# Group 7.1 downloaded from the LMFDB on 08 December 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(0,7); a := GPC.1; GPerm := Group( (1,7,6,5,4,3,2) ); GLZ := Group([[[0, 0, 0, 0, 0, 1], [0, 0, -1, 1, -1, 1], [-1, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 1], [1, 0, -1, 0, -1, 1], [0, -1, 0, 0, 0, 0]]]); GLFp := Group([[[ Z(7)^0, Z(7)^0 ], [ 0*Z(7), Z(7)^0 ]]]); # Booleans booleans_7_1 := rec( Agroup := true, Zgroup := true, abelian := true, almost_simple := false, cyclic := true, metabelian := true, metacyclic := true, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_7_1:=rec(); chartbl_7_1.IsFinite:= true; chartbl_7_1.UnderlyingCharacteristic:= 0; chartbl_7_1.UnderlyingGroup:= GPC; chartbl_7_1.Size:= 7; chartbl_7_1.InfoText:= "Character table for group 7.1 downloaded from the LMFDB."; chartbl_7_1.Identifier:= " C7 "; chartbl_7_1.NrConjugacyClasses:= 7; chartbl_7_1.ConjugacyClasses:= [ of ..., f1, f1^6, f1^2, f1^5, f1^3, f1^4]; chartbl_7_1.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7]; chartbl_7_1.ComputedPowerMaps:= [ , [1, 4, 5, 7, 6, 3, 2]]; chartbl_7_1.SizesCentralizers:= [7, 7, 7, 7, 7, 7, 7]; chartbl_7_1.ClassNames:= ["1A", "7A1", "7A-1", "7A2", "7A-2", "7A3", "7A-3"]; chartbl_7_1.OrderClassRepresentatives:= [1, 7, 7, 7, 7, 7, 7]; chartbl_7_1.Irr:= [[1, 1, 1, 1, 1, 1, 1], [1, E(7)^-3, E(7)^-1, E(7)^3, E(7)^2, E(7), E(7)^-2], [1, E(7)^3, E(7), E(7)^-3, E(7)^-2, E(7)^-1, E(7)^2], [1, E(7)^-2, E(7)^-3, E(7)^2, E(7)^-1, E(7)^3, E(7)], [1, E(7)^2, E(7)^3, E(7)^-2, E(7), E(7)^-3, E(7)^-1], [1, E(7)^-1, E(7)^2, E(7), E(7)^3, E(7)^-2, E(7)^-3], [1, E(7), E(7)^-2, E(7)^-1, E(7)^-3, E(7)^2, E(7)^3]]; ConvertToLibraryCharacterTableNC(chartbl_7_1);