/* Group 768.1090187 downloaded from the LMFDB on 09 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([9, -2, -2, -2, -2, -3, -2, 2, -2, 2, 109, 46, 1443, 732, 102, 1444, 733, 7781, 3902, 1004, 365, 411, 609, 41479, 20752, 3490, 2635, 5867, 1016]); a,b,c,d,e,f,g := Explode([GPC.1, GPC.2, GPC.4, GPC.6, GPC.7, GPC.8, GPC.9]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2", "d", "e", "f", "g"]); F:=GF(4); al:=F.1; GLFq := MatrixGroup< 4, F | [[1, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, al^1], [0, 0, 0, 1]],[[0, al^1, al^2, al^2], [al^1, al^1, 1, 0], [al^2, 1, al^2, 1], [0, 0, 0, 1]],[[0, 1, al^1, al^1], [al^2, al^2, al^1, 0], [1, 1, 0, al^2], [0, 0, 0, al^2]],[[0, al^1, al^2, al^2], [al^1, al^1, 1, al^1], [al^2, 1, al^2, 0], [0, 0, 0, 1]],[[al^2, al^2, 1, 1], [0, 1, 0, 0], [al^2, 1, al^2, al^1], [0, 0, 0, 1]],[[0, al^1, al^2, al^2], [al^2, 0, al^1, al^2], [0, 0, 1, al^2], [0, 0, 0, 1]],[[0, al^1, al^2, al^2], [al^1, al^1, 1, 1], [al^2, 1, al^2, al^1], [0, 0, 0, 1]],[[0, al^2, 0, 0], [1, 1, al^1, 0], [al^2, al^1, 1, al^2], [al^2, 1, al^1, 0]],[[0, al^1, al^2, 1], [0, 1, 0, 0], [al^1, al^2, 0, al^1], [0, 0, 0, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_768_1090187 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GLFq; C := SequenceToConjugacyClasses([car |< 1, 1, Matrix(4, [0, -1, -1, -1, -1, 0, -1, -1, -1, -1, 0, -1, -1, -1, -1, 0])>,< 2, 1, Matrix(4, [0, -1, -1, 0, 0, 2, 2, -1, 2, 0, 2, 1, -1, -1, -1, 0])>,< 2, 1, Matrix(4, [0, -1, -1, 1, 1, 1, 0, -1, 0, 1, 1, 2, -1, -1, -1, 0])>,< 2, 1, Matrix(4, [0, -1, -1, 2, 2, -1, 1, -1, 1, 2, -1, 0, -1, -1, -1, 0])>,< 2, 2, Matrix(4, [0, -1, -1, 2, 1, 1, 0, -1, 0, 1, 1, 0, -1, -1, -1, 0])>,< 2, 2, Matrix(4, [0, -1, -1, 0, -1, 0, -1, -1, -1, -1, 0, 1, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [-1, 1, 2, 2, 2, -1, 1, 1, -1, -1, 0, -1, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [-1, 1, 2, 2, 2, -1, 1, 0, -1, -1, 0, 1, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [-1, 1, 2, 2, 2, -1, 1, 2, -1, -1, 0, 2, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [1, 0, 1, 1, 1, 1, 0, 0, -1, -1, 0, -1, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [-1, 1, 2, 1, 1, 1, 0, 0, 2, 0, 2, -1, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [1, 0, 1, 1, 1, 1, 0, 2, -1, -1, 0, 0, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [-1, 1, 2, -1, -1, 0, -1, 0, 1, 2, -1, 2, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [-1, 1, 2, -1, -1, 0, -1, 1, 1, 2, -1, 0, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [-1, 1, 2, -1, -1, 0, -1, 2, 1, 2, -1, 1, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [1, 0, 1, 0, 0, 2, 2, 2, 1, 2, -1, -1, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [2, 2, 0, 0, 0, 2, 2, 2, -1, -1, 0, -1, -1, -1, -1, 0])>,< 2, 3, Matrix(4, [1, 0, 1, 0, 0, 2, 2, 0, 1, 2, -1, 0, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [-1, 1, 2, -1, -1, 0, -1, -1, 1, 2, -1, -1, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [0, -1, -1, 0, -1, 0, -1, 2, -1, -1, 0, -1, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [-1, 1, 2, 0, -1, 0, -1, -1, 1, 2, -1, 1, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [-1, 1, 2, 0, -1, 0, -1, 2, 1, 2, -1, -1, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [-1, 1, 2, 1, 2, -1, 1, -1, -1, -1, 0, 2, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [-1, 1, 2, 1, 2, -1, 1, 0, -1, -1, 0, -1, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [-1, 1, 2, 2, 2, -1, 1, -1, -1, -1, 0, 0, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [0, -1, -1, 1, 2, -1, 1, 0, 1, 2, -1, -1, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [-1, 1, 2, 0, -1, 0, -1, 0, 1, 2, -1, 0, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [-1, 1, 2, 0, -1, 0, -1, 1, 1, 2, -1, 2, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [-1, 1, 2, 1, 2, -1, 1, 1, -1, -1, 0, 1, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [-1, 1, 2, 1, 2, -1, 1, 2, -1, -1, 0, 0, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [0, -1, -1, 0, 0, 2, 2, 2, 2, 0, 2, -1, -1, -1, -1, 0])>,< 2, 6, Matrix(4, [0, -1, -1, 1, 1, 1, 0, 0, 0, 1, 1, -1, -1, -1, -1, 0])>,< 2, 24, Matrix(4, [-1, 0, -1, -1, 0, -1, -1, -1, 2, 1, -1, 1, 0, 1, 2, -1])>,< 2, 24, Matrix(4, [0, -1, 2, -1, 2, -1, -1, 1, -1, -1, 0, -1, 1, 2, 0, -1])>,< 3, 32, Matrix(4, [-1, 2, 0, -1, -1, 2, -1, 2, 0, 0, 0, 1, -1, -1, -1, 1])>,< 4, 24, Matrix(4, [-1, 0, -1, 0, 0, -1, -1, -1, 2, 1, -1, -1, 0, 1, 2, -1])>,< 4, 24, Matrix(4, [-1, 1, -1, -1, -1, 0, 1, -1, -1, -1, 0, 0, 1, 2, 0, -1])>,< 4, 24, Matrix(4, [-1, 2, -1, 1, 1, -1, -1, -1, 0, 0, -1, -1, 2, 0, 1, -1])>,< 4, 24, Matrix(4, [-1, 0, -1, -1, 0, -1, -1, 0, 2, 1, -1, 0, 0, 1, 2, -1])>,< 4, 24, Matrix(4, [-1, 0, -1, 2, 0, -1, -1, 0, 2, 1, -1, -1, 0, 1, 2, -1])>,< 4, 24, Matrix(4, [-1, 1, -1, 1, -1, 0, 1, 2, -1, -1, 0, -1, 1, 2, 0, -1])>,< 4, 24, Matrix(4, [-1, 1, -1, 1, 2, -1, -1, 2, 1, 2, -1, -1, 1, 2, 0, -1])>,< 4, 24, Matrix(4, [0, -1, 2, -1, 2, -1, -1, 0, -1, -1, 0, 1, 1, 2, 0, -1])>,< 4, 24, Matrix(4, [0, -1, 2, 0, 2, -1, -1, 0, -1, -1, 0, -1, 1, 2, 0, -1])>,< 4, 24, Matrix(4, [0, -1, 2, -1, -1, 0, 1, 1, 1, 2, -1, -1, 1, 2, 0, -1])>,< 4, 24, Matrix(4, [0, -1, 2, 0, 2, -1, -1, 1, -1, -1, 0, 1, 1, 2, 0, -1])>,< 4, 24, Matrix(4, [0, -1, 2, 1, 2, -1, -1, 0, -1, -1, 0, 0, 1, 2, 0, -1])>,< 4, 24, Matrix(4, [0, -1, 2, 1, 2, -1, -1, 1, -1, -1, 0, 2, 1, 2, 0, -1])>,< 4, 24, Matrix(4, [0, -1, 2, 2, 2, -1, -1, 0, -1, -1, 0, 2, 1, 2, 0, -1])>,< 6, 32, Matrix(4, [2, -1, -1, 0, 2, 2, 1, -1, -1, 2, 2, 1, -1, -1, -1, 2])>,< 6, 32, Matrix(4, [1, -1, -1, 0, 1, -1, 0, 2, 2, 1, -1, -1, -1, -1, -1, 1])>,< 6, 32, Matrix(4, [0, 0, 1, 1, 2, 1, 1, 2, 0, 0, 0, 0, -1, -1, -1, 1])>,< 6, 32, Matrix(4, [0, 2, 0, 1, 2, 2, 1, 2, 2, 1, 0, 0, -1, -1, -1, 2])>,< 6, 32, Matrix(4, [-1, 2, 0, 0, 0, 0, 2, 2, 1, -1, 2, -1, -1, -1, -1, 1])>,< 6, 32, Matrix(4, [-1, 0, 1, 2, -1, 1, -1, 2, 2, 1, 0, 2, -1, -1, -1, 2])>,< 6, 32, Matrix(4, [0, 0, 1, 1, -1, 2, -1, 2, 2, 1, -1, 0, -1, -1, -1, 1])>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, 2, 2, -2, 2, 2, -2, 2, -2, -2, 2, -2, -2, 2, 0, -2, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, -2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, 0, 0, -2, -2, 2, -2, 2, 2, 2, -2, 2, 2, -2, -2, 2, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, 2, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, -2, 2, -2, -2, -2, -2, 2, -2, 2, 2, -2, 2, 2, 2, 2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, -2, -2, 2, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, -2, -2, -2, -2, -2, 2, -2, 2, 2, -2, 2, 2, 2, 2, -2, 2, -2, 2, -2, -2, -2, 2, 2, 2, -2, 2, -2, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2, 2, -2, -2, -2, 2, -2, -2, -2, -2, 2, -2, -2, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,2,2,-2,2,-2,-2,2,-2,-2,2,0,-2,0,0,0,-2,0,0,0,0,2,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-2*K.1,-1,1,1+2*K.1,1,1+2*K.1,-1-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,0,0,2,2,-2,2,2,-2,2,-2,-2,2,-2,-2,2,0,-2,0,0,0,-2,0,0,0,0,2,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+2*K.1,-1,1,-1-2*K.1,1,-1-2*K.1,1+2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2,-2,2,-2,2,2,2,-2,2,2,-2,-2,2,0,-2,0,0,0,2,0,0,0,0,-2,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-2*K.1,1,1,1+2*K.1,-1,-1-2*K.1,1+2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,2,-2,0,0,-2,-2,2,-2,2,2,2,-2,2,2,-2,-2,2,0,-2,0,0,0,2,0,0,0,0,-2,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+2*K.1,1,1,-1-2*K.1,-1,1+2*K.1,-1-2*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, -1, -1, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, 3, -1, -1, -1, 1, 1, 0, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, 3, -1, -1, -1, 3, 3, -1, -1, -1, 3, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 0, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, -1, 3, -1, -1, -1, -1, -1, -1, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, 3, 1, 1, 0, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, -1, -1, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, 3, -1, -1, -1, -1, -1, 0, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, -1, 3, -1, -1, -1, 3, 3, -1, -1, -1, 3, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, 3, 3, 3, -1, 3, -1, -1, -1, -1, -1, -1, 3, -1, 3, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, 3, -1, -1, 0, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -3, 3, -3, 1, -3, 1, -1, 1, -1, -1, 1, 3, -1, 3, -1, -1, -1, -1, 1, -1, 1, -1, -3, 1, 1, 1, 1, 3, -1, 1, 0, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -3, 3, -3, 1, -3, 1, -1, 1, -1, -1, 1, 3, -1, 3, -1, -1, -1, -1, 1, -1, 1, -1, -3, 1, 1, 1, 1, 3, 1, -1, 0, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -3, 3, 1, -3, 1, 1, -1, -3, 3, -1, 1, -1, 3, -1, -1, -1, -1, 3, -3, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 0, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -3, 3, 1, -3, 1, 1, -1, -3, 3, -1, 1, -1, 3, -1, -1, -1, -1, 3, -3, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 0, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -3, 3, 1, 1, 1, -3, 3, 1, -1, 3, -3, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 3, 1, 1, -3, 1, 1, -1, -1, 1, 0, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, -3, 3, 1, 1, 1, -3, 3, 1, -1, 3, -3, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 3, 1, 1, -3, 1, 1, -1, 1, -1, 0, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 3, -3, -3, 1, -3, 1, -1, 1, -1, -1, 1, 3, -1, 3, -1, 1, -1, 1, -1, 1, 1, 1, 3, -1, -1, 1, -1, -3, -1, 1, 0, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 3, -3, -3, 1, -3, 1, -1, 1, -1, -1, 1, 3, -1, 3, -1, 1, -1, 1, -1, 1, 1, 1, 3, -1, -1, 1, -1, -3, 1, -1, 0, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 3, -3, 1, -3, 1, 1, -1, -3, 3, -1, 1, -1, 3, -1, -1, 1, -1, -3, 3, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 3, -3, 1, -3, 1, 1, -1, -3, 3, -1, 1, -1, 3, -1, -1, 1, -1, -3, 3, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 0, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 3, -3, 1, 1, 1, -3, 3, 1, -1, 3, -3, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -3, -1, -1, 3, 1, -1, 1, -1, 1, 0, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, -3, -3, 3, -3, 1, 1, 1, -3, 3, 1, -1, 3, -3, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -3, -1, -1, 3, 1, -1, 1, 1, -1, 0, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, -1, -1, -1, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -3, 1, 1, -3, -1, 1, 1, -1, -1, 0, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, -1, -1, -1, 3, 3, -1, -1, 3, 3, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -3, 1, 1, -3, -1, 1, 1, 1, 1, 0, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, -1, 3, -1, -1, -1, 3, 3, -1, -1, -1, 3, -1, -1, 1, -1, -3, -3, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 0, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, -1, 3, -1, -1, -1, 3, 3, -1, -1, -1, 3, -1, -1, 1, -1, -3, -3, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 0, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, 3, -1, 3, -1, -1, -1, -1, -1, -1, 3, -1, 3, -1, 1, -1, 1, 1, 1, -1, 1, -3, 1, 1, -1, 1, -3, -1, -1, 0, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[3, 3, 3, 3, -3, -3, 3, -1, 3, -1, -1, -1, -1, -1, -1, 3, -1, 3, -1, 1, -1, 1, 1, 1, -1, 1, -3, 1, 1, -1, 1, -3, 1, 1, 0, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, -2, -2, 2, 2, -2, -2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, 0, 0, -2, -2, 2, 6, 6, 2, -2, -6, -6, -2, 2, 2, -2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, 0, 0, -2, 6, 2, -2, -2, -6, 6, 2, 2, -2, -6, 2, -2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, 0, 0, 6, -2, -6, -2, -2, 2, -2, 2, 2, 6, 2, -6, -2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, 0, 0, -6, 2, 6, 2, -2, -2, -2, 2, -2, 6, 2, -6, -2, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, 0, 0, 2, -6, -2, 2, -2, 6, 6, 2, -2, -2, -6, 2, -2, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, 0, 0, 2, 2, -2, -6, 6, -2, -2, -6, 6, -2, 2, 2, -2, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, -6, 6, 2, 2, 2, 2, -2, 2, -2, -2, 2, -2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, 2, -2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, -6, -6, 6, -6, 2, 2, 2, 2, -2, 2, -2, -2, 2, -2, -2, -2, 2, -2, 2, 2, -2, -2, -2, 2, -2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, -6, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, -2, 2, 2, 2, -2, 2, 2, 2, -2, 2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, 0, 0, -2, -2, 2, -2, -2, 2, -2, 2, 2, -2, 2, 2, 2, -4, -2, 0, 0, 4, -2, 0, 0, -4, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, -6, 6, 0, 0, -2, -2, 2, -2, -2, 2, -2, 2, 2, -2, 2, 2, 2, 4, -2, 0, 0, -4, -2, 0, 0, 4, 0, 2, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, 0, 0, 2, 2, -2, 2, -2, -2, -2, 2, -2, -2, 2, 2, 2, -4, -2, 0, 0, 4, 2, 0, 0, 4, 0, -2, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, 0, 0, 2, 2, -2, 2, -2, -2, -2, 2, -2, -2, 2, 2, 2, 4, -2, 0, 0, -4, 2, 0, 0, -4, 0, -2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_768_1090187:= KnownIrreducibles(CR);