/* Group 7680.ft downloaded from the LMFDB on 12 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([11, -2, -2, -2, -5, -2, -3, -2, 2, 2, 2, 2, 22, 47918, 607, 90, 1059, 32398, 7956, 15976, 6912, 158, 26427, 4658, 2360, 754, 21149, 2163, 1646, 11910, 3616, 657, 19853, 5674, 225092, 9492, 10592]); a,b,c,d,e,f,g,h := Explode([GPC.1, GPC.3, GPC.5, GPC.7, GPC.8, GPC.9, GPC.10, GPC.11]); AssignNames(~GPC, ["a", "a2", "b", "b2", "c", "c2", "d", "e", "f", "g", "h"]); GPerm := PermutationGroup< 17 | (10,11)(12,13)(14,15)(16,17), (1,2)(3,7)(4,5)(6,8)(10,11)(12,13), (1,3,2,7)(4,6,5,8)(10,11)(12,13)(14,16)(15,17), (1,4)(2,5)(3,7)(6,8)(10,11)(12,13), (10,11)(12,13)(14,16)(15,17), (9,10,12,13,11), (1,5)(2,4)(3,6)(7,8)(10,11)(12,13), (1,6,5,3)(2,7,4,8)(10,11)(12,13)(14,16)(15,17), (10,13,11,12), (1,5)(2,4)(3,8)(6,7)(10,11)(12,13) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_7680_ft := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, G!(14,16)(15,17)>,< 2, 1, G!(14,17)(15,16)>,< 2, 1, G!(14,15)(16,17)>,< 2, 3, G!(1,2)(3,6)(4,5)(7,8)>,< 2, 3, G!(1,4)(2,5)(3,8)(6,7)>,< 2, 3, G!(1,5)(2,4)(3,7)(6,8)>,< 2, 3, G!(1,2)(3,6)(4,5)(7,8)(14,15)(16,17)>,< 2, 3, G!(1,2)(3,6)(4,5)(7,8)(14,16)(15,17)>,< 2, 3, G!(1,2)(3,6)(4,5)(7,8)(14,17)(15,16)>,< 2, 3, G!(1,2)(3,7)(4,5)(6,8)(14,15)(16,17)>,< 2, 3, G!(1,2)(3,7)(4,5)(6,8)(14,16)(15,17)>,< 2, 3, G!(1,2)(3,7)(4,5)(6,8)(14,17)(15,16)>,< 2, 3, G!(1,2)(3,8)(4,5)(6,7)(14,15)(16,17)>,< 2, 3, G!(1,2)(3,8)(4,5)(6,7)(14,16)(15,17)>,< 2, 3, G!(1,2)(3,8)(4,5)(6,7)(14,17)(15,16)>,< 2, 5, G!(10,11)(12,13)>,< 2, 5, G!(9,13)(10,12)(14,15)(16,17)>,< 2, 5, G!(9,12)(11,13)(14,17)(15,16)>,< 2, 5, G!(9,10)(11,12)(14,16)(15,17)>,< 2, 6, G!(3,6)(7,8)>,< 2, 6, G!(3,6)(7,8)(14,15)(16,17)>,< 2, 6, G!(3,6)(7,8)(14,16)(15,17)>,< 2, 6, G!(3,6)(7,8)(14,17)(15,16)>,< 2, 12, G!(1,3)(2,6)(4,8)(5,7)>,< 2, 12, G!(1,3)(2,6)(4,8)(5,7)(14,15)(16,17)>,< 2, 12, G!(1,3)(2,6)(4,8)(5,7)(14,16)(15,17)>,< 2, 12, G!(1,3)(2,6)(4,8)(5,7)(14,17)(15,16)>,< 2, 15, G!(1,2)(3,6)(4,5)(7,8)(10,11)(12,13)(14,15)(16,17)>,< 2, 15, G!(1,2)(3,6)(4,5)(7,8)(10,11)(12,13)(14,16)(15,17)>,< 2, 15, G!(1,2)(3,6)(4,5)(7,8)(10,11)(12,13)(14,17)(15,16)>,< 2, 15, G!(1,2)(3,7)(4,5)(6,8)(10,11)(12,13)(14,15)(16,17)>,< 2, 15, G!(1,2)(3,7)(4,5)(6,8)(10,11)(12,13)(14,16)(15,17)>,< 2, 15, G!(1,2)(3,7)(4,5)(6,8)(10,11)(12,13)(14,17)(15,16)>,< 2, 15, G!(1,2)(3,8)(4,5)(6,7)(10,11)(12,13)(14,15)(16,17)>,< 2, 15, G!(1,2)(3,8)(4,5)(6,7)(10,11)(12,13)(14,16)(15,17)>,< 2, 15, G!(1,2)(3,8)(4,5)(6,7)(10,11)(12,13)(14,17)(15,16)>,< 2, 15, G!(1,2)(3,6)(4,5)(7,8)(10,11)(12,13)>,< 2, 15, G!(1,4)(2,5)(3,8)(6,7)(10,11)(12,13)>,< 2, 15, G!(1,5)(2,4)(3,7)(6,8)(10,11)(12,13)>,< 2, 30, G!(3,6)(7,8)(10,11)(12,13)>,< 2, 30, G!(3,6)(7,8)(10,11)(12,13)(14,15)(16,17)>,< 2, 30, G!(3,6)(7,8)(10,11)(12,13)(14,16)(15,17)>,< 2, 30, G!(3,6)(7,8)(10,11)(12,13)(14,17)(15,16)>,< 2, 60, G!(1,3)(2,6)(4,8)(5,7)(10,11)(12,13)>,< 2, 60, G!(1,3)(2,6)(4,8)(5,7)(10,11)(12,13)(14,15)(16,17)>,< 2, 60, G!(1,3)(2,6)(4,8)(5,7)(10,11)(12,13)(14,16)(15,17)>,< 2, 60, G!(1,3)(2,6)(4,8)(5,7)(10,11)(12,13)(14,17)(15,16)>,< 3, 32, G!(2,4,5)(3,6,8)>,< 4, 5, G!(9,12,13,10)(14,17)(15,16)>,< 4, 5, G!(9,10,13,12)(14,17)(15,16)>,< 4, 5, G!(10,13,11,12)(14,16)(15,17)>,< 4, 5, G!(10,12,11,13)(14,16)(15,17)>,< 4, 5, G!(9,13,11,10)>,< 4, 5, G!(9,10,11,13)>,< 4, 5, G!(9,10,11,13)(14,15)(16,17)>,< 4, 5, G!(9,13,11,10)(14,15)(16,17)>,< 4, 12, G!(1,3,2,6)(4,8,5,7)>,< 4, 12, G!(1,3,2,6)(4,8,5,7)(14,15)(16,17)>,< 4, 12, G!(1,3,2,6)(4,8,5,7)(14,16)(15,17)>,< 4, 12, G!(1,3,2,6)(4,8,5,7)(14,17)(15,16)>,< 4, 12, G!(1,3,4,8)(2,6,5,7)>,< 4, 12, G!(1,3,4,8)(2,6,5,7)(14,15)(16,17)>,< 4, 12, G!(1,3,4,8)(2,6,5,7)(14,16)(15,17)>,< 4, 12, G!(1,3,4,8)(2,6,5,7)(14,17)(15,16)>,< 4, 12, G!(1,3,5,7)(2,6,4,8)>,< 4, 12, G!(1,3,5,7)(2,6,4,8)(14,15)(16,17)>,< 4, 12, G!(1,3,5,7)(2,6,4,8)(14,16)(15,17)>,< 4, 12, G!(1,3,5,7)(2,6,4,8)(14,17)(15,16)>,< 4, 15, G!(1,2)(3,6)(4,5)(7,8)(10,12,11,13)>,< 4, 15, G!(1,2)(3,6)(4,5)(7,8)(10,13,11,12)>,< 4, 15, G!(1,2)(3,6)(4,5)(7,8)(10,12,11,13)(14,15)(16,17)>,< 4, 15, G!(1,2)(3,6)(4,5)(7,8)(10,13,11,12)(14,15)(16,17)>,< 4, 15, G!(1,2)(3,6)(4,5)(7,8)(10,12,11,13)(14,16)(15,17)>,< 4, 15, G!(1,2)(3,6)(4,5)(7,8)(10,13,11,12)(14,16)(15,17)>,< 4, 15, G!(1,2)(3,6)(4,5)(7,8)(10,12,11,13)(14,17)(15,16)>,< 4, 15, G!(1,2)(3,6)(4,5)(7,8)(10,13,11,12)(14,17)(15,16)>,< 4, 15, G!(1,2)(3,7)(4,5)(6,8)(10,12,11,13)>,< 4, 15, G!(1,2)(3,7)(4,5)(6,8)(10,13,11,12)>,< 4, 15, G!(1,2)(3,7)(4,5)(6,8)(10,12,11,13)(14,15)(16,17)>,< 4, 15, G!(1,2)(3,7)(4,5)(6,8)(10,13,11,12)(14,15)(16,17)>,< 4, 15, G!(1,2)(3,7)(4,5)(6,8)(10,12,11,13)(14,16)(15,17)>,< 4, 15, G!(1,2)(3,7)(4,5)(6,8)(10,13,11,12)(14,16)(15,17)>,< 4, 15, G!(1,2)(3,7)(4,5)(6,8)(10,12,11,13)(14,17)(15,16)>,< 4, 15, G!(1,2)(3,7)(4,5)(6,8)(10,13,11,12)(14,17)(15,16)>,< 4, 15, G!(1,2)(3,8)(4,5)(6,7)(10,12,11,13)>,< 4, 15, G!(1,2)(3,8)(4,5)(6,7)(10,13,11,12)>,< 4, 15, G!(1,2)(3,8)(4,5)(6,7)(10,12,11,13)(14,15)(16,17)>,< 4, 15, G!(1,2)(3,8)(4,5)(6,7)(10,13,11,12)(14,15)(16,17)>,< 4, 15, G!(1,2)(3,8)(4,5)(6,7)(10,12,11,13)(14,16)(15,17)>,< 4, 15, G!(1,2)(3,8)(4,5)(6,7)(10,13,11,12)(14,16)(15,17)>,< 4, 15, G!(1,2)(3,8)(4,5)(6,7)(10,12,11,13)(14,17)(15,16)>,< 4, 15, G!(1,2)(3,8)(4,5)(6,7)(10,13,11,12)(14,17)(15,16)>,< 4, 30, G!(3,6)(7,8)(10,12,11,13)>,< 4, 30, G!(3,6)(7,8)(10,13,11,12)>,< 4, 30, G!(3,6)(7,8)(10,12,11,13)(14,15)(16,17)>,< 4, 30, G!(3,6)(7,8)(10,13,11,12)(14,15)(16,17)>,< 4, 30, G!(3,6)(7,8)(10,12,11,13)(14,16)(15,17)>,< 4, 30, G!(3,6)(7,8)(10,13,11,12)(14,16)(15,17)>,< 4, 30, G!(3,6)(7,8)(10,12,11,13)(14,17)(15,16)>,< 4, 30, G!(3,6)(7,8)(10,13,11,12)(14,17)(15,16)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,11)(12,13)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,11)(12,13)(14,15)(16,17)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,11)(12,13)(14,16)(15,17)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,11)(12,13)(14,17)(15,16)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,11)(12,13)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,11)(12,13)(14,15)(16,17)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,11)(12,13)(14,16)(15,17)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,11)(12,13)(14,17)(15,16)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,11)(12,13)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,11)(12,13)(14,15)(16,17)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,11)(12,13)(14,16)(15,17)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,11)(12,13)(14,17)(15,16)>,< 4, 60, G!(1,3)(2,6)(4,8)(5,7)(10,12,11,13)>,< 4, 60, G!(1,3)(2,6)(4,8)(5,7)(10,13,11,12)>,< 4, 60, G!(1,3)(2,6)(4,8)(5,7)(10,12,11,13)(14,15)(16,17)>,< 4, 60, G!(1,3)(2,6)(4,8)(5,7)(10,13,11,12)(14,15)(16,17)>,< 4, 60, G!(1,3)(2,6)(4,8)(5,7)(10,12,11,13)(14,16)(15,17)>,< 4, 60, G!(1,3)(2,6)(4,8)(5,7)(10,13,11,12)(14,16)(15,17)>,< 4, 60, G!(1,3)(2,6)(4,8)(5,7)(10,12,11,13)(14,17)(15,16)>,< 4, 60, G!(1,3)(2,6)(4,8)(5,7)(10,13,11,12)(14,17)(15,16)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,12,11,13)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,13,11,12)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,12,11,13)(14,15)(16,17)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,13,11,12)(14,15)(16,17)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,12,11,13)(14,16)(15,17)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,13,11,12)(14,16)(15,17)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,12,11,13)(14,17)(15,16)>,< 4, 60, G!(1,3,2,6)(4,8,5,7)(10,13,11,12)(14,17)(15,16)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,12,11,13)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,13,11,12)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,12,11,13)(14,15)(16,17)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,13,11,12)(14,15)(16,17)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,12,11,13)(14,16)(15,17)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,13,11,12)(14,16)(15,17)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,12,11,13)(14,17)(15,16)>,< 4, 60, G!(1,3,4,8)(2,6,5,7)(10,13,11,12)(14,17)(15,16)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,12,11,13)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,13,11,12)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,12,11,13)(14,15)(16,17)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,13,11,12)(14,15)(16,17)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,12,11,13)(14,16)(15,17)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,13,11,12)(14,16)(15,17)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,12,11,13)(14,17)(15,16)>,< 4, 60, G!(1,3,5,7)(2,6,4,8)(10,13,11,12)(14,17)(15,16)>,< 5, 4, G!(9,12,11,10,13)>,< 6, 32, G!(2,5,4)(3,8,6)(14,16)(15,17)>,< 6, 32, G!(1,2,4)(3,8,6)(14,17)(15,16)>,< 6, 32, G!(2,5,4)(3,7,8)(14,15)(16,17)>,< 6, 160, G!(1,2,5)(3,7,6)(9,13)(10,12)(14,15)(16,17)>,< 6, 160, G!(2,5,4)(3,6,7)(9,13)(10,12)>,< 6, 160, G!(1,2,5)(3,6,8)(9,12)(11,13)(14,17)(15,16)>,< 6, 160, G!(1,4,5)(3,7,8)(9,10)(11,12)(14,16)(15,17)>,< 10, 4, G!(9,11,13,12,10)(14,16)(15,17)>,< 10, 4, G!(9,12,11,10,13)(14,17)(15,16)>,< 10, 4, G!(9,13,10,11,12)(14,15)(16,17)>,< 10, 12, G!(1,2)(3,6)(4,5)(7,8)(9,10,12,13,11)(14,15)(16,17)>,< 10, 12, G!(1,2)(3,6)(4,5)(7,8)(9,10,12,13,11)(14,16)(15,17)>,< 10, 12, G!(1,2)(3,6)(4,5)(7,8)(9,10,12,13,11)(14,17)(15,16)>,< 10, 12, G!(1,2)(3,7)(4,5)(6,8)(9,10,12,13,11)(14,15)(16,17)>,< 10, 12, G!(1,2)(3,7)(4,5)(6,8)(9,10,12,13,11)(14,16)(15,17)>,< 10, 12, G!(1,2)(3,7)(4,5)(6,8)(9,10,12,13,11)(14,17)(15,16)>,< 10, 12, G!(1,2)(3,8)(4,5)(6,7)(9,10,12,13,11)(14,15)(16,17)>,< 10, 12, G!(1,2)(3,8)(4,5)(6,7)(9,10,12,13,11)(14,16)(15,17)>,< 10, 12, G!(1,2)(3,8)(4,5)(6,7)(9,10,12,13,11)(14,17)(15,16)>,< 10, 12, G!(1,2)(3,6)(4,5)(7,8)(9,12,11,10,13)>,< 10, 12, G!(1,4)(2,5)(3,8)(6,7)(9,12,11,10,13)>,< 10, 12, G!(1,5)(2,4)(3,7)(6,8)(9,12,11,10,13)>,< 10, 24, G!(3,6)(7,8)(9,10,12,13,11)>,< 10, 24, G!(3,6)(7,8)(9,10,12,13,11)(14,15)(16,17)>,< 10, 24, G!(3,6)(7,8)(9,10,12,13,11)(14,16)(15,17)>,< 10, 24, G!(3,6)(7,8)(9,10,12,13,11)(14,17)(15,16)>,< 10, 48, G!(1,3)(2,6)(4,8)(5,7)(9,10,12,13,11)>,< 10, 48, G!(1,3)(2,6)(4,8)(5,7)(9,10,12,13,11)(14,15)(16,17)>,< 10, 48, G!(1,3)(2,6)(4,8)(5,7)(9,10,12,13,11)(14,16)(15,17)>,< 10, 48, G!(1,3)(2,6)(4,8)(5,7)(9,10,12,13,11)(14,17)(15,16)>,< 12, 160, G!(2,4,5)(3,7,6)(9,10,13,12)(14,17)(15,16)>,< 12, 160, G!(2,5,4)(3,6,7)(9,12,13,10)(14,17)(15,16)>,< 12, 160, G!(1,5,4)(6,7,8)(10,12,11,13)(14,16)(15,17)>,< 12, 160, G!(1,4,5)(6,8,7)(10,13,11,12)(14,16)(15,17)>,< 12, 160, G!(1,4,2)(3,8,7)(9,10,11,13)>,< 12, 160, G!(1,2,4)(3,7,8)(9,13,11,10)>,< 12, 160, G!(1,2,5)(3,8,7)(9,13,11,10)(14,15)(16,17)>,< 12, 160, G!(1,5,2)(3,7,8)(9,10,11,13)(14,15)(16,17)>,< 15, 128, G!(2,5,4)(3,8,6)(9,10,12,13,11)>,< 20, 48, G!(1,3,2,6)(4,8,5,7)(9,10,12,13,11)>,< 20, 48, G!(1,3,2,6)(4,8,5,7)(9,10,12,13,11)(14,15)(16,17)>,< 20, 48, G!(1,3,2,6)(4,8,5,7)(9,10,12,13,11)(14,16)(15,17)>,< 20, 48, G!(1,3,2,6)(4,8,5,7)(9,10,12,13,11)(14,17)(15,16)>,< 20, 48, G!(1,3,4,8)(2,6,5,7)(9,10,12,13,11)>,< 20, 48, G!(1,3,4,8)(2,6,5,7)(9,10,12,13,11)(14,15)(16,17)>,< 20, 48, G!(1,3,4,8)(2,6,5,7)(9,10,12,13,11)(14,16)(15,17)>,< 20, 48, G!(1,3,4,8)(2,6,5,7)(9,10,12,13,11)(14,17)(15,16)>,< 20, 48, G!(1,3,5,7)(2,6,4,8)(9,10,12,13,11)>,< 20, 48, G!(1,3,5,7)(2,6,4,8)(9,10,12,13,11)(14,15)(16,17)>,< 20, 48, G!(1,3,5,7)(2,6,4,8)(9,10,12,13,11)(14,16)(15,17)>,< 20, 48, G!(1,3,5,7)(2,6,4,8)(9,10,12,13,11)(14,17)(15,16)>,< 30, 128, G!(2,4,5)(3,6,8)(9,13,10,11,12)(14,16)(15,17)>,< 30, 128, G!(1,4,2)(3,6,8)(9,11,13,12,10)(14,17)(15,16)>,< 30, 128, G!(2,4,5)(3,8,7)(9,10,12,13,11)(14,15)(16,17)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,-1,-1*K.1,K.1,K.1,-1,-1,-1*K.1,K.1,K.1,1,-1*K.1,K.1,K.1,1,-1*K.1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,1,1,-1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,1,-1,1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,K.1,-1*K.1,K.1,-1,K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1,K.1,K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,-1,-1,K.1,-1*K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,1,K.1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,1,1,-1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,1,-1,1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,1,-1,-1,1,1,1,1,-1,-1,1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,K.1,-1*K.1,K.1,1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,1,K.1,K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,1,1,K.1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,-1,K.1,-1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,1,-1,-1,1,1,1,1,-1,-1,1,-1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,1,-1*K.1,K.1,K.1,1,1,-1*K.1,K.1,K.1,-1,-1*K.1,K.1,K.1,-1,-1*K.1,-1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1*K.1,K.1,K.1,-1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,1,-1*K.1,K.1,K.1,-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,1,-1*K.1,K.1,K.1,1,-1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,K.1,1,K.1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,1,1,-1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,-1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,1,K.1,K.1,1,K.1,-1*K.1,-1*K.1,1,-1,K.1,K.1,-1*K.1,-1,K.1,K.1,-1*K.1,1,-1*K.1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,1,1,-1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,1,-1,-1,1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,K.1,K.1,-1,K.1,-1*K.1,-1*K.1,-1,1,K.1,K.1,-1*K.1,1,K.1,K.1,-1*K.1,-1,-1*K.1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,1,-1,1,-1,-1,1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,1,-1*K.1,K.1,K.1,1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1,-1*K.1,K.1,K.1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,-1,-1*K.1,K.1,K.1,-1,1,-1*K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,K.1,-1,K.1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,-1,-1,1,1,1,-1,1,-1,1,-1,-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,-1,-1,1,1,-1,1,1,1,-1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,K.1,-1,1,K.1,K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,1,K.1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,1,1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1,-1,1,1,-1,1,1,1,-1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1,K.1,K.1,K.1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1,K.1,K.1,-1*K.1,-1,1,-1*K.1,-1*K.1,K.1,-1,K.1,-1*K.1,K.1,1,-1*K.1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,1,1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,1,1,-1,-1,1,-1,-1,-1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1*K.1,1,K.1,-1*K.1,1,K.1,K.1,K.1,1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,1,K.1,K.1,-1*K.1,1,-1,-1*K.1,-1*K.1,K.1,1,K.1,-1*K.1,K.1,-1,-1*K.1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,1,1,-1,-1,1,-1,-1,-1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,K.1,1,-1*K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,1,-1*K.1,-1*K.1,K.1,1,-1,K.1,K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,-1,K.1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,1,K.1,K.1,K.1,1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,1,1,K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,1,K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,1,-1*K.1,K.1,1,K.1,K.1,-1*K.1,1,1,-1*K.1,K.1,K.1,1,K.1,K.1,K.1,1,K.1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1,K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1,-1*K.1,K.1,-1,K.1,K.1,-1*K.1,-1,-1,-1*K.1,K.1,K.1,-1,K.1,K.1,K.1,-1,K.1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1,K.1,K.1,K.1,-1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,-1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,-1,-1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, 2, 2, -2, -2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, -1, -2, -2, 2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, 2, 2, -2, -2, -2, 2, -2, 2, -2, -2, 2, 2, -2, 2, 2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, -1, 1, 1, -1, -1, -2, -2, 2, 2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 1, 1, -1, -1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, -2, 2, 2, -2, -2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, -1, 2, 2, -2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, -2, 2, -2, 2, 2, -2, -2, 2, -2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, -1, 1, 1, -1, -1, -2, -2, 2, 2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, -1, -1, 1, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, 2, 2, 2, -2, -2, -2, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 2, -2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, -2, 2, 0, 0, 0, 0, -1, -2, -2, -2, 2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, 2, 2, -2, 2, -2, -2, 2, 2, -2, -2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, -1, 1, -1, 1, 1, -1, -2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, -1, 1, -1, -1, -1, 1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 2, -2, 2, 2, 2, -2, -2, -2, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 2, -2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, -2, 2, 0, 0, 0, 0, -1, 2, 2, 2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, -2, 2, -2, 2, 2, -2, -2, 2, 2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, -1, 1, -1, 1, 1, -1, -2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 1, -1, 1, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, -2, 2, -2, -2, 2, -2, 2, 2, 2, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 2, -2, -2, 2, -2, 2, 2, -2, -2, -2, 2, 2, 2, -2, 2, -2, 0, 0, 0, 0, -1, -2, -2, 2, -2, 2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -1, 1, 1, 1, -1, 1, -1, 2, -2, -2, -2, -2, 2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, -1, 1, 1, 1, -1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, -2, 2, -2, -2, 2, -2, 2, 2, 2, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 2, -2, -2, 2, -2, 2, 2, -2, -2, -2, 2, 2, 2, -2, 2, -2, 0, 0, 0, 0, -1, 2, 2, -2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -1, 1, 1, 1, -1, 1, -1, 2, -2, -2, -2, -2, 2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 1, -1, -1, -1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -1, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,-2,-2,-2,2,-2,2,-2,2,2,2,2,-2,-2,2,2,-2,-2,0,0,0,0,-2,-2,-2,-2,2,-2,2,-2,2,2,2,2,-2,-2,2,2,0,0,0,0,-1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,-1,-1,-1,1,1,-2,-2,2,2,-2,2,-2,-2,-2,2,2,-2,-2,2,2,2,2,-2,-2,0,0,0,0,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,-2,2,-2,2,2,-2,-2,-2,2,-2,2,-2,2,2,2,2,-2,-2,2,2,-2,-2,0,0,0,0,-2,-2,-2,-2,2,-2,2,-2,2,2,2,2,-2,-2,2,2,0,0,0,0,-1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,-1,-1,-1,1,1,-2,-2,2,2,-2,2,-2,-2,-2,2,2,-2,-2,2,2,2,2,-2,-2,0,0,0,0,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,2,-2,2,2,2,-2,-2,-2,2,-2,-2,2,2,-2,2,-2,-2,2,2,-2,0,0,0,0,-2,2,2,-2,-2,-2,2,2,-2,-2,2,2,-2,2,2,-2,0,0,0,0,-1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,-1,1,1,-1,-1,1,-2,2,-2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,-2,2,-2,2,-2,2,2,2,-2,-2,-2,2,-2,-2,2,2,-2,2,-2,-2,2,2,-2,0,0,0,0,-2,2,2,-2,-2,-2,2,2,-2,-2,2,2,-2,2,2,-2,0,0,0,0,-1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,-1,1,1,-1,-1,1,-2,2,-2,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-2,2,0,0,0,0,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,-2,-2,2,-2,2,2,2,-2,2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,-2,2,2,-2,2,-2,-2,2,2,2,-2,-2,-2,2,-2,2,0,0,0,0,-1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,1,1,-1,1,-1,1,2,-2,-2,-2,-2,2,2,-2,2,2,-2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,-2,-2,-2,-2,2,-2,-2,2,-2,2,2,2,-2,2,-2,2,2,-2,-2,2,-2,2,0,0,0,0,-2,2,2,-2,2,-2,-2,2,2,2,-2,-2,-2,2,-2,2,0,0,0,0,-1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,1,1,-1,1,-1,1,2,-2,-2,-2,-2,2,2,-2,2,2,-2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,-1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,-1,-1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,-1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,-1,-1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, 3, -1, -1, 3, -1, -1, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, 1, 1, 1, 1, 3, -1, 3, -1, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 0, 3, 3, 3, 3, 3, 3, 3, 3, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 3, 3, 3, -1, -1, 3, -1, -1, 3, -1, 3, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, -1, 3, 3, -1, -1, 3, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, 3, -1, -1, 3, -1, 3, 3, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, 1, 1, 1, 1, -1, 3, -1, -1, 3, 3, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, 1, 1, 1, 1, 0, 3, 3, 3, 3, 3, 3, 3, 3, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 3, -1, 3, -1, -1, -1, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 3, -1, -1, -1, 3, 3, -1, -1, 3, -1, -1, -1, -1, 1, 1, 1, 1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 3, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, 3, -1, 3, 3, -1, -1, -1, 3, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, 3, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, 3, -1, -1, 3, -1, -1, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, 3, -1, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 3, 3, 3, -1, -1, 3, -1, -1, 3, -1, 3, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, -1, 3, 3, -1, -1, 3, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, 3, -1, -1, 3, -1, 3, 3, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, 3, 3, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 3, -1, 3, -1, -1, -1, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, -1, 3, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, 0, 3, 3, 3, 3, 3, 3, 3, 3, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 3, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, 3, -1, 3, 3, -1, -1, -1, 3, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, 3, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, -3, 3, 3, 1, 1, -3, -1, 1, -1, 1, -1, -1, -3, -3, 3, 3, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 3, 1, -1, 1, 3, -3, 1, 1, -3, -1, -1, 1, 1, 1, 1, -1, -1, 0, -3, -3, 3, 3, -3, 3, 3, -3, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 3, -1, 1, 1, -1, -1, 3, -1, 1, 1, -1, 3, 1, -3, -3, -1, 1, -1, -3, -3, -1, 3, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, 3, 1, -1, -3, -3, 1, 3, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, -3, 3, 3, 1, 1, -3, -1, 1, -1, 1, -1, -1, -3, -3, 3, 3, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 3, 1, -1, 1, 3, -3, 1, 1, -3, -1, -1, 1, 1, 1, 1, -1, -1, 0, 3, 3, -3, -3, 3, -3, -3, 3, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -3, 1, -1, -1, 1, 1, -3, 1, -1, -1, 1, -3, -1, 3, 3, 1, -1, 1, 3, 3, 1, -3, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, 3, 1, -1, -3, -3, 1, 3, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, -3, 3, 3, 1, 1, -3, -1, 1, -1, 1, -1, -1, -3, -3, 3, 3, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 3, 1, -1, 1, 3, -3, 1, 1, -3, -1, -1, 1, 1, -1, -1, 1, 1, 0, -3, -3, 3, 3, -3, 3, 3, -3, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 3, -1, 1, 1, -1, -1, 3, -1, 1, 1, -1, 3, 1, -3, -3, -1, 1, -1, -3, -3, -1, 3, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, 3, 1, -1, -3, -3, 1, 3, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, -3, 3, 3, 1, 1, -3, -1, 1, -1, 1, -1, -1, -3, -3, 3, 3, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 3, 1, -1, 1, 3, -3, 1, 1, -3, -1, -1, 1, 1, -1, -1, 1, 1, 0, 3, 3, -3, -3, 3, -3, -3, 3, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -3, 1, -1, -1, 1, 1, -3, 1, -1, -1, 1, -3, -1, 3, 3, 1, -1, 1, 3, 3, 1, -3, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, 3, 1, -1, -3, -3, 1, 3, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, 1, -1, -1, -3, 1, 1, 3, 1, 3, -3, -1, -1, -3, -3, 3, 3, -1, -1, 1, 1, -1, 1, -1, 1, -1, 3, -1, -1, -3, 3, 1, -1, 1, 1, -3, 1, -1, -1, 1, 1, 1, 1, -1, -1, 0, -3, -3, 3, 3, -3, 3, 3, -3, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -3, -1, 3, 1, 1, -1, 3, -1, -1, -3, -3, -1, -1, 1, 1, 1, 3, 1, -1, 1, 1, 3, -1, -3, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, -1, 1, -1, 1, 1, 1, -1, 3, -3, -3, 3, -1, -1, -1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, 1, -1, -1, -3, 1, 1, 3, 1, 3, -3, -1, -1, -3, -3, 3, 3, -1, -1, 1, 1, -1, 1, -1, 1, -1, 3, -1, -1, -3, 3, 1, -1, 1, 1, -3, 1, -1, -1, 1, 1, 1, 1, -1, -1, 0, 3, 3, -3, -3, 3, -3, -3, 3, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 3, 1, -3, -1, -1, 1, -3, 1, 1, 3, 3, 1, 1, -1, -1, -1, -3, -1, 1, -1, -1, -3, 1, 3, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, -1, 1, -1, 1, 1, 1, -1, 3, -3, -3, 3, -1, -1, -1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, 1, -1, -1, -3, 1, 1, 3, 1, 3, -3, -1, -1, -3, -3, 3, 3, -1, -1, 1, 1, 1, -1, 1, -1, -1, 3, -1, -1, -3, 3, 1, -1, 1, 1, -3, 1, -1, -1, 1, 1, -1, -1, 1, 1, 0, -3, -3, 3, 3, -3, 3, 3, -3, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -3, -1, 3, 1, 1, -1, 3, -1, -1, -3, -3, -1, -1, 1, 1, 1, 3, 1, -1, 1, 1, 3, -1, -3, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, -1, 1, -1, 1, 1, 1, -1, 3, -3, -3, 3, -1, -1, -1, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, 1, -1, -1, -3, 1, 1, 3, 1, 3, -3, -1, -1, -3, -3, 3, 3, -1, -1, 1, 1, 1, -1, 1, -1, -1, 3, -1, -1, -3, 3, 1, -1, 1, 1, -3, 1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 3, 3, -3, -3, 3, -3, -3, 3, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 3, 1, -3, -1, -1, 1, -3, 1, 1, 3, 3, 1, 1, -1, -1, -1, -3, -1, 1, -1, -1, -3, 1, 3, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, -1, 1, -1, 1, 1, 1, -1, 3, -3, -3, 3, -1, -1, -1, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, 1, -1, -1, 1, -3, 1, -1, -3, -1, 1, 3, 3, -3, -3, 3, 3, -1, -1, 1, 1, -1, 1, -1, 1, 3, -1, 3, -1, 1, -1, -3, -1, 1, -3, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 0, -3, -3, 3, 3, -3, 3, 3, -3, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -3, -3, 3, -1, -1, 3, 1, 1, 3, -1, -3, 1, 1, -1, -3, 3, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, -1, -3, 3, 1, 1, -3, -1, -1, 1, 1, -1, 3, -1, -1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, 1, -1, -1, 1, -3, 1, -1, -3, -1, 1, 3, 3, -3, -3, 3, 3, -1, -1, 1, 1, -1, 1, -1, 1, 3, -1, 3, -1, 1, -1, -3, -1, 1, -3, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 0, 3, 3, -3, -3, 3, -3, -3, 3, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 3, 3, -3, 1, 1, -3, -1, -1, -3, 1, 3, -1, -1, 1, 3, -3, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, -1, -3, 3, 1, 1, -3, -1, -1, 1, 1, -1, 3, -1, -1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, 1, -1, -1, 1, -3, 1, -1, -3, -1, 1, 3, 3, -3, -3, 3, 3, -1, -1, 1, 1, 1, -1, 1, -1, 3, -1, 3, -1, 1, -1, -3, -1, 1, -3, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 0, -3, -3, 3, 3, -3, 3, 3, -3, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -3, -3, 3, -1, -1, 3, 1, 1, 3, -1, -3, 1, 1, -1, -3, 3, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, -1, -3, 3, 1, 1, -3, -1, -1, 1, 1, -1, 3, -1, -1, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, -3, 3, 1, -1, -1, 1, -3, 1, -1, -3, -1, 1, 3, 3, -3, -3, 3, 3, -1, -1, 1, 1, 1, -1, 1, -1, 3, -1, 3, -1, 1, -1, -3, -1, 1, -3, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 3, 3, -3, -3, 3, -3, -3, 3, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 3, 3, -3, 1, 1, -3, -1, -1, -3, 1, 3, -1, -1, 1, 3, -3, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, -3, 3, -1, -3, 3, 1, 1, -3, -1, -1, 1, 1, -1, 3, -1, -1, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, -1, 3, 1, 1, -3, -1, 1, -3, 3, -3, 3, -3, 3, 1, -1, -1, 1, -1, -1, 1, 1, 3, 1, -3, -1, -1, -1, -3, 1, -1, 3, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 0, -3, -3, -3, 3, 3, 3, -3, 3, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -3, 3, 3, 1, -1, -3, 1, -1, 3, 1, -3, 1, -1, 1, 3, -3, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, 1, 3, 3, 1, -1, -3, -1, 1, -1, 1, -1, -3, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, -1, 3, 1, 1, -3, -1, 1, -3, 3, -3, 3, -3, 3, 1, -1, -1, 1, -1, -1, 1, 1, 3, 1, -3, -1, -1, -1, -3, 1, -1, 3, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 0, 3, 3, 3, -3, -3, -3, 3, -3, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 3, -3, -3, -1, 1, 3, -1, 1, -3, -1, 3, -1, 1, -1, -3, 3, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, 1, 3, 3, 1, -1, -3, -1, 1, -1, 1, -1, -3, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, -1, 3, 1, 1, -3, -1, 1, -3, 3, -3, 3, -3, 3, 1, -1, -1, 1, 1, 1, -1, -1, 3, 1, -3, -1, -1, -1, -3, 1, -1, 3, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 0, -3, -3, -3, 3, 3, 3, -3, 3, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -3, 3, 3, 1, -1, -3, 1, -1, 3, 1, -3, 1, -1, 1, 3, -3, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, 1, 3, 3, 1, -1, -3, -1, 1, -1, 1, -1, -3, -1, 1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, -1, 3, 1, 1, -3, -1, 1, -3, 3, -3, 3, -3, 3, 1, -1, -1, 1, 1, 1, -1, -1, 3, 1, -3, -1, -1, -1, -3, 1, -1, 3, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 0, 3, 3, 3, -3, -3, -3, 3, -3, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 3, -3, -3, -1, 1, 3, -1, 1, -3, -1, 3, -1, 1, -1, -3, 3, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, 1, 3, 3, 1, -1, -3, -1, 1, -1, 1, -1, -3, -1, 1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, 3, -1, 1, -3, 1, 3, -3, 1, -1, -3, 3, -3, 3, 1, -1, -1, 1, -1, -1, 1, 1, -1, -3, 1, -1, 3, 3, 1, 1, -1, -1, -3, 1, -1, 1, 1, -1, 1, -1, -1, 1, 0, -3, -3, -3, 3, 3, 3, -3, 3, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 3, -1, 3, 1, -1, -1, -3, -1, 1, -3, 3, -1, 1, 1, 1, -1, -3, -1, 1, 1, -1, 3, 1, -3, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, 1, -1, -1, 1, -1, 1, -1, -3, 3, -3, 3, 1, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, 3, -1, 1, -3, 1, 3, -3, 1, -1, -3, 3, -3, 3, 1, -1, -1, 1, -1, -1, 1, 1, -1, -3, 1, -1, 3, 3, 1, 1, -1, -1, -3, 1, -1, 1, 1, -1, 1, -1, -1, 1, 0, 3, 3, 3, -3, -3, -3, 3, -3, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -3, 1, -3, -1, 1, 1, 3, 1, -1, 3, -3, 1, -1, -1, -1, 1, 3, 1, -1, -1, 1, -3, -1, 3, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, 1, -1, -1, 1, -1, 1, -1, -3, 3, -3, 3, 1, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, 3, -1, 1, -3, 1, 3, -3, 1, -1, -3, 3, -3, 3, 1, -1, -1, 1, 1, 1, -1, -1, -1, -3, 1, -1, 3, 3, 1, 1, -1, -1, -3, 1, -1, 1, 1, -1, -1, 1, 1, -1, 0, -3, -3, -3, 3, 3, 3, -3, 3, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 3, -1, 3, 1, -1, -1, -3, -1, 1, -3, 3, -1, 1, 1, 1, -1, -3, -1, 1, 1, -1, 3, 1, -3, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, 1, -1, -1, 1, -1, 1, -1, -3, 3, -3, 3, 1, -1, 1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, -1, 1, -1, 3, -1, 1, -3, 1, 3, -3, 1, -1, -3, 3, -3, 3, 1, -1, -1, 1, 1, 1, -1, -1, -1, -3, 1, -1, 3, 3, 1, 1, -1, -1, -3, 1, -1, 1, 1, -1, -1, 1, 1, -1, 0, 3, 3, 3, -3, -3, -3, 3, -3, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -3, 1, -3, -1, 1, 1, 3, 1, -1, 3, -3, 1, -1, -1, -1, 1, 3, 1, -1, -1, 1, -3, -1, 3, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, 1, -1, -1, 1, -1, 1, -1, -3, 3, -3, 3, 1, -1, 1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, 3, -3, 3, -1, -1, -3, 1, 1, -1, 1, 1, -1, -3, 3, -3, 3, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 3, -1, -1, 1, -3, 3, -1, 1, -3, -1, 1, 1, -1, 1, -1, -1, 1, 0, -3, -3, -3, 3, 3, 3, -3, 3, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 3, -1, 1, -1, -1, 1, 3, 1, 1, -1, -1, -3, 1, -3, 3, 1, -1, 1, -3, 3, -1, -3, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, -3, -1, -1, -3, 3, 1, 3, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, 3, -3, 3, -1, -1, -3, 1, 1, -1, 1, 1, -1, -3, 3, -3, 3, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 3, -1, -1, 1, -3, 3, -1, 1, -3, -1, 1, 1, -1, 1, -1, -1, 1, 0, 3, 3, 3, -3, -3, -3, 3, -3, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -3, 1, -1, 1, 1, -1, -3, -1, -1, 1, 1, 3, -1, 3, -3, -1, 1, -1, 3, -3, 1, 3, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, -3, -1, -1, -3, 3, 1, 3, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, 3, -3, 3, -1, -1, -3, 1, 1, -1, 1, 1, -1, -3, 3, -3, 3, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 3, -1, -1, 1, -3, 3, -1, 1, -3, -1, 1, 1, -1, -1, 1, 1, -1, 0, -3, -3, -3, 3, 3, 3, -3, 3, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 3, -1, 1, -1, -1, 1, 3, 1, 1, -1, -1, -3, 1, -3, 3, 1, -1, 1, -3, 3, -1, -3, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, -3, -1, -1, -3, 3, 1, 3, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, -3, 3, -3, 3, -3, 3, -1, -1, -3, 1, 1, -1, 1, 1, -1, -3, 3, -3, 3, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 3, -1, -1, 1, -3, 3, -1, 1, -3, -1, 1, 1, -1, -1, 1, 1, -1, 0, 3, 3, 3, -3, -3, -3, 3, -3, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -3, 1, -1, 1, 1, -1, -3, -1, -1, 1, 1, 3, -1, 3, -3, -1, 1, -1, 3, -3, 1, 3, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, -3, 3, -3, -3, -1, -1, -3, 3, 1, 3, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -3, -3, 3, 1, 1, 3, 1, -1, -1, -1, 1, -1, 3, -3, -3, 3, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 3, 1, -1, -1, -3, -3, 1, -1, 3, -1, 1, -1, 1, -1, 1, -1, 1, 0, -3, -3, 3, -3, 3, -3, 3, 3, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -3, 1, 1, -1, 1, -1, -3, -1, 1, -1, 1, 3, 1, -3, 3, -1, -1, -1, -3, 3, 1, 3, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, -3, 1, -1, 3, -3, -1, 3, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -3, -3, 3, 1, 1, 3, 1, -1, -1, -1, 1, -1, 3, -3, -3, 3, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 3, 1, -1, -1, -3, -3, 1, -1, 3, -1, 1, -1, 1, -1, 1, -1, 1, 0, 3, 3, -3, 3, -3, 3, -3, -3, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 3, -1, -1, 1, -1, 1, 3, 1, -1, 1, -1, -3, -1, 3, -3, 1, 1, 1, 3, -3, -1, -3, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, -3, 1, -1, 3, -3, -1, 3, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -3, -3, 3, 1, 1, 3, 1, -1, -1, -1, 1, -1, 3, -3, -3, 3, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 3, 1, -1, -1, -3, -3, 1, -1, 3, -1, 1, -1, 1, 1, -1, 1, -1, 0, -3, -3, 3, -3, 3, -3, 3, 3, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -3, 1, 1, -1, 1, -1, -3, -1, 1, -1, 1, 3, 1, -3, 3, -1, -1, -1, -3, 3, 1, 3, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, -3, 1, -1, 3, -3, -1, 3, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -3, -3, 3, 1, 1, 3, 1, -1, -1, -1, 1, -1, 3, -3, -3, 3, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 3, 1, -1, -1, -3, -3, 1, -1, 3, -1, 1, -1, 1, 1, -1, 1, -1, 0, 3, 3, -3, 3, -3, 3, -3, -3, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 3, -1, -1, 1, -1, 1, 3, 1, -1, 1, -1, -3, -1, 3, -3, 1, 1, 1, 3, -3, -1, -3, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, -3, 1, -1, 3, -3, -1, 3, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 1, 1, -1, -3, 1, -1, -3, -1, 3, 3, 1, -1, 3, -3, -3, 3, 1, -1, 1, -1, -1, 1, 1, -1, -1, -3, 1, -1, -3, 3, -1, 1, 1, 1, 3, -1, -1, 1, -1, 1, -1, 1, -1, 1, 0, -3, -3, 3, -3, 3, -3, 3, 3, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 3, 1, -3, 1, -1, 1, 3, 1, -1, -3, 3, 1, -1, 1, 1, -1, 3, -1, -1, 1, -1, -3, -1, -3, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, 1, 1, -1, -1, 1, -1, -1, -3, -3, 3, 3, 1, -1, 1, -1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 1, 1, -1, -3, 1, -1, -3, -1, 3, 3, 1, -1, 3, -3, -3, 3, 1, -1, 1, -1, -1, 1, 1, -1, -1, -3, 1, -1, -3, 3, -1, 1, 1, 1, 3, -1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 3, 3, -3, 3, -3, 3, -3, -3, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -3, -1, 3, -1, 1, -1, -3, -1, 1, 3, -3, -1, 1, -1, -1, 1, -3, 1, 1, -1, 1, 3, 1, 3, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, 1, 1, -1, -1, 1, -1, -1, -3, -3, 3, 3, 1, -1, 1, -1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 1, 1, -1, -3, 1, -1, -3, -1, 3, 3, 1, -1, 3, -3, -3, 3, 1, -1, 1, -1, 1, -1, -1, 1, -1, -3, 1, -1, -3, 3, -1, 1, 1, 1, 3, -1, -1, 1, -1, 1, 1, -1, 1, -1, 0, -3, -3, 3, -3, 3, -3, 3, 3, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 3, 1, -3, 1, -1, 1, 3, 1, -1, -3, 3, 1, -1, 1, 1, -1, 3, -1, -1, 1, -1, -3, -1, -3, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, 1, 1, -1, -1, 1, -1, -1, -3, -3, 3, 3, 1, -1, 1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 1, 1, -1, -3, 1, -1, -3, -1, 3, 3, 1, -1, 3, -3, -3, 3, 1, -1, 1, -1, 1, -1, -1, 1, -1, -3, 1, -1, -3, 3, -1, 1, 1, 1, 3, -1, -1, 1, -1, 1, 1, -1, 1, -1, 0, 3, 3, -3, 3, -3, 3, -3, -3, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -3, -1, 3, -1, 1, -1, -3, -1, 1, 3, -3, -1, 1, -1, -1, 1, -3, 1, 1, -1, 1, 3, 1, 3, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, 1, 1, -1, -1, 1, -1, -1, -3, -3, 3, 3, 1, -1, 1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 1, 1, -1, 1, -3, -1, 1, 3, -1, -1, -3, 3, 3, -3, -3, 3, 1, -1, 1, -1, -1, 1, 1, -1, 3, 1, -3, -1, 1, -1, 3, 1, 1, -3, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 0, -3, -3, 3, -3, 3, -3, 3, 3, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -3, 3, -3, -1, 1, 3, 1, -1, -3, -1, -3, 1, -1, -1, 3, 3, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, 1, -3, 3, -1, 1, 3, -1, 1, 1, -1, -1, -3, -1, 1, -1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 1, 1, -1, 1, -3, -1, 1, 3, -1, -1, -3, 3, 3, -3, -3, 3, 1, -1, 1, -1, -1, 1, 1, -1, 3, 1, -3, -1, 1, -1, 3, 1, 1, -3, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 3, 3, -3, 3, -3, 3, -3, -3, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 3, -3, 3, 1, -1, -3, -1, 1, 3, 1, 3, -1, 1, 1, -3, -3, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, 1, -3, 3, -1, 1, 3, -1, 1, 1, -1, -1, -3, -1, 1, -1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 1, 1, -1, 1, -3, -1, 1, 3, -1, -1, -3, 3, 3, -3, -3, 3, 1, -1, 1, -1, 1, -1, -1, 1, 3, 1, -3, -1, 1, -1, 3, 1, 1, -3, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 0, -3, -3, 3, -3, 3, -3, 3, 3, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -3, 3, -3, -1, 1, 3, 1, -1, -3, -1, -3, 1, -1, -1, 3, 3, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, 1, -3, 3, -1, 1, 3, -1, 1, 1, -1, -1, -3, -1, 1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 1, 1, -1, 1, -3, -1, 1, 3, -1, -1, -3, 3, 3, -3, -3, 3, 1, -1, 1, -1, 1, -1, -1, 1, 3, 1, -3, -1, 1, -1, 3, 1, 1, -3, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 0, 3, 3, -3, 3, -3, 3, -3, -3, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 3, -3, 3, 1, -1, -3, -1, 1, 3, 1, 3, -1, 1, 1, -3, -3, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, -3, -3, 1, -3, 3, -1, 1, 3, -1, 1, 1, -1, -1, -3, -1, 1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, 3, -1, -1, 3, -1, -1, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, 3, -1, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -3, -3, -3, -3, -3, -3, -3, -3, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -3, -3, -3, 1, 1, -3, 1, 1, -3, 1, -3, 1, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, -1, 3, 3, -1, -1, 3, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, -1, 3, -1, -1, 3, -1, -1, 3, 3, 3, 3, 3, 3, -1, -1, -1, -1, 1, 1, 1, 1, 3, -1, 3, -1, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 0, -3, -3, -3, -3, -3, -3, -3, -3, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -3, -3, -3, 1, 1, -3, 1, 1, -3, 1, -3, 1, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, -1, 3, 3, -1, -1, 3, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, 3, -1, -1, 3, -1, 3, 3, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, 3, 3, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -3, -3, -3, -3, -3, -3, -3, -3, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -3, 1, -3, 1, 1, 1, -3, 1, 1, -3, -3, 1, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, -3, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -1, -1, -1, 3, -1, -1, 3, -1, 3, 3, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, 1, 1, 1, 1, -1, 3, -1, -1, 3, 3, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, 1, 1, 1, 1, 0, -3, -3, -3, -3, -3, -3, -3, -3, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -3, 1, -3, 1, 1, 1, -3, 1, 1, -3, -3, 1, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, -1, 3, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, 0, -3, -3, -3, -3, -3, -3, -3, -3, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -3, 1, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, -3, -3, 1, 1, 1, -3, -3, 1, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, 3, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, -1, -1, 3, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 3, -1, -1, -1, 3, 3, -1, -1, 3, -1, -1, -1, -1, 1, 1, 1, 1, 0, -3, -3, -3, -3, -3, -3, -3, -3, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -3, 1, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, -3, -3, 1, 1, 1, -3, -3, 1, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -1, -1, 3, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,-3,3,3,1,1,-3,-1,1,-1,1,-1,-1,3,3,-3,-3,-1,-1,1,1,-1,1,-1,1,1,1,1,-3,-1,1,-1,-3,3,-1,-1,3,1,1,-1,-1,-1,-1,1,1,0,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,K.1,3*K.1,K.1,K.1,-1*K.1,K.1,K.1,-3*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,3*K.1,-1*K.1,-3*K.1,3*K.1,-1*K.1,K.1,K.1,3*K.1,-3*K.1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,-1*K.1,1,-1*K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1,-1*K.1,K.1,K.1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,1,K.1,-1*K.1,K.1,1,-1,-1*K.1,K.1,K.1,-1,K.1,K.1,-1*K.1,1,K.1,-1,3,0,0,0,0,0,0,0,-3,-3,3,3,1,-1,-3,-3,1,3,-1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,-1,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,-3,3,3,1,1,-3,-1,1,-1,1,-1,-1,3,3,-3,-3,-1,-1,1,1,-1,1,-1,1,1,1,1,-3,-1,1,-1,-3,3,-1,-1,3,1,1,-1,-1,-1,-1,1,1,0,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,1,1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,3*K.1,K.1,-1*K.1,K.1,K.1,-3*K.1,K.1,3*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,-3*K.1,3*K.1,K.1,3*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,K.1,1,K.1,-1*K.1,-1*K.1,-1,K.1,K.1,-1,K.1,-1*K.1,-1*K.1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1,-1*K.1,K.1,1,-1*K.1,K.1,-1*K.1,1,-1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,1,-1*K.1,-1,3,0,0,0,0,0,0,0,-3,-3,3,3,1,-1,-3,-3,1,3,-1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,1,-1,1,-1,1,-1,-1,1,-1,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,-3,3,3,1,1,-3,-1,1,-1,1,-1,-1,3,3,-3,-3,-1,-1,1,1,1,-1,1,-1,1,1,1,-3,-1,1,-1,-3,3,-1,-1,3,1,1,-1,-1,1,1,-1,-1,0,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,-1,-1,1,1,-1,1,-1,1,1,-1,-1,1,K.1,3*K.1,K.1,K.1,-1*K.1,K.1,K.1,-3*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,3*K.1,-1*K.1,-3*K.1,3*K.1,-1*K.1,K.1,K.1,3*K.1,-3*K.1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,K.1,-1,K.1,-1*K.1,-1*K.1,1,K.1,K.1,1,K.1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,1,-1*K.1,K.1,-1,-1*K.1,K.1,-1*K.1,-1,1,K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,1,3,0,0,0,0,0,0,0,-3,-3,3,3,1,-1,-3,-3,1,3,-1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-1,1,1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,-3,3,3,1,1,-3,-1,1,-1,1,-1,-1,3,3,-3,-3,-1,-1,1,1,1,-1,1,-1,1,1,1,-3,-1,1,-1,-3,3,-1,-1,3,1,1,-1,-1,1,1,-1,-1,0,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,-1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,3*K.1,K.1,-1*K.1,K.1,K.1,-3*K.1,K.1,3*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,-3*K.1,3*K.1,K.1,3*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,-1*K.1,-1,-1*K.1,K.1,K.1,1,-1*K.1,-1*K.1,1,-1*K.1,K.1,K.1,-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,K.1,-1*K.1,-1,K.1,-1*K.1,K.1,-1,1,-1*K.1,K.1,K.1,1,K.1,K.1,-1*K.1,-1,K.1,1,3,0,0,0,0,0,0,0,-3,-3,3,3,1,-1,-3,-3,1,3,-1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,1,-1,1,1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,1,-1,-1,-3,1,1,3,1,3,-3,-1,-1,3,3,-3,-3,-1,-1,1,1,-1,1,-1,1,1,-3,1,1,3,-3,-1,1,-1,-1,3,-1,1,1,-1,-1,-1,-1,1,1,0,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,-3*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,K.1,-3*K.1,K.1,-1*K.1,-3*K.1,3*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,3*K.1,K.1,K.1,-1*K.1,K.1,3*K.1,K.1,3*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,K.1,-1*K.1,-1*K.1,1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1,K.1,K.1,K.1,-1*K.1,K.1,K.1,-1,-1*K.1,-1*K.1,1,-1*K.1,K.1,K.1,-1,1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,-1,K.1,1,3,0,0,0,0,0,0,0,-3,-3,3,-1,1,-1,1,1,1,-1,3,-3,-3,3,-1,-1,-1,1,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,1,-1,-1,-3,1,1,3,1,3,-3,-1,-1,3,3,-3,-3,-1,-1,1,1,-1,1,-1,1,1,-3,1,1,3,-3,-1,1,-1,-1,3,-1,1,1,-1,-1,-1,-1,1,1,0,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,3*K.1,K.1,3*K.1,-1*K.1,K.1,-1*K.1,3*K.1,-1*K.1,K.1,3*K.1,-3*K.1,K.1,K.1,K.1,-1*K.1,K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-3*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,-1*K.1,K.1,K.1,1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,1,K.1,K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,K.1,K.1,1,K.1,-1*K.1,-1*K.1,-1,1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,K.1,-1,-1*K.1,1,3,0,0,0,0,0,0,0,-3,-3,3,-1,1,-1,1,1,1,-1,3,-3,-3,3,-1,-1,-1,1,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,1,-1,-1,-3,1,1,3,1,3,-3,-1,-1,3,3,-3,-3,-1,-1,1,1,1,-1,1,-1,1,-3,1,1,3,-3,-1,1,-1,-1,3,-1,1,1,-1,-1,1,1,-1,-1,0,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-3*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,K.1,-3*K.1,K.1,-1*K.1,-3*K.1,3*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,3*K.1,K.1,K.1,-1*K.1,K.1,3*K.1,K.1,3*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,-1*K.1,K.1,K.1,-1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1,K.1,K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,K.1,K.1,-1,K.1,-1*K.1,-1*K.1,1,-1,K.1,-1*K.1,K.1,1,-1*K.1,K.1,K.1,1,-1*K.1,-1,3,0,0,0,0,0,0,0,-3,-3,3,-1,1,-1,1,1,1,-1,3,-3,-3,3,-1,-1,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,-1,1,1,-1,-1,-1,1,1,-1,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,1,-1,-1,-3,1,1,3,1,3,-3,-1,-1,3,3,-3,-3,-1,-1,1,1,1,-1,1,-1,1,-3,1,1,3,-3,-1,1,-1,-1,3,-1,1,1,-1,-1,1,1,-1,-1,0,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,3*K.1,K.1,3*K.1,-1*K.1,K.1,-1*K.1,3*K.1,-1*K.1,K.1,3*K.1,-3*K.1,K.1,K.1,K.1,-1*K.1,K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-3*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,K.1,-1*K.1,-1*K.1,-1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,1,K.1,K.1,K.1,-1*K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1,-1*K.1,K.1,K.1,1,-1,-1*K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,1,K.1,-1,3,0,0,0,0,0,0,0,-3,-3,3,-1,1,-1,1,1,1,-1,3,-3,-3,3,-1,-1,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,-1,1,1,-1,-1,-1,1,1,-1,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,1,-1,-1,1,-3,1,-1,-3,-1,1,3,3,3,3,-3,-3,-1,-1,1,1,-1,1,-1,1,-3,1,-3,1,-1,1,3,1,-1,3,-1,-1,1,1,-1,-1,-1,-1,1,1,0,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,1,K.1,-1*K.1,K.1,-3*K.1,3*K.1,-3*K.1,K.1,K.1,3*K.1,K.1,-1*K.1,3*K.1,-1*K.1,3*K.1,K.1,-1*K.1,-1*K.1,-3*K.1,-3*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,1,-1*K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,1,-1*K.1,K.1,-1,K.1,-1*K.1,K.1,1,1,-1*K.1,K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,-1,3,0,0,0,0,0,0,0,-3,-3,3,-1,-3,3,1,1,-3,-1,-1,1,1,-1,3,-1,-1,1,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,1,-1,-1,1,-3,1,-1,-3,-1,1,3,3,3,3,-3,-3,-1,-1,1,1,-1,1,-1,1,-3,1,-3,1,-1,1,3,1,-1,3,-1,-1,1,1,-1,-1,-1,-1,1,1,0,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,1,-1*K.1,K.1,-1*K.1,3*K.1,-3*K.1,3*K.1,-1*K.1,-1*K.1,-3*K.1,-1*K.1,K.1,-3*K.1,K.1,-3*K.1,-1*K.1,K.1,K.1,3*K.1,3*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,1,K.1,-1*K.1,-1*K.1,-1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,1,K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,1,1,K.1,-1*K.1,K.1,1,K.1,K.1,-1*K.1,-1,K.1,-1,3,0,0,0,0,0,0,0,-3,-3,3,-1,-3,3,1,1,-3,-1,-1,1,1,-1,3,-1,-1,1,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,-1,1,-1,-1,-1,-1,1,-1,1,1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,1,-1,-1,1,-3,1,-1,-3,-1,1,3,3,3,3,-3,-3,-1,-1,1,1,1,-1,1,-1,-3,1,-3,1,-1,1,3,1,-1,3,-1,-1,1,1,-1,-1,1,1,-1,-1,0,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,K.1,-1*K.1,K.1,-3*K.1,3*K.1,-3*K.1,K.1,K.1,3*K.1,K.1,-1*K.1,3*K.1,-1*K.1,3*K.1,K.1,-1*K.1,-1*K.1,-3*K.1,-3*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,-1,K.1,-1*K.1,-1*K.1,1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,-1,-1,K.1,-1*K.1,K.1,-1,K.1,K.1,-1*K.1,1,K.1,1,3,0,0,0,0,0,0,0,-3,-3,3,-1,-3,3,1,1,-3,-1,-1,1,1,-1,3,-1,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,-3,3,1,-1,-1,1,-3,1,-1,-3,-1,1,3,3,3,3,-3,-3,-1,-1,1,1,1,-1,1,-1,-3,1,-3,1,-1,1,3,1,-1,3,-1,-1,1,1,-1,-1,1,1,-1,-1,0,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1*K.1,K.1,-1*K.1,3*K.1,-3*K.1,3*K.1,-1*K.1,-1*K.1,-3*K.1,-1*K.1,K.1,-3*K.1,K.1,-3*K.1,-1*K.1,K.1,K.1,3*K.1,3*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1,-1*K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1,-1*K.1,K.1,1,K.1,-1*K.1,K.1,-1,-1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,1,-1*K.1,1,3,0,0,0,0,0,0,0,-3,-3,3,-1,-3,3,1,1,-3,-1,-1,1,1,-1,3,-1,-1,1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0,1,-1,1,1,1,1,-1,1,-1,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,-1,1,-1,-1,3,1,1,-3,-1,1,-3,3,3,-3,3,-3,1,-1,-1,1,-1,-1,1,1,-3,-1,3,1,1,1,3,-1,1,-3,-1,-1,1,-1,-1,1,-1,1,1,-1,0,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,-1*K.1,-1*K.1,K.1,-3*K.1,-3*K.1,-3*K.1,-1*K.1,K.1,-3*K.1,K.1,K.1,3*K.1,K.1,3*K.1,K.1,K.1,K.1,3*K.1,3*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1,K.1,-1*K.1,-1*K.1,1,K.1,K.1,-1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,1,K.1,-1*K.1,K.1,-1,1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1,K.1,K.1,-1,K.1,-1,3,0,0,0,0,0,0,0,-3,3,-3,1,3,3,1,-1,-3,-1,1,-1,1,-1,-3,-1,1,1,-1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,-1,1,-1,-1,3,1,1,-3,-1,1,-3,3,3,-3,3,-3,1,-1,-1,1,-1,-1,1,1,-3,-1,3,1,1,1,3,-1,1,-3,-1,-1,1,-1,-1,1,-1,1,1,-1,0,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,K.1,K.1,-1*K.1,3*K.1,3*K.1,3*K.1,K.1,-1*K.1,3*K.1,-1*K.1,-1*K.1,-3*K.1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,-1*K.1,-3*K.1,-3*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,1,K.1,K.1,-1*K.1,-1,-1*K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,1,-1*K.1,K.1,-1*K.1,-1,1,K.1,K.1,K.1,-1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1,3,0,0,0,0,0,0,0,-3,3,-3,1,3,3,1,-1,-3,-1,1,-1,1,-1,-3,-1,1,1,-1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,-1,1,-1,-1,3,1,1,-3,-1,1,-3,3,3,-3,3,-3,1,-1,-1,1,1,1,-1,-1,-3,-1,3,1,1,1,3,-1,1,-3,-1,-1,1,-1,-1,1,1,-1,-1,1,0,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,-1*K.1,-1*K.1,K.1,-3*K.1,-3*K.1,-3*K.1,-1*K.1,K.1,-3*K.1,K.1,K.1,3*K.1,K.1,3*K.1,K.1,K.1,K.1,3*K.1,3*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1,K.1,K.1,-1*K.1,1,-1*K.1,K.1,K.1,-1,-1*K.1,-1*K.1,1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1,-1*K.1,K.1,-1*K.1,1,-1,K.1,K.1,K.1,1,K.1,-1*K.1,-1*K.1,1,-1*K.1,1,3,0,0,0,0,0,0,0,-3,3,-3,1,3,3,1,-1,-3,-1,1,-1,1,-1,-3,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,-1,1,-1,-1,3,1,1,-3,-1,1,-3,3,3,-3,3,-3,1,-1,-1,1,1,1,-1,-1,-3,-1,3,1,1,1,3,-1,1,-3,-1,-1,1,-1,-1,1,1,-1,-1,1,0,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,K.1,K.1,-1*K.1,3*K.1,3*K.1,3*K.1,K.1,-1*K.1,3*K.1,-1*K.1,-1*K.1,-3*K.1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,-1*K.1,-3*K.1,-3*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,1,K.1,-1*K.1,-1*K.1,-1,K.1,K.1,1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1,K.1,-1*K.1,K.1,1,-1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,K.1,K.1,1,K.1,1,3,0,0,0,0,0,0,0,-3,3,-3,1,3,3,1,-1,-3,-1,1,-1,1,-1,-3,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,-1,1,-1,3,-1,1,-3,1,3,-3,1,-1,3,-3,3,-3,1,-1,-1,1,-1,-1,1,1,1,3,-1,1,-3,-3,-1,-1,1,1,3,-1,1,-1,-1,1,-1,1,1,-1,0,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,3*K.1,-1*K.1,-3*K.1,K.1,K.1,K.1,3*K.1,K.1,K.1,-3*K.1,-3*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-3*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,3*K.1,-1*K.1,3*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,K.1,1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1,-1*K.1,K.1,K.1,1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1,K.1,K.1,-1,-1*K.1,K.1,K.1,1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,-1*K.1,-1,-1*K.1,1,3,0,0,0,0,0,0,0,-3,3,-3,1,-1,-1,1,-1,1,-1,-3,3,-3,3,1,-1,1,1,-1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,1,1,1,-1,1,-1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,-1,1,-1,3,-1,1,-3,1,3,-3,1,-1,3,-3,3,-3,1,-1,-1,1,-1,-1,1,1,1,3,-1,1,-3,-3,-1,-1,1,1,3,-1,1,-1,-1,1,-1,1,1,-1,0,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-3*K.1,K.1,3*K.1,-1*K.1,-1*K.1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,3*K.1,3*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,3*K.1,K.1,K.1,K.1,K.1,-3*K.1,K.1,-3*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1,-1*K.1,K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,1,1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,K.1,-1,K.1,1,3,0,0,0,0,0,0,0,-3,3,-3,1,-1,-1,1,-1,1,-1,-3,3,-3,3,1,-1,1,1,-1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,1,1,1,-1,1,-1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,-1,1,-1,3,-1,1,-3,1,3,-3,1,-1,3,-3,3,-3,1,-1,-1,1,1,1,-1,-1,1,3,-1,1,-3,-3,-1,-1,1,1,3,-1,1,-1,-1,1,1,-1,-1,1,0,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,1,3*K.1,-1*K.1,-3*K.1,K.1,K.1,K.1,3*K.1,K.1,K.1,-3*K.1,-3*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-3*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,3*K.1,-1*K.1,3*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,1,K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,-1,-1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,K.1,1,K.1,-1,3,0,0,0,0,0,0,0,-3,3,-3,1,-1,-1,1,-1,1,-1,-3,3,-3,3,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,-1,1,-1,3,-1,1,-3,1,3,-3,1,-1,3,-3,3,-3,1,-1,-1,1,1,1,-1,-1,1,3,-1,1,-3,-3,-1,-1,1,1,3,-1,1,-1,-1,1,1,-1,-1,1,0,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,1,-3*K.1,K.1,3*K.1,-1*K.1,-1*K.1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,3*K.1,3*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,3*K.1,K.1,K.1,K.1,K.1,-3*K.1,K.1,-3*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,K.1,-1*K.1,K.1,-1,K.1,-1*K.1,K.1,1,-1*K.1,K.1,1,-1*K.1,K.1,K.1,-1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,1,K.1,K.1,1,-1*K.1,K.1,K.1,-1,-1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,-1*K.1,1,-1*K.1,-1,3,0,0,0,0,0,0,0,-3,3,-3,1,-1,-1,1,-1,1,-1,-3,3,-3,3,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,1,1,-1,1,-1,-1,-1,1,-1,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,3,-3,3,-1,-1,-3,1,1,-1,1,1,-1,3,-3,3,-3,1,-1,-1,1,-1,-1,1,1,1,-1,-1,-3,1,1,-1,3,-3,1,-1,3,1,-1,-1,1,-1,1,1,-1,0,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,-1,1,-1,1,-1,-1,-1,1,1,1,1,-1,-1*K.1,3*K.1,K.1,K.1,K.1,K.1,-1*K.1,-3*K.1,K.1,K.1,K.1,-1*K.1,-3*K.1,-1*K.1,-3*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,3*K.1,3*K.1,-1*K.1,3*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1,K.1,-1*K.1,K.1,-1,-1,-1*K.1,-1*K.1,K.1,1,K.1,-1*K.1,-1*K.1,1,-1*K.1,-1,3,0,0,0,0,0,0,0,-3,3,-3,-3,-1,-1,-3,3,1,3,1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,3,-3,3,-1,-1,-3,1,1,-1,1,1,-1,3,-3,3,-3,1,-1,-1,1,-1,-1,1,1,1,-1,-1,-3,1,1,-1,3,-3,1,-1,3,1,-1,-1,1,-1,1,1,-1,0,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,-1,1,-1,1,-1,-1,-1,1,1,1,1,-1,K.1,-3*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,3*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,3*K.1,K.1,3*K.1,3*K.1,-1*K.1,K.1,K.1,-3*K.1,-3*K.1,K.1,-3*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,1,K.1,K.1,-1*K.1,-1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,-1,-1,K.1,K.1,-1*K.1,1,-1*K.1,K.1,K.1,1,K.1,-1,3,0,0,0,0,0,0,0,-3,3,-3,-3,-1,-1,-3,3,1,3,1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,3,-3,3,-1,-1,-3,1,1,-1,1,1,-1,3,-3,3,-3,1,-1,-1,1,1,1,-1,-1,1,-1,-1,-3,1,1,-1,3,-3,1,-1,3,1,-1,-1,1,1,-1,-1,1,0,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,-1*K.1,3*K.1,K.1,K.1,K.1,K.1,-1*K.1,-3*K.1,K.1,K.1,K.1,-1*K.1,-3*K.1,-1*K.1,-3*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,3*K.1,3*K.1,-1*K.1,3*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1,K.1,K.1,-1*K.1,1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,1,K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,1,1,K.1,K.1,-1*K.1,-1,-1*K.1,K.1,K.1,-1,K.1,1,3,0,0,0,0,0,0,0,-3,3,-3,-3,-1,-1,-3,3,1,3,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,1,1,1,-1,-1,1,-1,-1,1,-1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,-3,3,-3,3,-3,3,-1,-1,-3,1,1,-1,1,1,-1,3,-3,3,-3,1,-1,-1,1,1,1,-1,-1,1,-1,-1,-3,1,1,-1,3,-3,1,-1,3,1,-1,-1,1,1,-1,-1,1,0,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,K.1,-3*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,3*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,3*K.1,K.1,3*K.1,3*K.1,-1*K.1,K.1,K.1,-3*K.1,-3*K.1,K.1,-3*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,-1,-1*K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,1,-1*K.1,K.1,1,K.1,-1*K.1,K.1,1,1,-1*K.1,-1*K.1,K.1,-1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,1,3,0,0,0,0,0,0,0,-3,3,-3,-3,-1,-1,-3,3,1,3,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,1,1,1,-1,-1,1,-1,-1,1,-1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,-3,-3,3,1,1,3,1,-1,-1,-1,1,-1,-3,3,3,-3,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-3,-1,1,1,3,3,-1,1,-3,1,-1,1,-1,1,-1,1,-1,0,-3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1*K.1,-3*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,3*K.1,-1*K.1,K.1,K.1,K.1,3*K.1,-1*K.1,-3*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,3*K.1,3*K.1,K.1,-3*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,1,K.1,K.1,-1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,1,K.1,K.1,K.1,1,1,K.1,K.1,-1*K.1,1,K.1,K.1,K.1,1,-1*K.1,-1,3,0,0,0,0,0,0,0,3,-3,-3,-3,1,-1,3,-3,-1,3,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,0,0,0,0,0,0,0,0,0,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,-3,-3,3,1,1,3,1,-1,-1,-1,1,-1,-3,3,3,-3,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-3,-1,1,1,3,3,-1,1,-3,1,-1,1,-1,1,-1,1,-1,0,3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,K.1,3*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-3*K.1,K.1,3*K.1,3*K.1,K.1,K.1,-1*K.1,-3*K.1,-3*K.1,-1*K.1,3*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,K.1,-1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,1,1,-1*K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,-1,3,0,0,0,0,0,0,0,3,-3,-3,-3,1,-1,3,-3,-1,3,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,0,0,0,0,0,0,0,0,0,-1,1,1,-1,1,1,-1,-1,-1,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,-3,-3,3,1,1,3,1,-1,-1,-1,1,-1,-3,3,3,-3,1,-1,1,-1,1,-1,-1,1,1,-1,-1,-3,-1,1,1,3,3,-1,1,-3,1,-1,1,-1,-1,1,-1,1,0,-3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,-1*K.1,-3*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,3*K.1,-1*K.1,K.1,K.1,K.1,3*K.1,-1*K.1,-3*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,3*K.1,3*K.1,K.1,-3*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,1,K.1,-1*K.1,K.1,1,-1*K.1,K.1,K.1,-1,-1*K.1,-1*K.1,1,K.1,-1*K.1,K.1,1,K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,1,K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,-1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,1,3,0,0,0,0,0,0,0,3,-3,-3,-3,1,-1,3,-3,-1,3,1,1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,-1,1,1,1,-1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,-3,-3,3,1,1,3,1,-1,-1,-1,1,-1,-3,3,3,-3,1,-1,1,-1,1,-1,-1,1,1,-1,-1,-3,-1,1,1,3,3,-1,1,-3,1,-1,1,-1,-1,1,-1,1,0,3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,K.1,3*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-3*K.1,K.1,3*K.1,3*K.1,K.1,K.1,-1*K.1,-3*K.1,-3*K.1,-1*K.1,3*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,-1,K.1,K.1,1,-1*K.1,K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,-1,K.1,K.1,K.1,-1,-1,K.1,K.1,-1*K.1,-1,K.1,K.1,K.1,-1,-1*K.1,1,3,0,0,0,0,0,0,0,3,-3,-3,-3,1,-1,3,-3,-1,3,1,1,-1,-1,1,-1,1,-1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,1,-1,-1,1,-1,-1,1,1,1,-1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,1,1,-1,-3,1,-1,-3,-1,3,3,1,-1,-3,3,3,-3,1,-1,1,-1,-1,1,1,-1,1,3,-1,1,3,-3,1,-1,-1,-1,-3,1,1,-1,1,-1,1,-1,1,-1,0,-3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,3*K.1,K.1,3*K.1,K.1,K.1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,-3*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,3*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-3*K.1,K.1,3*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1,-1,K.1,K.1,K.1,1,K.1,-1*K.1,K.1,-1,-1*K.1,1,3,0,0,0,0,0,0,0,3,-3,-3,1,1,-1,-1,1,-1,-1,-3,-3,3,3,1,-1,1,-1,1,-1,-1,1,1,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,1,1,-1,-3,1,-1,-3,-1,3,3,1,-1,-3,3,3,-3,1,-1,1,-1,-1,1,1,-1,1,3,-1,1,3,-3,1,-1,-1,-1,-3,1,1,-1,1,-1,1,-1,1,-1,0,3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-3*K.1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,3*K.1,K.1,K.1,3*K.1,3*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,K.1,K.1,3*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,1,K.1,K.1,K.1,-1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,1,K.1,K.1,-1*K.1,-1,-1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,-1,K.1,1,3,0,0,0,0,0,0,0,3,-3,-3,1,1,-1,-1,1,-1,-1,-3,-3,3,3,1,-1,1,-1,1,-1,-1,1,1,0,0,0,0,0,0,0,0,0,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,1,1,-1,-3,1,-1,-3,-1,3,3,1,-1,-3,3,3,-3,1,-1,1,-1,1,-1,-1,1,1,3,-1,1,3,-3,1,-1,-1,-1,-3,1,1,-1,1,-1,-1,1,-1,1,0,-3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,3*K.1,K.1,3*K.1,K.1,K.1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,-3*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,3*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-3*K.1,K.1,3*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1,K.1,K.1,K.1,1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1,K.1,K.1,-1*K.1,1,1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,1,K.1,-1,3,0,0,0,0,0,0,0,3,-3,-3,1,1,-1,-1,1,-1,-1,-3,-3,3,3,1,-1,1,-1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,1,1,-1,-3,1,-1,-3,-1,3,3,1,-1,-3,3,3,-3,1,-1,1,-1,1,-1,-1,1,1,3,-1,1,3,-3,1,-1,-1,-1,-3,1,1,-1,1,-1,-1,1,-1,1,0,3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,-3*K.1,-1*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,3*K.1,K.1,K.1,3*K.1,3*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,K.1,K.1,3*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,K.1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,1,1,K.1,K.1,K.1,-1,K.1,-1*K.1,K.1,1,-1*K.1,-1,3,0,0,0,0,0,0,0,3,-3,-3,1,1,-1,-1,1,-1,-1,-3,-3,3,3,1,-1,1,-1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,1,1,-1,1,-3,-1,1,3,-1,-1,-3,3,-3,3,3,-3,1,-1,1,-1,-1,1,1,-1,-3,-1,3,1,-1,1,-3,-1,-1,3,1,1,1,-1,1,-1,1,-1,1,-1,0,-3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,-1*K.1,K.1,-1*K.1,-3*K.1,-3*K.1,3*K.1,K.1,-1*K.1,3*K.1,K.1,K.1,-3*K.1,-1*K.1,3*K.1,K.1,K.1,-1*K.1,3*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1,K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,1,-1*K.1,K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,1,K.1,K.1,-1,K.1,K.1,K.1,1,-1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,-1,3,0,0,0,0,0,0,0,3,-3,-3,1,-3,3,-1,1,3,-1,1,1,-1,-1,-3,-1,1,-1,1,-1,-1,1,1,0,0,0,0,0,0,0,0,0,1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,1,1,-1,1,-3,-1,1,3,-1,-1,-3,3,-3,3,3,-3,1,-1,1,-1,-1,1,1,-1,-3,-1,3,1,-1,1,-3,-1,-1,3,1,1,1,-1,1,-1,1,-1,1,-1,0,3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-1,1,1,1,-1,1,1,-1,-1,1,-1,-1,K.1,-1*K.1,K.1,3*K.1,3*K.1,-3*K.1,-1*K.1,K.1,-3*K.1,-1*K.1,-1*K.1,3*K.1,K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-3*K.1,3*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,K.1,K.1,1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,1,K.1,-1*K.1,K.1,1,K.1,K.1,K.1,K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,1,-1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,K.1,-1,-1*K.1,-1,3,0,0,0,0,0,0,0,3,-3,-3,1,-3,3,-1,1,3,-1,1,1,-1,-1,-3,-1,1,-1,1,-1,-1,1,1,0,0,0,0,0,0,0,0,0,1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,1,1,-1,1,-3,-1,1,3,-1,-1,-3,3,-3,3,3,-3,1,-1,1,-1,1,-1,-1,1,-3,-1,3,1,-1,1,-3,-1,-1,3,1,1,1,-1,1,-1,-1,1,-1,1,0,-3*K.1,3*K.1,-3*K.1,3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,1,-1*K.1,K.1,-1*K.1,-3*K.1,-3*K.1,3*K.1,K.1,-1*K.1,3*K.1,K.1,K.1,-3*K.1,-1*K.1,3*K.1,K.1,K.1,-1*K.1,3*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1*K.1,K.1,K.1,-1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,K.1,-1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,-1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,K.1,1,-1*K.1,1,3,0,0,0,0,0,0,0,3,-3,-3,1,-3,3,-1,1,3,-1,1,1,-1,-1,-3,-1,1,-1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,-3,-3,1,1,-1,1,-3,-1,1,3,-1,-1,-3,3,-3,3,3,-3,1,-1,1,-1,1,-1,-1,1,-3,-1,3,1,-1,1,-3,-1,-1,3,1,1,1,-1,1,-1,-1,1,-1,1,0,3*K.1,-3*K.1,3*K.1,-3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,1,K.1,-1*K.1,K.1,3*K.1,3*K.1,-3*K.1,-1*K.1,K.1,-3*K.1,-1*K.1,-1*K.1,3*K.1,K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-3*K.1,3*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,-1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1,K.1,K.1,1,K.1,K.1,K.1,-1,1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,1,3,0,0,0,0,0,0,0,3,-3,-3,1,-3,3,-1,1,3,-1,1,1,-1,-1,-3,-1,1,-1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,0,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,3,-1,-1,3,-1,-1,3,3,-3,-3,-3,-3,-1,-1,-1,-1,-1,-1,-1,-1,-3,1,-3,1,1,1,-3,1,1,-3,1,1,1,1,1,1,1,1,1,1,0,-3*K.1,3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,1,1,1,-1,1,1,-1,1,1,1,-1,-1,K.1,K.1,-1*K.1,-3*K.1,3*K.1,3*K.1,-1*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,-3*K.1,K.1,3*K.1,K.1,-1*K.1,K.1,-3*K.1,3*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,K.1,1,-1*K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,1,-1*K.1,-1*K.1,1,K.1,K.1,K.1,-1,-1,K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,-1,3,0,0,0,0,0,0,0,3,3,3,-1,3,3,-1,-1,3,-1,-1,-1,-1,-1,3,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,-1,-1,1,1,-1,1,-1,1,1,1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,3,-1,-1,3,-1,-1,3,3,-3,-3,-3,-3,-1,-1,-1,-1,-1,-1,-1,-1,-3,1,-3,1,1,1,-3,1,1,-3,1,1,1,1,1,1,1,1,1,1,0,3*K.1,-3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,1,1,1,-1,1,1,-1,1,1,1,-1,-1,-1*K.1,-1*K.1,K.1,3*K.1,-3*K.1,-3*K.1,K.1,K.1,3*K.1,-1*K.1,K.1,3*K.1,-1*K.1,-3*K.1,-1*K.1,K.1,-1*K.1,3*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,-1,K.1,K.1,-1,K.1,K.1,K.1,-1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,1,K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,-1,-1,-1*K.1,K.1,-1*K.1,1,K.1,-1*K.1,K.1,-1,K.1,-1,3,0,0,0,0,0,0,0,3,3,3,-1,3,3,-1,-1,3,-1,-1,-1,-1,-1,3,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,-1,-1,1,1,-1,1,-1,1,1,1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,3,-1,-1,3,-1,-1,3,3,-3,-3,-3,-3,-1,-1,-1,-1,1,1,1,1,-3,1,-3,1,1,1,-3,1,1,-3,1,1,1,1,1,1,-1,-1,-1,-1,0,-3*K.1,3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,K.1,K.1,-1*K.1,-3*K.1,3*K.1,3*K.1,-1*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,-3*K.1,K.1,3*K.1,K.1,-1*K.1,K.1,-3*K.1,3*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,1,K.1,K.1,1,K.1,K.1,K.1,1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,K.1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,1,1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,K.1,1,K.1,1,3,0,0,0,0,0,0,0,3,3,3,-1,3,3,-1,-1,3,-1,-1,-1,-1,-1,3,-1,-1,-1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,-1,3,-1,-1,3,-1,-1,3,3,-3,-3,-3,-3,-1,-1,-1,-1,1,1,1,1,-3,1,-3,1,1,1,-3,1,1,-3,1,1,1,1,1,1,-1,-1,-1,-1,0,3*K.1,-3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1*K.1,-1*K.1,K.1,3*K.1,-3*K.1,-3*K.1,K.1,K.1,3*K.1,-1*K.1,K.1,3*K.1,-1*K.1,-3*K.1,-1*K.1,K.1,-1*K.1,3*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,K.1,1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1,K.1,K.1,K.1,1,1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1*K.1,1,-1*K.1,1,3,0,0,0,0,0,0,0,3,3,3,-1,3,3,-1,-1,3,-1,-1,-1,-1,-1,3,-1,-1,-1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,3,-1,-1,3,-1,3,3,-1,-1,-3,-3,-3,-3,-1,-1,-1,-1,-1,-1,-1,-1,1,-3,1,1,-3,-3,1,1,1,1,-3,1,1,1,1,1,1,1,1,1,0,-3*K.1,3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,1,-1,-1,1,-1,1,1,1,-1,1,1,1,-3*K.1,K.1,3*K.1,K.1,-1*K.1,-1*K.1,3*K.1,-1*K.1,K.1,-3*K.1,3*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,K.1,-3*K.1,-1*K.1,3*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,K.1,1,-1,K.1,-1*K.1,K.1,-1,K.1,K.1,K.1,-1,K.1,1,3,0,0,0,0,0,0,0,3,3,3,-1,-1,-1,-1,-1,-1,-1,3,3,3,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,-1,1,1,1,1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,3,-1,-1,3,-1,3,3,-1,-1,-3,-3,-3,-3,-1,-1,-1,-1,-1,-1,-1,-1,1,-3,1,1,-3,-3,1,1,1,1,-3,1,1,1,1,1,1,1,1,1,0,3*K.1,-3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,1,-1,-1,1,-1,1,1,1,-1,1,1,1,3*K.1,-1*K.1,-3*K.1,-1*K.1,K.1,K.1,-3*K.1,K.1,-1*K.1,3*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,3*K.1,-1*K.1,K.1,K.1,-1*K.1,3*K.1,K.1,-3*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,-1,K.1,K.1,-1*K.1,1,-1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1,1,3,0,0,0,0,0,0,0,3,3,3,-1,-1,-1,-1,-1,-1,-1,3,3,3,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,1,1,1,-1,1,-1,1,1,1,1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,3,-1,-1,3,-1,3,3,-1,-1,-3,-3,-3,-3,-1,-1,-1,-1,1,1,1,1,1,-3,1,1,-3,-3,1,1,1,1,-3,1,1,1,1,1,-1,-1,-1,-1,0,-3*K.1,3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-3*K.1,K.1,3*K.1,K.1,-1*K.1,-1*K.1,3*K.1,-1*K.1,K.1,-3*K.1,3*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-3*K.1,K.1,-1*K.1,-1*K.1,K.1,-3*K.1,-1*K.1,3*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,1,K.1,-1*K.1,K.1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,1,K.1,-1*K.1,1,K.1,K.1,-1*K.1,-1,1,-1*K.1,K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,-1,3,0,0,0,0,0,0,0,3,3,3,-1,-1,-1,-1,-1,-1,-1,3,3,3,3,-1,-1,-1,-1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,-1,1,-1,-1,-1,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,-1,-1,-1,3,-1,-1,3,-1,3,3,-1,-1,-3,-3,-3,-3,-1,-1,-1,-1,1,1,1,1,1,-3,1,1,-3,-3,1,1,1,1,-3,1,1,1,1,1,-1,-1,-1,-1,0,3*K.1,-3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,-1,3*K.1,-1*K.1,-3*K.1,-1*K.1,K.1,K.1,-3*K.1,K.1,-1*K.1,3*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,3*K.1,-1*K.1,K.1,K.1,-1*K.1,3*K.1,K.1,-3*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,1,-1*K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,1,-1*K.1,K.1,1,-1*K.1,-1*K.1,K.1,-1,1,K.1,-1*K.1,K.1,1,K.1,K.1,K.1,1,K.1,-1,3,0,0,0,0,0,0,0,3,3,3,-1,-1,-1,-1,-1,-1,-1,3,3,3,3,-1,-1,-1,-1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,-1,-1,-1,1,-1,1,-1,-1,-1,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,3,3,3,-1,-1,3,-1,-1,-1,-1,-1,-1,-3,-3,-3,-3,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-3,1,1,1,-3,-3,1,1,-3,1,1,1,1,1,1,1,1,0,-3*K.1,3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,K.1,-3*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,3*K.1,K.1,K.1,-1*K.1,K.1,-3*K.1,-1*K.1,-3*K.1,3*K.1,K.1,K.1,-1*K.1,3*K.1,-3*K.1,K.1,3*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,K.1,-1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,-1,K.1,K.1,K.1,-1,1,K.1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,K.1,1,K.1,-1,3,0,0,0,0,0,0,0,3,3,3,3,-1,-1,3,3,-1,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,1,1,-1,1,1,1,1,-1,-1,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,3,3,3,-1,-1,3,-1,-1,-1,-1,-1,-1,-3,-3,-3,-3,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-3,1,1,1,-3,-3,1,1,-3,1,1,1,1,1,1,1,1,0,3*K.1,-3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1*K.1,3*K.1,K.1,-1*K.1,K.1,K.1,K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,3*K.1,K.1,3*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-3*K.1,3*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,K.1,1,K.1,K.1,K.1,1,K.1,K.1,-1*K.1,K.1,K.1,K.1,-1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,1,-1*K.1,K.1,K.1,-1,-1*K.1,K.1,-1*K.1,1,-1*K.1,-1,3,0,0,0,0,0,0,0,3,3,3,3,-1,-1,3,3,-1,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,1,1,-1,1,1,1,1,-1,-1,-1,1,1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,3,3,3,-1,-1,3,-1,-1,-1,-1,-1,-1,-3,-3,-3,-3,-1,-1,-1,-1,1,1,1,1,1,1,1,-3,1,1,1,-3,-3,1,1,-3,1,1,1,1,-1,-1,-1,-1,0,-3*K.1,3*K.1,3*K.1,3*K.1,3*K.1,-3*K.1,-3*K.1,-3*K.1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,K.1,-3*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,3*K.1,K.1,K.1,-1*K.1,K.1,-3*K.1,-1*K.1,-3*K.1,3*K.1,K.1,K.1,-1*K.1,3*K.1,-3*K.1,K.1,3*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,1,K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,-1,K.1,K.1,K.1,-1,K.1,K.1,-1*K.1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1,-1*K.1,1,-1,-1*K.1,K.1,K.1,1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,1,3,0,0,0,0,0,0,0,3,3,3,3,-1,-1,3,3,-1,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |3,3,3,3,3,3,3,-1,-1,3,-1,-1,-1,-1,-1,-1,-3,-3,-3,-3,-1,-1,-1,-1,1,1,1,1,1,1,1,-3,1,1,1,-3,-3,1,1,-3,1,1,1,1,-1,-1,-1,-1,0,3*K.1,-3*K.1,-3*K.1,-3*K.1,-3*K.1,3*K.1,3*K.1,3*K.1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,-1*K.1,3*K.1,K.1,-1*K.1,K.1,K.1,K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,3*K.1,K.1,3*K.1,-3*K.1,-1*K.1,-1*K.1,K.1,-3*K.1,3*K.1,-1*K.1,-3*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,1,-1*K.1,K.1,K.1,1,K.1,K.1,K.1,1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,1,K.1,K.1,1,K.1,K.1,K.1,1,-1,K.1,-1*K.1,-1*K.1,1,K.1,-1*K.1,K.1,-1,K.1,1,3,0,0,0,0,0,0,0,3,3,3,3,-1,-1,3,3,-1,3,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,0,0,0,0,0,0,0,0,0,-1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 4, 4, 4, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, -4, 4, 4, -4, -4, -4, 4, -4, 4, -4, 4, 4, 0, 0, 0, 0, 4, 4, -4, -4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, 4, -4, -4, -4, -4, 4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -4, -4, 4, 0, 0, 0, 0, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, -4, 4, -4, 4, 4, -4, -4, -4, 4, -4, 4, -4, 4, 4, 0, 0, 0, 0, 4, 4, -4, -4, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, -4, 4, 4, 4, 4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -4, -4, 4, 0, 0, 0, 0, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 4, -4, 4, 4, 4, -4, -4, -4, 4, -4, -4, 4, 0, 0, 0, 0, -4, 4, 4, -4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, -4, 4, -4, 4, 4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -4, 4, -4, 0, 0, 0, 0, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 4, -4, 4, -4, 4, 4, 4, -4, -4, -4, 4, -4, -4, 4, 0, 0, 0, 0, -4, 4, 4, -4, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, 4, -4, 4, -4, -4, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -4, 4, -4, 0, 0, 0, 0, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, -4, -4, 4, -4, -4, 4, -4, 4, 4, 4, -4, 4, 0, 0, 0, 0, -4, 4, -4, 4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, 4, 4, -4, 4, 4, 4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 4, -4, -4, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, -4, -4, -4, -4, 4, -4, -4, 4, -4, 4, 4, 4, -4, 4, 0, 0, 0, 0, -4, 4, -4, 4, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, 4, -4, -4, 4, -4, -4, -4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 4, -4, -4, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 4, 4, 4, 4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 4, 4, 4, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 6, 6, 6, 6, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, 2, -2, -2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -6, -6, 6, 6, 2, 2, -2, -2, 0, 0, 0, 0, -2, -2, -2, -2, 2, -2, 2, -2, 2, 2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, -6, -6, 6, 6, -6, 6, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, 2, -2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, -6, -6, 6, -2, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, 2, -2, -2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -6, -6, 6, 6, 2, 2, -2, -2, 0, 0, 0, 0, -2, -2, -2, -2, 2, -2, 2, -2, 2, 2, 2, 2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 6, 6, -6, -6, 6, -6, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, 2, 2, -2, -2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, -6, -6, 6, -2, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, -2, 2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -6, 6, -6, 6, -2, 2, 2, -2, 0, 0, 0, 0, -2, 2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, -6, -6, -6, 6, 6, 6, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 2, -2, -2, 2, -2, 2, 2, -2, -2, 2, 2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, -6, 6, -6, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, -2, 2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -6, 6, -6, 6, -2, 2, 2, -2, 0, 0, 0, 0, -2, 2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 6, 6, 6, -6, -6, -6, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -2, 2, 2, -2, 2, -2, -2, 2, 2, -2, -2, -2, 2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, -6, 6, -6, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, 2, 2, -2, 2, 2, -2, 2, -2, -2, -2, 2, -2, 6, -6, -6, 6, -2, 2, -2, 2, 0, 0, 0, 0, -2, 2, 2, -2, 2, -2, -2, 2, 2, 2, -2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, -6, -6, 6, -6, 6, -6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, -2, -2, -2, 2, -2, 2, -2, 2, 2, 2, -2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, -6, -6, 2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, 2, 2, -2, 2, 2, -2, 2, -2, -2, -2, 2, -2, 6, -6, -6, 6, -2, 2, -2, 2, 0, 0, 0, 0, -2, 2, 2, -2, 2, -2, -2, 2, 2, 2, -2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 6, 6, -6, 6, -6, 6, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, 2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, -6, -6, 2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 6, 6, 6, 6, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, -6, -6, -6, -6, -6, -6, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |6,-6,-6,6,2,-2,-2,2,2,2,-2,2,-2,2,-2,-2,6,6,-6,-6,2,2,-2,-2,0,0,0,0,2,2,2,2,-2,2,-2,2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,0,-6*K.1,6*K.1,-6*K.1,-6*K.1,6*K.1,6*K.1,6*K.1,-6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,-6,-6,6,-2,2,-2,2,2,2,-2,-2,2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |6,-6,-6,6,2,-2,-2,2,2,2,-2,2,-2,2,-2,-2,6,6,-6,-6,2,2,-2,-2,0,0,0,0,2,2,2,2,-2,2,-2,2,-2,-2,-2,-2,-2,-2,2,2,0,0,0,0,0,6*K.1,-6*K.1,6*K.1,6*K.1,-6*K.1,-6*K.1,-6*K.1,6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,-6,-6,6,-2,2,-2,2,2,2,-2,-2,2,2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |6,-6,6,-6,-2,2,-2,-2,-2,2,2,2,-2,2,2,-2,6,-6,6,-6,-2,2,2,-2,0,0,0,0,2,-2,-2,2,2,2,-2,-2,2,2,-2,-2,-2,2,2,-2,0,0,0,0,0,-6*K.1,6*K.1,6*K.1,-6*K.1,-6*K.1,6*K.1,-6*K.1,6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,-6,6,-6,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |6,-6,6,-6,-2,2,-2,-2,-2,2,2,2,-2,2,2,-2,6,-6,6,-6,-2,2,2,-2,0,0,0,0,2,-2,-2,2,2,2,-2,-2,2,2,-2,-2,-2,2,2,-2,0,0,0,0,0,6*K.1,-6*K.1,-6*K.1,6*K.1,6*K.1,-6*K.1,6*K.1,-6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,-6,6,-6,2,-2,-2,2,-2,2,-2,2,-2,2,-2,2,2,-2,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |6,6,-6,-6,2,2,-2,2,2,-2,2,-2,-2,-2,2,-2,-6,6,6,-6,-2,2,-2,2,0,0,0,0,2,-2,-2,2,-2,2,2,-2,-2,-2,2,2,-2,2,-2,2,0,0,0,0,0,-6*K.1,6*K.1,-6*K.1,6*K.1,-6*K.1,-6*K.1,6*K.1,6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,-6,-6,2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |6,6,-6,-6,2,2,-2,2,2,-2,2,-2,-2,-2,2,-2,-6,6,6,-6,-2,2,-2,2,0,0,0,0,2,-2,-2,2,-2,2,2,-2,-2,-2,2,2,-2,2,-2,2,0,0,0,0,0,6*K.1,-6*K.1,6*K.1,-6*K.1,6*K.1,6*K.1,-6*K.1,-6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,-6,-6,2,2,-2,-2,2,-2,-2,2,2,-2,-2,2,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |6,6,6,6,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-6,-6,-6,-6,2,2,2,2,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,-6*K.1,6*K.1,6*K.1,6*K.1,6*K.1,-6*K.1,-6*K.1,-6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,6,6,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |6,6,6,6,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-6,-6,-6,-6,2,2,2,2,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,6*K.1,-6*K.1,-6*K.1,-6*K.1,-6*K.1,6*K.1,6*K.1,6*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,2*K.1,2*K.1,2*K.1,-2*K.1,2*K.1,-2*K.1,2*K.1,2*K.1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,6,6,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 0, 0, 0, 0, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -4, -4, -4, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, -8, 8, -8, 8, 8, -8, -8, -8, 8, -8, 8, -8, 8, 8, 0, 0, 0, 0, 8, 8, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, 4, -4, 0, 0, 0, 0, 2, 2, -2, -2, 2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 8, -8, 8, -8, 8, 8, 8, -8, -8, -8, 8, -8, -8, 8, 0, 0, 0, 0, -8, 8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 4, -4, 4, 0, 0, 0, 0, 2, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 8, -8, -8, -8, -8, 8, -8, -8, 8, -8, 8, 8, 8, -8, 8, 0, 0, 0, 0, -8, 8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -4, 4, 4, 0, 0, 0, 0, -2, 2, 2, 2, 2, -2, -2, 2, -2, -2, 2, 2, -2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 12, 12, -4, -4, -4, -4, 12, -4, -4, 12, -4, -4, 12, 12, 0, 0, 0, 0, -4, -4, -4, -4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 4, -4, -4, 4, -4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 1, -3, -3, 1, 1, -3, 1, 1, 1, 1, 1, -3, 1, 1, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 12, 12, -4, -4, -4, 12, -4, -4, 12, -4, 12, 12, -4, -4, 0, 0, 0, 0, -4, -4, -4, -4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, 4, -4, 4, -4, -4, -4, 4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, -3, -3, -3, -3, 1, 1, 1, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 12, 12, 12, 12, 12, -4, -4, 12, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, -4, -4, -4, -4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, -4, -4, 4, -4, 4, -4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, -3, -3, 1, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 12, 12, -4, -4, -4, -4, 12, -4, -4, 12, -4, -4, 12, 12, 0, 0, 0, 0, -4, -4, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, -4, 4, 4, -4, 4, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 1, -3, -3, 1, 1, -3, 1, 1, 1, 1, 1, -3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 12, 12, -4, -4, -4, 12, -4, -4, 12, -4, 12, 12, -4, -4, 0, 0, 0, 0, -4, -4, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, 4, -4, 4, 4, 4, -4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, 12, 12, 12, 12, 12, -4, -4, 12, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, -4, -4, -4, -4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, 4, 4, 4, -4, 4, -4, 4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, -3, -3, -3, 1, 1, -3, -3, 1, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -12, 12, -12, 12, 12, 4, 4, -12, -4, 4, -4, 4, -4, -4, 0, 0, 0, 0, -4, -4, 4, 4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, -4, 4, -4, 4, -4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, 3, -3, -3, -1, 1, 3, 3, -1, -3, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -12, 12, -12, 12, 12, 4, 4, -12, -4, 4, -4, 4, -4, -4, 0, 0, 0, 0, -4, -4, 4, 4, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 4, -4, 4, -4, 4, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, 3, -3, -3, -1, 1, 3, 3, -1, -3, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -12, 12, 4, -4, -4, -12, 4, 4, 12, 4, 12, -12, -4, -4, 0, 0, 0, 0, -4, -4, 4, 4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, -4, -4, 4, 4, 4, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, 3, -3, 1, -1, 1, -1, -1, -1, 1, -3, 3, 3, -3, 1, 1, 1, -1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -12, 12, 4, -4, -4, -12, 4, 4, 12, 4, 12, -12, -4, -4, 0, 0, 0, 0, -4, -4, 4, 4, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, 4, 4, -4, -4, -4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, 3, -3, 1, -1, 1, -1, -1, -1, 1, -3, 3, 3, -3, 1, 1, 1, -1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -12, 12, 4, -4, -4, 4, -12, 4, -4, -12, -4, 4, 12, 12, 0, 0, 0, 0, -4, -4, 4, 4, -4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 4, 4, 4, -4, 4, -4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, 3, -3, 1, 3, -3, -1, -1, 3, 1, 1, -1, -1, 1, -3, 1, 1, -1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -12, 12, 4, -4, -4, 4, -12, 4, -4, -12, -4, 4, 12, 12, 0, 0, 0, 0, -4, -4, 4, 4, 4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, -4, -4, -4, 4, -4, 4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, 3, -3, 1, 3, -3, -1, -1, 3, 1, 1, -1, -1, 1, -3, 1, 1, -1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, -4, 4, -4, -4, 12, 4, 4, -12, -4, 4, -12, 12, 0, 0, 0, 0, 4, -4, -4, 4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -4, -4, -4, 4, 4, -4, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, -3, 3, -1, -3, -3, -1, 1, 3, 1, -1, 1, -1, 1, 3, 1, -1, -1, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, -4, 4, -4, -4, 12, 4, 4, -12, -4, 4, -12, 12, 0, 0, 0, 0, 4, -4, -4, 4, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 4, 4, -4, -4, 4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, -3, 3, -1, -3, -3, -1, 1, 3, 1, -1, 1, -1, 1, 3, 1, -1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, -4, 4, -4, 12, -4, 4, -12, 4, 12, -12, 4, -4, 0, 0, 0, 0, 4, -4, -4, 4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, 4, 4, 4, -4, -4, -4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, -3, 3, -1, 1, 1, -1, 1, -1, 1, 3, -3, 3, -3, -1, 1, -1, -1, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, -4, 4, -4, 12, -4, 4, -12, 4, 12, -12, 4, -4, 0, 0, 0, 0, 4, -4, -4, 4, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, -4, -4, -4, 4, 4, 4, 4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, -3, 3, -1, 1, 1, -1, 1, -1, 1, 3, -3, 3, -3, -1, 1, -1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, 12, -12, 12, -4, -4, -12, 4, 4, -4, 4, 4, -4, 0, 0, 0, 0, 4, -4, -4, 4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, -4, 4, -4, -4, -4, 4, 4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, -3, 3, 3, 1, 1, 3, -3, -1, -3, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, 12, -12, 12, -12, 12, -4, -4, -12, 4, 4, -4, 4, 4, -4, 0, 0, 0, 0, 4, -4, -4, 4, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, -4, 4, 4, 4, -4, -4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 3, -3, 3, 3, 1, 1, 3, -3, -1, -3, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -12, -12, -12, -12, 12, 4, 4, 12, 4, -4, -4, -4, 4, -4, 0, 0, 0, 0, 4, -4, 4, -4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, -4, -4, -4, -4, 4, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, 3, 3, 3, -1, 1, -3, 3, 1, -3, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -12, -12, -12, -12, 12, 4, 4, 12, 4, -4, -4, -4, 4, -4, 0, 0, 0, 0, 4, -4, 4, -4, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 4, 4, 4, 4, -4, 4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, 3, 3, 3, -1, 1, -3, 3, 1, -3, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -12, -12, 4, 4, -4, -12, 4, -4, -12, -4, 12, 12, 4, -4, 0, 0, 0, 0, 4, -4, 4, -4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, -4, 4, 4, -4, -4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, 3, 3, -1, -1, 1, 1, -1, 1, 1, 3, 3, -3, -3, -1, 1, -1, 1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -12, -12, 4, 4, -4, -12, 4, -4, -12, -4, 12, 12, 4, -4, 0, 0, 0, 0, 4, -4, 4, -4, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, -4, -4, 4, 4, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, 3, 3, -1, -1, 1, 1, -1, 1, 1, 3, 3, -3, -3, -1, 1, -1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -12, -12, 4, 4, -4, 4, -12, -4, 4, 12, -4, -4, -12, 12, 0, 0, 0, 0, 4, -4, 4, -4, -4, 4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 4, 4, 4, -4, 4, 4, -4, -4, 4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, 3, 3, -1, 3, -3, 1, -1, -3, 1, -1, -1, 1, 1, 3, 1, -1, 1, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -12, -12, 4, 4, -4, 4, -12, -4, 4, 12, -4, -4, -12, 12, 0, 0, 0, 0, 4, -4, 4, -4, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, -4, -4, 4, -4, -4, 4, 4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, -3, 3, 3, -1, 3, -3, 1, -1, -3, 1, -1, -1, 1, 1, 3, 1, -1, 1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, 24, 24, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, 0, 0, 0, 0, 8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, -6, -6, -6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, -24, -24, 24, 8, -8, -8, 8, 8, 8, -8, 8, -8, 8, -8, -8, 0, 0, 0, 0, 8, 8, -8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 6, 6, -6, 2, -2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, -24, 24, -24, -8, 8, -8, -8, -8, 8, 8, 8, -8, 8, 8, -8, 0, 0, 0, 0, -8, 8, 8, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, 6, -6, 6, -2, 2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[24, 24, -24, -24, 8, 8, -8, 8, 8, -8, 8, -8, -8, -8, 8, -8, 0, 0, 0, 0, -8, 8, -8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, -6, 6, 6, -2, -2, 2, 2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_7680_ft:= KnownIrreducibles(CR);