Properties

Label 7680.ft
Order \( 2^{9} \cdot 3 \cdot 5 \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 4
$\card{\Aut(G)}$ \( 2^{13} \cdot 3^{3} \cdot 5 \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \cdot 3^{2} \)
Perm deg. $17$
Trans deg. not computed
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 17 | (10,11)(12,13)(14,15)(16,17), (1,2)(3,7)(4,5)(6,8)(10,11)(12,13), (1,3,2,7)(4,6,5,8)(10,11)(12,13)(14,16)(15,17), (1,4)(2,5)(3,7)(6,8)(10,11)(12,13), (10,11)(12,13)(14,16)(15,17), (9,10,12,13,11), (1,5)(2,4)(3,6)(7,8)(10,11)(12,13), (1,6,5,3)(2,7,4,8)(10,11)(12,13)(14,16)(15,17), (10,13,11,12), (1,5)(2,4)(3,8)(6,7)(10,11)(12,13) >;
 
Copy content gap:G := Group( (10,11)(12,13)(14,15)(16,17), (1,2)(3,7)(4,5)(6,8)(10,11)(12,13), (1,3,2,7)(4,6,5,8)(10,11)(12,13)(14,16)(15,17), (1,4)(2,5)(3,7)(6,8)(10,11)(12,13), (10,11)(12,13)(14,16)(15,17), (9,10,12,13,11), (1,5)(2,4)(3,6)(7,8)(10,11)(12,13), (1,6,5,3)(2,7,4,8)(10,11)(12,13)(14,16)(15,17), (10,13,11,12), (1,5)(2,4)(3,8)(6,7)(10,11)(12,13) );
 
Copy content sage:G = PermutationGroup(['(10,11)(12,13)(14,15)(16,17)', '(1,2)(3,7)(4,5)(6,8)(10,11)(12,13)', '(1,3,2,7)(4,6,5,8)(10,11)(12,13)(14,16)(15,17)', '(1,4)(2,5)(3,7)(6,8)(10,11)(12,13)', '(10,11)(12,13)(14,16)(15,17)', '(9,10,12,13,11)', '(1,5)(2,4)(3,6)(7,8)(10,11)(12,13)', '(1,6,5,3)(2,7,4,8)(10,11)(12,13)(14,16)(15,17)', '(10,13,11,12)', '(1,5)(2,4)(3,8)(6,7)(10,11)(12,13)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6036016567997721790829024571654300293900921461689711867210029059554835375281089331708743558203740382863914043342153892864,7680)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11;
 

Group information

Description:$C_2^4.(F_5\times S_4)$
Order: \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$(C_5^3\times C_{10}).Q_8$, of order \(1105920\)\(\medspace = 2^{13} \cdot 3^{3} \cdot 5 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$, $C_5$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 10 12 15 20 30
Elements 1 671 32 3424 4 736 444 1280 128 576 384 7680
Conjugacy classes   1 47 1 96 1 7 23 8 1 12 3 200
Divisions 1 47 1 60 1 7 23 4 1 12 3 160
Autjugacy classes 1 13 1 12 1 3 6 2 1 1 1 42

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 8 12 24
Irr. complex chars.   32 16 96 8 16 4 24 4 200
Irr. rational chars. 16 16 48 12 32 4 28 4 160

Minimal presentations

Permutation degree:$17$
Transitive degree:not computed
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none none none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid a^{4}=c^{6}=d^{2}=e^{2}=f^{2}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([11, -2, -2, -2, -5, -2, -3, -2, 2, 2, 2, 2, 22, 47918, 607, 90, 1059, 32398, 7956, 15976, 6912, 158, 26427, 4658, 2360, 754, 21149, 2163, 1646, 11910, 3616, 657, 19853, 5674, 225092, 9492, 10592]); a,b,c,d,e,f,g,h := Explode([G.1, G.3, G.5, G.7, G.8, G.9, G.10, G.11]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "e", "f", "g", "h"]);
 
Copy content gap:G := PcGroupCode(6036016567997721790829024571654300293900921461689711867210029059554835375281089331708743558203740382863914043342153892864,7680); a := G.1; b := G.3; c := G.5; d := G.7; e := G.8; f := G.9; g := G.10; h := G.11;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6036016567997721790829024571654300293900921461689711867210029059554835375281089331708743558203740382863914043342153892864,7680)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6036016567997721790829024571654300293900921461689711867210029059554835375281089331708743558203740382863914043342153892864,7680)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11;
 
Permutation group:Degree $17$ $\langle(10,11)(12,13)(14,15)(16,17), (1,2)(3,7)(4,5)(6,8)(10,11)(12,13), (1,3,2,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 17 | (10,11)(12,13)(14,15)(16,17), (1,2)(3,7)(4,5)(6,8)(10,11)(12,13), (1,3,2,7)(4,6,5,8)(10,11)(12,13)(14,16)(15,17), (1,4)(2,5)(3,7)(6,8)(10,11)(12,13), (10,11)(12,13)(14,16)(15,17), (9,10,12,13,11), (1,5)(2,4)(3,6)(7,8)(10,11)(12,13), (1,6,5,3)(2,7,4,8)(10,11)(12,13)(14,16)(15,17), (10,13,11,12), (1,5)(2,4)(3,8)(6,7)(10,11)(12,13) >;
 
Copy content gap:G := Group( (10,11)(12,13)(14,15)(16,17), (1,2)(3,7)(4,5)(6,8)(10,11)(12,13), (1,3,2,7)(4,6,5,8)(10,11)(12,13)(14,16)(15,17), (1,4)(2,5)(3,7)(6,8)(10,11)(12,13), (10,11)(12,13)(14,16)(15,17), (9,10,12,13,11), (1,5)(2,4)(3,6)(7,8)(10,11)(12,13), (1,6,5,3)(2,7,4,8)(10,11)(12,13)(14,16)(15,17), (10,13,11,12), (1,5)(2,4)(3,8)(6,7)(10,11)(12,13) );
 
Copy content sage:G = PermutationGroup(['(10,11)(12,13)(14,15)(16,17)', '(1,2)(3,7)(4,5)(6,8)(10,11)(12,13)', '(1,3,2,7)(4,6,5,8)(10,11)(12,13)(14,16)(15,17)', '(1,4)(2,5)(3,7)(6,8)(10,11)(12,13)', '(10,11)(12,13)(14,16)(15,17)', '(9,10,12,13,11)', '(1,5)(2,4)(3,6)(7,8)(10,11)(12,13)', '(1,6,5,3)(2,7,4,8)(10,11)(12,13)(14,16)(15,17)', '(10,13,11,12)', '(1,5)(2,4)(3,8)(6,7)(10,11)(12,13)'])
 
Direct product: not computed
Semidirect product: $C_5$ $\,\rtimes\,$ $(C_2^7.D_6)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $D_5$ . $(C_2^5:S_4)$ $(F_5\times C_2^6)$ . $S_3$ $(C_2^4\times F_5)$ . $S_4$ (3) $C_2^6$ . $(S_3\times F_5)$ all 72
Aut. group: $\Aut(C_5:C_4\times Q_8)$ $\Aut(C_5:C_8\times Q_8)$

Elements of the group are displayed as permutations of degree 17.

Homology

Abelianization: $C_{2}^{3} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 294 normal subgroups (27 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^4:C_{15}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3.C_2^6$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $200 \times 200$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $160 \times 160$ rational character table (warning: may be slow to load).