.1^42,-1*K.1^74,-1*K.1^66,-1*K.1^82,K.1^86,-1*K.1^54,K.1^2,-1*K.1^14,K.1^58,-1*K.1^6,-1*K.1^62,-1*K.1^26,K.1^46,-1*K.1^46,K.1^66,-1*K.1^26,K.1^82,K.1^82,-1*K.1^86,-1*K.1^78,K.1^34,-1*K.1^74,-1*K.1^18,K.1^98,-1*K.1^78,-1*K.1^98,K.1^38,K.1^74,K.1^2,K.1^22,K.1^14,K.1^34,K.1^42,K.1^62,K.1^6,-1*K.1^86,K.1^66,K.1^86,-1*K.1^26,-1*K.1^62,-1*K.1^14,-1*K.1^6,K.1^94,-1*K.1^42,-1*K.1^22,-1*K.1^54,-1*K.1^34,-1*K.1^2,K.1^82,-1*K.1^38,-1*K.1^58,K.1^78,K.1^58,K.1^18,-1*K.1^82,K.1^54,-1*K.1^94,K.1^26,K.1^46,-1*K.1^66,-1*K.1^46,K.1^71,K.1^7,K.1^21,K.1^59,-1*K.1^11,K.1^53,K.1^39,-1*K.1^93,-1*K.1^37,K.1^27,K.1^47,K.1^39,-1*K.1^99,-1*K.1^81,-1*K.1^67,K.1^41,K.1^33,-1*K.1^99,-1*K.1^57,-1*K.1^23,K.1^81,K.1^49,-1*K.1^83,-1*K.1^97,K.1^83,K.1^43,K.1^93,K.1^79,-1*K.1^53,-1*K.1^21,K.1^47,K.1^61,K.1^19,-1*K.1^19,-1*K.1^67,-1*K.1^47,K.1^17,K.1^57,-1*K.1^19,-1*K.1^33,K.1^3,K.1^77,K.1^63,-1*K.1^13,-1*K.1^61,K.1^81,-1*K.1^87,-1*K.1^77,K.1^97,K.1^67,K.1^87,K.1^7,K.1^79,-1*K.1^59,-1*K.1^27,-1*K.1^7,K.1,K.1^73,-1*K.1^59,-1*K.1^73,-1*K.1^91,-1*K.1^79,-1*K.1,-1*K.1^43,K.1^89,-1*K.1^51,K.1^49,-1*K.1^83,-1*K.1^3,-1*K.1^29,K.1^43,K.1^93,K.1^21,K.1^59,-1*K.1^21,-1*K.1^9,-1*K.1^71,-1*K.1^93,K.1^51,K.1^29,-1*K.1^9,-1*K.1^71,K.1^57,K.1^51,K.1^29,K.1^9,K.1^23,K.1^37,K.1^99,K.1^71,K.1^13,-1*K.1^63,-1*K.1^17,-1*K.1^97,K.1^83,-1*K.1^69,K.1^69,K.1^11,-1*K.1^53,-1*K.1^11,K.1^53,K.1^61,K.1^19,-1*K.1^37,K.1^27,-1*K.1^47,K.1^17,-1*K.1^31,-1*K.1^81,-1*K.1^33,K.1^87,K.1^31,-1*K.1^39,-1*K.1^41,-1*K.1^27,K.1^13,K.1^69,K.1^11,K.1^97,K.1^67,-1*K.1^7,K.1,-1*K.1^39,-1*K.1^41,-1*K.1^73,-1*K.1^91,K.1^33,-1*K.1^31,-1*K.1^43,K.1^89,K.1^3,K.1^77,K.1^37,K.1^99,-1*K.1^61,-1*K.1^51,-1*K.1^63,-1*K.1^17,-1*K.1^3,-1*K.1^29,-1*K.1^49,-1*K.1^87,-1*K.1^77,K.1^91,-1*K.1^89,-1*K.1^49,K.1^31,K.1^73,K.1^91,-1*K.1^89,K.1^41,-1*K.1^79,-1*K.1,-1*K.1^57,-1*K.1^23,K.1^9,K.1^23,K.1^63,-1*K.1^13,-1*K.1^69]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^48,K.1^24,-1*K.1^68,-1*K.1^84,-1*K.1^4,-1*K.1^44,K.1^8,-1*K.1^76,-1*K.1^52,K.1^96,K.1^16,K.1^56,K.1^32,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^28,-1*K.1^36,K.1^64,K.1^88,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,K.1^85,-1*K.1^95,-1*K.1^85,-1*K.1^5,K.1^65,K.1^95,-1*K.1^65,-1*K.1^35,K.1^35,K.1^85,-1*K.1^95,-1*K.1^15,K.1^15,-1*K.1^45,K.1^55,K.1^45,-1*K.1^85,K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^35,K.1^45,K.1^95,K.1^35,-1*K.1^55,K.1^5,K.1^55,-1*K.1^92,-1*K.1^44,K.1^36,-1*K.1^72,-1*K.1^84,K.1^32,-1*K.1^12,K.1^64,K.1^52,-1*K.1^56,-1*K.1^52,-1*K.1^56,-1*K.1^28,-1*K.1^68,K.1^92,K.1^96,-1*K.1^64,-1*K.1^16,K.1^52,-1*K.1^36,-1*K.1^96,K.1^76,K.1^16,-1*K.1^72,K.1^36,K.1^48,-1*K.1^76,K.1^12,K.1^88,K.1^8,-1*K.1^32,K.1^12,K.1^44,K.1^44,K.1^68,-1*K.1^64,K.1^68,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^56,-1*K.1^4,K.1^92,-1*K.1^16,K.1^24,K.1^28,K.1^28,K.1^84,-1*K.1^48,-1*K.1^48,K.1^84,-1*K.1^88,-1*K.1^24,-1*K.1^24,-1*K.1^88,K.1^72,K.1^76,-1*K.1^32,-1*K.1^96,K.1^96,-1*K.1^4,K.1^12,-1*K.1^56,K.1^76,-1*K.1^88,-1*K.1^8,K.1^8,-1*K.1^52,K.1^72,-1*K.1^84,K.1^24,-1*K.1^24,K.1^88,-1*K.1^68,K.1^44,-1*K.1^64,K.1^48,-1*K.1^12,K.1^4,-1*K.1^44,K.1^64,-1*K.1^92,K.1^32,-1*K.1^28,K.1^84,K.1^28,-1*K.1^36,K.1^92,-1*K.1^72,K.1^56,-1*K.1^76,K.1^52,-1*K.1^16,K.1^16,-1*K.1^48,K.1^68,-1*K.1^96,K.1^36,-1*K.1^32,-1*K.1^98,K.1^86,-1*K.1^58,K.1^54,-1*K.1^82,-1*K.1^82,K.1^94,-1*K.1^18,K.1^62,-1*K.1^54,-1*K.1^74,-1*K.1^34,-1*K.1^14,K.1^6,K.1^78,-1*K.1^34,-1*K.1^42,K.1^46,-1*K.1^98,-1*K.1^62,K.1^82,-1*K.1^42,K.1^42,K.1^2,-1*K.1^94,K.1^18,K.1^26,-1*K.1^38,-1*K.1^6,-1*K.1^2,-1*K.1^86,K.1^58,-1*K.1^6,K.1^78,K.1^82,-1*K.1^78,K.1^66,K.1^22,-1*K.1^62,K.1^46,-1*K.1^86,K.1^58,K.1^98,-1*K.1^26,-1*K.1^66,-1*K.1^66,K.1^14,-1*K.1^46,K.1^26,K.1^18,-1*K.1^46,K.1^98,K.1^74,-1*K.1^22,-1*K.1^22,K.1^62,K.1^2,K.1^42,-1*K.1^54,-1*K.1^78,K.1^66,-1*K.1^94,-1*K.1^38,K.1^74,K.1^86,-1*K.1^18,-1*K.1^26,K.1^22,K.1^54,-1*K.1^58,K.1^34,-1*K.1^14,K.1^14,K.1^94,K.1^34,K.1^38,K.1^38,-1*K.1^74,-1*K.1^2,K.1^6,K.1^66,-1*K.1^62,-1*K.1^82,-1*K.1^2,K.1^82,K.1^42,-1*K.1^66,-1*K.1^18,K.1^98,K.1^26,K.1^6,K.1^78,K.1^58,-1*K.1^54,-1*K.1^74,K.1^94,K.1^74,K.1^34,-1*K.1^58,-1*K.1^26,K.1^54,-1*K.1^46,-1*K.1^78,-1*K.1^98,K.1^86,-1*K.1^6,K.1^18,K.1^38,-1*K.1^42,-1*K.1^22,K.1^2,K.1^22,K.1^62,-1*K.1^38,-1*K.1^86,K.1^46,-1*K.1^34,-1*K.1^14,-1*K.1^94,K.1^14,K.1^89,-1*K.1^13,-1*K.1^39,-1*K.1^81,K.1^49,K.1^27,K.1,K.1^87,-1*K.1^83,K.1^93,K.1^73,K.1,K.1^41,-1*K.1^79,-1*K.1^53,-1*K.1^19,K.1^47,K.1^41,-1*K.1^63,-1*K.1^57,K.1^79,-1*K.1^91,K.1^97,-1*K.1^23,-1*K.1^97,K.1^37,-1*K.1^87,-1*K.1^61,-1*K.1^27,K.1^39,K.1^73,K.1^99,K.1^21,-1*K.1^21,-1*K.1^53,-1*K.1^73,-1*K.1^3,K.1^63,-1*K.1^21,-1*K.1^47,K.1^77,K.1^43,K.1^17,-1*K.1^67,-1*K.1^99,K.1^79,-1*K.1^33,-1*K.1^43,K.1^23,K.1^53,K.1^33,-1*K.1^13,-1*K.1^61,K.1^81,-1*K.1^93,K.1^13,-1*K.1^59,K.1^7,K.1^81,-1*K.1^7,-1*K.1^69,K.1^61,K.1^59,-1*K.1^37,-1*K.1^51,K.1^9,-1*K.1^91,K.1^97,-1*K.1^77,-1*K.1^11,K.1^37,-1*K.1^87,-1*K.1^39,-1*K.1^81,K.1^39,-1*K.1^31,-1*K.1^89,K.1^87,-1*K.1^9,K.1^11,-1*K.1^31,-1*K.1^89,K.1^63,-1*K.1^9,K.1^11,K.1^31,K.1^57,K.1^83,-1*K.1^41,K.1^89,K.1^67,-1*K.1^17,K.1^3,-1*K.1^23,-1*K.1^97,K.1^71,-1*K.1^71,-1*K.1^49,-1*K.1^27,K.1^49,K.1^27,K.1^99,K.1^21,-1*K.1^83,K.1^93,-1*K.1^73,-1*K.1^3,K.1^29,-1*K.1^79,-1*K.1^47,K.1^33,-1*K.1^29,-1*K.1,K.1^19,-1*K.1^93,K.1^67,-1*K.1^71,-1*K.1^49,K.1^23,K.1^53,K.1^13,-1*K.1^59,-1*K.1,K.1^19,-1*K.1^7,-1*K.1^69,K.1^47,K.1^29,-1*K.1^37,-1*K.1^51,K.1^77,K.1^43,K.1^83,-1*K.1^41,-1*K.1^99,K.1^9,-1*K.1^17,K.1^3,-1*K.1^77,-1*K.1^11,K.1^91,-1*K.1^33,-1*K.1^43,K.1^69,K.1^51,K.1^91,-1*K.1^29,K.1^7,K.1^69,K.1^51,-1*K.1^19,K.1^61,K.1^59,-1*K.1^63,-1*K.1^57,K.1^31,K.1^57,K.1^17,-1*K.1^67,K.1^71]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^52,-1*K.1^76,K.1^32,K.1^16,K.1^96,K.1^56,-1*K.1^92,K.1^24,K.1^48,-1*K.1^4,-1*K.1^84,-1*K.1^44,-1*K.1^68,K.1^88,K.1^8,-1*K.1^28,K.1^72,K.1^64,-1*K.1^36,-1*K.1^12,-1*K.1^85,K.1^95,K.1^85,-1*K.1^95,K.1^55,-1*K.1^15,K.1^5,K.1^15,K.1^95,-1*K.1^35,-1*K.1^5,K.1^35,K.1^65,-1*K.1^65,-1*K.1^15,K.1^5,K.1^85,-1*K.1^85,K.1^55,-1*K.1^45,-1*K.1^55,K.1^15,-1*K.1^35,K.1^45,K.1^35,K.1^65,-1*K.1^55,-1*K.1^5,-1*K.1^65,K.1^45,-1*K.1^95,-1*K.1^45,K.1^8,K.1^56,-1*K.1^64,K.1^28,K.1^16,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^48,K.1^44,K.1^48,K.1^44,K.1^72,K.1^32,-1*K.1^8,-1*K.1^4,K.1^36,K.1^84,-1*K.1^48,K.1^64,K.1^4,-1*K.1^24,-1*K.1^84,K.1^28,-1*K.1^64,-1*K.1^52,K.1^24,-1*K.1^88,-1*K.1^12,-1*K.1^92,K.1^68,-1*K.1^88,-1*K.1^56,-1*K.1^56,-1*K.1^32,K.1^36,-1*K.1^32,-1*K.1^96,-1*K.1^96,K.1^92,K.1^92,-1*K.1^44,K.1^96,-1*K.1^8,K.1^84,-1*K.1^76,-1*K.1^72,-1*K.1^72,-1*K.1^16,K.1^52,K.1^52,-1*K.1^16,K.1^12,K.1^76,K.1^76,K.1^12,-1*K.1^28,-1*K.1^24,K.1^68,K.1^4,-1*K.1^4,K.1^96,-1*K.1^88,K.1^44,-1*K.1^24,K.1^12,K.1^92,-1*K.1^92,K.1^48,-1*K.1^28,K.1^16,-1*K.1^76,K.1^76,-1*K.1^12,K.1^32,-1*K.1^56,K.1^36,-1*K.1^52,K.1^88,-1*K.1^96,K.1^56,-1*K.1^36,K.1^8,-1*K.1^68,K.1^72,-1*K.1^16,-1*K.1^72,K.1^64,-1*K.1^8,K.1^28,-1*K.1^44,K.1^24,-1*K.1^48,K.1^84,-1*K.1^84,K.1^52,-1*K.1^32,K.1^4,-1*K.1^64,K.1^68,K.1^2,-1*K.1^14,K.1^42,-1*K.1^46,K.1^18,K.1^18,-1*K.1^6,K.1^82,-1*K.1^38,K.1^46,K.1^26,K.1^66,K.1^86,-1*K.1^94,-1*K.1^22,K.1^66,K.1^58,-1*K.1^54,K.1^2,K.1^38,-1*K.1^18,K.1^58,-1*K.1^58,-1*K.1^98,K.1^6,-1*K.1^82,-1*K.1^74,K.1^62,K.1^94,K.1^98,K.1^14,-1*K.1^42,K.1^94,-1*K.1^22,-1*K.1^18,K.1^22,-1*K.1^34,-1*K.1^78,K.1^38,-1*K.1^54,K.1^14,-1*K.1^42,-1*K.1^2,K.1^74,K.1^34,K.1^34,-1*K.1^86,K.1^54,-1*K.1^74,-1*K.1^82,K.1^54,-1*K.1^2,-1*K.1^26,K.1^78,K.1^78,-1*K.1^38,-1*K.1^98,-1*K.1^58,K.1^46,K.1^22,-1*K.1^34,K.1^6,K.1^62,-1*K.1^26,-1*K.1^14,K.1^82,K.1^74,-1*K.1^78,-1*K.1^46,K.1^42,-1*K.1^66,K.1^86,-1*K.1^86,-1*K.1^6,-1*K.1^66,-1*K.1^62,-1*K.1^62,K.1^26,K.1^98,-1*K.1^94,-1*K.1^34,K.1^38,K.1^18,K.1^98,-1*K.1^18,-1*K.1^58,K.1^34,K.1^82,-1*K.1^2,-1*K.1^74,-1*K.1^94,-1*K.1^22,-1*K.1^42,K.1^46,K.1^26,-1*K.1^6,-1*K.1^26,-1*K.1^66,K.1^42,K.1^74,-1*K.1^46,K.1^54,K.1^22,K.1^2,-1*K.1^14,K.1^94,-1*K.1^82,-1*K.1^62,K.1^58,K.1^78,-1*K.1^98,-1*K.1^78,-1*K.1^38,K.1^62,K.1^14,-1*K.1^54,K.1^66,K.1^86,K.1^6,-1*K.1^86,-1*K.1^11,K.1^87,K.1^61,K.1^19,-1*K.1^51,-1*K.1^73,-1*K.1^99,-1*K.1^13,K.1^17,-1*K.1^7,-1*K.1^27,-1*K.1^99,-1*K.1^59,K.1^21,K.1^47,K.1^81,-1*K.1^53,-1*K.1^59,K.1^37,K.1^43,-1*K.1^21,K.1^9,-1*K.1^3,K.1^77,K.1^3,-1*K.1^63,K.1^13,K.1^39,K.1^73,-1*K.1^61,-1*K.1^27,-1*K.1,-1*K.1^79,K.1^79,K.1^47,K.1^27,K.1^97,-1*K.1^37,K.1^79,K.1^53,-1*K.1^23,-1*K.1^57,-1*K.1^83,K.1^33,K.1,-1*K.1^21,K.1^67,K.1^57,-1*K.1^77,-1*K.1^47,-1*K.1^67,K.1^87,K.1^39,-1*K.1^19,K.1^7,-1*K.1^87,K.1^41,-1*K.1^93,-1*K.1^19,K.1^93,K.1^31,-1*K.1^39,-1*K.1^41,K.1^63,K.1^49,-1*K.1^91,K.1^9,-1*K.1^3,K.1^23,K.1^89,-1*K.1^63,K.1^13,K.1^61,K.1^19,-1*K.1^61,K.1^69,K.1^11,-1*K.1^13,K.1^91,-1*K.1^89,K.1^69,K.1^11,-1*K.1^37,K.1^91,-1*K.1^89,-1*K.1^69,-1*K.1^43,-1*K.1^17,K.1^59,-1*K.1^11,-1*K.1^33,K.1^83,-1*K.1^97,K.1^77,K.1^3,-1*K.1^29,K.1^29,K.1^51,K.1^73,-1*K.1^51,-1*K.1^73,-1*K.1,-1*K.1^79,K.1^17,-1*K.1^7,K.1^27,K.1^97,-1*K.1^71,K.1^21,K.1^53,-1*K.1^67,K.1^71,K.1^99,-1*K.1^81,K.1^7,-1*K.1^33,K.1^29,K.1^51,-1*K.1^77,-1*K.1^47,-1*K.1^87,K.1^41,K.1^99,-1*K.1^81,K.1^93,K.1^31,-1*K.1^53,-1*K.1^71,K.1^63,K.1^49,-1*K.1^23,-1*K.1^57,-1*K.1^17,K.1^59,K.1,-1*K.1^91,K.1^83,-1*K.1^97,K.1^23,K.1^89,-1*K.1^9,K.1^67,K.1^57,-1*K.1^31,-1*K.1^49,-1*K.1^9,K.1^71,-1*K.1^93,-1*K.1^31,-1*K.1^49,K.1^81,-1*K.1^39,-1*K.1^41,K.1^37,K.1^43,-1*K.1^69,-1*K.1^43,-1*K.1^83,K.1^33,-1*K.1^29]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,-1*K.1^68,-1*K.1^84,K.1^88,-1*K.1^44,K.1^64,-1*K.1^4,-1*K.1^28,K.1^16,K.1^32,-1*K.1^36,K.1^56,K.1^96,-1*K.1^12,-1*K.1^92,K.1^72,-1*K.1^52,K.1^48,-1*K.1^76,K.1^24,K.1^8,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,K.1^85,-1*K.1^95,-1*K.1^85,-1*K.1^5,K.1^65,K.1^95,-1*K.1^65,-1*K.1^35,K.1^35,K.1^85,-1*K.1^95,-1*K.1^15,K.1^15,-1*K.1^45,K.1^55,K.1^45,-1*K.1^85,K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^35,K.1^45,K.1^95,K.1^35,-1*K.1^55,K.1^5,K.1^55,K.1^72,-1*K.1^4,K.1^76,K.1^52,-1*K.1^44,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^32,-1*K.1^96,K.1^32,-1*K.1^96,K.1^48,K.1^88,-1*K.1^72,-1*K.1^36,-1*K.1^24,-1*K.1^56,-1*K.1^32,-1*K.1^76,K.1^36,-1*K.1^16,K.1^56,K.1^52,K.1^76,-1*K.1^68,K.1^16,K.1^92,K.1^8,-1*K.1^28,K.1^12,K.1^92,K.1^4,K.1^4,-1*K.1^88,-1*K.1^24,-1*K.1^88,-1*K.1^64,-1*K.1^64,K.1^28,K.1^28,K.1^96,K.1^64,-1*K.1^72,-1*K.1^56,-1*K.1^84,-1*K.1^48,-1*K.1^48,K.1^44,K.1^68,K.1^68,K.1^44,-1*K.1^8,K.1^84,K.1^84,-1*K.1^8,-1*K.1^52,-1*K.1^16,K.1^12,K.1^36,-1*K.1^36,K.1^64,K.1^92,-1*K.1^96,-1*K.1^16,-1*K.1^8,K.1^28,-1*K.1^28,K.1^32,-1*K.1^52,-1*K.1^44,-1*K.1^84,K.1^84,K.1^8,K.1^88,K.1^4,-1*K.1^24,-1*K.1^68,-1*K.1^92,-1*K.1^64,-1*K.1^4,K.1^24,K.1^72,-1*K.1^12,K.1^48,K.1^44,-1*K.1^48,-1*K.1^76,-1*K.1^72,K.1^52,K.1^96,K.1^16,-1*K.1^32,-1*K.1^56,K.1^56,K.1^68,-1*K.1^88,K.1^36,K.1^76,K.1^12,-1*K.1^18,-1*K.1^26,K.1^78,K.1^14,K.1^62,K.1^62,K.1^54,K.1^38,-1*K.1^42,-1*K.1^14,-1*K.1^34,K.1^94,K.1^74,K.1^46,-1*K.1^98,K.1^94,K.1^22,K.1^86,-1*K.1^18,K.1^42,-1*K.1^62,K.1^22,-1*K.1^22,K.1^82,-1*K.1^54,-1*K.1^38,K.1^66,K.1^58,-1*K.1^46,-1*K.1^82,K.1^26,-1*K.1^78,-1*K.1^46,-1*K.1^98,-1*K.1^62,K.1^98,-1*K.1^6,-1*K.1^2,K.1^42,K.1^86,K.1^26,-1*K.1^78,K.1^18,-1*K.1^66,K.1^6,K.1^6,-1*K.1^74,-1*K.1^86,K.1^66,-1*K.1^38,-1*K.1^86,K.1^18,K.1^34,K.1^2,K.1^2,-1*K.1^42,K.1^82,-1*K.1^22,-1*K.1^14,K.1^98,-1*K.1^6,-1*K.1^54,K.1^58,K.1^34,-1*K.1^26,K.1^38,-1*K.1^66,-1*K.1^2,K.1^14,K.1^78,-1*K.1^94,K.1^74,-1*K.1^74,K.1^54,-1*K.1^94,-1*K.1^58,-1*K.1^58,-1*K.1^34,-1*K.1^82,K.1^46,-1*K.1^6,K.1^42,K.1^62,-1*K.1^82,-1*K.1^62,-1*K.1^22,K.1^6,K.1^38,K.1^18,K.1^66,K.1^46,-1*K.1^98,-1*K.1^78,-1*K.1^14,-1*K.1^34,K.1^54,K.1^34,-1*K.1^94,K.1^78,-1*K.1^66,K.1^14,-1*K.1^86,K.1^98,-1*K.1^18,-1*K.1^26,-1*K.1^46,-1*K.1^38,-1*K.1^58,K.1^22,K.1^2,K.1^82,-1*K.1^2,-1*K.1^42,K.1^58,K.1^26,K.1^86,K.1^94,K.1^74,-1*K.1^54,-1*K.1^74,K.1^49,K.1^33,K.1^99,K.1^21,K.1^9,-1*K.1^7,K.1^41,-1*K.1^67,-1*K.1^3,K.1^13,-1*K.1^93,K.1^41,K.1^81,-1*K.1^39,K.1^73,K.1^79,-1*K.1^27,K.1^81,K.1^83,K.1^37,K.1^39,K.1^31,-1*K.1^77,K.1^43,K.1^77,-1*K.1^17,K.1^67,K.1,K.1^7,-1*K.1^99,-1*K.1^93,K.1^59,K.1^61,-1*K.1^61,K.1^73,K.1^93,K.1^23,-1*K.1^83,-1*K.1^61,K.1^27,-1*K.1^57,-1*K.1^63,K.1^97,K.1^47,-1*K.1^59,K.1^39,K.1^53,K.1^63,-1*K.1^43,-1*K.1^73,-1*K.1^53,K.1^33,K.1,-1*K.1^21,-1*K.1^13,-1*K.1^33,-1*K.1^19,K.1^87,-1*K.1^21,-1*K.1^87,-1*K.1^29,-1*K.1,K.1^19,K.1^17,-1*K.1^91,-1*K.1^69,K.1^31,-1*K.1^77,K.1^57,-1*K.1^51,-1*K.1^17,K.1^67,K.1^99,K.1^21,-1*K.1^99,-1*K.1^71,-1*K.1^49,-1*K.1^67,K.1^69,K.1^51,-1*K.1^71,-1*K.1^49,-1*K.1^83,K.1^69,K.1^51,K.1^71,-1*K.1^37,K.1^3,-1*K.1^81,K.1^49,-1*K.1^47,-1*K.1^97,-1*K.1^23,K.1^43,K.1^77,-1*K.1^11,K.1^11,-1*K.1^9,K.1^7,K.1^9,-1*K.1^7,K.1^59,K.1^61,-1*K.1^3,K.1^13,K.1^93,K.1^23,-1*K.1^89,-1*K.1^39,K.1^27,-1*K.1^53,K.1^89,-1*K.1^41,-1*K.1^79,-1*K.1^13,-1*K.1^47,K.1^11,-1*K.1^9,-1*K.1^43,-1*K.1^73,-1*K.1^33,-1*K.1^19,-1*K.1^41,-1*K.1^79,-1*K.1^87,-1*K.1^29,-1*K.1^27,-1*K.1^89,K.1^17,-1*K.1^91,-1*K.1^57,-1*K.1^63,K.1^3,-1*K.1^81,-1*K.1^59,-1*K.1^69,-1*K.1^97,-1*K.1^23,K.1^57,-1*K.1^51,-1*K.1^31,K.1^53,K.1^63,K.1^29,K.1^91,-1*K.1^31,K.1^89,K.1^87,K.1^29,K.1^91,K.1^79,-1*K.1,K.1^19,K.1^83,K.1^37,K.1^71,-1*K.1^37,K.1^97,K.1^47,-1*K.1^11]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,K.1^32,K.1^16,-1*K.1^12,K.1^56,-1*K.1^36,K.1^96,K.1^72,-1*K.1^84,-1*K.1^68,K.1^64,-1*K.1^44,-1*K.1^4,K.1^88,K.1^8,-1*K.1^28,K.1^48,-1*K.1^52,K.1^24,-1*K.1^76,-1*K.1^92,-1*K.1^85,K.1^95,K.1^85,-1*K.1^95,K.1^55,-1*K.1^15,K.1^5,K.1^15,K.1^95,-1*K.1^35,-1*K.1^5,K.1^35,K.1^65,-1*K.1^65,-1*K.1^15,K.1^5,K.1^85,-1*K.1^85,K.1^55,-1*K.1^45,-1*K.1^55,K.1^15,-1*K.1^35,K.1^45,K.1^35,K.1^65,-1*K.1^55,-1*K.1^5,-1*K.1^65,K.1^45,-1*K.1^95,-1*K.1^45,-1*K.1^28,K.1^96,-1*K.1^24,-1*K.1^48,K.1^56,K.1^88,K.1^8,-1*K.1^76,K.1^68,K.1^4,-1*K.1^68,K.1^4,-1*K.1^52,-1*K.1^12,K.1^28,K.1^64,K.1^76,K.1^44,K.1^68,K.1^24,-1*K.1^64,K.1^84,-1*K.1^44,-1*K.1^48,-1*K.1^24,K.1^32,-1*K.1^84,-1*K.1^8,-1*K.1^92,K.1^72,-1*K.1^88,-1*K.1^8,-1*K.1^96,-1*K.1^96,K.1^12,K.1^76,K.1^12,K.1^36,K.1^36,-1*K.1^72,-1*K.1^72,-1*K.1^4,-1*K.1^36,K.1^28,K.1^44,K.1^16,K.1^52,K.1^52,-1*K.1^56,-1*K.1^32,-1*K.1^32,-1*K.1^56,K.1^92,-1*K.1^16,-1*K.1^16,K.1^92,K.1^48,K.1^84,-1*K.1^88,-1*K.1^64,K.1^64,-1*K.1^36,-1*K.1^8,K.1^4,K.1^84,K.1^92,-1*K.1^72,K.1^72,-1*K.1^68,K.1^48,K.1^56,K.1^16,-1*K.1^16,-1*K.1^92,-1*K.1^12,-1*K.1^96,K.1^76,K.1^32,K.1^8,K.1^36,K.1^96,-1*K.1^76,-1*K.1^28,K.1^88,-1*K.1^52,-1*K.1^56,K.1^52,K.1^24,K.1^28,-1*K.1^48,-1*K.1^4,-1*K.1^84,K.1^68,K.1^44,-1*K.1^44,-1*K.1^32,K.1^12,-1*K.1^64,-1*K.1^24,-1*K.1^88,K.1^82,K.1^74,-1*K.1^22,-1*K.1^86,-1*K.1^38,-1*K.1^38,-1*K.1^46,-1*K.1^62,K.1^58,K.1^86,K.1^66,-1*K.1^6,-1*K.1^26,-1*K.1^54,K.1^2,-1*K.1^6,-1*K.1^78,-1*K.1^14,K.1^82,-1*K.1^58,K.1^38,-1*K.1^78,K.1^78,-1*K.1^18,K.1^46,K.1^62,-1*K.1^34,-1*K.1^42,K.1^54,K.1^18,-1*K.1^74,K.1^22,K.1^54,K.1^2,K.1^38,-1*K.1^2,K.1^94,K.1^98,-1*K.1^58,-1*K.1^14,-1*K.1^74,K.1^22,-1*K.1^82,K.1^34,-1*K.1^94,-1*K.1^94,K.1^26,K.1^14,-1*K.1^34,K.1^62,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^98,-1*K.1^98,K.1^58,-1*K.1^18,K.1^78,K.1^86,-1*K.1^2,K.1^94,K.1^46,-1*K.1^42,-1*K.1^66,K.1^74,-1*K.1^62,K.1^34,K.1^98,-1*K.1^86,-1*K.1^22,K.1^6,-1*K.1^26,K.1^26,-1*K.1^46,K.1^6,K.1^42,K.1^42,K.1^66,K.1^18,-1*K.1^54,K.1^94,-1*K.1^58,-1*K.1^38,K.1^18,K.1^38,K.1^78,-1*K.1^94,-1*K.1^62,-1*K.1^82,-1*K.1^34,-1*K.1^54,K.1^2,K.1^22,K.1^86,K.1^66,-1*K.1^46,-1*K.1^66,K.1^6,-1*K.1^22,K.1^34,-1*K.1^86,K.1^14,-1*K.1^2,K.1^82,K.1^74,K.1^54,K.1^62,K.1^42,-1*K.1^78,-1*K.1^98,-1*K.1^18,K.1^98,K.1^58,-1*K.1^42,-1*K.1^74,-1*K.1^14,-1*K.1^6,-1*K.1^26,K.1^46,K.1^26,-1*K.1^51,-1*K.1^67,-1*K.1,-1*K.1^79,-1*K.1^91,K.1^93,-1*K.1^59,K.1^33,K.1^97,-1*K.1^87,K.1^7,-1*K.1^59,-1*K.1^19,K.1^61,-1*K.1^27,-1*K.1^21,K.1^73,-1*K.1^19,-1*K.1^17,-1*K.1^63,-1*K.1^61,-1*K.1^69,K.1^23,-1*K.1^57,-1*K.1^23,K.1^83,-1*K.1^33,-1*K.1^99,-1*K.1^93,K.1,K.1^7,-1*K.1^41,-1*K.1^39,K.1^39,-1*K.1^27,-1*K.1^7,-1*K.1^77,K.1^17,K.1^39,-1*K.1^73,K.1^43,K.1^37,-1*K.1^3,-1*K.1^53,K.1^41,-1*K.1^61,-1*K.1^47,-1*K.1^37,K.1^57,K.1^27,K.1^47,-1*K.1^67,-1*K.1^99,K.1^79,K.1^87,K.1^67,K.1^81,-1*K.1^13,K.1^79,K.1^13,K.1^71,K.1^99,-1*K.1^81,-1*K.1^83,K.1^9,K.1^31,-1*K.1^69,K.1^23,-1*K.1^43,K.1^49,K.1^83,-1*K.1^33,-1*K.1,-1*K.1^79,K.1,K.1^29,K.1^51,K.1^33,-1*K.1^31,-1*K.1^49,K.1^29,K.1^51,K.1^17,-1*K.1^31,-1*K.1^49,-1*K.1^29,K.1^63,-1*K.1^97,K.1^19,-1*K.1^51,K.1^53,K.1^3,K.1^77,-1*K.1^57,-1*K.1^23,K.1^89,-1*K.1^89,K.1^91,-1*K.1^93,-1*K.1^91,K.1^93,-1*K.1^41,-1*K.1^39,K.1^97,-1*K.1^87,-1*K.1^7,-1*K.1^77,K.1^11,K.1^61,-1*K.1^73,K.1^47,-1*K.1^11,K.1^59,K.1^21,K.1^87,K.1^53,-1*K.1^89,K.1^91,K.1^57,K.1^27,K.1^67,K.1^81,K.1^59,K.1^21,K.1^13,K.1^71,K.1^73,K.1^11,-1*K.1^83,K.1^9,K.1^43,K.1^37,-1*K.1^97,K.1^19,K.1^41,K.1^31,K.1^3,K.1^77,-1*K.1^43,K.1^49,K.1^69,-1*K.1^47,-1*K.1^37,-1*K.1^71,-1*K.1^9,K.1^69,-1*K.1^11,-1*K.1^13,-1*K.1^71,-1*K.1^9,-1*K.1^21,K.1^99,-1*K.1^81,-1*K.1^17,-1*K.1^63,-1*K.1^29,K.1^63,-1*K.1^3,-1*K.1^53,K.1^89]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^80,K.1^60,-1*K.1^20,K.1^80,K.1^40,K.1^20,K.1^20,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^60,-1*K.1^40,-1*K.1^80,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^40,K.1^60,-1*K.1^10,-1*K.1^10,K.1^30,K.1^30,K.1^70,-1*K.1^30,-1*K.1^70,K.1^10,-1*K.1^30,-1*K.1^90,K.1^10,K.1^70,-1*K.1^90,-1*K.1^70,K.1^90,K.1^90,-1*K.1^30,K.1^70,K.1^90,K.1^30,-1*K.1^10,-1*K.1^90,-1*K.1^70,K.1^10,K.1^8,-1*K.1^4,-1*K.1^28,K.1^64,-1*K.1^84,K.1^24,-1*K.1^68,K.1^96,-1*K.1^92,K.1^16,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^52,K.1^32,-1*K.1^12,K.1^88,K.1^56,-1*K.1^44,K.1^48,K.1^15,-1*K.1^5,-1*K.1^15,K.1^5,-1*K.1^45,K.1^85,-1*K.1^95,-1*K.1^85,-1*K.1^5,K.1^65,K.1^95,-1*K.1^65,-1*K.1^35,K.1^35,K.1^85,-1*K.1^95,-1*K.1^15,K.1^15,-1*K.1^45,K.1^55,K.1^45,-1*K.1^85,K.1^65,-1*K.1^55,-1*K.1^65,-1*K.1^35,K.1^45,K.1^95,K.1^35,-1*K.1^55,K.1^5,K.1^55,K.1^32,K.1^24,-1*K.1^56,K.1^12,K.1^64,K.1^72,-1*K.1^52,-1*K.1^44,K.1^92,K.1^76,-1*K.1^92,K.1^76,K.1^88,-1*K.1^28,-1*K.1^32,K.1^16,K.1^44,K.1^36,K.1^92,K.1^56,-1*K.1^16,-1*K.1^96,-1*K.1^36,K.1^12,-1*K.1^56,K.1^8,K.1^96,K.1^52,K.1^48,-1*K.1^68,-1*K.1^72,K.1^52,-1*K.1^24,-1*K.1^24,K.1^28,K.1^44,K.1^28,K.1^84,K.1^84,K.1^68,K.1^68,-1*K.1^76,-1*K.1^84,-1*K.1^32,K.1^36,-1*K.1^4,-1*K.1^88,-1*K.1^88,-1*K.1^64,-1*K.1^8,-1*K.1^8,-1*K.1^64,-1*K.1^48,K.1^4,K.1^4,-1*K.1^48,-1*K.1^12,-1*K.1^96,-1*K.1^72,-1*K.1^16,K.1^16,-1*K.1^84,K.1^52,K.1^76,-1*K.1^96,-1*K.1^48,K.1^68,-1*K.1^68,-1*K.1^92,-1*K.1^12,K.1^64,-1*K.1^4,K.1^4,K.1^48,-1*K.1^28,-1*K.1^24,K.1^44,K.1^8,-1*K.1^52,K.1^84,K.1^24,-1*K.1^44,K.1^32,K.1^72,K.1^88,-1*K.1^64,-1*K.1^88,K.1^56,-1*K.1^32,K.1^12,-1*K.1^76,K.1^96,K.1^92,K.1^36,-1*K.1^36,-1*K.1^8,K.1^28,-1*K.1^16,-1*K.1^56,-1*K.1^72,-1*K.1^58,K.1^6,-1*K.1^18,-1*K.1^34,K.1^22,K.1^22,-1*K.1^74,K.1^78,-1*K.1^2,K.1^34,K.1^54,K.1^14,-1*K.1^94,-1*K.1^26,K.1^38,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^58,K.1^2,-1*K.1^22,-1*K.1^82,K.1^82,K.1^42,K.1^74,-1*K.1^78,-1*K.1^46,K.1^98,K.1^26,-1*K.1^42,-1*K.1^6,K.1^18,K.1^26,K.1^38,-1*K.1^22,-1*K.1^38,-1*K.1^86,K.1^62,K.1^2,-1*K.1^66,-1*K.1^6,K.1^18,K.1^58,K.1^46,K.1^86,K.1^86,K.1^94,K.1^66,-1*K.1^46,-1*K.1^78,K.1^66,K.1^58,-1*K.1^54,-1*K.1^62,-1*K.1^62,-1*K.1^2,K.1^42,K.1^82,K.1^34,-1*K.1^38,-1*K.1^86,K.1^74,K.1^98,-1*K.1^54,K.1^6,K.1^78,K.1^46,K.1^62,-1*K.1^34,-1*K.1^18,-1*K.1^14,-1*K.1^94,K.1^94,-1*K.1^74,-1*K.1^14,-1*K.1^98,-1*K.1^98,K.1^54,-1*K.1^42,-1*K.1^26,-1*K.1^86,K.1^2,K.1^22,-1*K.1^42,-1*K.1^22,K.1^82,K.1^86,K.1^78,K.1^58,-1*K.1^46,-1*K.1^26,K.1^38,K.1^18,K.1^34,K.1^54,-1*K.1^74,-1*K.1^54,-1*K.1^14,-1*K.1^18,K.1^46,-1*K.1^34,K.1^66,-1*K.1^38,-1*K.1^58,K.1^6,K.1^26,-1*K.1^78,-1*K.1^98,-1*K.1^82,-1*K.1^62,K.1^42,K.1^62,-1*K.1^2,K.1^98,-1*K.1^6,-1*K.1^66,K.1^14,-1*K.1^94,K.1^74,K.1^94,-1*K.1^69,K.1^73,K.1^19,-1*K.1,-1*K.1^29,K.1^67,-1*K.1^21,-1*K.1^27,-1*K.1^43,K.1^53,K.1^33,-1*K.1^21,-1*K.1^61,K.1^59,-1*K.1^13,-1*K.1^99,K.1^87,-1*K.1^61,-1*K.1^23,-1*K.1^97,-1*K.1^59,-1*K.1^11,-1*K.1^37,K.1^83,K.1^37,K.1^77,K.1^27,K.1^81,-1*K.1^67,-1*K.1^19,K.1^33,-1*K.1^79,-1*K.1^41,K.1^41,-1*K.1^13,-1*K.1^33,K.1^63,K.1^23,K.1^41,-1*K.1^87,-1*K.1^17,K.1^3,K.1^57,K.1^7,K.1^79,-1*K.1^59,K.1^93,-1*K.1^3,-1*K.1^83,K.1^13,-1*K.1^93,K.1^73,K.1^81,K.1,-1*K.1^53,-1*K.1^73,K.1^39,K.1^47,K.1,-1*K.1^47,K.1^49,-1*K.1^81,-1*K.1^39,-1*K.1^77,K.1^71,K.1^89,-1*K.1^11,-1*K.1^37,K.1^17,K.1^31,K.1^77,K.1^27,K.1^19,-1*K.1,-1*K.1^19,K.1^51,K.1^69,-1*K.1^27,-1*K.1^89,-1*K.1^31,K.1^51,K.1^69,K.1^23,-1*K.1^89,-1*K.1^31,-1*K.1^51,K.1^97,K.1^43,K.1^61,-1*K.1^69,-1*K.1^7,-1*K.1^57,-1*K.1^63,K.1^83,K.1^37,-1*K.1^91,K.1^91,K.1^29,-1*K.1^67,-1*K.1^29,K.1^67,-1*K.1^79,-1*K.1^41,-1*K.1^43,K.1^53,-1*K.1^33,K.1^63,-1*K.1^9,K.1^59,-1*K.1^87,-1*K.1^93,K.1^9,K.1^21,K.1^99,-1*K.1^53,-1*K.1^7,K.1^91,K.1^29,-1*K.1^83,K.1^13,-1*K.1^73,K.1^39,K.1^21,K.1^99,-1*K.1^47,K.1^49,K.1^87,-1*K.1^9,-1*K.1^77,K.1^71,-1*K.1^17,K.1^3,K.1^43,K.1^61,K.1^79,K.1^89,-1*K.1^57,-1*K.1^63,K.1^17,K.1^31,K.1^11,K.1^93,-1*K.1^3,-1*K.1^49,-1*K.1^71,K.1^11,K.1^9,K.1^47,-1*K.1^49,-1*K.1^71,-1*K.1^99,-1*K.1^81,-1*K.1^39,-1*K.1^23,-1*K.1^97,-1*K.1^51,K.1^97,K.1^57,K.1^7,-1*K.1^91]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^20,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,-1*K.1^80,-1*K.1^80,K.1^60,K.1^20,K.1^40,-1*K.1^40,K.1^60,K.1^20,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^60,-1*K.1^40,K.1^90,K.1^90,-1*K.1^70,-1*K.1^70,-1*K.1^30,K.1^70,K.1^30,-1*K.1^90,K.1^70,K.1^10,-1*K.1^90,-1*K.1^30,K.1^10,K.1^30,-1*K.1^10,-1*K.1^10,K.1^70,-1*K.1^30,-1*K.1^10,-1*K.1^70,K.1^90,K.1^10,K.1^30,-1*K.1^90,-1*K.1^92,K.1^96,K.1^72,-1*K.1^36,K.1^16,-1*K.1^76,K.1^32,-1*K.1^4,K.1^8,-1*K.1^84,K.1^64,K.1^24,-1*K.1^28,K.1^48,-1*K.1^68,K.1^88,-1*K.1^12,-1*K.1^44,K.1^56,-1*K.1^52,-1*K.1^85,K.1^95,K.1^85,-1*K.1^95,K.1^55,-1*K.1^15,K.1^5,K.1^15,K.1^95,-1*K.1^35,-1*K.1^5,K.1^35,K.1^65,-1*K.1^65,-1*K.1^15,K.1^5,K.1^85,-1*K.1^85,K.1^55,-1*K.1^45,-1*K.1^55,K.1^15,-1*K.1^35,K.1^45,K.1^35,K.1^65,-1*K.1^55,-1*K.1^5,-1*K.1^65,K.1^45,-1*K.1^95,-1*K.1^45,-1*K.1^68,-1*K.1^76,K.1^44,-1*K.1^88,-1*K.1^36,-1*K.1^28,K.1^48,K.1^56,-1*K.1^8,-1*K.1^24,K.1^8,-1*K.1^24,-1*K.1^12,K.1^72,K.1^68,-1*K.1^84,-1*K.1^56,-1*K.1^64,-1*K.1^8,-1*K.1^44,K.1^84,K.1^4,K.1^64,-1*K.1^88,K.1^44,-1*K.1^92,-1*K.1^4,-1*K.1^48,-1*K.1^52,K.1^32,K.1^28,-1*K.1^48,K.1^76,K.1^76,-1*K.1^72,-1*K.1^56,-1*K.1^72,-1*K.1^16,-1*K.1^16,-1*K.1^32,-1*K.1^32,K.1^24,K.1^16,K.1^68,-1*K.1^64,K.1^96,K.1^12,K.1^12,K.1^36,K.1^92,K.1^92,K.1^36,K.1^52,-1*K.1^96,-1*K.1^96,K.1^52,K.1^88,K.1^4,K.1^28,K.1^84,-1*K.1^84,K.1^16,-1*K.1^48,-1*K.1^24,K.1^4,K.1^52,-1*K.1^32,K.1^32,K.1^8,K.1^88,-1*K.1^36,K.1^96,-1*K.1^96,-1*K.1^52,K.1^72,K.1^76,-1*K.1^56,-1*K.1^92,K.1^48,-1*K.1^16,-1*K.1^76,K.1^56,-1*K.1^68,-1*K.1^28,-1*K.1^12,K.1^36,K.1^12,-1*K.1^44,K.1^68,-1*K.1^88,K.1^24,-1*K.1^4,-1*K.1^8,-1*K.1^64,K.1^64,K.1^92,-1*K.1^72,K.1^84,K.1^44,K.1^28,K.1^42,-1*K.1^94,K.1^82,K.1^66,-1*K.1^78,-1*K.1^78,K.1^26,-1*K.1^22,K.1^98,-1*K.1^66,-1*K.1^46,-1*K.1^86,K.1^6,K.1^74,-1*K.1^62,-1*K.1^86,K.1^18,K.1^34,K.1^42,-1*K.1^98,K.1^78,K.1^18,-1*K.1^18,-1*K.1^58,-1*K.1^26,K.1^22,K.1^54,-1*K.1^2,-1*K.1^74,K.1^58,K.1^94,-1*K.1^82,-1*K.1^74,-1*K.1^62,K.1^78,K.1^62,K.1^14,-1*K.1^38,-1*K.1^98,K.1^34,K.1^94,-1*K.1^82,-1*K.1^42,-1*K.1^54,-1*K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^34,K.1^54,K.1^22,-1*K.1^34,-1*K.1^42,K.1^46,K.1^38,K.1^38,K.1^98,-1*K.1^58,-1*K.1^18,-1*K.1^66,K.1^62,K.1^14,-1*K.1^26,-1*K.1^2,K.1^46,-1*K.1^94,-1*K.1^22,-1*K.1^54,-1*K.1^38,K.1^66,K.1^82,K.1^86,K.1^6,-1*K.1^6,K.1^26,K.1^86,K.1^2,K.1^2,-1*K.1^46,K.1^58,K.1^74,K.1^14,-1*K.1^98,-1*K.1^78,K.1^58,K.1^78,-1*K.1^18,-1*K.1^14,-1*K.1^22,-1*K.1^42,K.1^54,K.1^74,-1*K.1^62,-1*K.1^82,-1*K.1^66,-1*K.1^46,K.1^26,K.1^46,K.1^86,K.1^82,-1*K.1^54,K.1^66,-1*K.1^34,K.1^62,K.1^42,-1*K.1^94,-1*K.1^74,K.1^22,K.1^2,K.1^18,K.1^38,-1*K.1^58,-1*K.1^38,K.1^98,-1*K.1^2,K.1^94,K.1^34,-1*K.1^86,K.1^6,-1*K.1^26,-1*K.1^6,K.1^31,-1*K.1^27,-1*K.1^81,K.1^99,K.1^71,-1*K.1^33,K.1^79,K.1^73,K.1^57,-1*K.1^47,-1*K.1^67,K.1^79,K.1^39,-1*K.1^41,K.1^87,K.1,-1*K.1^13,K.1^39,K.1^77,K.1^3,K.1^41,K.1^89,K.1^63,-1*K.1^17,-1*K.1^63,-1*K.1^23,-1*K.1^73,-1*K.1^19,K.1^33,K.1^81,-1*K.1^67,K.1^21,K.1^59,-1*K.1^59,K.1^87,K.1^67,-1*K.1^37,-1*K.1^77,-1*K.1^59,K.1^13,K.1^83,-1*K.1^97,-1*K.1^43,-1*K.1^93,-1*K.1^21,K.1^41,-1*K.1^7,K.1^97,K.1^17,-1*K.1^87,K.1^7,-1*K.1^27,-1*K.1^19,-1*K.1^99,K.1^47,K.1^27,-1*K.1^61,-1*K.1^53,-1*K.1^99,K.1^53,-1*K.1^51,K.1^19,K.1^61,K.1^23,-1*K.1^29,-1*K.1^11,K.1^89,K.1^63,-1*K.1^83,-1*K.1^69,-1*K.1^23,-1*K.1^73,-1*K.1^81,K.1^99,K.1^81,-1*K.1^49,-1*K.1^31,K.1^73,K.1^11,K.1^69,-1*K.1^49,-1*K.1^31,-1*K.1^77,K.1^11,K.1^69,K.1^49,-1*K.1^3,-1*K.1^57,-1*K.1^39,K.1^31,K.1^93,K.1^43,K.1^37,-1*K.1^17,-1*K.1^63,K.1^9,-1*K.1^9,-1*K.1^71,K.1^33,K.1^71,-1*K.1^33,K.1^21,K.1^59,K.1^57,-1*K.1^47,K.1^67,-1*K.1^37,K.1^91,-1*K.1^41,K.1^13,K.1^7,-1*K.1^91,-1*K.1^79,-1*K.1,K.1^47,K.1^93,-1*K.1^9,-1*K.1^71,K.1^17,-1*K.1^87,K.1^27,-1*K.1^61,-1*K.1^79,-1*K.1,K.1^53,-1*K.1^51,-1*K.1^13,K.1^91,K.1^23,-1*K.1^29,K.1^83,-1*K.1^97,-1*K.1^57,-1*K.1^39,-1*K.1^21,-1*K.1^11,K.1^43,K.1^37,-1*K.1^83,-1*K.1^69,-1*K.1^89,-1*K.1^7,K.1^97,K.1^51,K.1^29,-1*K.1^89,-1*K.1^91,-1*K.1^53,K.1^51,K.1^29,K.1,K.1^19,K.1^61,K.1^77,K.1^3,K.1^49,-1*K.1^3,-1*K.1^43,-1*K.1^93,K.1^9]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^96,K.1^48,-1*K.1^36,-1*K.1^68,K.1^8,K.1^88,K.1^16,-1*K.1^52,-1*K.1^4,-1*K.1^92,K.1^32,-1*K.1^12,K.1^64,K.1^24,-1*K.1^84,-1*K.1^44,K.1^56,K.1^72,-1*K.1^28,-1*K.1^76,-1*K.1^55,K.1^85,K.1^55,-1*K.1^85,-1*K.1^65,-1*K.1^45,K.1^15,K.1^45,K.1^85,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^95,K.1^95,-1*K.1^45,K.1^15,K.1^55,-1*K.1^55,-1*K.1^65,K.1^35,K.1^65,K.1^45,K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^95,K.1^65,-1*K.1^15,K.1^95,-1*K.1^35,-1*K.1^85,K.1^35,-1*K.1^84,K.1^88,-1*K.1^72,K.1^44,-1*K.1^68,K.1^64,K.1^24,-1*K.1^28,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^56,-1*K.1^36,K.1^84,-1*K.1^92,K.1^28,-1*K.1^32,K.1^4,K.1^72,K.1^92,K.1^52,K.1^32,K.1^44,-1*K.1^72,K.1^96,-1*K.1^52,-1*K.1^24,-1*K.1^76,K.1^16,-1*K.1^64,-1*K.1^24,-1*K.1^88,-1*K.1^88,K.1^36,K.1^28,K.1^36,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^84,-1*K.1^32,K.1^48,-1*K.1^56,-1*K.1^56,K.1^68,-1*K.1^96,-1*K.1^96,K.1^68,K.1^76,-1*K.1^48,-1*K.1^48,K.1^76,-1*K.1^44,K.1^52,-1*K.1^64,K.1^92,-1*K.1^92,K.1^8,-1*K.1^24,K.1^12,K.1^52,K.1^76,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^44,-1*K.1^68,K.1^48,-1*K.1^48,-1*K.1^76,-1*K.1^36,-1*K.1^88,K.1^28,K.1^96,K.1^24,-1*K.1^8,K.1^88,-1*K.1^28,-1*K.1^84,K.1^64,K.1^56,K.1^68,-1*K.1^56,K.1^72,K.1^84,K.1^44,-1*K.1^12,-1*K.1^52,K.1^4,-1*K.1^32,K.1^32,-1*K.1^96,K.1^36,K.1^92,-1*K.1^72,-1*K.1^64,K.1^46,K.1^22,-1*K.1^66,-1*K.1^58,K.1^14,K.1^14,K.1^38,K.1^86,-1*K.1^74,K.1^58,-1*K.1^98,-1*K.1^18,-1*K.1^78,K.1^62,K.1^6,-1*K.1^18,-1*K.1^34,-1*K.1^42,K.1^46,K.1^74,-1*K.1^14,-1*K.1^34,K.1^34,-1*K.1^54,-1*K.1^38,-1*K.1^86,K.1^2,K.1^26,-1*K.1^62,K.1^54,-1*K.1^22,K.1^66,-1*K.1^62,K.1^6,-1*K.1^14,-1*K.1^6,K.1^82,K.1^94,K.1^74,-1*K.1^42,-1*K.1^22,K.1^66,-1*K.1^46,-1*K.1^2,-1*K.1^82,-1*K.1^82,K.1^78,K.1^42,K.1^2,-1*K.1^86,K.1^42,-1*K.1^46,K.1^98,-1*K.1^94,-1*K.1^94,-1*K.1^74,-1*K.1^54,K.1^34,K.1^58,-1*K.1^6,K.1^82,-1*K.1^38,K.1^26,K.1^98,K.1^22,K.1^86,-1*K.1^2,K.1^94,-1*K.1^58,-1*K.1^66,K.1^18,-1*K.1^78,K.1^78,K.1^38,K.1^18,-1*K.1^26,-1*K.1^26,-1*K.1^98,K.1^54,K.1^62,K.1^82,K.1^74,K.1^14,K.1^54,-1*K.1^14,K.1^34,-1*K.1^82,K.1^86,-1*K.1^46,K.1^2,K.1^62,K.1^6,K.1^66,K.1^58,-1*K.1^98,K.1^38,K.1^98,K.1^18,-1*K.1^66,-1*K.1^2,-1*K.1^58,K.1^42,-1*K.1^6,K.1^46,K.1^22,-1*K.1^62,-1*K.1^86,-1*K.1^26,-1*K.1^34,-1*K.1^94,-1*K.1^54,K.1^94,-1*K.1^74,K.1^26,-1*K.1^22,-1*K.1^42,-1*K.1^18,-1*K.1^78,-1*K.1^38,K.1^78,K.1^53,-1*K.1,-1*K.1^3,-1*K.1^37,-1*K.1^73,K.1^79,K.1^77,K.1^99,K.1^91,-1*K.1^61,K.1^21,K.1^77,-1*K.1^57,-1*K.1^83,-1*K.1^81,-1*K.1^63,K.1^19,-1*K.1^57,-1*K.1^51,K.1^89,K.1^83,-1*K.1^7,K.1^69,K.1^71,-1*K.1^69,K.1^49,-1*K.1^99,-1*K.1^97,-1*K.1^79,K.1^3,K.1^21,K.1^23,K.1^17,-1*K.1^17,-1*K.1^81,-1*K.1^21,-1*K.1^31,K.1^51,-1*K.1^17,-1*K.1^19,-1*K.1^29,-1*K.1^11,-1*K.1^9,K.1^59,-1*K.1^23,K.1^83,K.1^41,K.1^11,-1*K.1^71,K.1^81,-1*K.1^41,-1*K.1,-1*K.1^97,K.1^37,K.1^61,K.1,K.1^43,-1*K.1^39,K.1^37,K.1^39,K.1^13,K.1^97,-1*K.1^43,-1*K.1^49,K.1^27,K.1^93,-1*K.1^7,K.1^69,K.1^29,-1*K.1^47,K.1^49,-1*K.1^99,-1*K.1^3,-1*K.1^37,K.1^3,K.1^87,-1*K.1^53,K.1^99,-1*K.1^93,K.1^47,K.1^87,-1*K.1^53,K.1^51,-1*K.1^93,K.1^47,-1*K.1^87,-1*K.1^89,-1*K.1^91,K.1^57,K.1^53,-1*K.1^59,K.1^9,K.1^31,K.1^71,-1*K.1^69,K.1^67,-1*K.1^67,K.1^73,-1*K.1^79,-1*K.1^73,K.1^79,K.1^23,K.1^17,K.1^91,-1*K.1^61,-1*K.1^21,-1*K.1^31,K.1^33,-1*K.1^83,-1*K.1^19,-1*K.1^41,-1*K.1^33,-1*K.1^77,K.1^63,K.1^61,-1*K.1^59,-1*K.1^67,K.1^73,-1*K.1^71,K.1^81,K.1,K.1^43,-1*K.1^77,K.1^63,K.1^39,K.1^13,K.1^19,K.1^33,-1*K.1^49,K.1^27,-1*K.1^29,-1*K.1^11,-1*K.1^91,K.1^57,-1*K.1^23,K.1^93,K.1^9,K.1^31,K.1^29,-1*K.1^47,K.1^7,K.1^41,K.1^11,-1*K.1^13,-1*K.1^27,K.1^7,-1*K.1^33,-1*K.1^39,-1*K.1^13,-1*K.1^27,-1*K.1^63,K.1^97,-1*K.1^43,-1*K.1^51,K.1^89,-1*K.1^87,-1*K.1^89,-1*K.1^9,K.1^59,K.1^67]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^4,-1*K.1^52,K.1^64,K.1^32,-1*K.1^92,-1*K.1^12,-1*K.1^84,K.1^48,K.1^96,K.1^8,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,K.1^16,K.1^56,-1*K.1^44,-1*K.1^28,K.1^72,K.1^24,K.1^45,-1*K.1^15,-1*K.1^45,K.1^15,K.1^35,K.1^55,-1*K.1^85,-1*K.1^55,-1*K.1^15,-1*K.1^95,K.1^85,K.1^95,K.1^5,-1*K.1^5,K.1^55,-1*K.1^85,-1*K.1^45,K.1^45,K.1^35,-1*K.1^65,-1*K.1^35,-1*K.1^55,-1*K.1^95,K.1^65,K.1^95,K.1^5,-1*K.1^35,K.1^85,-1*K.1^5,K.1^65,K.1^15,-1*K.1^65,K.1^16,-1*K.1^12,K.1^28,-1*K.1^56,K.1^32,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^96,-1*K.1^88,K.1^96,-1*K.1^88,-1*K.1^44,K.1^64,-1*K.1^16,K.1^8,-1*K.1^72,K.1^68,-1*K.1^96,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^68,-1*K.1^56,K.1^28,-1*K.1^4,K.1^48,K.1^76,K.1^24,-1*K.1^84,K.1^36,K.1^76,K.1^12,K.1^12,-1*K.1^64,-1*K.1^72,-1*K.1^64,K.1^92,K.1^92,K.1^84,K.1^84,K.1^88,-1*K.1^92,-1*K.1^16,K.1^68,-1*K.1^52,K.1^44,K.1^44,-1*K.1^32,K.1^4,K.1^4,-1*K.1^32,-1*K.1^24,K.1^52,K.1^52,-1*K.1^24,K.1^56,-1*K.1^48,K.1^36,-1*K.1^8,K.1^8,-1*K.1^92,K.1^76,-1*K.1^88,-1*K.1^48,-1*K.1^24,K.1^84,-1*K.1^84,K.1^96,K.1^56,K.1^32,-1*K.1^52,K.1^52,K.1^24,K.1^64,K.1^12,-1*K.1^72,-1*K.1^4,-1*K.1^76,K.1^92,-1*K.1^12,K.1^72,K.1^16,-1*K.1^36,-1*K.1^44,-1*K.1^32,K.1^44,-1*K.1^28,-1*K.1^16,-1*K.1^56,K.1^88,K.1^48,-1*K.1^96,K.1^68,-1*K.1^68,K.1^4,-1*K.1^64,-1*K.1^8,K.1^28,K.1^36,-1*K.1^54,-1*K.1^78,K.1^34,K.1^42,-1*K.1^86,-1*K.1^86,-1*K.1^62,-1*K.1^14,K.1^26,-1*K.1^42,K.1^2,K.1^82,K.1^22,-1*K.1^38,-1*K.1^94,K.1^82,K.1^66,K.1^58,-1*K.1^54,-1*K.1^26,K.1^86,K.1^66,-1*K.1^66,K.1^46,K.1^62,K.1^14,-1*K.1^98,-1*K.1^74,K.1^38,-1*K.1^46,K.1^78,-1*K.1^34,K.1^38,-1*K.1^94,K.1^86,K.1^94,-1*K.1^18,-1*K.1^6,-1*K.1^26,K.1^58,K.1^78,-1*K.1^34,K.1^54,K.1^98,K.1^18,K.1^18,-1*K.1^22,-1*K.1^58,-1*K.1^98,K.1^14,-1*K.1^58,K.1^54,-1*K.1^2,K.1^6,K.1^6,K.1^26,K.1^46,-1*K.1^66,-1*K.1^42,K.1^94,-1*K.1^18,K.1^62,-1*K.1^74,-1*K.1^2,-1*K.1^78,-1*K.1^14,K.1^98,-1*K.1^6,K.1^42,K.1^34,-1*K.1^82,K.1^22,-1*K.1^22,-1*K.1^62,-1*K.1^82,K.1^74,K.1^74,K.1^2,-1*K.1^46,-1*K.1^38,-1*K.1^18,-1*K.1^26,-1*K.1^86,-1*K.1^46,K.1^86,-1*K.1^66,K.1^18,-1*K.1^14,K.1^54,-1*K.1^98,-1*K.1^38,-1*K.1^94,-1*K.1^34,-1*K.1^42,K.1^2,-1*K.1^62,-1*K.1^2,-1*K.1^82,K.1^34,K.1^98,K.1^42,-1*K.1^58,K.1^94,-1*K.1^54,-1*K.1^78,K.1^38,K.1^14,K.1^74,K.1^66,K.1^6,K.1^46,-1*K.1^6,K.1^26,-1*K.1^74,K.1^78,K.1^58,K.1^82,K.1^22,K.1^62,-1*K.1^22,-1*K.1^47,K.1^99,K.1^97,K.1^63,K.1^27,-1*K.1^21,-1*K.1^23,-1*K.1,-1*K.1^9,K.1^39,-1*K.1^79,-1*K.1^23,K.1^43,K.1^17,K.1^19,K.1^37,-1*K.1^81,K.1^43,K.1^49,-1*K.1^11,-1*K.1^17,K.1^93,-1*K.1^31,-1*K.1^29,K.1^31,-1*K.1^51,K.1,K.1^3,K.1^21,-1*K.1^97,-1*K.1^79,-1*K.1^77,-1*K.1^83,K.1^83,K.1^19,K.1^79,K.1^69,-1*K.1^49,K.1^83,K.1^81,K.1^71,K.1^89,K.1^91,-1*K.1^41,K.1^77,-1*K.1^17,-1*K.1^59,-1*K.1^89,K.1^29,-1*K.1^19,K.1^59,K.1^99,K.1^3,-1*K.1^63,-1*K.1^39,-1*K.1^99,-1*K.1^57,K.1^61,-1*K.1^63,-1*K.1^61,-1*K.1^87,-1*K.1^3,K.1^57,K.1^51,-1*K.1^73,-1*K.1^7,K.1^93,-1*K.1^31,-1*K.1^71,K.1^53,-1*K.1^51,K.1,K.1^97,K.1^63,-1*K.1^97,-1*K.1^13,K.1^47,-1*K.1,K.1^7,-1*K.1^53,-1*K.1^13,K.1^47,-1*K.1^49,K.1^7,-1*K.1^53,K.1^13,K.1^11,K.1^9,-1*K.1^43,-1*K.1^47,K.1^41,-1*K.1^91,-1*K.1^69,-1*K.1^29,K.1^31,-1*K.1^33,K.1^33,-1*K.1^27,K.1^21,K.1^27,-1*K.1^21,-1*K.1^77,-1*K.1^83,-1*K.1^9,K.1^39,K.1^79,K.1^69,-1*K.1^67,K.1^17,K.1^81,K.1^59,K.1^67,K.1^23,-1*K.1^37,-1*K.1^39,K.1^41,K.1^33,-1*K.1^27,K.1^29,-1*K.1^19,-1*K.1^99,-1*K.1^57,K.1^23,-1*K.1^37,-1*K.1^61,-1*K.1^87,-1*K.1^81,-1*K.1^67,K.1^51,-1*K.1^73,K.1^71,K.1^89,K.1^9,-1*K.1^43,K.1^77,-1*K.1^7,-1*K.1^91,-1*K.1^69,-1*K.1^71,K.1^53,-1*K.1^93,-1*K.1^59,-1*K.1^89,K.1^87,K.1^73,-1*K.1^93,K.1^67,K.1^61,K.1^87,K.1^73,K.1^37,-1*K.1^3,K.1^57,K.1^49,-1*K.1^11,K.1^13,K.1^11,K.1^91,-1*K.1^41,-1*K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,-1*K.1^36,-1*K.1^68,-1*K.1^76,K.1^88,-1*K.1^28,K.1^8,K.1^56,K.1^32,K.1^64,K.1^72,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^96,-1*K.1^52,K.1^48,K.1^16,-1*K.1^55,K.1^85,K.1^55,-1*K.1^85,-1*K.1^65,-1*K.1^45,K.1^15,K.1^45,K.1^85,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^95,K.1^95,-1*K.1^45,K.1^15,K.1^55,-1*K.1^55,-1*K.1^65,K.1^35,K.1^65,K.1^45,K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^95,K.1^65,-1*K.1^15,K.1^95,-1*K.1^35,-1*K.1^85,K.1^35,-1*K.1^44,K.1^8,K.1^52,K.1^4,K.1^88,K.1^24,-1*K.1^84,K.1^48,-1*K.1^64,K.1^92,K.1^64,K.1^92,K.1^96,-1*K.1^76,K.1^44,K.1^72,-1*K.1^48,K.1^12,-1*K.1^64,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^12,K.1^4,K.1^52,-1*K.1^36,K.1^32,K.1^84,K.1^16,K.1^56,-1*K.1^24,K.1^84,-1*K.1^8,-1*K.1^8,K.1^76,-1*K.1^48,K.1^76,K.1^28,K.1^28,-1*K.1^56,-1*K.1^56,-1*K.1^92,-1*K.1^28,K.1^44,K.1^12,-1*K.1^68,-1*K.1^96,-1*K.1^96,-1*K.1^88,K.1^36,K.1^36,-1*K.1^88,-1*K.1^16,K.1^68,K.1^68,-1*K.1^16,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^72,K.1^72,-1*K.1^28,K.1^84,K.1^92,-1*K.1^32,-1*K.1^16,-1*K.1^56,K.1^56,K.1^64,-1*K.1^4,K.1^88,-1*K.1^68,K.1^68,K.1^16,-1*K.1^76,-1*K.1^8,-1*K.1^48,-1*K.1^36,-1*K.1^84,K.1^28,K.1^8,K.1^48,-1*K.1^44,K.1^24,K.1^96,-1*K.1^88,-1*K.1^96,-1*K.1^52,K.1^44,K.1^4,-1*K.1^92,K.1^32,-1*K.1^64,K.1^12,-1*K.1^12,K.1^36,K.1^76,-1*K.1^72,K.1^52,-1*K.1^24,K.1^86,-1*K.1^2,K.1^6,K.1^78,-1*K.1^74,-1*K.1^74,-1*K.1^58,-1*K.1^26,-1*K.1^34,-1*K.1^78,-1*K.1^18,K.1^38,K.1^98,-1*K.1^42,K.1^46,K.1^38,K.1^94,K.1^22,K.1^86,K.1^34,K.1^74,K.1^94,-1*K.1^94,-1*K.1^14,K.1^58,K.1^26,K.1^82,K.1^66,K.1^42,K.1^14,K.1^2,-1*K.1^6,K.1^42,K.1^46,K.1^74,-1*K.1^46,-1*K.1^62,K.1^54,K.1^34,K.1^22,K.1^2,-1*K.1^6,-1*K.1^86,-1*K.1^82,K.1^62,K.1^62,-1*K.1^98,-1*K.1^22,K.1^82,K.1^26,-1*K.1^22,-1*K.1^86,K.1^18,-1*K.1^54,-1*K.1^54,-1*K.1^34,-1*K.1^14,-1*K.1^94,-1*K.1^78,-1*K.1^46,-1*K.1^62,K.1^58,K.1^66,K.1^18,-1*K.1^2,-1*K.1^26,-1*K.1^82,K.1^54,K.1^78,K.1^6,-1*K.1^38,K.1^98,-1*K.1^98,-1*K.1^58,-1*K.1^38,-1*K.1^66,-1*K.1^66,-1*K.1^18,K.1^14,-1*K.1^42,-1*K.1^62,K.1^34,-1*K.1^74,K.1^14,K.1^74,-1*K.1^94,K.1^62,-1*K.1^26,-1*K.1^86,K.1^82,-1*K.1^42,K.1^46,-1*K.1^6,-1*K.1^78,-1*K.1^18,-1*K.1^58,K.1^18,-1*K.1^38,K.1^6,-1*K.1^82,K.1^78,-1*K.1^22,-1*K.1^46,K.1^86,-1*K.1^2,K.1^42,K.1^26,-1*K.1^66,K.1^94,-1*K.1^54,-1*K.1^14,K.1^54,-1*K.1^34,K.1^66,K.1^2,K.1^22,K.1^38,K.1^98,K.1^58,-1*K.1^98,-1*K.1^73,-1*K.1^41,K.1^23,K.1^17,K.1^93,K.1^39,-1*K.1^57,K.1^59,-1*K.1^31,K.1,K.1^61,-1*K.1^57,K.1^37,-1*K.1^3,K.1^21,K.1^83,-1*K.1^79,K.1^37,-1*K.1^91,K.1^49,K.1^3,-1*K.1^87,K.1^29,-1*K.1^11,-1*K.1^29,K.1^9,-1*K.1^59,K.1^77,-1*K.1^39,-1*K.1^23,K.1^61,-1*K.1^43,K.1^97,-1*K.1^97,K.1^21,-1*K.1^61,-1*K.1^71,K.1^91,-1*K.1^97,K.1^79,K.1^89,-1*K.1^51,K.1^69,K.1^19,K.1^43,K.1^3,K.1^81,K.1^51,K.1^11,-1*K.1^21,-1*K.1^81,-1*K.1^41,K.1^77,-1*K.1^17,-1*K.1,K.1^41,-1*K.1^63,K.1^99,-1*K.1^17,-1*K.1^99,-1*K.1^33,-1*K.1^77,K.1^63,-1*K.1^9,-1*K.1^7,K.1^13,-1*K.1^87,K.1^29,-1*K.1^89,K.1^27,K.1^9,-1*K.1^59,K.1^23,K.1^17,-1*K.1^23,-1*K.1^67,K.1^73,K.1^59,-1*K.1^13,-1*K.1^27,-1*K.1^67,K.1^73,K.1^91,-1*K.1^13,-1*K.1^27,K.1^67,-1*K.1^49,K.1^31,-1*K.1^37,-1*K.1^73,-1*K.1^19,-1*K.1^69,K.1^71,-1*K.1^11,-1*K.1^29,-1*K.1^47,K.1^47,-1*K.1^93,-1*K.1^39,K.1^93,K.1^39,-1*K.1^43,K.1^97,-1*K.1^31,K.1,-1*K.1^61,-1*K.1^71,-1*K.1^53,-1*K.1^3,K.1^79,-1*K.1^81,K.1^53,K.1^57,-1*K.1^83,-1*K.1,-1*K.1^19,K.1^47,-1*K.1^93,K.1^11,-1*K.1^21,K.1^41,-1*K.1^63,K.1^57,-1*K.1^83,-1*K.1^99,-1*K.1^33,-1*K.1^79,-1*K.1^53,-1*K.1^9,-1*K.1^7,K.1^89,-1*K.1^51,K.1^31,-1*K.1^37,K.1^43,K.1^13,-1*K.1^69,K.1^71,-1*K.1^89,K.1^27,K.1^87,K.1^81,K.1^51,K.1^33,K.1^7,K.1^87,K.1^53,K.1^99,K.1^33,K.1^7,K.1^83,-1*K.1^77,K.1^63,-1*K.1^91,K.1^49,K.1^67,-1*K.1^49,K.1^69,K.1^19,-1*K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,K.1^64,K.1^32,K.1^24,-1*K.1^12,K.1^72,-1*K.1^92,-1*K.1^44,-1*K.1^68,-1*K.1^36,-1*K.1^28,K.1^88,K.1^8,-1*K.1^76,K.1^16,K.1^56,K.1^96,-1*K.1^4,K.1^48,-1*K.1^52,-1*K.1^84,K.1^45,-1*K.1^15,-1*K.1^45,K.1^15,K.1^35,K.1^55,-1*K.1^85,-1*K.1^55,-1*K.1^15,-1*K.1^95,K.1^85,K.1^95,K.1^5,-1*K.1^5,K.1^55,-1*K.1^85,-1*K.1^45,K.1^45,K.1^35,-1*K.1^65,-1*K.1^35,-1*K.1^55,-1*K.1^95,K.1^65,K.1^95,K.1^5,-1*K.1^35,K.1^85,-1*K.1^5,K.1^65,K.1^15,-1*K.1^65,K.1^56,-1*K.1^92,-1*K.1^48,-1*K.1^96,-1*K.1^12,-1*K.1^76,K.1^16,-1*K.1^52,K.1^36,-1*K.1^8,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^24,-1*K.1^56,-1*K.1^28,K.1^52,-1*K.1^88,K.1^36,K.1^48,K.1^28,K.1^68,K.1^88,-1*K.1^96,-1*K.1^48,K.1^64,-1*K.1^68,-1*K.1^16,-1*K.1^84,-1*K.1^44,K.1^76,-1*K.1^16,K.1^92,K.1^92,-1*K.1^24,K.1^52,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^44,K.1^44,K.1^8,K.1^72,-1*K.1^56,-1*K.1^88,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^64,-1*K.1^64,K.1^12,K.1^84,-1*K.1^32,-1*K.1^32,K.1^84,K.1^96,K.1^68,K.1^76,K.1^28,-1*K.1^28,K.1^72,-1*K.1^16,-1*K.1^8,K.1^68,K.1^84,K.1^44,-1*K.1^44,-1*K.1^36,K.1^96,-1*K.1^12,K.1^32,-1*K.1^32,-1*K.1^84,K.1^24,K.1^92,K.1^52,K.1^64,K.1^16,-1*K.1^72,-1*K.1^92,-1*K.1^52,K.1^56,-1*K.1^76,-1*K.1^4,K.1^12,K.1^4,K.1^48,-1*K.1^56,-1*K.1^96,K.1^8,-1*K.1^68,K.1^36,-1*K.1^88,K.1^88,-1*K.1^64,-1*K.1^24,K.1^28,-1*K.1^48,K.1^76,-1*K.1^14,K.1^98,-1*K.1^94,-1*K.1^22,K.1^26,K.1^26,K.1^42,K.1^74,K.1^66,K.1^22,K.1^82,-1*K.1^62,-1*K.1^2,K.1^58,-1*K.1^54,-1*K.1^62,-1*K.1^6,-1*K.1^78,-1*K.1^14,-1*K.1^66,-1*K.1^26,-1*K.1^6,K.1^6,K.1^86,-1*K.1^42,-1*K.1^74,-1*K.1^18,-1*K.1^34,-1*K.1^58,-1*K.1^86,-1*K.1^98,K.1^94,-1*K.1^58,-1*K.1^54,-1*K.1^26,K.1^54,K.1^38,-1*K.1^46,-1*K.1^66,-1*K.1^78,-1*K.1^98,K.1^94,K.1^14,K.1^18,-1*K.1^38,-1*K.1^38,K.1^2,K.1^78,-1*K.1^18,-1*K.1^74,K.1^78,K.1^14,-1*K.1^82,K.1^46,K.1^46,K.1^66,K.1^86,K.1^6,K.1^22,K.1^54,K.1^38,-1*K.1^42,-1*K.1^34,-1*K.1^82,K.1^98,K.1^74,K.1^18,-1*K.1^46,-1*K.1^22,-1*K.1^94,K.1^62,-1*K.1^2,K.1^2,K.1^42,K.1^62,K.1^34,K.1^34,K.1^82,-1*K.1^86,K.1^58,K.1^38,-1*K.1^66,K.1^26,-1*K.1^86,-1*K.1^26,K.1^6,-1*K.1^38,K.1^74,K.1^14,-1*K.1^18,K.1^58,-1*K.1^54,K.1^94,K.1^22,K.1^82,K.1^42,-1*K.1^82,K.1^62,-1*K.1^94,K.1^18,-1*K.1^22,K.1^78,K.1^54,-1*K.1^14,K.1^98,-1*K.1^58,-1*K.1^74,K.1^34,-1*K.1^6,K.1^46,K.1^86,-1*K.1^46,K.1^66,-1*K.1^34,-1*K.1^98,-1*K.1^78,-1*K.1^62,-1*K.1^2,-1*K.1^42,K.1^2,K.1^27,K.1^59,-1*K.1^77,-1*K.1^83,-1*K.1^7,-1*K.1^61,K.1^43,-1*K.1^41,K.1^69,-1*K.1^99,-1*K.1^39,K.1^43,-1*K.1^63,K.1^97,-1*K.1^79,-1*K.1^17,K.1^21,-1*K.1^63,K.1^9,-1*K.1^51,-1*K.1^97,K.1^13,-1*K.1^71,K.1^89,K.1^71,-1*K.1^91,K.1^41,-1*K.1^23,K.1^61,K.1^77,-1*K.1^39,K.1^57,-1*K.1^3,K.1^3,-1*K.1^79,K.1^39,K.1^29,-1*K.1^9,K.1^3,-1*K.1^21,-1*K.1^11,K.1^49,-1*K.1^31,-1*K.1^81,-1*K.1^57,-1*K.1^97,-1*K.1^19,-1*K.1^49,-1*K.1^89,K.1^79,K.1^19,K.1^59,-1*K.1^23,K.1^83,K.1^99,-1*K.1^59,K.1^37,-1*K.1,K.1^83,K.1,K.1^67,K.1^23,-1*K.1^37,K.1^91,K.1^93,-1*K.1^87,K.1^13,-1*K.1^71,K.1^11,-1*K.1^73,-1*K.1^91,K.1^41,-1*K.1^77,-1*K.1^83,K.1^77,K.1^33,-1*K.1^27,-1*K.1^41,K.1^87,K.1^73,K.1^33,-1*K.1^27,-1*K.1^9,K.1^87,K.1^73,-1*K.1^33,K.1^51,-1*K.1^69,K.1^63,K.1^27,K.1^81,K.1^31,-1*K.1^29,K.1^89,K.1^71,K.1^53,-1*K.1^53,K.1^7,K.1^61,-1*K.1^7,-1*K.1^61,K.1^57,-1*K.1^3,K.1^69,-1*K.1^99,K.1^39,K.1^29,K.1^47,K.1^97,-1*K.1^21,K.1^19,-1*K.1^47,-1*K.1^43,K.1^17,K.1^99,K.1^81,-1*K.1^53,K.1^7,-1*K.1^89,K.1^79,-1*K.1^59,K.1^37,-1*K.1^43,K.1^17,K.1,K.1^67,K.1^21,K.1^47,K.1^91,K.1^93,-1*K.1^11,K.1^49,-1*K.1^69,K.1^63,-1*K.1^57,-1*K.1^87,K.1^31,-1*K.1^29,K.1^11,-1*K.1^73,-1*K.1^13,-1*K.1^19,-1*K.1^49,-1*K.1^67,-1*K.1^93,-1*K.1^13,-1*K.1^47,-1*K.1,-1*K.1^67,-1*K.1^93,-1*K.1^17,K.1^23,-1*K.1^37,K.1^9,-1*K.1^51,-1*K.1^33,K.1^51,-1*K.1^31,-1*K.1^81,K.1^53]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^56,-1*K.1^28,K.1^96,K.1^48,K.1^88,-1*K.1^68,-1*K.1^76,K.1^72,-1*K.1^44,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,K.1^24,-1*K.1^84,K.1^16,-1*K.1^92,K.1^8,-1*K.1^36,-1*K.1^55,K.1^85,K.1^55,-1*K.1^85,-1*K.1^65,-1*K.1^45,K.1^15,K.1^45,K.1^85,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^95,K.1^95,-1*K.1^45,K.1^15,K.1^55,-1*K.1^55,-1*K.1^65,K.1^35,K.1^65,K.1^45,K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^95,K.1^65,-1*K.1^15,K.1^95,-1*K.1^35,-1*K.1^85,K.1^35,K.1^24,-1*K.1^68,K.1^92,K.1^84,K.1^48,-1*K.1^4,K.1^64,K.1^8,K.1^44,-1*K.1^32,-1*K.1^44,-1*K.1^32,K.1^16,K.1^96,-1*K.1^24,-1*K.1^12,-1*K.1^8,K.1^52,K.1^44,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^52,K.1^84,K.1^92,K.1^56,K.1^72,-1*K.1^64,-1*K.1^36,-1*K.1^76,K.1^4,-1*K.1^64,K.1^68,K.1^68,-1*K.1^96,-1*K.1^8,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^76,K.1^76,K.1^32,K.1^88,-1*K.1^24,K.1^52,-1*K.1^28,-1*K.1^16,-1*K.1^16,-1*K.1^48,-1*K.1^56,-1*K.1^56,-1*K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^84,-1*K.1^72,K.1^4,K.1^12,-1*K.1^12,K.1^88,-1*K.1^64,-1*K.1^32,-1*K.1^72,K.1^36,K.1^76,-1*K.1^76,-1*K.1^44,-1*K.1^84,K.1^48,-1*K.1^28,K.1^28,-1*K.1^36,K.1^96,K.1^68,-1*K.1^8,K.1^56,K.1^64,-1*K.1^88,-1*K.1^68,K.1^8,K.1^24,-1*K.1^4,K.1^16,-1*K.1^48,-1*K.1^16,-1*K.1^92,-1*K.1^24,K.1^84,K.1^32,K.1^72,K.1^44,K.1^52,-1*K.1^52,-1*K.1^56,-1*K.1^96,K.1^12,K.1^92,K.1^4,K.1^6,-1*K.1^42,-1*K.1^26,K.1^38,K.1^54,K.1^54,-1*K.1^18,K.1^46,K.1^14,-1*K.1^38,K.1^78,-1*K.1^98,K.1^58,-1*K.1^82,-1*K.1^66,-1*K.1^98,-1*K.1^74,K.1^62,K.1^6,-1*K.1^14,-1*K.1^54,-1*K.1^74,K.1^74,-1*K.1^94,K.1^18,-1*K.1^46,-1*K.1^22,-1*K.1^86,K.1^82,K.1^94,K.1^42,K.1^26,K.1^82,-1*K.1^66,-1*K.1^54,K.1^66,K.1^2,-1*K.1^34,-1*K.1^14,K.1^62,K.1^42,K.1^26,-1*K.1^6,K.1^22,-1*K.1^2,-1*K.1^2,-1*K.1^58,-1*K.1^62,-1*K.1^22,-1*K.1^46,-1*K.1^62,-1*K.1^6,-1*K.1^78,K.1^34,K.1^34,K.1^14,-1*K.1^94,K.1^74,-1*K.1^38,K.1^66,K.1^2,K.1^18,-1*K.1^86,-1*K.1^78,-1*K.1^42,K.1^46,K.1^22,-1*K.1^34,K.1^38,-1*K.1^26,K.1^98,K.1^58,-1*K.1^58,-1*K.1^18,K.1^98,K.1^86,K.1^86,K.1^78,K.1^94,-1*K.1^82,K.1^2,-1*K.1^14,K.1^54,K.1^94,-1*K.1^54,K.1^74,-1*K.1^2,K.1^46,-1*K.1^6,-1*K.1^22,-1*K.1^82,-1*K.1^66,K.1^26,-1*K.1^38,K.1^78,-1*K.1^18,-1*K.1^78,K.1^98,-1*K.1^26,K.1^22,K.1^38,-1*K.1^62,K.1^66,K.1^6,-1*K.1^42,K.1^82,-1*K.1^46,K.1^86,-1*K.1^74,K.1^34,-1*K.1^94,-1*K.1^34,K.1^14,-1*K.1^86,K.1^42,K.1^62,-1*K.1^98,K.1^58,K.1^18,-1*K.1^58,-1*K.1^33,K.1^61,-1*K.1^83,K.1^57,K.1^53,-1*K.1^19,-1*K.1^97,-1*K.1^39,K.1^51,-1*K.1^21,-1*K.1^81,-1*K.1^97,K.1^77,K.1^63,-1*K.1^41,K.1^43,K.1^59,K.1^77,-1*K.1^11,-1*K.1^29,-1*K.1^63,K.1^27,-1*K.1^9,K.1^31,K.1^9,K.1^89,K.1^39,-1*K.1^17,K.1^19,K.1^83,-1*K.1^81,-1*K.1^3,-1*K.1^37,K.1^37,-1*K.1^41,K.1^81,K.1^91,K.1^11,K.1^37,-1*K.1^59,-1*K.1^69,K.1^71,-1*K.1^49,K.1^99,K.1^3,-1*K.1^63,K.1,-1*K.1^71,-1*K.1^31,K.1^41,-1*K.1,K.1^61,-1*K.1^17,-1*K.1^57,K.1^21,-1*K.1^61,-1*K.1^23,-1*K.1^79,-1*K.1^57,K.1^79,K.1^93,K.1^17,K.1^23,-1*K.1^89,-1*K.1^47,-1*K.1^73,K.1^27,-1*K.1^9,K.1^69,K.1^67,K.1^89,K.1^39,-1*K.1^83,K.1^57,K.1^83,K.1^7,K.1^33,-1*K.1^39,K.1^73,-1*K.1^67,K.1^7,K.1^33,K.1^11,K.1^73,-1*K.1^67,-1*K.1^7,K.1^29,-1*K.1^51,-1*K.1^77,-1*K.1^33,-1*K.1^99,K.1^49,-1*K.1^91,K.1^31,K.1^9,-1*K.1^87,K.1^87,-1*K.1^53,K.1^19,K.1^53,-1*K.1^19,-1*K.1^3,-1*K.1^37,K.1^51,-1*K.1^21,K.1^81,K.1^91,-1*K.1^13,K.1^63,-1*K.1^59,-1*K.1,K.1^13,K.1^97,-1*K.1^43,K.1^21,-1*K.1^99,K.1^87,-1*K.1^53,-1*K.1^31,K.1^41,-1*K.1^61,-1*K.1^23,K.1^97,-1*K.1^43,K.1^79,K.1^93,K.1^59,-1*K.1^13,-1*K.1^89,-1*K.1^47,-1*K.1^69,K.1^71,-1*K.1^51,-1*K.1^77,K.1^3,-1*K.1^73,K.1^49,-1*K.1^91,K.1^69,K.1^67,-1*K.1^27,K.1,-1*K.1^71,-1*K.1^93,K.1^47,-1*K.1^27,K.1^13,-1*K.1^79,-1*K.1^93,K.1^47,K.1^43,K.1^17,K.1^23,-1*K.1^11,-1*K.1^29,-1*K.1^7,K.1^29,-1*K.1^49,K.1^99,-1*K.1^87]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^44,K.1^72,-1*K.1^4,-1*K.1^52,-1*K.1^12,K.1^32,K.1^24,-1*K.1^28,K.1^56,K.1^88,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,-1*K.1^76,K.1^16,-1*K.1^84,K.1^8,-1*K.1^92,K.1^64,K.1^45,-1*K.1^15,-1*K.1^45,K.1^15,K.1^35,K.1^55,-1*K.1^85,-1*K.1^55,-1*K.1^15,-1*K.1^95,K.1^85,K.1^95,K.1^5,-1*K.1^5,K.1^55,-1*K.1^85,-1*K.1^45,K.1^45,K.1^35,-1*K.1^65,-1*K.1^35,-1*K.1^55,-1*K.1^95,K.1^65,K.1^95,K.1^5,-1*K.1^35,K.1^85,-1*K.1^5,K.1^65,K.1^15,-1*K.1^65,-1*K.1^76,K.1^32,-1*K.1^8,-1*K.1^16,-1*K.1^52,K.1^96,-1*K.1^36,-1*K.1^92,-1*K.1^56,K.1^68,K.1^56,K.1^68,-1*K.1^84,-1*K.1^4,K.1^76,K.1^88,K.1^92,-1*K.1^48,-1*K.1^56,K.1^8,-1*K.1^88,K.1^28,K.1^48,-1*K.1^16,-1*K.1^8,-1*K.1^44,-1*K.1^28,K.1^36,K.1^64,K.1^24,-1*K.1^96,K.1^36,-1*K.1^32,-1*K.1^32,K.1^4,K.1^92,K.1^4,K.1^12,K.1^12,-1*K.1^24,-1*K.1^24,-1*K.1^68,-1*K.1^12,K.1^76,-1*K.1^48,K.1^72,K.1^84,K.1^84,K.1^52,K.1^44,K.1^44,K.1^52,-1*K.1^64,-1*K.1^72,-1*K.1^72,-1*K.1^64,K.1^16,K.1^28,-1*K.1^96,-1*K.1^88,K.1^88,-1*K.1^12,K.1^36,K.1^68,K.1^28,-1*K.1^64,-1*K.1^24,K.1^24,K.1^56,K.1^16,-1*K.1^52,K.1^72,-1*K.1^72,K.1^64,-1*K.1^4,-1*K.1^32,K.1^92,-1*K.1^44,-1*K.1^36,K.1^12,K.1^32,-1*K.1^92,-1*K.1^76,K.1^96,-1*K.1^84,K.1^52,K.1^84,K.1^8,K.1^76,-1*K.1^16,-1*K.1^68,-1*K.1^28,-1*K.1^56,-1*K.1^48,K.1^48,K.1^44,K.1^4,-1*K.1^88,-1*K.1^8,-1*K.1^96,-1*K.1^94,K.1^58,K.1^74,-1*K.1^62,-1*K.1^46,-1*K.1^46,K.1^82,-1*K.1^54,-1*K.1^86,K.1^62,-1*K.1^22,K.1^2,-1*K.1^42,K.1^18,K.1^34,K.1^2,K.1^26,-1*K.1^38,-1*K.1^94,K.1^86,K.1^46,K.1^26,-1*K.1^26,K.1^6,-1*K.1^82,K.1^54,K.1^78,K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^58,-1*K.1^74,-1*K.1^18,K.1^34,K.1^46,-1*K.1^34,-1*K.1^98,K.1^66,K.1^86,-1*K.1^38,-1*K.1^58,-1*K.1^74,K.1^94,-1*K.1^78,K.1^98,K.1^98,K.1^42,K.1^38,K.1^78,K.1^54,K.1^38,K.1^94,K.1^22,-1*K.1^66,-1*K.1^66,-1*K.1^86,K.1^6,-1*K.1^26,K.1^62,-1*K.1^34,-1*K.1^98,-1*K.1^82,K.1^14,K.1^22,K.1^58,-1*K.1^54,-1*K.1^78,K.1^66,-1*K.1^62,K.1^74,-1*K.1^2,-1*K.1^42,K.1^42,K.1^82,-1*K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^18,-1*K.1^98,K.1^86,-1*K.1^46,-1*K.1^6,K.1^46,-1*K.1^26,K.1^98,-1*K.1^54,K.1^94,K.1^78,K.1^18,K.1^34,-1*K.1^74,K.1^62,-1*K.1^22,K.1^82,K.1^22,-1*K.1^2,K.1^74,-1*K.1^78,-1*K.1^62,K.1^38,-1*K.1^34,-1*K.1^94,K.1^58,-1*K.1^18,K.1^54,-1*K.1^14,K.1^26,-1*K.1^66,K.1^6,K.1^66,-1*K.1^86,K.1^14,-1*K.1^58,-1*K.1^38,K.1^2,-1*K.1^42,-1*K.1^82,K.1^42,K.1^67,-1*K.1^39,K.1^17,-1*K.1^43,-1*K.1^47,K.1^81,K.1^3,K.1^61,-1*K.1^49,K.1^79,K.1^19,K.1^3,-1*K.1^23,-1*K.1^37,K.1^59,-1*K.1^57,-1*K.1^41,-1*K.1^23,K.1^89,K.1^71,K.1^37,-1*K.1^73,K.1^91,-1*K.1^69,-1*K.1^91,-1*K.1^11,-1*K.1^61,K.1^83,-1*K.1^81,-1*K.1^17,K.1^19,K.1^97,K.1^63,-1*K.1^63,K.1^59,-1*K.1^19,-1*K.1^9,-1*K.1^89,-1*K.1^63,K.1^41,K.1^31,-1*K.1^29,K.1^51,-1*K.1,-1*K.1^97,K.1^37,-1*K.1^99,K.1^29,K.1^69,-1*K.1^59,K.1^99,-1*K.1^39,K.1^83,K.1^43,-1*K.1^79,K.1^39,K.1^77,K.1^21,K.1^43,-1*K.1^21,-1*K.1^7,-1*K.1^83,-1*K.1^77,K.1^11,K.1^53,K.1^27,-1*K.1^73,K.1^91,-1*K.1^31,-1*K.1^33,-1*K.1^11,-1*K.1^61,K.1^17,-1*K.1^43,-1*K.1^17,-1*K.1^93,-1*K.1^67,K.1^61,-1*K.1^27,K.1^33,-1*K.1^93,-1*K.1^67,-1*K.1^89,-1*K.1^27,K.1^33,K.1^93,-1*K.1^71,K.1^49,K.1^23,K.1^67,K.1,-1*K.1^51,K.1^9,-1*K.1^69,-1*K.1^91,K.1^13,-1*K.1^13,K.1^47,-1*K.1^81,-1*K.1^47,K.1^81,K.1^97,K.1^63,-1*K.1^49,K.1^79,-1*K.1^19,-1*K.1^9,K.1^87,-1*K.1^37,K.1^41,K.1^99,-1*K.1^87,-1*K.1^3,K.1^57,-1*K.1^79,K.1,-1*K.1^13,K.1^47,K.1^69,-1*K.1^59,K.1^39,K.1^77,-1*K.1^3,K.1^57,-1*K.1^21,-1*K.1^7,-1*K.1^41,K.1^87,K.1^11,K.1^53,K.1^31,-1*K.1^29,K.1^49,K.1^23,-1*K.1^97,K.1^27,-1*K.1^51,K.1^9,-1*K.1^31,-1*K.1^33,K.1^73,-1*K.1^99,K.1^29,K.1^7,-1*K.1^53,K.1^73,-1*K.1^87,K.1^21,K.1^7,-1*K.1^53,-1*K.1^57,-1*K.1^83,-1*K.1^77,K.1^89,K.1^71,K.1^93,-1*K.1^71,K.1^51,-1*K.1,K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,-1*K.1^76,K.1^88,K.1^16,K.1^8,K.1^48,-1*K.1^28,K.1^96,-1*K.1^12,K.1^24,-1*K.1^52,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^64,-1*K.1^36,K.1^32,-1*K.1^68,K.1^56,-1*K.1^55,K.1^85,K.1^55,-1*K.1^85,-1*K.1^65,-1*K.1^45,K.1^15,K.1^45,K.1^85,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^95,K.1^95,-1*K.1^45,K.1^15,K.1^55,-1*K.1^55,-1*K.1^65,K.1^35,K.1^65,K.1^45,K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^95,K.1^65,-1*K.1^15,K.1^95,-1*K.1^35,-1*K.1^85,K.1^35,-1*K.1^4,-1*K.1^28,-1*K.1^32,-1*K.1^64,K.1^8,-1*K.1^84,-1*K.1^44,-1*K.1^68,-1*K.1^24,-1*K.1^72,K.1^24,-1*K.1^72,-1*K.1^36,K.1^16,K.1^4,-1*K.1^52,K.1^68,K.1^92,-1*K.1^24,K.1^32,K.1^52,K.1^12,-1*K.1^92,-1*K.1^64,-1*K.1^32,-1*K.1^76,-1*K.1^12,K.1^44,K.1^56,K.1^96,K.1^84,K.1^44,K.1^28,K.1^28,-1*K.1^16,K.1^68,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^96,-1*K.1^96,K.1^72,K.1^48,K.1^4,K.1^92,K.1^88,K.1^36,K.1^36,-1*K.1^8,K.1^76,K.1^76,-1*K.1^8,-1*K.1^56,-1*K.1^88,-1*K.1^88,-1*K.1^56,K.1^64,K.1^12,K.1^84,K.1^52,-1*K.1^52,K.1^48,K.1^44,-1*K.1^72,K.1^12,-1*K.1^56,-1*K.1^96,K.1^96,K.1^24,K.1^64,K.1^8,K.1^88,-1*K.1^88,K.1^56,K.1^16,K.1^28,K.1^68,-1*K.1^76,-1*K.1^44,-1*K.1^48,-1*K.1^28,-1*K.1^68,-1*K.1^4,-1*K.1^84,-1*K.1^36,-1*K.1^8,K.1^36,K.1^32,K.1^4,-1*K.1^64,K.1^72,-1*K.1^12,-1*K.1^24,K.1^92,-1*K.1^92,K.1^76,-1*K.1^16,K.1^52,-1*K.1^32,K.1^84,-1*K.1^26,-1*K.1^82,K.1^46,-1*K.1^98,-1*K.1^34,-1*K.1^34,K.1^78,-1*K.1^66,K.1^94,K.1^98,K.1^38,-1*K.1^58,K.1^18,K.1^22,K.1^86,-1*K.1^58,K.1^54,-1*K.1^2,-1*K.1^26,-1*K.1^94,K.1^34,K.1^54,-1*K.1^54,K.1^74,-1*K.1^78,K.1^66,-1*K.1^62,-1*K.1^6,-1*K.1^22,-1*K.1^74,K.1^82,-1*K.1^46,-1*K.1^22,K.1^86,K.1^34,-1*K.1^86,K.1^42,K.1^14,-1*K.1^94,-1*K.1^2,K.1^82,-1*K.1^46,K.1^26,K.1^62,-1*K.1^42,-1*K.1^42,-1*K.1^18,K.1^2,-1*K.1^62,K.1^66,K.1^2,K.1^26,-1*K.1^38,-1*K.1^14,-1*K.1^14,K.1^94,K.1^74,-1*K.1^54,K.1^98,-1*K.1^86,K.1^42,-1*K.1^78,-1*K.1^6,-1*K.1^38,-1*K.1^82,-1*K.1^66,K.1^62,K.1^14,-1*K.1^98,K.1^46,K.1^58,K.1^18,-1*K.1^18,K.1^78,K.1^58,K.1^6,K.1^6,K.1^38,-1*K.1^74,K.1^22,K.1^42,-1*K.1^94,-1*K.1^34,-1*K.1^74,K.1^34,-1*K.1^54,-1*K.1^42,-1*K.1^66,K.1^26,-1*K.1^62,K.1^22,K.1^86,-1*K.1^46,K.1^98,K.1^38,K.1^78,-1*K.1^38,K.1^58,K.1^46,K.1^62,-1*K.1^98,K.1^2,-1*K.1^86,-1*K.1^26,-1*K.1^82,-1*K.1^22,K.1^66,K.1^6,K.1^54,-1*K.1^14,K.1^74,K.1^14,K.1^94,-1*K.1^6,K.1^82,-1*K.1^2,-1*K.1^58,K.1^18,-1*K.1^78,-1*K.1^18,K.1^93,-1*K.1^81,-1*K.1^43,K.1^97,K.1^13,-1*K.1^99,K.1^37,K.1^19,-1*K.1^71,K.1^41,-1*K.1,K.1^37,-1*K.1^17,K.1^23,K.1^61,K.1^3,-1*K.1^39,-1*K.1^17,K.1^31,K.1^9,-1*K.1^23,K.1^67,-1*K.1^89,-1*K.1^51,K.1^89,-1*K.1^69,-1*K.1^19,-1*K.1^57,K.1^99,K.1^43,-1*K.1,K.1^63,-1*K.1^77,K.1^77,K.1^61,K.1,K.1^11,-1*K.1^31,K.1^77,K.1^39,K.1^49,-1*K.1^91,K.1^29,-1*K.1^79,-1*K.1^63,-1*K.1^23,-1*K.1^21,K.1^91,K.1^51,-1*K.1^61,K.1^21,-1*K.1^81,-1*K.1^57,-1*K.1^97,-1*K.1^41,K.1^81,K.1^83,K.1^59,-1*K.1^97,-1*K.1^59,K.1^53,K.1^57,-1*K.1^83,K.1^69,-1*K.1^87,-1*K.1^33,K.1^67,-1*K.1^89,-1*K.1^49,-1*K.1^7,-1*K.1^69,-1*K.1^19,-1*K.1^43,K.1^97,K.1^43,K.1^47,-1*K.1^93,K.1^19,K.1^33,K.1^7,K.1^47,-1*K.1^93,-1*K.1^31,K.1^33,K.1^7,-1*K.1^47,-1*K.1^9,K.1^71,K.1^17,K.1^93,K.1^79,-1*K.1^29,-1*K.1^11,-1*K.1^51,K.1^89,K.1^27,-1*K.1^27,-1*K.1^13,K.1^99,K.1^13,-1*K.1^99,K.1^63,-1*K.1^77,-1*K.1^71,K.1^41,K.1,K.1^11,K.1^73,K.1^23,K.1^39,K.1^21,-1*K.1^73,-1*K.1^37,-1*K.1^3,-1*K.1^41,K.1^79,-1*K.1^27,-1*K.1^13,K.1^51,-1*K.1^61,K.1^81,K.1^83,-1*K.1^37,-1*K.1^3,-1*K.1^59,K.1^53,-1*K.1^39,K.1^73,K.1^69,-1*K.1^87,K.1^49,-1*K.1^91,K.1^71,K.1^17,-1*K.1^63,-1*K.1^33,-1*K.1^29,-1*K.1^11,-1*K.1^49,-1*K.1^7,-1*K.1^67,-1*K.1^21,K.1^91,-1*K.1^53,K.1^87,-1*K.1^67,-1*K.1^73,K.1^59,-1*K.1^53,K.1^87,K.1^3,K.1^57,-1*K.1^83,K.1^31,K.1^9,-1*K.1^47,-1*K.1^9,K.1^29,-1*K.1^79,K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,K.1^24,-1*K.1^12,-1*K.1^84,-1*K.1^92,-1*K.1^52,K.1^72,-1*K.1^4,K.1^88,-1*K.1^76,K.1^48,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^96,-1*K.1^36,K.1^64,-1*K.1^68,K.1^32,-1*K.1^44,K.1^45,-1*K.1^15,-1*K.1^45,K.1^15,K.1^35,K.1^55,-1*K.1^85,-1*K.1^55,-1*K.1^15,-1*K.1^95,K.1^85,K.1^95,K.1^5,-1*K.1^5,K.1^55,-1*K.1^85,-1*K.1^45,K.1^45,K.1^35,-1*K.1^65,-1*K.1^35,-1*K.1^55,-1*K.1^95,K.1^65,K.1^95,K.1^5,-1*K.1^35,K.1^85,-1*K.1^5,K.1^65,K.1^15,-1*K.1^65,K.1^96,K.1^72,K.1^68,K.1^36,-1*K.1^92,K.1^16,K.1^56,K.1^32,K.1^76,K.1^28,-1*K.1^76,K.1^28,K.1^64,-1*K.1^84,-1*K.1^96,K.1^48,-1*K.1^32,-1*K.1^8,K.1^76,-1*K.1^68,-1*K.1^48,-1*K.1^88,K.1^8,K.1^36,K.1^68,K.1^24,K.1^88,-1*K.1^56,-1*K.1^44,-1*K.1^4,-1*K.1^16,-1*K.1^56,-1*K.1^72,-1*K.1^72,K.1^84,-1*K.1^32,K.1^84,K.1^52,K.1^52,K.1^4,K.1^4,-1*K.1^28,-1*K.1^52,-1*K.1^96,-1*K.1^8,-1*K.1^12,-1*K.1^64,-1*K.1^64,K.1^92,-1*K.1^24,-1*K.1^24,K.1^92,K.1^44,K.1^12,K.1^12,K.1^44,-1*K.1^36,-1*K.1^88,-1*K.1^16,-1*K.1^48,K.1^48,-1*K.1^52,-1*K.1^56,K.1^28,-1*K.1^88,K.1^44,K.1^4,-1*K.1^4,-1*K.1^76,-1*K.1^36,-1*K.1^92,-1*K.1^12,K.1^12,-1*K.1^44,-1*K.1^84,-1*K.1^72,-1*K.1^32,K.1^24,K.1^56,K.1^52,K.1^72,K.1^32,K.1^96,K.1^16,K.1^64,K.1^92,-1*K.1^64,-1*K.1^68,-1*K.1^96,K.1^36,-1*K.1^28,K.1^88,K.1^76,-1*K.1^8,K.1^8,-1*K.1^24,K.1^84,-1*K.1^48,K.1^68,-1*K.1^16,K.1^74,K.1^18,-1*K.1^54,K.1^2,K.1^66,K.1^66,-1*K.1^22,K.1^34,-1*K.1^6,-1*K.1^2,-1*K.1^62,K.1^42,-1*K.1^82,-1*K.1^78,-1*K.1^14,K.1^42,-1*K.1^46,K.1^98,K.1^74,K.1^6,-1*K.1^66,-1*K.1^46,K.1^46,-1*K.1^26,K.1^22,-1*K.1^34,K.1^38,K.1^94,K.1^78,K.1^26,-1*K.1^18,K.1^54,K.1^78,-1*K.1^14,-1*K.1^66,K.1^14,-1*K.1^58,-1*K.1^86,K.1^6,K.1^98,-1*K.1^18,K.1^54,-1*K.1^74,-1*K.1^38,K.1^58,K.1^58,K.1^82,-1*K.1^98,K.1^38,-1*K.1^34,-1*K.1^98,-1*K.1^74,K.1^62,K.1^86,K.1^86,-1*K.1^6,-1*K.1^26,K.1^46,-1*K.1^2,K.1^14,-1*K.1^58,K.1^22,K.1^94,K.1^62,K.1^18,K.1^34,-1*K.1^38,-1*K.1^86,K.1^2,-1*K.1^54,-1*K.1^42,-1*K.1^82,K.1^82,-1*K.1^22,-1*K.1^42,-1*K.1^94,-1*K.1^94,-1*K.1^62,K.1^26,-1*K.1^78,-1*K.1^58,K.1^6,K.1^66,K.1^26,-1*K.1^66,K.1^46,K.1^58,K.1^34,-1*K.1^74,K.1^38,-1*K.1^78,-1*K.1^14,K.1^54,-1*K.1^2,-1*K.1^62,-1*K.1^22,K.1^62,-1*K.1^42,-1*K.1^54,-1*K.1^38,K.1^2,-1*K.1^98,K.1^14,K.1^74,K.1^18,K.1^78,-1*K.1^34,-1*K.1^94,-1*K.1^46,K.1^86,-1*K.1^26,-1*K.1^86,-1*K.1^6,K.1^94,-1*K.1^18,K.1^98,K.1^42,-1*K.1^82,K.1^22,K.1^82,-1*K.1^7,K.1^19,K.1^57,-1*K.1^3,-1*K.1^87,K.1,-1*K.1^63,-1*K.1^81,K.1^29,-1*K.1^59,K.1^99,-1*K.1^63,K.1^83,-1*K.1^77,-1*K.1^39,-1*K.1^97,K.1^61,K.1^83,-1*K.1^69,-1*K.1^91,K.1^77,-1*K.1^33,K.1^11,K.1^49,-1*K.1^11,K.1^31,K.1^81,K.1^43,-1*K.1,-1*K.1^57,K.1^99,-1*K.1^37,K.1^23,-1*K.1^23,-1*K.1^39,-1*K.1^99,-1*K.1^89,K.1^69,-1*K.1^23,-1*K.1^61,-1*K.1^51,K.1^9,-1*K.1^71,K.1^21,K.1^37,K.1^77,K.1^79,-1*K.1^9,-1*K.1^49,K.1^39,-1*K.1^79,K.1^19,K.1^43,K.1^3,K.1^59,-1*K.1^19,-1*K.1^17,-1*K.1^41,K.1^3,K.1^41,-1*K.1^47,-1*K.1^43,K.1^17,-1*K.1^31,K.1^13,K.1^67,-1*K.1^33,K.1^11,K.1^51,K.1^93,K.1^31,K.1^81,K.1^57,-1*K.1^3,-1*K.1^57,-1*K.1^53,K.1^7,-1*K.1^81,-1*K.1^67,-1*K.1^93,-1*K.1^53,K.1^7,K.1^69,-1*K.1^67,-1*K.1^93,K.1^53,K.1^91,-1*K.1^29,-1*K.1^83,-1*K.1^7,-1*K.1^21,K.1^71,K.1^89,K.1^49,-1*K.1^11,-1*K.1^73,K.1^73,K.1^87,-1*K.1,-1*K.1^87,K.1,-1*K.1^37,K.1^23,K.1^29,-1*K.1^59,-1*K.1^99,-1*K.1^89,-1*K.1^27,-1*K.1^77,-1*K.1^61,-1*K.1^79,K.1^27,K.1^63,K.1^97,K.1^59,-1*K.1^21,K.1^73,K.1^87,-1*K.1^49,K.1^39,-1*K.1^19,-1*K.1^17,K.1^63,K.1^97,K.1^41,-1*K.1^47,K.1^61,-1*K.1^27,-1*K.1^31,K.1^13,-1*K.1^51,K.1^9,-1*K.1^29,-1*K.1^83,K.1^37,K.1^67,K.1^71,K.1^89,K.1^51,K.1^93,K.1^33,K.1^79,-1*K.1^9,K.1^47,-1*K.1^13,K.1^33,K.1^27,-1*K.1^41,K.1^47,-1*K.1^13,-1*K.1^97,-1*K.1^43,K.1^17,-1*K.1^69,-1*K.1^91,K.1^53,K.1^91,-1*K.1^71,K.1^21,-1*K.1^73]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^16,K.1^8,K.1^56,-1*K.1^28,-1*K.1^68,K.1^48,-1*K.1^36,-1*K.1^92,-1*K.1^84,K.1^32,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^64,K.1^24,-1*K.1^76,-1*K.1^12,K.1^88,K.1^96,-1*K.1^55,K.1^85,K.1^55,-1*K.1^85,-1*K.1^65,-1*K.1^45,K.1^15,K.1^45,K.1^85,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^95,K.1^95,-1*K.1^45,K.1^15,K.1^55,-1*K.1^55,-1*K.1^65,K.1^35,K.1^65,K.1^45,K.1^5,-1*K.1^35,-1*K.1^5,-1*K.1^95,K.1^65,-1*K.1^15,K.1^95,-1*K.1^35,-1*K.1^85,K.1^35,K.1^64,K.1^48,K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^44,-1*K.1^4,K.1^88,K.1^84,K.1^52,-1*K.1^84,K.1^52,-1*K.1^76,K.1^56,-1*K.1^64,K.1^32,-1*K.1^88,-1*K.1^72,K.1^84,-1*K.1^12,-1*K.1^32,K.1^92,K.1^72,-1*K.1^24,K.1^12,K.1^16,-1*K.1^92,K.1^4,K.1^96,-1*K.1^36,K.1^44,K.1^4,-1*K.1^48,-1*K.1^48,-1*K.1^56,-1*K.1^88,-1*K.1^56,K.1^68,K.1^68,K.1^36,K.1^36,-1*K.1^52,-1*K.1^68,-1*K.1^64,-1*K.1^72,K.1^8,K.1^76,K.1^76,K.1^28,-1*K.1^16,-1*K.1^16,K.1^28,-1*K.1^96,-1*K.1^8,-1*K.1^8,-1*K.1^96,K.1^24,K.1^92,K.1^44,-1*K.1^32,K.1^32,-1*K.1^68,K.1^4,K.1^52,K.1^92,-1*K.1^96,K.1^36,-1*K.1^36,-1*K.1^84,K.1^24,-1*K.1^28,K.1^8,-1*K.1^8,K.1^96,K.1^56,-1*K.1^48,-1*K.1^88,K.1^16,-1*K.1^4,K.1^68,K.1^48,K.1^88,K.1^64,-1*K.1^44,-1*K.1^76,K.1^28,K.1^76,-1*K.1^12,-1*K.1^64,-1*K.1^24,-1*K.1^52,-1*K.1^92,K.1^84,-1*K.1^72,K.1^72,-1*K.1^16,-1*K.1^56,-1*K.1^32,K.1^12,K.1^44,-1*K.1^66,K.1^62,K.1^86,-1*K.1^18,K.1^94,K.1^94,-1*K.1^98,K.1^6,K.1^54,K.1^18,-1*K.1^58,K.1^78,-1*K.1^38,-1*K.1^2,-1*K.1^26,K.1^78,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^54,-1*K.1^94,K.1^14,-1*K.1^14,K.1^34,K.1^98,-1*K.1^6,K.1^42,-1*K.1^46,K.1^2,-1*K.1^34,-1*K.1^62,-1*K.1^86,K.1^2,-1*K.1^26,-1*K.1^94,K.1^26,-1*K.1^22,-1*K.1^74,-1*K.1^54,-1*K.1^82,-1*K.1^62,-1*K.1^86,K.1^66,-1*K.1^42,K.1^22,K.1^22,K.1^38,K.1^82,K.1^42,-1*K.1^6,K.1^82,K.1^66,K.1^58,K.1^74,K.1^74,K.1^54,K.1^34,-1*K.1^14,K.1^18,K.1^26,-1*K.1^22,K.1^98,-1*K.1^46,K.1^58,K.1^62,K.1^6,-1*K.1^42,-1*K.1^74,-1*K.1^18,K.1^86,-1*K.1^78,-1*K.1^38,K.1^38,-1*K.1^98,-1*K.1^78,K.1^46,K.1^46,-1*K.1^58,-1*K.1^34,-1*K.1^2,-1*K.1^22,-1*K.1^54,K.1^94,-1*K.1^34,-1*K.1^94,-1*K.1^14,K.1^22,K.1^6,K.1^66,K.1^42,-1*K.1^2,-1*K.1^26,-1*K.1^86,K.1^18,-1*K.1^58,-1*K.1^98,K.1^58,-1*K.1^78,K.1^86,-1*K.1^42,-1*K.1^18,K.1^82,K.1^26,-1*K.1^66,K.1^62,K.1^2,-1*K.1^6,K.1^46,K.1^14,K.1^74,K.1^34,-1*K.1^74,K.1^54,-1*K.1^46,-1*K.1^62,-1*K.1^82,K.1^78,-1*K.1^38,K.1^98,K.1^38,K.1^13,K.1^21,K.1^63,-1*K.1^77,-1*K.1^33,-1*K.1^59,-1*K.1^17,-1*K.1^79,K.1^11,K.1^81,-1*K.1^41,-1*K.1^17,-1*K.1^97,-1*K.1^43,-1*K.1,-1*K.1^23,K.1^99,-1*K.1^97,K.1^71,-1*K.1^69,K.1^43,-1*K.1^47,-1*K.1^49,-1*K.1^91,K.1^49,-1*K.1^29,K.1^79,K.1^37,K.1^59,-1*K.1^63,-1*K.1^41,-1*K.1^83,K.1^57,-1*K.1^57,-1*K.1,K.1^41,K.1^51,-1*K.1^71,-1*K.1^57,-1*K.1^99,K.1^9,K.1^31,-1*K.1^89,-1*K.1^39,K.1^83,K.1^43,-1*K.1^61,-1*K.1^31,K.1^91,K.1,K.1^61,K.1^21,K.1^37,K.1^77,-1*K.1^81,-1*K.1^21,K.1^3,K.1^19,K.1^77,-1*K.1^19,-1*K.1^73,-1*K.1^37,-1*K.1^3,K.1^29,K.1^67,K.1^53,-1*K.1^47,-1*K.1^49,-1*K.1^9,-1*K.1^87,-1*K.1^29,K.1^79,K.1^63,-1*K.1^77,-1*K.1^63,-1*K.1^27,-1*K.1^13,-1*K.1^79,-1*K.1^53,K.1^87,-1*K.1^27,-1*K.1^13,-1*K.1^71,-1*K.1^53,K.1^87,K.1^27,K.1^69,-1*K.1^11,K.1^97,K.1^13,K.1^39,K.1^89,-1*K.1^51,-1*K.1^91,K.1^49,-1*K.1^7,K.1^7,K.1^33,K.1^59,-1*K.1^33,-1*K.1^59,-1*K.1^83,K.1^57,K.1^11,K.1^81,K.1^41,K.1^51,-1*K.1^93,-1*K.1^43,-1*K.1^99,K.1^61,K.1^93,K.1^17,K.1^23,-1*K.1^81,K.1^39,K.1^7,K.1^33,K.1^91,K.1,-1*K.1^21,K.1^3,K.1^17,K.1^23,-1*K.1^19,-1*K.1^73,K.1^99,-1*K.1^93,K.1^29,K.1^67,K.1^9,K.1^31,-1*K.1^11,K.1^97,K.1^83,K.1^53,K.1^89,-1*K.1^51,-1*K.1^9,-1*K.1^87,K.1^47,-1*K.1^61,-1*K.1^31,K.1^73,-1*K.1^67,K.1^47,K.1^93,K.1^19,K.1^73,-1*K.1^67,-1*K.1^23,-1*K.1^37,-1*K.1^3,K.1^71,-1*K.1^69,K.1^27,K.1^69,-1*K.1^89,-1*K.1^39,-1*K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^84,-1*K.1^92,-1*K.1^44,K.1^72,K.1^32,-1*K.1^52,K.1^64,K.1^8,K.1^16,-1*K.1^68,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^36,-1*K.1^76,K.1^24,K.1^88,-1*K.1^12,-1*K.1^4,K.1^45,-1*K.1^15,-1*K.1^45,K.1^15,K.1^35,K.1^55,-1*K.1^85,-1*K.1^55,-1*K.1^15,-1*K.1^95,K.1^85,K.1^95,K.1^5,-1*K.1^5,K.1^55,-1*K.1^85,-1*K.1^45,K.1^45,K.1^35,-1*K.1^65,-1*K.1^35,-1*K.1^55,-1*K.1^95,K.1^65,K.1^95,K.1^5,-1*K.1^35,K.1^85,-1*K.1^5,K.1^65,K.1^15,-1*K.1^65,-1*K.1^36,-1*K.1^52,-1*K.1^88,K.1^76,K.1^72,K.1^56,K.1^96,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^16,-1*K.1^48,K.1^24,-1*K.1^44,K.1^36,-1*K.1^68,K.1^12,K.1^28,-1*K.1^16,K.1^88,K.1^68,-1*K.1^8,-1*K.1^28,K.1^76,-1*K.1^88,-1*K.1^84,K.1^8,-1*K.1^96,-1*K.1^4,K.1^64,-1*K.1^56,-1*K.1^96,K.1^52,K.1^52,K.1^44,K.1^12,K.1^44,-1*K.1^32,-1*K.1^32,-1*K.1^64,-1*K.1^64,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^92,-1*K.1^24,-1*K.1^24,-1*K.1^72,K.1^84,K.1^84,-1*K.1^72,K.1^4,K.1^92,K.1^92,K.1^4,-1*K.1^76,-1*K.1^8,-1*K.1^56,K.1^68,-1*K.1^68,K.1^32,-1*K.1^96,-1*K.1^48,-1*K.1^8,K.1^4,-1*K.1^64,K.1^64,K.1^16,-1*K.1^76,K.1^72,-1*K.1^92,K.1^92,-1*K.1^4,-1*K.1^44,K.1^52,K.1^12,-1*K.1^84,K.1^96,-1*K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^36,K.1^56,K.1^24,-1*K.1^72,-1*K.1^24,K.1^88,K.1^36,K.1^76,K.1^48,K.1^8,-1*K.1^16,K.1^28,-1*K.1^28,K.1^84,K.1^44,K.1^68,-1*K.1^88,-1*K.1^56,K.1^34,-1*K.1^38,-1*K.1^14,K.1^82,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^94,-1*K.1^46,-1*K.1^82,K.1^42,-1*K.1^22,K.1^62,K.1^98,K.1^74,-1*K.1^22,-1*K.1^86,K.1^18,K.1^34,K.1^46,K.1^6,-1*K.1^86,K.1^86,-1*K.1^66,-1*K.1^2,K.1^94,-1*K.1^58,K.1^54,-1*K.1^98,K.1^66,K.1^38,K.1^14,-1*K.1^98,K.1^74,K.1^6,-1*K.1^74,K.1^78,K.1^26,K.1^46,K.1^18,K.1^38,K.1^14,-1*K.1^34,K.1^58,-1*K.1^78,-1*K.1^78,-1*K.1^62,-1*K.1^18,-1*K.1^58,K.1^94,-1*K.1^18,-1*K.1^34,-1*K.1^42,-1*K.1^26,-1*K.1^26,-1*K.1^46,-1*K.1^66,K.1^86,-1*K.1^82,-1*K.1^74,K.1^78,-1*K.1^2,K.1^54,-1*K.1^42,-1*K.1^38,-1*K.1^94,K.1^58,K.1^26,K.1^82,-1*K.1^14,K.1^22,K.1^62,-1*K.1^62,K.1^2,K.1^22,-1*K.1^54,-1*K.1^54,K.1^42,K.1^66,K.1^98,K.1^78,K.1^46,-1*K.1^6,K.1^66,K.1^6,K.1^86,-1*K.1^78,-1*K.1^94,-1*K.1^34,-1*K.1^58,K.1^98,K.1^74,K.1^14,-1*K.1^82,K.1^42,K.1^2,-1*K.1^42,K.1^22,-1*K.1^14,K.1^58,K.1^82,-1*K.1^18,-1*K.1^74,K.1^34,-1*K.1^38,-1*K.1^98,K.1^94,-1*K.1^54,-1*K.1^86,-1*K.1^26,-1*K.1^66,K.1^26,-1*K.1^46,K.1^54,K.1^38,K.1^18,-1*K.1^22,K.1^62,-1*K.1^2,-1*K.1^62,-1*K.1^87,-1*K.1^79,-1*K.1^37,K.1^23,K.1^67,K.1^41,K.1^83,K.1^21,-1*K.1^89,-1*K.1^19,K.1^59,K.1^83,K.1^3,K.1^57,K.1^99,K.1^77,-1*K.1,K.1^3,-1*K.1^29,K.1^31,-1*K.1^57,K.1^53,K.1^51,K.1^9,-1*K.1^51,K.1^71,-1*K.1^21,-1*K.1^63,-1*K.1^41,K.1^37,K.1^59,K.1^17,-1*K.1^43,K.1^43,K.1^99,-1*K.1^59,-1*K.1^49,K.1^29,K.1^43,K.1,-1*K.1^91,-1*K.1^69,K.1^11,K.1^61,-1*K.1^17,-1*K.1^57,K.1^39,K.1^69,-1*K.1^9,-1*K.1^99,-1*K.1^39,-1*K.1^79,-1*K.1^63,-1*K.1^23,K.1^19,K.1^79,-1*K.1^97,-1*K.1^81,-1*K.1^23,K.1^81,K.1^27,K.1^63,K.1^97,-1*K.1^71,-1*K.1^33,-1*K.1^47,K.1^53,K.1^51,K.1^91,K.1^13,K.1^71,-1*K.1^21,-1*K.1^37,K.1^23,K.1^37,K.1^73,K.1^87,K.1^21,K.1^47,-1*K.1^13,K.1^73,K.1^87,K.1^29,K.1^47,-1*K.1^13,-1*K.1^73,-1*K.1^31,K.1^89,-1*K.1^3,-1*K.1^87,-1*K.1^61,-1*K.1^11,K.1^49,K.1^9,-1*K.1^51,K.1^93,-1*K.1^93,-1*K.1^67,-1*K.1^41,K.1^67,K.1^41,K.1^17,-1*K.1^43,-1*K.1^89,-1*K.1^19,-1*K.1^59,-1*K.1^49,K.1^7,K.1^57,K.1,-1*K.1^39,-1*K.1^7,-1*K.1^83,-1*K.1^77,K.1^19,-1*K.1^61,-1*K.1^93,-1*K.1^67,-1*K.1^9,-1*K.1^99,K.1^79,-1*K.1^97,-1*K.1^83,-1*K.1^77,K.1^81,K.1^27,-1*K.1,K.1^7,-1*K.1^71,-1*K.1^33,-1*K.1^91,-1*K.1^69,K.1^89,-1*K.1^3,-1*K.1^17,-1*K.1^47,-1*K.1^11,K.1^49,K.1^91,K.1^13,-1*K.1^53,K.1^39,K.1^69,-1*K.1^27,K.1^33,-1*K.1^53,-1*K.1^7,-1*K.1^81,-1*K.1^27,K.1^33,K.1^77,K.1^63,K.1^97,-1*K.1^29,K.1^31,-1*K.1^73,-1*K.1^31,K.1^11,K.1^61,K.1^93]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^96,K.1^48,-1*K.1^36,-1*K.1^68,K.1^8,K.1^88,K.1^16,-1*K.1^52,-1*K.1^4,-1*K.1^92,K.1^32,-1*K.1^12,K.1^64,K.1^24,-1*K.1^84,-1*K.1^44,K.1^56,K.1^72,-1*K.1^28,-1*K.1^76,K.1^55,-1*K.1^85,-1*K.1^55,K.1^85,K.1^65,K.1^45,-1*K.1^15,-1*K.1^45,-1*K.1^85,-1*K.1^5,K.1^15,K.1^5,K.1^95,-1*K.1^95,K.1^45,-1*K.1^15,-1*K.1^55,K.1^55,K.1^65,-1*K.1^35,-1*K.1^65,-1*K.1^45,-1*K.1^5,K.1^35,K.1^5,K.1^95,-1*K.1^65,K.1^15,-1*K.1^95,K.1^35,K.1^85,-1*K.1^35,-1*K.1^84,K.1^88,-1*K.1^72,K.1^44,-1*K.1^68,K.1^64,K.1^24,-1*K.1^28,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^56,-1*K.1^36,K.1^84,-1*K.1^92,K.1^28,-1*K.1^32,K.1^4,K.1^72,K.1^92,K.1^52,K.1^32,K.1^44,-1*K.1^72,K.1^96,-1*K.1^52,-1*K.1^24,-1*K.1^76,K.1^16,-1*K.1^64,-1*K.1^24,-1*K.1^88,-1*K.1^88,K.1^36,K.1^28,K.1^36,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^84,-1*K.1^32,K.1^48,-1*K.1^56,-1*K.1^56,K.1^68,-1*K.1^96,-1*K.1^96,K.1^68,K.1^76,-1*K.1^48,-1*K.1^48,K.1^76,-1*K.1^44,K.1^52,-1*K.1^64,K.1^92,-1*K.1^92,K.1^8,-1*K.1^24,K.1^12,K.1^52,K.1^76,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^44,-1*K.1^68,K.1^48,-1*K.1^48,-1*K.1^76,-1*K.1^36,-1*K.1^88,K.1^28,K.1^96,K.1^24,-1*K.1^8,K.1^88,-1*K.1^28,-1*K.1^84,K.1^64,K.1^56,K.1^68,-1*K.1^56,K.1^72,K.1^84,K.1^44,-1*K.1^12,-1*K.1^52,K.1^4,-1*K.1^32,K.1^32,-1*K.1^96,K.1^36,K.1^92,-1*K.1^72,-1*K.1^64,K.1^46,K.1^22,-1*K.1^66,-1*K.1^58,K.1^14,K.1^14,K.1^38,K.1^86,-1*K.1^74,K.1^58,-1*K.1^98,-1*K.1^18,-1*K.1^78,K.1^62,K.1^6,-1*K.1^18,-1*K.1^34,-1*K.1^42,K.1^46,K.1^74,-1*K.1^14,-1*K.1^34,K.1^34,-1*K.1^54,-1*K.1^38,-1*K.1^86,K.1^2,K.1^26,-1*K.1^62,K.1^54,-1*K.1^22,K.1^66,-1*K.1^62,K.1^6,-1*K.1^14,-1*K.1^6,K.1^82,K.1^94,K.1^74,-1*K.1^42,-1*K.1^22,K.1^66,-1*K.1^46,-1*K.1^2,-1*K.1^82,-1*K.1^82,K.1^78,K.1^42,K.1^2,-1*K.1^86,K.1^42,-1*K.1^46,K.1^98,-1*K.1^94,-1*K.1^94,-1*K.1^74,-1*K.1^54,K.1^34,K.1^58,-1*K.1^6,K.1^82,-1*K.1^38,K.1^26,K.1^98,K.1^22,K.1^86,-1*K.1^2,K.1^94,-1*K.1^58,-1*K.1^66,K.1^18,-1*K.1^78,K.1^78,K.1^38,K.1^18,-1*K.1^26,-1*K.1^26,-1*K.1^98,K.1^54,K.1^62,K.1^82,K.1^74,K.1^14,K.1^54,-1*K.1^14,K.1^34,-1*K.1^82,K.1^86,-1*K.1^46,K.1^2,K.1^62,K.1^6,K.1^66,K.1^58,-1*K.1^98,K.1^38,K.1^98,K.1^18,-1*K.1^66,-1*K.1^2,-1*K.1^58,K.1^42,-1*K.1^6,K.1^46,K.1^22,-1*K.1^62,-1*K.1^86,-1*K.1^26,-1*K.1^34,-1*K.1^94,-1*K.1^54,K.1^94,-1*K.1^74,K.1^26,-1*K.1^22,-1*K.1^42,-1*K.1^18,-1*K.1^78,-1*K.1^38,K.1^78,-1*K.1^53,K.1,K.1^3,K.1^37,K.1^73,-1*K.1^79,-1*K.1^77,-1*K.1^99,-1*K.1^91,K.1^61,-1*K.1^21,-1*K.1^77,K.1^57,K.1^83,K.1^81,K.1^63,-1*K.1^19,K.1^57,K.1^51,-1*K.1^89,-1*K.1^83,K.1^7,-1*K.1^69,-1*K.1^71,K.1^69,-1*K.1^49,K.1^99,K.1^97,K.1^79,-1*K.1^3,-1*K.1^21,-1*K.1^23,-1*K.1^17,K.1^17,K.1^81,K.1^21,K.1^31,-1*K.1^51,K.1^17,K.1^19,K.1^29,K.1^11,K.1^9,-1*K.1^59,K.1^23,-1*K.1^83,-1*K.1^41,-1*K.1^11,K.1^71,-1*K.1^81,K.1^41,K.1,K.1^97,-1*K.1^37,-1*K.1^61,-1*K.1,-1*K.1^43,K.1^39,-1*K.1^37,-1*K.1^39,-1*K.1^13,-1*K.1^97,K.1^43,K.1^49,-1*K.1^27,-1*K.1^93,K.1^7,-1*K.1^69,-1*K.1^29,K.1^47,-1*K.1^49,K.1^99,K.1^3,K.1^37,-1*K.1^3,-1*K.1^87,K.1^53,-1*K.1^99,K.1^93,-1*K.1^47,-1*K.1^87,K.1^53,-1*K.1^51,K.1^93,-1*K.1^47,K.1^87,K.1^89,K.1^91,-1*K.1^57,-1*K.1^53,K.1^59,-1*K.1^9,-1*K.1^31,-1*K.1^71,K.1^69,-1*K.1^67,K.1^67,-1*K.1^73,K.1^79,K.1^73,-1*K.1^79,-1*K.1^23,-1*K.1^17,-1*K.1^91,K.1^61,K.1^21,K.1^31,-1*K.1^33,K.1^83,K.1^19,K.1^41,K.1^33,K.1^77,-1*K.1^63,-1*K.1^61,K.1^59,K.1^67,-1*K.1^73,K.1^71,-1*K.1^81,-1*K.1,-1*K.1^43,K.1^77,-1*K.1^63,-1*K.1^39,-1*K.1^13,-1*K.1^19,-1*K.1^33,K.1^49,-1*K.1^27,K.1^29,K.1^11,K.1^91,-1*K.1^57,K.1^23,-1*K.1^93,-1*K.1^9,-1*K.1^31,-1*K.1^29,K.1^47,-1*K.1^7,-1*K.1^41,-1*K.1^11,K.1^13,K.1^27,-1*K.1^7,K.1^33,K.1^39,K.1^13,K.1^27,K.1^63,-1*K.1^97,K.1^43,K.1^51,-1*K.1^89,K.1^87,K.1^89,K.1^9,-1*K.1^59,-1*K.1^67]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^4,-1*K.1^52,K.1^64,K.1^32,-1*K.1^92,-1*K.1^12,-1*K.1^84,K.1^48,K.1^96,K.1^8,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,K.1^16,K.1^56,-1*K.1^44,-1*K.1^28,K.1^72,K.1^24,-1*K.1^45,K.1^15,K.1^45,-1*K.1^15,-1*K.1^35,-1*K.1^55,K.1^85,K.1^55,K.1^15,K.1^95,-1*K.1^85,-1*K.1^95,-1*K.1^5,K.1^5,-1*K.1^55,K.1^85,K.1^45,-1*K.1^45,-1*K.1^35,K.1^65,K.1^35,K.1^55,K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^5,K.1^35,-1*K.1^85,K.1^5,-1*K.1^65,-1*K.1^15,K.1^65,K.1^16,-1*K.1^12,K.1^28,-1*K.1^56,K.1^32,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^96,-1*K.1^88,K.1^96,-1*K.1^88,-1*K.1^44,K.1^64,-1*K.1^16,K.1^8,-1*K.1^72,K.1^68,-1*K.1^96,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^68,-1*K.1^56,K.1^28,-1*K.1^4,K.1^48,K.1^76,K.1^24,-1*K.1^84,K.1^36,K.1^76,K.1^12,K.1^12,-1*K.1^64,-1*K.1^72,-1*K.1^64,K.1^92,K.1^92,K.1^84,K.1^84,K.1^88,-1*K.1^92,-1*K.1^16,K.1^68,-1*K.1^52,K.1^44,K.1^44,-1*K.1^32,K.1^4,K.1^4,-1*K.1^32,-1*K.1^24,K.1^52,K.1^52,-1*K.1^24,K.1^56,-1*K.1^48,K.1^36,-1*K.1^8,K.1^8,-1*K.1^92,K.1^76,-1*K.1^88,-1*K.1^48,-1*K.1^24,K.1^84,-1*K.1^84,K.1^96,K.1^56,K.1^32,-1*K.1^52,K.1^52,K.1^24,K.1^64,K.1^12,-1*K.1^72,-1*K.1^4,-1*K.1^76,K.1^92,-1*K.1^12,K.1^72,K.1^16,-1*K.1^36,-1*K.1^44,-1*K.1^32,K.1^44,-1*K.1^28,-1*K.1^16,-1*K.1^56,K.1^88,K.1^48,-1*K.1^96,K.1^68,-1*K.1^68,K.1^4,-1*K.1^64,-1*K.1^8,K.1^28,K.1^36,-1*K.1^54,-1*K.1^78,K.1^34,K.1^42,-1*K.1^86,-1*K.1^86,-1*K.1^62,-1*K.1^14,K.1^26,-1*K.1^42,K.1^2,K.1^82,K.1^22,-1*K.1^38,-1*K.1^94,K.1^82,K.1^66,K.1^58,-1*K.1^54,-1*K.1^26,K.1^86,K.1^66,-1*K.1^66,K.1^46,K.1^62,K.1^14,-1*K.1^98,-1*K.1^74,K.1^38,-1*K.1^46,K.1^78,-1*K.1^34,K.1^38,-1*K.1^94,K.1^86,K.1^94,-1*K.1^18,-1*K.1^6,-1*K.1^26,K.1^58,K.1^78,-1*K.1^34,K.1^54,K.1^98,K.1^18,K.1^18,-1*K.1^22,-1*K.1^58,-1*K.1^98,K.1^14,-1*K.1^58,K.1^54,-1*K.1^2,K.1^6,K.1^6,K.1^26,K.1^46,-1*K.1^66,-1*K.1^42,K.1^94,-1*K.1^18,K.1^62,-1*K.1^74,-1*K.1^2,-1*K.1^78,-1*K.1^14,K.1^98,-1*K.1^6,K.1^42,K.1^34,-1*K.1^82,K.1^22,-1*K.1^22,-1*K.1^62,-1*K.1^82,K.1^74,K.1^74,K.1^2,-1*K.1^46,-1*K.1^38,-1*K.1^18,-1*K.1^26,-1*K.1^86,-1*K.1^46,K.1^86,-1*K.1^66,K.1^18,-1*K.1^14,K.1^54,-1*K.1^98,-1*K.1^38,-1*K.1^94,-1*K.1^34,-1*K.1^42,K.1^2,-1*K.1^62,-1*K.1^2,-1*K.1^82,K.1^34,K.1^98,K.1^42,-1*K.1^58,K.1^94,-1*K.1^54,-1*K.1^78,K.1^38,K.1^14,K.1^74,K.1^66,K.1^6,K.1^46,-1*K.1^6,K.1^26,-1*K.1^74,K.1^78,K.1^58,K.1^82,K.1^22,K.1^62,-1*K.1^22,K.1^47,-1*K.1^99,-1*K.1^97,-1*K.1^63,-1*K.1^27,K.1^21,K.1^23,K.1,K.1^9,-1*K.1^39,K.1^79,K.1^23,-1*K.1^43,-1*K.1^17,-1*K.1^19,-1*K.1^37,K.1^81,-1*K.1^43,-1*K.1^49,K.1^11,K.1^17,-1*K.1^93,K.1^31,K.1^29,-1*K.1^31,K.1^51,-1*K.1,-1*K.1^3,-1*K.1^21,K.1^97,K.1^79,K.1^77,K.1^83,-1*K.1^83,-1*K.1^19,-1*K.1^79,-1*K.1^69,K.1^49,-1*K.1^83,-1*K.1^81,-1*K.1^71,-1*K.1^89,-1*K.1^91,K.1^41,-1*K.1^77,K.1^17,K.1^59,K.1^89,-1*K.1^29,K.1^19,-1*K.1^59,-1*K.1^99,-1*K.1^3,K.1^63,K.1^39,K.1^99,K.1^57,-1*K.1^61,K.1^63,K.1^61,K.1^87,K.1^3,-1*K.1^57,-1*K.1^51,K.1^73,K.1^7,-1*K.1^93,K.1^31,K.1^71,-1*K.1^53,K.1^51,-1*K.1,-1*K.1^97,-1*K.1^63,K.1^97,K.1^13,-1*K.1^47,K.1,-1*K.1^7,K.1^53,K.1^13,-1*K.1^47,K.1^49,-1*K.1^7,K.1^53,-1*K.1^13,-1*K.1^11,-1*K.1^9,K.1^43,K.1^47,-1*K.1^41,K.1^91,K.1^69,K.1^29,-1*K.1^31,K.1^33,-1*K.1^33,K.1^27,-1*K.1^21,-1*K.1^27,K.1^21,K.1^77,K.1^83,K.1^9,-1*K.1^39,-1*K.1^79,-1*K.1^69,K.1^67,-1*K.1^17,-1*K.1^81,-1*K.1^59,-1*K.1^67,-1*K.1^23,K.1^37,K.1^39,-1*K.1^41,-1*K.1^33,K.1^27,-1*K.1^29,K.1^19,K.1^99,K.1^57,-1*K.1^23,K.1^37,K.1^61,K.1^87,K.1^81,K.1^67,-1*K.1^51,K.1^73,-1*K.1^71,-1*K.1^89,-1*K.1^9,K.1^43,-1*K.1^77,K.1^7,K.1^91,K.1^69,K.1^71,-1*K.1^53,K.1^93,K.1^59,K.1^89,-1*K.1^87,-1*K.1^73,K.1^93,-1*K.1^67,-1*K.1^61,-1*K.1^87,-1*K.1^73,-1*K.1^37,K.1^3,-1*K.1^57,-1*K.1^49,K.1^11,-1*K.1^13,-1*K.1^11,-1*K.1^91,K.1^41,K.1^33]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,-1*K.1^36,-1*K.1^68,-1*K.1^76,K.1^88,-1*K.1^28,K.1^8,K.1^56,K.1^32,K.1^64,K.1^72,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^96,-1*K.1^52,K.1^48,K.1^16,K.1^55,-1*K.1^85,-1*K.1^55,K.1^85,K.1^65,K.1^45,-1*K.1^15,-1*K.1^45,-1*K.1^85,-1*K.1^5,K.1^15,K.1^5,K.1^95,-1*K.1^95,K.1^45,-1*K.1^15,-1*K.1^55,K.1^55,K.1^65,-1*K.1^35,-1*K.1^65,-1*K.1^45,-1*K.1^5,K.1^35,K.1^5,K.1^95,-1*K.1^65,K.1^15,-1*K.1^95,K.1^35,K.1^85,-1*K.1^35,-1*K.1^44,K.1^8,K.1^52,K.1^4,K.1^88,K.1^24,-1*K.1^84,K.1^48,-1*K.1^64,K.1^92,K.1^64,K.1^92,K.1^96,-1*K.1^76,K.1^44,K.1^72,-1*K.1^48,K.1^12,-1*K.1^64,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^12,K.1^4,K.1^52,-1*K.1^36,K.1^32,K.1^84,K.1^16,K.1^56,-1*K.1^24,K.1^84,-1*K.1^8,-1*K.1^8,K.1^76,-1*K.1^48,K.1^76,K.1^28,K.1^28,-1*K.1^56,-1*K.1^56,-1*K.1^92,-1*K.1^28,K.1^44,K.1^12,-1*K.1^68,-1*K.1^96,-1*K.1^96,-1*K.1^88,K.1^36,K.1^36,-1*K.1^88,-1*K.1^16,K.1^68,K.1^68,-1*K.1^16,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^72,K.1^72,-1*K.1^28,K.1^84,K.1^92,-1*K.1^32,-1*K.1^16,-1*K.1^56,K.1^56,K.1^64,-1*K.1^4,K.1^88,-1*K.1^68,K.1^68,K.1^16,-1*K.1^76,-1*K.1^8,-1*K.1^48,-1*K.1^36,-1*K.1^84,K.1^28,K.1^8,K.1^48,-1*K.1^44,K.1^24,K.1^96,-1*K.1^88,-1*K.1^96,-1*K.1^52,K.1^44,K.1^4,-1*K.1^92,K.1^32,-1*K.1^64,K.1^12,-1*K.1^12,K.1^36,K.1^76,-1*K.1^72,K.1^52,-1*K.1^24,K.1^86,-1*K.1^2,K.1^6,K.1^78,-1*K.1^74,-1*K.1^74,-1*K.1^58,-1*K.1^26,-1*K.1^34,-1*K.1^78,-1*K.1^18,K.1^38,K.1^98,-1*K.1^42,K.1^46,K.1^38,K.1^94,K.1^22,K.1^86,K.1^34,K.1^74,K.1^94,-1*K.1^94,-1*K.1^14,K.1^58,K.1^26,K.1^82,K.1^66,K.1^42,K.1^14,K.1^2,-1*K.1^6,K.1^42,K.1^46,K.1^74,-1*K.1^46,-1*K.1^62,K.1^54,K.1^34,K.1^22,K.1^2,-1*K.1^6,-1*K.1^86,-1*K.1^82,K.1^62,K.1^62,-1*K.1^98,-1*K.1^22,K.1^82,K.1^26,-1*K.1^22,-1*K.1^86,K.1^18,-1*K.1^54,-1*K.1^54,-1*K.1^34,-1*K.1^14,-1*K.1^94,-1*K.1^78,-1*K.1^46,-1*K.1^62,K.1^58,K.1^66,K.1^18,-1*K.1^2,-1*K.1^26,-1*K.1^82,K.1^54,K.1^78,K.1^6,-1*K.1^38,K.1^98,-1*K.1^98,-1*K.1^58,-1*K.1^38,-1*K.1^66,-1*K.1^66,-1*K.1^18,K.1^14,-1*K.1^42,-1*K.1^62,K.1^34,-1*K.1^74,K.1^14,K.1^74,-1*K.1^94,K.1^62,-1*K.1^26,-1*K.1^86,K.1^82,-1*K.1^42,K.1^46,-1*K.1^6,-1*K.1^78,-1*K.1^18,-1*K.1^58,K.1^18,-1*K.1^38,K.1^6,-1*K.1^82,K.1^78,-1*K.1^22,-1*K.1^46,K.1^86,-1*K.1^2,K.1^42,K.1^26,-1*K.1^66,K.1^94,-1*K.1^54,-1*K.1^14,K.1^54,-1*K.1^34,K.1^66,K.1^2,K.1^22,K.1^38,K.1^98,K.1^58,-1*K.1^98,K.1^73,K.1^41,-1*K.1^23,-1*K.1^17,-1*K.1^93,-1*K.1^39,K.1^57,-1*K.1^59,K.1^31,-1*K.1,-1*K.1^61,K.1^57,-1*K.1^37,K.1^3,-1*K.1^21,-1*K.1^83,K.1^79,-1*K.1^37,K.1^91,-1*K.1^49,-1*K.1^3,K.1^87,-1*K.1^29,K.1^11,K.1^29,-1*K.1^9,K.1^59,-1*K.1^77,K.1^39,K.1^23,-1*K.1^61,K.1^43,-1*K.1^97,K.1^97,-1*K.1^21,K.1^61,K.1^71,-1*K.1^91,K.1^97,-1*K.1^79,-1*K.1^89,K.1^51,-1*K.1^69,-1*K.1^19,-1*K.1^43,-1*K.1^3,-1*K.1^81,-1*K.1^51,-1*K.1^11,K.1^21,K.1^81,K.1^41,-1*K.1^77,K.1^17,K.1,-1*K.1^41,K.1^63,-1*K.1^99,K.1^17,K.1^99,K.1^33,K.1^77,-1*K.1^63,K.1^9,K.1^7,-1*K.1^13,K.1^87,-1*K.1^29,K.1^89,-1*K.1^27,-1*K.1^9,K.1^59,-1*K.1^23,-1*K.1^17,K.1^23,K.1^67,-1*K.1^73,-1*K.1^59,K.1^13,K.1^27,K.1^67,-1*K.1^73,-1*K.1^91,K.1^13,K.1^27,-1*K.1^67,K.1^49,-1*K.1^31,K.1^37,K.1^73,K.1^19,K.1^69,-1*K.1^71,K.1^11,K.1^29,K.1^47,-1*K.1^47,K.1^93,K.1^39,-1*K.1^93,-1*K.1^39,K.1^43,-1*K.1^97,K.1^31,-1*K.1,K.1^61,K.1^71,K.1^53,K.1^3,-1*K.1^79,K.1^81,-1*K.1^53,-1*K.1^57,K.1^83,K.1,K.1^19,-1*K.1^47,K.1^93,-1*K.1^11,K.1^21,-1*K.1^41,K.1^63,-1*K.1^57,K.1^83,K.1^99,K.1^33,K.1^79,K.1^53,K.1^9,K.1^7,-1*K.1^89,K.1^51,-1*K.1^31,K.1^37,-1*K.1^43,-1*K.1^13,K.1^69,-1*K.1^71,K.1^89,-1*K.1^27,-1*K.1^87,-1*K.1^81,-1*K.1^51,-1*K.1^33,-1*K.1^7,-1*K.1^87,-1*K.1^53,-1*K.1^99,-1*K.1^33,-1*K.1^7,-1*K.1^83,K.1^77,-1*K.1^63,K.1^91,-1*K.1^49,-1*K.1^67,K.1^49,-1*K.1^69,-1*K.1^19,K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,K.1^64,K.1^32,K.1^24,-1*K.1^12,K.1^72,-1*K.1^92,-1*K.1^44,-1*K.1^68,-1*K.1^36,-1*K.1^28,K.1^88,K.1^8,-1*K.1^76,K.1^16,K.1^56,K.1^96,-1*K.1^4,K.1^48,-1*K.1^52,-1*K.1^84,-1*K.1^45,K.1^15,K.1^45,-1*K.1^15,-1*K.1^35,-1*K.1^55,K.1^85,K.1^55,K.1^15,K.1^95,-1*K.1^85,-1*K.1^95,-1*K.1^5,K.1^5,-1*K.1^55,K.1^85,K.1^45,-1*K.1^45,-1*K.1^35,K.1^65,K.1^35,K.1^55,K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^5,K.1^35,-1*K.1^85,K.1^5,-1*K.1^65,-1*K.1^15,K.1^65,K.1^56,-1*K.1^92,-1*K.1^48,-1*K.1^96,-1*K.1^12,-1*K.1^76,K.1^16,-1*K.1^52,K.1^36,-1*K.1^8,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^24,-1*K.1^56,-1*K.1^28,K.1^52,-1*K.1^88,K.1^36,K.1^48,K.1^28,K.1^68,K.1^88,-1*K.1^96,-1*K.1^48,K.1^64,-1*K.1^68,-1*K.1^16,-1*K.1^84,-1*K.1^44,K.1^76,-1*K.1^16,K.1^92,K.1^92,-1*K.1^24,K.1^52,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^44,K.1^44,K.1^8,K.1^72,-1*K.1^56,-1*K.1^88,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^64,-1*K.1^64,K.1^12,K.1^84,-1*K.1^32,-1*K.1^32,K.1^84,K.1^96,K.1^68,K.1^76,K.1^28,-1*K.1^28,K.1^72,-1*K.1^16,-1*K.1^8,K.1^68,K.1^84,K.1^44,-1*K.1^44,-1*K.1^36,K.1^96,-1*K.1^12,K.1^32,-1*K.1^32,-1*K.1^84,K.1^24,K.1^92,K.1^52,K.1^64,K.1^16,-1*K.1^72,-1*K.1^92,-1*K.1^52,K.1^56,-1*K.1^76,-1*K.1^4,K.1^12,K.1^4,K.1^48,-1*K.1^56,-1*K.1^96,K.1^8,-1*K.1^68,K.1^36,-1*K.1^88,K.1^88,-1*K.1^64,-1*K.1^24,K.1^28,-1*K.1^48,K.1^76,-1*K.1^14,K.1^98,-1*K.1^94,-1*K.1^22,K.1^26,K.1^26,K.1^42,K.1^74,K.1^66,K.1^22,K.1^82,-1*K.1^62,-1*K.1^2,K.1^58,-1*K.1^54,-1*K.1^62,-1*K.1^6,-1*K.1^78,-1*K.1^14,-1*K.1^66,-1*K.1^26,-1*K.1^6,K.1^6,K.1^86,-1*K.1^42,-1*K.1^74,-1*K.1^18,-1*K.1^34,-1*K.1^58,-1*K.1^86,-1*K.1^98,K.1^94,-1*K.1^58,-1*K.1^54,-1*K.1^26,K.1^54,K.1^38,-1*K.1^46,-1*K.1^66,-1*K.1^78,-1*K.1^98,K.1^94,K.1^14,K.1^18,-1*K.1^38,-1*K.1^38,K.1^2,K.1^78,-1*K.1^18,-1*K.1^74,K.1^78,K.1^14,-1*K.1^82,K.1^46,K.1^46,K.1^66,K.1^86,K.1^6,K.1^22,K.1^54,K.1^38,-1*K.1^42,-1*K.1^34,-1*K.1^82,K.1^98,K.1^74,K.1^18,-1*K.1^46,-1*K.1^22,-1*K.1^94,K.1^62,-1*K.1^2,K.1^2,K.1^42,K.1^62,K.1^34,K.1^34,K.1^82,-1*K.1^86,K.1^58,K.1^38,-1*K.1^66,K.1^26,-1*K.1^86,-1*K.1^26,K.1^6,-1*K.1^38,K.1^74,K.1^14,-1*K.1^18,K.1^58,-1*K.1^54,K.1^94,K.1^22,K.1^82,K.1^42,-1*K.1^82,K.1^62,-1*K.1^94,K.1^18,-1*K.1^22,K.1^78,K.1^54,-1*K.1^14,K.1^98,-1*K.1^58,-1*K.1^74,K.1^34,-1*K.1^6,K.1^46,K.1^86,-1*K.1^46,K.1^66,-1*K.1^34,-1*K.1^98,-1*K.1^78,-1*K.1^62,-1*K.1^2,-1*K.1^42,K.1^2,-1*K.1^27,-1*K.1^59,K.1^77,K.1^83,K.1^7,K.1^61,-1*K.1^43,K.1^41,-1*K.1^69,K.1^99,K.1^39,-1*K.1^43,K.1^63,-1*K.1^97,K.1^79,K.1^17,-1*K.1^21,K.1^63,-1*K.1^9,K.1^51,K.1^97,-1*K.1^13,K.1^71,-1*K.1^89,-1*K.1^71,K.1^91,-1*K.1^41,K.1^23,-1*K.1^61,-1*K.1^77,K.1^39,-1*K.1^57,K.1^3,-1*K.1^3,K.1^79,-1*K.1^39,-1*K.1^29,K.1^9,-1*K.1^3,K.1^21,K.1^11,-1*K.1^49,K.1^31,K.1^81,K.1^57,K.1^97,K.1^19,K.1^49,K.1^89,-1*K.1^79,-1*K.1^19,-1*K.1^59,K.1^23,-1*K.1^83,-1*K.1^99,K.1^59,-1*K.1^37,K.1,-1*K.1^83,-1*K.1,-1*K.1^67,-1*K.1^23,K.1^37,-1*K.1^91,-1*K.1^93,K.1^87,-1*K.1^13,K.1^71,-1*K.1^11,K.1^73,K.1^91,-1*K.1^41,K.1^77,K.1^83,-1*K.1^77,-1*K.1^33,K.1^27,K.1^41,-1*K.1^87,-1*K.1^73,-1*K.1^33,K.1^27,K.1^9,-1*K.1^87,-1*K.1^73,K.1^33,-1*K.1^51,K.1^69,-1*K.1^63,-1*K.1^27,-1*K.1^81,-1*K.1^31,K.1^29,-1*K.1^89,-1*K.1^71,-1*K.1^53,K.1^53,-1*K.1^7,-1*K.1^61,K.1^7,K.1^61,-1*K.1^57,K.1^3,-1*K.1^69,K.1^99,-1*K.1^39,-1*K.1^29,-1*K.1^47,-1*K.1^97,K.1^21,-1*K.1^19,K.1^47,K.1^43,-1*K.1^17,-1*K.1^99,-1*K.1^81,K.1^53,-1*K.1^7,K.1^89,-1*K.1^79,K.1^59,-1*K.1^37,K.1^43,-1*K.1^17,-1*K.1,-1*K.1^67,-1*K.1^21,-1*K.1^47,-1*K.1^91,-1*K.1^93,K.1^11,-1*K.1^49,K.1^69,-1*K.1^63,K.1^57,K.1^87,-1*K.1^31,K.1^29,-1*K.1^11,K.1^73,K.1^13,K.1^19,K.1^49,K.1^67,K.1^93,K.1^13,K.1^47,K.1,K.1^67,K.1^93,K.1^17,-1*K.1^23,K.1^37,-1*K.1^9,K.1^51,K.1^33,-1*K.1^51,K.1^31,K.1^81,-1*K.1^53]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^56,-1*K.1^28,K.1^96,K.1^48,K.1^88,-1*K.1^68,-1*K.1^76,K.1^72,-1*K.1^44,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,K.1^24,-1*K.1^84,K.1^16,-1*K.1^92,K.1^8,-1*K.1^36,K.1^55,-1*K.1^85,-1*K.1^55,K.1^85,K.1^65,K.1^45,-1*K.1^15,-1*K.1^45,-1*K.1^85,-1*K.1^5,K.1^15,K.1^5,K.1^95,-1*K.1^95,K.1^45,-1*K.1^15,-1*K.1^55,K.1^55,K.1^65,-1*K.1^35,-1*K.1^65,-1*K.1^45,-1*K.1^5,K.1^35,K.1^5,K.1^95,-1*K.1^65,K.1^15,-1*K.1^95,K.1^35,K.1^85,-1*K.1^35,K.1^24,-1*K.1^68,K.1^92,K.1^84,K.1^48,-1*K.1^4,K.1^64,K.1^8,K.1^44,-1*K.1^32,-1*K.1^44,-1*K.1^32,K.1^16,K.1^96,-1*K.1^24,-1*K.1^12,-1*K.1^8,K.1^52,K.1^44,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^52,K.1^84,K.1^92,K.1^56,K.1^72,-1*K.1^64,-1*K.1^36,-1*K.1^76,K.1^4,-1*K.1^64,K.1^68,K.1^68,-1*K.1^96,-1*K.1^8,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^76,K.1^76,K.1^32,K.1^88,-1*K.1^24,K.1^52,-1*K.1^28,-1*K.1^16,-1*K.1^16,-1*K.1^48,-1*K.1^56,-1*K.1^56,-1*K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^84,-1*K.1^72,K.1^4,K.1^12,-1*K.1^12,K.1^88,-1*K.1^64,-1*K.1^32,-1*K.1^72,K.1^36,K.1^76,-1*K.1^76,-1*K.1^44,-1*K.1^84,K.1^48,-1*K.1^28,K.1^28,-1*K.1^36,K.1^96,K.1^68,-1*K.1^8,K.1^56,K.1^64,-1*K.1^88,-1*K.1^68,K.1^8,K.1^24,-1*K.1^4,K.1^16,-1*K.1^48,-1*K.1^16,-1*K.1^92,-1*K.1^24,K.1^84,K.1^32,K.1^72,K.1^44,K.1^52,-1*K.1^52,-1*K.1^56,-1*K.1^96,K.1^12,K.1^92,K.1^4,K.1^6,-1*K.1^42,-1*K.1^26,K.1^38,K.1^54,K.1^54,-1*K.1^18,K.1^46,K.1^14,-1*K.1^38,K.1^78,-1*K.1^98,K.1^58,-1*K.1^82,-1*K.1^66,-1*K.1^98,-1*K.1^74,K.1^62,K.1^6,-1*K.1^14,-1*K.1^54,-1*K.1^74,K.1^74,-1*K.1^94,K.1^18,-1*K.1^46,-1*K.1^22,-1*K.1^86,K.1^82,K.1^94,K.1^42,K.1^26,K.1^82,-1*K.1^66,-1*K.1^54,K.1^66,K.1^2,-1*K.1^34,-1*K.1^14,K.1^62,K.1^42,K.1^26,-1*K.1^6,K.1^22,-1*K.1^2,-1*K.1^2,-1*K.1^58,-1*K.1^62,-1*K.1^22,-1*K.1^46,-1*K.1^62,-1*K.1^6,-1*K.1^78,K.1^34,K.1^34,K.1^14,-1*K.1^94,K.1^74,-1*K.1^38,K.1^66,K.1^2,K.1^18,-1*K.1^86,-1*K.1^78,-1*K.1^42,K.1^46,K.1^22,-1*K.1^34,K.1^38,-1*K.1^26,K.1^98,K.1^58,-1*K.1^58,-1*K.1^18,K.1^98,K.1^86,K.1^86,K.1^78,K.1^94,-1*K.1^82,K.1^2,-1*K.1^14,K.1^54,K.1^94,-1*K.1^54,K.1^74,-1*K.1^2,K.1^46,-1*K.1^6,-1*K.1^22,-1*K.1^82,-1*K.1^66,K.1^26,-1*K.1^38,K.1^78,-1*K.1^18,-1*K.1^78,K.1^98,-1*K.1^26,K.1^22,K.1^38,-1*K.1^62,K.1^66,K.1^6,-1*K.1^42,K.1^82,-1*K.1^46,K.1^86,-1*K.1^74,K.1^34,-1*K.1^94,-1*K.1^34,K.1^14,-1*K.1^86,K.1^42,K.1^62,-1*K.1^98,K.1^58,K.1^18,-1*K.1^58,K.1^33,-1*K.1^61,K.1^83,-1*K.1^57,-1*K.1^53,K.1^19,K.1^97,K.1^39,-1*K.1^51,K.1^21,K.1^81,K.1^97,-1*K.1^77,-1*K.1^63,K.1^41,-1*K.1^43,-1*K.1^59,-1*K.1^77,K.1^11,K.1^29,K.1^63,-1*K.1^27,K.1^9,-1*K.1^31,-1*K.1^9,-1*K.1^89,-1*K.1^39,K.1^17,-1*K.1^19,-1*K.1^83,K.1^81,K.1^3,K.1^37,-1*K.1^37,K.1^41,-1*K.1^81,-1*K.1^91,-1*K.1^11,-1*K.1^37,K.1^59,K.1^69,-1*K.1^71,K.1^49,-1*K.1^99,-1*K.1^3,K.1^63,-1*K.1,K.1^71,K.1^31,-1*K.1^41,K.1,-1*K.1^61,K.1^17,K.1^57,-1*K.1^21,K.1^61,K.1^23,K.1^79,K.1^57,-1*K.1^79,-1*K.1^93,-1*K.1^17,-1*K.1^23,K.1^89,K.1^47,K.1^73,-1*K.1^27,K.1^9,-1*K.1^69,-1*K.1^67,-1*K.1^89,-1*K.1^39,K.1^83,-1*K.1^57,-1*K.1^83,-1*K.1^7,-1*K.1^33,K.1^39,-1*K.1^73,K.1^67,-1*K.1^7,-1*K.1^33,-1*K.1^11,-1*K.1^73,K.1^67,K.1^7,-1*K.1^29,K.1^51,K.1^77,K.1^33,K.1^99,-1*K.1^49,K.1^91,-1*K.1^31,-1*K.1^9,K.1^87,-1*K.1^87,K.1^53,-1*K.1^19,-1*K.1^53,K.1^19,K.1^3,K.1^37,-1*K.1^51,K.1^21,-1*K.1^81,-1*K.1^91,K.1^13,-1*K.1^63,K.1^59,K.1,-1*K.1^13,-1*K.1^97,K.1^43,-1*K.1^21,K.1^99,-1*K.1^87,K.1^53,K.1^31,-1*K.1^41,K.1^61,K.1^23,-1*K.1^97,K.1^43,-1*K.1^79,-1*K.1^93,-1*K.1^59,K.1^13,K.1^89,K.1^47,K.1^69,-1*K.1^71,K.1^51,K.1^77,-1*K.1^3,K.1^73,-1*K.1^49,K.1^91,-1*K.1^69,-1*K.1^67,K.1^27,-1*K.1,K.1^71,K.1^93,-1*K.1^47,K.1^27,-1*K.1^13,K.1^79,K.1^93,-1*K.1^47,-1*K.1^43,-1*K.1^17,-1*K.1^23,K.1^11,K.1^29,K.1^7,-1*K.1^29,K.1^49,-1*K.1^99,K.1^87]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^44,K.1^72,-1*K.1^4,-1*K.1^52,-1*K.1^12,K.1^32,K.1^24,-1*K.1^28,K.1^56,K.1^88,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,-1*K.1^76,K.1^16,-1*K.1^84,K.1^8,-1*K.1^92,K.1^64,-1*K.1^45,K.1^15,K.1^45,-1*K.1^15,-1*K.1^35,-1*K.1^55,K.1^85,K.1^55,K.1^15,K.1^95,-1*K.1^85,-1*K.1^95,-1*K.1^5,K.1^5,-1*K.1^55,K.1^85,K.1^45,-1*K.1^45,-1*K.1^35,K.1^65,K.1^35,K.1^55,K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^5,K.1^35,-1*K.1^85,K.1^5,-1*K.1^65,-1*K.1^15,K.1^65,-1*K.1^76,K.1^32,-1*K.1^8,-1*K.1^16,-1*K.1^52,K.1^96,-1*K.1^36,-1*K.1^92,-1*K.1^56,K.1^68,K.1^56,K.1^68,-1*K.1^84,-1*K.1^4,K.1^76,K.1^88,K.1^92,-1*K.1^48,-1*K.1^56,K.1^8,-1*K.1^88,K.1^28,K.1^48,-1*K.1^16,-1*K.1^8,-1*K.1^44,-1*K.1^28,K.1^36,K.1^64,K.1^24,-1*K.1^96,K.1^36,-1*K.1^32,-1*K.1^32,K.1^4,K.1^92,K.1^4,K.1^12,K.1^12,-1*K.1^24,-1*K.1^24,-1*K.1^68,-1*K.1^12,K.1^76,-1*K.1^48,K.1^72,K.1^84,K.1^84,K.1^52,K.1^44,K.1^44,K.1^52,-1*K.1^64,-1*K.1^72,-1*K.1^72,-1*K.1^64,K.1^16,K.1^28,-1*K.1^96,-1*K.1^88,K.1^88,-1*K.1^12,K.1^36,K.1^68,K.1^28,-1*K.1^64,-1*K.1^24,K.1^24,K.1^56,K.1^16,-1*K.1^52,K.1^72,-1*K.1^72,K.1^64,-1*K.1^4,-1*K.1^32,K.1^92,-1*K.1^44,-1*K.1^36,K.1^12,K.1^32,-1*K.1^92,-1*K.1^76,K.1^96,-1*K.1^84,K.1^52,K.1^84,K.1^8,K.1^76,-1*K.1^16,-1*K.1^68,-1*K.1^28,-1*K.1^56,-1*K.1^48,K.1^48,K.1^44,K.1^4,-1*K.1^88,-1*K.1^8,-1*K.1^96,-1*K.1^94,K.1^58,K.1^74,-1*K.1^62,-1*K.1^46,-1*K.1^46,K.1^82,-1*K.1^54,-1*K.1^86,K.1^62,-1*K.1^22,K.1^2,-1*K.1^42,K.1^18,K.1^34,K.1^2,K.1^26,-1*K.1^38,-1*K.1^94,K.1^86,K.1^46,K.1^26,-1*K.1^26,K.1^6,-1*K.1^82,K.1^54,K.1^78,K.1^14,-1*K.1^18,-1*K.1^6,-1*K.1^58,-1*K.1^74,-1*K.1^18,K.1^34,K.1^46,-1*K.1^34,-1*K.1^98,K.1^66,K.1^86,-1*K.1^38,-1*K.1^58,-1*K.1^74,K.1^94,-1*K.1^78,K.1^98,K.1^98,K.1^42,K.1^38,K.1^78,K.1^54,K.1^38,K.1^94,K.1^22,-1*K.1^66,-1*K.1^66,-1*K.1^86,K.1^6,-1*K.1^26,K.1^62,-1*K.1^34,-1*K.1^98,-1*K.1^82,K.1^14,K.1^22,K.1^58,-1*K.1^54,-1*K.1^78,K.1^66,-1*K.1^62,K.1^74,-1*K.1^2,-1*K.1^42,K.1^42,K.1^82,-1*K.1^2,-1*K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^18,-1*K.1^98,K.1^86,-1*K.1^46,-1*K.1^6,K.1^46,-1*K.1^26,K.1^98,-1*K.1^54,K.1^94,K.1^78,K.1^18,K.1^34,-1*K.1^74,K.1^62,-1*K.1^22,K.1^82,K.1^22,-1*K.1^2,K.1^74,-1*K.1^78,-1*K.1^62,K.1^38,-1*K.1^34,-1*K.1^94,K.1^58,-1*K.1^18,K.1^54,-1*K.1^14,K.1^26,-1*K.1^66,K.1^6,K.1^66,-1*K.1^86,K.1^14,-1*K.1^58,-1*K.1^38,K.1^2,-1*K.1^42,-1*K.1^82,K.1^42,-1*K.1^67,K.1^39,-1*K.1^17,K.1^43,K.1^47,-1*K.1^81,-1*K.1^3,-1*K.1^61,K.1^49,-1*K.1^79,-1*K.1^19,-1*K.1^3,K.1^23,K.1^37,-1*K.1^59,K.1^57,K.1^41,K.1^23,-1*K.1^89,-1*K.1^71,-1*K.1^37,K.1^73,-1*K.1^91,K.1^69,K.1^91,K.1^11,K.1^61,-1*K.1^83,K.1^81,K.1^17,-1*K.1^19,-1*K.1^97,-1*K.1^63,K.1^63,-1*K.1^59,K.1^19,K.1^9,K.1^89,K.1^63,-1*K.1^41,-1*K.1^31,K.1^29,-1*K.1^51,K.1,K.1^97,-1*K.1^37,K.1^99,-1*K.1^29,-1*K.1^69,K.1^59,-1*K.1^99,K.1^39,-1*K.1^83,-1*K.1^43,K.1^79,-1*K.1^39,-1*K.1^77,-1*K.1^21,-1*K.1^43,K.1^21,K.1^7,K.1^83,K.1^77,-1*K.1^11,-1*K.1^53,-1*K.1^27,K.1^73,-1*K.1^91,K.1^31,K.1^33,K.1^11,K.1^61,-1*K.1^17,K.1^43,K.1^17,K.1^93,K.1^67,-1*K.1^61,K.1^27,-1*K.1^33,K.1^93,K.1^67,K.1^89,K.1^27,-1*K.1^33,-1*K.1^93,K.1^71,-1*K.1^49,-1*K.1^23,-1*K.1^67,-1*K.1,K.1^51,-1*K.1^9,K.1^69,K.1^91,-1*K.1^13,K.1^13,-1*K.1^47,K.1^81,K.1^47,-1*K.1^81,-1*K.1^97,-1*K.1^63,K.1^49,-1*K.1^79,K.1^19,K.1^9,-1*K.1^87,K.1^37,-1*K.1^41,-1*K.1^99,K.1^87,K.1^3,-1*K.1^57,K.1^79,-1*K.1,K.1^13,-1*K.1^47,-1*K.1^69,K.1^59,-1*K.1^39,-1*K.1^77,K.1^3,-1*K.1^57,K.1^21,K.1^7,K.1^41,-1*K.1^87,-1*K.1^11,-1*K.1^53,-1*K.1^31,K.1^29,-1*K.1^49,-1*K.1^23,K.1^97,-1*K.1^27,K.1^51,-1*K.1^9,K.1^31,K.1^33,-1*K.1^73,K.1^99,-1*K.1^29,-1*K.1^7,K.1^53,-1*K.1^73,K.1^87,-1*K.1^21,-1*K.1^7,K.1^53,K.1^57,K.1^83,K.1^77,-1*K.1^89,-1*K.1^71,-1*K.1^93,K.1^71,-1*K.1^51,K.1,-1*K.1^13]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,-1*K.1^76,K.1^88,K.1^16,K.1^8,K.1^48,-1*K.1^28,K.1^96,-1*K.1^12,K.1^24,-1*K.1^52,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^64,-1*K.1^36,K.1^32,-1*K.1^68,K.1^56,K.1^55,-1*K.1^85,-1*K.1^55,K.1^85,K.1^65,K.1^45,-1*K.1^15,-1*K.1^45,-1*K.1^85,-1*K.1^5,K.1^15,K.1^5,K.1^95,-1*K.1^95,K.1^45,-1*K.1^15,-1*K.1^55,K.1^55,K.1^65,-1*K.1^35,-1*K.1^65,-1*K.1^45,-1*K.1^5,K.1^35,K.1^5,K.1^95,-1*K.1^65,K.1^15,-1*K.1^95,K.1^35,K.1^85,-1*K.1^35,-1*K.1^4,-1*K.1^28,-1*K.1^32,-1*K.1^64,K.1^8,-1*K.1^84,-1*K.1^44,-1*K.1^68,-1*K.1^24,-1*K.1^72,K.1^24,-1*K.1^72,-1*K.1^36,K.1^16,K.1^4,-1*K.1^52,K.1^68,K.1^92,-1*K.1^24,K.1^32,K.1^52,K.1^12,-1*K.1^92,-1*K.1^64,-1*K.1^32,-1*K.1^76,-1*K.1^12,K.1^44,K.1^56,K.1^96,K.1^84,K.1^44,K.1^28,K.1^28,-1*K.1^16,K.1^68,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^96,-1*K.1^96,K.1^72,K.1^48,K.1^4,K.1^92,K.1^88,K.1^36,K.1^36,-1*K.1^8,K.1^76,K.1^76,-1*K.1^8,-1*K.1^56,-1*K.1^88,-1*K.1^88,-1*K.1^56,K.1^64,K.1^12,K.1^84,K.1^52,-1*K.1^52,K.1^48,K.1^44,-1*K.1^72,K.1^12,-1*K.1^56,-1*K.1^96,K.1^96,K.1^24,K.1^64,K.1^8,K.1^88,-1*K.1^88,K.1^56,K.1^16,K.1^28,K.1^68,-1*K.1^76,-1*K.1^44,-1*K.1^48,-1*K.1^28,-1*K.1^68,-1*K.1^4,-1*K.1^84,-1*K.1^36,-1*K.1^8,K.1^36,K.1^32,K.1^4,-1*K.1^64,K.1^72,-1*K.1^12,-1*K.1^24,K.1^92,-1*K.1^92,K.1^76,-1*K.1^16,K.1^52,-1*K.1^32,K.1^84,-1*K.1^26,-1*K.1^82,K.1^46,-1*K.1^98,-1*K.1^34,-1*K.1^34,K.1^78,-1*K.1^66,K.1^94,K.1^98,K.1^38,-1*K.1^58,K.1^18,K.1^22,K.1^86,-1*K.1^58,K.1^54,-1*K.1^2,-1*K.1^26,-1*K.1^94,K.1^34,K.1^54,-1*K.1^54,K.1^74,-1*K.1^78,K.1^66,-1*K.1^62,-1*K.1^6,-1*K.1^22,-1*K.1^74,K.1^82,-1*K.1^46,-1*K.1^22,K.1^86,K.1^34,-1*K.1^86,K.1^42,K.1^14,-1*K.1^94,-1*K.1^2,K.1^82,-1*K.1^46,K.1^26,K.1^62,-1*K.1^42,-1*K.1^42,-1*K.1^18,K.1^2,-1*K.1^62,K.1^66,K.1^2,K.1^26,-1*K.1^38,-1*K.1^14,-1*K.1^14,K.1^94,K.1^74,-1*K.1^54,K.1^98,-1*K.1^86,K.1^42,-1*K.1^78,-1*K.1^6,-1*K.1^38,-1*K.1^82,-1*K.1^66,K.1^62,K.1^14,-1*K.1^98,K.1^46,K.1^58,K.1^18,-1*K.1^18,K.1^78,K.1^58,K.1^6,K.1^6,K.1^38,-1*K.1^74,K.1^22,K.1^42,-1*K.1^94,-1*K.1^34,-1*K.1^74,K.1^34,-1*K.1^54,-1*K.1^42,-1*K.1^66,K.1^26,-1*K.1^62,K.1^22,K.1^86,-1*K.1^46,K.1^98,K.1^38,K.1^78,-1*K.1^38,K.1^58,K.1^46,K.1^62,-1*K.1^98,K.1^2,-1*K.1^86,-1*K.1^26,-1*K.1^82,-1*K.1^22,K.1^66,K.1^6,K.1^54,-1*K.1^14,K.1^74,K.1^14,K.1^94,-1*K.1^6,K.1^82,-1*K.1^2,-1*K.1^58,K.1^18,-1*K.1^78,-1*K.1^18,-1*K.1^93,K.1^81,K.1^43,-1*K.1^97,-1*K.1^13,K.1^99,-1*K.1^37,-1*K.1^19,K.1^71,-1*K.1^41,K.1,-1*K.1^37,K.1^17,-1*K.1^23,-1*K.1^61,-1*K.1^3,K.1^39,K.1^17,-1*K.1^31,-1*K.1^9,K.1^23,-1*K.1^67,K.1^89,K.1^51,-1*K.1^89,K.1^69,K.1^19,K.1^57,-1*K.1^99,-1*K.1^43,K.1,-1*K.1^63,K.1^77,-1*K.1^77,-1*K.1^61,-1*K.1,-1*K.1^11,K.1^31,-1*K.1^77,-1*K.1^39,-1*K.1^49,K.1^91,-1*K.1^29,K.1^79,K.1^63,K.1^23,K.1^21,-1*K.1^91,-1*K.1^51,K.1^61,-1*K.1^21,K.1^81,K.1^57,K.1^97,K.1^41,-1*K.1^81,-1*K.1^83,-1*K.1^59,K.1^97,K.1^59,-1*K.1^53,-1*K.1^57,K.1^83,-1*K.1^69,K.1^87,K.1^33,-1*K.1^67,K.1^89,K.1^49,K.1^7,K.1^69,K.1^19,K.1^43,-1*K.1^97,-1*K.1^43,-1*K.1^47,K.1^93,-1*K.1^19,-1*K.1^33,-1*K.1^7,-1*K.1^47,K.1^93,K.1^31,-1*K.1^33,-1*K.1^7,K.1^47,K.1^9,-1*K.1^71,-1*K.1^17,-1*K.1^93,-1*K.1^79,K.1^29,K.1^11,K.1^51,-1*K.1^89,-1*K.1^27,K.1^27,K.1^13,-1*K.1^99,-1*K.1^13,K.1^99,-1*K.1^63,K.1^77,K.1^71,-1*K.1^41,-1*K.1,-1*K.1^11,-1*K.1^73,-1*K.1^23,-1*K.1^39,-1*K.1^21,K.1^73,K.1^37,K.1^3,K.1^41,-1*K.1^79,K.1^27,K.1^13,-1*K.1^51,K.1^61,-1*K.1^81,-1*K.1^83,K.1^37,K.1^3,K.1^59,-1*K.1^53,K.1^39,-1*K.1^73,-1*K.1^69,K.1^87,-1*K.1^49,K.1^91,-1*K.1^71,-1*K.1^17,K.1^63,K.1^33,K.1^29,K.1^11,K.1^49,K.1^7,K.1^67,K.1^21,-1*K.1^91,K.1^53,-1*K.1^87,K.1^67,K.1^73,-1*K.1^59,K.1^53,-1*K.1^87,-1*K.1^3,-1*K.1^57,K.1^83,-1*K.1^31,-1*K.1^9,K.1^47,K.1^9,-1*K.1^29,K.1^79,-1*K.1^27]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,K.1^24,-1*K.1^12,-1*K.1^84,-1*K.1^92,-1*K.1^52,K.1^72,-1*K.1^4,K.1^88,-1*K.1^76,K.1^48,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^96,-1*K.1^36,K.1^64,-1*K.1^68,K.1^32,-1*K.1^44,-1*K.1^45,K.1^15,K.1^45,-1*K.1^15,-1*K.1^35,-1*K.1^55,K.1^85,K.1^55,K.1^15,K.1^95,-1*K.1^85,-1*K.1^95,-1*K.1^5,K.1^5,-1*K.1^55,K.1^85,K.1^45,-1*K.1^45,-1*K.1^35,K.1^65,K.1^35,K.1^55,K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^5,K.1^35,-1*K.1^85,K.1^5,-1*K.1^65,-1*K.1^15,K.1^65,K.1^96,K.1^72,K.1^68,K.1^36,-1*K.1^92,K.1^16,K.1^56,K.1^32,K.1^76,K.1^28,-1*K.1^76,K.1^28,K.1^64,-1*K.1^84,-1*K.1^96,K.1^48,-1*K.1^32,-1*K.1^8,K.1^76,-1*K.1^68,-1*K.1^48,-1*K.1^88,K.1^8,K.1^36,K.1^68,K.1^24,K.1^88,-1*K.1^56,-1*K.1^44,-1*K.1^4,-1*K.1^16,-1*K.1^56,-1*K.1^72,-1*K.1^72,K.1^84,-1*K.1^32,K.1^84,K.1^52,K.1^52,K.1^4,K.1^4,-1*K.1^28,-1*K.1^52,-1*K.1^96,-1*K.1^8,-1*K.1^12,-1*K.1^64,-1*K.1^64,K.1^92,-1*K.1^24,-1*K.1^24,K.1^92,K.1^44,K.1^12,K.1^12,K.1^44,-1*K.1^36,-1*K.1^88,-1*K.1^16,-1*K.1^48,K.1^48,-1*K.1^52,-1*K.1^56,K.1^28,-1*K.1^88,K.1^44,K.1^4,-1*K.1^4,-1*K.1^76,-1*K.1^36,-1*K.1^92,-1*K.1^12,K.1^12,-1*K.1^44,-1*K.1^84,-1*K.1^72,-1*K.1^32,K.1^24,K.1^56,K.1^52,K.1^72,K.1^32,K.1^96,K.1^16,K.1^64,K.1^92,-1*K.1^64,-1*K.1^68,-1*K.1^96,K.1^36,-1*K.1^28,K.1^88,K.1^76,-1*K.1^8,K.1^8,-1*K.1^24,K.1^84,-1*K.1^48,K.1^68,-1*K.1^16,K.1^74,K.1^18,-1*K.1^54,K.1^2,K.1^66,K.1^66,-1*K.1^22,K.1^34,-1*K.1^6,-1*K.1^2,-1*K.1^62,K.1^42,-1*K.1^82,-1*K.1^78,-1*K.1^14,K.1^42,-1*K.1^46,K.1^98,K.1^74,K.1^6,-1*K.1^66,-1*K.1^46,K.1^46,-1*K.1^26,K.1^22,-1*K.1^34,K.1^38,K.1^94,K.1^78,K.1^26,-1*K.1^18,K.1^54,K.1^78,-1*K.1^14,-1*K.1^66,K.1^14,-1*K.1^58,-1*K.1^86,K.1^6,K.1^98,-1*K.1^18,K.1^54,-1*K.1^74,-1*K.1^38,K.1^58,K.1^58,K.1^82,-1*K.1^98,K.1^38,-1*K.1^34,-1*K.1^98,-1*K.1^74,K.1^62,K.1^86,K.1^86,-1*K.1^6,-1*K.1^26,K.1^46,-1*K.1^2,K.1^14,-1*K.1^58,K.1^22,K.1^94,K.1^62,K.1^18,K.1^34,-1*K.1^38,-1*K.1^86,K.1^2,-1*K.1^54,-1*K.1^42,-1*K.1^82,K.1^82,-1*K.1^22,-1*K.1^42,-1*K.1^94,-1*K.1^94,-1*K.1^62,K.1^26,-1*K.1^78,-1*K.1^58,K.1^6,K.1^66,K.1^26,-1*K.1^66,K.1^46,K.1^58,K.1^34,-1*K.1^74,K.1^38,-1*K.1^78,-1*K.1^14,K.1^54,-1*K.1^2,-1*K.1^62,-1*K.1^22,K.1^62,-1*K.1^42,-1*K.1^54,-1*K.1^38,K.1^2,-1*K.1^98,K.1^14,K.1^74,K.1^18,K.1^78,-1*K.1^34,-1*K.1^94,-1*K.1^46,K.1^86,-1*K.1^26,-1*K.1^86,-1*K.1^6,K.1^94,-1*K.1^18,K.1^98,K.1^42,-1*K.1^82,K.1^22,K.1^82,K.1^7,-1*K.1^19,-1*K.1^57,K.1^3,K.1^87,-1*K.1,K.1^63,K.1^81,-1*K.1^29,K.1^59,-1*K.1^99,K.1^63,-1*K.1^83,K.1^77,K.1^39,K.1^97,-1*K.1^61,-1*K.1^83,K.1^69,K.1^91,-1*K.1^77,K.1^33,-1*K.1^11,-1*K.1^49,K.1^11,-1*K.1^31,-1*K.1^81,-1*K.1^43,K.1,K.1^57,-1*K.1^99,K.1^37,-1*K.1^23,K.1^23,K.1^39,K.1^99,K.1^89,-1*K.1^69,K.1^23,K.1^61,K.1^51,-1*K.1^9,K.1^71,-1*K.1^21,-1*K.1^37,-1*K.1^77,-1*K.1^79,K.1^9,K.1^49,-1*K.1^39,K.1^79,-1*K.1^19,-1*K.1^43,-1*K.1^3,-1*K.1^59,K.1^19,K.1^17,K.1^41,-1*K.1^3,-1*K.1^41,K.1^47,K.1^43,-1*K.1^17,K.1^31,-1*K.1^13,-1*K.1^67,K.1^33,-1*K.1^11,-1*K.1^51,-1*K.1^93,-1*K.1^31,-1*K.1^81,-1*K.1^57,K.1^3,K.1^57,K.1^53,-1*K.1^7,K.1^81,K.1^67,K.1^93,K.1^53,-1*K.1^7,-1*K.1^69,K.1^67,K.1^93,-1*K.1^53,-1*K.1^91,K.1^29,K.1^83,K.1^7,K.1^21,-1*K.1^71,-1*K.1^89,-1*K.1^49,K.1^11,K.1^73,-1*K.1^73,-1*K.1^87,K.1,K.1^87,-1*K.1,K.1^37,-1*K.1^23,-1*K.1^29,K.1^59,K.1^99,K.1^89,K.1^27,K.1^77,K.1^61,K.1^79,-1*K.1^27,-1*K.1^63,-1*K.1^97,-1*K.1^59,K.1^21,-1*K.1^73,-1*K.1^87,K.1^49,-1*K.1^39,K.1^19,K.1^17,-1*K.1^63,-1*K.1^97,-1*K.1^41,K.1^47,-1*K.1^61,K.1^27,K.1^31,-1*K.1^13,K.1^51,-1*K.1^9,K.1^29,K.1^83,-1*K.1^37,-1*K.1^67,-1*K.1^71,-1*K.1^89,-1*K.1^51,-1*K.1^93,-1*K.1^33,-1*K.1^79,K.1^9,-1*K.1^47,K.1^13,-1*K.1^33,-1*K.1^27,K.1^41,-1*K.1^47,K.1^13,K.1^97,K.1^43,-1*K.1^17,K.1^69,K.1^91,-1*K.1^53,-1*K.1^91,K.1^71,-1*K.1^21,K.1^73]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,K.1^70,K.1^70,-1*K.1^10,-1*K.1^10,-1*K.1^90,K.1^10,K.1^90,-1*K.1^70,K.1^10,K.1^30,-1*K.1^70,-1*K.1^90,K.1^30,K.1^90,-1*K.1^30,-1*K.1^30,K.1^10,-1*K.1^90,-1*K.1^30,-1*K.1^10,K.1^70,K.1^30,K.1^90,-1*K.1^70,K.1^16,K.1^8,K.1^56,-1*K.1^28,-1*K.1^68,K.1^48,-1*K.1^36,-1*K.1^92,-1*K.1^84,K.1^32,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^64,K.1^24,-1*K.1^76,-1*K.1^12,K.1^88,K.1^96,K.1^55,-1*K.1^85,-1*K.1^55,K.1^85,K.1^65,K.1^45,-1*K.1^15,-1*K.1^45,-1*K.1^85,-1*K.1^5,K.1^15,K.1^5,K.1^95,-1*K.1^95,K.1^45,-1*K.1^15,-1*K.1^55,K.1^55,K.1^65,-1*K.1^35,-1*K.1^65,-1*K.1^45,-1*K.1^5,K.1^35,K.1^5,K.1^95,-1*K.1^65,K.1^15,-1*K.1^95,K.1^35,K.1^85,-1*K.1^35,K.1^64,K.1^48,K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^44,-1*K.1^4,K.1^88,K.1^84,K.1^52,-1*K.1^84,K.1^52,-1*K.1^76,K.1^56,-1*K.1^64,K.1^32,-1*K.1^88,-1*K.1^72,K.1^84,-1*K.1^12,-1*K.1^32,K.1^92,K.1^72,-1*K.1^24,K.1^12,K.1^16,-1*K.1^92,K.1^4,K.1^96,-1*K.1^36,K.1^44,K.1^4,-1*K.1^48,-1*K.1^48,-1*K.1^56,-1*K.1^88,-1*K.1^56,K.1^68,K.1^68,K.1^36,K.1^36,-1*K.1^52,-1*K.1^68,-1*K.1^64,-1*K.1^72,K.1^8,K.1^76,K.1^76,K.1^28,-1*K.1^16,-1*K.1^16,K.1^28,-1*K.1^96,-1*K.1^8,-1*K.1^8,-1*K.1^96,K.1^24,K.1^92,K.1^44,-1*K.1^32,K.1^32,-1*K.1^68,K.1^4,K.1^52,K.1^92,-1*K.1^96,K.1^36,-1*K.1^36,-1*K.1^84,K.1^24,-1*K.1^28,K.1^8,-1*K.1^8,K.1^96,K.1^56,-1*K.1^48,-1*K.1^88,K.1^16,-1*K.1^4,K.1^68,K.1^48,K.1^88,K.1^64,-1*K.1^44,-1*K.1^76,K.1^28,K.1^76,-1*K.1^12,-1*K.1^64,-1*K.1^24,-1*K.1^52,-1*K.1^92,K.1^84,-1*K.1^72,K.1^72,-1*K.1^16,-1*K.1^56,-1*K.1^32,K.1^12,K.1^44,-1*K.1^66,K.1^62,K.1^86,-1*K.1^18,K.1^94,K.1^94,-1*K.1^98,K.1^6,K.1^54,K.1^18,-1*K.1^58,K.1^78,-1*K.1^38,-1*K.1^2,-1*K.1^26,K.1^78,K.1^14,-1*K.1^82,-1*K.1^66,-1*K.1^54,-1*K.1^94,K.1^14,-1*K.1^14,K.1^34,K.1^98,-1*K.1^6,K.1^42,-1*K.1^46,K.1^2,-1*K.1^34,-1*K.1^62,-1*K.1^86,K.1^2,-1*K.1^26,-1*K.1^94,K.1^26,-1*K.1^22,-1*K.1^74,-1*K.1^54,-1*K.1^82,-1*K.1^62,-1*K.1^86,K.1^66,-1*K.1^42,K.1^22,K.1^22,K.1^38,K.1^82,K.1^42,-1*K.1^6,K.1^82,K.1^66,K.1^58,K.1^74,K.1^74,K.1^54,K.1^34,-1*K.1^14,K.1^18,K.1^26,-1*K.1^22,K.1^98,-1*K.1^46,K.1^58,K.1^62,K.1^6,-1*K.1^42,-1*K.1^74,-1*K.1^18,K.1^86,-1*K.1^78,-1*K.1^38,K.1^38,-1*K.1^98,-1*K.1^78,K.1^46,K.1^46,-1*K.1^58,-1*K.1^34,-1*K.1^2,-1*K.1^22,-1*K.1^54,K.1^94,-1*K.1^34,-1*K.1^94,-1*K.1^14,K.1^22,K.1^6,K.1^66,K.1^42,-1*K.1^2,-1*K.1^26,-1*K.1^86,K.1^18,-1*K.1^58,-1*K.1^98,K.1^58,-1*K.1^78,K.1^86,-1*K.1^42,-1*K.1^18,K.1^82,K.1^26,-1*K.1^66,K.1^62,K.1^2,-1*K.1^6,K.1^46,K.1^14,K.1^74,K.1^34,-1*K.1^74,K.1^54,-1*K.1^46,-1*K.1^62,-1*K.1^82,K.1^78,-1*K.1^38,K.1^98,K.1^38,-1*K.1^13,-1*K.1^21,-1*K.1^63,K.1^77,K.1^33,K.1^59,K.1^17,K.1^79,-1*K.1^11,-1*K.1^81,K.1^41,K.1^17,K.1^97,K.1^43,K.1,K.1^23,-1*K.1^99,K.1^97,-1*K.1^71,K.1^69,-1*K.1^43,K.1^47,K.1^49,K.1^91,-1*K.1^49,K.1^29,-1*K.1^79,-1*K.1^37,-1*K.1^59,K.1^63,K.1^41,K.1^83,-1*K.1^57,K.1^57,K.1,-1*K.1^41,-1*K.1^51,K.1^71,K.1^57,K.1^99,-1*K.1^9,-1*K.1^31,K.1^89,K.1^39,-1*K.1^83,-1*K.1^43,K.1^61,K.1^31,-1*K.1^91,-1*K.1,-1*K.1^61,-1*K.1^21,-1*K.1^37,-1*K.1^77,K.1^81,K.1^21,-1*K.1^3,-1*K.1^19,-1*K.1^77,K.1^19,K.1^73,K.1^37,K.1^3,-1*K.1^29,-1*K.1^67,-1*K.1^53,K.1^47,K.1^49,K.1^9,K.1^87,K.1^29,-1*K.1^79,-1*K.1^63,K.1^77,K.1^63,K.1^27,K.1^13,K.1^79,K.1^53,-1*K.1^87,K.1^27,K.1^13,K.1^71,K.1^53,-1*K.1^87,-1*K.1^27,-1*K.1^69,K.1^11,-1*K.1^97,-1*K.1^13,-1*K.1^39,-1*K.1^89,K.1^51,K.1^91,-1*K.1^49,K.1^7,-1*K.1^7,-1*K.1^33,-1*K.1^59,K.1^33,K.1^59,K.1^83,-1*K.1^57,-1*K.1^11,-1*K.1^81,-1*K.1^41,-1*K.1^51,K.1^93,K.1^43,K.1^99,-1*K.1^61,-1*K.1^93,-1*K.1^17,-1*K.1^23,K.1^81,-1*K.1^39,-1*K.1^7,-1*K.1^33,-1*K.1^91,-1*K.1,K.1^21,-1*K.1^3,-1*K.1^17,-1*K.1^23,K.1^19,K.1^73,-1*K.1^99,K.1^93,-1*K.1^29,-1*K.1^67,-1*K.1^9,-1*K.1^31,K.1^11,-1*K.1^97,-1*K.1^83,-1*K.1^53,-1*K.1^89,K.1^51,K.1^9,K.1^87,-1*K.1^47,K.1^61,K.1^31,-1*K.1^73,K.1^67,-1*K.1^47,-1*K.1^93,-1*K.1^19,-1*K.1^73,K.1^67,K.1^23,K.1^37,K.1^3,-1*K.1^71,K.1^69,-1*K.1^27,-1*K.1^69,K.1^89,K.1^39,K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,-1*K.1^30,-1*K.1^30,K.1^90,K.1^90,K.1^10,-1*K.1^90,-1*K.1^10,K.1^30,-1*K.1^90,-1*K.1^70,K.1^30,K.1^10,-1*K.1^70,-1*K.1^10,K.1^70,K.1^70,-1*K.1^90,K.1^10,K.1^70,K.1^90,-1*K.1^30,-1*K.1^70,-1*K.1^10,K.1^30,-1*K.1^84,-1*K.1^92,-1*K.1^44,K.1^72,K.1^32,-1*K.1^52,K.1^64,K.1^8,K.1^16,-1*K.1^68,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^36,-1*K.1^76,K.1^24,K.1^88,-1*K.1^12,-1*K.1^4,-1*K.1^45,K.1^15,K.1^45,-1*K.1^15,-1*K.1^35,-1*K.1^55,K.1^85,K.1^55,K.1^15,K.1^95,-1*K.1^85,-1*K.1^95,-1*K.1^5,K.1^5,-1*K.1^55,K.1^85,K.1^45,-1*K.1^45,-1*K.1^35,K.1^65,K.1^35,K.1^55,K.1^95,-1*K.1^65,-1*K.1^95,-1*K.1^5,K.1^35,-1*K.1^85,K.1^5,-1*K.1^65,-1*K.1^15,K.1^65,-1*K.1^36,-1*K.1^52,-1*K.1^88,K.1^76,K.1^72,K.1^56,K.1^96,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^16,-1*K.1^48,K.1^24,-1*K.1^44,K.1^36,-1*K.1^68,K.1^12,K.1^28,-1*K.1^16,K.1^88,K.1^68,-1*K.1^8,-1*K.1^28,K.1^76,-1*K.1^88,-1*K.1^84,K.1^8,-1*K.1^96,-1*K.1^4,K.1^64,-1*K.1^56,-1*K.1^96,K.1^52,K.1^52,K.1^44,K.1^12,K.1^44,-1*K.1^32,-1*K.1^32,-1*K.1^64,-1*K.1^64,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^92,-1*K.1^24,-1*K.1^24,-1*K.1^72,K.1^84,K.1^84,-1*K.1^72,K.1^4,K.1^92,K.1^92,K.1^4,-1*K.1^76,-1*K.1^8,-1*K.1^56,K.1^68,-1*K.1^68,K.1^32,-1*K.1^96,-1*K.1^48,-1*K.1^8,K.1^4,-1*K.1^64,K.1^64,K.1^16,-1*K.1^76,K.1^72,-1*K.1^92,K.1^92,-1*K.1^4,-1*K.1^44,K.1^52,K.1^12,-1*K.1^84,K.1^96,-1*K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^36,K.1^56,K.1^24,-1*K.1^72,-1*K.1^24,K.1^88,K.1^36,K.1^76,K.1^48,K.1^8,-1*K.1^16,K.1^28,-1*K.1^28,K.1^84,K.1^44,K.1^68,-1*K.1^88,-1*K.1^56,K.1^34,-1*K.1^38,-1*K.1^14,K.1^82,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^94,-1*K.1^46,-1*K.1^82,K.1^42,-1*K.1^22,K.1^62,K.1^98,K.1^74,-1*K.1^22,-1*K.1^86,K.1^18,K.1^34,K.1^46,K.1^6,-1*K.1^86,K.1^86,-1*K.1^66,-1*K.1^2,K.1^94,-1*K.1^58,K.1^54,-1*K.1^98,K.1^66,K.1^38,K.1^14,-1*K.1^98,K.1^74,K.1^6,-1*K.1^74,K.1^78,K.1^26,K.1^46,K.1^18,K.1^38,K.1^14,-1*K.1^34,K.1^58,-1*K.1^78,-1*K.1^78,-1*K.1^62,-1*K.1^18,-1*K.1^58,K.1^94,-1*K.1^18,-1*K.1^34,-1*K.1^42,-1*K.1^26,-1*K.1^26,-1*K.1^46,-1*K.1^66,K.1^86,-1*K.1^82,-1*K.1^74,K.1^78,-1*K.1^2,K.1^54,-1*K.1^42,-1*K.1^38,-1*K.1^94,K.1^58,K.1^26,K.1^82,-1*K.1^14,K.1^22,K.1^62,-1*K.1^62,K.1^2,K.1^22,-1*K.1^54,-1*K.1^54,K.1^42,K.1^66,K.1^98,K.1^78,K.1^46,-1*K.1^6,K.1^66,K.1^6,K.1^86,-1*K.1^78,-1*K.1^94,-1*K.1^34,-1*K.1^58,K.1^98,K.1^74,K.1^14,-1*K.1^82,K.1^42,K.1^2,-1*K.1^42,K.1^22,-1*K.1^14,K.1^58,K.1^82,-1*K.1^18,-1*K.1^74,K.1^34,-1*K.1^38,-1*K.1^98,K.1^94,-1*K.1^54,-1*K.1^86,-1*K.1^26,-1*K.1^66,K.1^26,-1*K.1^46,K.1^54,K.1^38,K.1^18,-1*K.1^22,K.1^62,-1*K.1^2,-1*K.1^62,K.1^87,K.1^79,K.1^37,-1*K.1^23,-1*K.1^67,-1*K.1^41,-1*K.1^83,-1*K.1^21,K.1^89,K.1^19,-1*K.1^59,-1*K.1^83,-1*K.1^3,-1*K.1^57,-1*K.1^99,-1*K.1^77,K.1,-1*K.1^3,K.1^29,-1*K.1^31,K.1^57,-1*K.1^53,-1*K.1^51,-1*K.1^9,K.1^51,-1*K.1^71,K.1^21,K.1^63,K.1^41,-1*K.1^37,-1*K.1^59,-1*K.1^17,K.1^43,-1*K.1^43,-1*K.1^99,K.1^59,K.1^49,-1*K.1^29,-1*K.1^43,-1*K.1,K.1^91,K.1^69,-1*K.1^11,-1*K.1^61,K.1^17,K.1^57,-1*K.1^39,-1*K.1^69,K.1^9,K.1^99,K.1^39,K.1^79,K.1^63,K.1^23,-1*K.1^19,-1*K.1^79,K.1^97,K.1^81,K.1^23,-1*K.1^81,-1*K.1^27,-1*K.1^63,-1*K.1^97,K.1^71,K.1^33,K.1^47,-1*K.1^53,-1*K.1^51,-1*K.1^91,-1*K.1^13,-1*K.1^71,K.1^21,K.1^37,-1*K.1^23,-1*K.1^37,-1*K.1^73,-1*K.1^87,-1*K.1^21,-1*K.1^47,K.1^13,-1*K.1^73,-1*K.1^87,-1*K.1^29,-1*K.1^47,K.1^13,K.1^73,K.1^31,-1*K.1^89,K.1^3,K.1^87,K.1^61,K.1^11,-1*K.1^49,-1*K.1^9,K.1^51,-1*K.1^93,K.1^93,K.1^67,K.1^41,-1*K.1^67,-1*K.1^41,-1*K.1^17,K.1^43,K.1^89,K.1^19,K.1^59,K.1^49,-1*K.1^7,-1*K.1^57,-1*K.1,K.1^39,K.1^7,K.1^83,K.1^77,-1*K.1^19,K.1^61,K.1^93,K.1^67,K.1^9,K.1^99,-1*K.1^79,K.1^97,K.1^83,K.1^77,-1*K.1^81,-1*K.1^27,K.1,-1*K.1^7,K.1^71,K.1^33,K.1^91,K.1^69,-1*K.1^89,K.1^3,K.1^17,K.1^47,K.1^11,-1*K.1^49,-1*K.1^91,-1*K.1^13,K.1^53,-1*K.1^39,-1*K.1^69,K.1^27,-1*K.1^33,K.1^53,K.1^7,K.1^81,K.1^27,-1*K.1^33,-1*K.1^77,-1*K.1^63,-1*K.1^97,K.1^29,-1*K.1^31,K.1^73,K.1^31,-1*K.1^11,-1*K.1^61,-1*K.1^93]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^4,-1*K.1^52,K.1^64,K.1^32,-1*K.1^92,-1*K.1^12,-1*K.1^84,K.1^48,K.1^96,K.1^8,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,K.1^16,K.1^56,-1*K.1^44,-1*K.1^28,K.1^72,K.1^24,-1*K.1^95,-1*K.1^65,K.1^95,K.1^65,K.1^85,-1*K.1^5,-1*K.1^35,K.1^5,-1*K.1^65,K.1^45,K.1^35,-1*K.1^45,-1*K.1^55,K.1^55,-1*K.1^5,-1*K.1^35,K.1^95,-1*K.1^95,K.1^85,-1*K.1^15,-1*K.1^85,K.1^5,K.1^45,K.1^15,-1*K.1^45,-1*K.1^55,-1*K.1^85,K.1^35,K.1^55,K.1^15,K.1^65,-1*K.1^15,K.1^16,-1*K.1^12,K.1^28,-1*K.1^56,K.1^32,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^96,-1*K.1^88,K.1^96,-1*K.1^88,-1*K.1^44,K.1^64,-1*K.1^16,K.1^8,-1*K.1^72,K.1^68,-1*K.1^96,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^68,-1*K.1^56,K.1^28,-1*K.1^4,K.1^48,K.1^76,K.1^24,-1*K.1^84,K.1^36,K.1^76,K.1^12,K.1^12,-1*K.1^64,-1*K.1^72,-1*K.1^64,K.1^92,K.1^92,K.1^84,K.1^84,K.1^88,-1*K.1^92,-1*K.1^16,K.1^68,-1*K.1^52,K.1^44,K.1^44,-1*K.1^32,K.1^4,K.1^4,-1*K.1^32,-1*K.1^24,K.1^52,K.1^52,-1*K.1^24,K.1^56,-1*K.1^48,K.1^36,-1*K.1^8,K.1^8,-1*K.1^92,K.1^76,-1*K.1^88,-1*K.1^48,-1*K.1^24,K.1^84,-1*K.1^84,K.1^96,K.1^56,K.1^32,-1*K.1^52,K.1^52,K.1^24,K.1^64,K.1^12,-1*K.1^72,-1*K.1^4,-1*K.1^76,K.1^92,-1*K.1^12,K.1^72,K.1^16,-1*K.1^36,-1*K.1^44,-1*K.1^32,K.1^44,-1*K.1^28,-1*K.1^16,-1*K.1^56,K.1^88,K.1^48,-1*K.1^96,K.1^68,-1*K.1^68,K.1^4,-1*K.1^64,-1*K.1^8,K.1^28,K.1^36,K.1^54,K.1^78,-1*K.1^34,-1*K.1^42,K.1^86,K.1^86,K.1^62,K.1^14,-1*K.1^26,K.1^42,-1*K.1^2,-1*K.1^82,-1*K.1^22,K.1^38,K.1^94,-1*K.1^82,-1*K.1^66,-1*K.1^58,K.1^54,K.1^26,-1*K.1^86,-1*K.1^66,K.1^66,-1*K.1^46,-1*K.1^62,-1*K.1^14,K.1^98,K.1^74,-1*K.1^38,K.1^46,-1*K.1^78,K.1^34,-1*K.1^38,K.1^94,-1*K.1^86,-1*K.1^94,K.1^18,K.1^6,K.1^26,-1*K.1^58,-1*K.1^78,K.1^34,-1*K.1^54,-1*K.1^98,-1*K.1^18,-1*K.1^18,K.1^22,K.1^58,K.1^98,-1*K.1^14,K.1^58,-1*K.1^54,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^26,-1*K.1^46,K.1^66,K.1^42,-1*K.1^94,K.1^18,-1*K.1^62,K.1^74,K.1^2,K.1^78,K.1^14,-1*K.1^98,K.1^6,-1*K.1^42,-1*K.1^34,K.1^82,-1*K.1^22,K.1^22,K.1^62,K.1^82,-1*K.1^74,-1*K.1^74,-1*K.1^2,K.1^46,K.1^38,K.1^18,K.1^26,K.1^86,K.1^46,-1*K.1^86,K.1^66,-1*K.1^18,K.1^14,-1*K.1^54,K.1^98,K.1^38,K.1^94,K.1^34,K.1^42,-1*K.1^2,K.1^62,K.1^2,K.1^82,-1*K.1^34,-1*K.1^98,-1*K.1^42,K.1^58,-1*K.1^94,K.1^54,K.1^78,-1*K.1^38,-1*K.1^14,-1*K.1^74,-1*K.1^66,-1*K.1^6,-1*K.1^46,K.1^6,-1*K.1^26,K.1^74,-1*K.1^78,-1*K.1^58,-1*K.1^82,-1*K.1^22,-1*K.1^62,K.1^22,-1*K.1^97,-1*K.1^49,K.1^47,-1*K.1^13,K.1^77,K.1^71,-1*K.1^73,K.1^51,K.1^59,K.1^89,K.1^29,-1*K.1^73,K.1^93,-1*K.1^67,K.1^69,-1*K.1^87,-1*K.1^31,K.1^93,-1*K.1^99,-1*K.1^61,K.1^67,K.1^43,-1*K.1^81,K.1^79,K.1^81,K.1,-1*K.1^51,K.1^53,-1*K.1^71,-1*K.1^47,K.1^29,-1*K.1^27,K.1^33,-1*K.1^33,K.1^69,-1*K.1^29,K.1^19,K.1^99,-1*K.1^33,K.1^31,-1*K.1^21,K.1^39,-1*K.1^41,K.1^91,K.1^27,K.1^67,K.1^9,-1*K.1^39,-1*K.1^79,-1*K.1^69,-1*K.1^9,-1*K.1^49,K.1^53,K.1^13,-1*K.1^89,K.1^49,-1*K.1^7,K.1^11,K.1^13,-1*K.1^11,K.1^37,-1*K.1^53,K.1^7,-1*K.1,-1*K.1^23,-1*K.1^57,K.1^43,-1*K.1^81,K.1^21,K.1^3,K.1,-1*K.1^51,K.1^47,-1*K.1^13,-1*K.1^47,K.1^63,K.1^97,K.1^51,K.1^57,-1*K.1^3,K.1^63,K.1^97,K.1^99,K.1^57,-1*K.1^3,-1*K.1^63,K.1^61,-1*K.1^59,-1*K.1^93,-1*K.1^97,-1*K.1^91,K.1^41,-1*K.1^19,K.1^79,K.1^81,K.1^83,-1*K.1^83,-1*K.1^77,-1*K.1^71,K.1^77,K.1^71,-1*K.1^27,K.1^33,K.1^59,K.1^89,-1*K.1^29,K.1^19,K.1^17,-1*K.1^67,K.1^31,-1*K.1^9,-1*K.1^17,K.1^73,K.1^87,-1*K.1^89,-1*K.1^91,-1*K.1^83,-1*K.1^77,-1*K.1^79,-1*K.1^69,K.1^49,-1*K.1^7,K.1^73,K.1^87,-1*K.1^11,K.1^37,-1*K.1^31,K.1^17,-1*K.1,-1*K.1^23,-1*K.1^21,K.1^39,-1*K.1^59,-1*K.1^93,K.1^27,-1*K.1^57,K.1^41,-1*K.1^19,K.1^21,K.1^3,-1*K.1^43,K.1^9,-1*K.1^39,-1*K.1^37,K.1^23,-1*K.1^43,-1*K.1^17,K.1^11,-1*K.1^37,K.1^23,-1*K.1^87,-1*K.1^53,K.1^7,-1*K.1^99,-1*K.1^61,-1*K.1^63,K.1^61,-1*K.1^41,K.1^91,K.1^83]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^96,K.1^48,-1*K.1^36,-1*K.1^68,K.1^8,K.1^88,K.1^16,-1*K.1^52,-1*K.1^4,-1*K.1^92,K.1^32,-1*K.1^12,K.1^64,K.1^24,-1*K.1^84,-1*K.1^44,K.1^56,K.1^72,-1*K.1^28,-1*K.1^76,K.1^5,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^95,K.1^65,-1*K.1^95,K.1^35,-1*K.1^55,-1*K.1^65,K.1^55,K.1^45,-1*K.1^45,K.1^95,K.1^65,-1*K.1^5,K.1^5,-1*K.1^15,K.1^85,K.1^15,-1*K.1^95,-1*K.1^55,-1*K.1^85,K.1^55,K.1^45,K.1^15,-1*K.1^65,-1*K.1^45,-1*K.1^85,-1*K.1^35,K.1^85,-1*K.1^84,K.1^88,-1*K.1^72,K.1^44,-1*K.1^68,K.1^64,K.1^24,-1*K.1^28,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^56,-1*K.1^36,K.1^84,-1*K.1^92,K.1^28,-1*K.1^32,K.1^4,K.1^72,K.1^92,K.1^52,K.1^32,K.1^44,-1*K.1^72,K.1^96,-1*K.1^52,-1*K.1^24,-1*K.1^76,K.1^16,-1*K.1^64,-1*K.1^24,-1*K.1^88,-1*K.1^88,K.1^36,K.1^28,K.1^36,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^84,-1*K.1^32,K.1^48,-1*K.1^56,-1*K.1^56,K.1^68,-1*K.1^96,-1*K.1^96,K.1^68,K.1^76,-1*K.1^48,-1*K.1^48,K.1^76,-1*K.1^44,K.1^52,-1*K.1^64,K.1^92,-1*K.1^92,K.1^8,-1*K.1^24,K.1^12,K.1^52,K.1^76,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^44,-1*K.1^68,K.1^48,-1*K.1^48,-1*K.1^76,-1*K.1^36,-1*K.1^88,K.1^28,K.1^96,K.1^24,-1*K.1^8,K.1^88,-1*K.1^28,-1*K.1^84,K.1^64,K.1^56,K.1^68,-1*K.1^56,K.1^72,K.1^84,K.1^44,-1*K.1^12,-1*K.1^52,K.1^4,-1*K.1^32,K.1^32,-1*K.1^96,K.1^36,K.1^92,-1*K.1^72,-1*K.1^64,-1*K.1^46,-1*K.1^22,K.1^66,K.1^58,-1*K.1^14,-1*K.1^14,-1*K.1^38,-1*K.1^86,K.1^74,-1*K.1^58,K.1^98,K.1^18,K.1^78,-1*K.1^62,-1*K.1^6,K.1^18,K.1^34,K.1^42,-1*K.1^46,-1*K.1^74,K.1^14,K.1^34,-1*K.1^34,K.1^54,K.1^38,K.1^86,-1*K.1^2,-1*K.1^26,K.1^62,-1*K.1^54,K.1^22,-1*K.1^66,K.1^62,-1*K.1^6,K.1^14,K.1^6,-1*K.1^82,-1*K.1^94,-1*K.1^74,K.1^42,K.1^22,-1*K.1^66,K.1^46,K.1^2,K.1^82,K.1^82,-1*K.1^78,-1*K.1^42,-1*K.1^2,K.1^86,-1*K.1^42,K.1^46,-1*K.1^98,K.1^94,K.1^94,K.1^74,K.1^54,-1*K.1^34,-1*K.1^58,K.1^6,-1*K.1^82,K.1^38,-1*K.1^26,-1*K.1^98,-1*K.1^22,-1*K.1^86,K.1^2,-1*K.1^94,K.1^58,K.1^66,-1*K.1^18,K.1^78,-1*K.1^78,-1*K.1^38,-1*K.1^18,K.1^26,K.1^26,K.1^98,-1*K.1^54,-1*K.1^62,-1*K.1^82,-1*K.1^74,-1*K.1^14,-1*K.1^54,K.1^14,-1*K.1^34,K.1^82,-1*K.1^86,K.1^46,-1*K.1^2,-1*K.1^62,-1*K.1^6,-1*K.1^66,-1*K.1^58,K.1^98,-1*K.1^38,-1*K.1^98,-1*K.1^18,K.1^66,K.1^2,K.1^58,-1*K.1^42,K.1^6,-1*K.1^46,-1*K.1^22,K.1^62,K.1^86,K.1^26,K.1^34,K.1^94,K.1^54,-1*K.1^94,K.1^74,-1*K.1^26,K.1^22,K.1^42,K.1^18,K.1^78,K.1^38,-1*K.1^78,K.1^3,K.1^51,-1*K.1^53,K.1^87,-1*K.1^23,-1*K.1^29,K.1^27,-1*K.1^49,-1*K.1^41,-1*K.1^11,-1*K.1^71,K.1^27,-1*K.1^7,K.1^33,-1*K.1^31,K.1^13,K.1^69,-1*K.1^7,K.1,K.1^39,-1*K.1^33,-1*K.1^57,K.1^19,-1*K.1^21,-1*K.1^19,-1*K.1^99,K.1^49,-1*K.1^47,K.1^29,K.1^53,-1*K.1^71,K.1^73,-1*K.1^67,K.1^67,-1*K.1^31,K.1^71,-1*K.1^81,-1*K.1,K.1^67,-1*K.1^69,K.1^79,-1*K.1^61,K.1^59,-1*K.1^9,-1*K.1^73,-1*K.1^33,-1*K.1^91,K.1^61,K.1^21,K.1^31,K.1^91,K.1^51,-1*K.1^47,-1*K.1^87,K.1^11,-1*K.1^51,K.1^93,-1*K.1^89,-1*K.1^87,K.1^89,-1*K.1^63,K.1^47,-1*K.1^93,K.1^99,K.1^77,K.1^43,-1*K.1^57,K.1^19,-1*K.1^79,-1*K.1^97,-1*K.1^99,K.1^49,-1*K.1^53,K.1^87,K.1^53,-1*K.1^37,-1*K.1^3,-1*K.1^49,-1*K.1^43,K.1^97,-1*K.1^37,-1*K.1^3,-1*K.1,-1*K.1^43,K.1^97,K.1^37,-1*K.1^39,K.1^41,K.1^7,K.1^3,K.1^9,-1*K.1^59,K.1^81,-1*K.1^21,-1*K.1^19,-1*K.1^17,K.1^17,K.1^23,K.1^29,-1*K.1^23,-1*K.1^29,K.1^73,-1*K.1^67,-1*K.1^41,-1*K.1^11,K.1^71,-1*K.1^81,-1*K.1^83,K.1^33,-1*K.1^69,K.1^91,K.1^83,-1*K.1^27,-1*K.1^13,K.1^11,K.1^9,K.1^17,K.1^23,K.1^21,K.1^31,-1*K.1^51,K.1^93,-1*K.1^27,-1*K.1^13,K.1^89,-1*K.1^63,K.1^69,-1*K.1^83,K.1^99,K.1^77,K.1^79,-1*K.1^61,K.1^41,K.1^7,-1*K.1^73,K.1^43,-1*K.1^59,K.1^81,-1*K.1^79,-1*K.1^97,K.1^57,-1*K.1^91,K.1^61,K.1^63,-1*K.1^77,K.1^57,K.1^83,-1*K.1^89,K.1^63,-1*K.1^77,K.1^13,K.1^47,-1*K.1^93,K.1,K.1^39,K.1^37,-1*K.1^39,K.1^59,-1*K.1^9,-1*K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,K.1^64,K.1^32,K.1^24,-1*K.1^12,K.1^72,-1*K.1^92,-1*K.1^44,-1*K.1^68,-1*K.1^36,-1*K.1^28,K.1^88,K.1^8,-1*K.1^76,K.1^16,K.1^56,K.1^96,-1*K.1^4,K.1^48,-1*K.1^52,-1*K.1^84,-1*K.1^95,-1*K.1^65,K.1^95,K.1^65,K.1^85,-1*K.1^5,-1*K.1^35,K.1^5,-1*K.1^65,K.1^45,K.1^35,-1*K.1^45,-1*K.1^55,K.1^55,-1*K.1^5,-1*K.1^35,K.1^95,-1*K.1^95,K.1^85,-1*K.1^15,-1*K.1^85,K.1^5,K.1^45,K.1^15,-1*K.1^45,-1*K.1^55,-1*K.1^85,K.1^35,K.1^55,K.1^15,K.1^65,-1*K.1^15,K.1^56,-1*K.1^92,-1*K.1^48,-1*K.1^96,-1*K.1^12,-1*K.1^76,K.1^16,-1*K.1^52,K.1^36,-1*K.1^8,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^24,-1*K.1^56,-1*K.1^28,K.1^52,-1*K.1^88,K.1^36,K.1^48,K.1^28,K.1^68,K.1^88,-1*K.1^96,-1*K.1^48,K.1^64,-1*K.1^68,-1*K.1^16,-1*K.1^84,-1*K.1^44,K.1^76,-1*K.1^16,K.1^92,K.1^92,-1*K.1^24,K.1^52,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^44,K.1^44,K.1^8,K.1^72,-1*K.1^56,-1*K.1^88,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^64,-1*K.1^64,K.1^12,K.1^84,-1*K.1^32,-1*K.1^32,K.1^84,K.1^96,K.1^68,K.1^76,K.1^28,-1*K.1^28,K.1^72,-1*K.1^16,-1*K.1^8,K.1^68,K.1^84,K.1^44,-1*K.1^44,-1*K.1^36,K.1^96,-1*K.1^12,K.1^32,-1*K.1^32,-1*K.1^84,K.1^24,K.1^92,K.1^52,K.1^64,K.1^16,-1*K.1^72,-1*K.1^92,-1*K.1^52,K.1^56,-1*K.1^76,-1*K.1^4,K.1^12,K.1^4,K.1^48,-1*K.1^56,-1*K.1^96,K.1^8,-1*K.1^68,K.1^36,-1*K.1^88,K.1^88,-1*K.1^64,-1*K.1^24,K.1^28,-1*K.1^48,K.1^76,K.1^14,-1*K.1^98,K.1^94,K.1^22,-1*K.1^26,-1*K.1^26,-1*K.1^42,-1*K.1^74,-1*K.1^66,-1*K.1^22,-1*K.1^82,K.1^62,K.1^2,-1*K.1^58,K.1^54,K.1^62,K.1^6,K.1^78,K.1^14,K.1^66,K.1^26,K.1^6,-1*K.1^6,-1*K.1^86,K.1^42,K.1^74,K.1^18,K.1^34,K.1^58,K.1^86,K.1^98,-1*K.1^94,K.1^58,K.1^54,K.1^26,-1*K.1^54,-1*K.1^38,K.1^46,K.1^66,K.1^78,K.1^98,-1*K.1^94,-1*K.1^14,-1*K.1^18,K.1^38,K.1^38,-1*K.1^2,-1*K.1^78,K.1^18,K.1^74,-1*K.1^78,-1*K.1^14,K.1^82,-1*K.1^46,-1*K.1^46,-1*K.1^66,-1*K.1^86,-1*K.1^6,-1*K.1^22,-1*K.1^54,-1*K.1^38,K.1^42,K.1^34,K.1^82,-1*K.1^98,-1*K.1^74,-1*K.1^18,K.1^46,K.1^22,K.1^94,-1*K.1^62,K.1^2,-1*K.1^2,-1*K.1^42,-1*K.1^62,-1*K.1^34,-1*K.1^34,-1*K.1^82,K.1^86,-1*K.1^58,-1*K.1^38,K.1^66,-1*K.1^26,K.1^86,K.1^26,-1*K.1^6,K.1^38,-1*K.1^74,-1*K.1^14,K.1^18,-1*K.1^58,K.1^54,-1*K.1^94,-1*K.1^22,-1*K.1^82,-1*K.1^42,K.1^82,-1*K.1^62,K.1^94,-1*K.1^18,K.1^22,-1*K.1^78,-1*K.1^54,K.1^14,-1*K.1^98,K.1^58,K.1^74,-1*K.1^34,K.1^6,-1*K.1^46,-1*K.1^86,K.1^46,-1*K.1^66,K.1^34,K.1^98,K.1^78,K.1^62,K.1^2,K.1^42,-1*K.1^2,K.1^77,-1*K.1^9,-1*K.1^27,K.1^33,-1*K.1^57,-1*K.1^11,K.1^93,K.1^91,K.1^19,K.1^49,-1*K.1^89,K.1^93,K.1^13,K.1^47,K.1^29,K.1^67,-1*K.1^71,K.1^13,-1*K.1^59,K.1,-1*K.1^47,-1*K.1^63,K.1^21,K.1^39,-1*K.1^21,K.1^41,-1*K.1^91,-1*K.1^73,K.1^11,K.1^27,-1*K.1^89,K.1^7,-1*K.1^53,K.1^53,K.1^29,K.1^89,-1*K.1^79,K.1^59,K.1^53,K.1^71,-1*K.1^61,-1*K.1^99,-1*K.1^81,-1*K.1^31,-1*K.1^7,-1*K.1^47,-1*K.1^69,K.1^99,-1*K.1^39,-1*K.1^29,K.1^69,-1*K.1^9,-1*K.1^73,-1*K.1^33,-1*K.1^49,K.1^9,-1*K.1^87,K.1^51,-1*K.1^33,-1*K.1^51,-1*K.1^17,K.1^73,K.1^87,-1*K.1^41,K.1^43,K.1^37,-1*K.1^63,K.1^21,K.1^61,-1*K.1^23,K.1^41,-1*K.1^91,-1*K.1^27,K.1^33,K.1^27,-1*K.1^83,-1*K.1^77,K.1^91,-1*K.1^37,K.1^23,-1*K.1^83,-1*K.1^77,K.1^59,-1*K.1^37,K.1^23,K.1^83,-1*K.1,-1*K.1^19,-1*K.1^13,K.1^77,K.1^31,K.1^81,K.1^79,K.1^39,-1*K.1^21,K.1^3,-1*K.1^3,K.1^57,K.1^11,-1*K.1^57,-1*K.1^11,K.1^7,-1*K.1^53,K.1^19,K.1^49,K.1^89,-1*K.1^79,K.1^97,K.1^47,K.1^71,K.1^69,-1*K.1^97,-1*K.1^93,-1*K.1^67,-1*K.1^49,K.1^31,-1*K.1^3,K.1^57,-1*K.1^39,-1*K.1^29,K.1^9,-1*K.1^87,-1*K.1^93,-1*K.1^67,-1*K.1^51,-1*K.1^17,-1*K.1^71,K.1^97,-1*K.1^41,K.1^43,-1*K.1^61,-1*K.1^99,-1*K.1^19,-1*K.1^13,-1*K.1^7,K.1^37,K.1^81,K.1^79,K.1^61,-1*K.1^23,K.1^63,-1*K.1^69,K.1^99,K.1^17,-1*K.1^43,K.1^63,-1*K.1^97,K.1^51,K.1^17,-1*K.1^43,K.1^67,K.1^73,K.1^87,-1*K.1^59,K.1,K.1^83,-1*K.1,-1*K.1^81,-1*K.1^31,K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,-1*K.1^36,-1*K.1^68,-1*K.1^76,K.1^88,-1*K.1^28,K.1^8,K.1^56,K.1^32,K.1^64,K.1^72,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^96,-1*K.1^52,K.1^48,K.1^16,K.1^5,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^95,K.1^65,-1*K.1^95,K.1^35,-1*K.1^55,-1*K.1^65,K.1^55,K.1^45,-1*K.1^45,K.1^95,K.1^65,-1*K.1^5,K.1^5,-1*K.1^15,K.1^85,K.1^15,-1*K.1^95,-1*K.1^55,-1*K.1^85,K.1^55,K.1^45,K.1^15,-1*K.1^65,-1*K.1^45,-1*K.1^85,-1*K.1^35,K.1^85,-1*K.1^44,K.1^8,K.1^52,K.1^4,K.1^88,K.1^24,-1*K.1^84,K.1^48,-1*K.1^64,K.1^92,K.1^64,K.1^92,K.1^96,-1*K.1^76,K.1^44,K.1^72,-1*K.1^48,K.1^12,-1*K.1^64,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^12,K.1^4,K.1^52,-1*K.1^36,K.1^32,K.1^84,K.1^16,K.1^56,-1*K.1^24,K.1^84,-1*K.1^8,-1*K.1^8,K.1^76,-1*K.1^48,K.1^76,K.1^28,K.1^28,-1*K.1^56,-1*K.1^56,-1*K.1^92,-1*K.1^28,K.1^44,K.1^12,-1*K.1^68,-1*K.1^96,-1*K.1^96,-1*K.1^88,K.1^36,K.1^36,-1*K.1^88,-1*K.1^16,K.1^68,K.1^68,-1*K.1^16,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^72,K.1^72,-1*K.1^28,K.1^84,K.1^92,-1*K.1^32,-1*K.1^16,-1*K.1^56,K.1^56,K.1^64,-1*K.1^4,K.1^88,-1*K.1^68,K.1^68,K.1^16,-1*K.1^76,-1*K.1^8,-1*K.1^48,-1*K.1^36,-1*K.1^84,K.1^28,K.1^8,K.1^48,-1*K.1^44,K.1^24,K.1^96,-1*K.1^88,-1*K.1^96,-1*K.1^52,K.1^44,K.1^4,-1*K.1^92,K.1^32,-1*K.1^64,K.1^12,-1*K.1^12,K.1^36,K.1^76,-1*K.1^72,K.1^52,-1*K.1^24,-1*K.1^86,K.1^2,-1*K.1^6,-1*K.1^78,K.1^74,K.1^74,K.1^58,K.1^26,K.1^34,K.1^78,K.1^18,-1*K.1^38,-1*K.1^98,K.1^42,-1*K.1^46,-1*K.1^38,-1*K.1^94,-1*K.1^22,-1*K.1^86,-1*K.1^34,-1*K.1^74,-1*K.1^94,K.1^94,K.1^14,-1*K.1^58,-1*K.1^26,-1*K.1^82,-1*K.1^66,-1*K.1^42,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^42,-1*K.1^46,-1*K.1^74,K.1^46,K.1^62,-1*K.1^54,-1*K.1^34,-1*K.1^22,-1*K.1^2,K.1^6,K.1^86,K.1^82,-1*K.1^62,-1*K.1^62,K.1^98,K.1^22,-1*K.1^82,-1*K.1^26,K.1^22,K.1^86,-1*K.1^18,K.1^54,K.1^54,K.1^34,K.1^14,K.1^94,K.1^78,K.1^46,K.1^62,-1*K.1^58,-1*K.1^66,-1*K.1^18,K.1^2,K.1^26,K.1^82,-1*K.1^54,-1*K.1^78,-1*K.1^6,K.1^38,-1*K.1^98,K.1^98,K.1^58,K.1^38,K.1^66,K.1^66,K.1^18,-1*K.1^14,K.1^42,K.1^62,-1*K.1^34,K.1^74,-1*K.1^14,-1*K.1^74,K.1^94,-1*K.1^62,K.1^26,K.1^86,-1*K.1^82,K.1^42,-1*K.1^46,K.1^6,K.1^78,K.1^18,K.1^58,-1*K.1^18,K.1^38,-1*K.1^6,K.1^82,-1*K.1^78,K.1^22,K.1^46,-1*K.1^86,K.1^2,-1*K.1^42,-1*K.1^26,K.1^66,-1*K.1^94,K.1^54,K.1^14,-1*K.1^54,K.1^34,-1*K.1^66,-1*K.1^2,-1*K.1^22,-1*K.1^38,-1*K.1^98,-1*K.1^58,K.1^98,-1*K.1^23,K.1^91,K.1^73,-1*K.1^67,K.1^43,K.1^89,-1*K.1^7,-1*K.1^9,-1*K.1^81,-1*K.1^51,K.1^11,-1*K.1^7,-1*K.1^87,-1*K.1^53,-1*K.1^71,-1*K.1^33,K.1^29,-1*K.1^87,K.1^41,-1*K.1^99,K.1^53,K.1^37,-1*K.1^79,-1*K.1^61,K.1^79,-1*K.1^59,K.1^9,K.1^27,-1*K.1^89,-1*K.1^73,K.1^11,-1*K.1^93,K.1^47,-1*K.1^47,-1*K.1^71,-1*K.1^11,K.1^21,-1*K.1^41,-1*K.1^47,-1*K.1^29,K.1^39,K.1,K.1^19,K.1^69,K.1^93,K.1^53,K.1^31,-1*K.1,K.1^61,K.1^71,-1*K.1^31,K.1^91,K.1^27,K.1^67,K.1^51,-1*K.1^91,K.1^13,-1*K.1^49,K.1^67,K.1^49,K.1^83,-1*K.1^27,-1*K.1^13,K.1^59,-1*K.1^57,-1*K.1^63,K.1^37,-1*K.1^79,-1*K.1^39,K.1^77,-1*K.1^59,K.1^9,K.1^73,-1*K.1^67,-1*K.1^73,K.1^17,K.1^23,-1*K.1^9,K.1^63,-1*K.1^77,K.1^17,K.1^23,-1*K.1^41,K.1^63,-1*K.1^77,-1*K.1^17,K.1^99,K.1^81,K.1^87,-1*K.1^23,-1*K.1^69,-1*K.1^19,-1*K.1^21,-1*K.1^61,K.1^79,-1*K.1^97,K.1^97,-1*K.1^43,-1*K.1^89,K.1^43,K.1^89,-1*K.1^93,K.1^47,-1*K.1^81,-1*K.1^51,-1*K.1^11,K.1^21,-1*K.1^3,-1*K.1^53,-1*K.1^29,-1*K.1^31,K.1^3,K.1^7,K.1^33,K.1^51,-1*K.1^69,K.1^97,-1*K.1^43,K.1^61,K.1^71,-1*K.1^91,K.1^13,K.1^7,K.1^33,K.1^49,K.1^83,K.1^29,-1*K.1^3,K.1^59,-1*K.1^57,K.1^39,K.1,K.1^81,K.1^87,K.1^93,-1*K.1^63,-1*K.1^19,-1*K.1^21,-1*K.1^39,K.1^77,-1*K.1^37,K.1^31,-1*K.1,-1*K.1^83,K.1^57,-1*K.1^37,K.1^3,-1*K.1^49,-1*K.1^83,K.1^57,-1*K.1^33,-1*K.1^27,-1*K.1^13,K.1^41,-1*K.1^99,-1*K.1^17,K.1^99,K.1^19,K.1^69,-1*K.1^97]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^44,K.1^72,-1*K.1^4,-1*K.1^52,-1*K.1^12,K.1^32,K.1^24,-1*K.1^28,K.1^56,K.1^88,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,-1*K.1^76,K.1^16,-1*K.1^84,K.1^8,-1*K.1^92,K.1^64,-1*K.1^95,-1*K.1^65,K.1^95,K.1^65,K.1^85,-1*K.1^5,-1*K.1^35,K.1^5,-1*K.1^65,K.1^45,K.1^35,-1*K.1^45,-1*K.1^55,K.1^55,-1*K.1^5,-1*K.1^35,K.1^95,-1*K.1^95,K.1^85,-1*K.1^15,-1*K.1^85,K.1^5,K.1^45,K.1^15,-1*K.1^45,-1*K.1^55,-1*K.1^85,K.1^35,K.1^55,K.1^15,K.1^65,-1*K.1^15,-1*K.1^76,K.1^32,-1*K.1^8,-1*K.1^16,-1*K.1^52,K.1^96,-1*K.1^36,-1*K.1^92,-1*K.1^56,K.1^68,K.1^56,K.1^68,-1*K.1^84,-1*K.1^4,K.1^76,K.1^88,K.1^92,-1*K.1^48,-1*K.1^56,K.1^8,-1*K.1^88,K.1^28,K.1^48,-1*K.1^16,-1*K.1^8,-1*K.1^44,-1*K.1^28,K.1^36,K.1^64,K.1^24,-1*K.1^96,K.1^36,-1*K.1^32,-1*K.1^32,K.1^4,K.1^92,K.1^4,K.1^12,K.1^12,-1*K.1^24,-1*K.1^24,-1*K.1^68,-1*K.1^12,K.1^76,-1*K.1^48,K.1^72,K.1^84,K.1^84,K.1^52,K.1^44,K.1^44,K.1^52,-1*K.1^64,-1*K.1^72,-1*K.1^72,-1*K.1^64,K.1^16,K.1^28,-1*K.1^96,-1*K.1^88,K.1^88,-1*K.1^12,K.1^36,K.1^68,K.1^28,-1*K.1^64,-1*K.1^24,K.1^24,K.1^56,K.1^16,-1*K.1^52,K.1^72,-1*K.1^72,K.1^64,-1*K.1^4,-1*K.1^32,K.1^92,-1*K.1^44,-1*K.1^36,K.1^12,K.1^32,-1*K.1^92,-1*K.1^76,K.1^96,-1*K.1^84,K.1^52,K.1^84,K.1^8,K.1^76,-1*K.1^16,-1*K.1^68,-1*K.1^28,-1*K.1^56,-1*K.1^48,K.1^48,K.1^44,K.1^4,-1*K.1^88,-1*K.1^8,-1*K.1^96,K.1^94,-1*K.1^58,-1*K.1^74,K.1^62,K.1^46,K.1^46,-1*K.1^82,K.1^54,K.1^86,-1*K.1^62,K.1^22,-1*K.1^2,K.1^42,-1*K.1^18,-1*K.1^34,-1*K.1^2,-1*K.1^26,K.1^38,K.1^94,-1*K.1^86,-1*K.1^46,-1*K.1^26,K.1^26,-1*K.1^6,K.1^82,-1*K.1^54,-1*K.1^78,-1*K.1^14,K.1^18,K.1^6,K.1^58,K.1^74,K.1^18,-1*K.1^34,-1*K.1^46,K.1^34,K.1^98,-1*K.1^66,-1*K.1^86,K.1^38,K.1^58,K.1^74,-1*K.1^94,K.1^78,-1*K.1^98,-1*K.1^98,-1*K.1^42,-1*K.1^38,-1*K.1^78,-1*K.1^54,-1*K.1^38,-1*K.1^94,-1*K.1^22,K.1^66,K.1^66,K.1^86,-1*K.1^6,K.1^26,-1*K.1^62,K.1^34,K.1^98,K.1^82,-1*K.1^14,-1*K.1^22,-1*K.1^58,K.1^54,K.1^78,-1*K.1^66,K.1^62,-1*K.1^74,K.1^2,K.1^42,-1*K.1^42,-1*K.1^82,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,-1*K.1^18,K.1^98,-1*K.1^86,K.1^46,K.1^6,-1*K.1^46,K.1^26,-1*K.1^98,K.1^54,-1*K.1^94,-1*K.1^78,-1*K.1^18,-1*K.1^34,K.1^74,-1*K.1^62,K.1^22,-1*K.1^82,-1*K.1^22,K.1^2,-1*K.1^74,K.1^78,K.1^62,-1*K.1^38,K.1^34,K.1^94,-1*K.1^58,K.1^18,-1*K.1^54,K.1^14,-1*K.1^26,K.1^66,-1*K.1^6,-1*K.1^66,K.1^86,-1*K.1^14,K.1^58,K.1^38,-1*K.1^2,K.1^42,K.1^82,-1*K.1^42,-1*K.1^17,-1*K.1^89,-1*K.1^67,-1*K.1^93,-1*K.1^97,K.1^31,K.1^53,K.1^11,K.1^99,-1*K.1^29,K.1^69,K.1^53,-1*K.1^73,K.1^87,-1*K.1^9,-1*K.1^7,K.1^91,-1*K.1^73,K.1^39,-1*K.1^21,-1*K.1^87,-1*K.1^23,-1*K.1^41,-1*K.1^19,K.1^41,-1*K.1^61,-1*K.1^11,-1*K.1^33,-1*K.1^31,K.1^67,K.1^69,K.1^47,-1*K.1^13,K.1^13,-1*K.1^9,-1*K.1^69,K.1^59,-1*K.1^39,K.1^13,-1*K.1^91,K.1^81,K.1^79,-1*K.1,K.1^51,-1*K.1^47,-1*K.1^87,K.1^49,-1*K.1^79,K.1^19,K.1^9,-1*K.1^49,-1*K.1^89,-1*K.1^33,K.1^93,K.1^29,K.1^89,K.1^27,-1*K.1^71,K.1^93,K.1^71,-1*K.1^57,K.1^33,-1*K.1^27,K.1^61,K.1^3,K.1^77,-1*K.1^23,-1*K.1^41,-1*K.1^81,K.1^83,-1*K.1^61,-1*K.1^11,-1*K.1^67,-1*K.1^93,K.1^67,-1*K.1^43,K.1^17,K.1^11,-1*K.1^77,-1*K.1^83,-1*K.1^43,K.1^17,-1*K.1^39,-1*K.1^77,-1*K.1^83,K.1^43,K.1^21,-1*K.1^99,K.1^73,-1*K.1^17,-1*K.1^51,K.1,-1*K.1^59,-1*K.1^19,K.1^41,-1*K.1^63,K.1^63,K.1^97,-1*K.1^31,-1*K.1^97,K.1^31,K.1^47,-1*K.1^13,K.1^99,-1*K.1^29,-1*K.1^69,K.1^59,-1*K.1^37,K.1^87,-1*K.1^91,-1*K.1^49,K.1^37,-1*K.1^53,K.1^7,K.1^29,-1*K.1^51,K.1^63,K.1^97,K.1^19,K.1^9,K.1^89,K.1^27,-1*K.1^53,K.1^7,K.1^71,-1*K.1^57,K.1^91,-1*K.1^37,K.1^61,K.1^3,K.1^81,K.1^79,-1*K.1^99,K.1^73,-1*K.1^47,K.1^77,K.1,-1*K.1^59,-1*K.1^81,K.1^83,K.1^23,K.1^49,-1*K.1^79,K.1^57,-1*K.1^3,K.1^23,K.1^37,-1*K.1^71,K.1^57,-1*K.1^3,-1*K.1^7,K.1^33,-1*K.1^27,K.1^39,-1*K.1^21,K.1^43,K.1^21,-1*K.1,K.1^51,-1*K.1^63]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^56,-1*K.1^28,K.1^96,K.1^48,K.1^88,-1*K.1^68,-1*K.1^76,K.1^72,-1*K.1^44,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,K.1^24,-1*K.1^84,K.1^16,-1*K.1^92,K.1^8,-1*K.1^36,K.1^5,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^95,K.1^65,-1*K.1^95,K.1^35,-1*K.1^55,-1*K.1^65,K.1^55,K.1^45,-1*K.1^45,K.1^95,K.1^65,-1*K.1^5,K.1^5,-1*K.1^15,K.1^85,K.1^15,-1*K.1^95,-1*K.1^55,-1*K.1^85,K.1^55,K.1^45,K.1^15,-1*K.1^65,-1*K.1^45,-1*K.1^85,-1*K.1^35,K.1^85,K.1^24,-1*K.1^68,K.1^92,K.1^84,K.1^48,-1*K.1^4,K.1^64,K.1^8,K.1^44,-1*K.1^32,-1*K.1^44,-1*K.1^32,K.1^16,K.1^96,-1*K.1^24,-1*K.1^12,-1*K.1^8,K.1^52,K.1^44,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^52,K.1^84,K.1^92,K.1^56,K.1^72,-1*K.1^64,-1*K.1^36,-1*K.1^76,K.1^4,-1*K.1^64,K.1^68,K.1^68,-1*K.1^96,-1*K.1^8,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^76,K.1^76,K.1^32,K.1^88,-1*K.1^24,K.1^52,-1*K.1^28,-1*K.1^16,-1*K.1^16,-1*K.1^48,-1*K.1^56,-1*K.1^56,-1*K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^84,-1*K.1^72,K.1^4,K.1^12,-1*K.1^12,K.1^88,-1*K.1^64,-1*K.1^32,-1*K.1^72,K.1^36,K.1^76,-1*K.1^76,-1*K.1^44,-1*K.1^84,K.1^48,-1*K.1^28,K.1^28,-1*K.1^36,K.1^96,K.1^68,-1*K.1^8,K.1^56,K.1^64,-1*K.1^88,-1*K.1^68,K.1^8,K.1^24,-1*K.1^4,K.1^16,-1*K.1^48,-1*K.1^16,-1*K.1^92,-1*K.1^24,K.1^84,K.1^32,K.1^72,K.1^44,K.1^52,-1*K.1^52,-1*K.1^56,-1*K.1^96,K.1^12,K.1^92,K.1^4,-1*K.1^6,K.1^42,K.1^26,-1*K.1^38,-1*K.1^54,-1*K.1^54,K.1^18,-1*K.1^46,-1*K.1^14,K.1^38,-1*K.1^78,K.1^98,-1*K.1^58,K.1^82,K.1^66,K.1^98,K.1^74,-1*K.1^62,-1*K.1^6,K.1^14,K.1^54,K.1^74,-1*K.1^74,K.1^94,-1*K.1^18,K.1^46,K.1^22,K.1^86,-1*K.1^82,-1*K.1^94,-1*K.1^42,-1*K.1^26,-1*K.1^82,K.1^66,K.1^54,-1*K.1^66,-1*K.1^2,K.1^34,K.1^14,-1*K.1^62,-1*K.1^42,-1*K.1^26,K.1^6,-1*K.1^22,K.1^2,K.1^2,K.1^58,K.1^62,K.1^22,K.1^46,K.1^62,K.1^6,K.1^78,-1*K.1^34,-1*K.1^34,-1*K.1^14,K.1^94,-1*K.1^74,K.1^38,-1*K.1^66,-1*K.1^2,-1*K.1^18,K.1^86,K.1^78,K.1^42,-1*K.1^46,-1*K.1^22,K.1^34,-1*K.1^38,K.1^26,-1*K.1^98,-1*K.1^58,K.1^58,K.1^18,-1*K.1^98,-1*K.1^86,-1*K.1^86,-1*K.1^78,-1*K.1^94,K.1^82,-1*K.1^2,K.1^14,-1*K.1^54,-1*K.1^94,K.1^54,-1*K.1^74,K.1^2,-1*K.1^46,K.1^6,K.1^22,K.1^82,K.1^66,-1*K.1^26,K.1^38,-1*K.1^78,K.1^18,K.1^78,-1*K.1^98,K.1^26,-1*K.1^22,-1*K.1^38,K.1^62,-1*K.1^66,-1*K.1^6,K.1^42,-1*K.1^82,K.1^46,-1*K.1^86,K.1^74,-1*K.1^34,K.1^94,K.1^34,-1*K.1^14,K.1^86,-1*K.1^42,-1*K.1^62,K.1^98,-1*K.1^58,-1*K.1^18,K.1^58,K.1^83,K.1^11,K.1^33,K.1^7,K.1^3,-1*K.1^69,-1*K.1^47,-1*K.1^89,-1*K.1,K.1^71,-1*K.1^31,-1*K.1^47,K.1^27,-1*K.1^13,K.1^91,K.1^93,-1*K.1^9,K.1^27,-1*K.1^61,K.1^79,K.1^13,K.1^77,K.1^59,K.1^81,-1*K.1^59,K.1^39,K.1^89,K.1^67,K.1^69,-1*K.1^33,-1*K.1^31,-1*K.1^53,K.1^87,-1*K.1^87,K.1^91,K.1^31,-1*K.1^41,K.1^61,-1*K.1^87,K.1^9,-1*K.1^19,-1*K.1^21,K.1^99,-1*K.1^49,K.1^53,K.1^13,-1*K.1^51,K.1^21,-1*K.1^81,-1*K.1^91,K.1^51,K.1^11,K.1^67,-1*K.1^7,-1*K.1^71,-1*K.1^11,-1*K.1^73,K.1^29,-1*K.1^7,-1*K.1^29,K.1^43,-1*K.1^67,K.1^73,-1*K.1^39,-1*K.1^97,-1*K.1^23,K.1^77,K.1^59,K.1^19,-1*K.1^17,K.1^39,K.1^89,K.1^33,K.1^7,-1*K.1^33,K.1^57,-1*K.1^83,-1*K.1^89,K.1^23,K.1^17,K.1^57,-1*K.1^83,K.1^61,K.1^23,K.1^17,-1*K.1^57,-1*K.1^79,K.1,-1*K.1^27,K.1^83,K.1^49,-1*K.1^99,K.1^41,K.1^81,-1*K.1^59,K.1^37,-1*K.1^37,-1*K.1^3,K.1^69,K.1^3,-1*K.1^69,-1*K.1^53,K.1^87,-1*K.1,K.1^71,K.1^31,-1*K.1^41,K.1^63,-1*K.1^13,K.1^9,K.1^51,-1*K.1^63,K.1^47,-1*K.1^93,-1*K.1^71,K.1^49,-1*K.1^37,-1*K.1^3,-1*K.1^81,-1*K.1^91,-1*K.1^11,-1*K.1^73,K.1^47,-1*K.1^93,-1*K.1^29,K.1^43,-1*K.1^9,K.1^63,-1*K.1^39,-1*K.1^97,-1*K.1^19,-1*K.1^21,K.1,-1*K.1^27,K.1^53,-1*K.1^23,-1*K.1^99,K.1^41,K.1^19,-1*K.1^17,-1*K.1^77,-1*K.1^51,K.1^21,-1*K.1^43,K.1^97,-1*K.1^77,-1*K.1^63,K.1^29,-1*K.1^43,K.1^97,K.1^93,-1*K.1^67,K.1^73,-1*K.1^61,K.1^79,-1*K.1^57,-1*K.1^79,K.1^99,-1*K.1^49,K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,K.1^24,-1*K.1^12,-1*K.1^84,-1*K.1^92,-1*K.1^52,K.1^72,-1*K.1^4,K.1^88,-1*K.1^76,K.1^48,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^96,-1*K.1^36,K.1^64,-1*K.1^68,K.1^32,-1*K.1^44,-1*K.1^95,-1*K.1^65,K.1^95,K.1^65,K.1^85,-1*K.1^5,-1*K.1^35,K.1^5,-1*K.1^65,K.1^45,K.1^35,-1*K.1^45,-1*K.1^55,K.1^55,-1*K.1^5,-1*K.1^35,K.1^95,-1*K.1^95,K.1^85,-1*K.1^15,-1*K.1^85,K.1^5,K.1^45,K.1^15,-1*K.1^45,-1*K.1^55,-1*K.1^85,K.1^35,K.1^55,K.1^15,K.1^65,-1*K.1^15,K.1^96,K.1^72,K.1^68,K.1^36,-1*K.1^92,K.1^16,K.1^56,K.1^32,K.1^76,K.1^28,-1*K.1^76,K.1^28,K.1^64,-1*K.1^84,-1*K.1^96,K.1^48,-1*K.1^32,-1*K.1^8,K.1^76,-1*K.1^68,-1*K.1^48,-1*K.1^88,K.1^8,K.1^36,K.1^68,K.1^24,K.1^88,-1*K.1^56,-1*K.1^44,-1*K.1^4,-1*K.1^16,-1*K.1^56,-1*K.1^72,-1*K.1^72,K.1^84,-1*K.1^32,K.1^84,K.1^52,K.1^52,K.1^4,K.1^4,-1*K.1^28,-1*K.1^52,-1*K.1^96,-1*K.1^8,-1*K.1^12,-1*K.1^64,-1*K.1^64,K.1^92,-1*K.1^24,-1*K.1^24,K.1^92,K.1^44,K.1^12,K.1^12,K.1^44,-1*K.1^36,-1*K.1^88,-1*K.1^16,-1*K.1^48,K.1^48,-1*K.1^52,-1*K.1^56,K.1^28,-1*K.1^88,K.1^44,K.1^4,-1*K.1^4,-1*K.1^76,-1*K.1^36,-1*K.1^92,-1*K.1^12,K.1^12,-1*K.1^44,-1*K.1^84,-1*K.1^72,-1*K.1^32,K.1^24,K.1^56,K.1^52,K.1^72,K.1^32,K.1^96,K.1^16,K.1^64,K.1^92,-1*K.1^64,-1*K.1^68,-1*K.1^96,K.1^36,-1*K.1^28,K.1^88,K.1^76,-1*K.1^8,K.1^8,-1*K.1^24,K.1^84,-1*K.1^48,K.1^68,-1*K.1^16,-1*K.1^74,-1*K.1^18,K.1^54,-1*K.1^2,-1*K.1^66,-1*K.1^66,K.1^22,-1*K.1^34,K.1^6,K.1^2,K.1^62,-1*K.1^42,K.1^82,K.1^78,K.1^14,-1*K.1^42,K.1^46,-1*K.1^98,-1*K.1^74,-1*K.1^6,K.1^66,K.1^46,-1*K.1^46,K.1^26,-1*K.1^22,K.1^34,-1*K.1^38,-1*K.1^94,-1*K.1^78,-1*K.1^26,K.1^18,-1*K.1^54,-1*K.1^78,K.1^14,K.1^66,-1*K.1^14,K.1^58,K.1^86,-1*K.1^6,-1*K.1^98,K.1^18,-1*K.1^54,K.1^74,K.1^38,-1*K.1^58,-1*K.1^58,-1*K.1^82,K.1^98,-1*K.1^38,K.1^34,K.1^98,K.1^74,-1*K.1^62,-1*K.1^86,-1*K.1^86,K.1^6,K.1^26,-1*K.1^46,K.1^2,-1*K.1^14,K.1^58,-1*K.1^22,-1*K.1^94,-1*K.1^62,-1*K.1^18,-1*K.1^34,K.1^38,K.1^86,-1*K.1^2,K.1^54,K.1^42,K.1^82,-1*K.1^82,K.1^22,K.1^42,K.1^94,K.1^94,K.1^62,-1*K.1^26,K.1^78,K.1^58,-1*K.1^6,-1*K.1^66,-1*K.1^26,K.1^66,-1*K.1^46,-1*K.1^58,-1*K.1^34,K.1^74,-1*K.1^38,K.1^78,K.1^14,-1*K.1^54,K.1^2,K.1^62,K.1^22,-1*K.1^62,K.1^42,K.1^54,K.1^38,-1*K.1^2,K.1^98,-1*K.1^14,-1*K.1^74,-1*K.1^18,-1*K.1^78,K.1^34,K.1^94,K.1^46,-1*K.1^86,K.1^26,K.1^86,K.1^6,-1*K.1^94,K.1^18,-1*K.1^98,-1*K.1^42,K.1^82,-1*K.1^22,-1*K.1^82,-1*K.1^57,K.1^69,K.1^7,-1*K.1^53,K.1^37,-1*K.1^51,K.1^13,-1*K.1^31,-1*K.1^79,K.1^9,-1*K.1^49,K.1^13,-1*K.1^33,-1*K.1^27,-1*K.1^89,-1*K.1^47,K.1^11,-1*K.1^33,-1*K.1^19,K.1^41,K.1^27,K.1^83,K.1^61,-1*K.1^99,-1*K.1^61,K.1^81,K.1^31,K.1^93,K.1^51,-1*K.1^7,-1*K.1^49,K.1^87,K.1^73,-1*K.1^73,-1*K.1^89,K.1^49,-1*K.1^39,K.1^19,-1*K.1^73,-1*K.1^11,K.1,-1*K.1^59,K.1^21,-1*K.1^71,-1*K.1^87,K.1^27,-1*K.1^29,K.1^59,K.1^99,K.1^89,K.1^29,K.1^69,K.1^93,K.1^53,-1*K.1^9,-1*K.1^69,K.1^67,K.1^91,K.1^53,-1*K.1^91,-1*K.1^97,-1*K.1^93,-1*K.1^67,-1*K.1^81,-1*K.1^63,-1*K.1^17,K.1^83,K.1^61,-1*K.1,K.1^43,K.1^81,K.1^31,K.1^7,-1*K.1^53,-1*K.1^7,-1*K.1^3,K.1^57,-1*K.1^31,K.1^17,-1*K.1^43,-1*K.1^3,K.1^57,K.1^19,K.1^17,-1*K.1^43,K.1^3,-1*K.1^41,K.1^79,K.1^33,-1*K.1^57,K.1^71,-1*K.1^21,K.1^39,-1*K.1^99,-1*K.1^61,-1*K.1^23,K.1^23,-1*K.1^37,K.1^51,K.1^37,-1*K.1^51,K.1^87,K.1^73,-1*K.1^79,K.1^9,K.1^49,-1*K.1^39,-1*K.1^77,-1*K.1^27,-1*K.1^11,K.1^29,K.1^77,-1*K.1^13,K.1^47,-1*K.1^9,K.1^71,K.1^23,-1*K.1^37,K.1^99,K.1^89,-1*K.1^69,K.1^67,-1*K.1^13,K.1^47,-1*K.1^91,-1*K.1^97,K.1^11,-1*K.1^77,-1*K.1^81,-1*K.1^63,K.1,-1*K.1^59,K.1^79,K.1^33,-1*K.1^87,-1*K.1^17,-1*K.1^21,K.1^39,-1*K.1,K.1^43,-1*K.1^83,-1*K.1^29,K.1^59,K.1^97,K.1^63,-1*K.1^83,K.1^77,K.1^91,K.1^97,K.1^63,-1*K.1^47,-1*K.1^93,-1*K.1^67,-1*K.1^19,K.1^41,K.1^3,-1*K.1^41,K.1^21,-1*K.1^71,-1*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,-1*K.1^76,K.1^88,K.1^16,K.1^8,K.1^48,-1*K.1^28,K.1^96,-1*K.1^12,K.1^24,-1*K.1^52,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^64,-1*K.1^36,K.1^32,-1*K.1^68,K.1^56,K.1^5,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^95,K.1^65,-1*K.1^95,K.1^35,-1*K.1^55,-1*K.1^65,K.1^55,K.1^45,-1*K.1^45,K.1^95,K.1^65,-1*K.1^5,K.1^5,-1*K.1^15,K.1^85,K.1^15,-1*K.1^95,-1*K.1^55,-1*K.1^85,K.1^55,K.1^45,K.1^15,-1*K.1^65,-1*K.1^45,-1*K.1^85,-1*K.1^35,K.1^85,-1*K.1^4,-1*K.1^28,-1*K.1^32,-1*K.1^64,K.1^8,-1*K.1^84,-1*K.1^44,-1*K.1^68,-1*K.1^24,-1*K.1^72,K.1^24,-1*K.1^72,-1*K.1^36,K.1^16,K.1^4,-1*K.1^52,K.1^68,K.1^92,-1*K.1^24,K.1^32,K.1^52,K.1^12,-1*K.1^92,-1*K.1^64,-1*K.1^32,-1*K.1^76,-1*K.1^12,K.1^44,K.1^56,K.1^96,K.1^84,K.1^44,K.1^28,K.1^28,-1*K.1^16,K.1^68,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^96,-1*K.1^96,K.1^72,K.1^48,K.1^4,K.1^92,K.1^88,K.1^36,K.1^36,-1*K.1^8,K.1^76,K.1^76,-1*K.1^8,-1*K.1^56,-1*K.1^88,-1*K.1^88,-1*K.1^56,K.1^64,K.1^12,K.1^84,K.1^52,-1*K.1^52,K.1^48,K.1^44,-1*K.1^72,K.1^12,-1*K.1^56,-1*K.1^96,K.1^96,K.1^24,K.1^64,K.1^8,K.1^88,-1*K.1^88,K.1^56,K.1^16,K.1^28,K.1^68,-1*K.1^76,-1*K.1^44,-1*K.1^48,-1*K.1^28,-1*K.1^68,-1*K.1^4,-1*K.1^84,-1*K.1^36,-1*K.1^8,K.1^36,K.1^32,K.1^4,-1*K.1^64,K.1^72,-1*K.1^12,-1*K.1^24,K.1^92,-1*K.1^92,K.1^76,-1*K.1^16,K.1^52,-1*K.1^32,K.1^84,K.1^26,K.1^82,-1*K.1^46,K.1^98,K.1^34,K.1^34,-1*K.1^78,K.1^66,-1*K.1^94,-1*K.1^98,-1*K.1^38,K.1^58,-1*K.1^18,-1*K.1^22,-1*K.1^86,K.1^58,-1*K.1^54,K.1^2,K.1^26,K.1^94,-1*K.1^34,-1*K.1^54,K.1^54,-1*K.1^74,K.1^78,-1*K.1^66,K.1^62,K.1^6,K.1^22,K.1^74,-1*K.1^82,K.1^46,K.1^22,-1*K.1^86,-1*K.1^34,K.1^86,-1*K.1^42,-1*K.1^14,K.1^94,K.1^2,-1*K.1^82,K.1^46,-1*K.1^26,-1*K.1^62,K.1^42,K.1^42,K.1^18,-1*K.1^2,K.1^62,-1*K.1^66,-1*K.1^2,-1*K.1^26,K.1^38,K.1^14,K.1^14,-1*K.1^94,-1*K.1^74,K.1^54,-1*K.1^98,K.1^86,-1*K.1^42,K.1^78,K.1^6,K.1^38,K.1^82,K.1^66,-1*K.1^62,-1*K.1^14,K.1^98,-1*K.1^46,-1*K.1^58,-1*K.1^18,K.1^18,-1*K.1^78,-1*K.1^58,-1*K.1^6,-1*K.1^6,-1*K.1^38,K.1^74,-1*K.1^22,-1*K.1^42,K.1^94,K.1^34,K.1^74,-1*K.1^34,K.1^54,K.1^42,K.1^66,-1*K.1^26,K.1^62,-1*K.1^22,-1*K.1^86,K.1^46,-1*K.1^98,-1*K.1^38,-1*K.1^78,K.1^38,-1*K.1^58,-1*K.1^46,-1*K.1^62,K.1^98,-1*K.1^2,K.1^86,K.1^26,K.1^82,K.1^22,-1*K.1^66,-1*K.1^6,-1*K.1^54,K.1^14,-1*K.1^74,-1*K.1^14,-1*K.1^94,K.1^6,-1*K.1^82,K.1^2,K.1^58,-1*K.1^18,K.1^78,K.1^18,K.1^43,-1*K.1^31,-1*K.1^93,K.1^47,-1*K.1^63,K.1^49,-1*K.1^87,K.1^69,K.1^21,-1*K.1^91,K.1^51,-1*K.1^87,K.1^67,K.1^73,K.1^11,K.1^53,-1*K.1^89,K.1^67,K.1^81,-1*K.1^59,-1*K.1^73,-1*K.1^17,-1*K.1^39,K.1,K.1^39,-1*K.1^19,-1*K.1^69,-1*K.1^7,-1*K.1^49,K.1^93,K.1^51,-1*K.1^13,-1*K.1^27,K.1^27,K.1^11,-1*K.1^51,K.1^61,-1*K.1^81,K.1^27,K.1^89,-1*K.1^99,K.1^41,-1*K.1^79,K.1^29,K.1^13,-1*K.1^73,K.1^71,-1*K.1^41,-1*K.1,-1*K.1^11,-1*K.1^71,-1*K.1^31,-1*K.1^7,-1*K.1^47,K.1^91,K.1^31,-1*K.1^33,-1*K.1^9,-1*K.1^47,K.1^9,K.1^3,K.1^7,K.1^33,K.1^19,K.1^37,K.1^83,-1*K.1^17,-1*K.1^39,K.1^99,-1*K.1^57,-1*K.1^19,-1*K.1^69,-1*K.1^93,K.1^47,K.1^93,K.1^97,-1*K.1^43,K.1^69,-1*K.1^83,K.1^57,K.1^97,-1*K.1^43,-1*K.1^81,-1*K.1^83,K.1^57,-1*K.1^97,K.1^59,-1*K.1^21,-1*K.1^67,K.1^43,-1*K.1^29,K.1^79,-1*K.1^61,K.1,K.1^39,K.1^77,-1*K.1^77,K.1^63,-1*K.1^49,-1*K.1^63,K.1^49,-1*K.1^13,-1*K.1^27,K.1^21,-1*K.1^91,-1*K.1^51,K.1^61,K.1^23,K.1^73,K.1^89,-1*K.1^71,-1*K.1^23,K.1^87,-1*K.1^53,K.1^91,-1*K.1^29,-1*K.1^77,K.1^63,-1*K.1,-1*K.1^11,K.1^31,-1*K.1^33,K.1^87,-1*K.1^53,K.1^9,K.1^3,-1*K.1^89,K.1^23,K.1^19,K.1^37,-1*K.1^99,K.1^41,-1*K.1^21,-1*K.1^67,K.1^13,K.1^83,K.1^79,-1*K.1^61,K.1^99,-1*K.1^57,K.1^17,K.1^71,-1*K.1^41,-1*K.1^3,-1*K.1^37,K.1^17,-1*K.1^23,-1*K.1^9,-1*K.1^3,-1*K.1^37,K.1^53,K.1^7,K.1^33,K.1^81,-1*K.1^59,-1*K.1^97,K.1^59,-1*K.1^79,K.1^29,K.1^77]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,K.1^75,-1*K.1^75,-1*K.1^25,K.1^25,-1*K.1^25,K.1^75,-1*K.1^75,K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^84,-1*K.1^92,-1*K.1^44,K.1^72,K.1^32,-1*K.1^52,K.1^64,K.1^8,K.1^16,-1*K.1^68,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^36,-1*K.1^76,K.1^24,K.1^88,-1*K.1^12,-1*K.1^4,-1*K.1^95,-1*K.1^65,K.1^95,K.1^65,K.1^85,-1*K.1^5,-1*K.1^35,K.1^5,-1*K.1^65,K.1^45,K.1^35,-1*K.1^45,-1*K.1^55,K.1^55,-1*K.1^5,-1*K.1^35,K.1^95,-1*K.1^95,K.1^85,-1*K.1^15,-1*K.1^85,K.1^5,K.1^45,K.1^15,-1*K.1^45,-1*K.1^55,-1*K.1^85,K.1^35,K.1^55,K.1^15,K.1^65,-1*K.1^15,-1*K.1^36,-1*K.1^52,-1*K.1^88,K.1^76,K.1^72,K.1^56,K.1^96,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^16,-1*K.1^48,K.1^24,-1*K.1^44,K.1^36,-1*K.1^68,K.1^12,K.1^28,-1*K.1^16,K.1^88,K.1^68,-1*K.1^8,-1*K.1^28,K.1^76,-1*K.1^88,-1*K.1^84,K.1^8,-1*K.1^96,-1*K.1^4,K.1^64,-1*K.1^56,-1*K.1^96,K.1^52,K.1^52,K.1^44,K.1^12,K.1^44,-1*K.1^32,-1*K.1^32,-1*K.1^64,-1*K.1^64,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^92,-1*K.1^24,-1*K.1^24,-1*K.1^72,K.1^84,K.1^84,-1*K.1^72,K.1^4,K.1^92,K.1^92,K.1^4,-1*K.1^76,-1*K.1^8,-1*K.1^56,K.1^68,-1*K.1^68,K.1^32,-1*K.1^96,-1*K.1^48,-1*K.1^8,K.1^4,-1*K.1^64,K.1^64,K.1^16,-1*K.1^76,K.1^72,-1*K.1^92,K.1^92,-1*K.1^4,-1*K.1^44,K.1^52,K.1^12,-1*K.1^84,K.1^96,-1*K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^36,K.1^56,K.1^24,-1*K.1^72,-1*K.1^24,K.1^88,K.1^36,K.1^76,K.1^48,K.1^8,-1*K.1^16,K.1^28,-1*K.1^28,K.1^84,K.1^44,K.1^68,-1*K.1^88,-1*K.1^56,-1*K.1^34,K.1^38,K.1^14,-1*K.1^82,K.1^6,K.1^6,-1*K.1^2,K.1^94,K.1^46,K.1^82,-1*K.1^42,K.1^22,-1*K.1^62,-1*K.1^98,-1*K.1^74,K.1^22,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^46,-1*K.1^6,K.1^86,-1*K.1^86,K.1^66,K.1^2,-1*K.1^94,K.1^58,-1*K.1^54,K.1^98,-1*K.1^66,-1*K.1^38,-1*K.1^14,K.1^98,-1*K.1^74,-1*K.1^6,K.1^74,-1*K.1^78,-1*K.1^26,-1*K.1^46,-1*K.1^18,-1*K.1^38,-1*K.1^14,K.1^34,-1*K.1^58,K.1^78,K.1^78,K.1^62,K.1^18,K.1^58,-1*K.1^94,K.1^18,K.1^34,K.1^42,K.1^26,K.1^26,K.1^46,K.1^66,-1*K.1^86,K.1^82,K.1^74,-1*K.1^78,K.1^2,-1*K.1^54,K.1^42,K.1^38,K.1^94,-1*K.1^58,-1*K.1^26,-1*K.1^82,K.1^14,-1*K.1^22,-1*K.1^62,K.1^62,-1*K.1^2,-1*K.1^22,K.1^54,K.1^54,-1*K.1^42,-1*K.1^66,-1*K.1^98,-1*K.1^78,-1*K.1^46,K.1^6,-1*K.1^66,-1*K.1^6,-1*K.1^86,K.1^78,K.1^94,K.1^34,K.1^58,-1*K.1^98,-1*K.1^74,-1*K.1^14,K.1^82,-1*K.1^42,-1*K.1^2,K.1^42,-1*K.1^22,K.1^14,-1*K.1^58,-1*K.1^82,K.1^18,K.1^74,-1*K.1^34,K.1^38,K.1^98,-1*K.1^94,K.1^54,K.1^86,K.1^26,K.1^66,-1*K.1^26,K.1^46,-1*K.1^54,-1*K.1^38,-1*K.1^18,K.1^22,-1*K.1^62,K.1^2,K.1^62,K.1^37,K.1^29,K.1^87,K.1^73,-1*K.1^17,-1*K.1^91,-1*K.1^33,-1*K.1^71,-1*K.1^39,-1*K.1^69,-1*K.1^9,-1*K.1^33,K.1^53,K.1^7,-1*K.1^49,K.1^27,K.1^51,K.1^53,K.1^79,K.1^81,-1*K.1^7,K.1^3,-1*K.1,-1*K.1^59,K.1,-1*K.1^21,K.1^71,K.1^13,K.1^91,-1*K.1^87,-1*K.1^9,-1*K.1^67,-1*K.1^93,K.1^93,-1*K.1^49,K.1^9,K.1^99,-1*K.1^79,K.1^93,-1*K.1^51,K.1^41,-1*K.1^19,K.1^61,K.1^11,K.1^67,-1*K.1^7,K.1^89,K.1^19,K.1^59,K.1^49,-1*K.1^89,K.1^29,K.1^13,-1*K.1^73,K.1^69,-1*K.1^29,-1*K.1^47,-1*K.1^31,-1*K.1^73,K.1^31,K.1^77,-1*K.1^13,K.1^47,K.1^21,K.1^83,-1*K.1^97,K.1^3,-1*K.1,-1*K.1^41,-1*K.1^63,-1*K.1^21,K.1^71,K.1^87,K.1^73,-1*K.1^87,K.1^23,-1*K.1^37,-1*K.1^71,K.1^97,K.1^63,K.1^23,-1*K.1^37,-1*K.1^79,K.1^97,K.1^63,-1*K.1^23,-1*K.1^81,K.1^39,-1*K.1^53,K.1^37,-1*K.1^11,-1*K.1^61,-1*K.1^99,-1*K.1^59,K.1,K.1^43,-1*K.1^43,K.1^17,K.1^91,-1*K.1^17,-1*K.1^91,-1*K.1^67,-1*K.1^93,-1*K.1^39,-1*K.1^69,K.1^9,K.1^99,K.1^57,K.1^7,-1*K.1^51,-1*K.1^89,-1*K.1^57,K.1^33,-1*K.1^27,K.1^69,-1*K.1^11,-1*K.1^43,K.1^17,K.1^59,K.1^49,-1*K.1^29,-1*K.1^47,K.1^33,-1*K.1^27,K.1^31,K.1^77,K.1^51,K.1^57,K.1^21,K.1^83,K.1^41,-1*K.1^19,K.1^39,-1*K.1^53,K.1^67,-1*K.1^97,-1*K.1^61,-1*K.1^99,-1*K.1^41,-1*K.1^63,-1*K.1^3,K.1^89,K.1^19,-1*K.1^77,-1*K.1^83,-1*K.1^3,-1*K.1^57,-1*K.1^31,-1*K.1^77,-1*K.1^83,K.1^27,-1*K.1^13,K.1^47,K.1^79,K.1^81,-1*K.1^23,-1*K.1^81,K.1^61,K.1^11,K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,-1*K.1^25,K.1^25,K.1^75,-1*K.1^75,K.1^75,-1*K.1^25,K.1^25,-1*K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^16,K.1^8,K.1^56,-1*K.1^28,-1*K.1^68,K.1^48,-1*K.1^36,-1*K.1^92,-1*K.1^84,K.1^32,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^64,K.1^24,-1*K.1^76,-1*K.1^12,K.1^88,K.1^96,K.1^5,K.1^35,-1*K.1^5,-1*K.1^35,-1*K.1^15,K.1^95,K.1^65,-1*K.1^95,K.1^35,-1*K.1^55,-1*K.1^65,K.1^55,K.1^45,-1*K.1^45,K.1^95,K.1^65,-1*K.1^5,K.1^5,-1*K.1^15,K.1^85,K.1^15,-1*K.1^95,-1*K.1^55,-1*K.1^85,K.1^55,K.1^45,K.1^15,-1*K.1^65,-1*K.1^45,-1*K.1^85,-1*K.1^35,K.1^85,K.1^64,K.1^48,K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^44,-1*K.1^4,K.1^88,K.1^84,K.1^52,-1*K.1^84,K.1^52,-1*K.1^76,K.1^56,-1*K.1^64,K.1^32,-1*K.1^88,-1*K.1^72,K.1^84,-1*K.1^12,-1*K.1^32,K.1^92,K.1^72,-1*K.1^24,K.1^12,K.1^16,-1*K.1^92,K.1^4,K.1^96,-1*K.1^36,K.1^44,K.1^4,-1*K.1^48,-1*K.1^48,-1*K.1^56,-1*K.1^88,-1*K.1^56,K.1^68,K.1^68,K.1^36,K.1^36,-1*K.1^52,-1*K.1^68,-1*K.1^64,-1*K.1^72,K.1^8,K.1^76,K.1^76,K.1^28,-1*K.1^16,-1*K.1^16,K.1^28,-1*K.1^96,-1*K.1^8,-1*K.1^8,-1*K.1^96,K.1^24,K.1^92,K.1^44,-1*K.1^32,K.1^32,-1*K.1^68,K.1^4,K.1^52,K.1^92,-1*K.1^96,K.1^36,-1*K.1^36,-1*K.1^84,K.1^24,-1*K.1^28,K.1^8,-1*K.1^8,K.1^96,K.1^56,-1*K.1^48,-1*K.1^88,K.1^16,-1*K.1^4,K.1^68,K.1^48,K.1^88,K.1^64,-1*K.1^44,-1*K.1^76,K.1^28,K.1^76,-1*K.1^12,-1*K.1^64,-1*K.1^24,-1*K.1^52,-1*K.1^92,K.1^84,-1*K.1^72,K.1^72,-1*K.1^16,-1*K.1^56,-1*K.1^32,K.1^12,K.1^44,K.1^66,-1*K.1^62,-1*K.1^86,K.1^18,-1*K.1^94,-1*K.1^94,K.1^98,-1*K.1^6,-1*K.1^54,-1*K.1^18,K.1^58,-1*K.1^78,K.1^38,K.1^2,K.1^26,-1*K.1^78,-1*K.1^14,K.1^82,K.1^66,K.1^54,K.1^94,-1*K.1^14,K.1^14,-1*K.1^34,-1*K.1^98,K.1^6,-1*K.1^42,K.1^46,-1*K.1^2,K.1^34,K.1^62,K.1^86,-1*K.1^2,K.1^26,K.1^94,-1*K.1^26,K.1^22,K.1^74,K.1^54,K.1^82,K.1^62,K.1^86,-1*K.1^66,K.1^42,-1*K.1^22,-1*K.1^22,-1*K.1^38,-1*K.1^82,-1*K.1^42,K.1^6,-1*K.1^82,-1*K.1^66,-1*K.1^58,-1*K.1^74,-1*K.1^74,-1*K.1^54,-1*K.1^34,K.1^14,-1*K.1^18,-1*K.1^26,K.1^22,-1*K.1^98,K.1^46,-1*K.1^58,-1*K.1^62,-1*K.1^6,K.1^42,K.1^74,K.1^18,-1*K.1^86,K.1^78,K.1^38,-1*K.1^38,K.1^98,K.1^78,-1*K.1^46,-1*K.1^46,K.1^58,K.1^34,K.1^2,K.1^22,K.1^54,-1*K.1^94,K.1^34,K.1^94,K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^66,-1*K.1^42,K.1^2,K.1^26,K.1^86,-1*K.1^18,K.1^58,K.1^98,-1*K.1^58,K.1^78,-1*K.1^86,K.1^42,K.1^18,-1*K.1^82,-1*K.1^26,K.1^66,-1*K.1^62,-1*K.1^2,K.1^6,-1*K.1^46,-1*K.1^14,-1*K.1^74,-1*K.1^34,K.1^74,-1*K.1^54,K.1^46,K.1^62,K.1^82,-1*K.1^78,K.1^38,-1*K.1^98,-1*K.1^38,-1*K.1^63,-1*K.1^71,-1*K.1^13,-1*K.1^27,K.1^83,K.1^9,K.1^67,K.1^29,K.1^61,K.1^31,K.1^91,K.1^67,-1*K.1^47,-1*K.1^93,K.1^51,-1*K.1^73,-1*K.1^49,-1*K.1^47,-1*K.1^21,-1*K.1^19,K.1^93,-1*K.1^97,K.1^99,K.1^41,-1*K.1^99,K.1^79,-1*K.1^29,-1*K.1^87,-1*K.1^9,K.1^13,K.1^91,K.1^33,K.1^7,-1*K.1^7,K.1^51,-1*K.1^91,-1*K.1,K.1^21,-1*K.1^7,K.1^49,-1*K.1^59,K.1^81,-1*K.1^39,-1*K.1^89,-1*K.1^33,K.1^93,-1*K.1^11,-1*K.1^81,-1*K.1^41,-1*K.1^51,K.1^11,-1*K.1^71,-1*K.1^87,K.1^27,-1*K.1^31,K.1^71,K.1^53,K.1^69,K.1^27,-1*K.1^69,-1*K.1^23,K.1^87,-1*K.1^53,-1*K.1^79,-1*K.1^17,K.1^3,-1*K.1^97,K.1^99,K.1^59,K.1^37,K.1^79,-1*K.1^29,-1*K.1^13,-1*K.1^27,K.1^13,-1*K.1^77,K.1^63,K.1^29,-1*K.1^3,-1*K.1^37,-1*K.1^77,K.1^63,K.1^21,-1*K.1^3,-1*K.1^37,K.1^77,K.1^19,-1*K.1^61,K.1^47,-1*K.1^63,K.1^89,K.1^39,K.1,K.1^41,-1*K.1^99,-1*K.1^57,K.1^57,-1*K.1^83,-1*K.1^9,K.1^83,K.1^9,K.1^33,K.1^7,K.1^61,K.1^31,-1*K.1^91,-1*K.1,-1*K.1^43,-1*K.1^93,K.1^49,K.1^11,K.1^43,-1*K.1^67,K.1^73,-1*K.1^31,K.1^89,K.1^57,-1*K.1^83,-1*K.1^41,-1*K.1^51,K.1^71,K.1^53,-1*K.1^67,K.1^73,-1*K.1^69,-1*K.1^23,-1*K.1^49,-1*K.1^43,-1*K.1^79,-1*K.1^17,-1*K.1^59,K.1^81,-1*K.1^61,K.1^47,-1*K.1^33,K.1^3,K.1^39,K.1,K.1^59,K.1^37,K.1^97,-1*K.1^11,-1*K.1^81,K.1^23,K.1^17,K.1^97,K.1^43,K.1^69,K.1^23,K.1^17,-1*K.1^73,K.1^87,-1*K.1^53,-1*K.1^21,-1*K.1^19,K.1^77,K.1^19,-1*K.1^39,-1*K.1^89,-1*K.1^57]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^4,-1*K.1^52,K.1^64,K.1^32,-1*K.1^92,-1*K.1^12,-1*K.1^84,K.1^48,K.1^96,K.1^8,-1*K.1^68,K.1^88,-1*K.1^36,-1*K.1^76,K.1^16,K.1^56,-1*K.1^44,-1*K.1^28,K.1^72,K.1^24,K.1^95,K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^85,K.1^5,K.1^35,-1*K.1^5,K.1^65,-1*K.1^45,-1*K.1^35,K.1^45,K.1^55,-1*K.1^55,K.1^5,K.1^35,-1*K.1^95,K.1^95,-1*K.1^85,K.1^15,K.1^85,-1*K.1^5,-1*K.1^45,-1*K.1^15,K.1^45,K.1^55,K.1^85,-1*K.1^35,-1*K.1^55,-1*K.1^15,-1*K.1^65,K.1^15,K.1^16,-1*K.1^12,K.1^28,-1*K.1^56,K.1^32,-1*K.1^36,-1*K.1^76,K.1^72,-1*K.1^96,-1*K.1^88,K.1^96,-1*K.1^88,-1*K.1^44,K.1^64,-1*K.1^16,K.1^8,-1*K.1^72,K.1^68,-1*K.1^96,-1*K.1^28,-1*K.1^8,-1*K.1^48,-1*K.1^68,-1*K.1^56,K.1^28,-1*K.1^4,K.1^48,K.1^76,K.1^24,-1*K.1^84,K.1^36,K.1^76,K.1^12,K.1^12,-1*K.1^64,-1*K.1^72,-1*K.1^64,K.1^92,K.1^92,K.1^84,K.1^84,K.1^88,-1*K.1^92,-1*K.1^16,K.1^68,-1*K.1^52,K.1^44,K.1^44,-1*K.1^32,K.1^4,K.1^4,-1*K.1^32,-1*K.1^24,K.1^52,K.1^52,-1*K.1^24,K.1^56,-1*K.1^48,K.1^36,-1*K.1^8,K.1^8,-1*K.1^92,K.1^76,-1*K.1^88,-1*K.1^48,-1*K.1^24,K.1^84,-1*K.1^84,K.1^96,K.1^56,K.1^32,-1*K.1^52,K.1^52,K.1^24,K.1^64,K.1^12,-1*K.1^72,-1*K.1^4,-1*K.1^76,K.1^92,-1*K.1^12,K.1^72,K.1^16,-1*K.1^36,-1*K.1^44,-1*K.1^32,K.1^44,-1*K.1^28,-1*K.1^16,-1*K.1^56,K.1^88,K.1^48,-1*K.1^96,K.1^68,-1*K.1^68,K.1^4,-1*K.1^64,-1*K.1^8,K.1^28,K.1^36,K.1^54,K.1^78,-1*K.1^34,-1*K.1^42,K.1^86,K.1^86,K.1^62,K.1^14,-1*K.1^26,K.1^42,-1*K.1^2,-1*K.1^82,-1*K.1^22,K.1^38,K.1^94,-1*K.1^82,-1*K.1^66,-1*K.1^58,K.1^54,K.1^26,-1*K.1^86,-1*K.1^66,K.1^66,-1*K.1^46,-1*K.1^62,-1*K.1^14,K.1^98,K.1^74,-1*K.1^38,K.1^46,-1*K.1^78,K.1^34,-1*K.1^38,K.1^94,-1*K.1^86,-1*K.1^94,K.1^18,K.1^6,K.1^26,-1*K.1^58,-1*K.1^78,K.1^34,-1*K.1^54,-1*K.1^98,-1*K.1^18,-1*K.1^18,K.1^22,K.1^58,K.1^98,-1*K.1^14,K.1^58,-1*K.1^54,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^26,-1*K.1^46,K.1^66,K.1^42,-1*K.1^94,K.1^18,-1*K.1^62,K.1^74,K.1^2,K.1^78,K.1^14,-1*K.1^98,K.1^6,-1*K.1^42,-1*K.1^34,K.1^82,-1*K.1^22,K.1^22,K.1^62,K.1^82,-1*K.1^74,-1*K.1^74,-1*K.1^2,K.1^46,K.1^38,K.1^18,K.1^26,K.1^86,K.1^46,-1*K.1^86,K.1^66,-1*K.1^18,K.1^14,-1*K.1^54,K.1^98,K.1^38,K.1^94,K.1^34,K.1^42,-1*K.1^2,K.1^62,K.1^2,K.1^82,-1*K.1^34,-1*K.1^98,-1*K.1^42,K.1^58,-1*K.1^94,K.1^54,K.1^78,-1*K.1^38,-1*K.1^14,-1*K.1^74,-1*K.1^66,-1*K.1^6,-1*K.1^46,K.1^6,-1*K.1^26,K.1^74,-1*K.1^78,-1*K.1^58,-1*K.1^82,-1*K.1^22,-1*K.1^62,K.1^22,K.1^97,K.1^49,-1*K.1^47,K.1^13,-1*K.1^77,-1*K.1^71,K.1^73,-1*K.1^51,-1*K.1^59,-1*K.1^89,-1*K.1^29,K.1^73,-1*K.1^93,K.1^67,-1*K.1^69,K.1^87,K.1^31,-1*K.1^93,K.1^99,K.1^61,-1*K.1^67,-1*K.1^43,K.1^81,-1*K.1^79,-1*K.1^81,-1*K.1,K.1^51,-1*K.1^53,K.1^71,K.1^47,-1*K.1^29,K.1^27,-1*K.1^33,K.1^33,-1*K.1^69,K.1^29,-1*K.1^19,-1*K.1^99,K.1^33,-1*K.1^31,K.1^21,-1*K.1^39,K.1^41,-1*K.1^91,-1*K.1^27,-1*K.1^67,-1*K.1^9,K.1^39,K.1^79,K.1^69,K.1^9,K.1^49,-1*K.1^53,-1*K.1^13,K.1^89,-1*K.1^49,K.1^7,-1*K.1^11,-1*K.1^13,K.1^11,-1*K.1^37,K.1^53,-1*K.1^7,K.1,K.1^23,K.1^57,-1*K.1^43,K.1^81,-1*K.1^21,-1*K.1^3,-1*K.1,K.1^51,-1*K.1^47,K.1^13,K.1^47,-1*K.1^63,-1*K.1^97,-1*K.1^51,-1*K.1^57,K.1^3,-1*K.1^63,-1*K.1^97,-1*K.1^99,-1*K.1^57,K.1^3,K.1^63,-1*K.1^61,K.1^59,K.1^93,K.1^97,K.1^91,-1*K.1^41,K.1^19,-1*K.1^79,-1*K.1^81,-1*K.1^83,K.1^83,K.1^77,K.1^71,-1*K.1^77,-1*K.1^71,K.1^27,-1*K.1^33,-1*K.1^59,-1*K.1^89,K.1^29,-1*K.1^19,-1*K.1^17,K.1^67,-1*K.1^31,K.1^9,K.1^17,-1*K.1^73,-1*K.1^87,K.1^89,K.1^91,K.1^83,K.1^77,K.1^79,K.1^69,-1*K.1^49,K.1^7,-1*K.1^73,-1*K.1^87,K.1^11,-1*K.1^37,K.1^31,-1*K.1^17,K.1,K.1^23,K.1^21,-1*K.1^39,K.1^59,K.1^93,-1*K.1^27,K.1^57,-1*K.1^41,K.1^19,-1*K.1^21,-1*K.1^3,K.1^43,-1*K.1^9,K.1^39,K.1^37,-1*K.1^23,K.1^43,K.1^17,-1*K.1^11,K.1^37,-1*K.1^23,K.1^87,K.1^53,-1*K.1^7,K.1^99,K.1^61,K.1^63,-1*K.1^61,K.1^41,-1*K.1^91,-1*K.1^83]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^96,K.1^48,-1*K.1^36,-1*K.1^68,K.1^8,K.1^88,K.1^16,-1*K.1^52,-1*K.1^4,-1*K.1^92,K.1^32,-1*K.1^12,K.1^64,K.1^24,-1*K.1^84,-1*K.1^44,K.1^56,K.1^72,-1*K.1^28,-1*K.1^76,-1*K.1^5,-1*K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^95,-1*K.1^65,K.1^95,-1*K.1^35,K.1^55,K.1^65,-1*K.1^55,-1*K.1^45,K.1^45,-1*K.1^95,-1*K.1^65,K.1^5,-1*K.1^5,K.1^15,-1*K.1^85,-1*K.1^15,K.1^95,K.1^55,K.1^85,-1*K.1^55,-1*K.1^45,-1*K.1^15,K.1^65,K.1^45,K.1^85,K.1^35,-1*K.1^85,-1*K.1^84,K.1^88,-1*K.1^72,K.1^44,-1*K.1^68,K.1^64,K.1^24,-1*K.1^28,K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^56,-1*K.1^36,K.1^84,-1*K.1^92,K.1^28,-1*K.1^32,K.1^4,K.1^72,K.1^92,K.1^52,K.1^32,K.1^44,-1*K.1^72,K.1^96,-1*K.1^52,-1*K.1^24,-1*K.1^76,K.1^16,-1*K.1^64,-1*K.1^24,-1*K.1^88,-1*K.1^88,K.1^36,K.1^28,K.1^36,-1*K.1^8,-1*K.1^8,-1*K.1^16,-1*K.1^16,-1*K.1^12,K.1^8,K.1^84,-1*K.1^32,K.1^48,-1*K.1^56,-1*K.1^56,K.1^68,-1*K.1^96,-1*K.1^96,K.1^68,K.1^76,-1*K.1^48,-1*K.1^48,K.1^76,-1*K.1^44,K.1^52,-1*K.1^64,K.1^92,-1*K.1^92,K.1^8,-1*K.1^24,K.1^12,K.1^52,K.1^76,-1*K.1^16,K.1^16,-1*K.1^4,-1*K.1^44,-1*K.1^68,K.1^48,-1*K.1^48,-1*K.1^76,-1*K.1^36,-1*K.1^88,K.1^28,K.1^96,K.1^24,-1*K.1^8,K.1^88,-1*K.1^28,-1*K.1^84,K.1^64,K.1^56,K.1^68,-1*K.1^56,K.1^72,K.1^84,K.1^44,-1*K.1^12,-1*K.1^52,K.1^4,-1*K.1^32,K.1^32,-1*K.1^96,K.1^36,K.1^92,-1*K.1^72,-1*K.1^64,-1*K.1^46,-1*K.1^22,K.1^66,K.1^58,-1*K.1^14,-1*K.1^14,-1*K.1^38,-1*K.1^86,K.1^74,-1*K.1^58,K.1^98,K.1^18,K.1^78,-1*K.1^62,-1*K.1^6,K.1^18,K.1^34,K.1^42,-1*K.1^46,-1*K.1^74,K.1^14,K.1^34,-1*K.1^34,K.1^54,K.1^38,K.1^86,-1*K.1^2,-1*K.1^26,K.1^62,-1*K.1^54,K.1^22,-1*K.1^66,K.1^62,-1*K.1^6,K.1^14,K.1^6,-1*K.1^82,-1*K.1^94,-1*K.1^74,K.1^42,K.1^22,-1*K.1^66,K.1^46,K.1^2,K.1^82,K.1^82,-1*K.1^78,-1*K.1^42,-1*K.1^2,K.1^86,-1*K.1^42,K.1^46,-1*K.1^98,K.1^94,K.1^94,K.1^74,K.1^54,-1*K.1^34,-1*K.1^58,K.1^6,-1*K.1^82,K.1^38,-1*K.1^26,-1*K.1^98,-1*K.1^22,-1*K.1^86,K.1^2,-1*K.1^94,K.1^58,K.1^66,-1*K.1^18,K.1^78,-1*K.1^78,-1*K.1^38,-1*K.1^18,K.1^26,K.1^26,K.1^98,-1*K.1^54,-1*K.1^62,-1*K.1^82,-1*K.1^74,-1*K.1^14,-1*K.1^54,K.1^14,-1*K.1^34,K.1^82,-1*K.1^86,K.1^46,-1*K.1^2,-1*K.1^62,-1*K.1^6,-1*K.1^66,-1*K.1^58,K.1^98,-1*K.1^38,-1*K.1^98,-1*K.1^18,K.1^66,K.1^2,K.1^58,-1*K.1^42,K.1^6,-1*K.1^46,-1*K.1^22,K.1^62,K.1^86,K.1^26,K.1^34,K.1^94,K.1^54,-1*K.1^94,K.1^74,-1*K.1^26,K.1^22,K.1^42,K.1^18,K.1^78,K.1^38,-1*K.1^78,-1*K.1^3,-1*K.1^51,K.1^53,-1*K.1^87,K.1^23,K.1^29,-1*K.1^27,K.1^49,K.1^41,K.1^11,K.1^71,-1*K.1^27,K.1^7,-1*K.1^33,K.1^31,-1*K.1^13,-1*K.1^69,K.1^7,-1*K.1,-1*K.1^39,K.1^33,K.1^57,-1*K.1^19,K.1^21,K.1^19,K.1^99,-1*K.1^49,K.1^47,-1*K.1^29,-1*K.1^53,K.1^71,-1*K.1^73,K.1^67,-1*K.1^67,K.1^31,-1*K.1^71,K.1^81,K.1,-1*K.1^67,K.1^69,-1*K.1^79,K.1^61,-1*K.1^59,K.1^9,K.1^73,K.1^33,K.1^91,-1*K.1^61,-1*K.1^21,-1*K.1^31,-1*K.1^91,-1*K.1^51,K.1^47,K.1^87,-1*K.1^11,K.1^51,-1*K.1^93,K.1^89,K.1^87,-1*K.1^89,K.1^63,-1*K.1^47,K.1^93,-1*K.1^99,-1*K.1^77,-1*K.1^43,K.1^57,-1*K.1^19,K.1^79,K.1^97,K.1^99,-1*K.1^49,K.1^53,-1*K.1^87,-1*K.1^53,K.1^37,K.1^3,K.1^49,K.1^43,-1*K.1^97,K.1^37,K.1^3,K.1,K.1^43,-1*K.1^97,-1*K.1^37,K.1^39,-1*K.1^41,-1*K.1^7,-1*K.1^3,-1*K.1^9,K.1^59,-1*K.1^81,K.1^21,K.1^19,K.1^17,-1*K.1^17,-1*K.1^23,-1*K.1^29,K.1^23,K.1^29,-1*K.1^73,K.1^67,K.1^41,K.1^11,-1*K.1^71,K.1^81,K.1^83,-1*K.1^33,K.1^69,-1*K.1^91,-1*K.1^83,K.1^27,K.1^13,-1*K.1^11,-1*K.1^9,-1*K.1^17,-1*K.1^23,-1*K.1^21,-1*K.1^31,K.1^51,-1*K.1^93,K.1^27,K.1^13,-1*K.1^89,K.1^63,-1*K.1^69,K.1^83,-1*K.1^99,-1*K.1^77,-1*K.1^79,K.1^61,-1*K.1^41,-1*K.1^7,K.1^73,-1*K.1^43,K.1^59,-1*K.1^81,K.1^79,K.1^97,-1*K.1^57,K.1^91,-1*K.1^61,-1*K.1^63,K.1^77,-1*K.1^57,-1*K.1^83,K.1^89,-1*K.1^63,K.1^77,-1*K.1^13,-1*K.1^47,K.1^93,-1*K.1,-1*K.1^39,-1*K.1^37,K.1^39,-1*K.1^59,K.1^9,K.1^17]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,K.1^64,K.1^32,K.1^24,-1*K.1^12,K.1^72,-1*K.1^92,-1*K.1^44,-1*K.1^68,-1*K.1^36,-1*K.1^28,K.1^88,K.1^8,-1*K.1^76,K.1^16,K.1^56,K.1^96,-1*K.1^4,K.1^48,-1*K.1^52,-1*K.1^84,K.1^95,K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^85,K.1^5,K.1^35,-1*K.1^5,K.1^65,-1*K.1^45,-1*K.1^35,K.1^45,K.1^55,-1*K.1^55,K.1^5,K.1^35,-1*K.1^95,K.1^95,-1*K.1^85,K.1^15,K.1^85,-1*K.1^5,-1*K.1^45,-1*K.1^15,K.1^45,K.1^55,K.1^85,-1*K.1^35,-1*K.1^55,-1*K.1^15,-1*K.1^65,K.1^15,K.1^56,-1*K.1^92,-1*K.1^48,-1*K.1^96,-1*K.1^12,-1*K.1^76,K.1^16,-1*K.1^52,K.1^36,-1*K.1^8,-1*K.1^36,-1*K.1^8,-1*K.1^4,K.1^24,-1*K.1^56,-1*K.1^28,K.1^52,-1*K.1^88,K.1^36,K.1^48,K.1^28,K.1^68,K.1^88,-1*K.1^96,-1*K.1^48,K.1^64,-1*K.1^68,-1*K.1^16,-1*K.1^84,-1*K.1^44,K.1^76,-1*K.1^16,K.1^92,K.1^92,-1*K.1^24,K.1^52,-1*K.1^24,-1*K.1^72,-1*K.1^72,K.1^44,K.1^44,K.1^8,K.1^72,-1*K.1^56,-1*K.1^88,K.1^32,K.1^4,K.1^4,K.1^12,-1*K.1^64,-1*K.1^64,K.1^12,K.1^84,-1*K.1^32,-1*K.1^32,K.1^84,K.1^96,K.1^68,K.1^76,K.1^28,-1*K.1^28,K.1^72,-1*K.1^16,-1*K.1^8,K.1^68,K.1^84,K.1^44,-1*K.1^44,-1*K.1^36,K.1^96,-1*K.1^12,K.1^32,-1*K.1^32,-1*K.1^84,K.1^24,K.1^92,K.1^52,K.1^64,K.1^16,-1*K.1^72,-1*K.1^92,-1*K.1^52,K.1^56,-1*K.1^76,-1*K.1^4,K.1^12,K.1^4,K.1^48,-1*K.1^56,-1*K.1^96,K.1^8,-1*K.1^68,K.1^36,-1*K.1^88,K.1^88,-1*K.1^64,-1*K.1^24,K.1^28,-1*K.1^48,K.1^76,K.1^14,-1*K.1^98,K.1^94,K.1^22,-1*K.1^26,-1*K.1^26,-1*K.1^42,-1*K.1^74,-1*K.1^66,-1*K.1^22,-1*K.1^82,K.1^62,K.1^2,-1*K.1^58,K.1^54,K.1^62,K.1^6,K.1^78,K.1^14,K.1^66,K.1^26,K.1^6,-1*K.1^6,-1*K.1^86,K.1^42,K.1^74,K.1^18,K.1^34,K.1^58,K.1^86,K.1^98,-1*K.1^94,K.1^58,K.1^54,K.1^26,-1*K.1^54,-1*K.1^38,K.1^46,K.1^66,K.1^78,K.1^98,-1*K.1^94,-1*K.1^14,-1*K.1^18,K.1^38,K.1^38,-1*K.1^2,-1*K.1^78,K.1^18,K.1^74,-1*K.1^78,-1*K.1^14,K.1^82,-1*K.1^46,-1*K.1^46,-1*K.1^66,-1*K.1^86,-1*K.1^6,-1*K.1^22,-1*K.1^54,-1*K.1^38,K.1^42,K.1^34,K.1^82,-1*K.1^98,-1*K.1^74,-1*K.1^18,K.1^46,K.1^22,K.1^94,-1*K.1^62,K.1^2,-1*K.1^2,-1*K.1^42,-1*K.1^62,-1*K.1^34,-1*K.1^34,-1*K.1^82,K.1^86,-1*K.1^58,-1*K.1^38,K.1^66,-1*K.1^26,K.1^86,K.1^26,-1*K.1^6,K.1^38,-1*K.1^74,-1*K.1^14,K.1^18,-1*K.1^58,K.1^54,-1*K.1^94,-1*K.1^22,-1*K.1^82,-1*K.1^42,K.1^82,-1*K.1^62,K.1^94,-1*K.1^18,K.1^22,-1*K.1^78,-1*K.1^54,K.1^14,-1*K.1^98,K.1^58,K.1^74,-1*K.1^34,K.1^6,-1*K.1^46,-1*K.1^86,K.1^46,-1*K.1^66,K.1^34,K.1^98,K.1^78,K.1^62,K.1^2,K.1^42,-1*K.1^2,-1*K.1^77,K.1^9,K.1^27,-1*K.1^33,K.1^57,K.1^11,-1*K.1^93,-1*K.1^91,-1*K.1^19,-1*K.1^49,K.1^89,-1*K.1^93,-1*K.1^13,-1*K.1^47,-1*K.1^29,-1*K.1^67,K.1^71,-1*K.1^13,K.1^59,-1*K.1,K.1^47,K.1^63,-1*K.1^21,-1*K.1^39,K.1^21,-1*K.1^41,K.1^91,K.1^73,-1*K.1^11,-1*K.1^27,K.1^89,-1*K.1^7,K.1^53,-1*K.1^53,-1*K.1^29,-1*K.1^89,K.1^79,-1*K.1^59,-1*K.1^53,-1*K.1^71,K.1^61,K.1^99,K.1^81,K.1^31,K.1^7,K.1^47,K.1^69,-1*K.1^99,K.1^39,K.1^29,-1*K.1^69,K.1^9,K.1^73,K.1^33,K.1^49,-1*K.1^9,K.1^87,-1*K.1^51,K.1^33,K.1^51,K.1^17,-1*K.1^73,-1*K.1^87,K.1^41,-1*K.1^43,-1*K.1^37,K.1^63,-1*K.1^21,-1*K.1^61,K.1^23,-1*K.1^41,K.1^91,K.1^27,-1*K.1^33,-1*K.1^27,K.1^83,K.1^77,-1*K.1^91,K.1^37,-1*K.1^23,K.1^83,K.1^77,-1*K.1^59,K.1^37,-1*K.1^23,-1*K.1^83,K.1,K.1^19,K.1^13,-1*K.1^77,-1*K.1^31,-1*K.1^81,-1*K.1^79,-1*K.1^39,K.1^21,-1*K.1^3,K.1^3,-1*K.1^57,-1*K.1^11,K.1^57,K.1^11,-1*K.1^7,K.1^53,-1*K.1^19,-1*K.1^49,-1*K.1^89,K.1^79,-1*K.1^97,-1*K.1^47,-1*K.1^71,-1*K.1^69,K.1^97,K.1^93,K.1^67,K.1^49,-1*K.1^31,K.1^3,-1*K.1^57,K.1^39,K.1^29,-1*K.1^9,K.1^87,K.1^93,K.1^67,K.1^51,K.1^17,K.1^71,-1*K.1^97,K.1^41,-1*K.1^43,K.1^61,K.1^99,K.1^19,K.1^13,K.1^7,-1*K.1^37,-1*K.1^81,-1*K.1^79,-1*K.1^61,K.1^23,-1*K.1^63,K.1^69,-1*K.1^99,-1*K.1^17,K.1^43,-1*K.1^63,K.1^97,-1*K.1^51,-1*K.1^17,K.1^43,-1*K.1^67,-1*K.1^73,-1*K.1^87,K.1^59,-1*K.1,-1*K.1^83,K.1,K.1^81,K.1^31,-1*K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,-1*K.1^36,-1*K.1^68,-1*K.1^76,K.1^88,-1*K.1^28,K.1^8,K.1^56,K.1^32,K.1^64,K.1^72,-1*K.1^12,-1*K.1^92,K.1^24,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^96,-1*K.1^52,K.1^48,K.1^16,-1*K.1^5,-1*K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^95,-1*K.1^65,K.1^95,-1*K.1^35,K.1^55,K.1^65,-1*K.1^55,-1*K.1^45,K.1^45,-1*K.1^95,-1*K.1^65,K.1^5,-1*K.1^5,K.1^15,-1*K.1^85,-1*K.1^15,K.1^95,K.1^55,K.1^85,-1*K.1^55,-1*K.1^45,-1*K.1^15,K.1^65,K.1^45,K.1^85,K.1^35,-1*K.1^85,-1*K.1^44,K.1^8,K.1^52,K.1^4,K.1^88,K.1^24,-1*K.1^84,K.1^48,-1*K.1^64,K.1^92,K.1^64,K.1^92,K.1^96,-1*K.1^76,K.1^44,K.1^72,-1*K.1^48,K.1^12,-1*K.1^64,-1*K.1^52,-1*K.1^72,-1*K.1^32,-1*K.1^12,K.1^4,K.1^52,-1*K.1^36,K.1^32,K.1^84,K.1^16,K.1^56,-1*K.1^24,K.1^84,-1*K.1^8,-1*K.1^8,K.1^76,-1*K.1^48,K.1^76,K.1^28,K.1^28,-1*K.1^56,-1*K.1^56,-1*K.1^92,-1*K.1^28,K.1^44,K.1^12,-1*K.1^68,-1*K.1^96,-1*K.1^96,-1*K.1^88,K.1^36,K.1^36,-1*K.1^88,-1*K.1^16,K.1^68,K.1^68,-1*K.1^16,-1*K.1^4,-1*K.1^32,-1*K.1^24,-1*K.1^72,K.1^72,-1*K.1^28,K.1^84,K.1^92,-1*K.1^32,-1*K.1^16,-1*K.1^56,K.1^56,K.1^64,-1*K.1^4,K.1^88,-1*K.1^68,K.1^68,K.1^16,-1*K.1^76,-1*K.1^8,-1*K.1^48,-1*K.1^36,-1*K.1^84,K.1^28,K.1^8,K.1^48,-1*K.1^44,K.1^24,K.1^96,-1*K.1^88,-1*K.1^96,-1*K.1^52,K.1^44,K.1^4,-1*K.1^92,K.1^32,-1*K.1^64,K.1^12,-1*K.1^12,K.1^36,K.1^76,-1*K.1^72,K.1^52,-1*K.1^24,-1*K.1^86,K.1^2,-1*K.1^6,-1*K.1^78,K.1^74,K.1^74,K.1^58,K.1^26,K.1^34,K.1^78,K.1^18,-1*K.1^38,-1*K.1^98,K.1^42,-1*K.1^46,-1*K.1^38,-1*K.1^94,-1*K.1^22,-1*K.1^86,-1*K.1^34,-1*K.1^74,-1*K.1^94,K.1^94,K.1^14,-1*K.1^58,-1*K.1^26,-1*K.1^82,-1*K.1^66,-1*K.1^42,-1*K.1^14,-1*K.1^2,K.1^6,-1*K.1^42,-1*K.1^46,-1*K.1^74,K.1^46,K.1^62,-1*K.1^54,-1*K.1^34,-1*K.1^22,-1*K.1^2,K.1^6,K.1^86,K.1^82,-1*K.1^62,-1*K.1^62,K.1^98,K.1^22,-1*K.1^82,-1*K.1^26,K.1^22,K.1^86,-1*K.1^18,K.1^54,K.1^54,K.1^34,K.1^14,K.1^94,K.1^78,K.1^46,K.1^62,-1*K.1^58,-1*K.1^66,-1*K.1^18,K.1^2,K.1^26,K.1^82,-1*K.1^54,-1*K.1^78,-1*K.1^6,K.1^38,-1*K.1^98,K.1^98,K.1^58,K.1^38,K.1^66,K.1^66,K.1^18,-1*K.1^14,K.1^42,K.1^62,-1*K.1^34,K.1^74,-1*K.1^14,-1*K.1^74,K.1^94,-1*K.1^62,K.1^26,K.1^86,-1*K.1^82,K.1^42,-1*K.1^46,K.1^6,K.1^78,K.1^18,K.1^58,-1*K.1^18,K.1^38,-1*K.1^6,K.1^82,-1*K.1^78,K.1^22,K.1^46,-1*K.1^86,K.1^2,-1*K.1^42,-1*K.1^26,K.1^66,-1*K.1^94,K.1^54,K.1^14,-1*K.1^54,K.1^34,-1*K.1^66,-1*K.1^2,-1*K.1^22,-1*K.1^38,-1*K.1^98,-1*K.1^58,K.1^98,K.1^23,-1*K.1^91,-1*K.1^73,K.1^67,-1*K.1^43,-1*K.1^89,K.1^7,K.1^9,K.1^81,K.1^51,-1*K.1^11,K.1^7,K.1^87,K.1^53,K.1^71,K.1^33,-1*K.1^29,K.1^87,-1*K.1^41,K.1^99,-1*K.1^53,-1*K.1^37,K.1^79,K.1^61,-1*K.1^79,K.1^59,-1*K.1^9,-1*K.1^27,K.1^89,K.1^73,-1*K.1^11,K.1^93,-1*K.1^47,K.1^47,K.1^71,K.1^11,-1*K.1^21,K.1^41,K.1^47,K.1^29,-1*K.1^39,-1*K.1,-1*K.1^19,-1*K.1^69,-1*K.1^93,-1*K.1^53,-1*K.1^31,K.1,-1*K.1^61,-1*K.1^71,K.1^31,-1*K.1^91,-1*K.1^27,-1*K.1^67,-1*K.1^51,K.1^91,-1*K.1^13,K.1^49,-1*K.1^67,-1*K.1^49,-1*K.1^83,K.1^27,K.1^13,-1*K.1^59,K.1^57,K.1^63,-1*K.1^37,K.1^79,K.1^39,-1*K.1^77,K.1^59,-1*K.1^9,-1*K.1^73,K.1^67,K.1^73,-1*K.1^17,-1*K.1^23,K.1^9,-1*K.1^63,K.1^77,-1*K.1^17,-1*K.1^23,K.1^41,-1*K.1^63,K.1^77,K.1^17,-1*K.1^99,-1*K.1^81,-1*K.1^87,K.1^23,K.1^69,K.1^19,K.1^21,K.1^61,-1*K.1^79,K.1^97,-1*K.1^97,K.1^43,K.1^89,-1*K.1^43,-1*K.1^89,K.1^93,-1*K.1^47,K.1^81,K.1^51,K.1^11,-1*K.1^21,K.1^3,K.1^53,K.1^29,K.1^31,-1*K.1^3,-1*K.1^7,-1*K.1^33,-1*K.1^51,K.1^69,-1*K.1^97,K.1^43,-1*K.1^61,-1*K.1^71,K.1^91,-1*K.1^13,-1*K.1^7,-1*K.1^33,-1*K.1^49,-1*K.1^83,-1*K.1^29,K.1^3,-1*K.1^59,K.1^57,-1*K.1^39,-1*K.1,-1*K.1^81,-1*K.1^87,-1*K.1^93,K.1^63,K.1^19,K.1^21,K.1^39,-1*K.1^77,K.1^37,-1*K.1^31,K.1,K.1^83,-1*K.1^57,K.1^37,-1*K.1^3,K.1^49,K.1^83,-1*K.1^57,K.1^33,K.1^27,K.1^13,-1*K.1^41,K.1^99,K.1^17,-1*K.1^99,-1*K.1^19,-1*K.1^69,K.1^97]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^44,K.1^72,-1*K.1^4,-1*K.1^52,-1*K.1^12,K.1^32,K.1^24,-1*K.1^28,K.1^56,K.1^88,K.1^48,-1*K.1^68,K.1^96,-1*K.1^36,-1*K.1^76,K.1^16,-1*K.1^84,K.1^8,-1*K.1^92,K.1^64,K.1^95,K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^85,K.1^5,K.1^35,-1*K.1^5,K.1^65,-1*K.1^45,-1*K.1^35,K.1^45,K.1^55,-1*K.1^55,K.1^5,K.1^35,-1*K.1^95,K.1^95,-1*K.1^85,K.1^15,K.1^85,-1*K.1^5,-1*K.1^45,-1*K.1^15,K.1^45,K.1^55,K.1^85,-1*K.1^35,-1*K.1^55,-1*K.1^15,-1*K.1^65,K.1^15,-1*K.1^76,K.1^32,-1*K.1^8,-1*K.1^16,-1*K.1^52,K.1^96,-1*K.1^36,-1*K.1^92,-1*K.1^56,K.1^68,K.1^56,K.1^68,-1*K.1^84,-1*K.1^4,K.1^76,K.1^88,K.1^92,-1*K.1^48,-1*K.1^56,K.1^8,-1*K.1^88,K.1^28,K.1^48,-1*K.1^16,-1*K.1^8,-1*K.1^44,-1*K.1^28,K.1^36,K.1^64,K.1^24,-1*K.1^96,K.1^36,-1*K.1^32,-1*K.1^32,K.1^4,K.1^92,K.1^4,K.1^12,K.1^12,-1*K.1^24,-1*K.1^24,-1*K.1^68,-1*K.1^12,K.1^76,-1*K.1^48,K.1^72,K.1^84,K.1^84,K.1^52,K.1^44,K.1^44,K.1^52,-1*K.1^64,-1*K.1^72,-1*K.1^72,-1*K.1^64,K.1^16,K.1^28,-1*K.1^96,-1*K.1^88,K.1^88,-1*K.1^12,K.1^36,K.1^68,K.1^28,-1*K.1^64,-1*K.1^24,K.1^24,K.1^56,K.1^16,-1*K.1^52,K.1^72,-1*K.1^72,K.1^64,-1*K.1^4,-1*K.1^32,K.1^92,-1*K.1^44,-1*K.1^36,K.1^12,K.1^32,-1*K.1^92,-1*K.1^76,K.1^96,-1*K.1^84,K.1^52,K.1^84,K.1^8,K.1^76,-1*K.1^16,-1*K.1^68,-1*K.1^28,-1*K.1^56,-1*K.1^48,K.1^48,K.1^44,K.1^4,-1*K.1^88,-1*K.1^8,-1*K.1^96,K.1^94,-1*K.1^58,-1*K.1^74,K.1^62,K.1^46,K.1^46,-1*K.1^82,K.1^54,K.1^86,-1*K.1^62,K.1^22,-1*K.1^2,K.1^42,-1*K.1^18,-1*K.1^34,-1*K.1^2,-1*K.1^26,K.1^38,K.1^94,-1*K.1^86,-1*K.1^46,-1*K.1^26,K.1^26,-1*K.1^6,K.1^82,-1*K.1^54,-1*K.1^78,-1*K.1^14,K.1^18,K.1^6,K.1^58,K.1^74,K.1^18,-1*K.1^34,-1*K.1^46,K.1^34,K.1^98,-1*K.1^66,-1*K.1^86,K.1^38,K.1^58,K.1^74,-1*K.1^94,K.1^78,-1*K.1^98,-1*K.1^98,-1*K.1^42,-1*K.1^38,-1*K.1^78,-1*K.1^54,-1*K.1^38,-1*K.1^94,-1*K.1^22,K.1^66,K.1^66,K.1^86,-1*K.1^6,K.1^26,-1*K.1^62,K.1^34,K.1^98,K.1^82,-1*K.1^14,-1*K.1^22,-1*K.1^58,K.1^54,K.1^78,-1*K.1^66,K.1^62,-1*K.1^74,K.1^2,K.1^42,-1*K.1^42,-1*K.1^82,K.1^2,K.1^14,K.1^14,K.1^22,K.1^6,-1*K.1^18,K.1^98,-1*K.1^86,K.1^46,K.1^6,-1*K.1^46,K.1^26,-1*K.1^98,K.1^54,-1*K.1^94,-1*K.1^78,-1*K.1^18,-1*K.1^34,K.1^74,-1*K.1^62,K.1^22,-1*K.1^82,-1*K.1^22,K.1^2,-1*K.1^74,K.1^78,K.1^62,-1*K.1^38,K.1^34,K.1^94,-1*K.1^58,K.1^18,-1*K.1^54,K.1^14,-1*K.1^26,K.1^66,-1*K.1^6,-1*K.1^66,K.1^86,-1*K.1^14,K.1^58,K.1^38,-1*K.1^2,K.1^42,K.1^82,-1*K.1^42,K.1^17,K.1^89,K.1^67,K.1^93,K.1^97,-1*K.1^31,-1*K.1^53,-1*K.1^11,-1*K.1^99,K.1^29,-1*K.1^69,-1*K.1^53,K.1^73,-1*K.1^87,K.1^9,K.1^7,-1*K.1^91,K.1^73,-1*K.1^39,K.1^21,K.1^87,K.1^23,K.1^41,K.1^19,-1*K.1^41,K.1^61,K.1^11,K.1^33,K.1^31,-1*K.1^67,-1*K.1^69,-1*K.1^47,K.1^13,-1*K.1^13,K.1^9,K.1^69,-1*K.1^59,K.1^39,-1*K.1^13,K.1^91,-1*K.1^81,-1*K.1^79,K.1,-1*K.1^51,K.1^47,K.1^87,-1*K.1^49,K.1^79,-1*K.1^19,-1*K.1^9,K.1^49,K.1^89,K.1^33,-1*K.1^93,-1*K.1^29,-1*K.1^89,-1*K.1^27,K.1^71,-1*K.1^93,-1*K.1^71,K.1^57,-1*K.1^33,K.1^27,-1*K.1^61,-1*K.1^3,-1*K.1^77,K.1^23,K.1^41,K.1^81,-1*K.1^83,K.1^61,K.1^11,K.1^67,K.1^93,-1*K.1^67,K.1^43,-1*K.1^17,-1*K.1^11,K.1^77,K.1^83,K.1^43,-1*K.1^17,K.1^39,K.1^77,K.1^83,-1*K.1^43,-1*K.1^21,K.1^99,-1*K.1^73,K.1^17,K.1^51,-1*K.1,K.1^59,K.1^19,-1*K.1^41,K.1^63,-1*K.1^63,-1*K.1^97,K.1^31,K.1^97,-1*K.1^31,-1*K.1^47,K.1^13,-1*K.1^99,K.1^29,K.1^69,-1*K.1^59,K.1^37,-1*K.1^87,K.1^91,K.1^49,-1*K.1^37,K.1^53,-1*K.1^7,-1*K.1^29,K.1^51,-1*K.1^63,-1*K.1^97,-1*K.1^19,-1*K.1^9,-1*K.1^89,-1*K.1^27,K.1^53,-1*K.1^7,-1*K.1^71,K.1^57,-1*K.1^91,K.1^37,-1*K.1^61,-1*K.1^3,-1*K.1^81,-1*K.1^79,K.1^99,-1*K.1^73,K.1^47,-1*K.1^77,-1*K.1,K.1^59,K.1^81,-1*K.1^83,-1*K.1^23,-1*K.1^49,K.1^79,-1*K.1^57,K.1^3,-1*K.1^23,-1*K.1^37,K.1^71,-1*K.1^57,K.1^3,K.1^7,-1*K.1^33,K.1^27,-1*K.1^39,K.1^21,-1*K.1^43,-1*K.1^21,K.1,-1*K.1^51,K.1^63]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^56,-1*K.1^28,K.1^96,K.1^48,K.1^88,-1*K.1^68,-1*K.1^76,K.1^72,-1*K.1^44,-1*K.1^12,-1*K.1^52,K.1^32,-1*K.1^4,K.1^64,K.1^24,-1*K.1^84,K.1^16,-1*K.1^92,K.1^8,-1*K.1^36,-1*K.1^5,-1*K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^95,-1*K.1^65,K.1^95,-1*K.1^35,K.1^55,K.1^65,-1*K.1^55,-1*K.1^45,K.1^45,-1*K.1^95,-1*K.1^65,K.1^5,-1*K.1^5,K.1^15,-1*K.1^85,-1*K.1^15,K.1^95,K.1^55,K.1^85,-1*K.1^55,-1*K.1^45,-1*K.1^15,K.1^65,K.1^45,K.1^85,K.1^35,-1*K.1^85,K.1^24,-1*K.1^68,K.1^92,K.1^84,K.1^48,-1*K.1^4,K.1^64,K.1^8,K.1^44,-1*K.1^32,-1*K.1^44,-1*K.1^32,K.1^16,K.1^96,-1*K.1^24,-1*K.1^12,-1*K.1^8,K.1^52,K.1^44,-1*K.1^92,K.1^12,-1*K.1^72,-1*K.1^52,K.1^84,K.1^92,K.1^56,K.1^72,-1*K.1^64,-1*K.1^36,-1*K.1^76,K.1^4,-1*K.1^64,K.1^68,K.1^68,-1*K.1^96,-1*K.1^8,-1*K.1^96,-1*K.1^88,-1*K.1^88,K.1^76,K.1^76,K.1^32,K.1^88,-1*K.1^24,K.1^52,-1*K.1^28,-1*K.1^16,-1*K.1^16,-1*K.1^48,-1*K.1^56,-1*K.1^56,-1*K.1^48,K.1^36,K.1^28,K.1^28,K.1^36,-1*K.1^84,-1*K.1^72,K.1^4,K.1^12,-1*K.1^12,K.1^88,-1*K.1^64,-1*K.1^32,-1*K.1^72,K.1^36,K.1^76,-1*K.1^76,-1*K.1^44,-1*K.1^84,K.1^48,-1*K.1^28,K.1^28,-1*K.1^36,K.1^96,K.1^68,-1*K.1^8,K.1^56,K.1^64,-1*K.1^88,-1*K.1^68,K.1^8,K.1^24,-1*K.1^4,K.1^16,-1*K.1^48,-1*K.1^16,-1*K.1^92,-1*K.1^24,K.1^84,K.1^32,K.1^72,K.1^44,K.1^52,-1*K.1^52,-1*K.1^56,-1*K.1^96,K.1^12,K.1^92,K.1^4,-1*K.1^6,K.1^42,K.1^26,-1*K.1^38,-1*K.1^54,-1*K.1^54,K.1^18,-1*K.1^46,-1*K.1^14,K.1^38,-1*K.1^78,K.1^98,-1*K.1^58,K.1^82,K.1^66,K.1^98,K.1^74,-1*K.1^62,-1*K.1^6,K.1^14,K.1^54,K.1^74,-1*K.1^74,K.1^94,-1*K.1^18,K.1^46,K.1^22,K.1^86,-1*K.1^82,-1*K.1^94,-1*K.1^42,-1*K.1^26,-1*K.1^82,K.1^66,K.1^54,-1*K.1^66,-1*K.1^2,K.1^34,K.1^14,-1*K.1^62,-1*K.1^42,-1*K.1^26,K.1^6,-1*K.1^22,K.1^2,K.1^2,K.1^58,K.1^62,K.1^22,K.1^46,K.1^62,K.1^6,K.1^78,-1*K.1^34,-1*K.1^34,-1*K.1^14,K.1^94,-1*K.1^74,K.1^38,-1*K.1^66,-1*K.1^2,-1*K.1^18,K.1^86,K.1^78,K.1^42,-1*K.1^46,-1*K.1^22,K.1^34,-1*K.1^38,K.1^26,-1*K.1^98,-1*K.1^58,K.1^58,K.1^18,-1*K.1^98,-1*K.1^86,-1*K.1^86,-1*K.1^78,-1*K.1^94,K.1^82,-1*K.1^2,K.1^14,-1*K.1^54,-1*K.1^94,K.1^54,-1*K.1^74,K.1^2,-1*K.1^46,K.1^6,K.1^22,K.1^82,K.1^66,-1*K.1^26,K.1^38,-1*K.1^78,K.1^18,K.1^78,-1*K.1^98,K.1^26,-1*K.1^22,-1*K.1^38,K.1^62,-1*K.1^66,-1*K.1^6,K.1^42,-1*K.1^82,K.1^46,-1*K.1^86,K.1^74,-1*K.1^34,K.1^94,K.1^34,-1*K.1^14,K.1^86,-1*K.1^42,-1*K.1^62,K.1^98,-1*K.1^58,-1*K.1^18,K.1^58,-1*K.1^83,-1*K.1^11,-1*K.1^33,-1*K.1^7,-1*K.1^3,K.1^69,K.1^47,K.1^89,K.1,-1*K.1^71,K.1^31,K.1^47,-1*K.1^27,K.1^13,-1*K.1^91,-1*K.1^93,K.1^9,-1*K.1^27,K.1^61,-1*K.1^79,-1*K.1^13,-1*K.1^77,-1*K.1^59,-1*K.1^81,K.1^59,-1*K.1^39,-1*K.1^89,-1*K.1^67,-1*K.1^69,K.1^33,K.1^31,K.1^53,-1*K.1^87,K.1^87,-1*K.1^91,-1*K.1^31,K.1^41,-1*K.1^61,K.1^87,-1*K.1^9,K.1^19,K.1^21,-1*K.1^99,K.1^49,-1*K.1^53,-1*K.1^13,K.1^51,-1*K.1^21,K.1^81,K.1^91,-1*K.1^51,-1*K.1^11,-1*K.1^67,K.1^7,K.1^71,K.1^11,K.1^73,-1*K.1^29,K.1^7,K.1^29,-1*K.1^43,K.1^67,-1*K.1^73,K.1^39,K.1^97,K.1^23,-1*K.1^77,-1*K.1^59,-1*K.1^19,K.1^17,-1*K.1^39,-1*K.1^89,-1*K.1^33,-1*K.1^7,K.1^33,-1*K.1^57,K.1^83,K.1^89,-1*K.1^23,-1*K.1^17,-1*K.1^57,K.1^83,-1*K.1^61,-1*K.1^23,-1*K.1^17,K.1^57,K.1^79,-1*K.1,K.1^27,-1*K.1^83,-1*K.1^49,K.1^99,-1*K.1^41,-1*K.1^81,K.1^59,-1*K.1^37,K.1^37,K.1^3,-1*K.1^69,-1*K.1^3,K.1^69,K.1^53,-1*K.1^87,K.1,-1*K.1^71,-1*K.1^31,K.1^41,-1*K.1^63,K.1^13,-1*K.1^9,-1*K.1^51,K.1^63,-1*K.1^47,K.1^93,K.1^71,-1*K.1^49,K.1^37,K.1^3,K.1^81,K.1^91,K.1^11,K.1^73,-1*K.1^47,K.1^93,K.1^29,-1*K.1^43,K.1^9,-1*K.1^63,K.1^39,K.1^97,K.1^19,K.1^21,-1*K.1,K.1^27,-1*K.1^53,K.1^23,K.1^99,-1*K.1^41,-1*K.1^19,K.1^17,K.1^77,K.1^51,-1*K.1^21,K.1^43,-1*K.1^97,K.1^77,K.1^63,-1*K.1^29,K.1^43,-1*K.1^97,-1*K.1^93,K.1^67,-1*K.1^73,K.1^61,-1*K.1^79,K.1^57,K.1^79,-1*K.1^99,K.1^49,-1*K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,K.1^24,-1*K.1^12,-1*K.1^84,-1*K.1^92,-1*K.1^52,K.1^72,-1*K.1^4,K.1^88,-1*K.1^76,K.1^48,K.1^8,-1*K.1^28,K.1^16,K.1^56,K.1^96,-1*K.1^36,K.1^64,-1*K.1^68,K.1^32,-1*K.1^44,K.1^95,K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^85,K.1^5,K.1^35,-1*K.1^5,K.1^65,-1*K.1^45,-1*K.1^35,K.1^45,K.1^55,-1*K.1^55,K.1^5,K.1^35,-1*K.1^95,K.1^95,-1*K.1^85,K.1^15,K.1^85,-1*K.1^5,-1*K.1^45,-1*K.1^15,K.1^45,K.1^55,K.1^85,-1*K.1^35,-1*K.1^55,-1*K.1^15,-1*K.1^65,K.1^15,K.1^96,K.1^72,K.1^68,K.1^36,-1*K.1^92,K.1^16,K.1^56,K.1^32,K.1^76,K.1^28,-1*K.1^76,K.1^28,K.1^64,-1*K.1^84,-1*K.1^96,K.1^48,-1*K.1^32,-1*K.1^8,K.1^76,-1*K.1^68,-1*K.1^48,-1*K.1^88,K.1^8,K.1^36,K.1^68,K.1^24,K.1^88,-1*K.1^56,-1*K.1^44,-1*K.1^4,-1*K.1^16,-1*K.1^56,-1*K.1^72,-1*K.1^72,K.1^84,-1*K.1^32,K.1^84,K.1^52,K.1^52,K.1^4,K.1^4,-1*K.1^28,-1*K.1^52,-1*K.1^96,-1*K.1^8,-1*K.1^12,-1*K.1^64,-1*K.1^64,K.1^92,-1*K.1^24,-1*K.1^24,K.1^92,K.1^44,K.1^12,K.1^12,K.1^44,-1*K.1^36,-1*K.1^88,-1*K.1^16,-1*K.1^48,K.1^48,-1*K.1^52,-1*K.1^56,K.1^28,-1*K.1^88,K.1^44,K.1^4,-1*K.1^4,-1*K.1^76,-1*K.1^36,-1*K.1^92,-1*K.1^12,K.1^12,-1*K.1^44,-1*K.1^84,-1*K.1^72,-1*K.1^32,K.1^24,K.1^56,K.1^52,K.1^72,K.1^32,K.1^96,K.1^16,K.1^64,K.1^92,-1*K.1^64,-1*K.1^68,-1*K.1^96,K.1^36,-1*K.1^28,K.1^88,K.1^76,-1*K.1^8,K.1^8,-1*K.1^24,K.1^84,-1*K.1^48,K.1^68,-1*K.1^16,-1*K.1^74,-1*K.1^18,K.1^54,-1*K.1^2,-1*K.1^66,-1*K.1^66,K.1^22,-1*K.1^34,K.1^6,K.1^2,K.1^62,-1*K.1^42,K.1^82,K.1^78,K.1^14,-1*K.1^42,K.1^46,-1*K.1^98,-1*K.1^74,-1*K.1^6,K.1^66,K.1^46,-1*K.1^46,K.1^26,-1*K.1^22,K.1^34,-1*K.1^38,-1*K.1^94,-1*K.1^78,-1*K.1^26,K.1^18,-1*K.1^54,-1*K.1^78,K.1^14,K.1^66,-1*K.1^14,K.1^58,K.1^86,-1*K.1^6,-1*K.1^98,K.1^18,-1*K.1^54,K.1^74,K.1^38,-1*K.1^58,-1*K.1^58,-1*K.1^82,K.1^98,-1*K.1^38,K.1^34,K.1^98,K.1^74,-1*K.1^62,-1*K.1^86,-1*K.1^86,K.1^6,K.1^26,-1*K.1^46,K.1^2,-1*K.1^14,K.1^58,-1*K.1^22,-1*K.1^94,-1*K.1^62,-1*K.1^18,-1*K.1^34,K.1^38,K.1^86,-1*K.1^2,K.1^54,K.1^42,K.1^82,-1*K.1^82,K.1^22,K.1^42,K.1^94,K.1^94,K.1^62,-1*K.1^26,K.1^78,K.1^58,-1*K.1^6,-1*K.1^66,-1*K.1^26,K.1^66,-1*K.1^46,-1*K.1^58,-1*K.1^34,K.1^74,-1*K.1^38,K.1^78,K.1^14,-1*K.1^54,K.1^2,K.1^62,K.1^22,-1*K.1^62,K.1^42,K.1^54,K.1^38,-1*K.1^2,K.1^98,-1*K.1^14,-1*K.1^74,-1*K.1^18,-1*K.1^78,K.1^34,K.1^94,K.1^46,-1*K.1^86,K.1^26,K.1^86,K.1^6,-1*K.1^94,K.1^18,-1*K.1^98,-1*K.1^42,K.1^82,-1*K.1^22,-1*K.1^82,K.1^57,-1*K.1^69,-1*K.1^7,K.1^53,-1*K.1^37,K.1^51,-1*K.1^13,K.1^31,K.1^79,-1*K.1^9,K.1^49,-1*K.1^13,K.1^33,K.1^27,K.1^89,K.1^47,-1*K.1^11,K.1^33,K.1^19,-1*K.1^41,-1*K.1^27,-1*K.1^83,-1*K.1^61,K.1^99,K.1^61,-1*K.1^81,-1*K.1^31,-1*K.1^93,-1*K.1^51,K.1^7,K.1^49,-1*K.1^87,-1*K.1^73,K.1^73,K.1^89,-1*K.1^49,K.1^39,-1*K.1^19,K.1^73,K.1^11,-1*K.1,K.1^59,-1*K.1^21,K.1^71,K.1^87,-1*K.1^27,K.1^29,-1*K.1^59,-1*K.1^99,-1*K.1^89,-1*K.1^29,-1*K.1^69,-1*K.1^93,-1*K.1^53,K.1^9,K.1^69,-1*K.1^67,-1*K.1^91,-1*K.1^53,K.1^91,K.1^97,K.1^93,K.1^67,K.1^81,K.1^63,K.1^17,-1*K.1^83,-1*K.1^61,K.1,-1*K.1^43,-1*K.1^81,-1*K.1^31,-1*K.1^7,K.1^53,K.1^7,K.1^3,-1*K.1^57,K.1^31,-1*K.1^17,K.1^43,K.1^3,-1*K.1^57,-1*K.1^19,-1*K.1^17,K.1^43,-1*K.1^3,K.1^41,-1*K.1^79,-1*K.1^33,K.1^57,-1*K.1^71,K.1^21,-1*K.1^39,K.1^99,K.1^61,K.1^23,-1*K.1^23,K.1^37,-1*K.1^51,-1*K.1^37,K.1^51,-1*K.1^87,-1*K.1^73,K.1^79,-1*K.1^9,-1*K.1^49,K.1^39,K.1^77,K.1^27,K.1^11,-1*K.1^29,-1*K.1^77,K.1^13,-1*K.1^47,K.1^9,-1*K.1^71,-1*K.1^23,K.1^37,-1*K.1^99,-1*K.1^89,K.1^69,-1*K.1^67,K.1^13,-1*K.1^47,K.1^91,K.1^97,-1*K.1^11,K.1^77,K.1^81,K.1^63,-1*K.1,K.1^59,-1*K.1^79,-1*K.1^33,K.1^87,K.1^17,K.1^21,-1*K.1^39,K.1,-1*K.1^43,K.1^83,K.1^29,-1*K.1^59,-1*K.1^97,-1*K.1^63,K.1^83,-1*K.1^77,-1*K.1^91,-1*K.1^97,-1*K.1^63,K.1^47,K.1^93,K.1^67,K.1^19,-1*K.1^41,-1*K.1^3,K.1^41,-1*K.1^21,K.1^71,K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,-1*K.1^76,K.1^88,K.1^16,K.1^8,K.1^48,-1*K.1^28,K.1^96,-1*K.1^12,K.1^24,-1*K.1^52,-1*K.1^92,K.1^72,-1*K.1^84,-1*K.1^44,-1*K.1^4,K.1^64,-1*K.1^36,K.1^32,-1*K.1^68,K.1^56,-1*K.1^5,-1*K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^95,-1*K.1^65,K.1^95,-1*K.1^35,K.1^55,K.1^65,-1*K.1^55,-1*K.1^45,K.1^45,-1*K.1^95,-1*K.1^65,K.1^5,-1*K.1^5,K.1^15,-1*K.1^85,-1*K.1^15,K.1^95,K.1^55,K.1^85,-1*K.1^55,-1*K.1^45,-1*K.1^15,K.1^65,K.1^45,K.1^85,K.1^35,-1*K.1^85,-1*K.1^4,-1*K.1^28,-1*K.1^32,-1*K.1^64,K.1^8,-1*K.1^84,-1*K.1^44,-1*K.1^68,-1*K.1^24,-1*K.1^72,K.1^24,-1*K.1^72,-1*K.1^36,K.1^16,K.1^4,-1*K.1^52,K.1^68,K.1^92,-1*K.1^24,K.1^32,K.1^52,K.1^12,-1*K.1^92,-1*K.1^64,-1*K.1^32,-1*K.1^76,-1*K.1^12,K.1^44,K.1^56,K.1^96,K.1^84,K.1^44,K.1^28,K.1^28,-1*K.1^16,K.1^68,-1*K.1^16,-1*K.1^48,-1*K.1^48,-1*K.1^96,-1*K.1^96,K.1^72,K.1^48,K.1^4,K.1^92,K.1^88,K.1^36,K.1^36,-1*K.1^8,K.1^76,K.1^76,-1*K.1^8,-1*K.1^56,-1*K.1^88,-1*K.1^88,-1*K.1^56,K.1^64,K.1^12,K.1^84,K.1^52,-1*K.1^52,K.1^48,K.1^44,-1*K.1^72,K.1^12,-1*K.1^56,-1*K.1^96,K.1^96,K.1^24,K.1^64,K.1^8,K.1^88,-1*K.1^88,K.1^56,K.1^16,K.1^28,K.1^68,-1*K.1^76,-1*K.1^44,-1*K.1^48,-1*K.1^28,-1*K.1^68,-1*K.1^4,-1*K.1^84,-1*K.1^36,-1*K.1^8,K.1^36,K.1^32,K.1^4,-1*K.1^64,K.1^72,-1*K.1^12,-1*K.1^24,K.1^92,-1*K.1^92,K.1^76,-1*K.1^16,K.1^52,-1*K.1^32,K.1^84,K.1^26,K.1^82,-1*K.1^46,K.1^98,K.1^34,K.1^34,-1*K.1^78,K.1^66,-1*K.1^94,-1*K.1^98,-1*K.1^38,K.1^58,-1*K.1^18,-1*K.1^22,-1*K.1^86,K.1^58,-1*K.1^54,K.1^2,K.1^26,K.1^94,-1*K.1^34,-1*K.1^54,K.1^54,-1*K.1^74,K.1^78,-1*K.1^66,K.1^62,K.1^6,K.1^22,K.1^74,-1*K.1^82,K.1^46,K.1^22,-1*K.1^86,-1*K.1^34,K.1^86,-1*K.1^42,-1*K.1^14,K.1^94,K.1^2,-1*K.1^82,K.1^46,-1*K.1^26,-1*K.1^62,K.1^42,K.1^42,K.1^18,-1*K.1^2,K.1^62,-1*K.1^66,-1*K.1^2,-1*K.1^26,K.1^38,K.1^14,K.1^14,-1*K.1^94,-1*K.1^74,K.1^54,-1*K.1^98,K.1^86,-1*K.1^42,K.1^78,K.1^6,K.1^38,K.1^82,K.1^66,-1*K.1^62,-1*K.1^14,K.1^98,-1*K.1^46,-1*K.1^58,-1*K.1^18,K.1^18,-1*K.1^78,-1*K.1^58,-1*K.1^6,-1*K.1^6,-1*K.1^38,K.1^74,-1*K.1^22,-1*K.1^42,K.1^94,K.1^34,K.1^74,-1*K.1^34,K.1^54,K.1^42,K.1^66,-1*K.1^26,K.1^62,-1*K.1^22,-1*K.1^86,K.1^46,-1*K.1^98,-1*K.1^38,-1*K.1^78,K.1^38,-1*K.1^58,-1*K.1^46,-1*K.1^62,K.1^98,-1*K.1^2,K.1^86,K.1^26,K.1^82,K.1^22,-1*K.1^66,-1*K.1^6,-1*K.1^54,K.1^14,-1*K.1^74,-1*K.1^14,-1*K.1^94,K.1^6,-1*K.1^82,K.1^2,K.1^58,-1*K.1^18,K.1^78,K.1^18,-1*K.1^43,K.1^31,K.1^93,-1*K.1^47,K.1^63,-1*K.1^49,K.1^87,-1*K.1^69,-1*K.1^21,K.1^91,-1*K.1^51,K.1^87,-1*K.1^67,-1*K.1^73,-1*K.1^11,-1*K.1^53,K.1^89,-1*K.1^67,-1*K.1^81,K.1^59,K.1^73,K.1^17,K.1^39,-1*K.1,-1*K.1^39,K.1^19,K.1^69,K.1^7,K.1^49,-1*K.1^93,-1*K.1^51,K.1^13,K.1^27,-1*K.1^27,-1*K.1^11,K.1^51,-1*K.1^61,K.1^81,-1*K.1^27,-1*K.1^89,K.1^99,-1*K.1^41,K.1^79,-1*K.1^29,-1*K.1^13,K.1^73,-1*K.1^71,K.1^41,K.1,K.1^11,K.1^71,K.1^31,K.1^7,K.1^47,-1*K.1^91,-1*K.1^31,K.1^33,K.1^9,K.1^47,-1*K.1^9,-1*K.1^3,-1*K.1^7,-1*K.1^33,-1*K.1^19,-1*K.1^37,-1*K.1^83,K.1^17,K.1^39,-1*K.1^99,K.1^57,K.1^19,K.1^69,K.1^93,-1*K.1^47,-1*K.1^93,-1*K.1^97,K.1^43,-1*K.1^69,K.1^83,-1*K.1^57,-1*K.1^97,K.1^43,K.1^81,K.1^83,-1*K.1^57,K.1^97,-1*K.1^59,K.1^21,K.1^67,-1*K.1^43,K.1^29,-1*K.1^79,K.1^61,-1*K.1,-1*K.1^39,-1*K.1^77,K.1^77,-1*K.1^63,K.1^49,K.1^63,-1*K.1^49,K.1^13,K.1^27,-1*K.1^21,K.1^91,K.1^51,-1*K.1^61,-1*K.1^23,-1*K.1^73,-1*K.1^89,K.1^71,K.1^23,-1*K.1^87,K.1^53,-1*K.1^91,K.1^29,K.1^77,-1*K.1^63,K.1,K.1^11,-1*K.1^31,K.1^33,-1*K.1^87,K.1^53,-1*K.1^9,-1*K.1^3,K.1^89,-1*K.1^23,-1*K.1^19,-1*K.1^37,K.1^99,-1*K.1^41,K.1^21,K.1^67,-1*K.1^13,-1*K.1^83,-1*K.1^79,K.1^61,-1*K.1^99,K.1^57,-1*K.1^17,-1*K.1^71,K.1^41,K.1^3,K.1^37,-1*K.1^17,K.1^23,K.1^9,K.1^3,K.1^37,-1*K.1^53,-1*K.1^7,-1*K.1^33,-1*K.1^81,K.1^59,K.1^97,-1*K.1^59,K.1^79,-1*K.1^29,-1*K.1^77]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,-1*K.1^50,K.1^50,-1*K.1^50,K.1^50,K.1^50,-1*K.1^50,K.1^40,-1*K.1^60,K.1^80,-1*K.1^20,-1*K.1^75,K.1^75,K.1^25,-1*K.1^25,K.1^25,-1*K.1^75,K.1^75,-1*K.1^25,-1*K.1^40,-1*K.1^80,-1*K.1^60,K.1^40,-1*K.1^20,K.1^60,K.1^60,K.1^20,-1*K.1^40,K.1^80,-1*K.1^80,K.1^20,-1*K.1^40,K.1^60,-1*K.1^20,K.1^80,K.1^40,-1*K.1^60,K.1^20,-1*K.1^80,K.1^30,K.1^30,-1*K.1^90,-1*K.1^90,-1*K.1^10,K.1^90,K.1^10,-1*K.1^30,K.1^90,K.1^70,-1*K.1^30,-1*K.1^10,K.1^70,K.1^10,-1*K.1^70,-1*K.1^70,K.1^90,-1*K.1^10,-1*K.1^70,-1*K.1^90,K.1^30,K.1^70,K.1^10,-1*K.1^30,-1*K.1^84,-1*K.1^92,-1*K.1^44,K.1^72,K.1^32,-1*K.1^52,K.1^64,K.1^8,K.1^16,-1*K.1^68,-1*K.1^28,K.1^48,K.1^56,K.1^96,-1*K.1^36,-1*K.1^76,K.1^24,K.1^88,-1*K.1^12,-1*K.1^4,K.1^95,K.1^65,-1*K.1^95,-1*K.1^65,-1*K.1^85,K.1^5,K.1^35,-1*K.1^5,K.1^65,-1*K.1^45,-1*K.1^35,K.1^45,K.1^55,-1*K.1^55,K.1^5,K.1^35,-1*K.1^95,K.1^95,-1*K.1^85,K.1^15,K.1^85,-1*K.1^5,-1*K.1^45,-1*K.1^15,K.1^45,K.1^55,K.1^85,-1*K.1^35,-1*K.1^55,-1*K.1^15,-1*K.1^65,K.1^15,-1*K.1^36,-1*K.1^52,-1*K.1^88,K.1^76,K.1^72,K.1^56,K.1^96,-1*K.1^12,-1*K.1^16,-1*K.1^48,K.1^16,-1*K.1^48,K.1^24,-1*K.1^44,K.1^36,-1*K.1^68,K.1^12,K.1^28,-1*K.1^16,K.1^88,K.1^68,-1*K.1^8,-1*K.1^28,K.1^76,-1*K.1^88,-1*K.1^84,K.1^8,-1*K.1^96,-1*K.1^4,K.1^64,-1*K.1^56,-1*K.1^96,K.1^52,K.1^52,K.1^44,K.1^12,K.1^44,-1*K.1^32,-1*K.1^32,-1*K.1^64,-1*K.1^64,K.1^48,K.1^32,K.1^36,K.1^28,-1*K.1^92,-1*K.1^24,-1*K.1^24,-1*K.1^72,K.1^84,K.1^84,-1*K.1^72,K.1^4,K.1^92,K.1^92,K.1^4,-1*K.1^76,-1*K.1^8,-1*K.1^56,K.1^68,-1*K.1^68,K.1^32,-1*K.1^96,-1*K.1^48,-1*K.1^8,K.1^4,-1*K.1^64,K.1^64,K.1^16,-1*K.1^76,K.1^72,-1*K.1^92,K.1^92,-1*K.1^4,-1*K.1^44,K.1^52,K.1^12,-1*K.1^84,K.1^96,-1*K.1^32,-1*K.1^52,-1*K.1^12,-1*K.1^36,K.1^56,K.1^24,-1*K.1^72,-1*K.1^24,K.1^88,K.1^36,K.1^76,K.1^48,K.1^8,-1*K.1^16,K.1^28,-1*K.1^28,K.1^84,K.1^44,K.1^68,-1*K.1^88,-1*K.1^56,-1*K.1^34,K.1^38,K.1^14,-1*K.1^82,K.1^6,K.1^6,-1*K.1^2,K.1^94,K.1^46,K.1^82,-1*K.1^42,K.1^22,-1*K.1^62,-1*K.1^98,-1*K.1^74,K.1^22,K.1^86,-1*K.1^18,-1*K.1^34,-1*K.1^46,-1*K.1^6,K.1^86,-1*K.1^86,K.1^66,K.1^2,-1*K.1^94,K.1^58,-1*K.1^54,K.1^98,-1*K.1^66,-1*K.1^38,-1*K.1^14,K.1^98,-1*K.1^74,-1*K.1^6,K.1^74,-1*K.1^78,-1*K.1^26,-1*K.1^46,-1*K.1^18,-1*K.1^38,-1*K.1^14,K.1^34,-1*K.1^58,K.1^78,K.1^78,K.1^62,K.1^18,K.1^58,-1*K.1^94,K.1^18,K.1^34,K.1^42,K.1^26,K.1^26,K.1^46,K.1^66,-1*K.1^86,K.1^82,K.1^74,-1*K.1^78,K.1^2,-1*K.1^54,K.1^42,K.1^38,K.1^94,-1*K.1^58,-1*K.1^26,-1*K.1^82,K.1^14,-1*K.1^22,-1*K.1^62,K.1^62,-1*K.1^2,-1*K.1^22,K.1^54,K.1^54,-1*K.1^42,-1*K.1^66,-1*K.1^98,-1*K.1^78,-1*K.1^46,K.1^6,-1*K.1^66,-1*K.1^6,-1*K.1^86,K.1^78,K.1^94,K.1^34,K.1^58,-1*K.1^98,-1*K.1^74,-1*K.1^14,K.1^82,-1*K.1^42,-1*K.1^2,K.1^42,-1*K.1^22,K.1^14,-1*K.1^58,-1*K.1^82,K.1^18,K.1^74,-1*K.1^34,K.1^38,K.1^98,-1*K.1^94,K.1^54,K.1^86,K.1^26,K.1^66,-1*K.1^26,K.1^46,-1*K.1^54,-1*K.1^38,-1*K.1^18,K.1^22,-1*K.1^62,K.1^2,K.1^62,-1*K.1^37,-1*K.1^29,-1*K.1^87,-1*K.1^73,K.1^17,K.1^91,K.1^33,K.1^71,K.1^39,K.1^69,K.1^9,K.1^33,-1*K.1^53,-1*K.1^7,K.1^49,-1*K.1^27,-1*K.1^51,-1*K.1^53,-1*K.1^79,-1*K.1^81,K.1^7,-1*K.1^3,K.1,K.1^59,-1*K.1,K.1^21,-1*K.1^71,-1*K.1^13,-1*K.1^91,K.1^87,K.1^9,K.1^67,K.1^93,-1*K.1^93,K.1^49,-1*K.1^9,-1*K.1^99,K.1^79,-1*K.1^93,K.1^51,-1*K.1^41,K.1^19,-1*K.1^61,-1*K.1^11,-1*K.1^67,K.1^7,-1*K.1^89,-1*K.1^19,-1*K.1^59,-1*K.1^49,K.1^89,-1*K.1^29,-1*K.1^13,K.1^73,-1*K.1^69,K.1^29,K.1^47,K.1^31,K.1^73,-1*K.1^31,-1*K.1^77,K.1^13,-1*K.1^47,-1*K.1^21,-1*K.1^83,K.1^97,-1*K.1^3,K.1,K.1^41,K.1^63,K.1^21,-1*K.1^71,-1*K.1^87,-1*K.1^73,K.1^87,-1*K.1^23,K.1^37,K.1^71,-1*K.1^97,-1*K.1^63,-1*K.1^23,K.1^37,K.1^79,-1*K.1^97,-1*K.1^63,K.1^23,K.1^81,-1*K.1^39,K.1^53,-1*K.1^37,K.1^11,K.1^61,K.1^99,K.1^59,-1*K.1,-1*K.1^43,K.1^43,-1*K.1^17,-1*K.1^91,K.1^17,K.1^91,K.1^67,K.1^93,K.1^39,K.1^69,-1*K.1^9,-1*K.1^99,-1*K.1^57,-1*K.1^7,K.1^51,K.1^89,K.1^57,-1*K.1^33,K.1^27,-1*K.1^69,K.1^11,K.1^43,-1*K.1^17,-1*K.1^59,-1*K.1^49,K.1^29,K.1^47,-1*K.1^33,K.1^27,-1*K.1^31,-1*K.1^77,-1*K.1^51,-1*K.1^57,-1*K.1^21,-1*K.1^83,-1*K.1^41,K.1^19,-1*K.1^39,K.1^53,-1*K.1^67,K.1^97,K.1^61,K.1^99,K.1^41,K.1^63,K.1^3,-1*K.1^89,-1*K.1^19,K.1^77,K.1^83,K.1^3,K.1^57,K.1^31,K.1^77,K.1^83,-1*K.1^27,K.1^13,-1*K.1^47,-1*K.1^79,-1*K.1^81,K.1^23,K.1^81,-1*K.1^61,-1*K.1^11,-1*K.1^43]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(200: Sparse := true); S := [ K |1,1,-1,-1,1,-1,K.1^50,-1*K.1^50,K.1^50,-1*K.1^50,-1*K.1^50,K.1^50,-1*K.1^60,K.1^40,-1*K.1^20,K.1^80,K.1^25,-1*K.1^25,-1*K.1^75,K.1^75,-1*K.1^75,K.1^25,-1*K.1^25,K.1^75,K.1^60,K.1^20,K.1^40,-1*K.1^60,K.1^80,-1*K.1^40,-1*K.1^40,-1*K.1^80,K.1^60,-1*K.1^20,K.1^20,-1*K.1^80,K.1^60,-1*K.1^40,K.1^80,-1*K.1^20,-1*K.1^60,K.1^40,-1*K.1^80,K.1^20,-1*K.1^70,-1*K.1^70,K.1^10,K.1^10,K.1^90,-1*K.1^10,-1*K.1^90,K.1^70,-1*K.1^10,-1*K.1^30,K.1^70,K.1^90,-1*K.1^30,-1*K.1^90,K.1^30,K.1^30,-1*K.1^10,K.1^90,K.1^30,K.1^10,-1*K.1^70,-1*K.1^30,-1*K.1^90,K.1^70,K.1^16,K.1^8,K.1^56,-1*K.1^28,-1*K.1^68,K.1^48,-1*K.1^36,-1*K.1^92,-1*K.1^84,K.1^32,K.1^72,-1*K.1^52,-1*K.1^44,-1*K.1^4,K.1^64,K.1^24,-1*K.1^76,-1*K.1^12,K.1^88,K.1^96,-1*K.1^5,-1*K.1^35,K.1^5,K.1^35,K.1^15,-1*K.1^95,-1*K.1^65,K.1^95,-1*K.1^35,K.1^55,K.1^65,-1*K.1^55,-1*K.1^45,K.1^45,-1*K.1^95,-1*K.1^65,K.1^5,-1*K.1^5,K.1^15,-1*K.1^85,-1*K.1^15,K.1^95,K.1^55,K.1^85,-1*K.1^55,-1*K.1^45,-1*K.1^15,K.1^65,K.1^45,K.1^85,K.1^35,-1*K.1^85,K.1^64,K.1^48,K.1^12,-1*K.1^24,-1*K.1^28,-1*K.1^44,-1*K.1^4,K.1^88,K.1^84,K.1^52,-1*K.1^84,K.1^52,-1*K.1^76,K.1^56,-1*K.1^64,K.1^32,-1*K.1^88,-1*K.1^72,K.1^84,-1*K.1^12,-1*K.1^32,K.1^92,K.1^72,-1*K.1^24,K.1^12,K.1^16,-1*K.1^92,K.1^4,K.1^96,-1*K.1^36,K.1^44,K.1^4,-1*K.1^48,-1*K.1^48,-1*K.1^56,-1*K.1^88,-1*K.1^56,K.1^68,K.1^68,K.1^36,K.1^36,-1*K.1^52,-1*K.1^68,-1*K.1^64,-1*K.1^72,K.1^8,K.1^76,K.1^76,K.1^28,-1*K.1^16,-1*K.1^16,K.1^28,-1*K.1^96,-1*K.1^8,-1*K.1^8,-1*K.1^96,K.1^24,K.1^92,K.1^44,-1*K.1^32,K.1^32,-1*K.1^68,K.1^4,K.1^52,K.1^92,-1*K.1^96,K.1^36,-1*K.1^36,-1*K.1^84,K.1^24,-1*K.1^28,K.1^8,-1*K.1^8,K.1^96,K.1^56,-1*K.1^48,-1*K.1^88,K.1^16,-1*K.1^4,K.1^68,K.1^48,K.1^88,K.1^64,-1*K.1^44,-1*K.1^76,K.1^28,K.1^76,-1*K.1^12,-1*K.1^64,-1*K.1^24,-1*K.1^52,-1*K.1^92,K.1^84,-1*K.1^72,K.1^72,-1*K.1^16,-1*K.1^56,-1*K.1^32,K.1^12,K.1^44,K.1^66,-1*K.1^62,-1*K.1^86,K.1^18,-1*K.1^94,-1*K.1^94,K.1^98,-1*K.1^6,-1*K.1^54,-1*K.1^18,K.1^58,-1*K.1^78,K.1^38,K.1^2,K.1^26,-1*K.1^78,-1*K.1^14,K.1^82,K.1^66,K.1^54,K.1^94,-1*K.1^14,K.1^14,-1*K.1^34,-1*K.1^98,K.1^6,-1*K.1^42,K.1^46,-1*K.1^2,K.1^34,K.1^62,K.1^86,-1*K.1^2,K.1^26,K.1^94,-1*K.1^26,K.1^22,K.1^74,K.1^54,K.1^82,K.1^62,K.1^86,-1*K.1^66,K.1^42,-1*K.1^22,-1*K.1^22,-1*K.1^38,-1*K.1^82,-1*K.1^42,K.1^6,-1*K.1^82,-1*K.1^66,-1*K.1^58,-1*K.1^74,-1*K.1^74,-1*K.1^54,-1*K.1^34,K.1^14,-1*K.1^18,-1*K.1^26,K.1^22,-1*K.1^98,K.1^46,-1*K.1^58,-1*K.1^62,-1*K.1^6,K.1^42,K.1^74,K.1^18,-1*K.1^86,K.1^78,K.1^38,-1*K.1^38,K.1^98,K.1^78,-1*K.1^46,-1*K.1^46,K.1^58,K.1^34,K.1^2,K.1^22,K.1^54,-1*K.1^94,K.1^34,K.1^94,K.1^14,-1*K.1^22,-1*K.1^6,-1*K.1^66,-1*K.1^42,K.1^2,K.1^26,K.1^86,-1*K.1^18,K.1^58,K.1^98,-1*K.1^58,K.1^78,-1*K.1^86,K.1^42,K.1^18,-1*K.1^82,-1*K.1^26,K.1^66,-1*K.1^62,-1*K.1^2,K.1^6,-1*K.1^46,-1*K.1^14,-1*K.1^74,-1*K.1^34,K.1^74,-1*K.1^54,K.1^46,K.1^62,K.1^82,-1*K.1^78,K.1^38,-1*K.1^98,-1*K.1^38,K.1^63,K.1^71,K.1^13,K.1^27,-1*K.1^83,-1*K.1^9,-1*K.1^67,-1*K.1^29,-1*K.1^61,-1*K.1^31,-1*K.1^91,-1*K.1^67,K.1^47,K.1^93,-1*K.1^51,K.1^73,K.1^49,K.1^47,K.1^21,K.1^19,-1*K.1^93,K.1^97,-1*K.1^99,-1*K.1^41,K.1^99,-1*K.1^79,K.1^29,K.1^87,K.1^9,-1*K.1^13,-1*K.1^91,-1*K.1^33,-1*K.1^7,K.1^7,-1*K.1^51,K.1^91,K.1,-1*K.1^21,K.1^7,-1*K.1^49,K.1^59,-1*K.1^81,K.1^39,K.1^89,K.1^33,-1*K.1^93,K.1^11,K.1^81,K.1^41,K.1^51,-1*K.1^11,K.1^71,K.1^87,-1*K.1^27,K.1^31,-1*K.1^71,-1*K.1^53,-1*K.1^69,-1*K.1^27,K.1^69,K.1^23,-1*K.1^87,K.1^53,K.1^79,K.1^17,-1*K.1^3,K.1^97,-1*K.1^99,-1*K.1^59,-1*K.1^37,-1*K.1^79,K.1^29,K.1^13,K.1^27,-1*K.1^13,K.1^77,-1*K.1^63,-1*K.1^29,K.1^3,K.1^37,K.1^77,-1*K.1^63,-1*K.1^21,K.1^3,K.1^37,-1*K.1^77,-1*K.1^19,K.1^61,-1*K.1^47,K.1^63,-1*K.1^89,-1*K.1^39,-1*K.1,-1*K.1^41,K.1^99,K.1^57,-1*K.1^57,K.1^83,K.1^9,-1*K.1^83,-1*K.1^9,-1*K.1^33,-1*K.1^7,-1*K.1^61,-1*K.1^31,K.1^91,K.1,K.1^43,K.1^93,-1*K.1^49,-1*K.1^11,-1*K.1^43,K.1^67,-1*K.1^73,K.1^31,-1*K.1^89,-1*K.1^57,K.1^83,K.1^41,K.1^51,-1*K.1^71,-1*K.1^53,K.1^67,-1*K.1^73,K.1^69,K.1^23,K.1^49,K.1^43,K.1^79,K.1^17,K.1^59,-1*K.1^81,K.1^61,-1*K.1^47,K.1^33,-1*K.1^3,-1*K.1^39,-1*K.1,-1*K.1^59,-1*K.1^37,-1*K.1^97,K.1^11,K.1^81,-1*K.1^23,-1*K.1^17,-1*K.1^97,-1*K.1^43,-1*K.1^69,-1*K.1^23,-1*K.1^17,K.1^73,-1*K.1^87,K.1^53,K.1^21,K.1^19,-1*K.1^77,-1*K.1^19,K.1^39,K.1^89,K.1^57]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, -2, -2, 2, 2, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, -2, -2, 2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, -2, -2, 2, -2, -2, 2, 2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, -2, 2, -2, -2, 2, -2, 2, 2, 2, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, -2, 2, -2, -2, 2, -2, -2, 2, -2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, -2, 2, 2, -2, 2, -2, -2, 2, -2, 2, 2, -2, 2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, 2, 2, -2, -2, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, -2, -2, 2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, -2, -2, 2, -2, -2, 2, 2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -2, -2, 2, -2, 2, 2, -2, 2, -2, -2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 2, -2, 2, -2, 2, 2, -2, 2, 2, -2, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 2, -2, 2, -2, -2, 2, -2, 2, 2, -2, 2, -2, -2, 2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1,2*K.1,2*K.1,-2*K.1,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,2,2,2,-2,2,2,-2,2,2,-2,-2,2,-2,-2,2,-2,-2,2,2,-2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,-2,-2,2,-2,2,2,2,-2,2,2,-2,2,2,-2,-2,2,-2,-2,2,-2,-2,2,2,-2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,-2,2,2,2,-2,-2,2,2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,2,2,2,2,2,-2,-2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^2,2*K.1,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1^2,2*K.1,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^-1,-2*K.1^-2,-2*K.1^-1,2*K.1^-1,2*K.1^-2,-2*K.1^2,2*K.1,2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,-2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1^-2,2*K.1,-2*K.1^2,2*K.1,-2*K.1^-2,-2*K.1,2*K.1^-2,-2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1^2,2*K.1^2,2*K.1,-2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1,2*K.1,-2*K.1^-1,2*K.1,2*K.1,-2*K.1^-2,-2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1^-2,-2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,2,2,2,2,2,-2,-2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1,-2*K.1^2,2*K.1,2*K.1^2,2*K.1,-2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^2,2*K.1^2,2*K.1,-2*K.1^2,-2*K.1,2*K.1,2*K.1^2,-2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-1,2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^-2,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1^-1,-2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1^2,2*K.1^-1,-2*K.1^-2,2*K.1^-1,-2*K.1^2,-2*K.1^-1,2*K.1^2,-2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1^2,-2*K.1^-1,2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1^2,-2*K.1,2*K.1^-1,2*K.1^2,-2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,2,2,2,2,2,-2,-2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^2,2*K.1^-2,2*K.1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^2,2*K.1,2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,-2*K.1^2,2*K.1,2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1,2*K.1^-2,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,2*K.1^2,-2*K.1,2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1,-2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-2,-2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^-2,-2*K.1^-1,2*K.1^-2,-2*K.1,2*K.1^-2,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-2,-2*K.1,2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1^2,2*K.1^-2,2*K.1^-2,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,2*K.1^2,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^2,2*K.1^-2,2*K.1^-1,-2*K.1^-2,2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,2,2,2,2,2,-2,-2,-2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-2,2*K.1^2,2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1,-2*K.1^2,-2*K.1^-2,2*K.1^-1,2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1,-2*K.1^-2,-2*K.1,2*K.1,2*K.1^-2,-2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^2,2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^2,-2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1^2,-2*K.1,2*K.1^2,-2*K.1^-1,2*K.1^2,-2*K.1,-2*K.1^2,2*K.1,-2*K.1^-1,-2*K.1,2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1,-2*K.1,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^-2,2*K.1^2,2*K.1^2,-2*K.1,-2*K.1^2,2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1^-2,2*K.1^2,2*K.1,-2*K.1^2,2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1,-2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,-2,-2,-2,2,2,2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-1,2*K.1,2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^2,2*K.1,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^2,-2*K.1,-2*K.1^-2,-2*K.1,-2*K.1^2,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1,-2*K.1^-1,2*K.1^2,2*K.1,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^-1,-2*K.1^-2,-2*K.1^-1,2*K.1^-1,2*K.1^-2,-2*K.1^2,2*K.1,2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1,-2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1,2*K.1^2,-2*K.1,2*K.1^-2,2*K.1,-2*K.1^-2,2*K.1^2,2*K.1^-2,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1,2*K.1,-2*K.1,2*K.1^-1,-2*K.1,-2*K.1,2*K.1^-2,2*K.1,-2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^-1,-2*K.1^-2,2*K.1^-1,-2*K.1,-2*K.1^-2,2*K.1,-2*K.1^2,2*K.1^-1,2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,-2,-2,-2,2,2,2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^2,2*K.1,2*K.1,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1,2*K.1^-1,2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^-2,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,-2*K.1^-2,-2*K.1^2,-2*K.1^2,-2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1,-2*K.1^2,2*K.1,2*K.1^2,2*K.1,-2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^-1,-2*K.1,2*K.1^-2,2*K.1^-1,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1,-2*K.1^2,2*K.1^2,2*K.1,-2*K.1^2,-2*K.1,2*K.1,2*K.1^2,-2*K.1^-2,2*K.1^-1,2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-1,-2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1,2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1^2,2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^-1,2*K.1^-2,-2*K.1^-1,2*K.1^2,2*K.1^-1,-2*K.1^2,2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^2,2*K.1^-1,-2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1,-2*K.1^2,2*K.1^-1,2*K.1,-2*K.1^2,2*K.1,-2*K.1^-1,-2*K.1^2,2*K.1^-1,-2*K.1^-2,2*K.1,2*K.1^2,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1^2,2*K.1^2,2*K.1,-2*K.1^-2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,-2,-2,-2,2,2,2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-2,2*K.1^2,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^2,2*K.1^-2,2*K.1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^2,2*K.1,2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1^-2,-2*K.1^2,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^2,-2*K.1^2,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,-2*K.1^2,2*K.1,2*K.1^-2,-2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1,2*K.1^-2,2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-2,-2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1,2*K.1^2,2*K.1^-1,-2*K.1,2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-2,2*K.1^-1,2*K.1^2,-2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1^-1,-2*K.1^-2,2*K.1,-2*K.1^-2,2*K.1^-1,2*K.1^-2,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1^-2,2*K.1,-2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,2*K.1^2,-2*K.1^-2,-2*K.1^-2,2*K.1^-1,2*K.1^-2,-2*K.1^-1,-2*K.1^2,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1^2,-2*K.1^-1,2*K.1^2,-2*K.1^-2,-2*K.1^-1,2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2,2,2,2,0,0,0,0,0,0,0,0,2,-2,-2,-2,-2,-2,2,-2,-2,-2,2,2,0,0,0,0,0,0,0,0,2,-2,2,-2,-2,-2,-2,-2,2,2,2,2,-2,2,-2,2,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-2,2*K.1,2*K.1^-2,2*K.1^-2,2*K.1^-2,2*K.1,2*K.1^2,2*K.1^-1,2*K.1^2,2*K.1^2,2*K.1^2,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^2,2*K.1^-2,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-2,2*K.1^2,2*K.1^-1,-2*K.1^-2,-2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-1,2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^2,-2*K.1^-2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^-1,-2*K.1^2,-2*K.1,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1^-2,2*K.1,2*K.1^-2,-2*K.1^-2,-2*K.1,2*K.1,-2*K.1^2,-2*K.1^-2,2*K.1^-1,2*K.1^2,-2*K.1^-2,2*K.1,-2*K.1,-2*K.1^-2,-2*K.1,2*K.1,2*K.1^-2,-2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^2,-2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1^-1,2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^-2,-2*K.1^2,2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1^2,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1^2,2*K.1,-2*K.1^2,2*K.1^-1,-2*K.1^2,2*K.1,2*K.1^2,-2*K.1,2*K.1^-1,2*K.1,-2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^2,2*K.1^2,-2*K.1,2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^-2,-2*K.1^2,-2*K.1^2,2*K.1,2*K.1^2,-2*K.1,-2*K.1^-2,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1^-2,-2*K.1,2*K.1^2,2*K.1^-2,-2*K.1,2*K.1^-2,-2*K.1^2,-2*K.1,2*K.1^2,-2*K.1^-1,2*K.1^-2,2*K.1,-2*K.1^-2,2*K.1^-2,-2*K.1^-2,-2*K.1^-2,2*K.1^-2,-2*K.1,2*K.1,2*K.1^-2,-2*K.1^-1,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^6,-2*K.1^2,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^4,2*K.1^8,2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^6,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^8,-2*K.1^4,-2*K.1^8,2*K.1^4,2*K.1^2,2*K.1^2,2*K.1^8,-2*K.1^4,-2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^8,2*K.1^2,2*K.1^2,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^6,2*K.1^2,2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^2,-2*K.1^6,-2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^2,-2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1^7,-2*K.1^3,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^3,-2*K.1^9,-2*K.1^7,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1^7,2*K.1^9,-2*K.1^7,-2*K.1^9,2*K.1^3,-2*K.1^9,-2*K.1^7,2*K.1^9,-2*K.1^7,-2*K.1^3,-2*K.1^7,-2*K.1^9,2*K.1^3,2*K.1^3,2*K.1^9,2*K.1^9,2*K.1^7,-2*K.1^7,2*K.1^9,-2*K.1^9,2*K.1^9,-2*K.1,-2*K.1^9,-2*K.1^9,-2*K.1^7,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1^7,2*K.1^9,2*K.1,2*K.1^7,2*K.1,2*K.1^9,-2*K.1^7,-2*K.1^9,-2*K.1^3,-2*K.1,2*K.1^7,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1^7,2*K.1^7,-2*K.1,-2*K.1^3,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^4,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^4,2*K.1^2,2*K.1^2,-2*K.1^4,2*K.1^2,2*K.1^6,2*K.1^2,-2*K.1^6,-2*K.1^8,-2*K.1^8,-2*K.1^2,2*K.1^6,2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^2,-2*K.1^6,-2*K.1^8,2*K.1^6,-2*K.1^2,-2*K.1^8,-2*K.1^8,-2*K.1^2,2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^4,2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1^7,2*K.1^7,2*K.1^9,-2*K.1^3,2*K.1^7,-2*K.1^9,-2*K.1^9,-2*K.1^9,2*K.1^9,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1^7,2*K.1,2*K.1^3,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^9,-2*K.1^3,-2*K.1,2*K.1^3,2*K.1,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1,2*K.1^3,2*K.1^7,2*K.1^3,2*K.1,-2*K.1^7,-2*K.1^7,-2*K.1,-2*K.1,-2*K.1^3,2*K.1^3,-2*K.1,2*K.1,-2*K.1,2*K.1^9,2*K.1,2*K.1,2*K.1^3,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,2*K.1^9,-2*K.1^3,-2*K.1,-2*K.1^9,-2*K.1^3,-2*K.1^9,-2*K.1,2*K.1^3,2*K.1,2*K.1^7,2*K.1^9,-2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1^9,-2*K.1^9,-2*K.1^9,2*K.1^3,-2*K.1^3,2*K.1^9,2*K.1^7,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^6,-2*K.1^2,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^2,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^8,-2*K.1^6,2*K.1^4,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^4,2*K.1^2,2*K.1^2,-2*K.1^4,2*K.1^2,2*K.1^6,2*K.1^2,-2*K.1^6,-2*K.1^8,-2*K.1^8,-2*K.1^2,2*K.1^6,2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^6,-2*K.1^2,-2*K.1^6,-2*K.1^8,2*K.1^6,-2*K.1^2,-2*K.1^8,-2*K.1^8,-2*K.1^2,2*K.1^2,-2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^8,2*K.1^4,2*K.1^8,-2*K.1^8,-2*K.1^4,2*K.1^8,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,-2*K.1,-2*K.1^3,2*K.1^9,2*K.1^7,-2*K.1^7,-2*K.1^9,2*K.1^3,-2*K.1^7,2*K.1^9,2*K.1^9,2*K.1^9,-2*K.1^9,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1^7,-2*K.1,-2*K.1^3,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^9,2*K.1^3,2*K.1,-2*K.1^3,-2*K.1,2*K.1^7,-2*K.1,-2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^7,-2*K.1^3,-2*K.1,2*K.1^7,2*K.1^7,2*K.1,2*K.1,2*K.1^3,-2*K.1^3,2*K.1,-2*K.1,2*K.1,-2*K.1^9,-2*K.1,-2*K.1,-2*K.1^3,2*K.1,2*K.1^3,-2*K.1^9,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,-2*K.1^9,2*K.1^3,2*K.1,2*K.1^9,2*K.1^3,2*K.1^9,2*K.1,-2*K.1^3,-2*K.1,-2*K.1^7,-2*K.1^9,2*K.1^3,-2*K.1^9,2*K.1^9,2*K.1^9,2*K.1^9,2*K.1^9,-2*K.1^3,2*K.1^3,-2*K.1^9,-2*K.1^7,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^6,-2*K.1^2,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^4,2*K.1^8,2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^2,2*K.1^4,-2*K.1^6,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^6,-2*K.1^4,-2*K.1^8,2*K.1^6,-2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^8,-2*K.1^4,-2*K.1^8,2*K.1^4,2*K.1^2,2*K.1^2,2*K.1^8,-2*K.1^4,-2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^4,2*K.1^8,2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^8,2*K.1^2,2*K.1^2,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^6,2*K.1^2,2*K.1^6,-2*K.1^6,-2*K.1^2,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,-2*K.1^4,2*K.1^6,2*K.1^2,-2*K.1^2,-2*K.1^6,-2*K.1^2,2*K.1^2,2*K.1^6,-2*K.1^2,-2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,2*K.1^9,2*K.1^7,-2*K.1,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1^7,2*K.1^3,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^3,2*K.1^9,2*K.1^7,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1^7,-2*K.1^9,2*K.1^7,2*K.1^9,-2*K.1^3,2*K.1^9,2*K.1^7,-2*K.1^9,2*K.1^7,2*K.1^3,2*K.1^7,2*K.1^9,-2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^9,-2*K.1^7,2*K.1^7,-2*K.1^9,2*K.1^9,-2*K.1^9,2*K.1,2*K.1^9,2*K.1^9,2*K.1^7,-2*K.1^9,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1^7,-2*K.1^9,-2*K.1,-2*K.1^7,-2*K.1,-2*K.1^9,2*K.1^7,2*K.1^9,2*K.1^3,2*K.1,-2*K.1^7,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1^7,-2*K.1^7,2*K.1,2*K.1^3,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^4,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^8,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^8,-2*K.1^4,-2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^6,2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^2,2*K.1^4,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^2,2*K.1^4,2*K.1^6,2*K.1^6,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^8,2*K.1^6,-2*K.1^8,2*K.1^8,-2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^6,-2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^9,2*K.1^9,2*K.1^3,-2*K.1,2*K.1^9,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^9,2*K.1^7,2*K.1,2*K.1^9,-2*K.1^9,-2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^3,-2*K.1,-2*K.1^7,2*K.1,2*K.1^7,-2*K.1^9,2*K.1^7,2*K.1,-2*K.1^7,2*K.1,2*K.1^9,2*K.1,2*K.1^7,-2*K.1^9,-2*K.1^9,-2*K.1^7,-2*K.1^7,-2*K.1,2*K.1,-2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^3,2*K.1^7,2*K.1^7,2*K.1,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1^9,-2*K.1^9,2*K.1^9,2*K.1^3,-2*K.1,-2*K.1^7,-2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^7,2*K.1,2*K.1^7,2*K.1^9,2*K.1^3,-2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,-2*K.1^3,2*K.1,-2*K.1,2*K.1^3,2*K.1^9,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^2,2*K.1^4,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^2,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^6,2*K.1^6,2*K.1^2,2*K.1^6,-2*K.1^8,2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^4,-2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^6,-2*K.1^4,-2*K.1^4,-2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^2,2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^2,-2*K.1^2,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^4,-2*K.1^2,2*K.1^4,-2*K.1^4,2*K.1^2,2*K.1^4,-2*K.1^2,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^6,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1,-2*K.1,-2*K.1^7,2*K.1^9,-2*K.1,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^7,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1,-2*K.1^3,-2*K.1^9,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1^7,2*K.1^9,2*K.1^3,-2*K.1^9,-2*K.1^3,2*K.1,-2*K.1^3,-2*K.1^9,2*K.1^3,-2*K.1^9,-2*K.1,-2*K.1^9,-2*K.1^3,2*K.1,2*K.1,2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^9,2*K.1^3,-2*K.1^3,2*K.1^3,-2*K.1^7,-2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1^7,2*K.1^9,2*K.1^3,2*K.1^7,2*K.1^9,2*K.1^7,2*K.1^3,-2*K.1^9,-2*K.1^3,-2*K.1,-2*K.1^7,2*K.1^9,-2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,2*K.1^7,-2*K.1^9,2*K.1^9,-2*K.1^7,-2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^2,2*K.1^4,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^4,2*K.1^8,-2*K.1^6,2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^6,-2*K.1^6,-2*K.1^6,2*K.1^4,2*K.1^8,-2*K.1^2,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^2,-2*K.1^8,2*K.1^6,2*K.1^2,2*K.1^6,2*K.1^6,2*K.1^2,2*K.1^6,-2*K.1^8,2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^4,-2*K.1^6,-2*K.1^8,-2*K.1^2,2*K.1^8,-2*K.1^6,-2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^4,-2*K.1^8,-2*K.1^6,-2*K.1^4,-2*K.1^4,-2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^2,2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^2,-2*K.1^2,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^2,2*K.1^6,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^4,-2*K.1^2,2*K.1^4,-2*K.1^4,2*K.1^2,2*K.1^4,-2*K.1^2,2*K.1^2,-2*K.1^4,2*K.1^6,-2*K.1^8,2*K.1^6,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,2*K.1^3,2*K.1^9,-2*K.1^7,-2*K.1,2*K.1,2*K.1^7,-2*K.1^9,2*K.1,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1,2*K.1^3,2*K.1^9,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1^7,-2*K.1^9,-2*K.1^3,2*K.1^9,2*K.1^3,-2*K.1,2*K.1^3,2*K.1^9,-2*K.1^3,2*K.1^9,2*K.1,2*K.1^9,2*K.1^3,-2*K.1,-2*K.1,-2*K.1^3,-2*K.1^3,-2*K.1^9,2*K.1^9,-2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^7,2*K.1^3,2*K.1^3,2*K.1^9,-2*K.1^3,-2*K.1^9,2*K.1^7,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1^7,-2*K.1^9,-2*K.1^3,-2*K.1^7,-2*K.1^9,-2*K.1^7,-2*K.1^3,2*K.1^9,2*K.1^3,2*K.1,2*K.1^7,-2*K.1^9,2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,-2*K.1^7,2*K.1^9,-2*K.1^9,2*K.1^7,2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(20: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,0,0,2,2,2,2,0,0,0,0,0,0,0,0,-2,2,-2,-2,-2,2,-2,2,2,-2,-2,-2,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,-2*K.1^5,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^8,2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^2,2*K.1^4,-2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^4,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^6,-2*K.1^2,2*K.1^8,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^8,2*K.1^2,-2*K.1^4,-2*K.1^8,-2*K.1^4,-2*K.1^4,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^6,2*K.1^4,2*K.1^2,2*K.1^8,-2*K.1^2,2*K.1^4,2*K.1^2,-2*K.1^2,-2*K.1^2,2*K.1^2,2*K.1^4,-2*K.1^2,2*K.1^6,2*K.1^2,2*K.1^4,2*K.1^6,2*K.1^6,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^8,2*K.1^6,-2*K.1^8,2*K.1^8,-2*K.1^6,2*K.1^6,2*K.1^2,-2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^8,2*K.1^6,-2*K.1^6,2*K.1^8,-2*K.1^6,2*K.1^6,-2*K.1^8,-2*K.1^6,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^2,-2*K.1^4,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1^7,-2*K.1,2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1^3,2*K.1,-2*K.1^9,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1^3,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^9,-2*K.1^7,-2*K.1,-2*K.1^9,2*K.1^9,2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^3,2*K.1,2*K.1^7,-2*K.1,-2*K.1^7,2*K.1^9,-2*K.1^7,-2*K.1,2*K.1^7,-2*K.1,-2*K.1^9,-2*K.1,-2*K.1^7,2*K.1^9,2*K.1^9,2*K.1^7,2*K.1^7,2*K.1,-2*K.1,2*K.1^7,-2*K.1^7,2*K.1^7,-2*K.1^3,-2*K.1^7,-2*K.1^7,-2*K.1,2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^9,2*K.1^9,2*K.1^9,2*K.1^9,-2*K.1^9,-2*K.1^3,2*K.1,2*K.1^7,2*K.1^3,2*K.1,2*K.1^3,2*K.1^7,-2*K.1,-2*K.1^7,-2*K.1^9,-2*K.1^3,2*K.1,-2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,2*K.1^3,-2*K.1,2*K.1,-2*K.1^3,-2*K.1^9,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^-10,2*K.1^10,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,-2*K.1^10,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^-10,2*K.1^-10,2*K.1^10,2*K.1^-10,2*K.1^10,2*K.1^5,-2*K.1^-10,-2*K.1^-5,-2*K.1^5,-2*K.1^10,2*K.1^-5,-2*K.1^10,2*K.1^-5,-2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-11,2*K.1^7,2*K.1^-1,2*K.1^12,2*K.1^-3,2*K.1^-8,2*K.1^-6,2*K.1^-7,2*K.1^11,2*K.1^3,2*K.1^-12,2*K.1^8,2*K.1,2*K.1^-9,2*K.1^6,2*K.1^-4,2*K.1^4,2*K.1^-2,2*K.1^2,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^-8,2*K.1^-2,2*K.1^-4,-2*K.1^12,-2*K.1,-2*K.1^-9,-2*K.1^2,2*K.1^11,2*K.1^8,-2*K.1^11,-2*K.1^8,-2*K.1^4,-2*K.1^-1,-2*K.1^6,-2*K.1^3,-2*K.1^2,-2*K.1^-12,-2*K.1^11,-2*K.1^-2,-2*K.1^3,-2*K.1^-7,-2*K.1^-12,-2*K.1^-4,-2*K.1^-2,-2*K.1^-11,-2*K.1^-7,-2*K.1^-9,-2*K.1^9,-2*K.1^-6,-2*K.1,2*K.1^-9,2*K.1^-8,-2*K.1^-8,-2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^-3,-2*K.1^-3,-2*K.1^-6,2*K.1^-6,-2*K.1^8,-2*K.1^-3,2*K.1^6,2*K.1^-12,-2*K.1^7,2*K.1^4,-2*K.1^4,-2*K.1^12,-2*K.1^-11,2*K.1^-11,2*K.1^12,-2*K.1^9,-2*K.1^7,2*K.1^7,2*K.1^9,-2*K.1^-4,2*K.1^-7,2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-11,-2*K.1^-2,2*K.1^-6,2*K.1^-3,-2*K.1,2*K.1,-2*K.1^-8,-2*K.1^-1,2*K.1^-9,-2*K.1^-3,2*K.1^7,2*K.1^12,2*K.1^2,2*K.1^8,-2*K.1^4,-2*K.1^12,2*K.1^6,-2*K.1^3,2*K.1^-11,-2*K.1^-9,2*K.1,-2*K.1^6,2*K.1^6,-2*K.1^11,2*K.1^-8,2*K.1^-1,-2*K.1^-7,-2*K.1^9,2*K.1^8,-2*K.1^11,2*K.1^-2,-2*K.1^-6,-2*K.1^8,2*K.1^4,-2*K.1,-2*K.1^4,2*K.1^-12,-2*K.1^-4,2*K.1^-9,2*K.1^3,-2*K.1^-2,2*K.1^-6,-2*K.1^-11,2*K.1^-7,-2*K.1^-12,2*K.1^-12,-2*K.1^2,2*K.1^3,2*K.1^-7,-2*K.1^-1,-2*K.1^3,2*K.1^-11,2*K.1^7,-2*K.1^-4,2*K.1^-4,-2*K.1^-9,2*K.1^11,-2*K.1^6,2*K.1^-3,2*K.1^4,-2*K.1^-12,-2*K.1^-8,2*K.1^9,-2*K.1^7,2*K.1^-2,2*K.1^-1,-2*K.1^-7,2*K.1^-4,-2*K.1^-3,-2*K.1^-6,2*K.1^12,-2*K.1^2,2*K.1^2,2*K.1^-8,-2*K.1^12,2*K.1^9,-2*K.1^9,-2*K.1^7,2*K.1^11,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^10,2*K.1^-10,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^10,-2*K.1^5,-2*K.1^-10,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^-5,2*K.1^-5,-2*K.1^10,2*K.1^10,2*K.1^-10,2*K.1^10,2*K.1^-10,2*K.1^-5,-2*K.1^10,-2*K.1^5,-2*K.1^-5,-2*K.1^-10,2*K.1^5,-2*K.1^-10,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^11,2*K.1^-7,2*K.1,2*K.1^-12,2*K.1^3,2*K.1^8,2*K.1^6,2*K.1^7,2*K.1^-11,2*K.1^-3,2*K.1^12,2*K.1^-8,2*K.1^-1,2*K.1^9,2*K.1^-6,2*K.1^4,2*K.1^-4,2*K.1^2,2*K.1^-2,2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-6,-2*K.1^8,2*K.1^2,2*K.1^4,-2*K.1^-12,-2*K.1^-1,-2*K.1^9,-2*K.1^-2,2*K.1^-11,2*K.1^-8,-2*K.1^-11,-2*K.1^-8,-2*K.1^-4,-2*K.1,-2*K.1^-6,-2*K.1^-3,-2*K.1^-2,-2*K.1^12,-2*K.1^-11,-2*K.1^2,-2*K.1^-3,-2*K.1^7,-2*K.1^12,-2*K.1^4,-2*K.1^2,-2*K.1^11,-2*K.1^7,-2*K.1^9,-2*K.1^-9,-2*K.1^6,-2*K.1^-1,2*K.1^9,2*K.1^8,-2*K.1^8,-2*K.1,2*K.1^-2,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^6,2*K.1^6,-2*K.1^-8,-2*K.1^3,2*K.1^-6,2*K.1^12,-2*K.1^-7,2*K.1^-4,-2*K.1^-4,-2*K.1^-12,-2*K.1^11,2*K.1^11,2*K.1^-12,-2*K.1^-9,-2*K.1^-7,2*K.1^-7,2*K.1^-9,-2*K.1^4,2*K.1^7,2*K.1^-1,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^11,-2*K.1^2,2*K.1^6,2*K.1^3,-2*K.1^-1,2*K.1^-1,-2*K.1^8,-2*K.1,2*K.1^9,-2*K.1^3,2*K.1^-7,2*K.1^-12,2*K.1^-2,2*K.1^-8,-2*K.1^-4,-2*K.1^-12,2*K.1^-6,-2*K.1^-3,2*K.1^11,-2*K.1^9,2*K.1^-1,-2*K.1^-6,2*K.1^-6,-2*K.1^-11,2*K.1^8,2*K.1,-2*K.1^7,-2*K.1^-9,2*K.1^-8,-2*K.1^-11,2*K.1^2,-2*K.1^6,-2*K.1^-8,2*K.1^-4,-2*K.1^-1,-2*K.1^-4,2*K.1^12,-2*K.1^4,2*K.1^9,2*K.1^-3,-2*K.1^2,2*K.1^6,-2*K.1^11,2*K.1^7,-2*K.1^12,2*K.1^12,-2*K.1^-2,2*K.1^-3,2*K.1^7,-2*K.1,-2*K.1^-3,2*K.1^11,2*K.1^-7,-2*K.1^4,2*K.1^4,-2*K.1^9,2*K.1^-11,-2*K.1^-6,2*K.1^3,2*K.1^-4,-2*K.1^12,-2*K.1^8,2*K.1^-9,-2*K.1^-7,2*K.1^2,2*K.1,-2*K.1^7,2*K.1^4,-2*K.1^3,-2*K.1^6,2*K.1^-12,-2*K.1^-2,2*K.1^-2,2*K.1^8,-2*K.1^-12,2*K.1^-9,-2*K.1^-9,-2*K.1^-7,2*K.1^-11,-2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^-10,2*K.1^10,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,-2*K.1^10,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^-10,2*K.1^-10,2*K.1^10,2*K.1^-10,2*K.1^10,2*K.1^5,-2*K.1^-10,-2*K.1^-5,-2*K.1^5,-2*K.1^10,2*K.1^-5,-2*K.1^10,2*K.1^-5,-2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^9,2*K.1^-8,2*K.1^-6,2*K.1^-3,2*K.1^7,2*K.1^2,2*K.1^-11,2*K.1^8,2*K.1^-9,2*K.1^-7,2*K.1^3,2*K.1^-2,2*K.1^6,2*K.1^-4,2*K.1^11,2*K.1,2*K.1^-1,2*K.1^-12,2*K.1^12,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^11,-2*K.1^2,2*K.1^-12,2*K.1,-2*K.1^-3,-2*K.1^6,-2*K.1^-4,-2*K.1^12,2*K.1^-9,2*K.1^-2,-2*K.1^-9,-2*K.1^-2,-2*K.1^-1,-2*K.1^-6,-2*K.1^11,-2*K.1^-7,-2*K.1^12,-2*K.1^3,-2*K.1^-9,-2*K.1^-12,-2*K.1^-7,-2*K.1^8,-2*K.1^3,-2*K.1,-2*K.1^-12,-2*K.1^9,-2*K.1^8,-2*K.1^-4,-2*K.1^4,-2*K.1^-11,-2*K.1^6,2*K.1^-4,2*K.1^2,-2*K.1^2,-2*K.1^-6,2*K.1^12,2*K.1^-6,2*K.1^7,-2*K.1^7,-2*K.1^-11,2*K.1^-11,-2*K.1^-2,-2*K.1^7,2*K.1^11,2*K.1^3,-2*K.1^-8,2*K.1^-1,-2*K.1^-1,-2*K.1^-3,-2*K.1^9,2*K.1^9,2*K.1^-3,-2*K.1^4,-2*K.1^-8,2*K.1^-8,2*K.1^4,-2*K.1,2*K.1^8,2*K.1^6,2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,-2*K.1^-12,2*K.1^-11,2*K.1^7,-2*K.1^6,2*K.1^6,-2*K.1^2,-2*K.1^-6,2*K.1^-4,-2*K.1^7,2*K.1^-8,2*K.1^-3,2*K.1^12,2*K.1^-2,-2*K.1^-1,-2*K.1^-3,2*K.1^11,-2*K.1^-7,2*K.1^9,-2*K.1^-4,2*K.1^6,-2*K.1^11,2*K.1^11,-2*K.1^-9,2*K.1^2,2*K.1^-6,-2*K.1^8,-2*K.1^4,2*K.1^-2,-2*K.1^-9,2*K.1^-12,-2*K.1^-11,-2*K.1^-2,2*K.1^-1,-2*K.1^6,-2*K.1^-1,2*K.1^3,-2*K.1,2*K.1^-4,2*K.1^-7,-2*K.1^-12,2*K.1^-11,-2*K.1^9,2*K.1^8,-2*K.1^3,2*K.1^3,-2*K.1^12,2*K.1^-7,2*K.1^8,-2*K.1^-6,-2*K.1^-7,2*K.1^9,2*K.1^-8,-2*K.1,2*K.1,-2*K.1^-4,2*K.1^-9,-2*K.1^11,2*K.1^7,2*K.1^-1,-2*K.1^3,-2*K.1^2,2*K.1^4,-2*K.1^-8,2*K.1^-12,2*K.1^-6,-2*K.1^8,2*K.1,-2*K.1^7,-2*K.1^-11,2*K.1^-3,-2*K.1^12,2*K.1^12,2*K.1^2,-2*K.1^-3,2*K.1^4,-2*K.1^4,-2*K.1^-8,2*K.1^-9,-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^10,2*K.1^-10,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^10,-2*K.1^5,-2*K.1^-10,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^-5,2*K.1^-5,-2*K.1^10,2*K.1^10,2*K.1^-10,2*K.1^10,2*K.1^-10,2*K.1^-5,-2*K.1^10,-2*K.1^5,-2*K.1^-5,-2*K.1^-10,2*K.1^5,-2*K.1^-10,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^-9,2*K.1^8,2*K.1^6,2*K.1^3,2*K.1^-7,2*K.1^-2,2*K.1^11,2*K.1^-8,2*K.1^9,2*K.1^7,2*K.1^-3,2*K.1^2,2*K.1^-6,2*K.1^4,2*K.1^-11,2*K.1^-1,2*K.1,2*K.1^12,2*K.1^-12,2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-11,-2*K.1^-2,2*K.1^12,2*K.1^-1,-2*K.1^3,-2*K.1^-6,-2*K.1^4,-2*K.1^-12,2*K.1^9,2*K.1^2,-2*K.1^9,-2*K.1^2,-2*K.1,-2*K.1^6,-2*K.1^-11,-2*K.1^7,-2*K.1^-12,-2*K.1^-3,-2*K.1^9,-2*K.1^12,-2*K.1^7,-2*K.1^-8,-2*K.1^-3,-2*K.1^-1,-2*K.1^12,-2*K.1^-9,-2*K.1^-8,-2*K.1^4,-2*K.1^-4,-2*K.1^11,-2*K.1^-6,2*K.1^4,2*K.1^-2,-2*K.1^-2,-2*K.1^6,2*K.1^-12,2*K.1^6,2*K.1^-7,-2*K.1^-7,-2*K.1^11,2*K.1^11,-2*K.1^2,-2*K.1^-7,2*K.1^-11,2*K.1^-3,-2*K.1^8,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^-9,2*K.1^-9,2*K.1^3,-2*K.1^-4,-2*K.1^8,2*K.1^8,2*K.1^-4,-2*K.1^-1,2*K.1^-8,2*K.1^-6,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-9,-2*K.1^12,2*K.1^11,2*K.1^-7,-2*K.1^-6,2*K.1^-6,-2*K.1^-2,-2*K.1^6,2*K.1^4,-2*K.1^-7,2*K.1^8,2*K.1^3,2*K.1^-12,2*K.1^2,-2*K.1,-2*K.1^3,2*K.1^-11,-2*K.1^7,2*K.1^-9,-2*K.1^4,2*K.1^-6,-2*K.1^-11,2*K.1^-11,-2*K.1^9,2*K.1^-2,2*K.1^6,-2*K.1^-8,-2*K.1^-4,2*K.1^2,-2*K.1^9,2*K.1^12,-2*K.1^11,-2*K.1^2,2*K.1,-2*K.1^-6,-2*K.1,2*K.1^-3,-2*K.1^-1,2*K.1^4,2*K.1^7,-2*K.1^12,2*K.1^11,-2*K.1^-9,2*K.1^-8,-2*K.1^-3,2*K.1^-3,-2*K.1^-12,2*K.1^7,2*K.1^-8,-2*K.1^6,-2*K.1^7,2*K.1^-9,2*K.1^8,-2*K.1^-1,2*K.1^-1,-2*K.1^4,2*K.1^9,-2*K.1^-11,2*K.1^-7,2*K.1,-2*K.1^-3,-2*K.1^-2,2*K.1^-4,-2*K.1^8,2*K.1^12,2*K.1^6,-2*K.1^-8,2*K.1^-1,-2*K.1^-7,-2*K.1^11,2*K.1^3,-2*K.1^-12,2*K.1^-12,2*K.1^-2,-2*K.1^3,2*K.1^-4,-2*K.1^-4,-2*K.1^8,2*K.1^9,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^-10,2*K.1^10,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,-2*K.1^10,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^-10,2*K.1^-10,2*K.1^10,2*K.1^-10,2*K.1^10,2*K.1^5,-2*K.1^-10,-2*K.1^-5,-2*K.1^5,-2*K.1^10,2*K.1^-5,-2*K.1^10,2*K.1^-5,-2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-6,2*K.1^-3,2*K.1^4,2*K.1^2,2*K.1^12,2*K.1^7,2*K.1^-1,2*K.1^3,2*K.1^6,2*K.1^-12,2*K.1^-2,2*K.1^-7,2*K.1^-4,2*K.1^11,2*K.1,2*K.1^-9,2*K.1^9,2*K.1^8,2*K.1^-8,2*K.1^-11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^7,2*K.1^8,2*K.1^-9,-2*K.1^2,-2*K.1^-4,-2*K.1^11,-2*K.1^-8,2*K.1^6,2*K.1^-7,-2*K.1^6,-2*K.1^-7,-2*K.1^9,-2*K.1^4,-2*K.1,-2*K.1^-12,-2*K.1^-8,-2*K.1^-2,-2*K.1^6,-2*K.1^8,-2*K.1^-12,-2*K.1^3,-2*K.1^-2,-2*K.1^-9,-2*K.1^8,-2*K.1^-6,-2*K.1^3,-2*K.1^11,-2*K.1^-11,-2*K.1^-1,-2*K.1^-4,2*K.1^11,2*K.1^7,-2*K.1^7,-2*K.1^4,2*K.1^-8,2*K.1^4,2*K.1^12,-2*K.1^12,-2*K.1^-1,2*K.1^-1,-2*K.1^-7,-2*K.1^12,2*K.1,2*K.1^-2,-2*K.1^-3,2*K.1^9,-2*K.1^9,-2*K.1^2,-2*K.1^-6,2*K.1^-6,2*K.1^2,-2*K.1^-11,-2*K.1^-3,2*K.1^-3,2*K.1^-11,-2*K.1^-9,2*K.1^3,2*K.1^-4,2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-6,-2*K.1^8,2*K.1^-1,2*K.1^12,-2*K.1^-4,2*K.1^-4,-2*K.1^7,-2*K.1^4,2*K.1^11,-2*K.1^12,2*K.1^-3,2*K.1^2,2*K.1^-8,2*K.1^-7,-2*K.1^9,-2*K.1^2,2*K.1,-2*K.1^-12,2*K.1^-6,-2*K.1^11,2*K.1^-4,-2*K.1,2*K.1,-2*K.1^6,2*K.1^7,2*K.1^4,-2*K.1^3,-2*K.1^-11,2*K.1^-7,-2*K.1^6,2*K.1^8,-2*K.1^-1,-2*K.1^-7,2*K.1^9,-2*K.1^-4,-2*K.1^9,2*K.1^-2,-2*K.1^-9,2*K.1^11,2*K.1^-12,-2*K.1^8,2*K.1^-1,-2*K.1^-6,2*K.1^3,-2*K.1^-2,2*K.1^-2,-2*K.1^-8,2*K.1^-12,2*K.1^3,-2*K.1^4,-2*K.1^-12,2*K.1^-6,2*K.1^-3,-2*K.1^-9,2*K.1^-9,-2*K.1^11,2*K.1^6,-2*K.1,2*K.1^12,2*K.1^9,-2*K.1^-2,-2*K.1^7,2*K.1^-11,-2*K.1^-3,2*K.1^8,2*K.1^4,-2*K.1^3,2*K.1^-9,-2*K.1^12,-2*K.1^-1,2*K.1^2,-2*K.1^-8,2*K.1^-8,2*K.1^7,-2*K.1^2,2*K.1^-11,-2*K.1^-11,-2*K.1^-3,2*K.1^6,-2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^10,2*K.1^-10,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^10,-2*K.1^5,-2*K.1^-10,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^-5,2*K.1^-5,-2*K.1^10,2*K.1^10,2*K.1^-10,2*K.1^10,2*K.1^-10,2*K.1^-5,-2*K.1^10,-2*K.1^5,-2*K.1^-5,-2*K.1^-10,2*K.1^5,-2*K.1^-10,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^3,2*K.1^-4,2*K.1^-2,2*K.1^-12,2*K.1^-7,2*K.1,2*K.1^-3,2*K.1^-6,2*K.1^12,2*K.1^2,2*K.1^7,2*K.1^4,2*K.1^-11,2*K.1^-1,2*K.1^9,2*K.1^-9,2*K.1^-8,2*K.1^8,2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-7,2*K.1^-8,2*K.1^9,-2*K.1^-2,-2*K.1^4,-2*K.1^-11,-2*K.1^8,2*K.1^-6,2*K.1^7,-2*K.1^-6,-2*K.1^7,-2*K.1^-9,-2*K.1^-4,-2*K.1^-1,-2*K.1^12,-2*K.1^8,-2*K.1^2,-2*K.1^-6,-2*K.1^-8,-2*K.1^12,-2*K.1^-3,-2*K.1^2,-2*K.1^9,-2*K.1^-8,-2*K.1^6,-2*K.1^-3,-2*K.1^-11,-2*K.1^11,-2*K.1,-2*K.1^4,2*K.1^-11,2*K.1^-7,-2*K.1^-7,-2*K.1^-4,2*K.1^8,2*K.1^-4,2*K.1^-12,-2*K.1^-12,-2*K.1,2*K.1,-2*K.1^7,-2*K.1^-12,2*K.1^-1,2*K.1^2,-2*K.1^3,2*K.1^-9,-2*K.1^-9,-2*K.1^-2,-2*K.1^6,2*K.1^6,2*K.1^-2,-2*K.1^11,-2*K.1^3,2*K.1^3,2*K.1^11,-2*K.1^9,2*K.1^-3,2*K.1^4,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^-8,2*K.1,2*K.1^-12,-2*K.1^4,2*K.1^4,-2*K.1^-7,-2*K.1^-4,2*K.1^-11,-2*K.1^-12,2*K.1^3,2*K.1^-2,2*K.1^8,2*K.1^7,-2*K.1^-9,-2*K.1^-2,2*K.1^-1,-2*K.1^12,2*K.1^6,-2*K.1^-11,2*K.1^4,-2*K.1^-1,2*K.1^-1,-2*K.1^-6,2*K.1^-7,2*K.1^-4,-2*K.1^-3,-2*K.1^11,2*K.1^7,-2*K.1^-6,2*K.1^-8,-2*K.1,-2*K.1^7,2*K.1^-9,-2*K.1^4,-2*K.1^-9,2*K.1^2,-2*K.1^9,2*K.1^-11,2*K.1^12,-2*K.1^-8,2*K.1,-2*K.1^6,2*K.1^-3,-2*K.1^2,2*K.1^2,-2*K.1^8,2*K.1^12,2*K.1^-3,-2*K.1^-4,-2*K.1^12,2*K.1^6,2*K.1^3,-2*K.1^9,2*K.1^9,-2*K.1^-11,2*K.1^-6,-2*K.1^-1,2*K.1^-12,2*K.1^-9,-2*K.1^2,-2*K.1^-7,2*K.1^11,-2*K.1^3,2*K.1^-8,2*K.1^-4,-2*K.1^-3,2*K.1^9,-2*K.1^-12,-2*K.1,2*K.1^-2,-2*K.1^8,2*K.1^8,2*K.1^-7,-2*K.1^-2,2*K.1^11,-2*K.1^11,-2*K.1^3,2*K.1^-6,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^-10,2*K.1^10,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,-2*K.1^10,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^-10,2*K.1^-10,2*K.1^10,2*K.1^-10,2*K.1^10,2*K.1^5,-2*K.1^-10,-2*K.1^-5,-2*K.1^5,-2*K.1^10,2*K.1^-5,-2*K.1^10,2*K.1^-5,-2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^2,2*K.1^-11,2*K.1^7,2*K.1^-8,2*K.1^12,2*K.1^9,2*K.1^-2,2*K.1^-4,2*K.1^8,2*K.1^-7,2*K.1^-12,2*K.1^11,2*K.1,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^-3,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-9,-2*K.1^12,2*K.1^3,2*K.1^6,-2*K.1^7,-2*K.1^11,-2*K.1,-2*K.1^-3,2*K.1^-4,2*K.1^-12,-2*K.1^-4,-2*K.1^-12,-2*K.1^-6,-2*K.1^-11,-2*K.1^-9,-2*K.1^8,-2*K.1^-3,-2*K.1^-7,-2*K.1^-4,-2*K.1^3,-2*K.1^8,-2*K.1^-2,-2*K.1^-7,-2*K.1^6,-2*K.1^3,-2*K.1^4,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^9,-2*K.1^11,2*K.1,2*K.1^12,-2*K.1^12,-2*K.1^-11,2*K.1^-3,2*K.1^-11,2*K.1^-8,-2*K.1^-8,-2*K.1^9,2*K.1^9,-2*K.1^-12,-2*K.1^-8,2*K.1^-9,2*K.1^-7,-2*K.1^2,2*K.1^-6,-2*K.1^-6,-2*K.1^7,-2*K.1^4,2*K.1^4,2*K.1^7,-2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1^6,2*K.1^-2,2*K.1^11,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^3,2*K.1^9,2*K.1^-8,-2*K.1^11,2*K.1^11,-2*K.1^12,-2*K.1^-11,2*K.1,-2*K.1^-8,2*K.1^2,2*K.1^7,2*K.1^-3,2*K.1^-12,-2*K.1^-6,-2*K.1^7,2*K.1^-9,-2*K.1^8,2*K.1^4,-2*K.1,2*K.1^11,-2*K.1^-9,2*K.1^-9,-2*K.1^-4,2*K.1^12,2*K.1^-11,-2*K.1^-2,-2*K.1^-1,2*K.1^-12,-2*K.1^-4,2*K.1^3,-2*K.1^9,-2*K.1^-12,2*K.1^-6,-2*K.1^11,-2*K.1^-6,2*K.1^-7,-2*K.1^6,2*K.1,2*K.1^8,-2*K.1^3,2*K.1^9,-2*K.1^4,2*K.1^-2,-2*K.1^-7,2*K.1^-7,-2*K.1^-3,2*K.1^8,2*K.1^-2,-2*K.1^-11,-2*K.1^8,2*K.1^4,2*K.1^2,-2*K.1^6,2*K.1^6,-2*K.1,2*K.1^-4,-2*K.1^-9,2*K.1^-8,2*K.1^-6,-2*K.1^-7,-2*K.1^12,2*K.1^-1,-2*K.1^2,2*K.1^3,2*K.1^-11,-2*K.1^-2,2*K.1^6,-2*K.1^-8,-2*K.1^9,2*K.1^7,-2*K.1^-3,2*K.1^-3,2*K.1^12,-2*K.1^7,2*K.1^-1,-2*K.1^-1,-2*K.1^2,2*K.1^-4,-2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^10,2*K.1^-10,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^10,-2*K.1^5,-2*K.1^-10,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^-5,2*K.1^-5,-2*K.1^10,2*K.1^10,2*K.1^-10,2*K.1^10,2*K.1^-10,2*K.1^-5,-2*K.1^10,-2*K.1^5,-2*K.1^-5,-2*K.1^-10,2*K.1^5,-2*K.1^-10,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^-4,2*K.1^-2,2*K.1^11,2*K.1^-7,2*K.1^8,2*K.1^-12,2*K.1^-9,2*K.1^2,2*K.1^4,2*K.1^-8,2*K.1^7,2*K.1^12,2*K.1^-11,2*K.1^-1,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,-2*K.1^-12,2*K.1^-3,2*K.1^-6,-2*K.1^-7,-2*K.1^-11,-2*K.1^-1,-2*K.1^3,2*K.1^4,2*K.1^12,-2*K.1^4,-2*K.1^12,-2*K.1^6,-2*K.1^11,-2*K.1^9,-2*K.1^-8,-2*K.1^3,-2*K.1^7,-2*K.1^4,-2*K.1^-3,-2*K.1^-8,-2*K.1^2,-2*K.1^7,-2*K.1^-6,-2*K.1^-3,-2*K.1^-4,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-9,-2*K.1^-11,2*K.1^-1,2*K.1^-12,-2*K.1^-12,-2*K.1^11,2*K.1^3,2*K.1^11,2*K.1^8,-2*K.1^8,-2*K.1^-9,2*K.1^-9,-2*K.1^12,-2*K.1^8,2*K.1^9,2*K.1^7,-2*K.1^-2,2*K.1^6,-2*K.1^6,-2*K.1^-7,-2*K.1^-4,2*K.1^-4,2*K.1^-7,-2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1^-6,2*K.1^2,2*K.1^-11,2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-4,-2*K.1^-3,2*K.1^-9,2*K.1^8,-2*K.1^-11,2*K.1^-11,-2*K.1^-12,-2*K.1^11,2*K.1^-1,-2*K.1^8,2*K.1^-2,2*K.1^-7,2*K.1^3,2*K.1^12,-2*K.1^6,-2*K.1^-7,2*K.1^9,-2*K.1^-8,2*K.1^-4,-2*K.1^-1,2*K.1^-11,-2*K.1^9,2*K.1^9,-2*K.1^4,2*K.1^-12,2*K.1^11,-2*K.1^2,-2*K.1,2*K.1^12,-2*K.1^4,2*K.1^-3,-2*K.1^-9,-2*K.1^12,2*K.1^6,-2*K.1^-11,-2*K.1^6,2*K.1^7,-2*K.1^-6,2*K.1^-1,2*K.1^-8,-2*K.1^-3,2*K.1^-9,-2*K.1^-4,2*K.1^2,-2*K.1^7,2*K.1^7,-2*K.1^3,2*K.1^-8,2*K.1^2,-2*K.1^11,-2*K.1^-8,2*K.1^-4,2*K.1^-2,-2*K.1^-6,2*K.1^-6,-2*K.1^-1,2*K.1^4,-2*K.1^9,2*K.1^8,2*K.1^6,-2*K.1^7,-2*K.1^-12,2*K.1,-2*K.1^-2,2*K.1^-3,2*K.1^11,-2*K.1^2,2*K.1^-6,-2*K.1^8,-2*K.1^-9,2*K.1^-7,-2*K.1^3,2*K.1^3,2*K.1^-12,-2*K.1^-7,2*K.1,-2*K.1,-2*K.1^-2,2*K.1^4,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^-10,2*K.1^10,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,-2*K.1^10,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,-2*K.1^-10,2*K.1^-10,2*K.1^10,2*K.1^-10,2*K.1^10,2*K.1^5,-2*K.1^-10,-2*K.1^-5,-2*K.1^5,-2*K.1^10,2*K.1^-5,-2*K.1^10,2*K.1^-5,-2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^12,2*K.1^9,2*K.1^-8,2*K.1^2,2*K.1^-3,2*K.1^4,2*K.1^-12,2*K.1,2*K.1^-2,2*K.1^8,2*K.1^3,2*K.1^-9,2*K.1^6,2*K.1^-4,2*K.1^11,2*K.1^-11,2*K.1^-7,2*K.1^7,2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-4,-2*K.1^-3,2*K.1^-7,2*K.1^11,-2*K.1^-8,-2*K.1^-9,-2*K.1^6,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^-11,-2*K.1^9,-2*K.1^-4,-2*K.1^-2,-2*K.1^7,-2*K.1^8,-2*K.1,-2*K.1^-7,-2*K.1^-2,-2*K.1^-12,-2*K.1^8,-2*K.1^11,-2*K.1^-7,-2*K.1^-1,-2*K.1^-12,-2*K.1^6,-2*K.1^-6,-2*K.1^4,-2*K.1^-9,2*K.1^6,2*K.1^-3,-2*K.1^-3,-2*K.1^9,2*K.1^7,2*K.1^9,2*K.1^2,-2*K.1^2,-2*K.1^4,2*K.1^4,-2*K.1^3,-2*K.1^2,2*K.1^-4,2*K.1^8,-2*K.1^12,2*K.1^-11,-2*K.1^-11,-2*K.1^-8,-2*K.1^-1,2*K.1^-1,2*K.1^-8,-2*K.1^-6,-2*K.1^12,2*K.1^12,2*K.1^-6,-2*K.1^11,2*K.1^-12,2*K.1^-9,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-7,2*K.1^4,2*K.1^2,-2*K.1^-9,2*K.1^-9,-2*K.1^-3,-2*K.1^9,2*K.1^6,-2*K.1^2,2*K.1^12,2*K.1^-8,2*K.1^7,2*K.1^3,-2*K.1^-11,-2*K.1^-8,2*K.1^-4,-2*K.1^-2,2*K.1^-1,-2*K.1^6,2*K.1^-9,-2*K.1^-4,2*K.1^-4,-2*K.1,2*K.1^-3,2*K.1^9,-2*K.1^-12,-2*K.1^-6,2*K.1^3,-2*K.1,2*K.1^-7,-2*K.1^4,-2*K.1^3,2*K.1^-11,-2*K.1^-9,-2*K.1^-11,2*K.1^8,-2*K.1^11,2*K.1^6,2*K.1^-2,-2*K.1^-7,2*K.1^4,-2*K.1^-1,2*K.1^-12,-2*K.1^8,2*K.1^8,-2*K.1^7,2*K.1^-2,2*K.1^-12,-2*K.1^9,-2*K.1^-2,2*K.1^-1,2*K.1^12,-2*K.1^11,2*K.1^11,-2*K.1^6,2*K.1,-2*K.1^-4,2*K.1^2,2*K.1^-11,-2*K.1^8,-2*K.1^-3,2*K.1^-6,-2*K.1^12,2*K.1^-7,2*K.1^9,-2*K.1^-12,2*K.1^11,-2*K.1^2,-2*K.1^4,2*K.1^-8,-2*K.1^7,2*K.1^7,2*K.1^-3,-2*K.1^-8,2*K.1^-6,-2*K.1^-6,-2*K.1^12,2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^10,2*K.1^-10,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^10,-2*K.1^5,-2*K.1^-10,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^-5,2*K.1^-5,-2*K.1^10,2*K.1^10,2*K.1^-10,2*K.1^10,2*K.1^-10,2*K.1^-5,-2*K.1^10,-2*K.1^5,-2*K.1^-5,-2*K.1^-10,2*K.1^5,-2*K.1^-10,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-12,2*K.1^-9,2*K.1^8,2*K.1^-2,2*K.1^3,2*K.1^-4,2*K.1^12,2*K.1^-1,2*K.1^2,2*K.1^-8,2*K.1^-3,2*K.1^9,2*K.1^-6,2*K.1^4,2*K.1^-11,2*K.1^11,2*K.1^7,2*K.1^-7,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^3,2*K.1^7,2*K.1^-11,-2*K.1^8,-2*K.1^9,-2*K.1^-6,-2*K.1^-7,2*K.1^-1,2*K.1^-3,-2*K.1^-1,-2*K.1^-3,-2*K.1^11,-2*K.1^-9,-2*K.1^4,-2*K.1^2,-2*K.1^-7,-2*K.1^-8,-2*K.1^-1,-2*K.1^7,-2*K.1^2,-2*K.1^12,-2*K.1^-8,-2*K.1^-11,-2*K.1^7,-2*K.1,-2*K.1^12,-2*K.1^-6,-2*K.1^6,-2*K.1^-4,-2*K.1^9,2*K.1^-6,2*K.1^3,-2*K.1^3,-2*K.1^-9,2*K.1^-7,2*K.1^-9,2*K.1^-2,-2*K.1^-2,-2*K.1^-4,2*K.1^-4,-2*K.1^-3,-2*K.1^-2,2*K.1^4,2*K.1^-8,-2*K.1^-12,2*K.1^11,-2*K.1^11,-2*K.1^8,-2*K.1,2*K.1,2*K.1^8,-2*K.1^6,-2*K.1^-12,2*K.1^-12,2*K.1^6,-2*K.1^-11,2*K.1^12,2*K.1^9,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^7,2*K.1^-4,2*K.1^-2,-2*K.1^9,2*K.1^9,-2*K.1^3,-2*K.1^-9,2*K.1^-6,-2*K.1^-2,2*K.1^-12,2*K.1^8,2*K.1^-7,2*K.1^-3,-2*K.1^11,-2*K.1^8,2*K.1^4,-2*K.1^2,2*K.1,-2*K.1^-6,2*K.1^9,-2*K.1^4,2*K.1^4,-2*K.1^-1,2*K.1^3,2*K.1^-9,-2*K.1^12,-2*K.1^6,2*K.1^-3,-2*K.1^-1,2*K.1^7,-2*K.1^-4,-2*K.1^-3,2*K.1^11,-2*K.1^9,-2*K.1^11,2*K.1^-8,-2*K.1^-11,2*K.1^-6,2*K.1^2,-2*K.1^7,2*K.1^-4,-2*K.1,2*K.1^12,-2*K.1^-8,2*K.1^-8,-2*K.1^-7,2*K.1^2,2*K.1^12,-2*K.1^-9,-2*K.1^2,2*K.1,2*K.1^-12,-2*K.1^-11,2*K.1^-11,-2*K.1^-6,2*K.1^-1,-2*K.1^4,2*K.1^-2,2*K.1^11,-2*K.1^-8,-2*K.1^3,2*K.1^6,-2*K.1^-12,2*K.1^7,2*K.1^-9,-2*K.1^12,2*K.1^-11,-2*K.1^-2,-2*K.1^-4,2*K.1^8,-2*K.1^-7,2*K.1^-7,2*K.1^3,-2*K.1^8,2*K.1^6,-2*K.1^6,-2*K.1^-12,2*K.1^-1,-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^-5,2*K.1^5,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^-5,-2*K.1^10,-2*K.1^5,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^-10,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^-10,2*K.1^-10,-2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-10,-2*K.1^-5,-2*K.1^10,-2*K.1^-10,-2*K.1^5,2*K.1^10,-2*K.1^5,2*K.1^10,-2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,2*K.1^-8,2*K.1^-4,2*K.1,2*K.1^11,2*K.1^2,2*K.1^-6,2*K.1^-12,2*K.1^-1,2*K.1^4,2*K.1^-11,2*K.1^8,2*K.1^3,2*K.1^-2,2*K.1^-7,2*K.1^7,2*K.1^9,2*K.1^-9,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1^11,2*K.1^9,2*K.1^-7,-2*K.1^-4,-2*K.1^8,-2*K.1^3,-2*K.1^-9,2*K.1^-12,2*K.1^-11,-2*K.1^-12,-2*K.1^-11,-2*K.1^7,-2*K.1^-8,-2*K.1^-2,-2*K.1^-1,-2*K.1^-9,-2*K.1^4,-2*K.1^-12,-2*K.1^9,-2*K.1^-1,-2*K.1^-6,-2*K.1^4,-2*K.1^-7,-2*K.1^9,-2*K.1^12,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,-2*K.1^2,-2*K.1^8,2*K.1^3,2*K.1^11,-2*K.1^11,-2*K.1^-8,2*K.1^-9,2*K.1^-8,2*K.1,-2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^-11,-2*K.1,2*K.1^-2,2*K.1^4,-2*K.1^6,2*K.1^7,-2*K.1^7,-2*K.1^-4,-2*K.1^12,2*K.1^12,2*K.1^-4,-2*K.1^-3,-2*K.1^6,2*K.1^6,2*K.1^-3,-2*K.1^-7,2*K.1^-6,2*K.1^8,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^9,2*K.1^2,2*K.1,-2*K.1^8,2*K.1^8,-2*K.1^11,-2*K.1^-8,2*K.1^3,-2*K.1,2*K.1^6,2*K.1^-4,2*K.1^-9,2*K.1^-11,-2*K.1^7,-2*K.1^-4,2*K.1^-2,-2*K.1^-1,2*K.1^12,-2*K.1^3,2*K.1^8,-2*K.1^-2,2*K.1^-2,-2*K.1^-12,2*K.1^11,2*K.1^-8,-2*K.1^-6,-2*K.1^-3,2*K.1^-11,-2*K.1^-12,2*K.1^9,-2*K.1^2,-2*K.1^-11,2*K.1^7,-2*K.1^8,-2*K.1^7,2*K.1^4,-2*K.1^-7,2*K.1^3,2*K.1^-1,-2*K.1^9,2*K.1^2,-2*K.1^12,2*K.1^-6,-2*K.1^4,2*K.1^4,-2*K.1^-9,2*K.1^-1,2*K.1^-6,-2*K.1^-8,-2*K.1^-1,2*K.1^12,2*K.1^6,-2*K.1^-7,2*K.1^-7,-2*K.1^3,2*K.1^-12,-2*K.1^-2,2*K.1,2*K.1^7,-2*K.1^4,-2*K.1^11,2*K.1^-3,-2*K.1^6,2*K.1^9,2*K.1^-8,-2*K.1^-6,2*K.1^-7,-2*K.1,-2*K.1^2,2*K.1^-4,-2*K.1^-9,2*K.1^-9,2*K.1^11,-2*K.1^-4,2*K.1^-3,-2*K.1^-3,-2*K.1^6,2*K.1^-12,-2*K.1^-11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^5,2*K.1^-5,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,-2*K.1^-5,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^10,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,-2*K.1^10,2*K.1^10,-2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^10,-2*K.1^5,-2*K.1^-10,-2*K.1^10,-2*K.1^-5,2*K.1^-10,-2*K.1^-5,2*K.1^-10,-2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^-12,2*K.1^-6,2*K.1^8,2*K.1^4,2*K.1^-1,2*K.1^-11,2*K.1^-2,2*K.1^6,2*K.1^12,2*K.1,2*K.1^-4,2*K.1^11,2*K.1^-8,2*K.1^-3,2*K.1^2,2*K.1^7,2*K.1^-7,2*K.1^-9,2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-11,2*K.1^-9,2*K.1^7,-2*K.1^4,-2*K.1^-8,-2*K.1^-3,-2*K.1^9,2*K.1^12,2*K.1^11,-2*K.1^12,-2*K.1^11,-2*K.1^-7,-2*K.1^8,-2*K.1^2,-2*K.1,-2*K.1^9,-2*K.1^-4,-2*K.1^12,-2*K.1^-9,-2*K.1,-2*K.1^6,-2*K.1^-4,-2*K.1^7,-2*K.1^-9,-2*K.1^-12,-2*K.1^6,-2*K.1^-3,-2*K.1^3,-2*K.1^-2,-2*K.1^-8,2*K.1^-3,2*K.1^-11,-2*K.1^-11,-2*K.1^8,2*K.1^9,2*K.1^8,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^11,-2*K.1^-1,2*K.1^2,2*K.1^-4,-2*K.1^-6,2*K.1^-7,-2*K.1^-7,-2*K.1^4,-2*K.1^-12,2*K.1^-12,2*K.1^4,-2*K.1^3,-2*K.1^-6,2*K.1^-6,2*K.1^3,-2*K.1^7,2*K.1^6,2*K.1^-8,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-12,-2*K.1^-9,2*K.1^-2,2*K.1^-1,-2*K.1^-8,2*K.1^-8,-2*K.1^-11,-2*K.1^8,2*K.1^-3,-2*K.1^-1,2*K.1^-6,2*K.1^4,2*K.1^9,2*K.1^11,-2*K.1^-7,-2*K.1^4,2*K.1^2,-2*K.1,2*K.1^-12,-2*K.1^-3,2*K.1^-8,-2*K.1^2,2*K.1^2,-2*K.1^12,2*K.1^-11,2*K.1^8,-2*K.1^6,-2*K.1^3,2*K.1^11,-2*K.1^12,2*K.1^-9,-2*K.1^-2,-2*K.1^11,2*K.1^-7,-2*K.1^-8,-2*K.1^-7,2*K.1^-4,-2*K.1^7,2*K.1^-3,2*K.1,-2*K.1^-9,2*K.1^-2,-2*K.1^-12,2*K.1^6,-2*K.1^-4,2*K.1^-4,-2*K.1^9,2*K.1,2*K.1^6,-2*K.1^8,-2*K.1,2*K.1^-12,2*K.1^-6,-2*K.1^7,2*K.1^7,-2*K.1^-3,2*K.1^12,-2*K.1^2,2*K.1^-1,2*K.1^-7,-2*K.1^-4,-2*K.1^-11,2*K.1^3,-2*K.1^-6,2*K.1^-9,2*K.1^8,-2*K.1^6,2*K.1^7,-2*K.1^-1,-2*K.1^-2,2*K.1^4,-2*K.1^9,2*K.1^9,2*K.1^-11,-2*K.1^4,2*K.1^3,-2*K.1^3,-2*K.1^-6,2*K.1^12,-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^-5,2*K.1^5,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^-5,-2*K.1^10,-2*K.1^5,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^-10,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^-10,2*K.1^-10,-2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-10,-2*K.1^-5,-2*K.1^10,-2*K.1^-10,-2*K.1^5,2*K.1^10,-2*K.1^5,2*K.1^10,-2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-8,2*K.1^-4,2*K.1^-3,2*K.1^11,2*K.1^-9,2*K.1,2*K.1^7,2*K.1^4,2*K.1^8,2*K.1^9,2*K.1^-11,2*K.1^-1,2*K.1^3,2*K.1^-2,2*K.1^-7,2*K.1^-12,2*K.1^12,2*K.1^-6,2*K.1^6,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-7,-2*K.1,2*K.1^-6,2*K.1^-12,-2*K.1^11,-2*K.1^3,-2*K.1^-2,-2*K.1^6,2*K.1^8,2*K.1^-1,-2*K.1^8,-2*K.1^-1,-2*K.1^12,-2*K.1^-3,-2*K.1^-7,-2*K.1^9,-2*K.1^6,-2*K.1^-11,-2*K.1^8,-2*K.1^-6,-2*K.1^9,-2*K.1^4,-2*K.1^-11,-2*K.1^-12,-2*K.1^-6,-2*K.1^-8,-2*K.1^4,-2*K.1^-2,-2*K.1^2,-2*K.1^7,-2*K.1^3,2*K.1^-2,2*K.1,-2*K.1,-2*K.1^-3,2*K.1^6,2*K.1^-3,2*K.1^-9,-2*K.1^-9,-2*K.1^7,2*K.1^7,-2*K.1^-1,-2*K.1^-9,2*K.1^-7,2*K.1^-11,-2*K.1^-4,2*K.1^12,-2*K.1^12,-2*K.1^11,-2*K.1^-8,2*K.1^-8,2*K.1^11,-2*K.1^2,-2*K.1^-4,2*K.1^-4,2*K.1^2,-2*K.1^-12,2*K.1^4,2*K.1^3,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-8,-2*K.1^-6,2*K.1^7,2*K.1^-9,-2*K.1^3,2*K.1^3,-2*K.1,-2*K.1^-3,2*K.1^-2,-2*K.1^-9,2*K.1^-4,2*K.1^11,2*K.1^6,2*K.1^-1,-2*K.1^12,-2*K.1^11,2*K.1^-7,-2*K.1^9,2*K.1^-8,-2*K.1^-2,2*K.1^3,-2*K.1^-7,2*K.1^-7,-2*K.1^8,2*K.1,2*K.1^-3,-2*K.1^4,-2*K.1^2,2*K.1^-1,-2*K.1^8,2*K.1^-6,-2*K.1^7,-2*K.1^-1,2*K.1^12,-2*K.1^3,-2*K.1^12,2*K.1^-11,-2*K.1^-12,2*K.1^-2,2*K.1^9,-2*K.1^-6,2*K.1^7,-2*K.1^-8,2*K.1^4,-2*K.1^-11,2*K.1^-11,-2*K.1^6,2*K.1^9,2*K.1^4,-2*K.1^-3,-2*K.1^9,2*K.1^-8,2*K.1^-4,-2*K.1^-12,2*K.1^-12,-2*K.1^-2,2*K.1^8,-2*K.1^-7,2*K.1^-9,2*K.1^12,-2*K.1^-11,-2*K.1,2*K.1^2,-2*K.1^-4,2*K.1^-6,2*K.1^-3,-2*K.1^4,2*K.1^-12,-2*K.1^-9,-2*K.1^7,2*K.1^11,-2*K.1^6,2*K.1^6,2*K.1,-2*K.1^11,2*K.1^2,-2*K.1^2,-2*K.1^-4,2*K.1^8,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^5,2*K.1^-5,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,-2*K.1^-5,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^10,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,-2*K.1^10,2*K.1^10,-2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^10,-2*K.1^5,-2*K.1^-10,-2*K.1^10,-2*K.1^-5,2*K.1^-10,-2*K.1^-5,2*K.1^-10,-2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^4,2*K.1^3,2*K.1^-11,2*K.1^9,2*K.1^-1,2*K.1^-7,2*K.1^-4,2*K.1^-8,2*K.1^-9,2*K.1^11,2*K.1,2*K.1^-3,2*K.1^2,2*K.1^7,2*K.1^12,2*K.1^-12,2*K.1^6,2*K.1^-6,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,-2*K.1^-1,2*K.1^6,2*K.1^12,-2*K.1^-11,-2*K.1^-3,-2*K.1^2,-2*K.1^-6,2*K.1^-8,2*K.1,-2*K.1^-8,-2*K.1,-2*K.1^-12,-2*K.1^3,-2*K.1^7,-2*K.1^-9,-2*K.1^-6,-2*K.1^11,-2*K.1^-8,-2*K.1^6,-2*K.1^-9,-2*K.1^-4,-2*K.1^11,-2*K.1^12,-2*K.1^6,-2*K.1^8,-2*K.1^-4,-2*K.1^2,-2*K.1^-2,-2*K.1^-7,-2*K.1^-3,2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^3,2*K.1^-6,2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1^-7,2*K.1^-7,-2*K.1,-2*K.1^9,2*K.1^7,2*K.1^11,-2*K.1^4,2*K.1^-12,-2*K.1^-12,-2*K.1^-11,-2*K.1^8,2*K.1^8,2*K.1^-11,-2*K.1^-2,-2*K.1^4,2*K.1^4,2*K.1^-2,-2*K.1^12,2*K.1^-4,2*K.1^-3,2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^6,2*K.1^-7,2*K.1^9,-2*K.1^-3,2*K.1^-3,-2*K.1^-1,-2*K.1^3,2*K.1^2,-2*K.1^9,2*K.1^4,2*K.1^-11,2*K.1^-6,2*K.1,-2*K.1^-12,-2*K.1^-11,2*K.1^7,-2*K.1^-9,2*K.1^8,-2*K.1^2,2*K.1^-3,-2*K.1^7,2*K.1^7,-2*K.1^-8,2*K.1^-1,2*K.1^3,-2*K.1^-4,-2*K.1^-2,2*K.1,-2*K.1^-8,2*K.1^6,-2*K.1^-7,-2*K.1,2*K.1^-12,-2*K.1^-3,-2*K.1^-12,2*K.1^11,-2*K.1^12,2*K.1^2,2*K.1^-9,-2*K.1^6,2*K.1^-7,-2*K.1^8,2*K.1^-4,-2*K.1^11,2*K.1^11,-2*K.1^-6,2*K.1^-9,2*K.1^-4,-2*K.1^3,-2*K.1^-9,2*K.1^8,2*K.1^4,-2*K.1^12,2*K.1^12,-2*K.1^2,2*K.1^-8,-2*K.1^7,2*K.1^9,2*K.1^-12,-2*K.1^11,-2*K.1^-1,2*K.1^-2,-2*K.1^4,2*K.1^6,2*K.1^3,-2*K.1^-4,2*K.1^12,-2*K.1^9,-2*K.1^-7,2*K.1^-11,-2*K.1^-6,2*K.1^-6,2*K.1^-1,-2*K.1^-11,2*K.1^-2,-2*K.1^-2,-2*K.1^4,2*K.1^-8,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^-5,2*K.1^5,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^-5,-2*K.1^10,-2*K.1^5,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^-10,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^-10,2*K.1^-10,-2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-10,-2*K.1^-5,-2*K.1^10,-2*K.1^-10,-2*K.1^5,2*K.1^10,-2*K.1^5,2*K.1^10,-2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^7,2*K.1^-9,2*K.1^12,2*K.1^6,2*K.1^11,2*K.1^-4,2*K.1^-3,2*K.1^9,2*K.1^-7,2*K.1^-11,2*K.1^-6,2*K.1^4,2*K.1^-12,2*K.1^8,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,-2*K.1^-4,2*K.1^-1,2*K.1^-2,-2*K.1^6,-2*K.1^-12,-2*K.1^8,-2*K.1,2*K.1^-7,2*K.1^4,-2*K.1^-7,-2*K.1^4,-2*K.1^2,-2*K.1^12,-2*K.1^3,-2*K.1^-11,-2*K.1,-2*K.1^-6,-2*K.1^-7,-2*K.1^-1,-2*K.1^-11,-2*K.1^9,-2*K.1^-6,-2*K.1^-2,-2*K.1^-1,-2*K.1^7,-2*K.1^9,-2*K.1^8,-2*K.1^-8,-2*K.1^-3,-2*K.1^-12,2*K.1^8,2*K.1^-4,-2*K.1^-4,-2*K.1^12,2*K.1,2*K.1^12,2*K.1^11,-2*K.1^11,-2*K.1^-3,2*K.1^-3,-2*K.1^4,-2*K.1^11,2*K.1^3,2*K.1^-6,-2*K.1^-9,2*K.1^2,-2*K.1^2,-2*K.1^6,-2*K.1^7,2*K.1^7,2*K.1^6,-2*K.1^-8,-2*K.1^-9,2*K.1^-9,2*K.1^-8,-2*K.1^-2,2*K.1^9,2*K.1^-12,2*K.1^-11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,-2*K.1^-1,2*K.1^-3,2*K.1^11,-2*K.1^-12,2*K.1^-12,-2*K.1^-4,-2*K.1^12,2*K.1^8,-2*K.1^11,2*K.1^-9,2*K.1^6,2*K.1,2*K.1^4,-2*K.1^2,-2*K.1^6,2*K.1^3,-2*K.1^-11,2*K.1^7,-2*K.1^8,2*K.1^-12,-2*K.1^3,2*K.1^3,-2*K.1^-7,2*K.1^-4,2*K.1^12,-2*K.1^9,-2*K.1^-8,2*K.1^4,-2*K.1^-7,2*K.1^-1,-2*K.1^-3,-2*K.1^4,2*K.1^2,-2*K.1^-12,-2*K.1^2,2*K.1^-6,-2*K.1^-2,2*K.1^8,2*K.1^-11,-2*K.1^-1,2*K.1^-3,-2*K.1^7,2*K.1^9,-2*K.1^-6,2*K.1^-6,-2*K.1,2*K.1^-11,2*K.1^9,-2*K.1^12,-2*K.1^-11,2*K.1^7,2*K.1^-9,-2*K.1^-2,2*K.1^-2,-2*K.1^8,2*K.1^-7,-2*K.1^3,2*K.1^11,2*K.1^2,-2*K.1^-6,-2*K.1^-4,2*K.1^-8,-2*K.1^-9,2*K.1^-1,2*K.1^12,-2*K.1^9,2*K.1^-2,-2*K.1^11,-2*K.1^-3,2*K.1^6,-2*K.1,2*K.1,2*K.1^-4,-2*K.1^6,2*K.1^-8,-2*K.1^-8,-2*K.1^-9,2*K.1^-7,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^5,2*K.1^-5,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,-2*K.1^-5,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^10,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,-2*K.1^10,2*K.1^10,-2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^10,-2*K.1^5,-2*K.1^-10,-2*K.1^10,-2*K.1^-5,2*K.1^-10,-2*K.1^-5,2*K.1^-10,-2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^-7,2*K.1^9,2*K.1^-12,2*K.1^-6,2*K.1^-11,2*K.1^4,2*K.1^3,2*K.1^-9,2*K.1^7,2*K.1^11,2*K.1^6,2*K.1^-4,2*K.1^12,2*K.1^-8,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-3,-2*K.1^4,2*K.1,2*K.1^2,-2*K.1^-6,-2*K.1^12,-2*K.1^-8,-2*K.1^-1,2*K.1^7,2*K.1^-4,-2*K.1^7,-2*K.1^-4,-2*K.1^-2,-2*K.1^-12,-2*K.1^-3,-2*K.1^11,-2*K.1^-1,-2*K.1^6,-2*K.1^7,-2*K.1,-2*K.1^11,-2*K.1^-9,-2*K.1^6,-2*K.1^2,-2*K.1,-2*K.1^-7,-2*K.1^-9,-2*K.1^-8,-2*K.1^8,-2*K.1^3,-2*K.1^12,2*K.1^-8,2*K.1^4,-2*K.1^4,-2*K.1^-12,2*K.1^-1,2*K.1^-12,2*K.1^-11,-2*K.1^-11,-2*K.1^3,2*K.1^3,-2*K.1^-4,-2*K.1^-11,2*K.1^-3,2*K.1^6,-2*K.1^9,2*K.1^-2,-2*K.1^-2,-2*K.1^-6,-2*K.1^-7,2*K.1^-7,2*K.1^-6,-2*K.1^8,-2*K.1^9,2*K.1^9,2*K.1^8,-2*K.1^2,2*K.1^-9,2*K.1^12,2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-7,-2*K.1,2*K.1^3,2*K.1^-11,-2*K.1^12,2*K.1^12,-2*K.1^4,-2*K.1^-12,2*K.1^-8,-2*K.1^-11,2*K.1^9,2*K.1^-6,2*K.1^-1,2*K.1^-4,-2*K.1^-2,-2*K.1^-6,2*K.1^-3,-2*K.1^11,2*K.1^-7,-2*K.1^-8,2*K.1^12,-2*K.1^-3,2*K.1^-3,-2*K.1^7,2*K.1^4,2*K.1^-12,-2*K.1^-9,-2*K.1^8,2*K.1^-4,-2*K.1^7,2*K.1,-2*K.1^3,-2*K.1^-4,2*K.1^-2,-2*K.1^12,-2*K.1^-2,2*K.1^6,-2*K.1^2,2*K.1^-8,2*K.1^11,-2*K.1,2*K.1^3,-2*K.1^-7,2*K.1^-9,-2*K.1^6,2*K.1^6,-2*K.1^-1,2*K.1^11,2*K.1^-9,-2*K.1^-12,-2*K.1^11,2*K.1^-7,2*K.1^9,-2*K.1^2,2*K.1^2,-2*K.1^-8,2*K.1^7,-2*K.1^-3,2*K.1^-11,2*K.1^-2,-2*K.1^6,-2*K.1^4,2*K.1^8,-2*K.1^9,2*K.1,2*K.1^-12,-2*K.1^-9,2*K.1^2,-2*K.1^-11,-2*K.1^3,2*K.1^-6,-2*K.1^-1,2*K.1^-1,2*K.1^4,-2*K.1^-6,2*K.1^8,-2*K.1^8,-2*K.1^9,2*K.1^7,-2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^-5,2*K.1^5,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^-5,-2*K.1^10,-2*K.1^5,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^-10,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^-10,2*K.1^-10,-2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-10,-2*K.1^-5,-2*K.1^10,-2*K.1^-10,-2*K.1^5,2*K.1^10,-2*K.1^5,2*K.1^10,-2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^11,2*K.1^2,2*K.1,2*K.1^6,2*K.1^-9,2*K.1^12,2*K.1^-11,2*K.1^3,2*K.1^-6,2*K.1^-1,2*K.1^9,2*K.1^-2,2*K.1^-7,2*K.1^-12,2*K.1^8,2*K.1^-8,2*K.1^4,2*K.1^-4,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-12,-2*K.1^-9,2*K.1^4,2*K.1^8,-2*K.1,-2*K.1^-2,-2*K.1^-7,-2*K.1^-4,2*K.1^3,2*K.1^9,-2*K.1^3,-2*K.1^9,-2*K.1^-8,-2*K.1^2,-2*K.1^-12,-2*K.1^-6,-2*K.1^-4,-2*K.1^-1,-2*K.1^3,-2*K.1^4,-2*K.1^-6,-2*K.1^-11,-2*K.1^-1,-2*K.1^8,-2*K.1^4,-2*K.1^-3,-2*K.1^-11,-2*K.1^-7,-2*K.1^7,-2*K.1^12,-2*K.1^-2,2*K.1^-7,2*K.1^-9,-2*K.1^-9,-2*K.1^2,2*K.1^-4,2*K.1^2,2*K.1^6,-2*K.1^6,-2*K.1^12,2*K.1^12,-2*K.1^9,-2*K.1^6,2*K.1^-12,2*K.1^-1,-2*K.1^11,2*K.1^-8,-2*K.1^-8,-2*K.1,-2*K.1^-3,2*K.1^-3,2*K.1,-2*K.1^7,-2*K.1^11,2*K.1^11,2*K.1^7,-2*K.1^8,2*K.1^-11,2*K.1^-2,2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-3,-2*K.1^4,2*K.1^12,2*K.1^6,-2*K.1^-2,2*K.1^-2,-2*K.1^-9,-2*K.1^2,2*K.1^-7,-2*K.1^6,2*K.1^11,2*K.1,2*K.1^-4,2*K.1^9,-2*K.1^-8,-2*K.1,2*K.1^-12,-2*K.1^-6,2*K.1^-3,-2*K.1^-7,2*K.1^-2,-2*K.1^-12,2*K.1^-12,-2*K.1^3,2*K.1^-9,2*K.1^2,-2*K.1^-11,-2*K.1^7,2*K.1^9,-2*K.1^3,2*K.1^4,-2*K.1^12,-2*K.1^9,2*K.1^-8,-2*K.1^-2,-2*K.1^-8,2*K.1^-1,-2*K.1^8,2*K.1^-7,2*K.1^-6,-2*K.1^4,2*K.1^12,-2*K.1^-3,2*K.1^-11,-2*K.1^-1,2*K.1^-1,-2*K.1^-4,2*K.1^-6,2*K.1^-11,-2*K.1^2,-2*K.1^-6,2*K.1^-3,2*K.1^11,-2*K.1^8,2*K.1^8,-2*K.1^-7,2*K.1^3,-2*K.1^-12,2*K.1^6,2*K.1^-8,-2*K.1^-1,-2*K.1^-9,2*K.1^7,-2*K.1^11,2*K.1^4,2*K.1^2,-2*K.1^-11,2*K.1^8,-2*K.1^6,-2*K.1^12,2*K.1,-2*K.1^-4,2*K.1^-4,2*K.1^-9,-2*K.1,2*K.1^7,-2*K.1^7,-2*K.1^11,2*K.1^3,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^5,2*K.1^-5,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,-2*K.1^-5,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^10,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,-2*K.1^10,2*K.1^10,-2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^10,-2*K.1^5,-2*K.1^-10,-2*K.1^10,-2*K.1^-5,2*K.1^-10,-2*K.1^-5,2*K.1^-10,-2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1^-11,2*K.1^-2,2*K.1^-1,2*K.1^-6,2*K.1^9,2*K.1^-12,2*K.1^11,2*K.1^-3,2*K.1^6,2*K.1,2*K.1^-9,2*K.1^2,2*K.1^7,2*K.1^12,2*K.1^-8,2*K.1^8,2*K.1^-4,2*K.1^4,2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^9,2*K.1^-4,2*K.1^-8,-2*K.1^-1,-2*K.1^2,-2*K.1^7,-2*K.1^4,2*K.1^-3,2*K.1^-9,-2*K.1^-3,-2*K.1^-9,-2*K.1^8,-2*K.1^-2,-2*K.1^12,-2*K.1^6,-2*K.1^4,-2*K.1,-2*K.1^-3,-2*K.1^-4,-2*K.1^6,-2*K.1^11,-2*K.1,-2*K.1^-8,-2*K.1^-4,-2*K.1^3,-2*K.1^11,-2*K.1^7,-2*K.1^-7,-2*K.1^-12,-2*K.1^2,2*K.1^7,2*K.1^9,-2*K.1^9,-2*K.1^-2,2*K.1^4,2*K.1^-2,2*K.1^-6,-2*K.1^-6,-2*K.1^-12,2*K.1^-12,-2*K.1^-9,-2*K.1^-6,2*K.1^12,2*K.1,-2*K.1^-11,2*K.1^8,-2*K.1^8,-2*K.1^-1,-2*K.1^3,2*K.1^3,2*K.1^-1,-2*K.1^-7,-2*K.1^-11,2*K.1^-11,2*K.1^-7,-2*K.1^-8,2*K.1^11,2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,-2*K.1^-4,2*K.1^-12,2*K.1^-6,-2*K.1^2,2*K.1^2,-2*K.1^9,-2*K.1^-2,2*K.1^7,-2*K.1^-6,2*K.1^-11,2*K.1^-1,2*K.1^4,2*K.1^-9,-2*K.1^8,-2*K.1^-1,2*K.1^12,-2*K.1^6,2*K.1^3,-2*K.1^7,2*K.1^2,-2*K.1^12,2*K.1^12,-2*K.1^-3,2*K.1^9,2*K.1^-2,-2*K.1^11,-2*K.1^-7,2*K.1^-9,-2*K.1^-3,2*K.1^-4,-2*K.1^-12,-2*K.1^-9,2*K.1^8,-2*K.1^2,-2*K.1^8,2*K.1,-2*K.1^-8,2*K.1^7,2*K.1^6,-2*K.1^-4,2*K.1^-12,-2*K.1^3,2*K.1^11,-2*K.1,2*K.1,-2*K.1^4,2*K.1^6,2*K.1^11,-2*K.1^-2,-2*K.1^6,2*K.1^3,2*K.1^-11,-2*K.1^-8,2*K.1^-8,-2*K.1^7,2*K.1^-3,-2*K.1^12,2*K.1^-6,2*K.1^8,-2*K.1,-2*K.1^9,2*K.1^-7,-2*K.1^-11,2*K.1^-4,2*K.1^-2,-2*K.1^11,2*K.1^-8,-2*K.1^-6,-2*K.1^-12,2*K.1^-1,-2*K.1^4,2*K.1^4,2*K.1^9,-2*K.1^-1,2*K.1^-7,-2*K.1^-7,-2*K.1^-11,2*K.1^-3,-2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^-5,2*K.1^5,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^-5,-2*K.1^10,-2*K.1^5,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^-10,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^-10,2*K.1^-10,-2*K.1^-5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-10,-2*K.1^-5,-2*K.1^10,-2*K.1^-10,-2*K.1^5,2*K.1^10,-2*K.1^5,2*K.1^10,-2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^7,2*K.1^-9,2*K.1^-4,2*K.1^6,2*K.1^-8,2*K.1^-1,2*K.1^-2,2*K.1^4,2*K.1^9,2*K.1^-6,2*K.1^-7,2*K.1^-12,2*K.1^8,2*K.1^3,2*K.1^-3,2*K.1^-11,2*K.1^11,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^6,2*K.1^-11,2*K.1^3,-2*K.1^-9,-2*K.1^-7,-2*K.1^-12,-2*K.1^11,2*K.1^-2,2*K.1^-6,-2*K.1^-2,-2*K.1^-6,-2*K.1^-3,-2*K.1^7,-2*K.1^8,-2*K.1^4,-2*K.1^11,-2*K.1^9,-2*K.1^-2,-2*K.1^-11,-2*K.1^4,-2*K.1^-1,-2*K.1^9,-2*K.1^3,-2*K.1^-11,-2*K.1^2,-2*K.1^-1,-2*K.1^-12,-2*K.1^12,-2*K.1^-8,-2*K.1^-7,2*K.1^-12,2*K.1^6,-2*K.1^6,-2*K.1^7,2*K.1^11,2*K.1^7,2*K.1^-4,-2*K.1^-4,-2*K.1^-8,2*K.1^-8,-2*K.1^-6,-2*K.1^-4,2*K.1^8,2*K.1^9,-2*K.1,2*K.1^-3,-2*K.1^-3,-2*K.1^-9,-2*K.1^2,2*K.1^2,2*K.1^-9,-2*K.1^12,-2*K.1,2*K.1,2*K.1^12,-2*K.1^3,2*K.1^-1,2*K.1^-7,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-11,2*K.1^-8,2*K.1^-4,-2*K.1^-7,2*K.1^-7,-2*K.1^6,-2*K.1^7,2*K.1^-12,-2*K.1^-4,2*K.1,2*K.1^-9,2*K.1^11,2*K.1^-6,-2*K.1^-3,-2*K.1^-9,2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1^-12,2*K.1^-7,-2*K.1^8,2*K.1^8,-2*K.1^-2,2*K.1^6,2*K.1^7,-2*K.1^-1,-2*K.1^12,2*K.1^-6,-2*K.1^-2,2*K.1^-11,-2*K.1^-8,-2*K.1^-6,2*K.1^-3,-2*K.1^-7,-2*K.1^-3,2*K.1^9,-2*K.1^3,2*K.1^-12,2*K.1^4,-2*K.1^-11,2*K.1^-8,-2*K.1^2,2*K.1^-1,-2*K.1^9,2*K.1^9,-2*K.1^11,2*K.1^4,2*K.1^-1,-2*K.1^7,-2*K.1^4,2*K.1^2,2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^-12,2*K.1^-2,-2*K.1^8,2*K.1^-4,2*K.1^-3,-2*K.1^9,-2*K.1^6,2*K.1^12,-2*K.1,2*K.1^-11,2*K.1^7,-2*K.1^-1,2*K.1^3,-2*K.1^-4,-2*K.1^-8,2*K.1^-9,-2*K.1^11,2*K.1^11,2*K.1^6,-2*K.1^-9,2*K.1^12,-2*K.1^12,-2*K.1,2*K.1^-2,-2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,-2,-2,2,2,0,0,2*K.1^5,2*K.1^-5,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,-2*K.1^-5,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^10,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,-2*K.1^10,2*K.1^10,-2*K.1^5,2*K.1^5,2*K.1^-5,2*K.1^5,2*K.1^-5,2*K.1^10,-2*K.1^5,-2*K.1^-10,-2*K.1^10,-2*K.1^-5,2*K.1^-10,-2*K.1^-5,2*K.1^-10,-2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-7,2*K.1^9,2*K.1^4,2*K.1^-6,2*K.1^8,2*K.1,2*K.1^2,2*K.1^-4,2*K.1^-9,2*K.1^6,2*K.1^7,2*K.1^12,2*K.1^-8,2*K.1^-3,2*K.1^3,2*K.1^11,2*K.1^-11,2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-8,-2*K.1^-6,2*K.1^11,2*K.1^-3,-2*K.1^9,-2*K.1^7,-2*K.1^12,-2*K.1^-11,2*K.1^2,2*K.1^6,-2*K.1^2,-2*K.1^6,-2*K.1^3,-2*K.1^-7,-2*K.1^-8,-2*K.1^-4,-2*K.1^-11,-2*K.1^-9,-2*K.1^2,-2*K.1^11,-2*K.1^-4,-2*K.1,-2*K.1^-9,-2*K.1^-3,-2*K.1^11,-2*K.1^-2,-2*K.1,-2*K.1^12,-2*K.1^-12,-2*K.1^8,-2*K.1^7,2*K.1^12,2*K.1^-6,-2*K.1^-6,-2*K.1^-7,2*K.1^-11,2*K.1^-7,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^4,2*K.1^-8,2*K.1^-9,-2*K.1^-1,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^-2,2*K.1^-2,2*K.1^9,-2*K.1^-12,-2*K.1^-1,2*K.1^-1,2*K.1^-12,-2*K.1^-3,2*K.1,2*K.1^7,2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1^11,2*K.1^8,2*K.1^4,-2*K.1^7,2*K.1^7,-2*K.1^-6,-2*K.1^-7,2*K.1^12,-2*K.1^4,2*K.1^-1,2*K.1^9,2*K.1^-11,2*K.1^6,-2*K.1^3,-2*K.1^9,2*K.1^-8,-2*K.1^-4,2*K.1^-2,-2*K.1^12,2*K.1^7,-2*K.1^-8,2*K.1^-8,-2*K.1^2,2*K.1^-6,2*K.1^-7,-2*K.1,-2*K.1^-12,2*K.1^6,-2*K.1^2,2*K.1^11,-2*K.1^8,-2*K.1^6,2*K.1^3,-2*K.1^7,-2*K.1^3,2*K.1^-9,-2*K.1^-3,2*K.1^12,2*K.1^-4,-2*K.1^11,2*K.1^8,-2*K.1^-2,2*K.1,-2*K.1^-9,2*K.1^-9,-2*K.1^-11,2*K.1^-4,2*K.1,-2*K.1^-7,-2*K.1^-4,2*K.1^-2,2*K.1^-1,-2*K.1^-3,2*K.1^-3,-2*K.1^12,2*K.1^2,-2*K.1^-8,2*K.1^4,2*K.1^3,-2*K.1^-9,-2*K.1^-6,2*K.1^-12,-2*K.1^-1,2*K.1^11,2*K.1^-7,-2*K.1,2*K.1^-3,-2*K.1^4,-2*K.1^8,2*K.1^9,-2*K.1^-11,2*K.1^-11,2*K.1^-6,-2*K.1^9,2*K.1^-12,-2*K.1^-12,-2*K.1^-1,2*K.1^2,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^-10,2*K.1^10,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,-2*K.1^10,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^-10,-2*K.1^-10,-2*K.1^10,-2*K.1^-10,-2*K.1^10,-2*K.1^5,2*K.1^-10,2*K.1^-5,2*K.1^5,2*K.1^10,-2*K.1^-5,2*K.1^10,-2*K.1^-5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-11,2*K.1^7,2*K.1^-1,2*K.1^12,2*K.1^-3,2*K.1^-8,2*K.1^-6,2*K.1^-7,2*K.1^11,2*K.1^3,2*K.1^-12,2*K.1^8,2*K.1,2*K.1^-9,2*K.1^6,2*K.1^-4,2*K.1^4,2*K.1^-2,2*K.1^2,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^6,-2*K.1^-8,2*K.1^-2,2*K.1^-4,-2*K.1^12,-2*K.1,-2*K.1^-9,-2*K.1^2,2*K.1^11,2*K.1^8,-2*K.1^11,-2*K.1^8,-2*K.1^4,-2*K.1^-1,-2*K.1^6,-2*K.1^3,-2*K.1^2,-2*K.1^-12,-2*K.1^11,-2*K.1^-2,-2*K.1^3,-2*K.1^-7,-2*K.1^-12,-2*K.1^-4,-2*K.1^-2,-2*K.1^-11,-2*K.1^-7,-2*K.1^-9,-2*K.1^9,-2*K.1^-6,-2*K.1,2*K.1^-9,2*K.1^-8,-2*K.1^-8,-2*K.1^-1,2*K.1^2,2*K.1^-1,2*K.1^-3,-2*K.1^-3,-2*K.1^-6,2*K.1^-6,-2*K.1^8,-2*K.1^-3,2*K.1^6,2*K.1^-12,-2*K.1^7,2*K.1^4,-2*K.1^4,-2*K.1^12,-2*K.1^-11,2*K.1^-11,2*K.1^12,-2*K.1^9,-2*K.1^7,2*K.1^7,2*K.1^9,-2*K.1^-4,2*K.1^-7,2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-11,2*K.1^-2,-2*K.1^-6,-2*K.1^-3,2*K.1,-2*K.1,2*K.1^-8,2*K.1^-1,-2*K.1^-9,2*K.1^-3,-2*K.1^7,-2*K.1^12,-2*K.1^2,-2*K.1^8,2*K.1^4,2*K.1^12,-2*K.1^6,2*K.1^3,-2*K.1^-11,2*K.1^-9,-2*K.1,2*K.1^6,-2*K.1^6,2*K.1^11,-2*K.1^-8,-2*K.1^-1,2*K.1^-7,2*K.1^9,-2*K.1^8,2*K.1^11,-2*K.1^-2,2*K.1^-6,2*K.1^8,-2*K.1^4,2*K.1,2*K.1^4,-2*K.1^-12,2*K.1^-4,-2*K.1^-9,-2*K.1^3,2*K.1^-2,-2*K.1^-6,2*K.1^-11,-2*K.1^-7,2*K.1^-12,-2*K.1^-12,2*K.1^2,-2*K.1^3,-2*K.1^-7,2*K.1^-1,2*K.1^3,-2*K.1^-11,-2*K.1^7,2*K.1^-4,-2*K.1^-4,2*K.1^-9,-2*K.1^11,2*K.1^6,-2*K.1^-3,-2*K.1^4,2*K.1^-12,2*K.1^-8,-2*K.1^9,2*K.1^7,-2*K.1^-2,-2*K.1^-1,2*K.1^-7,-2*K.1^-4,2*K.1^-3,2*K.1^-6,-2*K.1^12,2*K.1^2,-2*K.1^2,-2*K.1^-8,2*K.1^12,-2*K.1^9,2*K.1^9,2*K.1^7,-2*K.1^11,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^10,2*K.1^-10,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^10,-2*K.1^5,-2*K.1^-10,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-5,2*K.1^10,-2*K.1^10,-2*K.1^-10,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,2*K.1^10,2*K.1^5,2*K.1^-5,2*K.1^-10,-2*K.1^5,2*K.1^-10,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^11,2*K.1^-7,2*K.1,2*K.1^-12,2*K.1^3,2*K.1^8,2*K.1^6,2*K.1^7,2*K.1^-11,2*K.1^-3,2*K.1^12,2*K.1^-8,2*K.1^-1,2*K.1^9,2*K.1^-6,2*K.1^4,2*K.1^-4,2*K.1^2,2*K.1^-2,2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-6,-2*K.1^8,2*K.1^2,2*K.1^4,-2*K.1^-12,-2*K.1^-1,-2*K.1^9,-2*K.1^-2,2*K.1^-11,2*K.1^-8,-2*K.1^-11,-2*K.1^-8,-2*K.1^-4,-2*K.1,-2*K.1^-6,-2*K.1^-3,-2*K.1^-2,-2*K.1^12,-2*K.1^-11,-2*K.1^2,-2*K.1^-3,-2*K.1^7,-2*K.1^12,-2*K.1^4,-2*K.1^2,-2*K.1^11,-2*K.1^7,-2*K.1^9,-2*K.1^-9,-2*K.1^6,-2*K.1^-1,2*K.1^9,2*K.1^8,-2*K.1^8,-2*K.1,2*K.1^-2,2*K.1,2*K.1^3,-2*K.1^3,-2*K.1^6,2*K.1^6,-2*K.1^-8,-2*K.1^3,2*K.1^-6,2*K.1^12,-2*K.1^-7,2*K.1^-4,-2*K.1^-4,-2*K.1^-12,-2*K.1^11,2*K.1^11,2*K.1^-12,-2*K.1^-9,-2*K.1^-7,2*K.1^-7,2*K.1^-9,-2*K.1^4,2*K.1^7,2*K.1^-1,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^11,2*K.1^2,-2*K.1^6,-2*K.1^3,2*K.1^-1,-2*K.1^-1,2*K.1^8,2*K.1,-2*K.1^9,2*K.1^3,-2*K.1^-7,-2*K.1^-12,-2*K.1^-2,-2*K.1^-8,2*K.1^-4,2*K.1^-12,-2*K.1^-6,2*K.1^-3,-2*K.1^11,2*K.1^9,-2*K.1^-1,2*K.1^-6,-2*K.1^-6,2*K.1^-11,-2*K.1^8,-2*K.1,2*K.1^7,2*K.1^-9,-2*K.1^-8,2*K.1^-11,-2*K.1^2,2*K.1^6,2*K.1^-8,-2*K.1^-4,2*K.1^-1,2*K.1^-4,-2*K.1^12,2*K.1^4,-2*K.1^9,-2*K.1^-3,2*K.1^2,-2*K.1^6,2*K.1^11,-2*K.1^7,2*K.1^12,-2*K.1^12,2*K.1^-2,-2*K.1^-3,-2*K.1^7,2*K.1,2*K.1^-3,-2*K.1^11,-2*K.1^-7,2*K.1^4,-2*K.1^4,2*K.1^9,-2*K.1^-11,2*K.1^-6,-2*K.1^3,-2*K.1^-4,2*K.1^12,2*K.1^8,-2*K.1^-9,2*K.1^-7,-2*K.1^2,-2*K.1,2*K.1^7,-2*K.1^4,2*K.1^3,2*K.1^6,-2*K.1^-12,2*K.1^-2,-2*K.1^-2,-2*K.1^8,2*K.1^-12,-2*K.1^-9,2*K.1^-9,2*K.1^-7,-2*K.1^-11,2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^-10,2*K.1^10,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,-2*K.1^10,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^-10,-2*K.1^-10,-2*K.1^10,-2*K.1^-10,-2*K.1^10,-2*K.1^5,2*K.1^-10,2*K.1^-5,2*K.1^5,2*K.1^10,-2*K.1^-5,2*K.1^10,-2*K.1^-5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^9,2*K.1^-8,2*K.1^-6,2*K.1^-3,2*K.1^7,2*K.1^2,2*K.1^-11,2*K.1^8,2*K.1^-9,2*K.1^-7,2*K.1^3,2*K.1^-2,2*K.1^6,2*K.1^-4,2*K.1^11,2*K.1,2*K.1^-1,2*K.1^-12,2*K.1^12,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^11,-2*K.1^2,2*K.1^-12,2*K.1,-2*K.1^-3,-2*K.1^6,-2*K.1^-4,-2*K.1^12,2*K.1^-9,2*K.1^-2,-2*K.1^-9,-2*K.1^-2,-2*K.1^-1,-2*K.1^-6,-2*K.1^11,-2*K.1^-7,-2*K.1^12,-2*K.1^3,-2*K.1^-9,-2*K.1^-12,-2*K.1^-7,-2*K.1^8,-2*K.1^3,-2*K.1,-2*K.1^-12,-2*K.1^9,-2*K.1^8,-2*K.1^-4,-2*K.1^4,-2*K.1^-11,-2*K.1^6,2*K.1^-4,2*K.1^2,-2*K.1^2,-2*K.1^-6,2*K.1^12,2*K.1^-6,2*K.1^7,-2*K.1^7,-2*K.1^-11,2*K.1^-11,-2*K.1^-2,-2*K.1^7,2*K.1^11,2*K.1^3,-2*K.1^-8,2*K.1^-1,-2*K.1^-1,-2*K.1^-3,-2*K.1^9,2*K.1^9,2*K.1^-3,-2*K.1^4,-2*K.1^-8,2*K.1^-8,2*K.1^4,-2*K.1,2*K.1^8,2*K.1^6,2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,2*K.1^-12,-2*K.1^-11,-2*K.1^7,2*K.1^6,-2*K.1^6,2*K.1^2,2*K.1^-6,-2*K.1^-4,2*K.1^7,-2*K.1^-8,-2*K.1^-3,-2*K.1^12,-2*K.1^-2,2*K.1^-1,2*K.1^-3,-2*K.1^11,2*K.1^-7,-2*K.1^9,2*K.1^-4,-2*K.1^6,2*K.1^11,-2*K.1^11,2*K.1^-9,-2*K.1^2,-2*K.1^-6,2*K.1^8,2*K.1^4,-2*K.1^-2,2*K.1^-9,-2*K.1^-12,2*K.1^-11,2*K.1^-2,-2*K.1^-1,2*K.1^6,2*K.1^-1,-2*K.1^3,2*K.1,-2*K.1^-4,-2*K.1^-7,2*K.1^-12,-2*K.1^-11,2*K.1^9,-2*K.1^8,2*K.1^3,-2*K.1^3,2*K.1^12,-2*K.1^-7,-2*K.1^8,2*K.1^-6,2*K.1^-7,-2*K.1^9,-2*K.1^-8,2*K.1,-2*K.1,2*K.1^-4,-2*K.1^-9,2*K.1^11,-2*K.1^7,-2*K.1^-1,2*K.1^3,2*K.1^2,-2*K.1^4,2*K.1^-8,-2*K.1^-12,-2*K.1^-6,2*K.1^8,-2*K.1,2*K.1^7,2*K.1^-11,-2*K.1^-3,2*K.1^12,-2*K.1^12,-2*K.1^2,2*K.1^-3,-2*K.1^4,2*K.1^4,2*K.1^-8,-2*K.1^-9,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^10,2*K.1^-10,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^10,-2*K.1^5,-2*K.1^-10,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-5,2*K.1^10,-2*K.1^10,-2*K.1^-10,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,2*K.1^10,2*K.1^5,2*K.1^-5,2*K.1^-10,-2*K.1^5,2*K.1^-10,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^-9,2*K.1^8,2*K.1^6,2*K.1^3,2*K.1^-7,2*K.1^-2,2*K.1^11,2*K.1^-8,2*K.1^9,2*K.1^7,2*K.1^-3,2*K.1^2,2*K.1^-6,2*K.1^4,2*K.1^-11,2*K.1^-1,2*K.1,2*K.1^12,2*K.1^-12,2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-11,-2*K.1^-2,2*K.1^12,2*K.1^-1,-2*K.1^3,-2*K.1^-6,-2*K.1^4,-2*K.1^-12,2*K.1^9,2*K.1^2,-2*K.1^9,-2*K.1^2,-2*K.1,-2*K.1^6,-2*K.1^-11,-2*K.1^7,-2*K.1^-12,-2*K.1^-3,-2*K.1^9,-2*K.1^12,-2*K.1^7,-2*K.1^-8,-2*K.1^-3,-2*K.1^-1,-2*K.1^12,-2*K.1^-9,-2*K.1^-8,-2*K.1^4,-2*K.1^-4,-2*K.1^11,-2*K.1^-6,2*K.1^4,2*K.1^-2,-2*K.1^-2,-2*K.1^6,2*K.1^-12,2*K.1^6,2*K.1^-7,-2*K.1^-7,-2*K.1^11,2*K.1^11,-2*K.1^2,-2*K.1^-7,2*K.1^-11,2*K.1^-3,-2*K.1^8,2*K.1,-2*K.1,-2*K.1^3,-2*K.1^-9,2*K.1^-9,2*K.1^3,-2*K.1^-4,-2*K.1^8,2*K.1^8,2*K.1^-4,-2*K.1^-1,2*K.1^-8,2*K.1^-6,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-9,2*K.1^12,-2*K.1^11,-2*K.1^-7,2*K.1^-6,-2*K.1^-6,2*K.1^-2,2*K.1^6,-2*K.1^4,2*K.1^-7,-2*K.1^8,-2*K.1^3,-2*K.1^-12,-2*K.1^2,2*K.1,2*K.1^3,-2*K.1^-11,2*K.1^7,-2*K.1^-9,2*K.1^4,-2*K.1^-6,2*K.1^-11,-2*K.1^-11,2*K.1^9,-2*K.1^-2,-2*K.1^6,2*K.1^-8,2*K.1^-4,-2*K.1^2,2*K.1^9,-2*K.1^12,2*K.1^11,2*K.1^2,-2*K.1,2*K.1^-6,2*K.1,-2*K.1^-3,2*K.1^-1,-2*K.1^4,-2*K.1^7,2*K.1^12,-2*K.1^11,2*K.1^-9,-2*K.1^-8,2*K.1^-3,-2*K.1^-3,2*K.1^-12,-2*K.1^7,-2*K.1^-8,2*K.1^6,2*K.1^7,-2*K.1^-9,-2*K.1^8,2*K.1^-1,-2*K.1^-1,2*K.1^4,-2*K.1^9,2*K.1^-11,-2*K.1^-7,-2*K.1,2*K.1^-3,2*K.1^-2,-2*K.1^-4,2*K.1^8,-2*K.1^12,-2*K.1^6,2*K.1^-8,-2*K.1^-1,2*K.1^-7,2*K.1^11,-2*K.1^3,2*K.1^-12,-2*K.1^-12,-2*K.1^-2,2*K.1^3,-2*K.1^-4,2*K.1^-4,2*K.1^8,-2*K.1^9,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^-10,2*K.1^10,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,-2*K.1^10,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^-10,-2*K.1^-10,-2*K.1^10,-2*K.1^-10,-2*K.1^10,-2*K.1^5,2*K.1^-10,2*K.1^-5,2*K.1^5,2*K.1^10,-2*K.1^-5,2*K.1^10,-2*K.1^-5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-6,2*K.1^-3,2*K.1^4,2*K.1^2,2*K.1^12,2*K.1^7,2*K.1^-1,2*K.1^3,2*K.1^6,2*K.1^-12,2*K.1^-2,2*K.1^-7,2*K.1^-4,2*K.1^11,2*K.1,2*K.1^-9,2*K.1^9,2*K.1^8,2*K.1^-8,2*K.1^-11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^7,2*K.1^8,2*K.1^-9,-2*K.1^2,-2*K.1^-4,-2*K.1^11,-2*K.1^-8,2*K.1^6,2*K.1^-7,-2*K.1^6,-2*K.1^-7,-2*K.1^9,-2*K.1^4,-2*K.1,-2*K.1^-12,-2*K.1^-8,-2*K.1^-2,-2*K.1^6,-2*K.1^8,-2*K.1^-12,-2*K.1^3,-2*K.1^-2,-2*K.1^-9,-2*K.1^8,-2*K.1^-6,-2*K.1^3,-2*K.1^11,-2*K.1^-11,-2*K.1^-1,-2*K.1^-4,2*K.1^11,2*K.1^7,-2*K.1^7,-2*K.1^4,2*K.1^-8,2*K.1^4,2*K.1^12,-2*K.1^12,-2*K.1^-1,2*K.1^-1,-2*K.1^-7,-2*K.1^12,2*K.1,2*K.1^-2,-2*K.1^-3,2*K.1^9,-2*K.1^9,-2*K.1^2,-2*K.1^-6,2*K.1^-6,2*K.1^2,-2*K.1^-11,-2*K.1^-3,2*K.1^-3,2*K.1^-11,-2*K.1^-9,2*K.1^3,2*K.1^-4,2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-6,2*K.1^8,-2*K.1^-1,-2*K.1^12,2*K.1^-4,-2*K.1^-4,2*K.1^7,2*K.1^4,-2*K.1^11,2*K.1^12,-2*K.1^-3,-2*K.1^2,-2*K.1^-8,-2*K.1^-7,2*K.1^9,2*K.1^2,-2*K.1,2*K.1^-12,-2*K.1^-6,2*K.1^11,-2*K.1^-4,2*K.1,-2*K.1,2*K.1^6,-2*K.1^7,-2*K.1^4,2*K.1^3,2*K.1^-11,-2*K.1^-7,2*K.1^6,-2*K.1^8,2*K.1^-1,2*K.1^-7,-2*K.1^9,2*K.1^-4,2*K.1^9,-2*K.1^-2,2*K.1^-9,-2*K.1^11,-2*K.1^-12,2*K.1^8,-2*K.1^-1,2*K.1^-6,-2*K.1^3,2*K.1^-2,-2*K.1^-2,2*K.1^-8,-2*K.1^-12,-2*K.1^3,2*K.1^4,2*K.1^-12,-2*K.1^-6,-2*K.1^-3,2*K.1^-9,-2*K.1^-9,2*K.1^11,-2*K.1^6,2*K.1,-2*K.1^12,-2*K.1^9,2*K.1^-2,2*K.1^7,-2*K.1^-11,2*K.1^-3,-2*K.1^8,-2*K.1^4,2*K.1^3,-2*K.1^-9,2*K.1^12,2*K.1^-1,-2*K.1^2,2*K.1^-8,-2*K.1^-8,-2*K.1^7,2*K.1^2,-2*K.1^-11,2*K.1^-11,2*K.1^-3,-2*K.1^6,2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^10,2*K.1^-10,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^10,-2*K.1^5,-2*K.1^-10,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-5,2*K.1^10,-2*K.1^10,-2*K.1^-10,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,2*K.1^10,2*K.1^5,2*K.1^-5,2*K.1^-10,-2*K.1^5,2*K.1^-10,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^3,2*K.1^-4,2*K.1^-2,2*K.1^-12,2*K.1^-7,2*K.1,2*K.1^-3,2*K.1^-6,2*K.1^12,2*K.1^2,2*K.1^7,2*K.1^4,2*K.1^-11,2*K.1^-1,2*K.1^9,2*K.1^-9,2*K.1^-8,2*K.1^8,2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1^-7,2*K.1^-8,2*K.1^9,-2*K.1^-2,-2*K.1^4,-2*K.1^-11,-2*K.1^8,2*K.1^-6,2*K.1^7,-2*K.1^-6,-2*K.1^7,-2*K.1^-9,-2*K.1^-4,-2*K.1^-1,-2*K.1^12,-2*K.1^8,-2*K.1^2,-2*K.1^-6,-2*K.1^-8,-2*K.1^12,-2*K.1^-3,-2*K.1^2,-2*K.1^9,-2*K.1^-8,-2*K.1^6,-2*K.1^-3,-2*K.1^-11,-2*K.1^11,-2*K.1,-2*K.1^4,2*K.1^-11,2*K.1^-7,-2*K.1^-7,-2*K.1^-4,2*K.1^8,2*K.1^-4,2*K.1^-12,-2*K.1^-12,-2*K.1,2*K.1,-2*K.1^7,-2*K.1^-12,2*K.1^-1,2*K.1^2,-2*K.1^3,2*K.1^-9,-2*K.1^-9,-2*K.1^-2,-2*K.1^6,2*K.1^6,2*K.1^-2,-2*K.1^11,-2*K.1^3,2*K.1^3,2*K.1^11,-2*K.1^9,2*K.1^-3,2*K.1^4,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^-8,-2*K.1,-2*K.1^-12,2*K.1^4,-2*K.1^4,2*K.1^-7,2*K.1^-4,-2*K.1^-11,2*K.1^-12,-2*K.1^3,-2*K.1^-2,-2*K.1^8,-2*K.1^7,2*K.1^-9,2*K.1^-2,-2*K.1^-1,2*K.1^12,-2*K.1^6,2*K.1^-11,-2*K.1^4,2*K.1^-1,-2*K.1^-1,2*K.1^-6,-2*K.1^-7,-2*K.1^-4,2*K.1^-3,2*K.1^11,-2*K.1^7,2*K.1^-6,-2*K.1^-8,2*K.1,2*K.1^7,-2*K.1^-9,2*K.1^4,2*K.1^-9,-2*K.1^2,2*K.1^9,-2*K.1^-11,-2*K.1^12,2*K.1^-8,-2*K.1,2*K.1^6,-2*K.1^-3,2*K.1^2,-2*K.1^2,2*K.1^8,-2*K.1^12,-2*K.1^-3,2*K.1^-4,2*K.1^12,-2*K.1^6,-2*K.1^3,2*K.1^9,-2*K.1^9,2*K.1^-11,-2*K.1^-6,2*K.1^-1,-2*K.1^-12,-2*K.1^-9,2*K.1^2,2*K.1^-7,-2*K.1^11,2*K.1^3,-2*K.1^-8,-2*K.1^-4,2*K.1^-3,-2*K.1^9,2*K.1^-12,2*K.1,-2*K.1^-2,2*K.1^8,-2*K.1^8,-2*K.1^-7,2*K.1^-2,-2*K.1^11,2*K.1^11,2*K.1^3,-2*K.1^-6,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^-10,2*K.1^10,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,-2*K.1^10,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^-10,-2*K.1^-10,-2*K.1^10,-2*K.1^-10,-2*K.1^10,-2*K.1^5,2*K.1^-10,2*K.1^-5,2*K.1^5,2*K.1^10,-2*K.1^-5,2*K.1^10,-2*K.1^-5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^2,2*K.1^-11,2*K.1^7,2*K.1^-8,2*K.1^12,2*K.1^9,2*K.1^-2,2*K.1^-4,2*K.1^8,2*K.1^-7,2*K.1^-12,2*K.1^11,2*K.1,2*K.1^-9,2*K.1^6,2*K.1^-6,2*K.1^3,2*K.1^-3,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-9,-2*K.1^12,2*K.1^3,2*K.1^6,-2*K.1^7,-2*K.1^11,-2*K.1,-2*K.1^-3,2*K.1^-4,2*K.1^-12,-2*K.1^-4,-2*K.1^-12,-2*K.1^-6,-2*K.1^-11,-2*K.1^-9,-2*K.1^8,-2*K.1^-3,-2*K.1^-7,-2*K.1^-4,-2*K.1^3,-2*K.1^8,-2*K.1^-2,-2*K.1^-7,-2*K.1^6,-2*K.1^3,-2*K.1^4,-2*K.1^-2,-2*K.1,-2*K.1^-1,-2*K.1^9,-2*K.1^11,2*K.1,2*K.1^12,-2*K.1^12,-2*K.1^-11,2*K.1^-3,2*K.1^-11,2*K.1^-8,-2*K.1^-8,-2*K.1^9,2*K.1^9,-2*K.1^-12,-2*K.1^-8,2*K.1^-9,2*K.1^-7,-2*K.1^2,2*K.1^-6,-2*K.1^-6,-2*K.1^7,-2*K.1^4,2*K.1^4,2*K.1^7,-2*K.1^-1,-2*K.1^2,2*K.1^2,2*K.1^-1,-2*K.1^6,2*K.1^-2,2*K.1^11,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4,2*K.1^3,-2*K.1^9,-2*K.1^-8,2*K.1^11,-2*K.1^11,2*K.1^12,2*K.1^-11,-2*K.1,2*K.1^-8,-2*K.1^2,-2*K.1^7,-2*K.1^-3,-2*K.1^-12,2*K.1^-6,2*K.1^7,-2*K.1^-9,2*K.1^8,-2*K.1^4,2*K.1,-2*K.1^11,2*K.1^-9,-2*K.1^-9,2*K.1^-4,-2*K.1^12,-2*K.1^-11,2*K.1^-2,2*K.1^-1,-2*K.1^-12,2*K.1^-4,-2*K.1^3,2*K.1^9,2*K.1^-12,-2*K.1^-6,2*K.1^11,2*K.1^-6,-2*K.1^-7,2*K.1^6,-2*K.1,-2*K.1^8,2*K.1^3,-2*K.1^9,2*K.1^4,-2*K.1^-2,2*K.1^-7,-2*K.1^-7,2*K.1^-3,-2*K.1^8,-2*K.1^-2,2*K.1^-11,2*K.1^8,-2*K.1^4,-2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1,-2*K.1^-4,2*K.1^-9,-2*K.1^-8,-2*K.1^-6,2*K.1^-7,2*K.1^12,-2*K.1^-1,2*K.1^2,-2*K.1^3,-2*K.1^-11,2*K.1^-2,-2*K.1^6,2*K.1^-8,2*K.1^9,-2*K.1^7,2*K.1^-3,-2*K.1^-3,-2*K.1^12,2*K.1^7,-2*K.1^-1,2*K.1^-1,2*K.1^2,-2*K.1^-4,2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^10,2*K.1^-10,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^10,-2*K.1^5,-2*K.1^-10,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-5,2*K.1^10,-2*K.1^10,-2*K.1^-10,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,2*K.1^10,2*K.1^5,2*K.1^-5,2*K.1^-10,-2*K.1^5,2*K.1^-10,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^-4,2*K.1^-2,2*K.1^11,2*K.1^-7,2*K.1^8,2*K.1^-12,2*K.1^-9,2*K.1^2,2*K.1^4,2*K.1^-8,2*K.1^7,2*K.1^12,2*K.1^-11,2*K.1^-1,2*K.1^9,2*K.1^-6,2*K.1^6,2*K.1^-3,2*K.1^3,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,-2*K.1^-12,2*K.1^-3,2*K.1^-6,-2*K.1^-7,-2*K.1^-11,-2*K.1^-1,-2*K.1^3,2*K.1^4,2*K.1^12,-2*K.1^4,-2*K.1^12,-2*K.1^6,-2*K.1^11,-2*K.1^9,-2*K.1^-8,-2*K.1^3,-2*K.1^7,-2*K.1^4,-2*K.1^-3,-2*K.1^-8,-2*K.1^2,-2*K.1^7,-2*K.1^-6,-2*K.1^-3,-2*K.1^-4,-2*K.1^2,-2*K.1^-1,-2*K.1,-2*K.1^-9,-2*K.1^-11,2*K.1^-1,2*K.1^-12,-2*K.1^-12,-2*K.1^11,2*K.1^3,2*K.1^11,2*K.1^8,-2*K.1^8,-2*K.1^-9,2*K.1^-9,-2*K.1^12,-2*K.1^8,2*K.1^9,2*K.1^7,-2*K.1^-2,2*K.1^6,-2*K.1^6,-2*K.1^-7,-2*K.1^-4,2*K.1^-4,2*K.1^-7,-2*K.1,-2*K.1^-2,2*K.1^-2,2*K.1,-2*K.1^-6,2*K.1^2,2*K.1^-11,2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-4,2*K.1^-3,-2*K.1^-9,-2*K.1^8,2*K.1^-11,-2*K.1^-11,2*K.1^-12,2*K.1^11,-2*K.1^-1,2*K.1^8,-2*K.1^-2,-2*K.1^-7,-2*K.1^3,-2*K.1^12,2*K.1^6,2*K.1^-7,-2*K.1^9,2*K.1^-8,-2*K.1^-4,2*K.1^-1,-2*K.1^-11,2*K.1^9,-2*K.1^9,2*K.1^4,-2*K.1^-12,-2*K.1^11,2*K.1^2,2*K.1,-2*K.1^12,2*K.1^4,-2*K.1^-3,2*K.1^-9,2*K.1^12,-2*K.1^6,2*K.1^-11,2*K.1^6,-2*K.1^7,2*K.1^-6,-2*K.1^-1,-2*K.1^-8,2*K.1^-3,-2*K.1^-9,2*K.1^-4,-2*K.1^2,2*K.1^7,-2*K.1^7,2*K.1^3,-2*K.1^-8,-2*K.1^2,2*K.1^11,2*K.1^-8,-2*K.1^-4,-2*K.1^-2,2*K.1^-6,-2*K.1^-6,2*K.1^-1,-2*K.1^4,2*K.1^9,-2*K.1^8,-2*K.1^6,2*K.1^7,2*K.1^-12,-2*K.1,2*K.1^-2,-2*K.1^-3,-2*K.1^11,2*K.1^2,-2*K.1^-6,2*K.1^8,2*K.1^-9,-2*K.1^-7,2*K.1^3,-2*K.1^3,-2*K.1^-12,2*K.1^-7,-2*K.1,2*K.1,2*K.1^-2,-2*K.1^4,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^-10,2*K.1^10,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,-2*K.1^10,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^5,2*K.1^5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,2*K.1^-10,-2*K.1^-10,-2*K.1^10,-2*K.1^-10,-2*K.1^10,-2*K.1^5,2*K.1^-10,2*K.1^-5,2*K.1^5,2*K.1^10,-2*K.1^-5,2*K.1^10,-2*K.1^-5,2*K.1^-5,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^12,2*K.1^9,2*K.1^-8,2*K.1^2,2*K.1^-3,2*K.1^4,2*K.1^-12,2*K.1,2*K.1^-2,2*K.1^8,2*K.1^3,2*K.1^-9,2*K.1^6,2*K.1^-4,2*K.1^11,2*K.1^-11,2*K.1^-7,2*K.1^7,2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-4,-2*K.1^-3,2*K.1^-7,2*K.1^11,-2*K.1^-8,-2*K.1^-9,-2*K.1^6,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1,-2*K.1^3,-2*K.1^-11,-2*K.1^9,-2*K.1^-4,-2*K.1^-2,-2*K.1^7,-2*K.1^8,-2*K.1,-2*K.1^-7,-2*K.1^-2,-2*K.1^-12,-2*K.1^8,-2*K.1^11,-2*K.1^-7,-2*K.1^-1,-2*K.1^-12,-2*K.1^6,-2*K.1^-6,-2*K.1^4,-2*K.1^-9,2*K.1^6,2*K.1^-3,-2*K.1^-3,-2*K.1^9,2*K.1^7,2*K.1^9,2*K.1^2,-2*K.1^2,-2*K.1^4,2*K.1^4,-2*K.1^3,-2*K.1^2,2*K.1^-4,2*K.1^8,-2*K.1^12,2*K.1^-11,-2*K.1^-11,-2*K.1^-8,-2*K.1^-1,2*K.1^-1,2*K.1^-8,-2*K.1^-6,-2*K.1^12,2*K.1^12,2*K.1^-6,-2*K.1^11,2*K.1^-12,2*K.1^-9,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-1,2*K.1^-7,-2*K.1^4,-2*K.1^2,2*K.1^-9,-2*K.1^-9,2*K.1^-3,2*K.1^9,-2*K.1^6,2*K.1^2,-2*K.1^12,-2*K.1^-8,-2*K.1^7,-2*K.1^3,2*K.1^-11,2*K.1^-8,-2*K.1^-4,2*K.1^-2,-2*K.1^-1,2*K.1^6,-2*K.1^-9,2*K.1^-4,-2*K.1^-4,2*K.1,-2*K.1^-3,-2*K.1^9,2*K.1^-12,2*K.1^-6,-2*K.1^3,2*K.1,-2*K.1^-7,2*K.1^4,2*K.1^3,-2*K.1^-11,2*K.1^-9,2*K.1^-11,-2*K.1^8,2*K.1^11,-2*K.1^6,-2*K.1^-2,2*K.1^-7,-2*K.1^4,2*K.1^-1,-2*K.1^-12,2*K.1^8,-2*K.1^8,2*K.1^7,-2*K.1^-2,-2*K.1^-12,2*K.1^9,2*K.1^-2,-2*K.1^-1,-2*K.1^12,2*K.1^11,-2*K.1^11,2*K.1^6,-2*K.1,2*K.1^-4,-2*K.1^2,-2*K.1^-11,2*K.1^8,2*K.1^-3,-2*K.1^-6,2*K.1^12,-2*K.1^-7,-2*K.1^9,2*K.1^-12,-2*K.1^11,2*K.1^2,2*K.1^4,-2*K.1^-8,2*K.1^7,-2*K.1^7,-2*K.1^-3,2*K.1^-8,-2*K.1^-6,2*K.1^-6,2*K.1^12,-2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^10,2*K.1^-10,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^-5,-2*K.1^-10,-2*K.1^10,-2*K.1^5,-2*K.1^-10,2*K.1^-10,-2*K.1^5,-2*K.1^10,-2*K.1^-5,2*K.1^-5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-5,2*K.1^10,-2*K.1^10,-2*K.1^-10,-2*K.1^10,-2*K.1^-10,-2*K.1^-5,2*K.1^10,2*K.1^5,2*K.1^-5,2*K.1^-10,-2*K.1^5,2*K.1^-10,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1,2*K.1^-12,2*K.1^-9,2*K.1^8,2*K.1^-2,2*K.1^3,2*K.1^-4,2*K.1^12,2*K.1^-1,2*K.1^2,2*K.1^-8,2*K.1^-3,2*K.1^9,2*K.1^-6,2*K.1^4,2*K.1^-11,2*K.1^11,2*K.1^7,2*K.1^-7,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^3,2*K.1^7,2*K.1^-11,-2*K.1^8,-2*K.1^9,-2*K.1^-6,-2*K.1^-7,2*K.1^-1,2*K.1^-3,-2*K.1^-1,-2*K.1^-3,-2*K.1^11,-2*K.1^-9,-2*K.1^4,-2*K.1^2,-2*K.1^-7,-2*K.1^-8,-2*K.1^-1,-2*K.1^7,-2*K.1^2,-2*K.1^12,-2*K.1^-8,-2*K.1^-11,-2*K.1^7,-2*K.1,-2*K.1^12,-2*K.1^-6,-2*K.1^6,-2*K.1^-4,-2*K.1^9,2*K.1^-6,2*K.1^3,-2*K.1^3,-2*K.1^-9,2*K.1^-7,2*K.1^-9,2*K.1^-2,-2*K.1^-2,-2*K.1^-4,2*K.1^-4,-2*K.1^-3,-2*K.1^-2,2*K.1^4,2*K.1^-8,-2*K.1^-12,2*K.1^11,-2*K.1^11,-2*K.1^8,-2*K.1,2*K.1,2*K.1^8,-2*K.1^6,-2*K.1^-12,2*K.1^-12,2*K.1^6,-2*K.1^-11,2*K.1^12,2*K.1^9,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1^7,-2*K.1^-4,-2*K.1^-2,2*K.1^9,-2*K.1^9,2*K.1^3,2*K.1^-9,-2*K.1^-6,2*K.1^-2,-2*K.1^-12,-2*K.1^8,-2*K.1^-7,-2*K.1^-3,2*K.1^11,2*K.1^8,-2*K.1^4,2*K.1^2,-2*K.1,2*K.1^-6,-2*K.1^9,2*K.1^4,-2*K.1^4,2*K.1^-1,-2*K.1^3,-2*K.1^-9,2*K.1^12,2*K.1^6,-2*K.1^-3,2*K.1^-1,-2*K.1^7,2*K.1^-4,2*K.1^-3,-2*K.1^11,2*K.1^9,2*K.1^11,-2*K.1^-8,2*K.1^-11,-2*K.1^-6,-2*K.1^2,2*K.1^7,-2*K.1^-4,2*K.1,-2*K.1^12,2*K.1^-8,-2*K.1^-8,2*K.1^-7,-2*K.1^2,-2*K.1^12,2*K.1^-9,2*K.1^2,-2*K.1,-2*K.1^-12,2*K.1^-11,-2*K.1^-11,2*K.1^-6,-2*K.1^-1,2*K.1^4,-2*K.1^-2,-2*K.1^11,2*K.1^-8,2*K.1^3,-2*K.1^6,2*K.1^-12,-2*K.1^7,-2*K.1^-9,2*K.1^12,-2*K.1^-11,2*K.1^-2,2*K.1^-4,-2*K.1^8,2*K.1^-7,-2*K.1^-7,-2*K.1^3,2*K.1^8,-2*K.1^6,2*K.1^6,2*K.1^-12,-2*K.1^-1,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^-5,2*K.1^5,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^-5,-2*K.1^10,-2*K.1^5,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^-10,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^-10,2*K.1^-5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,2*K.1^-5,2*K.1^10,2*K.1^-10,2*K.1^5,-2*K.1^10,2*K.1^5,-2*K.1^10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^6,2*K.1^-8,2*K.1^-4,2*K.1,2*K.1^11,2*K.1^2,2*K.1^-6,2*K.1^-12,2*K.1^-1,2*K.1^4,2*K.1^-11,2*K.1^8,2*K.1^3,2*K.1^-2,2*K.1^-7,2*K.1^7,2*K.1^9,2*K.1^-9,2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-2,-2*K.1^11,2*K.1^9,2*K.1^-7,-2*K.1^-4,-2*K.1^8,-2*K.1^3,-2*K.1^-9,2*K.1^-12,2*K.1^-11,-2*K.1^-12,-2*K.1^-11,-2*K.1^7,-2*K.1^-8,-2*K.1^-2,-2*K.1^-1,-2*K.1^-9,-2*K.1^4,-2*K.1^-12,-2*K.1^9,-2*K.1^-1,-2*K.1^-6,-2*K.1^4,-2*K.1^-7,-2*K.1^9,-2*K.1^12,-2*K.1^-6,-2*K.1^3,-2*K.1^-3,-2*K.1^2,-2*K.1^8,2*K.1^3,2*K.1^11,-2*K.1^11,-2*K.1^-8,2*K.1^-9,2*K.1^-8,2*K.1,-2*K.1,-2*K.1^2,2*K.1^2,-2*K.1^-11,-2*K.1,2*K.1^-2,2*K.1^4,-2*K.1^6,2*K.1^7,-2*K.1^7,-2*K.1^-4,-2*K.1^12,2*K.1^12,2*K.1^-4,-2*K.1^-3,-2*K.1^6,2*K.1^6,2*K.1^-3,-2*K.1^-7,2*K.1^-6,2*K.1^8,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12,2*K.1^9,-2*K.1^2,-2*K.1,2*K.1^8,-2*K.1^8,2*K.1^11,2*K.1^-8,-2*K.1^3,2*K.1,-2*K.1^6,-2*K.1^-4,-2*K.1^-9,-2*K.1^-11,2*K.1^7,2*K.1^-4,-2*K.1^-2,2*K.1^-1,-2*K.1^12,2*K.1^3,-2*K.1^8,2*K.1^-2,-2*K.1^-2,2*K.1^-12,-2*K.1^11,-2*K.1^-8,2*K.1^-6,2*K.1^-3,-2*K.1^-11,2*K.1^-12,-2*K.1^9,2*K.1^2,2*K.1^-11,-2*K.1^7,2*K.1^8,2*K.1^7,-2*K.1^4,2*K.1^-7,-2*K.1^3,-2*K.1^-1,2*K.1^9,-2*K.1^2,2*K.1^12,-2*K.1^-6,2*K.1^4,-2*K.1^4,2*K.1^-9,-2*K.1^-1,-2*K.1^-6,2*K.1^-8,2*K.1^-1,-2*K.1^12,-2*K.1^6,2*K.1^-7,-2*K.1^-7,2*K.1^3,-2*K.1^-12,2*K.1^-2,-2*K.1,-2*K.1^7,2*K.1^4,2*K.1^11,-2*K.1^-3,2*K.1^6,-2*K.1^9,-2*K.1^-8,2*K.1^-6,-2*K.1^-7,2*K.1,2*K.1^2,-2*K.1^-4,2*K.1^-9,-2*K.1^-9,-2*K.1^11,2*K.1^-4,-2*K.1^-3,2*K.1^-3,2*K.1^6,-2*K.1^-12,2*K.1^-11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^5,2*K.1^-5,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,-2*K.1^-5,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^10,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^10,2*K.1^5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^10,2*K.1^5,2*K.1^-10,2*K.1^10,2*K.1^-5,-2*K.1^-10,2*K.1^-5,-2*K.1^-10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^-12,2*K.1^-6,2*K.1^8,2*K.1^4,2*K.1^-1,2*K.1^-11,2*K.1^-2,2*K.1^6,2*K.1^12,2*K.1,2*K.1^-4,2*K.1^11,2*K.1^-8,2*K.1^-3,2*K.1^2,2*K.1^7,2*K.1^-7,2*K.1^-9,2*K.1^9,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^-11,2*K.1^-9,2*K.1^7,-2*K.1^4,-2*K.1^-8,-2*K.1^-3,-2*K.1^9,2*K.1^12,2*K.1^11,-2*K.1^12,-2*K.1^11,-2*K.1^-7,-2*K.1^8,-2*K.1^2,-2*K.1,-2*K.1^9,-2*K.1^-4,-2*K.1^12,-2*K.1^-9,-2*K.1,-2*K.1^6,-2*K.1^-4,-2*K.1^7,-2*K.1^-9,-2*K.1^-12,-2*K.1^6,-2*K.1^-3,-2*K.1^3,-2*K.1^-2,-2*K.1^-8,2*K.1^-3,2*K.1^-11,-2*K.1^-11,-2*K.1^8,2*K.1^9,2*K.1^8,2*K.1^-1,-2*K.1^-1,-2*K.1^-2,2*K.1^-2,-2*K.1^11,-2*K.1^-1,2*K.1^2,2*K.1^-4,-2*K.1^-6,2*K.1^-7,-2*K.1^-7,-2*K.1^4,-2*K.1^-12,2*K.1^-12,2*K.1^4,-2*K.1^3,-2*K.1^-6,2*K.1^-6,2*K.1^3,-2*K.1^7,2*K.1^6,2*K.1^-8,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-12,2*K.1^-9,-2*K.1^-2,-2*K.1^-1,2*K.1^-8,-2*K.1^-8,2*K.1^-11,2*K.1^8,-2*K.1^-3,2*K.1^-1,-2*K.1^-6,-2*K.1^4,-2*K.1^9,-2*K.1^11,2*K.1^-7,2*K.1^4,-2*K.1^2,2*K.1,-2*K.1^-12,2*K.1^-3,-2*K.1^-8,2*K.1^2,-2*K.1^2,2*K.1^12,-2*K.1^-11,-2*K.1^8,2*K.1^6,2*K.1^3,-2*K.1^11,2*K.1^12,-2*K.1^-9,2*K.1^-2,2*K.1^11,-2*K.1^-7,2*K.1^-8,2*K.1^-7,-2*K.1^-4,2*K.1^7,-2*K.1^-3,-2*K.1,2*K.1^-9,-2*K.1^-2,2*K.1^-12,-2*K.1^6,2*K.1^-4,-2*K.1^-4,2*K.1^9,-2*K.1,-2*K.1^6,2*K.1^8,2*K.1,-2*K.1^-12,-2*K.1^-6,2*K.1^7,-2*K.1^7,2*K.1^-3,-2*K.1^12,2*K.1^2,-2*K.1^-1,-2*K.1^-7,2*K.1^-4,2*K.1^-11,-2*K.1^3,2*K.1^-6,-2*K.1^-9,-2*K.1^8,2*K.1^6,-2*K.1^7,2*K.1^-1,2*K.1^-2,-2*K.1^4,2*K.1^9,-2*K.1^9,-2*K.1^-11,2*K.1^4,-2*K.1^3,2*K.1^3,2*K.1^-6,-2*K.1^12,2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^-5,2*K.1^5,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^-5,-2*K.1^10,-2*K.1^5,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^-10,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^-10,2*K.1^-5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,2*K.1^-5,2*K.1^10,2*K.1^-10,2*K.1^5,-2*K.1^10,2*K.1^5,-2*K.1^10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-8,2*K.1^-4,2*K.1^-3,2*K.1^11,2*K.1^-9,2*K.1,2*K.1^7,2*K.1^4,2*K.1^8,2*K.1^9,2*K.1^-11,2*K.1^-1,2*K.1^3,2*K.1^-2,2*K.1^-7,2*K.1^-12,2*K.1^12,2*K.1^-6,2*K.1^6,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-7,-2*K.1,2*K.1^-6,2*K.1^-12,-2*K.1^11,-2*K.1^3,-2*K.1^-2,-2*K.1^6,2*K.1^8,2*K.1^-1,-2*K.1^8,-2*K.1^-1,-2*K.1^12,-2*K.1^-3,-2*K.1^-7,-2*K.1^9,-2*K.1^6,-2*K.1^-11,-2*K.1^8,-2*K.1^-6,-2*K.1^9,-2*K.1^4,-2*K.1^-11,-2*K.1^-12,-2*K.1^-6,-2*K.1^-8,-2*K.1^4,-2*K.1^-2,-2*K.1^2,-2*K.1^7,-2*K.1^3,2*K.1^-2,2*K.1,-2*K.1,-2*K.1^-3,2*K.1^6,2*K.1^-3,2*K.1^-9,-2*K.1^-9,-2*K.1^7,2*K.1^7,-2*K.1^-1,-2*K.1^-9,2*K.1^-7,2*K.1^-11,-2*K.1^-4,2*K.1^12,-2*K.1^12,-2*K.1^11,-2*K.1^-8,2*K.1^-8,2*K.1^11,-2*K.1^2,-2*K.1^-4,2*K.1^-4,2*K.1^2,-2*K.1^-12,2*K.1^4,2*K.1^3,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-8,2*K.1^-6,-2*K.1^7,-2*K.1^-9,2*K.1^3,-2*K.1^3,2*K.1,2*K.1^-3,-2*K.1^-2,2*K.1^-9,-2*K.1^-4,-2*K.1^11,-2*K.1^6,-2*K.1^-1,2*K.1^12,2*K.1^11,-2*K.1^-7,2*K.1^9,-2*K.1^-8,2*K.1^-2,-2*K.1^3,2*K.1^-7,-2*K.1^-7,2*K.1^8,-2*K.1,-2*K.1^-3,2*K.1^4,2*K.1^2,-2*K.1^-1,2*K.1^8,-2*K.1^-6,2*K.1^7,2*K.1^-1,-2*K.1^12,2*K.1^3,2*K.1^12,-2*K.1^-11,2*K.1^-12,-2*K.1^-2,-2*K.1^9,2*K.1^-6,-2*K.1^7,2*K.1^-8,-2*K.1^4,2*K.1^-11,-2*K.1^-11,2*K.1^6,-2*K.1^9,-2*K.1^4,2*K.1^-3,2*K.1^9,-2*K.1^-8,-2*K.1^-4,2*K.1^-12,-2*K.1^-12,2*K.1^-2,-2*K.1^8,2*K.1^-7,-2*K.1^-9,-2*K.1^12,2*K.1^-11,2*K.1,-2*K.1^2,2*K.1^-4,-2*K.1^-6,-2*K.1^-3,2*K.1^4,-2*K.1^-12,2*K.1^-9,2*K.1^7,-2*K.1^11,2*K.1^6,-2*K.1^6,-2*K.1,2*K.1^11,-2*K.1^2,2*K.1^2,2*K.1^-4,-2*K.1^8,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^5,2*K.1^-5,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,-2*K.1^-5,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^10,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^10,2*K.1^5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^10,2*K.1^5,2*K.1^-10,2*K.1^10,2*K.1^-5,-2*K.1^-10,2*K.1^-5,-2*K.1^-10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^4,2*K.1^3,2*K.1^-11,2*K.1^9,2*K.1^-1,2*K.1^-7,2*K.1^-4,2*K.1^-8,2*K.1^-9,2*K.1^11,2*K.1,2*K.1^-3,2*K.1^2,2*K.1^7,2*K.1^12,2*K.1^-12,2*K.1^6,2*K.1^-6,2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,-2*K.1^-1,2*K.1^6,2*K.1^12,-2*K.1^-11,-2*K.1^-3,-2*K.1^2,-2*K.1^-6,2*K.1^-8,2*K.1,-2*K.1^-8,-2*K.1,-2*K.1^-12,-2*K.1^3,-2*K.1^7,-2*K.1^-9,-2*K.1^-6,-2*K.1^11,-2*K.1^-8,-2*K.1^6,-2*K.1^-9,-2*K.1^-4,-2*K.1^11,-2*K.1^12,-2*K.1^6,-2*K.1^8,-2*K.1^-4,-2*K.1^2,-2*K.1^-2,-2*K.1^-7,-2*K.1^-3,2*K.1^2,2*K.1^-1,-2*K.1^-1,-2*K.1^3,2*K.1^-6,2*K.1^3,2*K.1^9,-2*K.1^9,-2*K.1^-7,2*K.1^-7,-2*K.1,-2*K.1^9,2*K.1^7,2*K.1^11,-2*K.1^4,2*K.1^-12,-2*K.1^-12,-2*K.1^-11,-2*K.1^8,2*K.1^8,2*K.1^-11,-2*K.1^-2,-2*K.1^4,2*K.1^4,2*K.1^-2,-2*K.1^12,2*K.1^-4,2*K.1^-3,2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^6,-2*K.1^-7,-2*K.1^9,2*K.1^-3,-2*K.1^-3,2*K.1^-1,2*K.1^3,-2*K.1^2,2*K.1^9,-2*K.1^4,-2*K.1^-11,-2*K.1^-6,-2*K.1,2*K.1^-12,2*K.1^-11,-2*K.1^7,2*K.1^-9,-2*K.1^8,2*K.1^2,-2*K.1^-3,2*K.1^7,-2*K.1^7,2*K.1^-8,-2*K.1^-1,-2*K.1^3,2*K.1^-4,2*K.1^-2,-2*K.1,2*K.1^-8,-2*K.1^6,2*K.1^-7,2*K.1,-2*K.1^-12,2*K.1^-3,2*K.1^-12,-2*K.1^11,2*K.1^12,-2*K.1^2,-2*K.1^-9,2*K.1^6,-2*K.1^-7,2*K.1^8,-2*K.1^-4,2*K.1^11,-2*K.1^11,2*K.1^-6,-2*K.1^-9,-2*K.1^-4,2*K.1^3,2*K.1^-9,-2*K.1^8,-2*K.1^4,2*K.1^12,-2*K.1^12,2*K.1^2,-2*K.1^-8,2*K.1^7,-2*K.1^9,-2*K.1^-12,2*K.1^11,2*K.1^-1,-2*K.1^-2,2*K.1^4,-2*K.1^6,-2*K.1^3,2*K.1^-4,-2*K.1^12,2*K.1^9,2*K.1^-7,-2*K.1^-11,2*K.1^-6,-2*K.1^-6,-2*K.1^-1,2*K.1^-11,-2*K.1^-2,2*K.1^-2,2*K.1^4,-2*K.1^-8,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^-5,2*K.1^5,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^-5,-2*K.1^10,-2*K.1^5,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^-10,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^-10,2*K.1^-5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,2*K.1^-5,2*K.1^10,2*K.1^-10,2*K.1^5,-2*K.1^10,2*K.1^5,-2*K.1^10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^7,2*K.1^-9,2*K.1^12,2*K.1^6,2*K.1^11,2*K.1^-4,2*K.1^-3,2*K.1^9,2*K.1^-7,2*K.1^-11,2*K.1^-6,2*K.1^4,2*K.1^-12,2*K.1^8,2*K.1^3,2*K.1^-2,2*K.1^2,2*K.1^-1,2*K.1,2*K.1^-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,-2*K.1^-4,2*K.1^-1,2*K.1^-2,-2*K.1^6,-2*K.1^-12,-2*K.1^8,-2*K.1,2*K.1^-7,2*K.1^4,-2*K.1^-7,-2*K.1^4,-2*K.1^2,-2*K.1^12,-2*K.1^3,-2*K.1^-11,-2*K.1,-2*K.1^-6,-2*K.1^-7,-2*K.1^-1,-2*K.1^-11,-2*K.1^9,-2*K.1^-6,-2*K.1^-2,-2*K.1^-1,-2*K.1^7,-2*K.1^9,-2*K.1^8,-2*K.1^-8,-2*K.1^-3,-2*K.1^-12,2*K.1^8,2*K.1^-4,-2*K.1^-4,-2*K.1^12,2*K.1,2*K.1^12,2*K.1^11,-2*K.1^11,-2*K.1^-3,2*K.1^-3,-2*K.1^4,-2*K.1^11,2*K.1^3,2*K.1^-6,-2*K.1^-9,2*K.1^2,-2*K.1^2,-2*K.1^6,-2*K.1^7,2*K.1^7,2*K.1^6,-2*K.1^-8,-2*K.1^-9,2*K.1^-9,2*K.1^-8,-2*K.1^-2,2*K.1^9,2*K.1^-12,2*K.1^-11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7,2*K.1^-1,-2*K.1^-3,-2*K.1^11,2*K.1^-12,-2*K.1^-12,2*K.1^-4,2*K.1^12,-2*K.1^8,2*K.1^11,-2*K.1^-9,-2*K.1^6,-2*K.1,-2*K.1^4,2*K.1^2,2*K.1^6,-2*K.1^3,2*K.1^-11,-2*K.1^7,2*K.1^8,-2*K.1^-12,2*K.1^3,-2*K.1^3,2*K.1^-7,-2*K.1^-4,-2*K.1^12,2*K.1^9,2*K.1^-8,-2*K.1^4,2*K.1^-7,-2*K.1^-1,2*K.1^-3,2*K.1^4,-2*K.1^2,2*K.1^-12,2*K.1^2,-2*K.1^-6,2*K.1^-2,-2*K.1^8,-2*K.1^-11,2*K.1^-1,-2*K.1^-3,2*K.1^7,-2*K.1^9,2*K.1^-6,-2*K.1^-6,2*K.1,-2*K.1^-11,-2*K.1^9,2*K.1^12,2*K.1^-11,-2*K.1^7,-2*K.1^-9,2*K.1^-2,-2*K.1^-2,2*K.1^8,-2*K.1^-7,2*K.1^3,-2*K.1^11,-2*K.1^2,2*K.1^-6,2*K.1^-4,-2*K.1^-8,2*K.1^-9,-2*K.1^-1,-2*K.1^12,2*K.1^9,-2*K.1^-2,2*K.1^11,2*K.1^-3,-2*K.1^6,2*K.1,-2*K.1,-2*K.1^-4,2*K.1^6,-2*K.1^-8,2*K.1^-8,2*K.1^-9,-2*K.1^-7,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^5,2*K.1^-5,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,-2*K.1^-5,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^10,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^10,2*K.1^5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^10,2*K.1^5,2*K.1^-10,2*K.1^10,2*K.1^-5,-2*K.1^-10,2*K.1^-5,-2*K.1^-10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^-7,2*K.1^9,2*K.1^-12,2*K.1^-6,2*K.1^-11,2*K.1^4,2*K.1^3,2*K.1^-9,2*K.1^7,2*K.1^11,2*K.1^6,2*K.1^-4,2*K.1^12,2*K.1^-8,2*K.1^-3,2*K.1^2,2*K.1^-2,2*K.1,2*K.1^-1,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-3,-2*K.1^4,2*K.1,2*K.1^2,-2*K.1^-6,-2*K.1^12,-2*K.1^-8,-2*K.1^-1,2*K.1^7,2*K.1^-4,-2*K.1^7,-2*K.1^-4,-2*K.1^-2,-2*K.1^-12,-2*K.1^-3,-2*K.1^11,-2*K.1^-1,-2*K.1^6,-2*K.1^7,-2*K.1,-2*K.1^11,-2*K.1^-9,-2*K.1^6,-2*K.1^2,-2*K.1,-2*K.1^-7,-2*K.1^-9,-2*K.1^-8,-2*K.1^8,-2*K.1^3,-2*K.1^12,2*K.1^-8,2*K.1^4,-2*K.1^4,-2*K.1^-12,2*K.1^-1,2*K.1^-12,2*K.1^-11,-2*K.1^-11,-2*K.1^3,2*K.1^3,-2*K.1^-4,-2*K.1^-11,2*K.1^-3,2*K.1^6,-2*K.1^9,2*K.1^-2,-2*K.1^-2,-2*K.1^-6,-2*K.1^-7,2*K.1^-7,2*K.1^-6,-2*K.1^8,-2*K.1^9,2*K.1^9,2*K.1^8,-2*K.1^2,2*K.1^-9,2*K.1^12,2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-7,2*K.1,-2*K.1^3,-2*K.1^-11,2*K.1^12,-2*K.1^12,2*K.1^4,2*K.1^-12,-2*K.1^-8,2*K.1^-11,-2*K.1^9,-2*K.1^-6,-2*K.1^-1,-2*K.1^-4,2*K.1^-2,2*K.1^-6,-2*K.1^-3,2*K.1^11,-2*K.1^-7,2*K.1^-8,-2*K.1^12,2*K.1^-3,-2*K.1^-3,2*K.1^7,-2*K.1^4,-2*K.1^-12,2*K.1^-9,2*K.1^8,-2*K.1^-4,2*K.1^7,-2*K.1,2*K.1^3,2*K.1^-4,-2*K.1^-2,2*K.1^12,2*K.1^-2,-2*K.1^6,2*K.1^2,-2*K.1^-8,-2*K.1^11,2*K.1,-2*K.1^3,2*K.1^-7,-2*K.1^-9,2*K.1^6,-2*K.1^6,2*K.1^-1,-2*K.1^11,-2*K.1^-9,2*K.1^-12,2*K.1^11,-2*K.1^-7,-2*K.1^9,2*K.1^2,-2*K.1^2,2*K.1^-8,-2*K.1^7,2*K.1^-3,-2*K.1^-11,-2*K.1^-2,2*K.1^6,2*K.1^4,-2*K.1^8,2*K.1^9,-2*K.1,-2*K.1^-12,2*K.1^-9,-2*K.1^2,2*K.1^-11,2*K.1^3,-2*K.1^-6,2*K.1^-1,-2*K.1^-1,-2*K.1^4,2*K.1^-6,-2*K.1^8,2*K.1^8,2*K.1^9,-2*K.1^7,2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^-5,2*K.1^5,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^-5,-2*K.1^10,-2*K.1^5,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^-10,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^-10,2*K.1^-5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,2*K.1^-5,2*K.1^10,2*K.1^-10,2*K.1^5,-2*K.1^10,2*K.1^5,-2*K.1^10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^11,2*K.1^2,2*K.1,2*K.1^6,2*K.1^-9,2*K.1^12,2*K.1^-11,2*K.1^3,2*K.1^-6,2*K.1^-1,2*K.1^9,2*K.1^-2,2*K.1^-7,2*K.1^-12,2*K.1^8,2*K.1^-8,2*K.1^4,2*K.1^-4,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-12,-2*K.1^-9,2*K.1^4,2*K.1^8,-2*K.1,-2*K.1^-2,-2*K.1^-7,-2*K.1^-4,2*K.1^3,2*K.1^9,-2*K.1^3,-2*K.1^9,-2*K.1^-8,-2*K.1^2,-2*K.1^-12,-2*K.1^-6,-2*K.1^-4,-2*K.1^-1,-2*K.1^3,-2*K.1^4,-2*K.1^-6,-2*K.1^-11,-2*K.1^-1,-2*K.1^8,-2*K.1^4,-2*K.1^-3,-2*K.1^-11,-2*K.1^-7,-2*K.1^7,-2*K.1^12,-2*K.1^-2,2*K.1^-7,2*K.1^-9,-2*K.1^-9,-2*K.1^2,2*K.1^-4,2*K.1^2,2*K.1^6,-2*K.1^6,-2*K.1^12,2*K.1^12,-2*K.1^9,-2*K.1^6,2*K.1^-12,2*K.1^-1,-2*K.1^11,2*K.1^-8,-2*K.1^-8,-2*K.1,-2*K.1^-3,2*K.1^-3,2*K.1,-2*K.1^7,-2*K.1^11,2*K.1^11,2*K.1^7,-2*K.1^8,2*K.1^-11,2*K.1^-2,2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-3,2*K.1^4,-2*K.1^12,-2*K.1^6,2*K.1^-2,-2*K.1^-2,2*K.1^-9,2*K.1^2,-2*K.1^-7,2*K.1^6,-2*K.1^11,-2*K.1,-2*K.1^-4,-2*K.1^9,2*K.1^-8,2*K.1,-2*K.1^-12,2*K.1^-6,-2*K.1^-3,2*K.1^-7,-2*K.1^-2,2*K.1^-12,-2*K.1^-12,2*K.1^3,-2*K.1^-9,-2*K.1^2,2*K.1^-11,2*K.1^7,-2*K.1^9,2*K.1^3,-2*K.1^4,2*K.1^12,2*K.1^9,-2*K.1^-8,2*K.1^-2,2*K.1^-8,-2*K.1^-1,2*K.1^8,-2*K.1^-7,-2*K.1^-6,2*K.1^4,-2*K.1^12,2*K.1^-3,-2*K.1^-11,2*K.1^-1,-2*K.1^-1,2*K.1^-4,-2*K.1^-6,-2*K.1^-11,2*K.1^2,2*K.1^-6,-2*K.1^-3,-2*K.1^11,2*K.1^8,-2*K.1^8,2*K.1^-7,-2*K.1^3,2*K.1^-12,-2*K.1^6,-2*K.1^-8,2*K.1^-1,2*K.1^-9,-2*K.1^7,2*K.1^11,-2*K.1^4,-2*K.1^2,2*K.1^-11,-2*K.1^8,2*K.1^6,2*K.1^12,-2*K.1,2*K.1^-4,-2*K.1^-4,-2*K.1^-9,2*K.1,-2*K.1^7,2*K.1^7,2*K.1^11,-2*K.1^3,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^5,2*K.1^-5,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,-2*K.1^-5,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^10,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^10,2*K.1^5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^10,2*K.1^5,2*K.1^-10,2*K.1^10,2*K.1^-5,-2*K.1^-10,2*K.1^-5,-2*K.1^-10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1^-11,2*K.1^-2,2*K.1^-1,2*K.1^-6,2*K.1^9,2*K.1^-12,2*K.1^11,2*K.1^-3,2*K.1^6,2*K.1,2*K.1^-9,2*K.1^2,2*K.1^7,2*K.1^12,2*K.1^-8,2*K.1^8,2*K.1^-4,2*K.1^4,2*K.1^-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12,-2*K.1^9,2*K.1^-4,2*K.1^-8,-2*K.1^-1,-2*K.1^2,-2*K.1^7,-2*K.1^4,2*K.1^-3,2*K.1^-9,-2*K.1^-3,-2*K.1^-9,-2*K.1^8,-2*K.1^-2,-2*K.1^12,-2*K.1^6,-2*K.1^4,-2*K.1,-2*K.1^-3,-2*K.1^-4,-2*K.1^6,-2*K.1^11,-2*K.1,-2*K.1^-8,-2*K.1^-4,-2*K.1^3,-2*K.1^11,-2*K.1^7,-2*K.1^-7,-2*K.1^-12,-2*K.1^2,2*K.1^7,2*K.1^9,-2*K.1^9,-2*K.1^-2,2*K.1^4,2*K.1^-2,2*K.1^-6,-2*K.1^-6,-2*K.1^-12,2*K.1^-12,-2*K.1^-9,-2*K.1^-6,2*K.1^12,2*K.1,-2*K.1^-11,2*K.1^8,-2*K.1^8,-2*K.1^-1,-2*K.1^3,2*K.1^3,2*K.1^-1,-2*K.1^-7,-2*K.1^-11,2*K.1^-11,2*K.1^-7,-2*K.1^-8,2*K.1^11,2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,2*K.1^-4,-2*K.1^-12,-2*K.1^-6,2*K.1^2,-2*K.1^2,2*K.1^9,2*K.1^-2,-2*K.1^7,2*K.1^-6,-2*K.1^-11,-2*K.1^-1,-2*K.1^4,-2*K.1^-9,2*K.1^8,2*K.1^-1,-2*K.1^12,2*K.1^6,-2*K.1^3,2*K.1^7,-2*K.1^2,2*K.1^12,-2*K.1^12,2*K.1^-3,-2*K.1^9,-2*K.1^-2,2*K.1^11,2*K.1^-7,-2*K.1^-9,2*K.1^-3,-2*K.1^-4,2*K.1^-12,2*K.1^-9,-2*K.1^8,2*K.1^2,2*K.1^8,-2*K.1,2*K.1^-8,-2*K.1^7,-2*K.1^6,2*K.1^-4,-2*K.1^-12,2*K.1^3,-2*K.1^11,2*K.1,-2*K.1,2*K.1^4,-2*K.1^6,-2*K.1^11,2*K.1^-2,2*K.1^6,-2*K.1^3,-2*K.1^-11,2*K.1^-8,-2*K.1^-8,2*K.1^7,-2*K.1^-3,2*K.1^12,-2*K.1^-6,-2*K.1^8,2*K.1,2*K.1^9,-2*K.1^-7,2*K.1^-11,-2*K.1^-4,-2*K.1^-2,2*K.1^11,-2*K.1^-8,2*K.1^-6,2*K.1^-12,-2*K.1^-1,2*K.1^4,-2*K.1^4,-2*K.1^9,2*K.1^-1,-2*K.1^-7,2*K.1^-7,2*K.1^-11,-2*K.1^-3,2*K.1^-9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^-5,2*K.1^5,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^-5,-2*K.1^10,-2*K.1^5,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^-10,2*K.1^-10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^-10,-2*K.1^-10,2*K.1^-5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,2*K.1^-5,2*K.1^10,2*K.1^-10,2*K.1^5,-2*K.1^10,2*K.1^5,-2*K.1^10,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1,2*K.1^7,2*K.1^-9,2*K.1^-4,2*K.1^6,2*K.1^-8,2*K.1^-1,2*K.1^-2,2*K.1^4,2*K.1^9,2*K.1^-6,2*K.1^-7,2*K.1^-12,2*K.1^8,2*K.1^3,2*K.1^-3,2*K.1^-11,2*K.1^11,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,-2*K.1^6,2*K.1^-11,2*K.1^3,-2*K.1^-9,-2*K.1^-7,-2*K.1^-12,-2*K.1^11,2*K.1^-2,2*K.1^-6,-2*K.1^-2,-2*K.1^-6,-2*K.1^-3,-2*K.1^7,-2*K.1^8,-2*K.1^4,-2*K.1^11,-2*K.1^9,-2*K.1^-2,-2*K.1^-11,-2*K.1^4,-2*K.1^-1,-2*K.1^9,-2*K.1^3,-2*K.1^-11,-2*K.1^2,-2*K.1^-1,-2*K.1^-12,-2*K.1^12,-2*K.1^-8,-2*K.1^-7,2*K.1^-12,2*K.1^6,-2*K.1^6,-2*K.1^7,2*K.1^11,2*K.1^7,2*K.1^-4,-2*K.1^-4,-2*K.1^-8,2*K.1^-8,-2*K.1^-6,-2*K.1^-4,2*K.1^8,2*K.1^9,-2*K.1,2*K.1^-3,-2*K.1^-3,-2*K.1^-9,-2*K.1^2,2*K.1^2,2*K.1^-9,-2*K.1^12,-2*K.1,2*K.1,2*K.1^12,-2*K.1^3,2*K.1^-1,2*K.1^-7,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^-11,-2*K.1^-8,-2*K.1^-4,2*K.1^-7,-2*K.1^-7,2*K.1^6,2*K.1^7,-2*K.1^-12,2*K.1^-4,-2*K.1,-2*K.1^-9,-2*K.1^11,-2*K.1^-6,2*K.1^-3,2*K.1^-9,-2*K.1^8,2*K.1^4,-2*K.1^2,2*K.1^-12,-2*K.1^-7,2*K.1^8,-2*K.1^8,2*K.1^-2,-2*K.1^6,-2*K.1^7,2*K.1^-1,2*K.1^12,-2*K.1^-6,2*K.1^-2,-2*K.1^-11,2*K.1^-8,2*K.1^-6,-2*K.1^-3,2*K.1^-7,2*K.1^-3,-2*K.1^9,2*K.1^3,-2*K.1^-12,-2*K.1^4,2*K.1^-11,-2*K.1^-8,2*K.1^2,-2*K.1^-1,2*K.1^9,-2*K.1^9,2*K.1^11,-2*K.1^4,-2*K.1^-1,2*K.1^7,2*K.1^4,-2*K.1^2,-2*K.1,2*K.1^3,-2*K.1^3,2*K.1^-12,-2*K.1^-2,2*K.1^8,-2*K.1^-4,-2*K.1^-3,2*K.1^9,2*K.1^6,-2*K.1^12,2*K.1,-2*K.1^-11,-2*K.1^7,2*K.1^-1,-2*K.1^3,2*K.1^-4,2*K.1^-8,-2*K.1^-9,2*K.1^11,-2*K.1^11,-2*K.1^6,2*K.1^-9,-2*K.1^12,2*K.1^12,2*K.1,-2*K.1^-2,2*K.1^-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(25: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,-2,0,0,2*K.1^5,2*K.1^-5,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^10,-2*K.1^-5,-2*K.1^5,-2*K.1^-10,-2*K.1^-5,2*K.1^-5,-2*K.1^-10,-2*K.1^5,-2*K.1^10,2*K.1^10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^10,-2*K.1^10,2*K.1^5,-2*K.1^5,-2*K.1^-5,-2*K.1^5,-2*K.1^-5,-2*K.1^10,2*K.1^5,2*K.1^-10,2*K.1^10,2*K.1^-5,-2*K.1^-10,2*K.1^-5,-2*K.1^-10,2*K.1^-10,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^-1,2*K.1^-7,2*K.1^9,2*K.1^4,2*K.1^-6,2*K.1^8,2*K.1,2*K.1^2,2*K.1^-4,2*K.1^-9,2*K.1^6,2*K.1^7,2*K.1^12,2*K.1^-8,2*K.1^-3,2*K.1^3,2*K.1^11,2*K.1^-11,2*K.1^-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-8,-2*K.1^-6,2*K.1^11,2*K.1^-3,-2*K.1^9,-2*K.1^7,-2*K.1^12,-2*K.1^-11,2*K.1^2,2*K.1^6,-2*K.1^2,-2*K.1^6,-2*K.1^3,-2*K.1^-7,-2*K.1^-8,-2*K.1^-4,-2*K.1^-11,-2*K.1^-9,-2*K.1^2,-2*K.1^11,-2*K.1^-4,-2*K.1,-2*K.1^-9,-2*K.1^-3,-2*K.1^11,-2*K.1^-2,-2*K.1,-2*K.1^12,-2*K.1^-12,-2*K.1^8,-2*K.1^7,2*K.1^12,2*K.1^-6,-2*K.1^-6,-2*K.1^-7,2*K.1^-11,2*K.1^-7,2*K.1^4,-2*K.1^4,-2*K.1^8,2*K.1^8,-2*K.1^6,-2*K.1^4,2*K.1^-8,2*K.1^-9,-2*K.1^-1,2*K.1^3,-2*K.1^3,-2*K.1^9,-2*K.1^-2,2*K.1^-2,2*K.1^9,-2*K.1^-12,-2*K.1^-1,2*K.1^-1,2*K.1^-12,-2*K.1^-3,2*K.1,2*K.1^7,2*K.1^-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^-2,2*K.1^11,-2*K.1^8,-2*K.1^4,2*K.1^7,-2*K.1^7,2*K.1^-6,2*K.1^-7,-2*K.1^12,2*K.1^4,-2*K.1^-1,-2*K.1^9,-2*K.1^-11,-2*K.1^6,2*K.1^3,2*K.1^9,-2*K.1^-8,2*K.1^-4,-2*K.1^-2,2*K.1^12,-2*K.1^7,2*K.1^-8,-2*K.1^-8,2*K.1^2,-2*K.1^-6,-2*K.1^-7,2*K.1,2*K.1^-12,-2*K.1^6,2*K.1^2,-2*K.1^11,2*K.1^8,2*K.1^6,-2*K.1^3,2*K.1^7,2*K.1^3,-2*K.1^-9,2*K.1^-3,-2*K.1^12,-2*K.1^-4,2*K.1^11,-2*K.1^8,2*K.1^-2,-2*K.1,2*K.1^-9,-2*K.1^-9,2*K.1^-11,-2*K.1^-4,-2*K.1,2*K.1^-7,2*K.1^-4,-2*K.1^-2,-2*K.1^-1,2*K.1^-3,-2*K.1^-3,2*K.1^12,-2*K.1^2,2*K.1^-8,-2*K.1^4,-2*K.1^3,2*K.1^-9,2*K.1^-6,-2*K.1^-12,2*K.1^-1,-2*K.1^11,-2*K.1^-7,2*K.1,-2*K.1^-3,2*K.1^4,2*K.1^8,-2*K.1^9,2*K.1^-11,-2*K.1^-11,-2*K.1^-6,2*K.1^9,-2*K.1^-12,2*K.1^-12,2*K.1^-1,-2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,-2*K.1^10,2*K.1^40,2*K.1^20,-2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^10,2*K.1^20,-2*K.1^40,2*K.1^10,2*K.1^30,2*K.1^40,-2*K.1^40,-2*K.1^30,-2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^30,0,0,0,0,0,0,0,0,-2*K.1^45,2*K.1^45,2*K.1^35,-2*K.1^35,-2*K.1^15,2*K.1^35,2*K.1^15,-2*K.1^45,-2*K.1^35,-2*K.1^5,2*K.1^45,2*K.1^15,2*K.1^5,-2*K.1^15,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^28,-2*K.1^46,2*K.1^48,-2*K.1^38,-2*K.1^18,-2*K.1^26,-2*K.1^22,2*K.1^44,2*K.1^12,-2*K.1^2,2*K.1^32,2*K.1^4,-2*K.1^14,2*K.1^24,-2*K.1^34,2*K.1^16,-2*K.1^42,2*K.1^8,2*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^18,2*K.1^42,2*K.1^34,-2*K.1^48,-2*K.1^4,2*K.1^14,-2*K.1^8,-2*K.1^44,-2*K.1^32,-2*K.1^44,2*K.1^32,-2*K.1^16,2*K.1^46,2*K.1^24,-2*K.1^12,2*K.1^8,-2*K.1^2,2*K.1^44,2*K.1^42,2*K.1^12,-2*K.1^22,2*K.1^2,-2*K.1^34,-2*K.1^42,2*K.1^6,2*K.1^22,-2*K.1^14,-2*K.1^36,2*K.1^26,2*K.1^4,2*K.1^14,2*K.1^18,-2*K.1^18,-2*K.1^46,-2*K.1^8,2*K.1^46,2*K.1^38,-2*K.1^38,-2*K.1^26,2*K.1^26,-2*K.1^32,2*K.1^38,-2*K.1^24,2*K.1^2,-2*K.1^28,-2*K.1^16,2*K.1^16,2*K.1^48,-2*K.1^6,2*K.1^6,-2*K.1^48,2*K.1^36,2*K.1^28,-2*K.1^28,-2*K.1^36,2*K.1^34,2*K.1^22,-2*K.1^4,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^31,-2*K.1^17,2*K.1,2*K.1^13,-2*K.1^29,2*K.1^29,2*K.1^43,-2*K.1^21,-2*K.1^39,2*K.1^13,-2*K.1^3,-2*K.1^23,-2*K.1^33,-2*K.1^7,-2*K.1^41,2*K.1^23,2*K.1^49,-2*K.1^37,-2*K.1^31,-2*K.1^39,-2*K.1^29,-2*K.1^49,-2*K.1^49,-2*K.1^19,2*K.1^43,-2*K.1^21,-2*K.1^47,-2*K.1^11,2*K.1^7,2*K.1^19,-2*K.1^17,2*K.1,-2*K.1^7,2*K.1^41,2*K.1^29,2*K.1^41,2*K.1^27,-2*K.1^9,2*K.1^39,2*K.1^37,2*K.1^17,-2*K.1,-2*K.1^31,-2*K.1^47,2*K.1^27,-2*K.1^27,-2*K.1^33,-2*K.1^37,2*K.1^47,2*K.1^21,2*K.1^37,2*K.1^31,2*K.1^3,2*K.1^9,-2*K.1^9,2*K.1^39,2*K.1^19,2*K.1^49,-2*K.1^13,-2*K.1^41,-2*K.1^27,-2*K.1^43,2*K.1^11,-2*K.1^3,2*K.1^17,2*K.1^21,2*K.1^47,2*K.1^9,-2*K.1^13,-2*K.1,2*K.1^23,2*K.1^33,2*K.1^33,-2*K.1^43,-2*K.1^23,-2*K.1^11,2*K.1^11,2*K.1^3,-2*K.1^19,2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,2*K.1^40,-2*K.1^10,-2*K.1^30,2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^40,-2*K.1^30,2*K.1^10,-2*K.1^40,-2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^40,2*K.1^30,2*K.1^30,-2*K.1^20,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,-2*K.1^15,2*K.1^15,2*K.1^35,-2*K.1^15,-2*K.1^35,2*K.1^5,2*K.1^15,2*K.1^45,-2*K.1^5,-2*K.1^35,-2*K.1^45,2*K.1^35,2*K.1^45,-2*K.1^45,0,0,0,0,0,0,0,0,2*K.1^44,-2*K.1^22,2*K.1^4,-2*K.1^2,2*K.1^12,2*K.1^32,2*K.1^24,2*K.1^28,-2*K.1^6,-2*K.1^38,2*K.1^48,-2*K.1^18,-2*K.1^46,2*K.1^36,-2*K.1^26,2*K.1^16,-2*K.1^34,2*K.1^8,-2*K.1^42,-2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^26,-2*K.1^32,-2*K.1^8,-2*K.1^16,2*K.1^2,2*K.1^46,-2*K.1^36,2*K.1^42,2*K.1^6,2*K.1^18,2*K.1^6,-2*K.1^18,2*K.1^34,-2*K.1^4,-2*K.1^26,2*K.1^38,-2*K.1^42,2*K.1^48,-2*K.1^6,-2*K.1^8,-2*K.1^38,2*K.1^28,-2*K.1^48,2*K.1^16,2*K.1^8,-2*K.1^44,-2*K.1^28,2*K.1^36,2*K.1^14,-2*K.1^24,-2*K.1^46,-2*K.1^36,-2*K.1^32,2*K.1^32,2*K.1^4,2*K.1^42,-2*K.1^4,-2*K.1^12,2*K.1^12,2*K.1^24,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^26,-2*K.1^48,2*K.1^22,2*K.1^34,-2*K.1^34,-2*K.1^2,2*K.1^44,-2*K.1^44,2*K.1^2,-2*K.1^14,-2*K.1^22,2*K.1^22,2*K.1^14,-2*K.1^16,-2*K.1^28,2*K.1^46,2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^19,2*K.1^33,-2*K.1^49,-2*K.1^37,2*K.1^21,-2*K.1^21,-2*K.1^7,2*K.1^29,2*K.1^11,-2*K.1^37,2*K.1^47,2*K.1^27,2*K.1^17,2*K.1^43,2*K.1^9,-2*K.1^27,-2*K.1,2*K.1^13,2*K.1^19,2*K.1^11,2*K.1^21,2*K.1,2*K.1,2*K.1^31,-2*K.1^7,2*K.1^29,2*K.1^3,2*K.1^39,-2*K.1^43,-2*K.1^31,2*K.1^33,-2*K.1^49,2*K.1^43,-2*K.1^9,-2*K.1^21,-2*K.1^9,-2*K.1^23,2*K.1^41,-2*K.1^11,-2*K.1^13,-2*K.1^33,2*K.1^49,2*K.1^19,2*K.1^3,-2*K.1^23,2*K.1^23,2*K.1^17,2*K.1^13,-2*K.1^3,-2*K.1^29,-2*K.1^13,-2*K.1^19,-2*K.1^47,-2*K.1^41,2*K.1^41,-2*K.1^11,-2*K.1^31,-2*K.1,2*K.1^37,2*K.1^9,2*K.1^23,2*K.1^7,-2*K.1^39,2*K.1^47,-2*K.1^33,-2*K.1^29,-2*K.1^3,-2*K.1^41,2*K.1^37,2*K.1^49,-2*K.1^27,-2*K.1^17,-2*K.1^17,2*K.1^7,2*K.1^27,2*K.1^39,-2*K.1^39,-2*K.1^47,2*K.1^31,-2*K.1^43,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,-2*K.1^10,2*K.1^40,2*K.1^20,-2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^10,2*K.1^20,-2*K.1^40,2*K.1^10,2*K.1^30,2*K.1^40,-2*K.1^40,-2*K.1^30,-2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^30,0,0,0,0,0,0,0,0,-2*K.1^45,2*K.1^45,2*K.1^35,-2*K.1^35,-2*K.1^15,2*K.1^35,2*K.1^15,-2*K.1^45,-2*K.1^35,-2*K.1^5,2*K.1^45,2*K.1^15,2*K.1^5,-2*K.1^15,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^36,-2*K.1^18,-2*K.1^26,-2*K.1^38,2*K.1^28,2*K.1^8,-2*K.1^6,2*K.1^32,-2*K.1^14,-2*K.1^22,2*K.1^12,-2*K.1^42,2*K.1^24,-2*K.1^34,2*K.1^44,2*K.1^4,-2*K.1^46,-2*K.1^2,2*K.1^48,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^44,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^38,-2*K.1^24,2*K.1^34,-2*K.1^48,2*K.1^14,2*K.1^42,2*K.1^14,-2*K.1^42,2*K.1^46,2*K.1^26,2*K.1^44,2*K.1^22,2*K.1^48,2*K.1^12,-2*K.1^14,2*K.1^2,-2*K.1^22,2*K.1^32,-2*K.1^12,2*K.1^4,-2*K.1^2,-2*K.1^36,-2*K.1^32,-2*K.1^34,-2*K.1^16,2*K.1^6,2*K.1^24,2*K.1^34,-2*K.1^8,2*K.1^8,-2*K.1^26,-2*K.1^48,2*K.1^26,-2*K.1^28,2*K.1^28,-2*K.1^6,2*K.1^6,2*K.1^42,-2*K.1^28,-2*K.1^44,-2*K.1^12,2*K.1^18,2*K.1^46,-2*K.1^46,-2*K.1^38,2*K.1^36,-2*K.1^36,2*K.1^38,2*K.1^16,-2*K.1^18,2*K.1^18,-2*K.1^16,-2*K.1^4,-2*K.1^32,-2*K.1^24,2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^11,2*K.1^27,-2*K.1^31,-2*K.1^3,-2*K.1^49,2*K.1^49,-2*K.1^33,-2*K.1,2*K.1^9,-2*K.1^3,-2*K.1^43,2*K.1^13,2*K.1^23,2*K.1^17,-2*K.1^21,-2*K.1^13,-2*K.1^19,2*K.1^47,-2*K.1^11,2*K.1^9,-2*K.1^49,2*K.1^19,2*K.1^19,-2*K.1^39,-2*K.1^33,-2*K.1,-2*K.1^7,2*K.1^41,-2*K.1^17,2*K.1^39,2*K.1^27,-2*K.1^31,2*K.1^17,2*K.1^21,2*K.1^49,2*K.1^21,-2*K.1^37,-2*K.1^29,-2*K.1^9,-2*K.1^47,-2*K.1^27,2*K.1^31,-2*K.1^11,-2*K.1^7,-2*K.1^37,2*K.1^37,2*K.1^23,2*K.1^47,2*K.1^7,2*K.1,-2*K.1^47,2*K.1^11,2*K.1^43,2*K.1^29,-2*K.1^29,-2*K.1^9,2*K.1^39,-2*K.1^19,2*K.1^3,-2*K.1^21,2*K.1^37,2*K.1^33,-2*K.1^41,-2*K.1^43,-2*K.1^27,2*K.1,2*K.1^7,2*K.1^29,2*K.1^3,2*K.1^31,-2*K.1^13,-2*K.1^23,-2*K.1^23,2*K.1^33,2*K.1^13,2*K.1^41,-2*K.1^41,2*K.1^43,-2*K.1^39,-2*K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,2*K.1^40,-2*K.1^10,-2*K.1^30,2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^40,-2*K.1^30,2*K.1^10,-2*K.1^40,-2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^40,2*K.1^30,2*K.1^30,-2*K.1^20,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,-2*K.1^15,2*K.1^15,2*K.1^35,-2*K.1^15,-2*K.1^35,2*K.1^5,2*K.1^15,2*K.1^45,-2*K.1^5,-2*K.1^35,-2*K.1^45,2*K.1^35,2*K.1^45,-2*K.1^45,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^32,2*K.1^24,2*K.1^12,-2*K.1^22,-2*K.1^42,2*K.1^44,-2*K.1^18,2*K.1^36,2*K.1^28,-2*K.1^38,2*K.1^8,-2*K.1^26,2*K.1^16,-2*K.1^6,-2*K.1^46,2*K.1^4,2*K.1^48,-2*K.1^2,-2*K.1^34,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^42,-2*K.1^48,2*K.1^46,-2*K.1^12,2*K.1^26,-2*K.1^16,2*K.1^2,-2*K.1^36,-2*K.1^8,-2*K.1^36,2*K.1^8,-2*K.1^4,-2*K.1^24,-2*K.1^6,-2*K.1^28,-2*K.1^2,-2*K.1^38,2*K.1^36,-2*K.1^48,2*K.1^28,-2*K.1^18,2*K.1^38,-2*K.1^46,2*K.1^48,2*K.1^14,2*K.1^18,2*K.1^16,2*K.1^34,-2*K.1^44,-2*K.1^26,-2*K.1^16,2*K.1^42,-2*K.1^42,2*K.1^24,2*K.1^2,-2*K.1^24,2*K.1^22,-2*K.1^22,2*K.1^44,-2*K.1^44,-2*K.1^8,2*K.1^22,2*K.1^6,2*K.1^38,-2*K.1^32,-2*K.1^4,2*K.1^4,2*K.1^12,-2*K.1^14,2*K.1^14,-2*K.1^12,-2*K.1^34,2*K.1^32,-2*K.1^32,2*K.1^34,2*K.1^46,2*K.1^18,2*K.1^26,-2*K.1^28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^39,-2*K.1^23,2*K.1^19,2*K.1^47,2*K.1,-2*K.1,2*K.1^17,2*K.1^49,-2*K.1^41,2*K.1^47,2*K.1^7,-2*K.1^37,-2*K.1^27,-2*K.1^33,2*K.1^29,2*K.1^37,2*K.1^31,-2*K.1^3,2*K.1^39,-2*K.1^41,2*K.1,-2*K.1^31,-2*K.1^31,2*K.1^11,2*K.1^17,2*K.1^49,2*K.1^43,-2*K.1^9,2*K.1^33,-2*K.1^11,-2*K.1^23,2*K.1^19,-2*K.1^33,-2*K.1^29,-2*K.1,-2*K.1^29,2*K.1^13,2*K.1^21,2*K.1^41,2*K.1^3,2*K.1^23,-2*K.1^19,2*K.1^39,2*K.1^43,2*K.1^13,-2*K.1^13,-2*K.1^27,-2*K.1^3,-2*K.1^43,-2*K.1^49,2*K.1^3,-2*K.1^39,-2*K.1^7,-2*K.1^21,2*K.1^21,2*K.1^41,-2*K.1^11,2*K.1^31,-2*K.1^47,2*K.1^29,-2*K.1^13,-2*K.1^17,2*K.1^9,2*K.1^7,2*K.1^23,-2*K.1^49,-2*K.1^43,-2*K.1^21,-2*K.1^47,-2*K.1^19,2*K.1^37,2*K.1^27,2*K.1^27,-2*K.1^17,-2*K.1^37,-2*K.1^9,2*K.1^9,-2*K.1^7,2*K.1^11,2*K.1^33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,-2*K.1^10,2*K.1^40,2*K.1^20,-2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^10,2*K.1^20,-2*K.1^40,2*K.1^10,2*K.1^30,2*K.1^40,-2*K.1^40,-2*K.1^30,-2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^30,0,0,0,0,0,0,0,0,-2*K.1^45,2*K.1^45,2*K.1^35,-2*K.1^35,-2*K.1^15,2*K.1^35,2*K.1^15,-2*K.1^45,-2*K.1^35,-2*K.1^5,2*K.1^45,2*K.1^15,2*K.1^5,-2*K.1^15,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^26,-2*K.1^38,2*K.1^16,2*K.1^8,2*K.1^48,2*K.1^28,-2*K.1^46,2*K.1^12,2*K.1^24,-2*K.1^2,-2*K.1^42,-2*K.1^22,-2*K.1^34,2*K.1^44,2*K.1^4,-2*K.1^14,2*K.1^36,2*K.1^32,-2*K.1^18,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^28,-2*K.1^32,2*K.1^14,-2*K.1^8,2*K.1^34,-2*K.1^44,2*K.1^18,-2*K.1^24,2*K.1^22,-2*K.1^24,-2*K.1^22,-2*K.1^36,-2*K.1^16,2*K.1^4,2*K.1^2,-2*K.1^18,-2*K.1^42,2*K.1^24,-2*K.1^32,-2*K.1^2,2*K.1^12,2*K.1^42,-2*K.1^14,2*K.1^32,2*K.1^26,-2*K.1^12,2*K.1^44,2*K.1^6,2*K.1^46,-2*K.1^34,-2*K.1^44,-2*K.1^28,2*K.1^28,2*K.1^16,2*K.1^18,-2*K.1^16,-2*K.1^48,2*K.1^48,-2*K.1^46,2*K.1^46,2*K.1^22,-2*K.1^48,-2*K.1^4,2*K.1^42,2*K.1^38,-2*K.1^36,2*K.1^36,2*K.1^8,-2*K.1^26,2*K.1^26,-2*K.1^8,-2*K.1^6,-2*K.1^38,2*K.1^38,2*K.1^6,2*K.1^14,-2*K.1^12,2*K.1^34,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1^7,2*K.1^21,-2*K.1^23,-2*K.1^9,2*K.1^9,2*K.1^3,-2*K.1^41,-2*K.1^19,-2*K.1^23,2*K.1^13,2*K.1^33,2*K.1^43,-2*K.1^47,2*K.1^11,-2*K.1^33,2*K.1^29,2*K.1^27,2*K.1,-2*K.1^19,-2*K.1^9,-2*K.1^29,-2*K.1^29,2*K.1^49,2*K.1^3,-2*K.1^41,2*K.1^37,-2*K.1^31,2*K.1^47,-2*K.1^49,2*K.1^7,2*K.1^21,-2*K.1^47,-2*K.1^11,2*K.1^9,-2*K.1^11,-2*K.1^17,2*K.1^39,2*K.1^19,-2*K.1^27,-2*K.1^7,-2*K.1^21,2*K.1,2*K.1^37,-2*K.1^17,2*K.1^17,2*K.1^43,2*K.1^27,-2*K.1^37,2*K.1^41,-2*K.1^27,-2*K.1,-2*K.1^13,-2*K.1^39,2*K.1^39,2*K.1^19,-2*K.1^49,2*K.1^29,2*K.1^23,2*K.1^11,2*K.1^17,-2*K.1^3,2*K.1^31,2*K.1^13,-2*K.1^7,2*K.1^41,-2*K.1^37,-2*K.1^39,2*K.1^23,-2*K.1^21,-2*K.1^33,-2*K.1^43,-2*K.1^43,-2*K.1^3,2*K.1^33,-2*K.1^31,2*K.1^31,-2*K.1^13,2*K.1^49,2*K.1^47,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,2*K.1^40,-2*K.1^10,-2*K.1^30,2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^40,-2*K.1^30,2*K.1^10,-2*K.1^40,-2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^40,2*K.1^30,2*K.1^30,-2*K.1^20,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,-2*K.1^15,2*K.1^15,2*K.1^35,-2*K.1^15,-2*K.1^35,2*K.1^5,2*K.1^15,2*K.1^45,-2*K.1^5,-2*K.1^35,-2*K.1^45,2*K.1^35,2*K.1^45,-2*K.1^45,0,0,0,0,0,0,0,0,2*K.1^24,2*K.1^12,-2*K.1^34,-2*K.1^42,-2*K.1^2,-2*K.1^22,2*K.1^4,-2*K.1^38,-2*K.1^26,2*K.1^48,2*K.1^8,2*K.1^28,2*K.1^16,-2*K.1^6,-2*K.1^46,2*K.1^36,-2*K.1^14,-2*K.1^18,2*K.1^32,2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^46,2*K.1^22,2*K.1^18,-2*K.1^36,2*K.1^42,-2*K.1^16,2*K.1^6,-2*K.1^32,2*K.1^26,-2*K.1^28,2*K.1^26,2*K.1^28,2*K.1^14,2*K.1^34,-2*K.1^46,-2*K.1^48,2*K.1^32,2*K.1^8,-2*K.1^26,2*K.1^18,2*K.1^48,-2*K.1^38,-2*K.1^8,2*K.1^36,-2*K.1^18,-2*K.1^24,2*K.1^38,-2*K.1^6,-2*K.1^44,-2*K.1^4,2*K.1^16,2*K.1^6,2*K.1^22,-2*K.1^22,-2*K.1^34,-2*K.1^32,2*K.1^34,2*K.1^2,-2*K.1^2,2*K.1^4,-2*K.1^4,-2*K.1^28,2*K.1^2,2*K.1^46,-2*K.1^8,-2*K.1^12,2*K.1^14,-2*K.1^14,-2*K.1^42,2*K.1^24,-2*K.1^24,2*K.1^42,2*K.1^44,2*K.1^12,-2*K.1^12,-2*K.1^44,-2*K.1^36,2*K.1^38,-2*K.1^16,-2*K.1^48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^49,-2*K.1^43,-2*K.1^29,2*K.1^27,2*K.1^41,-2*K.1^41,-2*K.1^47,2*K.1^9,2*K.1^31,2*K.1^27,-2*K.1^37,-2*K.1^17,-2*K.1^7,2*K.1^3,-2*K.1^39,2*K.1^17,-2*K.1^21,-2*K.1^23,-2*K.1^49,2*K.1^31,2*K.1^41,2*K.1^21,2*K.1^21,-2*K.1,-2*K.1^47,2*K.1^9,-2*K.1^13,2*K.1^19,-2*K.1^3,2*K.1,-2*K.1^43,-2*K.1^29,2*K.1^3,2*K.1^39,-2*K.1^41,2*K.1^39,2*K.1^33,-2*K.1^11,-2*K.1^31,2*K.1^23,2*K.1^43,2*K.1^29,-2*K.1^49,-2*K.1^13,2*K.1^33,-2*K.1^33,-2*K.1^7,-2*K.1^23,2*K.1^13,-2*K.1^9,2*K.1^23,2*K.1^49,2*K.1^37,2*K.1^11,-2*K.1^11,-2*K.1^31,2*K.1,-2*K.1^21,-2*K.1^27,-2*K.1^39,-2*K.1^33,2*K.1^47,-2*K.1^19,-2*K.1^37,2*K.1^43,-2*K.1^9,2*K.1^13,2*K.1^11,-2*K.1^27,2*K.1^29,2*K.1^17,2*K.1^7,2*K.1^7,2*K.1^47,-2*K.1^17,2*K.1^19,-2*K.1^19,2*K.1^37,-2*K.1,-2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,-2*K.1^10,2*K.1^40,2*K.1^20,-2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^10,2*K.1^20,-2*K.1^40,2*K.1^10,2*K.1^30,2*K.1^40,-2*K.1^40,-2*K.1^30,-2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^30,0,0,0,0,0,0,0,0,-2*K.1^45,2*K.1^45,2*K.1^35,-2*K.1^35,-2*K.1^15,2*K.1^35,2*K.1^15,-2*K.1^45,-2*K.1^35,-2*K.1^5,2*K.1^45,2*K.1^15,2*K.1^5,-2*K.1^15,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^16,2*K.1^8,-2*K.1^6,2*K.1^28,-2*K.1^18,2*K.1^48,2*K.1^36,-2*K.1^42,-2*K.1^34,2*K.1^32,-2*K.1^22,-2*K.1^2,2*K.1^44,2*K.1^4,-2*K.1^14,2*K.1^24,-2*K.1^26,2*K.1^12,-2*K.1^38,-2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^48,-2*K.1^12,-2*K.1^24,-2*K.1^28,-2*K.1^44,-2*K.1^4,2*K.1^38,2*K.1^34,2*K.1^2,2*K.1^34,-2*K.1^2,2*K.1^26,2*K.1^6,-2*K.1^14,-2*K.1^32,-2*K.1^38,-2*K.1^22,-2*K.1^34,-2*K.1^12,2*K.1^32,-2*K.1^42,2*K.1^22,2*K.1^24,2*K.1^12,-2*K.1^16,2*K.1^42,2*K.1^4,2*K.1^46,-2*K.1^36,2*K.1^44,-2*K.1^4,-2*K.1^48,2*K.1^48,-2*K.1^6,2*K.1^38,2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^36,-2*K.1^36,2*K.1^2,2*K.1^18,2*K.1^14,2*K.1^22,-2*K.1^8,2*K.1^26,-2*K.1^26,2*K.1^28,2*K.1^16,-2*K.1^16,-2*K.1^28,-2*K.1^46,2*K.1^8,-2*K.1^8,2*K.1^46,-2*K.1^24,2*K.1^42,-2*K.1^44,-2*K.1^32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^41,-2*K.1^37,-2*K.1^11,-2*K.1^43,2*K.1^19,-2*K.1^19,2*K.1^23,2*K.1^31,2*K.1^29,-2*K.1^43,2*K.1^33,-2*K.1^3,-2*K.1^13,-2*K.1^27,-2*K.1,2*K.1^3,-2*K.1^39,2*K.1^7,2*K.1^41,2*K.1^29,2*K.1^19,2*K.1^39,2*K.1^39,2*K.1^9,2*K.1^23,2*K.1^31,2*K.1^17,2*K.1^21,2*K.1^27,-2*K.1^9,-2*K.1^37,-2*K.1^11,-2*K.1^27,2*K.1,-2*K.1^19,2*K.1,2*K.1^47,-2*K.1^49,-2*K.1^29,-2*K.1^7,2*K.1^37,2*K.1^11,2*K.1^41,2*K.1^17,2*K.1^47,-2*K.1^47,-2*K.1^13,2*K.1^7,-2*K.1^17,-2*K.1^31,-2*K.1^7,-2*K.1^41,-2*K.1^33,2*K.1^49,-2*K.1^49,-2*K.1^29,-2*K.1^9,-2*K.1^39,2*K.1^43,-2*K.1,-2*K.1^47,-2*K.1^23,-2*K.1^21,2*K.1^33,2*K.1^37,-2*K.1^31,-2*K.1^17,2*K.1^49,2*K.1^43,2*K.1^11,2*K.1^3,2*K.1^13,2*K.1^13,-2*K.1^23,-2*K.1^3,2*K.1^21,-2*K.1^21,-2*K.1^33,2*K.1^9,2*K.1^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,2*K.1^40,-2*K.1^10,-2*K.1^30,2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^40,-2*K.1^30,2*K.1^10,-2*K.1^40,-2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^40,2*K.1^30,2*K.1^30,-2*K.1^20,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,-2*K.1^15,2*K.1^15,2*K.1^35,-2*K.1^15,-2*K.1^35,2*K.1^5,2*K.1^15,2*K.1^45,-2*K.1^5,-2*K.1^35,-2*K.1^45,2*K.1^35,2*K.1^45,-2*K.1^45,0,0,0,0,0,0,0,0,-2*K.1^34,-2*K.1^42,2*K.1^44,-2*K.1^22,2*K.1^32,-2*K.1^2,-2*K.1^14,2*K.1^8,2*K.1^16,-2*K.1^18,2*K.1^28,2*K.1^48,-2*K.1^6,-2*K.1^46,2*K.1^36,-2*K.1^26,2*K.1^24,-2*K.1^38,2*K.1^12,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^36,2*K.1^2,2*K.1^38,2*K.1^26,2*K.1^22,2*K.1^6,2*K.1^46,-2*K.1^12,-2*K.1^16,-2*K.1^48,-2*K.1^16,2*K.1^48,-2*K.1^24,-2*K.1^44,2*K.1^36,2*K.1^18,2*K.1^12,2*K.1^28,2*K.1^16,2*K.1^38,-2*K.1^18,2*K.1^8,-2*K.1^28,-2*K.1^26,-2*K.1^38,2*K.1^34,-2*K.1^8,-2*K.1^46,-2*K.1^4,2*K.1^14,-2*K.1^6,2*K.1^46,2*K.1^2,-2*K.1^2,2*K.1^44,-2*K.1^12,-2*K.1^44,-2*K.1^32,2*K.1^32,-2*K.1^14,2*K.1^14,-2*K.1^48,-2*K.1^32,-2*K.1^36,-2*K.1^28,2*K.1^42,-2*K.1^24,2*K.1^24,-2*K.1^22,-2*K.1^34,2*K.1^34,2*K.1^22,2*K.1^4,-2*K.1^42,2*K.1^42,-2*K.1^4,2*K.1^26,-2*K.1^8,2*K.1^6,2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^9,2*K.1^13,2*K.1^39,2*K.1^7,-2*K.1^31,2*K.1^31,-2*K.1^27,-2*K.1^19,-2*K.1^21,2*K.1^7,-2*K.1^17,2*K.1^47,2*K.1^37,2*K.1^23,2*K.1^49,-2*K.1^47,2*K.1^11,-2*K.1^43,-2*K.1^9,-2*K.1^21,-2*K.1^31,-2*K.1^11,-2*K.1^11,-2*K.1^41,-2*K.1^27,-2*K.1^19,-2*K.1^33,-2*K.1^29,-2*K.1^23,2*K.1^41,2*K.1^13,2*K.1^39,2*K.1^23,-2*K.1^49,2*K.1^31,-2*K.1^49,-2*K.1^3,2*K.1,2*K.1^21,2*K.1^43,-2*K.1^13,-2*K.1^39,-2*K.1^9,-2*K.1^33,-2*K.1^3,2*K.1^3,2*K.1^37,-2*K.1^43,2*K.1^33,2*K.1^19,2*K.1^43,2*K.1^9,2*K.1^17,-2*K.1,2*K.1,2*K.1^21,2*K.1^41,2*K.1^11,-2*K.1^7,2*K.1^49,2*K.1^3,2*K.1^27,2*K.1^29,-2*K.1^17,-2*K.1^13,2*K.1^19,2*K.1^33,-2*K.1,-2*K.1^7,-2*K.1^39,-2*K.1^47,-2*K.1^37,-2*K.1^37,2*K.1^27,2*K.1^47,-2*K.1^29,2*K.1^29,2*K.1^17,-2*K.1^41,-2*K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,-2*K.1^10,2*K.1^40,2*K.1^20,-2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^10,2*K.1^20,-2*K.1^40,2*K.1^10,2*K.1^30,2*K.1^40,-2*K.1^40,-2*K.1^30,-2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^30,0,0,0,0,0,0,0,0,-2*K.1^45,2*K.1^45,2*K.1^35,-2*K.1^35,-2*K.1^15,2*K.1^35,2*K.1^15,-2*K.1^45,-2*K.1^35,-2*K.1^5,2*K.1^45,2*K.1^15,2*K.1^5,-2*K.1^15,-2*K.1^5,2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^46,2*K.1^48,2*K.1^36,-2*K.1^18,2*K.1^8,-2*K.1^38,2*K.1^16,-2*K.1^2,2*K.1^4,-2*K.1^42,2*K.1^32,2*K.1^12,-2*K.1^14,2*K.1^24,-2*K.1^34,2*K.1^44,-2*K.1^6,-2*K.1^22,2*K.1^28,-2*K.1^26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^34,2*K.1^38,2*K.1^22,-2*K.1^44,2*K.1^18,2*K.1^14,-2*K.1^24,-2*K.1^28,-2*K.1^4,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^6,-2*K.1^36,-2*K.1^34,2*K.1^42,2*K.1^28,2*K.1^32,2*K.1^4,2*K.1^22,-2*K.1^42,-2*K.1^2,-2*K.1^32,2*K.1^44,-2*K.1^22,2*K.1^46,2*K.1^2,2*K.1^24,2*K.1^26,-2*K.1^16,-2*K.1^14,-2*K.1^24,2*K.1^38,-2*K.1^38,2*K.1^36,-2*K.1^28,-2*K.1^36,-2*K.1^8,2*K.1^8,2*K.1^16,-2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^34,-2*K.1^32,-2*K.1^48,2*K.1^6,-2*K.1^6,-2*K.1^18,-2*K.1^46,2*K.1^46,2*K.1^18,-2*K.1^26,2*K.1^48,-2*K.1^48,2*K.1^26,-2*K.1^44,2*K.1^2,2*K.1^14,2*K.1^42,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^21,2*K.1^47,2*K.1^41,2*K.1^33,2*K.1^39,-2*K.1^39,-2*K.1^13,2*K.1^11,2*K.1^49,2*K.1^33,-2*K.1^23,-2*K.1^43,2*K.1^3,2*K.1^37,2*K.1^31,2*K.1^43,2*K.1^9,-2*K.1^17,2*K.1^21,2*K.1^49,2*K.1^39,-2*K.1^9,-2*K.1^9,2*K.1^29,-2*K.1^13,2*K.1^11,-2*K.1^27,2*K.1,-2*K.1^37,-2*K.1^29,2*K.1^47,2*K.1^41,2*K.1^37,-2*K.1^31,-2*K.1^39,-2*K.1^31,2*K.1^7,2*K.1^19,-2*K.1^49,2*K.1^17,-2*K.1^47,-2*K.1^41,2*K.1^21,-2*K.1^27,2*K.1^7,-2*K.1^7,2*K.1^3,-2*K.1^17,2*K.1^27,-2*K.1^11,2*K.1^17,-2*K.1^21,2*K.1^23,-2*K.1^19,2*K.1^19,-2*K.1^49,-2*K.1^29,2*K.1^9,-2*K.1^33,2*K.1^31,-2*K.1^7,2*K.1^13,-2*K.1,-2*K.1^23,-2*K.1^47,-2*K.1^11,2*K.1^27,-2*K.1^19,-2*K.1^33,-2*K.1^41,2*K.1^43,-2*K.1^3,-2*K.1^3,2*K.1^13,-2*K.1^43,2*K.1,-2*K.1,2*K.1^23,2*K.1^29,-2*K.1^37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,2*K.1^40,-2*K.1^10,-2*K.1^30,2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^40,-2*K.1^30,2*K.1^10,-2*K.1^40,-2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^40,2*K.1^30,2*K.1^30,-2*K.1^20,0,0,0,0,0,0,0,0,2*K.1^5,-2*K.1^5,-2*K.1^15,2*K.1^15,2*K.1^35,-2*K.1^15,-2*K.1^35,2*K.1^5,2*K.1^15,2*K.1^45,-2*K.1^5,-2*K.1^35,-2*K.1^45,2*K.1^35,2*K.1^45,-2*K.1^45,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^2,-2*K.1^14,2*K.1^32,-2*K.1^42,2*K.1^12,-2*K.1^34,2*K.1^48,-2*K.1^46,2*K.1^8,-2*K.1^18,-2*K.1^38,2*K.1^36,-2*K.1^26,2*K.1^16,-2*K.1^6,2*K.1^44,2*K.1^28,-2*K.1^22,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,-2*K.1^12,-2*K.1^28,2*K.1^6,-2*K.1^32,-2*K.1^36,2*K.1^26,2*K.1^22,2*K.1^46,2*K.1^38,2*K.1^46,-2*K.1^38,-2*K.1^44,2*K.1^14,2*K.1^16,-2*K.1^8,-2*K.1^22,-2*K.1^18,-2*K.1^46,-2*K.1^28,2*K.1^8,2*K.1^48,2*K.1^18,-2*K.1^6,2*K.1^28,-2*K.1^4,-2*K.1^48,-2*K.1^26,-2*K.1^24,2*K.1^34,2*K.1^36,2*K.1^26,-2*K.1^12,2*K.1^12,-2*K.1^14,2*K.1^22,2*K.1^14,2*K.1^42,-2*K.1^42,-2*K.1^34,2*K.1^34,2*K.1^38,2*K.1^42,-2*K.1^16,2*K.1^18,2*K.1^2,-2*K.1^44,2*K.1^44,2*K.1^32,2*K.1^4,-2*K.1^4,-2*K.1^32,2*K.1^24,-2*K.1^2,2*K.1^2,-2*K.1^24,2*K.1^6,-2*K.1^48,-2*K.1^36,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^29,-2*K.1^3,-2*K.1^9,-2*K.1^17,-2*K.1^11,2*K.1^11,2*K.1^37,-2*K.1^39,-2*K.1,-2*K.1^17,2*K.1^27,2*K.1^7,-2*K.1^47,-2*K.1^13,-2*K.1^19,-2*K.1^7,-2*K.1^41,2*K.1^33,-2*K.1^29,-2*K.1,-2*K.1^11,2*K.1^41,2*K.1^41,-2*K.1^21,2*K.1^37,-2*K.1^39,2*K.1^23,-2*K.1^49,2*K.1^13,2*K.1^21,-2*K.1^3,-2*K.1^9,-2*K.1^13,2*K.1^19,2*K.1^11,2*K.1^19,-2*K.1^43,-2*K.1^31,2*K.1,-2*K.1^33,2*K.1^3,2*K.1^9,-2*K.1^29,2*K.1^23,-2*K.1^43,2*K.1^43,-2*K.1^47,2*K.1^33,-2*K.1^23,2*K.1^39,-2*K.1^33,2*K.1^29,-2*K.1^27,2*K.1^31,-2*K.1^31,2*K.1,2*K.1^21,-2*K.1^41,2*K.1^17,-2*K.1^19,2*K.1^43,-2*K.1^37,2*K.1^49,2*K.1^27,2*K.1^3,2*K.1^39,-2*K.1^23,2*K.1^31,2*K.1^17,2*K.1^9,-2*K.1^7,2*K.1^47,2*K.1^47,-2*K.1^37,2*K.1^7,-2*K.1^49,2*K.1^49,-2*K.1^27,-2*K.1^21,2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,2*K.1^40,-2*K.1^10,-2*K.1^30,2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^40,-2*K.1^30,2*K.1^10,-2*K.1^40,-2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^40,2*K.1^30,2*K.1^30,-2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,2*K.1^15,-2*K.1^15,-2*K.1^35,2*K.1^15,2*K.1^35,-2*K.1^5,-2*K.1^15,-2*K.1^45,2*K.1^5,2*K.1^35,2*K.1^45,-2*K.1^35,-2*K.1^45,2*K.1^45,0,0,0,0,0,0,0,0,2*K.1^44,-2*K.1^22,2*K.1^4,-2*K.1^2,2*K.1^12,2*K.1^32,2*K.1^24,2*K.1^28,-2*K.1^6,-2*K.1^38,2*K.1^48,-2*K.1^18,-2*K.1^46,2*K.1^36,-2*K.1^26,2*K.1^16,-2*K.1^34,2*K.1^8,-2*K.1^42,-2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^26,-2*K.1^32,-2*K.1^8,-2*K.1^16,2*K.1^2,2*K.1^46,-2*K.1^36,2*K.1^42,2*K.1^6,2*K.1^18,2*K.1^6,-2*K.1^18,2*K.1^34,-2*K.1^4,-2*K.1^26,2*K.1^38,-2*K.1^42,2*K.1^48,-2*K.1^6,-2*K.1^8,-2*K.1^38,2*K.1^28,-2*K.1^48,2*K.1^16,2*K.1^8,-2*K.1^44,-2*K.1^28,2*K.1^36,2*K.1^14,-2*K.1^24,-2*K.1^46,-2*K.1^36,-2*K.1^32,2*K.1^32,2*K.1^4,2*K.1^42,-2*K.1^4,-2*K.1^12,2*K.1^12,2*K.1^24,-2*K.1^24,2*K.1^18,-2*K.1^12,2*K.1^26,-2*K.1^48,2*K.1^22,2*K.1^34,-2*K.1^34,-2*K.1^2,2*K.1^44,-2*K.1^44,2*K.1^2,-2*K.1^14,-2*K.1^22,2*K.1^22,2*K.1^14,-2*K.1^16,-2*K.1^28,2*K.1^46,2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^19,-2*K.1^33,2*K.1^49,2*K.1^37,-2*K.1^21,2*K.1^21,2*K.1^7,-2*K.1^29,-2*K.1^11,2*K.1^37,-2*K.1^47,-2*K.1^27,-2*K.1^17,-2*K.1^43,-2*K.1^9,2*K.1^27,2*K.1,-2*K.1^13,-2*K.1^19,-2*K.1^11,-2*K.1^21,-2*K.1,-2*K.1,-2*K.1^31,2*K.1^7,-2*K.1^29,-2*K.1^3,-2*K.1^39,2*K.1^43,2*K.1^31,-2*K.1^33,2*K.1^49,-2*K.1^43,2*K.1^9,2*K.1^21,2*K.1^9,2*K.1^23,-2*K.1^41,2*K.1^11,2*K.1^13,2*K.1^33,-2*K.1^49,-2*K.1^19,-2*K.1^3,2*K.1^23,-2*K.1^23,-2*K.1^17,-2*K.1^13,2*K.1^3,2*K.1^29,2*K.1^13,2*K.1^19,2*K.1^47,2*K.1^41,-2*K.1^41,2*K.1^11,2*K.1^31,2*K.1,-2*K.1^37,-2*K.1^9,-2*K.1^23,-2*K.1^7,2*K.1^39,-2*K.1^47,2*K.1^33,2*K.1^29,2*K.1^3,2*K.1^41,-2*K.1^37,-2*K.1^49,2*K.1^27,2*K.1^17,2*K.1^17,-2*K.1^7,-2*K.1^27,-2*K.1^39,2*K.1^39,2*K.1^47,-2*K.1^31,2*K.1^43,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,-2*K.1^10,2*K.1^40,2*K.1^20,-2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^10,2*K.1^20,-2*K.1^40,2*K.1^10,2*K.1^30,2*K.1^40,-2*K.1^40,-2*K.1^30,-2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^45,-2*K.1^45,-2*K.1^35,2*K.1^35,2*K.1^15,-2*K.1^35,-2*K.1^15,2*K.1^45,2*K.1^35,2*K.1^5,-2*K.1^45,-2*K.1^15,-2*K.1^5,2*K.1^15,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^6,2*K.1^28,-2*K.1^46,2*K.1^48,-2*K.1^38,-2*K.1^18,-2*K.1^26,-2*K.1^22,2*K.1^44,2*K.1^12,-2*K.1^2,2*K.1^32,2*K.1^4,-2*K.1^14,2*K.1^24,-2*K.1^34,2*K.1^16,-2*K.1^42,2*K.1^8,2*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24,2*K.1^18,2*K.1^42,2*K.1^34,-2*K.1^48,-2*K.1^4,2*K.1^14,-2*K.1^8,-2*K.1^44,-2*K.1^32,-2*K.1^44,2*K.1^32,-2*K.1^16,2*K.1^46,2*K.1^24,-2*K.1^12,2*K.1^8,-2*K.1^2,2*K.1^44,2*K.1^42,2*K.1^12,-2*K.1^22,2*K.1^2,-2*K.1^34,-2*K.1^42,2*K.1^6,2*K.1^22,-2*K.1^14,-2*K.1^36,2*K.1^26,2*K.1^4,2*K.1^14,2*K.1^18,-2*K.1^18,-2*K.1^46,-2*K.1^8,2*K.1^46,2*K.1^38,-2*K.1^38,-2*K.1^26,2*K.1^26,-2*K.1^32,2*K.1^38,-2*K.1^24,2*K.1^2,-2*K.1^28,-2*K.1^16,2*K.1^16,2*K.1^48,-2*K.1^6,2*K.1^6,-2*K.1^48,2*K.1^36,2*K.1^28,-2*K.1^28,-2*K.1^36,2*K.1^34,2*K.1^22,-2*K.1^4,-2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^31,2*K.1^17,-2*K.1,-2*K.1^13,2*K.1^29,-2*K.1^29,-2*K.1^43,2*K.1^21,2*K.1^39,-2*K.1^13,2*K.1^3,2*K.1^23,2*K.1^33,2*K.1^7,2*K.1^41,-2*K.1^23,-2*K.1^49,2*K.1^37,2*K.1^31,2*K.1^39,2*K.1^29,2*K.1^49,2*K.1^49,2*K.1^19,-2*K.1^43,2*K.1^21,2*K.1^47,2*K.1^11,-2*K.1^7,-2*K.1^19,2*K.1^17,-2*K.1,2*K.1^7,-2*K.1^41,-2*K.1^29,-2*K.1^41,-2*K.1^27,2*K.1^9,-2*K.1^39,-2*K.1^37,-2*K.1^17,2*K.1,2*K.1^31,2*K.1^47,-2*K.1^27,2*K.1^27,2*K.1^33,2*K.1^37,-2*K.1^47,-2*K.1^21,-2*K.1^37,-2*K.1^31,-2*K.1^3,-2*K.1^9,2*K.1^9,-2*K.1^39,-2*K.1^19,-2*K.1^49,2*K.1^13,2*K.1^41,2*K.1^27,2*K.1^43,-2*K.1^11,2*K.1^3,-2*K.1^17,-2*K.1^21,-2*K.1^47,-2*K.1^9,2*K.1^13,2*K.1,-2*K.1^23,-2*K.1^33,-2*K.1^33,2*K.1^43,2*K.1^23,2*K.1^11,-2*K.1^11,-2*K.1^3,2*K.1^19,-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,2*K.1^40,-2*K.1^10,-2*K.1^30,2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^40,-2*K.1^30,2*K.1^10,-2*K.1^40,-2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^40,2*K.1^30,2*K.1^30,-2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,2*K.1^15,-2*K.1^15,-2*K.1^35,2*K.1^15,2*K.1^35,-2*K.1^5,-2*K.1^15,-2*K.1^45,2*K.1^5,2*K.1^35,2*K.1^45,-2*K.1^35,-2*K.1^45,2*K.1^45,0,0,0,0,0,0,0,0,-2*K.1^14,2*K.1^32,2*K.1^24,2*K.1^12,-2*K.1^22,-2*K.1^42,2*K.1^44,-2*K.1^18,2*K.1^36,2*K.1^28,-2*K.1^38,2*K.1^8,-2*K.1^26,2*K.1^16,-2*K.1^6,-2*K.1^46,2*K.1^4,2*K.1^48,-2*K.1^2,-2*K.1^34,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^6,2*K.1^42,-2*K.1^48,2*K.1^46,-2*K.1^12,2*K.1^26,-2*K.1^16,2*K.1^2,-2*K.1^36,-2*K.1^8,-2*K.1^36,2*K.1^8,-2*K.1^4,-2*K.1^24,-2*K.1^6,-2*K.1^28,-2*K.1^2,-2*K.1^38,2*K.1^36,-2*K.1^48,2*K.1^28,-2*K.1^18,2*K.1^38,-2*K.1^46,2*K.1^48,2*K.1^14,2*K.1^18,2*K.1^16,2*K.1^34,-2*K.1^44,-2*K.1^26,-2*K.1^16,2*K.1^42,-2*K.1^42,2*K.1^24,2*K.1^2,-2*K.1^24,2*K.1^22,-2*K.1^22,2*K.1^44,-2*K.1^44,-2*K.1^8,2*K.1^22,2*K.1^6,2*K.1^38,-2*K.1^32,-2*K.1^4,2*K.1^4,2*K.1^12,-2*K.1^14,2*K.1^14,-2*K.1^12,-2*K.1^34,2*K.1^32,-2*K.1^32,2*K.1^34,2*K.1^46,2*K.1^18,2*K.1^26,-2*K.1^28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^39,2*K.1^23,-2*K.1^19,-2*K.1^47,-2*K.1,2*K.1,-2*K.1^17,-2*K.1^49,2*K.1^41,-2*K.1^47,-2*K.1^7,2*K.1^37,2*K.1^27,2*K.1^33,-2*K.1^29,-2*K.1^37,-2*K.1^31,2*K.1^3,-2*K.1^39,2*K.1^41,-2*K.1,2*K.1^31,2*K.1^31,-2*K.1^11,-2*K.1^17,-2*K.1^49,-2*K.1^43,2*K.1^9,-2*K.1^33,2*K.1^11,2*K.1^23,-2*K.1^19,2*K.1^33,2*K.1^29,2*K.1,2*K.1^29,-2*K.1^13,-2*K.1^21,-2*K.1^41,-2*K.1^3,-2*K.1^23,2*K.1^19,-2*K.1^39,-2*K.1^43,-2*K.1^13,2*K.1^13,2*K.1^27,2*K.1^3,2*K.1^43,2*K.1^49,-2*K.1^3,2*K.1^39,2*K.1^7,2*K.1^21,-2*K.1^21,-2*K.1^41,2*K.1^11,-2*K.1^31,2*K.1^47,-2*K.1^29,2*K.1^13,2*K.1^17,-2*K.1^9,-2*K.1^7,-2*K.1^23,2*K.1^49,2*K.1^43,2*K.1^21,2*K.1^47,2*K.1^19,-2*K.1^37,-2*K.1^27,-2*K.1^27,2*K.1^17,2*K.1^37,2*K.1^9,-2*K.1^9,2*K.1^7,-2*K.1^11,-2*K.1^33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,-2*K.1^10,2*K.1^40,2*K.1^20,-2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^10,2*K.1^20,-2*K.1^40,2*K.1^10,2*K.1^30,2*K.1^40,-2*K.1^40,-2*K.1^30,-2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^45,-2*K.1^45,-2*K.1^35,2*K.1^35,2*K.1^15,-2*K.1^35,-2*K.1^15,2*K.1^45,2*K.1^35,2*K.1^5,-2*K.1^45,-2*K.1^15,-2*K.1^5,2*K.1^15,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^36,-2*K.1^18,-2*K.1^26,-2*K.1^38,2*K.1^28,2*K.1^8,-2*K.1^6,2*K.1^32,-2*K.1^14,-2*K.1^22,2*K.1^12,-2*K.1^42,2*K.1^24,-2*K.1^34,2*K.1^44,2*K.1^4,-2*K.1^46,-2*K.1^2,2*K.1^48,2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^44,-2*K.1^8,2*K.1^2,-2*K.1^4,2*K.1^38,-2*K.1^24,2*K.1^34,-2*K.1^48,2*K.1^14,2*K.1^42,2*K.1^14,-2*K.1^42,2*K.1^46,2*K.1^26,2*K.1^44,2*K.1^22,2*K.1^48,2*K.1^12,-2*K.1^14,2*K.1^2,-2*K.1^22,2*K.1^32,-2*K.1^12,2*K.1^4,-2*K.1^2,-2*K.1^36,-2*K.1^32,-2*K.1^34,-2*K.1^16,2*K.1^6,2*K.1^24,2*K.1^34,-2*K.1^8,2*K.1^8,-2*K.1^26,-2*K.1^48,2*K.1^26,-2*K.1^28,2*K.1^28,-2*K.1^6,2*K.1^6,2*K.1^42,-2*K.1^28,-2*K.1^44,-2*K.1^12,2*K.1^18,2*K.1^46,-2*K.1^46,-2*K.1^38,2*K.1^36,-2*K.1^36,2*K.1^38,2*K.1^16,-2*K.1^18,2*K.1^18,-2*K.1^16,-2*K.1^4,-2*K.1^32,-2*K.1^24,2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^11,-2*K.1^27,2*K.1^31,2*K.1^3,2*K.1^49,-2*K.1^49,2*K.1^33,2*K.1,-2*K.1^9,2*K.1^3,2*K.1^43,-2*K.1^13,-2*K.1^23,-2*K.1^17,2*K.1^21,2*K.1^13,2*K.1^19,-2*K.1^47,2*K.1^11,-2*K.1^9,2*K.1^49,-2*K.1^19,-2*K.1^19,2*K.1^39,2*K.1^33,2*K.1,2*K.1^7,-2*K.1^41,2*K.1^17,-2*K.1^39,-2*K.1^27,2*K.1^31,-2*K.1^17,-2*K.1^21,-2*K.1^49,-2*K.1^21,2*K.1^37,2*K.1^29,2*K.1^9,2*K.1^47,2*K.1^27,-2*K.1^31,2*K.1^11,2*K.1^7,2*K.1^37,-2*K.1^37,-2*K.1^23,-2*K.1^47,-2*K.1^7,-2*K.1,2*K.1^47,-2*K.1^11,-2*K.1^43,-2*K.1^29,2*K.1^29,2*K.1^9,-2*K.1^39,2*K.1^19,-2*K.1^3,2*K.1^21,-2*K.1^37,-2*K.1^33,2*K.1^41,2*K.1^43,2*K.1^27,-2*K.1,-2*K.1^7,-2*K.1^29,-2*K.1^3,-2*K.1^31,2*K.1^13,2*K.1^23,2*K.1^23,-2*K.1^33,-2*K.1^13,-2*K.1^41,2*K.1^41,-2*K.1^43,2*K.1^39,2*K.1^17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,2*K.1^40,-2*K.1^10,-2*K.1^30,2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^40,-2*K.1^30,2*K.1^10,-2*K.1^40,-2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^40,2*K.1^30,2*K.1^30,-2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,2*K.1^15,-2*K.1^15,-2*K.1^35,2*K.1^15,2*K.1^35,-2*K.1^5,-2*K.1^15,-2*K.1^45,2*K.1^5,2*K.1^35,2*K.1^45,-2*K.1^35,-2*K.1^45,2*K.1^45,0,0,0,0,0,0,0,0,2*K.1^24,2*K.1^12,-2*K.1^34,-2*K.1^42,-2*K.1^2,-2*K.1^22,2*K.1^4,-2*K.1^38,-2*K.1^26,2*K.1^48,2*K.1^8,2*K.1^28,2*K.1^16,-2*K.1^6,-2*K.1^46,2*K.1^36,-2*K.1^14,-2*K.1^18,2*K.1^32,2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^46,2*K.1^22,2*K.1^18,-2*K.1^36,2*K.1^42,-2*K.1^16,2*K.1^6,-2*K.1^32,2*K.1^26,-2*K.1^28,2*K.1^26,2*K.1^28,2*K.1^14,2*K.1^34,-2*K.1^46,-2*K.1^48,2*K.1^32,2*K.1^8,-2*K.1^26,2*K.1^18,2*K.1^48,-2*K.1^38,-2*K.1^8,2*K.1^36,-2*K.1^18,-2*K.1^24,2*K.1^38,-2*K.1^6,-2*K.1^44,-2*K.1^4,2*K.1^16,2*K.1^6,2*K.1^22,-2*K.1^22,-2*K.1^34,-2*K.1^32,2*K.1^34,2*K.1^2,-2*K.1^2,2*K.1^4,-2*K.1^4,-2*K.1^28,2*K.1^2,2*K.1^46,-2*K.1^8,-2*K.1^12,2*K.1^14,-2*K.1^14,-2*K.1^42,2*K.1^24,-2*K.1^24,2*K.1^42,2*K.1^44,2*K.1^12,-2*K.1^12,-2*K.1^44,-2*K.1^36,2*K.1^38,-2*K.1^16,-2*K.1^48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^49,2*K.1^43,2*K.1^29,-2*K.1^27,-2*K.1^41,2*K.1^41,2*K.1^47,-2*K.1^9,-2*K.1^31,-2*K.1^27,2*K.1^37,2*K.1^17,2*K.1^7,-2*K.1^3,2*K.1^39,-2*K.1^17,2*K.1^21,2*K.1^23,2*K.1^49,-2*K.1^31,-2*K.1^41,-2*K.1^21,-2*K.1^21,2*K.1,2*K.1^47,-2*K.1^9,2*K.1^13,-2*K.1^19,2*K.1^3,-2*K.1,2*K.1^43,2*K.1^29,-2*K.1^3,-2*K.1^39,2*K.1^41,-2*K.1^39,-2*K.1^33,2*K.1^11,2*K.1^31,-2*K.1^23,-2*K.1^43,-2*K.1^29,2*K.1^49,2*K.1^13,-2*K.1^33,2*K.1^33,2*K.1^7,2*K.1^23,-2*K.1^13,2*K.1^9,-2*K.1^23,-2*K.1^49,-2*K.1^37,-2*K.1^11,2*K.1^11,2*K.1^31,-2*K.1,2*K.1^21,2*K.1^27,2*K.1^39,2*K.1^33,-2*K.1^47,2*K.1^19,2*K.1^37,-2*K.1^43,2*K.1^9,-2*K.1^13,-2*K.1^11,2*K.1^27,-2*K.1^29,-2*K.1^17,-2*K.1^7,-2*K.1^7,-2*K.1^47,2*K.1^17,-2*K.1^19,2*K.1^19,-2*K.1^37,2*K.1,2*K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,-2*K.1^10,2*K.1^40,2*K.1^20,-2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^10,2*K.1^20,-2*K.1^40,2*K.1^10,2*K.1^30,2*K.1^40,-2*K.1^40,-2*K.1^30,-2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^45,-2*K.1^45,-2*K.1^35,2*K.1^35,2*K.1^15,-2*K.1^35,-2*K.1^15,2*K.1^45,2*K.1^35,2*K.1^5,-2*K.1^45,-2*K.1^15,-2*K.1^5,2*K.1^15,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^26,-2*K.1^38,2*K.1^16,2*K.1^8,2*K.1^48,2*K.1^28,-2*K.1^46,2*K.1^12,2*K.1^24,-2*K.1^2,-2*K.1^42,-2*K.1^22,-2*K.1^34,2*K.1^44,2*K.1^4,-2*K.1^14,2*K.1^36,2*K.1^32,-2*K.1^18,-2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4,-2*K.1^28,-2*K.1^32,2*K.1^14,-2*K.1^8,2*K.1^34,-2*K.1^44,2*K.1^18,-2*K.1^24,2*K.1^22,-2*K.1^24,-2*K.1^22,-2*K.1^36,-2*K.1^16,2*K.1^4,2*K.1^2,-2*K.1^18,-2*K.1^42,2*K.1^24,-2*K.1^32,-2*K.1^2,2*K.1^12,2*K.1^42,-2*K.1^14,2*K.1^32,2*K.1^26,-2*K.1^12,2*K.1^44,2*K.1^6,2*K.1^46,-2*K.1^34,-2*K.1^44,-2*K.1^28,2*K.1^28,2*K.1^16,2*K.1^18,-2*K.1^16,-2*K.1^48,2*K.1^48,-2*K.1^46,2*K.1^46,2*K.1^22,-2*K.1^48,-2*K.1^4,2*K.1^42,2*K.1^38,-2*K.1^36,2*K.1^36,2*K.1^8,-2*K.1^26,2*K.1^26,-2*K.1^8,-2*K.1^6,-2*K.1^38,2*K.1^38,2*K.1^6,2*K.1^14,-2*K.1^12,2*K.1^34,2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1^7,-2*K.1^21,2*K.1^23,2*K.1^9,-2*K.1^9,-2*K.1^3,2*K.1^41,2*K.1^19,2*K.1^23,-2*K.1^13,-2*K.1^33,-2*K.1^43,2*K.1^47,-2*K.1^11,2*K.1^33,-2*K.1^29,-2*K.1^27,-2*K.1,2*K.1^19,2*K.1^9,2*K.1^29,2*K.1^29,-2*K.1^49,-2*K.1^3,2*K.1^41,-2*K.1^37,2*K.1^31,-2*K.1^47,2*K.1^49,-2*K.1^7,-2*K.1^21,2*K.1^47,2*K.1^11,-2*K.1^9,2*K.1^11,2*K.1^17,-2*K.1^39,-2*K.1^19,2*K.1^27,2*K.1^7,2*K.1^21,-2*K.1,-2*K.1^37,2*K.1^17,-2*K.1^17,-2*K.1^43,-2*K.1^27,2*K.1^37,-2*K.1^41,2*K.1^27,2*K.1,2*K.1^13,2*K.1^39,-2*K.1^39,-2*K.1^19,2*K.1^49,-2*K.1^29,-2*K.1^23,-2*K.1^11,-2*K.1^17,2*K.1^3,-2*K.1^31,-2*K.1^13,2*K.1^7,-2*K.1^41,2*K.1^37,2*K.1^39,-2*K.1^23,2*K.1^21,2*K.1^33,2*K.1^43,2*K.1^43,2*K.1^3,-2*K.1^33,2*K.1^31,-2*K.1^31,2*K.1^13,-2*K.1^49,-2*K.1^47,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,2*K.1^40,-2*K.1^10,-2*K.1^30,2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^40,-2*K.1^30,2*K.1^10,-2*K.1^40,-2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^40,2*K.1^30,2*K.1^30,-2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,2*K.1^15,-2*K.1^15,-2*K.1^35,2*K.1^15,2*K.1^35,-2*K.1^5,-2*K.1^15,-2*K.1^45,2*K.1^5,2*K.1^35,2*K.1^45,-2*K.1^35,-2*K.1^45,2*K.1^45,0,0,0,0,0,0,0,0,-2*K.1^34,-2*K.1^42,2*K.1^44,-2*K.1^22,2*K.1^32,-2*K.1^2,-2*K.1^14,2*K.1^8,2*K.1^16,-2*K.1^18,2*K.1^28,2*K.1^48,-2*K.1^6,-2*K.1^46,2*K.1^36,-2*K.1^26,2*K.1^24,-2*K.1^38,2*K.1^12,2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^36,2*K.1^2,2*K.1^38,2*K.1^26,2*K.1^22,2*K.1^6,2*K.1^46,-2*K.1^12,-2*K.1^16,-2*K.1^48,-2*K.1^16,2*K.1^48,-2*K.1^24,-2*K.1^44,2*K.1^36,2*K.1^18,2*K.1^12,2*K.1^28,2*K.1^16,2*K.1^38,-2*K.1^18,2*K.1^8,-2*K.1^28,-2*K.1^26,-2*K.1^38,2*K.1^34,-2*K.1^8,-2*K.1^46,-2*K.1^4,2*K.1^14,-2*K.1^6,2*K.1^46,2*K.1^2,-2*K.1^2,2*K.1^44,-2*K.1^12,-2*K.1^44,-2*K.1^32,2*K.1^32,-2*K.1^14,2*K.1^14,-2*K.1^48,-2*K.1^32,-2*K.1^36,-2*K.1^28,2*K.1^42,-2*K.1^24,2*K.1^24,-2*K.1^22,-2*K.1^34,2*K.1^34,2*K.1^22,2*K.1^4,-2*K.1^42,2*K.1^42,-2*K.1^4,2*K.1^26,-2*K.1^8,2*K.1^6,2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^9,-2*K.1^13,-2*K.1^39,-2*K.1^7,2*K.1^31,-2*K.1^31,2*K.1^27,2*K.1^19,2*K.1^21,-2*K.1^7,2*K.1^17,-2*K.1^47,-2*K.1^37,-2*K.1^23,-2*K.1^49,2*K.1^47,-2*K.1^11,2*K.1^43,2*K.1^9,2*K.1^21,2*K.1^31,2*K.1^11,2*K.1^11,2*K.1^41,2*K.1^27,2*K.1^19,2*K.1^33,2*K.1^29,2*K.1^23,-2*K.1^41,-2*K.1^13,-2*K.1^39,-2*K.1^23,2*K.1^49,-2*K.1^31,2*K.1^49,2*K.1^3,-2*K.1,-2*K.1^21,-2*K.1^43,2*K.1^13,2*K.1^39,2*K.1^9,2*K.1^33,2*K.1^3,-2*K.1^3,-2*K.1^37,2*K.1^43,-2*K.1^33,-2*K.1^19,-2*K.1^43,-2*K.1^9,-2*K.1^17,2*K.1,-2*K.1,-2*K.1^21,-2*K.1^41,-2*K.1^11,2*K.1^7,-2*K.1^49,-2*K.1^3,-2*K.1^27,-2*K.1^29,2*K.1^17,2*K.1^13,-2*K.1^19,-2*K.1^33,2*K.1,2*K.1^7,2*K.1^39,2*K.1^47,2*K.1^37,2*K.1^37,-2*K.1^27,-2*K.1^47,2*K.1^29,-2*K.1^29,-2*K.1^17,2*K.1^41,2*K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,-2*K.1^10,2*K.1^40,2*K.1^20,-2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^10,2*K.1^20,-2*K.1^40,2*K.1^10,2*K.1^30,2*K.1^40,-2*K.1^40,-2*K.1^30,-2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^45,-2*K.1^45,-2*K.1^35,2*K.1^35,2*K.1^15,-2*K.1^35,-2*K.1^15,2*K.1^45,2*K.1^35,2*K.1^5,-2*K.1^45,-2*K.1^15,-2*K.1^5,2*K.1^15,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,2*K.1^16,2*K.1^8,-2*K.1^6,2*K.1^28,-2*K.1^18,2*K.1^48,2*K.1^36,-2*K.1^42,-2*K.1^34,2*K.1^32,-2*K.1^22,-2*K.1^2,2*K.1^44,2*K.1^4,-2*K.1^14,2*K.1^24,-2*K.1^26,2*K.1^12,-2*K.1^38,-2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^14,-2*K.1^48,-2*K.1^12,-2*K.1^24,-2*K.1^28,-2*K.1^44,-2*K.1^4,2*K.1^38,2*K.1^34,2*K.1^2,2*K.1^34,-2*K.1^2,2*K.1^26,2*K.1^6,-2*K.1^14,-2*K.1^32,-2*K.1^38,-2*K.1^22,-2*K.1^34,-2*K.1^12,2*K.1^32,-2*K.1^42,2*K.1^22,2*K.1^24,2*K.1^12,-2*K.1^16,2*K.1^42,2*K.1^4,2*K.1^46,-2*K.1^36,2*K.1^44,-2*K.1^4,-2*K.1^48,2*K.1^48,-2*K.1^6,2*K.1^38,2*K.1^6,2*K.1^18,-2*K.1^18,2*K.1^36,-2*K.1^36,2*K.1^2,2*K.1^18,2*K.1^14,2*K.1^22,-2*K.1^8,2*K.1^26,-2*K.1^26,2*K.1^28,2*K.1^16,-2*K.1^16,-2*K.1^28,-2*K.1^46,2*K.1^8,-2*K.1^8,2*K.1^46,-2*K.1^24,2*K.1^42,-2*K.1^44,-2*K.1^32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^41,2*K.1^37,2*K.1^11,2*K.1^43,-2*K.1^19,2*K.1^19,-2*K.1^23,-2*K.1^31,-2*K.1^29,2*K.1^43,-2*K.1^33,2*K.1^3,2*K.1^13,2*K.1^27,2*K.1,-2*K.1^3,2*K.1^39,-2*K.1^7,-2*K.1^41,-2*K.1^29,-2*K.1^19,-2*K.1^39,-2*K.1^39,-2*K.1^9,-2*K.1^23,-2*K.1^31,-2*K.1^17,-2*K.1^21,-2*K.1^27,2*K.1^9,2*K.1^37,2*K.1^11,2*K.1^27,-2*K.1,2*K.1^19,-2*K.1,-2*K.1^47,2*K.1^49,2*K.1^29,2*K.1^7,-2*K.1^37,-2*K.1^11,-2*K.1^41,-2*K.1^17,-2*K.1^47,2*K.1^47,2*K.1^13,-2*K.1^7,2*K.1^17,2*K.1^31,2*K.1^7,2*K.1^41,2*K.1^33,-2*K.1^49,2*K.1^49,2*K.1^29,2*K.1^9,2*K.1^39,-2*K.1^43,2*K.1,2*K.1^47,2*K.1^23,2*K.1^21,-2*K.1^33,-2*K.1^37,2*K.1^31,2*K.1^17,-2*K.1^49,-2*K.1^43,-2*K.1^11,-2*K.1^3,-2*K.1^13,-2*K.1^13,2*K.1^23,2*K.1^3,-2*K.1^21,2*K.1^21,2*K.1^33,-2*K.1^9,-2*K.1^27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,2*K.1^40,-2*K.1^10,-2*K.1^30,2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^40,-2*K.1^30,2*K.1^10,-2*K.1^40,-2*K.1^20,-2*K.1^10,2*K.1^10,2*K.1^20,2*K.1^40,2*K.1^30,2*K.1^30,-2*K.1^20,0,0,0,0,0,0,0,0,-2*K.1^5,2*K.1^5,2*K.1^15,-2*K.1^15,-2*K.1^35,2*K.1^15,2*K.1^35,-2*K.1^5,-2*K.1^15,-2*K.1^45,2*K.1^5,2*K.1^35,2*K.1^45,-2*K.1^35,-2*K.1^45,2*K.1^45,0,0,0,0,0,0,0,0,2*K.1^4,-2*K.1^2,-2*K.1^14,2*K.1^32,-2*K.1^42,2*K.1^12,-2*K.1^34,2*K.1^48,-2*K.1^46,2*K.1^8,-2*K.1^18,-2*K.1^38,2*K.1^36,-2*K.1^26,2*K.1^16,-2*K.1^6,2*K.1^44,2*K.1^28,-2*K.1^22,2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^16,-2*K.1^12,-2*K.1^28,2*K.1^6,-2*K.1^32,-2*K.1^36,2*K.1^26,2*K.1^22,2*K.1^46,2*K.1^38,2*K.1^46,-2*K.1^38,-2*K.1^44,2*K.1^14,2*K.1^16,-2*K.1^8,-2*K.1^22,-2*K.1^18,-2*K.1^46,-2*K.1^28,2*K.1^8,2*K.1^48,2*K.1^18,-2*K.1^6,2*K.1^28,-2*K.1^4,-2*K.1^48,-2*K.1^26,-2*K.1^24,2*K.1^34,2*K.1^36,2*K.1^26,-2*K.1^12,2*K.1^12,-2*K.1^14,2*K.1^22,2*K.1^14,2*K.1^42,-2*K.1^42,-2*K.1^34,2*K.1^34,2*K.1^38,2*K.1^42,-2*K.1^16,2*K.1^18,2*K.1^2,-2*K.1^44,2*K.1^44,2*K.1^32,2*K.1^4,-2*K.1^4,-2*K.1^32,2*K.1^24,-2*K.1^2,2*K.1^2,-2*K.1^24,2*K.1^6,-2*K.1^48,-2*K.1^36,-2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^29,2*K.1^3,2*K.1^9,2*K.1^17,2*K.1^11,-2*K.1^11,-2*K.1^37,2*K.1^39,2*K.1,2*K.1^17,-2*K.1^27,-2*K.1^7,2*K.1^47,2*K.1^13,2*K.1^19,2*K.1^7,2*K.1^41,-2*K.1^33,2*K.1^29,2*K.1,2*K.1^11,-2*K.1^41,-2*K.1^41,2*K.1^21,-2*K.1^37,2*K.1^39,-2*K.1^23,2*K.1^49,-2*K.1^13,-2*K.1^21,2*K.1^3,2*K.1^9,2*K.1^13,-2*K.1^19,-2*K.1^11,-2*K.1^19,2*K.1^43,2*K.1^31,-2*K.1,2*K.1^33,-2*K.1^3,-2*K.1^9,2*K.1^29,-2*K.1^23,2*K.1^43,-2*K.1^43,2*K.1^47,-2*K.1^33,2*K.1^23,-2*K.1^39,2*K.1^33,-2*K.1^29,2*K.1^27,-2*K.1^31,2*K.1^31,-2*K.1,-2*K.1^21,2*K.1^41,-2*K.1^17,2*K.1^19,-2*K.1^43,2*K.1^37,-2*K.1^49,-2*K.1^27,-2*K.1^3,-2*K.1^39,2*K.1^23,-2*K.1^31,-2*K.1^17,-2*K.1^9,2*K.1^7,-2*K.1^47,-2*K.1^47,2*K.1^37,-2*K.1^7,2*K.1^49,-2*K.1^49,2*K.1^27,2*K.1^21,-2*K.1^13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,-2*K.1^10,2*K.1^40,2*K.1^20,-2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^10,2*K.1^20,-2*K.1^40,2*K.1^10,2*K.1^30,2*K.1^40,-2*K.1^40,-2*K.1^30,-2*K.1^10,-2*K.1^20,-2*K.1^20,2*K.1^30,0,0,0,0,0,0,0,0,2*K.1^45,-2*K.1^45,-2*K.1^35,2*K.1^35,2*K.1^15,-2*K.1^35,-2*K.1^15,2*K.1^45,2*K.1^35,2*K.1^5,-2*K.1^45,-2*K.1^15,-2*K.1^5,2*K.1^15,2*K.1^5,-2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^46,2*K.1^48,2*K.1^36,-2*K.1^18,2*K.1^8,-2*K.1^38,2*K.1^16,-2*K.1^2,2*K.1^4,-2*K.1^42,2*K.1^32,2*K.1^12,-2*K.1^14,2*K.1^24,-2*K.1^34,2*K.1^44,-2*K.1^6,-2*K.1^22,2*K.1^28,-2*K.1^26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^34,2*K.1^38,2*K.1^22,-2*K.1^44,2*K.1^18,2*K.1^14,-2*K.1^24,-2*K.1^28,-2*K.1^4,-2*K.1^12,-2*K.1^4,2*K.1^12,2*K.1^6,-2*K.1^36,-2*K.1^34,2*K.1^42,2*K.1^28,2*K.1^32,2*K.1^4,2*K.1^22,-2*K.1^42,-2*K.1^2,-2*K.1^32,2*K.1^44,-2*K.1^22,2*K.1^46,2*K.1^2,2*K.1^24,2*K.1^26,-2*K.1^16,-2*K.1^14,-2*K.1^24,2*K.1^38,-2*K.1^38,2*K.1^36,-2*K.1^28,-2*K.1^36,-2*K.1^8,2*K.1^8,2*K.1^16,-2*K.1^16,-2*K.1^12,-2*K.1^8,2*K.1^34,-2*K.1^32,-2*K.1^48,2*K.1^6,-2*K.1^6,-2*K.1^18,-2*K.1^46,2*K.1^46,2*K.1^18,-2*K.1^26,2*K.1^48,-2*K.1^48,2*K.1^26,-2*K.1^44,2*K.1^2,2*K.1^14,2*K.1^42,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^21,-2*K.1^47,-2*K.1^41,-2*K.1^33,-2*K.1^39,2*K.1^39,2*K.1^13,-2*K.1^11,-2*K.1^49,-2*K.1^33,2*K.1^23,2*K.1^43,-2*K.1^3,-2*K.1^37,-2*K.1^31,-2*K.1^43,-2*K.1^9,2*K.1^17,-2*K.1^21,-2*K.1^49,-2*K.1^39,2*K.1^9,2*K.1^9,-2*K.1^29,2*K.1^13,-2*K.1^11,2*K.1^27,-2*K.1,2*K.1^37,2*K.1^29,-2*K.1^47,-2*K.1^41,-2*K.1^37,2*K.1^31,2*K.1^39,2*K.1^31,-2*K.1^7,-2*K.1^19,2*K.1^49,-2*K.1^17,2*K.1^47,2*K.1^41,-2*K.1^21,2*K.1^27,-2*K.1^7,2*K.1^7,-2*K.1^3,2*K.1^17,-2*K.1^27,2*K.1^11,-2*K.1^17,2*K.1^21,-2*K.1^23,2*K.1^19,-2*K.1^19,2*K.1^49,2*K.1^29,-2*K.1^9,2*K.1^33,-2*K.1^31,2*K.1^7,-2*K.1^13,2*K.1,2*K.1^23,2*K.1^47,2*K.1^11,-2*K.1^27,2*K.1^19,2*K.1^33,2*K.1^41,-2*K.1^43,2*K.1^3,2*K.1^3,-2*K.1^13,2*K.1^43,-2*K.1,2*K.1,-2*K.1^23,-2*K.1^29,2*K.1^37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,-2*K.1^30,2*K.1^20,-2*K.1^10,2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^30,-2*K.1^10,-2*K.1^20,2*K.1^30,-2*K.1^40,2*K.1^20,-2*K.1^20,2*K.1^40,-2*K.1^30,2*K.1^10,2*K.1^10,-2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^35,-2*K.1^35,-2*K.1^5,2*K.1^5,2*K.1^45,-2*K.1^5,-2*K.1^45,2*K.1^35,2*K.1^5,2*K.1^15,-2*K.1^35,-2*K.1^45,-2*K.1^15,2*K.1^45,2*K.1^15,-2*K.1^15,0,0,0,0,0,0,0,0,2*K.1^48,2*K.1^24,-2*K.1^18,-2*K.1^34,2*K.1^4,2*K.1^44,2*K.1^8,-2*K.1^26,-2*K.1^2,-2*K.1^46,2*K.1^16,-2*K.1^6,2*K.1^32,2*K.1^12,-2*K.1^42,-2*K.1^22,2*K.1^28,2*K.1^36,-2*K.1^14,-2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^44,-2*K.1^36,2*K.1^22,2*K.1^34,-2*K.1^32,-2*K.1^12,2*K.1^14,2*K.1^2,2*K.1^6,2*K.1^2,-2*K.1^6,-2*K.1^28,2*K.1^18,-2*K.1^42,2*K.1^46,-2*K.1^14,2*K.1^16,-2*K.1^2,-2*K.1^36,-2*K.1^46,-2*K.1^26,-2*K.1^16,-2*K.1^22,2*K.1^36,-2*K.1^48,2*K.1^26,2*K.1^12,2*K.1^38,-2*K.1^8,2*K.1^32,-2*K.1^12,-2*K.1^44,2*K.1^44,-2*K.1^18,2*K.1^14,2*K.1^18,-2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^42,-2*K.1^16,-2*K.1^24,-2*K.1^28,2*K.1^28,-2*K.1^34,2*K.1^48,-2*K.1^48,2*K.1^34,-2*K.1^38,2*K.1^24,-2*K.1^24,2*K.1^38,2*K.1^22,2*K.1^26,-2*K.1^32,2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^23,2*K.1^11,2*K.1^33,2*K.1^29,2*K.1^7,-2*K.1^7,2*K.1^19,2*K.1^43,2*K.1^37,2*K.1^29,2*K.1^49,2*K.1^9,2*K.1^39,-2*K.1^31,2*K.1^3,-2*K.1^9,2*K.1^17,-2*K.1^21,-2*K.1^23,2*K.1^37,2*K.1^7,-2*K.1^17,-2*K.1^17,-2*K.1^27,2*K.1^19,2*K.1^43,2*K.1,2*K.1^13,2*K.1^31,2*K.1^27,2*K.1^11,2*K.1^33,-2*K.1^31,-2*K.1^3,-2*K.1^7,-2*K.1^3,-2*K.1^41,2*K.1^47,-2*K.1^37,2*K.1^21,-2*K.1^11,-2*K.1^33,-2*K.1^23,2*K.1,-2*K.1^41,2*K.1^41,2*K.1^39,-2*K.1^21,-2*K.1,-2*K.1^43,2*K.1^21,2*K.1^23,-2*K.1^49,-2*K.1^47,2*K.1^47,-2*K.1^37,2*K.1^27,2*K.1^17,-2*K.1^29,2*K.1^3,2*K.1^41,-2*K.1^19,-2*K.1^13,2*K.1^49,-2*K.1^11,-2*K.1^43,-2*K.1,-2*K.1^47,-2*K.1^29,-2*K.1^33,-2*K.1^9,-2*K.1^39,-2*K.1^39,-2*K.1^19,2*K.1^9,2*K.1^13,-2*K.1^13,-2*K.1^49,-2*K.1^27,2*K.1^31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,2*K.1^20,-2*K.1^30,2*K.1^40,-2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^40,2*K.1^30,-2*K.1^20,2*K.1^10,-2*K.1^30,2*K.1^30,-2*K.1^10,2*K.1^20,-2*K.1^40,-2*K.1^40,2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^15,2*K.1^15,2*K.1^45,-2*K.1^45,-2*K.1^5,2*K.1^45,2*K.1^5,-2*K.1^15,-2*K.1^45,-2*K.1^35,2*K.1^15,2*K.1^5,2*K.1^35,-2*K.1^5,-2*K.1^35,2*K.1^35,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^26,2*K.1^32,2*K.1^16,-2*K.1^46,-2*K.1^6,-2*K.1^42,2*K.1^24,2*K.1^48,2*K.1^4,-2*K.1^34,2*K.1^44,-2*K.1^18,-2*K.1^38,2*K.1^8,2*K.1^28,-2*K.1^22,-2*K.1^14,2*K.1^36,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^6,2*K.1^14,-2*K.1^28,-2*K.1^16,2*K.1^18,2*K.1^38,-2*K.1^36,-2*K.1^48,-2*K.1^44,-2*K.1^48,2*K.1^44,2*K.1^22,-2*K.1^32,2*K.1^8,-2*K.1^4,2*K.1^36,-2*K.1^34,2*K.1^48,2*K.1^14,2*K.1^4,2*K.1^24,2*K.1^34,2*K.1^28,-2*K.1^14,2*K.1^2,-2*K.1^24,-2*K.1^38,-2*K.1^12,2*K.1^42,-2*K.1^18,2*K.1^38,2*K.1^6,-2*K.1^6,2*K.1^32,-2*K.1^36,-2*K.1^32,2*K.1^46,-2*K.1^46,-2*K.1^42,2*K.1^42,-2*K.1^44,2*K.1^46,-2*K.1^8,2*K.1^34,2*K.1^26,2*K.1^22,-2*K.1^22,2*K.1^16,-2*K.1^2,2*K.1^2,-2*K.1^16,2*K.1^12,-2*K.1^26,2*K.1^26,-2*K.1^12,-2*K.1^28,-2*K.1^24,2*K.1^18,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^27,-2*K.1^39,-2*K.1^17,-2*K.1^21,-2*K.1^43,2*K.1^43,-2*K.1^31,-2*K.1^7,-2*K.1^13,-2*K.1^21,-2*K.1,-2*K.1^41,-2*K.1^11,2*K.1^19,-2*K.1^47,2*K.1^41,-2*K.1^33,2*K.1^29,2*K.1^27,-2*K.1^13,-2*K.1^43,2*K.1^33,2*K.1^33,2*K.1^23,-2*K.1^31,-2*K.1^7,-2*K.1^49,-2*K.1^37,-2*K.1^19,-2*K.1^23,-2*K.1^39,-2*K.1^17,2*K.1^19,2*K.1^47,2*K.1^43,2*K.1^47,2*K.1^9,-2*K.1^3,2*K.1^13,-2*K.1^29,2*K.1^39,2*K.1^17,2*K.1^27,-2*K.1^49,2*K.1^9,-2*K.1^9,-2*K.1^11,2*K.1^29,2*K.1^49,2*K.1^7,-2*K.1^29,-2*K.1^27,2*K.1,2*K.1^3,-2*K.1^3,2*K.1^13,-2*K.1^23,-2*K.1^33,2*K.1^21,-2*K.1^47,-2*K.1^9,2*K.1^31,2*K.1^37,-2*K.1,2*K.1^39,2*K.1^7,2*K.1^49,2*K.1^3,2*K.1^21,2*K.1^17,2*K.1^41,2*K.1^11,2*K.1^11,2*K.1^31,-2*K.1^41,-2*K.1^37,2*K.1^37,2*K.1,2*K.1^23,-2*K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,-2*K.1^30,2*K.1^20,-2*K.1^10,2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^30,-2*K.1^10,-2*K.1^20,2*K.1^30,-2*K.1^40,2*K.1^20,-2*K.1^20,2*K.1^40,-2*K.1^30,2*K.1^10,2*K.1^10,-2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^35,-2*K.1^35,-2*K.1^5,2*K.1^5,2*K.1^45,-2*K.1^5,-2*K.1^45,2*K.1^35,2*K.1^5,2*K.1^15,-2*K.1^35,-2*K.1^45,-2*K.1^15,2*K.1^45,2*K.1^15,-2*K.1^15,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^34,-2*K.1^38,2*K.1^44,-2*K.1^14,2*K.1^4,2*K.1^28,2*K.1^16,2*K.1^32,2*K.1^36,-2*K.1^6,-2*K.1^46,2*K.1^12,-2*K.1^42,-2*K.1^22,-2*K.1^2,2*K.1^48,-2*K.1^26,2*K.1^24,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^22,-2*K.1^4,2*K.1^26,2*K.1^2,-2*K.1^44,-2*K.1^12,2*K.1^42,-2*K.1^24,-2*K.1^32,2*K.1^46,-2*K.1^32,-2*K.1^46,-2*K.1^48,2*K.1^38,-2*K.1^22,-2*K.1^36,2*K.1^24,-2*K.1^6,2*K.1^32,2*K.1^26,2*K.1^36,2*K.1^16,2*K.1^6,-2*K.1^2,-2*K.1^26,2*K.1^18,-2*K.1^16,-2*K.1^42,-2*K.1^8,-2*K.1^28,2*K.1^12,2*K.1^42,-2*K.1^4,2*K.1^4,-2*K.1^38,-2*K.1^24,2*K.1^38,2*K.1^14,-2*K.1^14,2*K.1^28,-2*K.1^28,2*K.1^46,2*K.1^14,2*K.1^22,2*K.1^6,2*K.1^34,-2*K.1^48,2*K.1^48,2*K.1^44,-2*K.1^18,2*K.1^18,-2*K.1^44,2*K.1^8,-2*K.1^34,2*K.1^34,-2*K.1^8,2*K.1^2,-2*K.1^16,-2*K.1^12,-2*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^43,-2*K.1,-2*K.1^3,-2*K.1^39,-2*K.1^37,2*K.1^37,-2*K.1^29,-2*K.1^13,2*K.1^17,-2*K.1^39,2*K.1^9,-2*K.1^19,-2*K.1^49,2*K.1^21,2*K.1^23,2*K.1^19,-2*K.1^47,2*K.1^11,-2*K.1^43,2*K.1^17,-2*K.1^37,2*K.1^47,2*K.1^47,-2*K.1^7,-2*K.1^29,-2*K.1^13,2*K.1^41,2*K.1^33,-2*K.1^21,2*K.1^7,-2*K.1,-2*K.1^3,2*K.1^21,-2*K.1^23,2*K.1^37,-2*K.1^23,2*K.1^31,2*K.1^27,-2*K.1^17,-2*K.1^11,2*K.1,2*K.1^3,-2*K.1^43,2*K.1^41,2*K.1^31,-2*K.1^31,-2*K.1^49,2*K.1^11,-2*K.1^41,2*K.1^13,-2*K.1^11,2*K.1^43,-2*K.1^9,-2*K.1^27,2*K.1^27,-2*K.1^17,2*K.1^7,-2*K.1^47,2*K.1^39,2*K.1^23,-2*K.1^31,2*K.1^29,-2*K.1^33,2*K.1^9,2*K.1,2*K.1^13,-2*K.1^41,-2*K.1^27,2*K.1^39,2*K.1^3,2*K.1^19,2*K.1^49,2*K.1^49,2*K.1^29,-2*K.1^19,2*K.1^33,-2*K.1^33,-2*K.1^9,-2*K.1^7,-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,2*K.1^20,-2*K.1^30,2*K.1^40,-2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^40,2*K.1^30,-2*K.1^20,2*K.1^10,-2*K.1^30,2*K.1^30,-2*K.1^10,2*K.1^20,-2*K.1^40,-2*K.1^40,2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^15,2*K.1^15,2*K.1^45,-2*K.1^45,-2*K.1^5,2*K.1^45,2*K.1^5,-2*K.1^15,-2*K.1^45,-2*K.1^35,2*K.1^15,2*K.1^5,2*K.1^35,-2*K.1^5,-2*K.1^35,2*K.1^35,0,0,0,0,0,0,0,0,2*K.1^32,2*K.1^16,2*K.1^12,-2*K.1^6,2*K.1^36,-2*K.1^46,-2*K.1^22,-2*K.1^34,-2*K.1^18,-2*K.1^14,2*K.1^44,2*K.1^4,-2*K.1^38,2*K.1^8,2*K.1^28,2*K.1^48,-2*K.1^2,2*K.1^24,-2*K.1^26,-2*K.1^42,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^28,2*K.1^46,-2*K.1^24,-2*K.1^48,2*K.1^6,2*K.1^38,-2*K.1^8,2*K.1^26,2*K.1^18,-2*K.1^4,2*K.1^18,2*K.1^4,2*K.1^2,-2*K.1^12,2*K.1^28,2*K.1^14,-2*K.1^26,2*K.1^44,-2*K.1^18,-2*K.1^24,-2*K.1^14,-2*K.1^34,-2*K.1^44,2*K.1^48,2*K.1^24,-2*K.1^32,2*K.1^34,2*K.1^8,2*K.1^42,2*K.1^22,-2*K.1^38,-2*K.1^8,2*K.1^46,-2*K.1^46,2*K.1^12,2*K.1^26,-2*K.1^12,-2*K.1^36,2*K.1^36,-2*K.1^22,2*K.1^22,-2*K.1^4,-2*K.1^36,-2*K.1^28,-2*K.1^44,-2*K.1^16,2*K.1^2,-2*K.1^2,-2*K.1^6,2*K.1^32,-2*K.1^32,2*K.1^6,-2*K.1^42,2*K.1^16,-2*K.1^16,2*K.1^42,-2*K.1^48,2*K.1^34,2*K.1^38,2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^7,2*K.1^49,2*K.1^47,2*K.1^11,2*K.1^13,-2*K.1^13,2*K.1^21,2*K.1^37,-2*K.1^33,2*K.1^11,-2*K.1^41,2*K.1^31,2*K.1,-2*K.1^29,-2*K.1^27,-2*K.1^31,2*K.1^3,-2*K.1^39,2*K.1^7,-2*K.1^33,2*K.1^13,-2*K.1^3,-2*K.1^3,2*K.1^43,2*K.1^21,2*K.1^37,-2*K.1^9,-2*K.1^17,2*K.1^29,-2*K.1^43,2*K.1^49,2*K.1^47,-2*K.1^29,2*K.1^27,-2*K.1^13,2*K.1^27,-2*K.1^19,-2*K.1^23,2*K.1^33,2*K.1^39,-2*K.1^49,-2*K.1^47,2*K.1^7,-2*K.1^9,-2*K.1^19,2*K.1^19,2*K.1,-2*K.1^39,2*K.1^9,-2*K.1^37,2*K.1^39,-2*K.1^7,2*K.1^41,2*K.1^23,-2*K.1^23,2*K.1^33,-2*K.1^43,2*K.1^3,-2*K.1^11,-2*K.1^27,2*K.1^19,-2*K.1^21,2*K.1^17,-2*K.1^41,-2*K.1^49,-2*K.1^37,2*K.1^9,2*K.1^23,-2*K.1^11,-2*K.1^47,-2*K.1^31,-2*K.1,-2*K.1,-2*K.1^21,2*K.1^31,-2*K.1^17,2*K.1^17,2*K.1^41,2*K.1^43,2*K.1^29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,-2*K.1^30,2*K.1^20,-2*K.1^10,2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^30,-2*K.1^10,-2*K.1^20,2*K.1^30,-2*K.1^40,2*K.1^20,-2*K.1^20,2*K.1^40,-2*K.1^30,2*K.1^10,2*K.1^10,-2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^35,-2*K.1^35,-2*K.1^5,2*K.1^5,2*K.1^45,-2*K.1^5,-2*K.1^45,2*K.1^35,2*K.1^5,2*K.1^15,-2*K.1^35,-2*K.1^45,-2*K.1^15,2*K.1^45,2*K.1^15,-2*K.1^15,0,0,0,0,0,0,0,0,2*K.1^28,-2*K.1^14,2*K.1^48,2*K.1^24,2*K.1^44,-2*K.1^34,-2*K.1^38,2*K.1^36,-2*K.1^22,-2*K.1^6,-2*K.1^26,2*K.1^16,-2*K.1^2,2*K.1^32,2*K.1^12,-2*K.1^42,2*K.1^8,-2*K.1^46,2*K.1^4,-2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^34,2*K.1^46,2*K.1^42,-2*K.1^24,2*K.1^2,-2*K.1^32,-2*K.1^4,2*K.1^22,-2*K.1^16,2*K.1^22,2*K.1^16,-2*K.1^8,-2*K.1^48,2*K.1^12,2*K.1^6,2*K.1^4,-2*K.1^26,-2*K.1^22,2*K.1^46,-2*K.1^6,2*K.1^36,2*K.1^26,-2*K.1^42,-2*K.1^46,-2*K.1^28,-2*K.1^36,2*K.1^32,2*K.1^18,2*K.1^38,-2*K.1^2,-2*K.1^32,2*K.1^34,-2*K.1^34,2*K.1^48,-2*K.1^4,-2*K.1^48,-2*K.1^44,2*K.1^44,-2*K.1^38,2*K.1^38,-2*K.1^16,-2*K.1^44,-2*K.1^12,2*K.1^26,2*K.1^14,-2*K.1^8,2*K.1^8,2*K.1^24,2*K.1^28,-2*K.1^28,-2*K.1^24,-2*K.1^18,-2*K.1^14,2*K.1^14,2*K.1^18,2*K.1^42,-2*K.1^36,2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3,-2*K.1^21,2*K.1^13,-2*K.1^19,2*K.1^27,-2*K.1^27,-2*K.1^9,2*K.1^23,-2*K.1^7,-2*K.1^19,-2*K.1^39,2*K.1^49,-2*K.1^29,2*K.1^41,-2*K.1^33,-2*K.1^49,2*K.1^37,2*K.1^31,-2*K.1^3,-2*K.1^7,2*K.1^27,-2*K.1^37,-2*K.1^37,-2*K.1^47,-2*K.1^9,2*K.1^23,-2*K.1^11,-2*K.1^43,-2*K.1^41,2*K.1^47,-2*K.1^21,2*K.1^13,2*K.1^41,2*K.1^33,-2*K.1^27,2*K.1^33,-2*K.1,-2*K.1^17,2*K.1^7,-2*K.1^31,2*K.1^21,-2*K.1^13,-2*K.1^3,-2*K.1^11,-2*K.1,2*K.1,-2*K.1^29,2*K.1^31,2*K.1^11,-2*K.1^23,-2*K.1^31,2*K.1^3,2*K.1^39,2*K.1^17,-2*K.1^17,2*K.1^7,2*K.1^47,2*K.1^37,2*K.1^19,-2*K.1^33,2*K.1,2*K.1^9,2*K.1^43,-2*K.1^39,2*K.1^21,-2*K.1^23,2*K.1^11,2*K.1^17,2*K.1^19,-2*K.1^13,-2*K.1^49,2*K.1^29,2*K.1^29,2*K.1^9,2*K.1^49,-2*K.1^43,2*K.1^43,2*K.1^39,-2*K.1^47,-2*K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,2*K.1^20,-2*K.1^30,2*K.1^40,-2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^40,2*K.1^30,-2*K.1^20,2*K.1^10,-2*K.1^30,2*K.1^30,-2*K.1^10,2*K.1^20,-2*K.1^40,-2*K.1^40,2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^15,2*K.1^15,2*K.1^45,-2*K.1^45,-2*K.1^5,2*K.1^45,2*K.1^5,-2*K.1^15,-2*K.1^45,-2*K.1^35,2*K.1^15,2*K.1^5,2*K.1^35,-2*K.1^5,-2*K.1^35,2*K.1^35,0,0,0,0,0,0,0,0,-2*K.1^22,2*K.1^36,-2*K.1^2,-2*K.1^26,-2*K.1^6,2*K.1^16,2*K.1^12,-2*K.1^14,2*K.1^28,2*K.1^44,2*K.1^24,-2*K.1^34,2*K.1^48,-2*K.1^18,-2*K.1^38,2*K.1^8,-2*K.1^42,2*K.1^4,-2*K.1^46,2*K.1^32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^38,-2*K.1^16,-2*K.1^4,-2*K.1^8,2*K.1^26,-2*K.1^48,2*K.1^18,2*K.1^46,-2*K.1^28,2*K.1^34,-2*K.1^28,-2*K.1^34,2*K.1^42,2*K.1^2,-2*K.1^38,-2*K.1^44,-2*K.1^46,2*K.1^24,2*K.1^28,-2*K.1^4,2*K.1^44,-2*K.1^14,-2*K.1^24,2*K.1^8,2*K.1^4,2*K.1^22,2*K.1^14,-2*K.1^18,-2*K.1^32,-2*K.1^12,2*K.1^48,2*K.1^18,-2*K.1^16,2*K.1^16,-2*K.1^2,2*K.1^46,2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^12,-2*K.1^12,2*K.1^34,2*K.1^6,2*K.1^38,-2*K.1^24,-2*K.1^36,2*K.1^42,-2*K.1^42,-2*K.1^26,-2*K.1^22,2*K.1^22,2*K.1^26,2*K.1^32,2*K.1^36,-2*K.1^36,-2*K.1^32,-2*K.1^8,2*K.1^14,-2*K.1^48,-2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^47,2*K.1^29,-2*K.1^37,2*K.1^31,-2*K.1^23,2*K.1^23,2*K.1^41,-2*K.1^27,2*K.1^43,2*K.1^31,2*K.1^11,-2*K.1,2*K.1^21,-2*K.1^9,2*K.1^17,2*K.1,-2*K.1^13,-2*K.1^19,2*K.1^47,2*K.1^43,-2*K.1^23,2*K.1^13,2*K.1^13,2*K.1^3,2*K.1^41,-2*K.1^27,2*K.1^39,2*K.1^7,2*K.1^9,-2*K.1^3,2*K.1^29,-2*K.1^37,-2*K.1^9,-2*K.1^17,2*K.1^23,-2*K.1^17,2*K.1^49,2*K.1^33,-2*K.1^43,2*K.1^19,-2*K.1^29,2*K.1^37,2*K.1^47,2*K.1^39,2*K.1^49,-2*K.1^49,2*K.1^21,-2*K.1^19,-2*K.1^39,2*K.1^27,2*K.1^19,-2*K.1^47,-2*K.1^11,-2*K.1^33,2*K.1^33,-2*K.1^43,-2*K.1^3,-2*K.1^13,-2*K.1^31,2*K.1^17,-2*K.1^49,-2*K.1^41,-2*K.1^7,2*K.1^11,-2*K.1^29,2*K.1^27,-2*K.1^39,-2*K.1^33,-2*K.1^31,2*K.1^37,2*K.1,-2*K.1^21,-2*K.1^21,-2*K.1^41,-2*K.1,2*K.1^7,-2*K.1^7,-2*K.1^11,2*K.1^3,2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,-2*K.1^30,2*K.1^20,-2*K.1^10,2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^30,-2*K.1^10,-2*K.1^20,2*K.1^30,-2*K.1^40,2*K.1^20,-2*K.1^20,2*K.1^40,-2*K.1^30,2*K.1^10,2*K.1^10,-2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^35,-2*K.1^35,-2*K.1^5,2*K.1^5,2*K.1^45,-2*K.1^5,-2*K.1^45,2*K.1^35,2*K.1^5,2*K.1^15,-2*K.1^35,-2*K.1^45,-2*K.1^15,2*K.1^45,2*K.1^15,-2*K.1^15,0,0,0,0,0,0,0,0,-2*K.1^38,2*K.1^44,2*K.1^8,2*K.1^4,2*K.1^24,-2*K.1^14,2*K.1^48,-2*K.1^6,2*K.1^12,-2*K.1^26,-2*K.1^46,2*K.1^36,-2*K.1^42,-2*K.1^22,-2*K.1^2,2*K.1^32,-2*K.1^18,2*K.1^16,-2*K.1^34,2*K.1^28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^14,-2*K.1^16,-2*K.1^32,-2*K.1^4,2*K.1^42,2*K.1^22,2*K.1^34,-2*K.1^12,-2*K.1^36,-2*K.1^12,2*K.1^36,2*K.1^18,-2*K.1^8,-2*K.1^2,2*K.1^26,-2*K.1^34,-2*K.1^46,2*K.1^12,-2*K.1^16,-2*K.1^26,-2*K.1^6,2*K.1^46,2*K.1^32,2*K.1^16,2*K.1^38,2*K.1^6,-2*K.1^22,-2*K.1^28,-2*K.1^48,-2*K.1^42,2*K.1^22,2*K.1^14,-2*K.1^14,2*K.1^8,2*K.1^34,-2*K.1^8,-2*K.1^24,2*K.1^24,2*K.1^48,-2*K.1^48,-2*K.1^36,-2*K.1^24,2*K.1^2,2*K.1^46,-2*K.1^44,2*K.1^18,-2*K.1^18,2*K.1^4,-2*K.1^38,2*K.1^38,-2*K.1^4,2*K.1^28,2*K.1^44,-2*K.1^44,-2*K.1^28,-2*K.1^32,2*K.1^6,2*K.1^42,2*K.1^26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^13,-2*K.1^41,-2*K.1^23,2*K.1^49,-2*K.1^17,2*K.1^17,2*K.1^39,-2*K.1^33,-2*K.1^47,2*K.1^49,-2*K.1^19,2*K.1^29,-2*K.1^9,-2*K.1^11,2*K.1^43,-2*K.1^29,-2*K.1^27,-2*K.1,2*K.1^13,-2*K.1^47,-2*K.1^17,2*K.1^27,2*K.1^27,2*K.1^37,2*K.1^39,-2*K.1^33,-2*K.1^31,-2*K.1^3,2*K.1^11,-2*K.1^37,-2*K.1^41,-2*K.1^23,-2*K.1^11,-2*K.1^43,2*K.1^17,-2*K.1^43,-2*K.1^21,2*K.1^7,2*K.1^47,2*K.1,2*K.1^41,2*K.1^23,2*K.1^13,-2*K.1^31,-2*K.1^21,2*K.1^21,-2*K.1^9,-2*K.1,2*K.1^31,2*K.1^33,2*K.1,-2*K.1^13,2*K.1^19,-2*K.1^7,2*K.1^7,2*K.1^47,-2*K.1^37,-2*K.1^27,-2*K.1^49,2*K.1^43,2*K.1^21,-2*K.1^39,2*K.1^3,-2*K.1^19,2*K.1^41,2*K.1^33,2*K.1^31,-2*K.1^7,-2*K.1^49,2*K.1^23,-2*K.1^29,2*K.1^9,2*K.1^9,-2*K.1^39,2*K.1^29,-2*K.1^3,2*K.1^3,2*K.1^19,2*K.1^37,2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,2*K.1^20,-2*K.1^30,2*K.1^40,-2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^40,2*K.1^30,-2*K.1^20,2*K.1^10,-2*K.1^30,2*K.1^30,-2*K.1^10,2*K.1^20,-2*K.1^40,-2*K.1^40,2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^15,2*K.1^15,2*K.1^45,-2*K.1^45,-2*K.1^5,2*K.1^45,2*K.1^5,-2*K.1^15,-2*K.1^45,-2*K.1^35,2*K.1^15,2*K.1^5,2*K.1^35,-2*K.1^5,-2*K.1^35,2*K.1^35,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^6,-2*K.1^42,-2*K.1^46,-2*K.1^26,2*K.1^36,-2*K.1^2,2*K.1^44,-2*K.1^38,2*K.1^24,2*K.1^4,-2*K.1^14,2*K.1^8,2*K.1^28,2*K.1^48,-2*K.1^18,2*K.1^32,-2*K.1^34,2*K.1^16,-2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^48,-2*K.1^36,2*K.1^34,2*K.1^18,2*K.1^46,-2*K.1^8,-2*K.1^28,-2*K.1^16,2*K.1^38,2*K.1^14,2*K.1^38,-2*K.1^14,-2*K.1^32,2*K.1^42,2*K.1^48,-2*K.1^24,2*K.1^16,2*K.1^4,-2*K.1^38,2*K.1^34,2*K.1^24,2*K.1^44,-2*K.1^4,-2*K.1^18,-2*K.1^34,-2*K.1^12,-2*K.1^44,2*K.1^28,2*K.1^22,2*K.1^2,2*K.1^8,-2*K.1^28,-2*K.1^36,2*K.1^36,-2*K.1^42,-2*K.1^16,2*K.1^42,2*K.1^26,-2*K.1^26,-2*K.1^2,2*K.1^2,2*K.1^14,2*K.1^26,-2*K.1^48,-2*K.1^4,2*K.1^6,-2*K.1^32,2*K.1^32,-2*K.1^46,2*K.1^12,-2*K.1^12,2*K.1^46,-2*K.1^22,-2*K.1^6,2*K.1^6,2*K.1^22,2*K.1^18,-2*K.1^44,-2*K.1^8,-2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^37,2*K.1^9,2*K.1^27,-2*K.1,2*K.1^33,-2*K.1^33,-2*K.1^11,2*K.1^17,2*K.1^3,-2*K.1,2*K.1^31,-2*K.1^21,2*K.1^41,2*K.1^39,-2*K.1^7,2*K.1^21,2*K.1^23,2*K.1^49,-2*K.1^37,2*K.1^3,2*K.1^33,-2*K.1^23,-2*K.1^23,-2*K.1^13,-2*K.1^11,2*K.1^17,2*K.1^19,2*K.1^47,-2*K.1^39,2*K.1^13,2*K.1^9,2*K.1^27,2*K.1^39,2*K.1^7,-2*K.1^33,2*K.1^7,2*K.1^29,-2*K.1^43,-2*K.1^3,-2*K.1^49,-2*K.1^9,-2*K.1^27,-2*K.1^37,2*K.1^19,2*K.1^29,-2*K.1^29,2*K.1^41,2*K.1^49,-2*K.1^19,-2*K.1^17,-2*K.1^49,2*K.1^37,-2*K.1^31,2*K.1^43,-2*K.1^43,-2*K.1^3,2*K.1^13,2*K.1^23,2*K.1,-2*K.1^7,-2*K.1^29,2*K.1^11,-2*K.1^47,2*K.1^31,-2*K.1^9,-2*K.1^17,-2*K.1^19,2*K.1^43,2*K.1,-2*K.1^27,2*K.1^21,-2*K.1^41,-2*K.1^41,2*K.1^11,-2*K.1^21,2*K.1^47,-2*K.1^47,-2*K.1^31,-2*K.1^13,-2*K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,-2*K.1^30,2*K.1^20,-2*K.1^10,2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^30,-2*K.1^10,-2*K.1^20,2*K.1^30,-2*K.1^40,2*K.1^20,-2*K.1^20,2*K.1^40,-2*K.1^30,2*K.1^10,2*K.1^10,-2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^35,-2*K.1^35,-2*K.1^5,2*K.1^5,2*K.1^45,-2*K.1^5,-2*K.1^45,2*K.1^35,2*K.1^5,2*K.1^15,-2*K.1^35,-2*K.1^45,-2*K.1^15,2*K.1^45,2*K.1^15,-2*K.1^15,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^4,2*K.1^28,-2*K.1^14,-2*K.1^34,2*K.1^24,-2*K.1^18,-2*K.1^46,-2*K.1^42,2*K.1^16,2*K.1^36,-2*K.1^26,-2*K.1^22,-2*K.1^2,2*K.1^32,2*K.1^12,-2*K.1^38,-2*K.1^6,2*K.1^44,2*K.1^48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^32,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^14,2*K.1^22,2*K.1^2,-2*K.1^44,2*K.1^42,2*K.1^26,2*K.1^42,-2*K.1^26,2*K.1^38,-2*K.1^28,2*K.1^32,-2*K.1^16,2*K.1^44,2*K.1^36,-2*K.1^42,2*K.1^6,2*K.1^16,-2*K.1^46,-2*K.1^36,2*K.1^12,-2*K.1^6,-2*K.1^8,2*K.1^46,-2*K.1^2,-2*K.1^48,2*K.1^18,-2*K.1^22,2*K.1^2,-2*K.1^24,2*K.1^24,2*K.1^28,-2*K.1^44,-2*K.1^28,2*K.1^34,-2*K.1^34,-2*K.1^18,2*K.1^18,2*K.1^26,2*K.1^34,-2*K.1^32,-2*K.1^36,-2*K.1^4,2*K.1^38,-2*K.1^38,-2*K.1^14,2*K.1^8,-2*K.1^8,2*K.1^14,2*K.1^48,2*K.1^4,-2*K.1^4,-2*K.1^48,-2*K.1^12,2*K.1^46,2*K.1^22,-2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^33,2*K.1^31,-2*K.1^43,2*K.1^9,2*K.1^47,-2*K.1^47,-2*K.1^49,2*K.1^3,-2*K.1^27,2*K.1^9,2*K.1^29,-2*K.1^39,2*K.1^19,2*K.1,-2*K.1^13,2*K.1^39,-2*K.1^7,-2*K.1^41,2*K.1^33,-2*K.1^27,2*K.1^47,2*K.1^7,2*K.1^7,2*K.1^17,-2*K.1^49,2*K.1^3,2*K.1^21,-2*K.1^23,-2*K.1,-2*K.1^17,2*K.1^31,-2*K.1^43,2*K.1,2*K.1^13,-2*K.1^47,2*K.1^13,2*K.1^11,-2*K.1^37,2*K.1^27,2*K.1^41,-2*K.1^31,2*K.1^43,2*K.1^33,2*K.1^21,2*K.1^11,-2*K.1^11,2*K.1^19,-2*K.1^41,-2*K.1^21,-2*K.1^3,2*K.1^41,-2*K.1^33,-2*K.1^29,2*K.1^37,-2*K.1^37,2*K.1^27,-2*K.1^17,-2*K.1^7,-2*K.1^9,-2*K.1^13,-2*K.1^11,2*K.1^49,2*K.1^23,2*K.1^29,-2*K.1^31,-2*K.1^3,-2*K.1^21,2*K.1^37,-2*K.1^9,2*K.1^43,2*K.1^39,-2*K.1^19,-2*K.1^19,2*K.1^49,-2*K.1^39,-2*K.1^23,2*K.1^23,-2*K.1^29,2*K.1^17,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,2*K.1^20,-2*K.1^30,2*K.1^40,-2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^40,2*K.1^30,-2*K.1^20,2*K.1^10,-2*K.1^30,2*K.1^30,-2*K.1^10,2*K.1^20,-2*K.1^40,-2*K.1^40,2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^15,2*K.1^15,2*K.1^45,-2*K.1^45,-2*K.1^5,2*K.1^45,2*K.1^5,-2*K.1^15,-2*K.1^45,-2*K.1^35,2*K.1^15,2*K.1^5,2*K.1^35,-2*K.1^5,-2*K.1^35,2*K.1^35,0,0,0,0,0,0,0,0,-2*K.1^42,-2*K.1^46,-2*K.1^22,2*K.1^36,2*K.1^16,-2*K.1^26,2*K.1^32,2*K.1^4,2*K.1^8,-2*K.1^34,-2*K.1^14,2*K.1^24,2*K.1^28,2*K.1^48,-2*K.1^18,-2*K.1^38,2*K.1^12,2*K.1^44,-2*K.1^6,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^18,2*K.1^26,-2*K.1^44,2*K.1^38,-2*K.1^36,-2*K.1^28,-2*K.1^48,2*K.1^6,-2*K.1^8,-2*K.1^24,-2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^22,-2*K.1^18,2*K.1^34,-2*K.1^6,-2*K.1^14,2*K.1^8,-2*K.1^44,-2*K.1^34,2*K.1^4,2*K.1^14,-2*K.1^38,2*K.1^44,2*K.1^42,-2*K.1^4,2*K.1^48,2*K.1^2,-2*K.1^32,2*K.1^28,-2*K.1^48,2*K.1^26,-2*K.1^26,-2*K.1^22,2*K.1^6,2*K.1^22,-2*K.1^16,2*K.1^16,2*K.1^32,-2*K.1^32,-2*K.1^24,-2*K.1^16,2*K.1^18,2*K.1^14,2*K.1^46,-2*K.1^12,2*K.1^12,2*K.1^36,-2*K.1^42,2*K.1^42,-2*K.1^36,-2*K.1^2,-2*K.1^46,2*K.1^46,2*K.1^2,2*K.1^38,-2*K.1^4,-2*K.1^28,2*K.1^34,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^17,-2*K.1^19,2*K.1^7,-2*K.1^41,-2*K.1^3,2*K.1^3,2*K.1,-2*K.1^47,2*K.1^23,-2*K.1^41,-2*K.1^21,2*K.1^11,-2*K.1^31,-2*K.1^49,2*K.1^37,-2*K.1^11,2*K.1^43,2*K.1^9,-2*K.1^17,2*K.1^23,-2*K.1^3,-2*K.1^43,-2*K.1^43,-2*K.1^33,2*K.1,-2*K.1^47,-2*K.1^29,2*K.1^27,2*K.1^49,2*K.1^33,-2*K.1^19,2*K.1^7,-2*K.1^49,-2*K.1^37,2*K.1^3,-2*K.1^37,-2*K.1^39,2*K.1^13,-2*K.1^23,-2*K.1^9,2*K.1^19,-2*K.1^7,-2*K.1^17,-2*K.1^29,-2*K.1^39,2*K.1^39,-2*K.1^31,2*K.1^9,2*K.1^29,2*K.1^47,-2*K.1^9,2*K.1^17,2*K.1^21,-2*K.1^13,2*K.1^13,-2*K.1^23,2*K.1^33,2*K.1^43,2*K.1^41,2*K.1^37,2*K.1^39,-2*K.1,-2*K.1^27,-2*K.1^21,2*K.1^19,2*K.1^47,2*K.1^29,-2*K.1^13,2*K.1^41,-2*K.1^7,-2*K.1^11,2*K.1^31,2*K.1^31,-2*K.1,2*K.1^11,2*K.1^27,-2*K.1^27,2*K.1^21,-2*K.1^33,2*K.1^49,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,2*K.1^20,-2*K.1^30,2*K.1^40,-2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^40,2*K.1^30,-2*K.1^20,2*K.1^10,-2*K.1^30,2*K.1^30,-2*K.1^10,2*K.1^20,-2*K.1^40,-2*K.1^40,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^15,-2*K.1^15,-2*K.1^45,2*K.1^45,2*K.1^5,-2*K.1^45,-2*K.1^5,2*K.1^15,2*K.1^45,2*K.1^35,-2*K.1^15,-2*K.1^5,-2*K.1^35,2*K.1^5,2*K.1^35,-2*K.1^35,0,0,0,0,0,0,0,0,-2*K.1^2,-2*K.1^26,2*K.1^32,2*K.1^16,-2*K.1^46,-2*K.1^6,-2*K.1^42,2*K.1^24,2*K.1^48,2*K.1^4,-2*K.1^34,2*K.1^44,-2*K.1^18,-2*K.1^38,2*K.1^8,2*K.1^28,-2*K.1^22,-2*K.1^14,2*K.1^36,2*K.1^12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8,2*K.1^6,2*K.1^14,-2*K.1^28,-2*K.1^16,2*K.1^18,2*K.1^38,-2*K.1^36,-2*K.1^48,-2*K.1^44,-2*K.1^48,2*K.1^44,2*K.1^22,-2*K.1^32,2*K.1^8,-2*K.1^4,2*K.1^36,-2*K.1^34,2*K.1^48,2*K.1^14,2*K.1^4,2*K.1^24,2*K.1^34,2*K.1^28,-2*K.1^14,2*K.1^2,-2*K.1^24,-2*K.1^38,-2*K.1^12,2*K.1^42,-2*K.1^18,2*K.1^38,2*K.1^6,-2*K.1^6,2*K.1^32,-2*K.1^36,-2*K.1^32,2*K.1^46,-2*K.1^46,-2*K.1^42,2*K.1^42,-2*K.1^44,2*K.1^46,-2*K.1^8,2*K.1^34,2*K.1^26,2*K.1^22,-2*K.1^22,2*K.1^16,-2*K.1^2,2*K.1^2,-2*K.1^16,2*K.1^12,-2*K.1^26,2*K.1^26,-2*K.1^12,-2*K.1^28,-2*K.1^24,2*K.1^18,-2*K.1^4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^27,2*K.1^39,2*K.1^17,2*K.1^21,2*K.1^43,-2*K.1^43,2*K.1^31,2*K.1^7,2*K.1^13,2*K.1^21,2*K.1,2*K.1^41,2*K.1^11,-2*K.1^19,2*K.1^47,-2*K.1^41,2*K.1^33,-2*K.1^29,-2*K.1^27,2*K.1^13,2*K.1^43,-2*K.1^33,-2*K.1^33,-2*K.1^23,2*K.1^31,2*K.1^7,2*K.1^49,2*K.1^37,2*K.1^19,2*K.1^23,2*K.1^39,2*K.1^17,-2*K.1^19,-2*K.1^47,-2*K.1^43,-2*K.1^47,-2*K.1^9,2*K.1^3,-2*K.1^13,2*K.1^29,-2*K.1^39,-2*K.1^17,-2*K.1^27,2*K.1^49,-2*K.1^9,2*K.1^9,2*K.1^11,-2*K.1^29,-2*K.1^49,-2*K.1^7,2*K.1^29,2*K.1^27,-2*K.1,-2*K.1^3,2*K.1^3,-2*K.1^13,2*K.1^23,2*K.1^33,-2*K.1^21,2*K.1^47,2*K.1^9,-2*K.1^31,-2*K.1^37,2*K.1,-2*K.1^39,-2*K.1^7,-2*K.1^49,-2*K.1^3,-2*K.1^21,-2*K.1^17,-2*K.1^41,-2*K.1^11,-2*K.1^11,-2*K.1^31,2*K.1^41,2*K.1^37,-2*K.1^37,-2*K.1,-2*K.1^23,2*K.1^19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,-2*K.1^30,2*K.1^20,-2*K.1^10,2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^30,-2*K.1^10,-2*K.1^20,2*K.1^30,-2*K.1^40,2*K.1^20,-2*K.1^20,2*K.1^40,-2*K.1^30,2*K.1^10,2*K.1^10,-2*K.1^40,0,0,0,0,0,0,0,0,-2*K.1^35,2*K.1^35,2*K.1^5,-2*K.1^5,-2*K.1^45,2*K.1^5,2*K.1^45,-2*K.1^35,-2*K.1^5,-2*K.1^15,2*K.1^35,2*K.1^45,2*K.1^15,-2*K.1^45,-2*K.1^15,2*K.1^15,0,0,0,0,0,0,0,0,2*K.1^48,2*K.1^24,-2*K.1^18,-2*K.1^34,2*K.1^4,2*K.1^44,2*K.1^8,-2*K.1^26,-2*K.1^2,-2*K.1^46,2*K.1^16,-2*K.1^6,2*K.1^32,2*K.1^12,-2*K.1^42,-2*K.1^22,2*K.1^28,2*K.1^36,-2*K.1^14,-2*K.1^38,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^42,-2*K.1^44,-2*K.1^36,2*K.1^22,2*K.1^34,-2*K.1^32,-2*K.1^12,2*K.1^14,2*K.1^2,2*K.1^6,2*K.1^2,-2*K.1^6,-2*K.1^28,2*K.1^18,-2*K.1^42,2*K.1^46,-2*K.1^14,2*K.1^16,-2*K.1^2,-2*K.1^36,-2*K.1^46,-2*K.1^26,-2*K.1^16,-2*K.1^22,2*K.1^36,-2*K.1^48,2*K.1^26,2*K.1^12,2*K.1^38,-2*K.1^8,2*K.1^32,-2*K.1^12,-2*K.1^44,2*K.1^44,-2*K.1^18,2*K.1^14,2*K.1^18,-2*K.1^4,2*K.1^4,2*K.1^8,-2*K.1^8,2*K.1^6,-2*K.1^4,2*K.1^42,-2*K.1^16,-2*K.1^24,-2*K.1^28,2*K.1^28,-2*K.1^34,2*K.1^48,-2*K.1^48,2*K.1^34,-2*K.1^38,2*K.1^24,-2*K.1^24,2*K.1^38,2*K.1^22,2*K.1^26,-2*K.1^32,2*K.1^46,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^23,-2*K.1^11,-2*K.1^33,-2*K.1^29,-2*K.1^7,2*K.1^7,-2*K.1^19,-2*K.1^43,-2*K.1^37,-2*K.1^29,-2*K.1^49,-2*K.1^9,-2*K.1^39,2*K.1^31,-2*K.1^3,2*K.1^9,-2*K.1^17,2*K.1^21,2*K.1^23,-2*K.1^37,-2*K.1^7,2*K.1^17,2*K.1^17,2*K.1^27,-2*K.1^19,-2*K.1^43,-2*K.1,-2*K.1^13,-2*K.1^31,-2*K.1^27,-2*K.1^11,-2*K.1^33,2*K.1^31,2*K.1^3,2*K.1^7,2*K.1^3,2*K.1^41,-2*K.1^47,2*K.1^37,-2*K.1^21,2*K.1^11,2*K.1^33,2*K.1^23,-2*K.1,2*K.1^41,-2*K.1^41,-2*K.1^39,2*K.1^21,2*K.1,2*K.1^43,-2*K.1^21,-2*K.1^23,2*K.1^49,2*K.1^47,-2*K.1^47,2*K.1^37,-2*K.1^27,-2*K.1^17,2*K.1^29,-2*K.1^3,-2*K.1^41,2*K.1^19,2*K.1^13,-2*K.1^49,2*K.1^11,2*K.1^43,2*K.1,2*K.1^47,2*K.1^29,2*K.1^33,2*K.1^9,2*K.1^39,2*K.1^39,2*K.1^19,-2*K.1^9,-2*K.1^13,2*K.1^13,2*K.1^49,2*K.1^27,-2*K.1^31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,2*K.1^20,-2*K.1^30,2*K.1^40,-2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^40,2*K.1^30,-2*K.1^20,2*K.1^10,-2*K.1^30,2*K.1^30,-2*K.1^10,2*K.1^20,-2*K.1^40,-2*K.1^40,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^15,-2*K.1^15,-2*K.1^45,2*K.1^45,2*K.1^5,-2*K.1^45,-2*K.1^5,2*K.1^15,2*K.1^45,2*K.1^35,-2*K.1^15,-2*K.1^5,-2*K.1^35,2*K.1^5,2*K.1^35,-2*K.1^35,0,0,0,0,0,0,0,0,2*K.1^32,2*K.1^16,2*K.1^12,-2*K.1^6,2*K.1^36,-2*K.1^46,-2*K.1^22,-2*K.1^34,-2*K.1^18,-2*K.1^14,2*K.1^44,2*K.1^4,-2*K.1^38,2*K.1^8,2*K.1^28,2*K.1^48,-2*K.1^2,2*K.1^24,-2*K.1^26,-2*K.1^42,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^28,2*K.1^46,-2*K.1^24,-2*K.1^48,2*K.1^6,2*K.1^38,-2*K.1^8,2*K.1^26,2*K.1^18,-2*K.1^4,2*K.1^18,2*K.1^4,2*K.1^2,-2*K.1^12,2*K.1^28,2*K.1^14,-2*K.1^26,2*K.1^44,-2*K.1^18,-2*K.1^24,-2*K.1^14,-2*K.1^34,-2*K.1^44,2*K.1^48,2*K.1^24,-2*K.1^32,2*K.1^34,2*K.1^8,2*K.1^42,2*K.1^22,-2*K.1^38,-2*K.1^8,2*K.1^46,-2*K.1^46,2*K.1^12,2*K.1^26,-2*K.1^12,-2*K.1^36,2*K.1^36,-2*K.1^22,2*K.1^22,-2*K.1^4,-2*K.1^36,-2*K.1^28,-2*K.1^44,-2*K.1^16,2*K.1^2,-2*K.1^2,-2*K.1^6,2*K.1^32,-2*K.1^32,2*K.1^6,-2*K.1^42,2*K.1^16,-2*K.1^16,2*K.1^42,-2*K.1^48,2*K.1^34,2*K.1^38,2*K.1^14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^7,-2*K.1^49,-2*K.1^47,-2*K.1^11,-2*K.1^13,2*K.1^13,-2*K.1^21,-2*K.1^37,2*K.1^33,-2*K.1^11,2*K.1^41,-2*K.1^31,-2*K.1,2*K.1^29,2*K.1^27,2*K.1^31,-2*K.1^3,2*K.1^39,-2*K.1^7,2*K.1^33,-2*K.1^13,2*K.1^3,2*K.1^3,-2*K.1^43,-2*K.1^21,-2*K.1^37,2*K.1^9,2*K.1^17,-2*K.1^29,2*K.1^43,-2*K.1^49,-2*K.1^47,2*K.1^29,-2*K.1^27,2*K.1^13,-2*K.1^27,2*K.1^19,2*K.1^23,-2*K.1^33,-2*K.1^39,2*K.1^49,2*K.1^47,-2*K.1^7,2*K.1^9,2*K.1^19,-2*K.1^19,-2*K.1,2*K.1^39,-2*K.1^9,2*K.1^37,-2*K.1^39,2*K.1^7,-2*K.1^41,-2*K.1^23,2*K.1^23,-2*K.1^33,2*K.1^43,-2*K.1^3,2*K.1^11,2*K.1^27,-2*K.1^19,2*K.1^21,-2*K.1^17,2*K.1^41,2*K.1^49,2*K.1^37,-2*K.1^9,-2*K.1^23,2*K.1^11,2*K.1^47,2*K.1^31,2*K.1,2*K.1,2*K.1^21,-2*K.1^31,2*K.1^17,-2*K.1^17,-2*K.1^41,-2*K.1^43,-2*K.1^29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,-2*K.1^30,2*K.1^20,-2*K.1^10,2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^30,-2*K.1^10,-2*K.1^20,2*K.1^30,-2*K.1^40,2*K.1^20,-2*K.1^20,2*K.1^40,-2*K.1^30,2*K.1^10,2*K.1^10,-2*K.1^40,0,0,0,0,0,0,0,0,-2*K.1^35,2*K.1^35,2*K.1^5,-2*K.1^5,-2*K.1^45,2*K.1^5,2*K.1^45,-2*K.1^35,-2*K.1^5,-2*K.1^15,2*K.1^35,2*K.1^45,2*K.1^15,-2*K.1^45,-2*K.1^15,2*K.1^15,0,0,0,0,0,0,0,0,-2*K.1^18,-2*K.1^34,-2*K.1^38,2*K.1^44,-2*K.1^14,2*K.1^4,2*K.1^28,2*K.1^16,2*K.1^32,2*K.1^36,-2*K.1^6,-2*K.1^46,2*K.1^12,-2*K.1^42,-2*K.1^22,-2*K.1^2,2*K.1^48,-2*K.1^26,2*K.1^24,2*K.1^8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^22,-2*K.1^4,2*K.1^26,2*K.1^2,-2*K.1^44,-2*K.1^12,2*K.1^42,-2*K.1^24,-2*K.1^32,2*K.1^46,-2*K.1^32,-2*K.1^46,-2*K.1^48,2*K.1^38,-2*K.1^22,-2*K.1^36,2*K.1^24,-2*K.1^6,2*K.1^32,2*K.1^26,2*K.1^36,2*K.1^16,2*K.1^6,-2*K.1^2,-2*K.1^26,2*K.1^18,-2*K.1^16,-2*K.1^42,-2*K.1^8,-2*K.1^28,2*K.1^12,2*K.1^42,-2*K.1^4,2*K.1^4,-2*K.1^38,-2*K.1^24,2*K.1^38,2*K.1^14,-2*K.1^14,2*K.1^28,-2*K.1^28,2*K.1^46,2*K.1^14,2*K.1^22,2*K.1^6,2*K.1^34,-2*K.1^48,2*K.1^48,2*K.1^44,-2*K.1^18,2*K.1^18,-2*K.1^44,2*K.1^8,-2*K.1^34,2*K.1^34,-2*K.1^8,2*K.1^2,-2*K.1^16,-2*K.1^12,-2*K.1^36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^43,2*K.1,2*K.1^3,2*K.1^39,2*K.1^37,-2*K.1^37,2*K.1^29,2*K.1^13,-2*K.1^17,2*K.1^39,-2*K.1^9,2*K.1^19,2*K.1^49,-2*K.1^21,-2*K.1^23,-2*K.1^19,2*K.1^47,-2*K.1^11,2*K.1^43,-2*K.1^17,2*K.1^37,-2*K.1^47,-2*K.1^47,2*K.1^7,2*K.1^29,2*K.1^13,-2*K.1^41,-2*K.1^33,2*K.1^21,-2*K.1^7,2*K.1,2*K.1^3,-2*K.1^21,2*K.1^23,-2*K.1^37,2*K.1^23,-2*K.1^31,-2*K.1^27,2*K.1^17,2*K.1^11,-2*K.1,-2*K.1^3,2*K.1^43,-2*K.1^41,-2*K.1^31,2*K.1^31,2*K.1^49,-2*K.1^11,2*K.1^41,-2*K.1^13,2*K.1^11,-2*K.1^43,2*K.1^9,2*K.1^27,-2*K.1^27,2*K.1^17,-2*K.1^7,2*K.1^47,-2*K.1^39,-2*K.1^23,2*K.1^31,-2*K.1^29,2*K.1^33,-2*K.1^9,-2*K.1,-2*K.1^13,2*K.1^41,2*K.1^27,-2*K.1^39,-2*K.1^3,-2*K.1^19,-2*K.1^49,-2*K.1^49,-2*K.1^29,2*K.1^19,-2*K.1^33,2*K.1^33,2*K.1^9,2*K.1^7,2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,2*K.1^20,-2*K.1^30,2*K.1^40,-2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^40,2*K.1^30,-2*K.1^20,2*K.1^10,-2*K.1^30,2*K.1^30,-2*K.1^10,2*K.1^20,-2*K.1^40,-2*K.1^40,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^15,-2*K.1^15,-2*K.1^45,2*K.1^45,2*K.1^5,-2*K.1^45,-2*K.1^5,2*K.1^15,2*K.1^45,2*K.1^35,-2*K.1^15,-2*K.1^5,-2*K.1^35,2*K.1^5,2*K.1^35,-2*K.1^35,0,0,0,0,0,0,0,0,-2*K.1^22,2*K.1^36,-2*K.1^2,-2*K.1^26,-2*K.1^6,2*K.1^16,2*K.1^12,-2*K.1^14,2*K.1^28,2*K.1^44,2*K.1^24,-2*K.1^34,2*K.1^48,-2*K.1^18,-2*K.1^38,2*K.1^8,-2*K.1^42,2*K.1^4,-2*K.1^46,2*K.1^32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^38,-2*K.1^16,-2*K.1^4,-2*K.1^8,2*K.1^26,-2*K.1^48,2*K.1^18,2*K.1^46,-2*K.1^28,2*K.1^34,-2*K.1^28,-2*K.1^34,2*K.1^42,2*K.1^2,-2*K.1^38,-2*K.1^44,-2*K.1^46,2*K.1^24,2*K.1^28,-2*K.1^4,2*K.1^44,-2*K.1^14,-2*K.1^24,2*K.1^8,2*K.1^4,2*K.1^22,2*K.1^14,-2*K.1^18,-2*K.1^32,-2*K.1^12,2*K.1^48,2*K.1^18,-2*K.1^16,2*K.1^16,-2*K.1^2,2*K.1^46,2*K.1^2,2*K.1^6,-2*K.1^6,2*K.1^12,-2*K.1^12,2*K.1^34,2*K.1^6,2*K.1^38,-2*K.1^24,-2*K.1^36,2*K.1^42,-2*K.1^42,-2*K.1^26,-2*K.1^22,2*K.1^22,2*K.1^26,2*K.1^32,2*K.1^36,-2*K.1^36,-2*K.1^32,-2*K.1^8,2*K.1^14,-2*K.1^48,-2*K.1^44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^47,-2*K.1^29,2*K.1^37,-2*K.1^31,2*K.1^23,-2*K.1^23,-2*K.1^41,2*K.1^27,-2*K.1^43,-2*K.1^31,-2*K.1^11,2*K.1,-2*K.1^21,2*K.1^9,-2*K.1^17,-2*K.1,2*K.1^13,2*K.1^19,-2*K.1^47,-2*K.1^43,2*K.1^23,-2*K.1^13,-2*K.1^13,-2*K.1^3,-2*K.1^41,2*K.1^27,-2*K.1^39,-2*K.1^7,-2*K.1^9,2*K.1^3,-2*K.1^29,2*K.1^37,2*K.1^9,2*K.1^17,-2*K.1^23,2*K.1^17,-2*K.1^49,-2*K.1^33,2*K.1^43,-2*K.1^19,2*K.1^29,-2*K.1^37,-2*K.1^47,-2*K.1^39,-2*K.1^49,2*K.1^49,-2*K.1^21,2*K.1^19,2*K.1^39,-2*K.1^27,-2*K.1^19,2*K.1^47,2*K.1^11,2*K.1^33,-2*K.1^33,2*K.1^43,2*K.1^3,2*K.1^13,2*K.1^31,-2*K.1^17,2*K.1^49,2*K.1^41,2*K.1^7,-2*K.1^11,2*K.1^29,-2*K.1^27,2*K.1^39,2*K.1^33,2*K.1^31,-2*K.1^37,-2*K.1,2*K.1^21,2*K.1^21,2*K.1^41,2*K.1,-2*K.1^7,2*K.1^7,2*K.1^11,-2*K.1^3,-2*K.1^9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,-2*K.1^30,2*K.1^20,-2*K.1^10,2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^30,-2*K.1^10,-2*K.1^20,2*K.1^30,-2*K.1^40,2*K.1^20,-2*K.1^20,2*K.1^40,-2*K.1^30,2*K.1^10,2*K.1^10,-2*K.1^40,0,0,0,0,0,0,0,0,-2*K.1^35,2*K.1^35,2*K.1^5,-2*K.1^5,-2*K.1^45,2*K.1^5,2*K.1^45,-2*K.1^35,-2*K.1^5,-2*K.1^15,2*K.1^35,2*K.1^45,2*K.1^15,-2*K.1^45,-2*K.1^15,2*K.1^15,0,0,0,0,0,0,0,0,2*K.1^28,-2*K.1^14,2*K.1^48,2*K.1^24,2*K.1^44,-2*K.1^34,-2*K.1^38,2*K.1^36,-2*K.1^22,-2*K.1^6,-2*K.1^26,2*K.1^16,-2*K.1^2,2*K.1^32,2*K.1^12,-2*K.1^42,2*K.1^8,-2*K.1^46,2*K.1^4,-2*K.1^18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^12,2*K.1^34,2*K.1^46,2*K.1^42,-2*K.1^24,2*K.1^2,-2*K.1^32,-2*K.1^4,2*K.1^22,-2*K.1^16,2*K.1^22,2*K.1^16,-2*K.1^8,-2*K.1^48,2*K.1^12,2*K.1^6,2*K.1^4,-2*K.1^26,-2*K.1^22,2*K.1^46,-2*K.1^6,2*K.1^36,2*K.1^26,-2*K.1^42,-2*K.1^46,-2*K.1^28,-2*K.1^36,2*K.1^32,2*K.1^18,2*K.1^38,-2*K.1^2,-2*K.1^32,2*K.1^34,-2*K.1^34,2*K.1^48,-2*K.1^4,-2*K.1^48,-2*K.1^44,2*K.1^44,-2*K.1^38,2*K.1^38,-2*K.1^16,-2*K.1^44,-2*K.1^12,2*K.1^26,2*K.1^14,-2*K.1^8,2*K.1^8,2*K.1^24,2*K.1^28,-2*K.1^28,-2*K.1^24,-2*K.1^18,-2*K.1^14,2*K.1^14,2*K.1^18,2*K.1^42,-2*K.1^36,2*K.1^2,2*K.1^6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3,2*K.1^21,-2*K.1^13,2*K.1^19,-2*K.1^27,2*K.1^27,2*K.1^9,-2*K.1^23,2*K.1^7,2*K.1^19,2*K.1^39,-2*K.1^49,2*K.1^29,-2*K.1^41,2*K.1^33,2*K.1^49,-2*K.1^37,-2*K.1^31,2*K.1^3,2*K.1^7,-2*K.1^27,2*K.1^37,2*K.1^37,2*K.1^47,2*K.1^9,-2*K.1^23,2*K.1^11,2*K.1^43,2*K.1^41,-2*K.1^47,2*K.1^21,-2*K.1^13,-2*K.1^41,-2*K.1^33,2*K.1^27,-2*K.1^33,2*K.1,2*K.1^17,-2*K.1^7,2*K.1^31,-2*K.1^21,2*K.1^13,2*K.1^3,2*K.1^11,2*K.1,-2*K.1,2*K.1^29,-2*K.1^31,-2*K.1^11,2*K.1^23,2*K.1^31,-2*K.1^3,-2*K.1^39,-2*K.1^17,2*K.1^17,-2*K.1^7,-2*K.1^47,-2*K.1^37,-2*K.1^19,2*K.1^33,-2*K.1,-2*K.1^9,-2*K.1^43,2*K.1^39,-2*K.1^21,2*K.1^23,-2*K.1^11,-2*K.1^17,-2*K.1^19,2*K.1^13,2*K.1^49,-2*K.1^29,-2*K.1^29,-2*K.1^9,-2*K.1^49,2*K.1^43,-2*K.1^43,-2*K.1^39,2*K.1^47,2*K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,2*K.1^20,-2*K.1^30,2*K.1^40,-2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^40,2*K.1^30,-2*K.1^20,2*K.1^10,-2*K.1^30,2*K.1^30,-2*K.1^10,2*K.1^20,-2*K.1^40,-2*K.1^40,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^15,-2*K.1^15,-2*K.1^45,2*K.1^45,2*K.1^5,-2*K.1^45,-2*K.1^5,2*K.1^15,2*K.1^45,2*K.1^35,-2*K.1^15,-2*K.1^5,-2*K.1^35,2*K.1^5,2*K.1^35,-2*K.1^35,0,0,0,0,0,0,0,0,2*K.1^12,-2*K.1^6,-2*K.1^42,-2*K.1^46,-2*K.1^26,2*K.1^36,-2*K.1^2,2*K.1^44,-2*K.1^38,2*K.1^24,2*K.1^4,-2*K.1^14,2*K.1^8,2*K.1^28,2*K.1^48,-2*K.1^18,2*K.1^32,-2*K.1^34,2*K.1^16,-2*K.1^22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^48,-2*K.1^36,2*K.1^34,2*K.1^18,2*K.1^46,-2*K.1^8,-2*K.1^28,-2*K.1^16,2*K.1^38,2*K.1^14,2*K.1^38,-2*K.1^14,-2*K.1^32,2*K.1^42,2*K.1^48,-2*K.1^24,2*K.1^16,2*K.1^4,-2*K.1^38,2*K.1^34,2*K.1^24,2*K.1^44,-2*K.1^4,-2*K.1^18,-2*K.1^34,-2*K.1^12,-2*K.1^44,2*K.1^28,2*K.1^22,2*K.1^2,2*K.1^8,-2*K.1^28,-2*K.1^36,2*K.1^36,-2*K.1^42,-2*K.1^16,2*K.1^42,2*K.1^26,-2*K.1^26,-2*K.1^2,2*K.1^2,2*K.1^14,2*K.1^26,-2*K.1^48,-2*K.1^4,2*K.1^6,-2*K.1^32,2*K.1^32,-2*K.1^46,2*K.1^12,-2*K.1^12,2*K.1^46,-2*K.1^22,-2*K.1^6,2*K.1^6,2*K.1^22,2*K.1^18,-2*K.1^44,-2*K.1^8,-2*K.1^24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^37,-2*K.1^9,-2*K.1^27,2*K.1,-2*K.1^33,2*K.1^33,2*K.1^11,-2*K.1^17,-2*K.1^3,2*K.1,-2*K.1^31,2*K.1^21,-2*K.1^41,-2*K.1^39,2*K.1^7,-2*K.1^21,-2*K.1^23,-2*K.1^49,2*K.1^37,-2*K.1^3,-2*K.1^33,2*K.1^23,2*K.1^23,2*K.1^13,2*K.1^11,-2*K.1^17,-2*K.1^19,-2*K.1^47,2*K.1^39,-2*K.1^13,-2*K.1^9,-2*K.1^27,-2*K.1^39,-2*K.1^7,2*K.1^33,-2*K.1^7,-2*K.1^29,2*K.1^43,2*K.1^3,2*K.1^49,2*K.1^9,2*K.1^27,2*K.1^37,-2*K.1^19,-2*K.1^29,2*K.1^29,-2*K.1^41,-2*K.1^49,2*K.1^19,2*K.1^17,2*K.1^49,-2*K.1^37,2*K.1^31,-2*K.1^43,2*K.1^43,2*K.1^3,-2*K.1^13,-2*K.1^23,-2*K.1,2*K.1^7,2*K.1^29,-2*K.1^11,2*K.1^47,-2*K.1^31,2*K.1^9,2*K.1^17,2*K.1^19,-2*K.1^43,-2*K.1,2*K.1^27,-2*K.1^21,2*K.1^41,2*K.1^41,-2*K.1^11,2*K.1^21,-2*K.1^47,2*K.1^47,2*K.1^31,2*K.1^13,2*K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,-2*K.1^30,2*K.1^20,-2*K.1^10,2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^30,-2*K.1^10,-2*K.1^20,2*K.1^30,-2*K.1^40,2*K.1^20,-2*K.1^20,2*K.1^40,-2*K.1^30,2*K.1^10,2*K.1^10,-2*K.1^40,0,0,0,0,0,0,0,0,-2*K.1^35,2*K.1^35,2*K.1^5,-2*K.1^5,-2*K.1^45,2*K.1^5,2*K.1^45,-2*K.1^35,-2*K.1^5,-2*K.1^15,2*K.1^35,2*K.1^45,2*K.1^15,-2*K.1^45,-2*K.1^15,2*K.1^15,0,0,0,0,0,0,0,0,-2*K.1^38,2*K.1^44,2*K.1^8,2*K.1^4,2*K.1^24,-2*K.1^14,2*K.1^48,-2*K.1^6,2*K.1^12,-2*K.1^26,-2*K.1^46,2*K.1^36,-2*K.1^42,-2*K.1^22,-2*K.1^2,2*K.1^32,-2*K.1^18,2*K.1^16,-2*K.1^34,2*K.1^28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^2,2*K.1^14,-2*K.1^16,-2*K.1^32,-2*K.1^4,2*K.1^42,2*K.1^22,2*K.1^34,-2*K.1^12,-2*K.1^36,-2*K.1^12,2*K.1^36,2*K.1^18,-2*K.1^8,-2*K.1^2,2*K.1^26,-2*K.1^34,-2*K.1^46,2*K.1^12,-2*K.1^16,-2*K.1^26,-2*K.1^6,2*K.1^46,2*K.1^32,2*K.1^16,2*K.1^38,2*K.1^6,-2*K.1^22,-2*K.1^28,-2*K.1^48,-2*K.1^42,2*K.1^22,2*K.1^14,-2*K.1^14,2*K.1^8,2*K.1^34,-2*K.1^8,-2*K.1^24,2*K.1^24,2*K.1^48,-2*K.1^48,-2*K.1^36,-2*K.1^24,2*K.1^2,2*K.1^46,-2*K.1^44,2*K.1^18,-2*K.1^18,2*K.1^4,-2*K.1^38,2*K.1^38,-2*K.1^4,2*K.1^28,2*K.1^44,-2*K.1^44,-2*K.1^28,-2*K.1^32,2*K.1^6,2*K.1^42,2*K.1^26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^13,2*K.1^41,2*K.1^23,-2*K.1^49,2*K.1^17,-2*K.1^17,-2*K.1^39,2*K.1^33,2*K.1^47,-2*K.1^49,2*K.1^19,-2*K.1^29,2*K.1^9,2*K.1^11,-2*K.1^43,2*K.1^29,2*K.1^27,2*K.1,-2*K.1^13,2*K.1^47,2*K.1^17,-2*K.1^27,-2*K.1^27,-2*K.1^37,-2*K.1^39,2*K.1^33,2*K.1^31,2*K.1^3,-2*K.1^11,2*K.1^37,2*K.1^41,2*K.1^23,2*K.1^11,2*K.1^43,-2*K.1^17,2*K.1^43,2*K.1^21,-2*K.1^7,-2*K.1^47,-2*K.1,-2*K.1^41,-2*K.1^23,-2*K.1^13,2*K.1^31,2*K.1^21,-2*K.1^21,2*K.1^9,2*K.1,-2*K.1^31,-2*K.1^33,-2*K.1,2*K.1^13,-2*K.1^19,2*K.1^7,-2*K.1^7,-2*K.1^47,2*K.1^37,2*K.1^27,2*K.1^49,-2*K.1^43,-2*K.1^21,2*K.1^39,-2*K.1^3,2*K.1^19,-2*K.1^41,-2*K.1^33,-2*K.1^31,2*K.1^7,2*K.1^49,-2*K.1^23,2*K.1^29,-2*K.1^9,-2*K.1^9,2*K.1^39,-2*K.1^29,2*K.1^3,-2*K.1^3,-2*K.1^19,-2*K.1^37,-2*K.1^11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2*K.1^25,2*K.1^25,2*K.1^25,-2*K.1^25,0,0,2*K.1^20,-2*K.1^30,2*K.1^40,-2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^20,2*K.1^40,2*K.1^30,-2*K.1^20,2*K.1^10,-2*K.1^30,2*K.1^30,-2*K.1^10,2*K.1^20,-2*K.1^40,-2*K.1^40,2*K.1^10,0,0,0,0,0,0,0,0,2*K.1^15,-2*K.1^15,-2*K.1^45,2*K.1^45,2*K.1^5,-2*K.1^45,-2*K.1^5,2*K.1^15,2*K.1^45,2*K.1^35,-2*K.1^15,-2*K.1^5,-2*K.1^35,2*K.1^5,2*K.1^35,-2*K.1^35,0,0,0,0,0,0,0,0,-2*K.1^42,-2*K.1^46,-2*K.1^22,2*K.1^36,2*K.1^16,-2*K.1^26,2*K.1^32,2*K.1^4,2*K.1^8,-2*K.1^34,-2*K.1^14,2*K.1^24,2*K.1^28,2*K.1^48,-2*K.1^18,-2*K.1^38,2*K.1^12,2*K.1^44,-2*K.1^6,-2*K.1^2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^18,2*K.1^26,-2*K.1^44,2*K.1^38,-2*K.1^36,-2*K.1^28,-2*K.1^48,2*K.1^6,-2*K.1^8,-2*K.1^24,-2*K.1^8,2*K.1^24,-2*K.1^12,2*K.1^22,-2*K.1^18,2*K.1^34,-2*K.1^6,-2*K.1^14,2*K.1^8,-2*K.1^44,-2*K.1^34,2*K.1^4,2*K.1^14,-2*K.1^38,2*K.1^44,2*K.1^42,-2*K.1^4,2*K.1^48,2*K.1^2,-2*K.1^32,2*K.1^28,-2*K.1^48,2*K.1^26,-2*K.1^26,-2*K.1^22,2*K.1^6,2*K.1^22,-2*K.1^16,2*K.1^16,2*K.1^32,-2*K.1^32,-2*K.1^24,-2*K.1^16,2*K.1^18,2*K.1^14,2*K.1^46,-2*K.1^12,2*K.1^12,2*K.1^36,-2*K.1^42,2*K.1^42,-2*K.1^36,-2*K.1^2,-2*K.1^46,2*K.1^46,2*K.1^2,2*K.1^38,-2*K.1^4,-2*K.1^28,2*K.1^34,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^17,2*K.1^19,-2*K.1^7,2*K.1^41,2*K.1^3,-2*K.1^3,-2*K.1,2*K.1^47,-2*K.1^23,2*K.1^41,2*K.1^21,-2*K.1^11,2*K.1^31,2*K.1^49,-2*K.1^37,2*K.1^11,-2*K.1^43,-2*K.1^9,2*K.1^17,-2*K.1^23,2*K.1^3,2*K.1^43,2*K.1^43,2*K.1^33,-2*K.1,2*K.1^47,2*K.1^29,-2*K.1^27,-2*K.1^49,-2*K.1^33,2*K.1^19,-2*K.1^7,2*K.1^49,2*K.1^37,-2*K.1^3,2*K.1^37,2*K.1^39,-2*K.1^13,2*K.1^23,2*K.1^9,-2*K.1^19,2*K.1^7,2*K.1^17,2*K.1^29,2*K.1^39,-2*K.1^39,2*K.1^31,-2*K.1^9,-2*K.1^29,-2*K.1^47,2*K.1^9,-2*K.1^17,-2*K.1^21,2*K.1^13,-2*K.1^13,2*K.1^23,-2*K.1^33,-2*K.1^43,-2*K.1^41,-2*K.1^37,-2*K.1^39,2*K.1,2*K.1^27,2*K.1^21,-2*K.1^19,-2*K.1^47,-2*K.1^29,2*K.1^13,-2*K.1^41,2*K.1^7,2*K.1^11,-2*K.1^31,-2*K.1^31,2*K.1,-2*K.1^11,-2*K.1^27,2*K.1^27,-2*K.1^21,2*K.1^33,-2*K.1^49,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(100: Sparse := true); S := [ K |2,-2,2,-2,0,0,2*K.1^25,-2*K.1^25,-2*K.1^25,2*K.1^25,0,0,-2*K.1^30,2*K.1^20,-2*K.1^10,2*K.1^40,0,0,0,0,0,0,0,0,2*K.1^30,-2*K.1^10,-2*K.1^20,2*K.1^30,-2*K.1^40,2*K.1^20,-2*K.1^20,2*K.1^40,-2*K.1^30,2*K.1^10,2*K.1^10,-2*K.1^40,0,0,0,0,0,0,0,0,-2*K.1^35,2*K.1^35,2*K.1^5,-2*K.1^5,-2*K.1^45,2*K.1^5,2*K.1^45,-2*K.1^35,-2*K.1^5,-2*K.1^15,2*K.1^35,2*K.1^45,2*K.1^15,-2*K.1^45,-2*K.1^15,2*K.1^15,0,0,0,0,0,0,0,0,2*K.1^8,2*K.1^4,2*K.1^28,-2*K.1^14,-2*K.1^34,2*K.1^24,-2*K.1^18,-2*K.1^46,-2*K.1^42,2*K.1^16,2*K.1^36,-2*K.1^26,-2*K.1^22,-2*K.1^2,2*K.1^32,2*K.1^12,-2*K.1^38,-2*K.1^6,2*K.1^44,2*K.1^48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^32,-2*K.1^24,2*K.1^6,-2*K.1^12,2*K.1^14,2*K.1^22,2*K.1^2,-2*K.1^44,2*K.1^42,2*K.1^26,2*K.1^42,-2*K.1^26,2*K.1^38,-2*K.1^28,2*K.1^32,-2*K.1^16,2*K.1^44,2*K.1^36,-2*K.1^42,2*K.1^6,2*K.1^16,-2*K.1^46,-2*K.1^36,2*K.1^12,-2*K.1^6,-2*K.1^8,2*K.1^46,-2*K.1^2,-2*K.1^48,2*K.1^18,-2*K.1^22,2*K.1^2,-2*K.1^24,2*K.1^24,2*K.1^28,-2*K.1^44,-2*K.1^28,2*K.1^34,-2*K.1^34,-2*K.1^18,2*K.1^18,2*K.1^26,2*K.1^34,-2*K.1^32,-2*K.1^36,-2*K.1^4,2*K.1^38,-2*K.1^38,-2*K.1^14,2*K.1^8,-2*K.1^8,2*K.1^14,2*K.1^48,2*K.1^4,-2*K.1^4,-2*K.1^48,-2*K.1^12,2*K.1^46,2*K.1^22,-2*K.1^16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^33,-2*K.1^31,2*K.1^43,-2*K.1^9,-2*K.1^47,2*K.1^47,2*K.1^49,-2*K.1^3,2*K.1^27,-2*K.1^9,-2*K.1^29,2*K.1^39,-2*K.1^19,-2*K.1,2*K.1^13,-2*K.1^39,2*K.1^7,2*K.1^41,-2*K.1^33,2*K.1^27,-2*K.1^47,-2*K.1^7,-2*K.1^7,-2*K.1^17,2*K.1^49,-2*K.1^3,-2*K.1^21,2*K.1^23,2*K.1,2*K.1^17,-2*K.1^31,2*K.1^43,-2*K.1,-2*K.1^13,2*K.1^47,-2*K.1^13,-2*K.1^11,2*K.1^37,-2*K.1^27,-2*K.1^41,2*K.1^31,-2*K.1^43,-2*K.1^33,-2*K.1^21,-2*K.1^11,2*K.1^11,-2*K.1^19,2*K.1^41,2*K.1^21,2*K.1^3,-2*K.1^41,2*K.1^33,2*K.1^29,-2*K.1^37,2*K.1^37,-2*K.1^27,2*K.1^17,2*K.1^7,2*K.1^9,2*K.1^13,2*K.1^11,-2*K.1^49,-2*K.1^23,-2*K.1^29,2*K.1^31,2*K.1^3,2*K.1^21,-2*K.1^37,2*K.1^9,-2*K.1^43,-2*K.1^39,2*K.1^19,2*K.1^19,-2*K.1^49,2*K.1^39,2*K.1^23,-2*K.1^23,2*K.1^29,-2*K.1^17,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_800_48:= KnownIrreducibles(CR);