/* Group 784.120 downloaded from the LMFDB on 05 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, -2, -7, -2, -2, -7, 313, 31, 7490, 1778, 10083, 9081, 69, 10930, 88, 12107]); a,b,c := Explode([GPC.1, GPC.2, GPC.4]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2", "c4"]); GPerm := PermutationGroup< 22 | (3,7)(5,8)(10,11)(12,13)(14,15), (1,2,4,6)(3,8,7,5)(17,18)(19,20)(21,22), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8), (16,17,19,21,22,20,18), (9,10,12,14,15,13,11) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_784_120 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^14>,< 2, 14, a>,< 2, 14, a*c^21>,< 2, 98, a*b*c^11>,< 4, 2, c^7>,< 4, 14, b^7>,< 4, 14, b^7*c>,< 4, 49, a*b>,< 4, 49, a*b*c^14>,< 7, 2, c^8>,< 7, 2, c^16>,< 7, 2, c^24>,< 7, 2, b^8>,< 7, 2, b^2*c^14>,< 7, 2, b^10*c^14>,< 7, 4, b^8*c^4>,< 7, 4, b^2*c^22>,< 7, 4, b^10*c^26>,< 7, 4, b^2*c^18>,< 7, 4, b^4*c^8>,< 7, 4, b^6*c^26>,< 7, 4, b^10*c^18>,< 7, 4, b^6*c^22>,< 7, 4, b^2*c^26>,< 14, 2, c^2>,< 14, 2, c^6>,< 14, 2, c^10>,< 14, 2, b^4*c^14>,< 14, 2, b^12*c^14>,< 14, 2, b^6>,< 14, 4, b^4*c^2>,< 14, 4, b^12*c^6>,< 14, 4, b^6*c^24>,< 14, 4, b^8*c^2>,< 14, 4, b^10*c^20>,< 14, 4, b^12*c^10>,< 14, 4, b^12*c^2>,< 14, 4, b^8*c^6>,< 14, 4, b^4*c^10>,< 14, 28, a*c^4>,< 14, 28, a*c^2>,< 14, 28, a*c^8>,< 14, 28, a*c>,< 14, 28, a*c^3>,< 14, 28, a*c^5>,< 28, 4, c>,< 28, 4, c^3>,< 28, 4, c^5>,< 28, 4, b^2*c^21>,< 28, 4, b^6*c^21>,< 28, 4, b^4*c^21>,< 28, 4, b^2*c>,< 28, 4, b^2*c^13>,< 28, 4, b^6*c^3>,< 28, 4, b^6*c^17>,< 28, 4, b^4*c^5>,< 28, 4, b^4*c^9>,< 28, 4, b^4*c>,< 28, 4, b^4*c^13>,< 28, 4, b^2*c^3>,< 28, 4, b^2*c^17>,< 28, 4, b^6*c^9>,< 28, 4, b^6*c^5>,< 28, 4, b^6*c>,< 28, 4, b^6*c^13>,< 28, 4, b^4*c^17>,< 28, 4, b^4*c^3>,< 28, 4, b^2*c^5>,< 28, 4, b^2*c^9>,< 28, 28, b>,< 28, 28, b^3>,< 28, 28, b^5>,< 28, 28, b*c>,< 28, 28, b^3*c>,< 28, 28, b^5*c>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,0,0,0,0,0,0,-2*K.1,2*K.1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,0,0,0,0,0,0,2*K.1,-2*K.1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,2,0,0,K.1^3+K.1^-3,2,2,K.1^2+K.1^-2,K.1+K.1^-1,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,0,0,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,2,0,0,K.1^2+K.1^-2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,2,2,K.1+K.1^-1,K.1^2+K.1^-2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1+K.1^-1,2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,2,0,0,K.1+K.1^-1,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1^3+K.1^-3,2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,2,0,0,0,0,2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,2,K.1^3+K.1^-3,K.1^2+K.1^-2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,K.1+K.1^-1,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,2,0,0,0,0,2,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,2,K.1^2+K.1^-2,K.1+K.1^-1,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,K.1^3+K.1^-3,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,2,0,2,0,0,0,0,2,K.1+K.1^-1,K.1^2+K.1^-2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,2,K.1+K.1^-1,K.1^3+K.1^-3,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,K.1^2+K.1^-2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,2,0,0,0,0,2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,2,K.1^3+K.1^-3,K.1^2+K.1^-2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,K.1+K.1^-1,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,2,0,0,0,0,2,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,2,K.1^2+K.1^-2,K.1+K.1^-1,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,K.1^3+K.1^-3,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,-2,0,2,0,0,0,0,2,K.1+K.1^-1,K.1^2+K.1^-2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,2,K.1+K.1^-1,K.1^3+K.1^-3,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,K.1^2+K.1^-2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,0,-2,0,0,0,0,2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,2,K.1^3+K.1^-3,K.1^2+K.1^-2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,-1*K.1-K.1^-1,-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,0,-2,0,0,0,0,2,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,2,K.1^2+K.1^-2,K.1+K.1^-1,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-1*K.1^3-K.1^-3,-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,2,0,-2,0,0,0,0,2,K.1+K.1^-1,K.1^2+K.1^-2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,2,K.1+K.1^-1,K.1^3+K.1^-3,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,-1*K.1^2-K.1^-2,-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,-2,-2,2,0,0,K.1^3+K.1^-3,2,2,K.1^2+K.1^-2,K.1+K.1^-1,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,0,0,-2,-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,-2,-2,2,0,0,K.1^2+K.1^-2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,2,2,K.1+K.1^-1,K.1^2+K.1^-2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,0,0,0,0,-2,-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,-2,-2,2,0,0,K.1+K.1^-1,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,0,0,0,0,-2,-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,-2,2,-2,0,0,K.1^3+K.1^-3,2,2,K.1^2+K.1^-2,K.1+K.1^-1,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,0,0,-2,-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,-2,2,-2,0,0,K.1^2+K.1^-2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,2,2,K.1+K.1^-1,K.1^2+K.1^-2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,0,0,0,0,-2,-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,-2,2,-2,0,0,K.1+K.1^-1,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,0,0,0,0,-2,-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,-2,-2,0,0,K.1^3+K.1^-3,2,2,K.1^2+K.1^-2,K.1+K.1^-1,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,0,0,0,0,0,0,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,-2,-2,0,0,K.1^2+K.1^-2,2,2,K.1+K.1^-1,K.1^3+K.1^-3,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,2,2,K.1+K.1^-1,K.1^2+K.1^-2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,0,0,0,0,0,0,2,2,K.1^2+K.1^-2,K.1+K.1^-1,2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,-2,-2,0,0,K.1+K.1^-1,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,0,0,0,0,0,0,2,2,K.1+K.1^-1,K.1^3+K.1^-3,2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,0,-2,0,0,0,0,2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,2,K.1^3+K.1^-3,K.1^2+K.1^-2,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,-1*K.1-K.1^-1,-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,0,-2,0,0,0,0,2,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,2,K.1^2+K.1^-2,K.1+K.1^-1,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-1*K.1^3-K.1^-3,-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,-2,0,-2,0,0,0,0,2,K.1+K.1^-1,K.1^2+K.1^-2,2,2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,2,K.1+K.1^-1,K.1^3+K.1^-3,2,2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,-1*K.1^2-K.1^-2,-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,2+K.1+K.1^-1,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2+K.1^2+K.1^-2,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,2*K.1+2*K.1^-1,-1-K.1^2-K.1^-2,2*K.1+2*K.1^-1,-1-K.1-K.1^-1,2*K.1^2+2*K.1^-2,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,2*K.1^3+2*K.1^-3,2+K.1^3+K.1^-3,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-1-K.1-K.1^-1,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2+K.1+K.1^-1,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,2*K.1^3+2*K.1^-3,-1-K.1-K.1^-1,2*K.1^3+2*K.1^-3,-1-K.1^3-K.1^-3,2*K.1+2*K.1^-1,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,-1-K.1-K.1^-1,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,2*K.1^2+2*K.1^-2,2+K.1^2+K.1^-2,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2+K.1^3+K.1^-3,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,2*K.1^2+2*K.1^-2,-1-K.1^3-K.1^-3,2*K.1^2+2*K.1^-2,-1-K.1^2-K.1^-2,2*K.1^3+2*K.1^-3,-1-K.1-K.1^-1,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,2*K.1+2*K.1^-1,2+K.1+K.1^-1,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,-1-K.1-K.1^-1,2+K.1+K.1^-1,2+K.1^2+K.1^-2,2+K.1^3+K.1^-3,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,-1-K.1-K.1^-1,2*K.1+2*K.1^-1,2+K.1^2+K.1^-2,2*K.1^2+2*K.1^-2,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1-K.1^-1,2+K.1^2+K.1^-2,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,-1-K.1^3-K.1^-3,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,2+K.1+K.1^-1,2+K.1^2+K.1^-2,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,2*K.1+2*K.1^-1,-1-K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2+K.1+K.1^-1,2*K.1+2*K.1^-1,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,2+K.1+K.1^-1,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,-1-K.1^2-K.1^-2,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,0,0,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,2+K.1^3+K.1^-3,2+K.1+K.1^-1,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,-1-K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2+K.1^3+K.1^-3,2*K.1^3+2*K.1^-3,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,2+K.1^3+K.1^-3,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,2*K.1+2*K.1^-1,-1-K.1-K.1^-1,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,2+K.1+K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,2+K.1^3+K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,2+K.1^3+K.1^-3,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,2*K.1^3+2*K.1^-3,2+K.1^2+K.1^-2,2*K.1+2*K.1^-1,-1-K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,2+K.1+K.1^-1,2*K.1^3+2*K.1^-3,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,2+K.1^2+K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,2+K.1^2+K.1^-2,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,2*K.1^2+2*K.1^-2,2+K.1+K.1^-1,2*K.1^3+2*K.1^-3,-1-K.1-K.1^-1,2*K.1+2*K.1^-1,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,2*K.1^2+2*K.1^-2,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,2+K.1+K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,2+K.1+K.1^-1,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1-K.1-K.1^-1,2+K.1+K.1^-1,2*K.1+2*K.1^-1,2+K.1^3+K.1^-3,2*K.1^2+2*K.1^-2,-1-K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,2*K.1+2*K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-4,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,2+K.1+K.1^-1,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2+K.1^2+K.1^-2,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2-K.1-K.1^-1,1+K.1^3+K.1^-3,-2*K.1-2*K.1^-1,1+K.1^2+K.1^-2,-2*K.1-2*K.1^-1,1+K.1+K.1^-1,-2*K.1^2-2*K.1^-2,1+K.1^3+K.1^-3,-2-K.1^3-K.1^-3,1+K.1^2+K.1^-2,-2-K.1-K.1^-1,1+K.1+K.1^-1,1+K.1^3+K.1^-3,-2-K.1^2-K.1^-2,1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,1+K.1+K.1^-1,-2*K.1^3-2*K.1^-3,-2-K.1^3-K.1^-3,1+K.1^3+K.1^-3,1+K.1+K.1^-1,1+K.1^2+K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-4,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,-1-K.1-K.1^-1,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2+K.1+K.1^-1,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2-K.1^3-K.1^-3,1+K.1^2+K.1^-2,-2*K.1^3-2*K.1^-3,1+K.1+K.1^-1,-2*K.1^3-2*K.1^-3,1+K.1^3+K.1^-3,-2*K.1-2*K.1^-1,1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,1+K.1+K.1^-1,-2-K.1^3-K.1^-3,1+K.1^3+K.1^-3,1+K.1^2+K.1^-2,-2-K.1-K.1^-1,1+K.1+K.1^-1,-2-K.1-K.1^-1,1+K.1^3+K.1^-3,-2*K.1^2-2*K.1^-2,-2-K.1^2-K.1^-2,1+K.1^2+K.1^-2,1+K.1^3+K.1^-3,1+K.1+K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-4,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2+K.1^3+K.1^-3,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2-K.1^2-K.1^-2,1+K.1+K.1^-1,-2*K.1^2-2*K.1^-2,1+K.1^3+K.1^-3,-2*K.1^2-2*K.1^-2,1+K.1^2+K.1^-2,-2*K.1^3-2*K.1^-3,1+K.1+K.1^-1,-2-K.1-K.1^-1,1+K.1^3+K.1^-3,-2-K.1^2-K.1^-2,1+K.1^2+K.1^-2,1+K.1+K.1^-1,-2-K.1^3-K.1^-3,1+K.1^3+K.1^-3,-2-K.1^3-K.1^-3,1+K.1^2+K.1^-2,-2*K.1-2*K.1^-1,-2-K.1-K.1^-1,1+K.1+K.1^-1,1+K.1^2+K.1^-2,1+K.1^3+K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-4,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,-1-K.1-K.1^-1,2+K.1+K.1^-1,2+K.1^2+K.1^-2,2+K.1^3+K.1^-3,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,1+K.1+K.1^-1,1+K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,1+K.1+K.1^-1,-2*K.1-2*K.1^-1,-2-K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,1+K.1^2+K.1^-2,1+K.1^3+K.1^-3,1+K.1+K.1^-1,1+K.1+K.1^-1,-2-K.1^2-K.1^-2,-2-K.1-K.1^-1,1+K.1^2+K.1^-2,-2-K.1^3-K.1^-3,1+K.1^2+K.1^-2,1+K.1^3+K.1^-3,-2*K.1^3-2*K.1^-3,1+K.1^3+K.1^-3,-2-K.1-K.1^-1,1+K.1^3+K.1^-3,-2-K.1^3-K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-4,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,2+K.1+K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,2+K.1+K.1^-1,2+K.1^2+K.1^-2,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,1+K.1^3+K.1^-3,1+K.1+K.1^-1,-2*K.1-2*K.1^-1,1+K.1^3+K.1^-3,-2*K.1^3-2*K.1^-3,-2-K.1-K.1^-1,-2*K.1-2*K.1^-1,1+K.1+K.1^-1,1+K.1^2+K.1^-2,1+K.1^3+K.1^-3,1+K.1^3+K.1^-3,-2-K.1-K.1^-1,-2-K.1^3-K.1^-3,1+K.1+K.1^-1,-2-K.1^2-K.1^-2,1+K.1+K.1^-1,1+K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,1+K.1^2+K.1^-2,-2-K.1^3-K.1^-3,1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-4,0,0,0,0,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,2+K.1^3+K.1^-3,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,2+K.1^2+K.1^-2,2+K.1^3+K.1^-3,2+K.1+K.1^-1,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,1+K.1^2+K.1^-2,1+K.1^3+K.1^-3,-2*K.1^3-2*K.1^-3,1+K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2-K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,1+K.1^3+K.1^-3,1+K.1+K.1^-1,1+K.1^2+K.1^-2,1+K.1^2+K.1^-2,-2-K.1^3-K.1^-3,-2-K.1^2-K.1^-2,1+K.1^3+K.1^-3,-2-K.1-K.1^-1,1+K.1^3+K.1^-3,1+K.1+K.1^-1,-2*K.1-2*K.1^-1,1+K.1+K.1^-1,-2-K.1^2-K.1^-2,1+K.1+K.1^-1,-2-K.1-K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-4,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,2+K.1^3+K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,2+K.1+K.1^-1,2+K.1^3+K.1^-3,2+K.1^2+K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,1+K.1^3+K.1^-3,-2-K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,-2-K.1^2-K.1^-2,-2*K.1-2*K.1^-1,1+K.1^2+K.1^-2,-2*K.1^2-2*K.1^-2,-2-K.1^3-K.1^-3,1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,1+K.1^3+K.1^-3,1+K.1^2+K.1^-2,1+K.1+K.1^-1,1+K.1+K.1^-1,1+K.1^3+K.1^-3,1+K.1+K.1^-1,-2-K.1-K.1^-1,-2*K.1^3-2*K.1^-3,1+K.1^2+K.1^-2,1+K.1+K.1^-1,-2-K.1-K.1^-1,1+K.1^3+K.1^-3,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-4,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,2+K.1^2+K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,2+K.1^3+K.1^-3,2+K.1^2+K.1^-2,2+K.1+K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2-K.1-K.1^-1,-2*K.1^3-2*K.1^-3,1+K.1+K.1^-1,-2*K.1-2*K.1^-1,-2-K.1^2-K.1^-2,1+K.1+K.1^-1,-2-K.1-K.1^-1,1+K.1^2+K.1^-2,1+K.1+K.1^-1,1+K.1^3+K.1^-3,1+K.1^3+K.1^-3,1+K.1^2+K.1^-2,1+K.1^3+K.1^-3,-2-K.1^3-K.1^-3,-2*K.1^2-2*K.1^-2,1+K.1+K.1^-1,1+K.1^3+K.1^-3,-2-K.1^3-K.1^-3,1+K.1^2+K.1^-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-4,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,2+K.1+K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,2+K.1^2+K.1^-2,2+K.1+K.1^-1,2+K.1^3+K.1^-3,-1-K.1-K.1^-1,-1-K.1^2-K.1^-2,-1-K.1^3-K.1^-3,-1-K.1-K.1^-1,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,1+K.1+K.1^-1,-2-K.1-K.1^-1,-2*K.1-2*K.1^-1,-2-K.1^3-K.1^-3,-2*K.1^2-2*K.1^-2,1+K.1^3+K.1^-3,-2*K.1^3-2*K.1^-3,-2-K.1-K.1^-1,1+K.1^3+K.1^-3,-2-K.1^3-K.1^-3,1+K.1+K.1^-1,1+K.1^3+K.1^-3,1+K.1^2+K.1^-2,1+K.1^2+K.1^-2,1+K.1+K.1^-1,1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,-2*K.1-2*K.1^-1,1+K.1^3+K.1^-3,1+K.1^2+K.1^-2,-2-K.1^2-K.1^-2,1+K.1+K.1^-1,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,4,4,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-2*K.1-2*K.1^-1,-4,-4,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-4,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,4,4,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,4,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-2*K.1^3-2*K.1^-3,-4,-4,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-4,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,4,4,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,4,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-2*K.1^2-2*K.1^-2,-4,-4,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-4,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,4,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,4,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-4,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-4,-4,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,4,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-4,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-4,-4,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,4,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,4,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-4,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-4,-4,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-1+K.1^6-K.1^8,-1+K.1^6-K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,2-K.1^6+K.1^8,-1-K.1^4+K.1^10,2+K.1^4-K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,-1-K.1^4+K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2+K.1^6-K.1^8,-1+K.1^4-K.1^6+K.1^8-K.1^10,1+K.1^4-K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,1-K.1^6+K.1^8,-2-K.1^4+K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,1-K.1^6+K.1^8,0,0,0,0,0,0,0,0,K.1^3-2*K.1^7+K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,0,K.1^3+K.1^5+K.1^9+K.1^11,0,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,0,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,-1*K.1^5-2*K.1^7-K.1^9,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^3+2*K.1^7-K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,0,K.1^5+2*K.1^7+K.1^9,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-1+K.1^6-K.1^8,-1+K.1^6-K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,2-K.1^6+K.1^8,-1-K.1^4+K.1^10,2+K.1^4-K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,-1-K.1^4+K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2+K.1^6-K.1^8,-1+K.1^4-K.1^6+K.1^8-K.1^10,1+K.1^4-K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,1-K.1^6+K.1^8,-2-K.1^4+K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,1-K.1^6+K.1^8,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^7-K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,0,-1*K.1^3-K.1^5-K.1^9-K.1^11,0,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,0,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,K.1^5+2*K.1^7+K.1^9,K.1^3+K.1^5+K.1^9+K.1^11,K.1^3-2*K.1^7+K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,0,-1*K.1^5-2*K.1^7-K.1^9,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-1-K.1^4+K.1^10,-1-K.1^4+K.1^10,-1+K.1^6-K.1^8,2+K.1^4-K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,2-K.1^6+K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,-1+K.1^6-K.1^8,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2-K.1^4+K.1^10,-2+K.1^6-K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,1-K.1^6+K.1^8,1+K.1^4-K.1^10,-1+K.1^4-K.1^6+K.1^8-K.1^10,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,0,0,0,0,0,0,0,0,-1*K.1^5-2*K.1^7-K.1^9,-1*K.1^3-K.1^5-K.1^9-K.1^11,0,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,0,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,0,K.1^3+K.1^5+K.1^9+K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,K.1^5+2*K.1^7+K.1^9,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,K.1^3-2*K.1^7+K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-1*K.1^3+2*K.1^7-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,0,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-1-K.1^4+K.1^10,-1-K.1^4+K.1^10,-1+K.1^6-K.1^8,2+K.1^4-K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,2-K.1^6+K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,-1+K.1^6-K.1^8,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2-K.1^4+K.1^10,-2+K.1^6-K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,1-K.1^6+K.1^8,1+K.1^4-K.1^10,-1+K.1^4-K.1^6+K.1^8-K.1^10,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,0,0,0,0,0,0,0,0,K.1^5+2*K.1^7+K.1^9,K.1^3+K.1^5+K.1^9+K.1^11,0,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,0,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,0,-1*K.1^3-K.1^5-K.1^9-K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-1*K.1^5-2*K.1^7-K.1^9,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,-1*K.1^3+2*K.1^7-K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,K.1^3-2*K.1^7+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,0,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,K.1^4-K.1^6+K.1^8-K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,-1-K.1^4+K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,-1+K.1^6-K.1^8,2-K.1^6+K.1^8,2+K.1^4-K.1^10,-1+K.1^6-K.1^8,-1-K.1^4+K.1^10,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,-1+K.1^4-K.1^6+K.1^8-K.1^10,-2-K.1^4+K.1^10,1-K.1^6+K.1^8,1+K.1^4-K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,-2+K.1^6-K.1^8,1+K.1^4-K.1^10,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,0,0,0,0,0,0,0,0,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,0,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,0,K.1^3+K.1^5+K.1^9+K.1^11,0,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,K.1^3-2*K.1^7+K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-1*K.1^5-2*K.1^7-K.1^9,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,K.1^5+2*K.1^7+K.1^9,-1*K.1^3-K.1^5-K.1^9-K.1^11,0,-1*K.1^3+2*K.1^7-K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,K.1^4-K.1^6+K.1^8-K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,-1-K.1^4+K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,-1+K.1^6-K.1^8,2-K.1^6+K.1^8,2+K.1^4-K.1^10,-1+K.1^6-K.1^8,-1-K.1^4+K.1^10,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,-1+K.1^4-K.1^6+K.1^8-K.1^10,-2-K.1^4+K.1^10,1-K.1^6+K.1^8,1+K.1^4-K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,-2+K.1^6-K.1^8,1+K.1^4-K.1^10,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,0,0,0,0,0,0,0,0,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,0,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,0,-1*K.1^3-K.1^5-K.1^9-K.1^11,0,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-1*K.1^3+2*K.1^7-K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,K.1^5+2*K.1^7+K.1^9,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,-1*K.1^5-2*K.1^7-K.1^9,K.1^3+K.1^5+K.1^9+K.1^11,0,K.1^3-2*K.1^7+K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-1-K.1^4+K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,2+K.1^4-K.1^10,-1+K.1^6-K.1^8,2-K.1^6+K.1^8,-1-K.1^4+K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,-1+K.1^6-K.1^8,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,1-K.1^6+K.1^8,1+K.1^4-K.1^10,1+K.1^4-K.1^10,-2-K.1^4+K.1^10,-2+K.1^6-K.1^8,-1+K.1^4-K.1^6+K.1^8-K.1^10,0,0,0,0,0,0,0,0,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,0,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,0,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,0,-1*K.1^3-K.1^5-K.1^9-K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,-1*K.1^3+2*K.1^7-K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,K.1^5+2*K.1^7+K.1^9,-1*K.1^3-K.1^5-K.1^9-K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,0,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,K.1^3-2*K.1^7+K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^5-2*K.1^7-K.1^9,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-1-K.1^4+K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,2+K.1^4-K.1^10,-1+K.1^6-K.1^8,2-K.1^6+K.1^8,-1-K.1^4+K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,-1+K.1^6-K.1^8,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,1-K.1^6+K.1^8,1+K.1^4-K.1^10,1+K.1^4-K.1^10,-2-K.1^4+K.1^10,-2+K.1^6-K.1^8,-1+K.1^4-K.1^6+K.1^8-K.1^10,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,0,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,0,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,0,K.1^3+K.1^5+K.1^9+K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,K.1^3-2*K.1^7+K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^5-2*K.1^7-K.1^9,K.1^3+K.1^5+K.1^9+K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,0,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,-1*K.1^3+2*K.1^7-K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^5+2*K.1^7+K.1^9,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,K.1^4-K.1^6+K.1^8-K.1^10,2-K.1^6+K.1^8,1-K.1^4+K.1^6-K.1^8+K.1^10,-1-K.1^4+K.1^10,2+K.1^4-K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,-1+K.1^6-K.1^8,-1+K.1^6-K.1^8,-1-K.1^4+K.1^10,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,1+K.1^4-K.1^10,1-K.1^6+K.1^8,1-K.1^6+K.1^8,1+K.1^4-K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,-1+K.1^4-K.1^6+K.1^8-K.1^10,-2-K.1^4+K.1^10,-2+K.1^6-K.1^8,0,0,0,0,0,0,0,0,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,0,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,0,K.1^3-2*K.1^7+K.1^11,0,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^3+2*K.1^7-K.1^11,K.1^5+2*K.1^7+K.1^9,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,0,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^5-2*K.1^7-K.1^9,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,K.1^4-K.1^6+K.1^8-K.1^10,2-K.1^6+K.1^8,1-K.1^4+K.1^6-K.1^8+K.1^10,-1-K.1^4+K.1^10,2+K.1^4-K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,-1+K.1^6-K.1^8,-1+K.1^6-K.1^8,-1-K.1^4+K.1^10,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,1+K.1^4-K.1^10,1-K.1^6+K.1^8,1-K.1^6+K.1^8,1+K.1^4-K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,-1+K.1^4-K.1^6+K.1^8-K.1^10,-2-K.1^4+K.1^10,-2+K.1^6-K.1^8,0,0,0,0,0,0,0,0,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,0,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,0,-1*K.1^3+2*K.1^7-K.1^11,0,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^3-2*K.1^7+K.1^11,-1*K.1^5-2*K.1^7-K.1^9,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,0,K.1^3+K.1^5+K.1^9+K.1^11,K.1^5+2*K.1^7+K.1^9,K.1^3+K.1^5+K.1^9+K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-1+K.1^6-K.1^8,2+K.1^4-K.1^10,2-K.1^6+K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,-1+K.1^6-K.1^8,-1-K.1^4+K.1^10,-1-K.1^4+K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,1+K.1^4-K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,1-K.1^6+K.1^8,1-K.1^6+K.1^8,-2+K.1^6-K.1^8,-1+K.1^4-K.1^6+K.1^8-K.1^10,-2-K.1^4+K.1^10,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^5-K.1^9-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,0,K.1^3+K.1^5+K.1^9+K.1^11,0,K.1^5+2*K.1^7+K.1^9,0,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,-1*K.1^5-2*K.1^7-K.1^9,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,K.1^3-2*K.1^7+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,0,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-1*K.1^3+2*K.1^7-K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-1+K.1^6-K.1^8,2+K.1^4-K.1^10,2-K.1^6+K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,-1+K.1^6-K.1^8,-1-K.1^4+K.1^10,-1-K.1^4+K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,1+K.1^4-K.1^10,-1*K.1^4+K.1^6-K.1^8+K.1^10,1-K.1^6+K.1^8,1-K.1^6+K.1^8,-2+K.1^6-K.1^8,-1+K.1^4-K.1^6+K.1^8-K.1^10,-2-K.1^4+K.1^10,0,0,0,0,0,0,0,0,K.1^3+K.1^5+K.1^9+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,0,-1*K.1^3-K.1^5-K.1^9-K.1^11,0,-1*K.1^5-2*K.1^7-K.1^9,0,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,K.1^5+2*K.1^7+K.1^9,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,-1*K.1^3+2*K.1^7-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,0,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,K.1^3-2*K.1^7+K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2-K.1^6+K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,-1-K.1^4+K.1^10,-1-K.1^4+K.1^10,-1+K.1^6-K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,-1+K.1^6-K.1^8,2+K.1^4-K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,1+K.1^4-K.1^10,1-K.1^6+K.1^8,-2-K.1^4+K.1^10,-1+K.1^4-K.1^6+K.1^8-K.1^10,-2+K.1^6-K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,0,0,0,0,0,0,0,0,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^5+2*K.1^7+K.1^9,0,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,0,-1*K.1^3-K.1^5-K.1^9-K.1^11,0,-1*K.1^5-2*K.1^7-K.1^9,K.1^3+K.1^5+K.1^9+K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-1*K.1^3+2*K.1^7-K.1^11,0,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,K.1^3-2*K.1^7+K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,2-K.1^6+K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,-1-K.1^4+K.1^10,-1-K.1^4+K.1^10,-1+K.1^6-K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,-1+K.1^6-K.1^8,2+K.1^4-K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,-2*K.1^4-2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,1+K.1^4-K.1^10,1-K.1^6+K.1^8,-2-K.1^4+K.1^10,-1+K.1^4-K.1^6+K.1^8-K.1^10,-2+K.1^6-K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,0,0,0,0,0,0,0,0,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^5-2*K.1^7-K.1^9,0,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,0,K.1^3+K.1^5+K.1^9+K.1^11,0,K.1^5+2*K.1^7+K.1^9,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,K.1^3-2*K.1^7+K.1^11,0,K.1^3+K.1^5+K.1^9+K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-1*K.1^3+2*K.1^7-K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2+K.1^4-K.1^10,-1+K.1^6-K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,-1-K.1^4+K.1^10,-1+K.1^6-K.1^8,-1-K.1^4+K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,2-K.1^6+K.1^8,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,-1+K.1^4-K.1^6+K.1^8-K.1^10,-2+K.1^6-K.1^8,-2-K.1^4+K.1^10,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,1-K.1^6+K.1^8,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,0,-1*K.1^3+2*K.1^7-K.1^11,0,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,0,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,K.1^3-2*K.1^7+K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,-1*K.1^5-2*K.1^7-K.1^9,0,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^5+2*K.1^7+K.1^9,K.1^3+K.1^5+K.1^9+K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,2*K.1^4+2*K.1^-4,2*K.1^4+2*K.1^-4,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2+K.1^4-K.1^10,-1+K.1^6-K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,-1-K.1^4+K.1^10,-1+K.1^6-K.1^8,-1-K.1^4+K.1^10,1-K.1^4+K.1^6-K.1^8+K.1^10,2-K.1^6+K.1^8,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,-1+K.1^4-K.1^6+K.1^8-K.1^10,-2+K.1^6-K.1^8,-2-K.1^4+K.1^10,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,1-K.1^6+K.1^8,0,0,0,0,0,0,0,0,K.1^3+K.1^5+K.1^9+K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,0,K.1^3-2*K.1^7+K.1^11,0,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,0,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-1*K.1^3+2*K.1^7-K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,K.1^5+2*K.1^7+K.1^9,0,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^5-2*K.1^7-K.1^9,-1*K.1^3-K.1^5-K.1^9-K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,1-K.1^4+K.1^6-K.1^8+K.1^10,-1-K.1^4+K.1^10,-1+K.1^6-K.1^8,-1+K.1^6-K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,-1-K.1^4+K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,2-K.1^6+K.1^8,2+K.1^4-K.1^10,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,-2+K.1^6-K.1^8,-2-K.1^4+K.1^10,-1+K.1^4-K.1^6+K.1^8-K.1^10,1+K.1^4-K.1^10,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,0,0,0,0,0,0,0,0,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-1*K.1^3+2*K.1^7-K.1^11,0,-1*K.1^5-2*K.1^7-K.1^9,0,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,0,K.1^3-2*K.1^7+K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^5+2*K.1^7+K.1^9,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,0,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(28: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^6-2*K.1^-6,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1^6-2*K.1^-6,2*K.1^4+2*K.1^-4,1-K.1^4+K.1^6-K.1^8+K.1^10,-1-K.1^4+K.1^10,-1+K.1^6-K.1^8,-1+K.1^6-K.1^8,K.1^4-K.1^6+K.1^8-K.1^10,-1-K.1^4+K.1^10,K.1^4-K.1^6+K.1^8-K.1^10,2-K.1^6+K.1^8,2+K.1^4-K.1^10,2*K.1^6+2*K.1^-6,2*K.1^6+2*K.1^-6,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,-2*K.1^4-2*K.1^-4,2*K.1^2+2*K.1^-2,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,-2+K.1^6-K.1^8,-2-K.1^4+K.1^10,-1+K.1^4-K.1^6+K.1^8-K.1^10,1+K.1^4-K.1^10,1-K.1^6+K.1^8,-1*K.1^4+K.1^6-K.1^8+K.1^10,1+K.1^4-K.1^10,0,0,0,0,0,0,0,0,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,K.1^3-2*K.1^7+K.1^11,0,K.1^5+2*K.1^7+K.1^9,0,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,0,-1*K.1^3+2*K.1^7-K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^5-2*K.1^7-K.1^9,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,2*K.1^3-K.1^5+K.1^7-K.1^9+2*K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^3-K.1^5-K.1^9-K.1^11,-1*K.1^3+2*K.1^5-K.1^7+2*K.1^9-K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,-1*K.1^3+K.1^5-3*K.1^7+K.1^9-K.1^11,0,-2*K.1^3+K.1^5-K.1^7+K.1^9-2*K.1^11,K.1^3+K.1^5+K.1^9+K.1^11,K.1^3-K.1^5+3*K.1^7-K.1^9+K.1^11,K.1^3-2*K.1^5+K.1^7-2*K.1^9+K.1^11,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_784_120:= KnownIrreducibles(CR);