/* Group 672.809 downloaded from the LMFDB on 26 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, -2, -2, -7, -2, -2, -2, -3, 5069, 36, 7562, 1780, 7458, 80, 6871, 102, 124]); a,b,c := Explode([GPC.1, GPC.2, GPC.4]); AssignNames(~GPC, ["a", "b", "b2", "c", "c2", "c4", "c8"]); GPerm := PermutationGroup< 26 | (2,3)(4,5)(6,7)(12,16)(13,19)(18,22)(21,23), (11,12)(13,20)(14,22)(15,16)(17,21)(18,24)(19,26)(23,25), (11,13,15,19)(12,17,16,25)(14,23,24,21)(18,26,22,20), (8,9,10), (11,14,15,24)(12,18,16,22)(13,21,19,23)(17,20,25,26), (11,15)(12,16)(13,19)(14,24)(17,25)(18,22)(20,26)(21,23), (1,2,4,6,7,5,3) >; GLZN := MatrixGroup< 2, Integers(119) | [[92, 77, 70, 78], [18, 0, 0, 18], [1, 17, 0, 1], [69, 0, 91, 118], [50, 0, 0, 50], [64, 28, 112, 113], [57, 100, 112, 62]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_672_809 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^12>,< 2, 4, b^7*c^21>,< 2, 14, a>,< 2, 28, a*b*c^12>,< 3, 1, c^16>,< 3, 1, c^8>,< 4, 2, c^6>,< 4, 4, b^7*c^12>,< 4, 7, a*c^6>,< 4, 7, a*c^18>,< 4, 28, a*b^3*c^3>,< 6, 1, c^4>,< 6, 1, c^20>,< 6, 4, b^7*c^13>,< 6, 4, b^7*c^5>,< 6, 14, a*c^8>,< 6, 14, a*c^4>,< 6, 28, a*b*c^20>,< 6, 28, a*b*c^4>,< 7, 2, b^6*c^12>,< 7, 2, b^12>,< 7, 2, b^4>,< 8, 2, c^9>,< 8, 2, c^15>,< 8, 14, a*c^3>,< 8, 14, a*c^9>,< 12, 2, c^2>,< 12, 2, c^22>,< 12, 4, b^7*c^8>,< 12, 4, b^7*c^4>,< 12, 7, a*c^2>,< 12, 7, a*b^2*c^10>,< 12, 7, a*c^10>,< 12, 7, a*b^2*c^2>,< 12, 28, a*b^3*c^7>,< 12, 28, a*b^3*c^11>,< 14, 2, b^6>,< 14, 2, b^4*c^12>,< 14, 2, b^2>,< 14, 8, b^3*c^21>,< 14, 8, b^9*c^9>,< 14, 8, b*c^9>,< 21, 2, b^2*c^20>,< 21, 2, b^12*c^16>,< 21, 2, b^4*c^16>,< 21, 2, b^10*c^20>,< 21, 2, b^8*c^8>,< 21, 2, b^6*c^4>,< 24, 2, c^19>,< 24, 2, c^5>,< 24, 2, c^13>,< 24, 2, c^11>,< 24, 14, a*c>,< 24, 14, a*c^17>,< 24, 14, a*c^5>,< 24, 14, a*b^2*c>,< 28, 4, b^12*c^6>,< 28, 4, b^8*c^18>,< 28, 4, b^4*c^6>,< 28, 8, b^3>,< 28, 8, b^9>,< 28, 8, b*c^12>,< 42, 2, b^2*c^16>,< 42, 2, b^12*c^20>,< 42, 2, b^10*c^8>,< 42, 2, b^4*c^4>,< 42, 2, b^8*c^20>,< 42, 2, b^6*c^16>,< 42, 8, b*c>,< 42, 8, b*c^5>,< 42, 8, b^5*c^5>,< 42, 8, b^5*c>,< 42, 8, b^3*c^5>,< 42, 8, b^3*c>,< 56, 4, b^6*c^3>,< 56, 4, b^8*c^9>,< 56, 4, b^4*c^21>,< 56, 4, b^10*c^15>,< 56, 4, b^2*c^15>,< 56, 4, b^12*c^21>,< 84, 4, b^4*c^2>,< 84, 4, b^10*c^10>,< 84, 4, b^6*c^22>,< 84, 4, b^8*c^14>,< 84, 4, b^2*c^10>,< 84, 4, b^12*c^2>,< 84, 8, b*c^8>,< 84, 8, b*c^4>,< 84, 8, b^5*c^4>,< 84, 8, b^5*c^8>,< 84, 8, b^3*c^4>,< 84, 8, b^3*c^8>,< 168, 4, b^2*c>,< 168, 4, b^2*c^5>,< 168, 4, b^4*c^17>,< 168, 4, b^10*c>,< 168, 4, b^6*c^17>,< 168, 4, b^8*c>,< 168, 4, b^12*c>,< 168, 4, b^2*c^17>,< 168, 4, b^6*c>,< 168, 4, b^6*c^5>,< 168, 4, b^4*c>,< 168, 4, b^4*c^5>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1^-1,K.1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1,K.1^-1,1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,K.1^-1,K.1,1,1,-1,-1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,-1,-1,1,1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,1,1,1,-1,-1,-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,-1,K.1,K.1^-1,1,1,-1,-1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,1,-1,-1,1,1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,1,1,1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,K.1^-1,K.1,1,-1,-1,-1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,1,1,1,1,1,-1,-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,1,1,1,-1,-1,-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,1,1,-1,-1,-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,1,K.1,K.1^-1,1,-1,-1,-1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,1,1,1,1,1,-1,-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,1,1,1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,-1,-1,-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,K.1^-1,K.1,1,-1,1,1,-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,1,1,-1,-1,-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,-1,-1,-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,-1,K.1,K.1^-1,1,-1,1,1,-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,-1,-1,-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,1,K.1^-1,K.1,1,1,1,1,-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,-1,-1,-1,-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,1,1,-1,-1,-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,1,1,K.1,K.1^-1,1,1,1,1,-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,-1,-1,-1,-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,-1,K.1^-1,K.1,1,1,-1,-1,-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,1,1,-1,-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,-1,K.1,K.1^-1,1,1,-1,-1,-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,1,1,1,-1,-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,1,K.1^-1,K.1,1,-1,-1,-1,-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,1,1,1,-1,-1,1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,-1,-1,-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,-1,1,K.1,K.1^-1,1,-1,-1,-1,-1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,1,1,1,-1,-1,1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,-1,-1,-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,K.1^-1,K.1,1,-1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,1,1,1,-1,-1,-1,-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1,1,1,-1,-1,-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,K.1,K.1^-1,1,-1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,1,1,1,-1,-1,-1,-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1,1,1,-1,-1,-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, 2, 0, -2, 0, 2, 2, -2, 0, 2, 2, 0, 2, 2, 0, 0, -2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, -2, 0, 0, 2, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, 2, 0, 2, 2, -2, 0, -2, -2, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, -2, 0, 0, -2, -2, -2, -2, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,0,-2,0,2*K.1^-1,2*K.1,-2,0,2,2,0,2*K.1^-1,2*K.1,0,0,-2*K.1,-2*K.1^-1,0,0,2,2,2,0,0,0,0,-2*K.1,-2*K.1^-1,0,0,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,0,0,2,2,2,0,0,0,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,0,-2,0,2*K.1,2*K.1^-1,-2,0,2,2,0,2*K.1,2*K.1^-1,0,0,-2*K.1^-1,-2*K.1,0,0,2,2,2,0,0,0,0,-2*K.1^-1,-2*K.1,0,0,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,0,0,2,2,2,0,0,0,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,0,2,0,2*K.1^-1,2*K.1,-2,0,-2,-2,0,2*K.1^-1,2*K.1,0,0,2*K.1,2*K.1^-1,0,0,2,2,2,0,0,0,0,-2*K.1,-2*K.1^-1,0,0,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,2,2,2,0,0,0,2*K.1^-1,2*K.1,2*K.1,2*K.1^-1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,2*K.1^-1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,0,2,0,2*K.1,2*K.1^-1,-2,0,-2,-2,0,2*K.1,2*K.1^-1,0,0,2*K.1^-1,2*K.1,0,0,2,2,2,0,0,0,0,-2*K.1^-1,-2*K.1,0,0,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1^-1,0,0,2,2,2,0,0,0,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,-2,-2,-2,0,0,0,2*K.1,2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,0,0,2,2,2,2,0,0,0,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,0,0,2,2,2,2,0,0,0,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,2,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,0,0,2,2,2,2,0,0,0,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,2,2,2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,0,2,2,2,-2,0,0,0,2,2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,2,2,-2,-2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,0,2,2,2,-2,0,0,0,2,2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,2,2,-2,-2,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,0,2,2,2,-2,0,0,0,2,2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,2,2,-2,-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,0,2,2,2,2,0,0,0,2,2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,2,2,2,2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,0,2,2,2,2,0,0,0,2,2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,2,2,2,2,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,-2,0,0,2,2,2,2,0,0,0,2,2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,2,2,2,2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,0,0,2,2,2,-2,0,0,0,2,2,2,2,0,0,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,2,2,-2,-2,0,0,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-2,-2,-2,-2,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,0,0,2,2,2,-2,0,0,0,2,2,2,2,0,0,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,2,2,-2,-2,0,0,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-2,-2,-2,-2,0,0,0,0,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,2,0,0,2,2,2,-2,0,0,0,2,2,2,2,0,0,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,2,2,-2,-2,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-2,-2,-2,-2,0,0,0,0,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,0,2,2,0,0,-2*K.1^2,2*K.1^2,0,-2,-2,0,0,0,0,0,0,2,2,2,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,-2,-2,-2,0,0,0,2,2,2,2,2,2,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,0,2,2,0,0,2*K.1^2,-2*K.1^2,0,-2,-2,0,0,0,0,0,0,2,2,2,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,-2,-2,-2,0,0,0,2,2,2,2,2,2,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,0,2,2,0,0,-2*K.1^2,2*K.1^2,0,-2,-2,0,0,0,0,0,0,2,2,2,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,2*K.1^2,-2*K.1^2,2*K.1^2,-2*K.1^2,0,0,-2,-2,-2,0,0,0,2,2,2,2,2,2,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,0,2,2,0,0,2*K.1^2,-2*K.1^2,0,-2,-2,0,0,0,0,0,0,2,2,2,-1*K.1-K.1^3,K.1+K.1^3,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,-2*K.1^2,2*K.1^2,-2*K.1^2,2*K.1^2,0,0,-2,-2,-2,0,0,0,2,2,2,2,2,2,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,K.1+K.1^3,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3,-1*K.1-K.1^3,K.1+K.1^3,K.1+K.1^3,-1*K.1-K.1^3]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^-7,2*K.1^7,2,2,0,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,2,2,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^9+K.1^-9,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^7,2*K.1^-7,2,2,0,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,2,2,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^9+K.1^-9,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^-7,2*K.1^7,2,2,0,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,2,2,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^7,2*K.1^-7,2,2,0,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,2,2,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^-7,2*K.1^7,2,2,0,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,2,2,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,K.1^4+K.1^10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^7,2*K.1^-7,2,2,0,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,2,2,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^-7,2*K.1^7,2,-2,0,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,2,2,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^9+K.1^-9,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^7,2*K.1^-7,2,-2,0,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,2,2,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^9+K.1^-9,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^-7,2*K.1^7,2,-2,0,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,2,2,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^4-K.1^10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,K.1^3+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^7,2*K.1^-7,2,-2,0,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,2,2,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^3+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^4-K.1^10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^-7,2*K.1^7,2,-2,0,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,2,2,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,-1*K.1^2-K.1^5,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,K.1^4+K.1^10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^7,2*K.1^-7,2,-2,0,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,2,2,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^3+K.1^-3,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^-7,2*K.1^7,2,2,0,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,-2,-2,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,K.1^3+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1*K.1^4-K.1^10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1*K.1^4-K.1^10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,K.1^3+K.1^10-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^7,2*K.1^-7,2,2,0,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,-2,-2,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-2*K.1^7,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,-1*K.1^4-K.1^10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,K.1^3+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,K.1^3+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1*K.1^2-K.1^5,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^4-K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^-7,2*K.1^7,2,2,0,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,-2,-2,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^4-K.1^10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,K.1^3+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^2-K.1^5,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^4-K.1^10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1*K.1^2-K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^7,2*K.1^-7,2,2,0,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,-2,-2,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,-2*K.1^7,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^3+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^4-K.1^10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^2-K.1^5,K.1^3+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^-7,2*K.1^7,2,2,0,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,-2,-2,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,-1*K.1^2-K.1^5,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,K.1^3+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,K.1^3+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,-2,0,0,2*K.1^7,2*K.1^-7,2,2,0,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,-2,-2,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-2*K.1^7,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^4-K.1^10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^2-K.1^5,-1*K.1^4-K.1^10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,K.1^3+K.1^10-K.1^-10,K.1^3+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^-7,2*K.1^7,2,-2,0,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,-2,-2,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1*K.1^4-K.1^10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1*K.1^4-K.1^10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,K.1^3+K.1^10-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^7,2*K.1^-7,2,-2,0,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^6+K.1^-6,-2,-2,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-2*K.1^7,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,K.1^3+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,K.1^3+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1*K.1^2-K.1^5,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^4-K.1^10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^-7,2*K.1^7,2,-2,0,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,-2,-2,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^10+K.1^-10,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^2+K.1^5,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^4-K.1^10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1*K.1^2-K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^7,2*K.1^-7,2,-2,0,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^3+K.1^-3,-2,-2,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,-2*K.1^7,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,K.1^4+K.1^10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^9-K.1^-9,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^2-K.1^5,K.1^3+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^-7,2*K.1^7,2,-2,0,0,0,2*K.1^-7,2*K.1^7,2*K.1^-7,2*K.1^7,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,-2,-2,0,0,2*K.1^7,2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,-1*K.1^3-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,K.1^2+K.1^5,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^4-K.1^10,K.1^3+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,K.1^3+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,K.1^3+K.1^10-K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^4-K.1^10,-1*K.1^4-K.1^10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |2,2,2,0,0,2*K.1^7,2*K.1^-7,2,-2,0,0,0,2*K.1^7,2*K.1^-7,2*K.1^7,2*K.1^-7,0,0,0,0,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^9+K.1^-9,-2,-2,0,0,2*K.1^-7,2*K.1^7,-2*K.1^-7,-2*K.1^7,0,0,0,0,0,0,K.1^9+K.1^-9,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^6+K.1^-6,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^4+K.1^10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-2*K.1^7,-2*K.1^-7,-2*K.1^7,-2*K.1^-7,0,0,0,0,K.1^3+K.1^-3,K.1^9+K.1^-9,K.1^6+K.1^-6,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^9-K.1^-9,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,K.1^4+K.1^10,K.1^2+K.1^5,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,-1*K.1^3-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1*K.1^6-K.1^-6,-1*K.1^3-K.1^-3,-1*K.1^6-K.1^-6,-1*K.1^9-K.1^-9,-1*K.1^9-K.1^-9,-1*K.1^3-K.1^-3,1-K.1-K.1^2+K.1^3-K.1^4-K.1^5+K.1^6-K.1^8-K.1^-10,-1*K.1^3-K.1^10+K.1^-10,1-K.1^2+K.1^3-K.1^5+K.1^7+K.1^10-K.1^-10,K.1^2+K.1^5,K.1^4+K.1^10,-1+K.1+K.1^2-K.1^3+K.1^5-K.1^6-K.1^7+K.1^8-K.1^10+K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,K.1^3+K.1^10-K.1^-10,-1*K.1^4-K.1^10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10,-1*K.1^4-K.1^10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,-1*K.1^2-K.1^5,-1*K.1^4-K.1^10,-1+K.1^2-K.1^3+K.1^5-K.1^7-K.1^10+K.1^-10,K.1^3+K.1^10-K.1^-10,K.1^3+K.1^10-K.1^-10,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,-1*K.1^2-K.1^5,-1+K.1+K.1^2-K.1^3+K.1^4+K.1^5-K.1^6+K.1^8+K.1^-10,1-K.1-K.1^2+K.1^3-K.1^5+K.1^6+K.1^7-K.1^8+K.1^10-K.1^-10]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,0,0,0,-2*K.1^4,2*K.1^8,0,0,-2*K.1^6,2*K.1^6,0,2*K.1^4,-2*K.1^8,0,0,0,0,0,0,2,2,2,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,0,0,0,0,-2*K.1^2,2*K.1^10,-2*K.1^10,2*K.1^2,0,0,-2,-2,-2,0,0,0,-2*K.1^4,2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^8,-2*K.1^4,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1^3+K.1^5-K.1^7,K.1+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1-K.1^7,0,0,0,0,0,0,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^8,-2*K.1^8,-2*K.1^8,0,0,0,0,0,0,K.1-K.1^3-K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,-1*K.1+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,0,0,0,2*K.1^8,-2*K.1^4,0,0,2*K.1^6,-2*K.1^6,0,-2*K.1^8,2*K.1^4,0,0,0,0,0,0,2,2,2,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,0,0,0,0,2*K.1^10,-2*K.1^2,2*K.1^2,-2*K.1^10,0,0,-2,-2,-2,0,0,0,2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^8,-2*K.1^4,2*K.1^8,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^7,K.1^3-K.1^5-K.1^7,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,0,0,0,0,0,0,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^4,0,0,0,0,0,0,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1+K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,0,0,0,-2*K.1^4,2*K.1^8,0,0,-2*K.1^6,2*K.1^6,0,2*K.1^4,-2*K.1^8,0,0,0,0,0,0,2,2,2,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,0,0,0,0,-2*K.1^2,2*K.1^10,-2*K.1^10,2*K.1^2,0,0,-2,-2,-2,0,0,0,-2*K.1^4,2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^8,-2*K.1^4,K.1-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,K.1+K.1^7,0,0,0,0,0,0,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^8,-2*K.1^8,-2*K.1^8,0,0,0,0,0,0,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,K.1-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,0,0,0,2*K.1^8,-2*K.1^4,0,0,2*K.1^6,-2*K.1^6,0,-2*K.1^8,2*K.1^4,0,0,0,0,0,0,2,2,2,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,0,0,0,0,2*K.1^10,-2*K.1^2,2*K.1^2,-2*K.1^10,0,0,-2,-2,-2,0,0,0,2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^8,-2*K.1^4,2*K.1^8,K.1^3+K.1^5-K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1-K.1^7,K.1+K.1^7,K.1^3-K.1^5-K.1^7,0,0,0,0,0,0,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^4,0,0,0,0,0,0,K.1-K.1^3-K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^5+K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1-K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1^3+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,0,0,0,-2*K.1^4,2*K.1^8,0,0,2*K.1^6,-2*K.1^6,0,2*K.1^4,-2*K.1^8,0,0,0,0,0,0,2,2,2,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,0,0,0,0,2*K.1^2,-2*K.1^10,2*K.1^10,-2*K.1^2,0,0,-2,-2,-2,0,0,0,-2*K.1^4,2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^8,-2*K.1^4,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,K.1^3-K.1^5-K.1^7,K.1+K.1^7,0,0,0,0,0,0,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^8,-2*K.1^8,-2*K.1^8,0,0,0,0,0,0,K.1-K.1^3-K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,-1*K.1+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,0,0,0,2*K.1^8,-2*K.1^4,0,0,-2*K.1^6,2*K.1^6,0,-2*K.1^8,2*K.1^4,0,0,0,0,0,0,2,2,2,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,0,0,0,0,-2*K.1^10,2*K.1^2,-2*K.1^2,2*K.1^10,0,0,-2,-2,-2,0,0,0,2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^8,-2*K.1^4,2*K.1^8,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1-K.1^7,K.1+K.1^7,K.1^3-K.1^5-K.1^7,0,0,0,0,0,0,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^4,0,0,0,0,0,0,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1+K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,0,0,0,-2*K.1^4,2*K.1^8,0,0,2*K.1^6,-2*K.1^6,0,2*K.1^4,-2*K.1^8,0,0,0,0,0,0,2,2,2,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,0,0,0,0,2*K.1^2,-2*K.1^10,2*K.1^10,-2*K.1^2,0,0,-2,-2,-2,0,0,0,-2*K.1^4,2*K.1^8,2*K.1^8,-2*K.1^4,2*K.1^8,-2*K.1^4,K.1-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1+K.1^7,K.1^3-K.1^5-K.1^7,-1*K.1^3+K.1^5+K.1^7,-1*K.1-K.1^7,0,0,0,0,0,0,2*K.1^4,2*K.1^4,2*K.1^4,-2*K.1^8,-2*K.1^8,-2*K.1^8,0,0,0,0,0,0,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,K.1-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |2,-2,0,0,0,2*K.1^8,-2*K.1^4,0,0,-2*K.1^6,2*K.1^6,0,-2*K.1^8,2*K.1^4,0,0,0,0,0,0,2,2,2,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,0,0,0,0,-2*K.1^10,2*K.1^2,-2*K.1^2,2*K.1^10,0,0,-2,-2,-2,0,0,0,2*K.1^8,-2*K.1^4,-2*K.1^4,2*K.1^8,-2*K.1^4,2*K.1^8,K.1^3+K.1^5-K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,-1*K.1+K.1^7,K.1^3-K.1^5-K.1^7,K.1+K.1^7,-1*K.1-K.1^7,-1*K.1^3+K.1^5+K.1^7,0,0,0,0,0,0,-2*K.1^8,-2*K.1^8,-2*K.1^8,2*K.1^4,2*K.1^4,2*K.1^4,0,0,0,0,0,0,K.1-K.1^3-K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,-1*K.1+K.1^3+K.1^5,K.1-K.1^3-K.1^5,-1*K.1+K.1^3+K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^5+K.1^7,K.1^3+K.1^5-K.1^7,-1*K.1+K.1^7,-1*K.1+K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1-K.1^7,K.1-K.1^7,-1*K.1+K.1^7,K.1^3+K.1^5-K.1^7,K.1-K.1^7,-1*K.1^3-K.1^5+K.1^7,K.1^3+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,4,-4,0,0,0,0,4,4,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-4,-4,0,0,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,4,-4,0,0,0,0,4,4,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,-4,-4,0,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,4,-4,0,0,0,0,4,4,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,-4,-4,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,0,0,0,4*K.1^-7,4*K.1^7,-4,0,0,0,0,4*K.1^-7,4*K.1^7,0,0,0,0,0,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,-4*K.1^7,-4*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,0,0,0,2*K.1^2+2*K.1^5,2*K.1^4+2*K.1^10,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^3-2*K.1^10+2*K.1^-10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,0,0,0,0,0,0,0,0,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,0,0,0,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,-2*K.1^3-2*K.1^10+2*K.1^-10,2*K.1^2+2*K.1^5,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,2*K.1^4+2*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,-2+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^-10,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^5-2*K.1^6+2*K.1^8+2*K.1^-10,-2*K.1^4-2*K.1^10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2*K.1^2-2*K.1^5,2*K.1^3+2*K.1^10-2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,0,0,0,4*K.1^7,4*K.1^-7,-4,0,0,0,0,4*K.1^7,4*K.1^-7,0,0,0,0,0,0,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,0,0,0,0,-4*K.1^-7,-4*K.1^7,0,0,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,0,0,0,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,-2*K.1^3-2*K.1^10+2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,2*K.1^4+2*K.1^10,2*K.1^2+2*K.1^5,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,0,0,0,0,0,0,0,0,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,0,0,0,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2*K.1^4+2*K.1^10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,2*K.1^2+2*K.1^5,-2*K.1^3-2*K.1^10+2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2*K.1^2-2*K.1^5,2*K.1^3+2*K.1^10-2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^-10,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^5-2*K.1^6+2*K.1^8+2*K.1^-10,-2*K.1^4-2*K.1^10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,0,0,0,4*K.1^-7,4*K.1^7,-4,0,0,0,0,4*K.1^-7,4*K.1^7,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,0,0,-4*K.1^7,-4*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,0,0,0,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,2*K.1^4+2*K.1^10,2*K.1^2+2*K.1^5,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^3-2*K.1^10+2*K.1^-10,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,-2*K.1^3-2*K.1^10+2*K.1^-10,2*K.1^2+2*K.1^5,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,2*K.1^4+2*K.1^10,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^10-2*K.1^-10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^5-2*K.1^6+2*K.1^8+2*K.1^-10,-2*K.1^4-2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^-10,-2*K.1^2-2*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,0,0,0,4*K.1^7,4*K.1^-7,-4,0,0,0,0,4*K.1^7,4*K.1^-7,0,0,0,0,0,0,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,2*K.1^3+2*K.1^-3,0,0,0,0,-4*K.1^-7,-4*K.1^7,0,0,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,0,0,0,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2*K.1^2+2*K.1^5,-2*K.1^3-2*K.1^10+2*K.1^-10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,2*K.1^4+2*K.1^10,0,0,0,0,0,0,0,0,-2*K.1^6-2*K.1^-6,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,0,0,0,2*K.1^4+2*K.1^10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^3-2*K.1^10+2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,2*K.1^2+2*K.1^5,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^4-2*K.1^10,-2+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^-10,-2*K.1^2-2*K.1^5,2*K.1^3+2*K.1^10-2*K.1^-10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^5-2*K.1^6+2*K.1^8+2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,0,0,0,4*K.1^-7,4*K.1^7,-4,0,0,0,0,4*K.1^-7,4*K.1^7,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,0,0,-4*K.1^7,-4*K.1^-7,0,0,0,0,0,0,0,0,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,0,0,0,-2*K.1^3-2*K.1^10+2*K.1^-10,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,2*K.1^4+2*K.1^10,2*K.1^2+2*K.1^5,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,0,0,0,2*K.1^2+2*K.1^5,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,-2*K.1^3-2*K.1^10+2*K.1^-10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,2*K.1^4+2*K.1^10,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^2-2*K.1^5,-2*K.1^4-2*K.1^10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^5-2*K.1^6+2*K.1^8+2*K.1^-10,2*K.1^3+2*K.1^10-2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(21: Sparse := true); S := [ K |4,4,0,0,0,4*K.1^7,4*K.1^-7,-4,0,0,0,0,4*K.1^7,4*K.1^-7,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1^6+2*K.1^-6,2*K.1^9+2*K.1^-9,0,0,0,0,-4*K.1^-7,-4*K.1^7,0,0,0,0,0,0,0,0,2*K.1^9+2*K.1^-9,2*K.1^6+2*K.1^-6,2*K.1^3+2*K.1^-3,0,0,0,2*K.1^4+2*K.1^10,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,2*K.1^2+2*K.1^5,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,-2*K.1^3-2*K.1^10+2*K.1^-10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,0,0,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^9-2*K.1^-9,-2*K.1^6-2*K.1^-6,0,0,0,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^4-2*K.1^5+2*K.1^6-2*K.1^8-2*K.1^-10,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^6-2*K.1^7+2*K.1^8-2*K.1^10+2*K.1^-10,2*K.1^4+2*K.1^10,2*K.1^2+2*K.1^5,-2*K.1^3-2*K.1^10+2*K.1^-10,2-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^7+2*K.1^10-2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,-2+2*K.1+2*K.1^2-2*K.1^3+2*K.1^4+2*K.1^5-2*K.1^6+2*K.1^8+2*K.1^-10,2*K.1^3+2*K.1^10-2*K.1^-10,-2+2*K.1^2-2*K.1^3+2*K.1^5-2*K.1^7-2*K.1^10+2*K.1^-10,-2*K.1^2-2*K.1^5,-2*K.1^4-2*K.1^10,2-2*K.1-2*K.1^2+2*K.1^3-2*K.1^5+2*K.1^6+2*K.1^7-2*K.1^8+2*K.1^10-2*K.1^-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,4,0,0,0,0,0,-4,-4,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^4-2*K.1^-4,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,4,0,0,0,0,0,-4,-4,0,0,0,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,0,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^4-2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,0,0,0,0,0,0,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,4,0,0,0,0,0,-4,-4,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^4-2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,4,0,0,0,0,0,-4,-4,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,0,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^4-2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,0,0,0,0,0,0,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,4,0,0,0,0,0,-4,-4,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,4,0,0,0,0,0,-4,-4,0,0,0,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,0,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^12-2*K.1^-12,2*K.1^8+2*K.1^-8,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^21,-2*K.1^7-2*K.1^21,-2*K.1^7-2*K.1^21,2*K.1^7+2*K.1^21,0,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,0,0,0,0,0,0,K.1^5-K.1^9-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5+K.1^9+K.1^19-K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1^5-K.1^9-K.1^19+K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9+K.1^19-K.1^23,K.1-K.1^3+K.1^7-K.1^11-K.1^13-K.1^19+K.1^23,-1*K.1+K.1^3-K.1^7+K.1^11+K.1^13+K.1^19-K.1^23,K.1-K.1^3-K.1^5+K.1^9-K.1^11-K.1^13-K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,-1*K.1+K.1^3+K.1^5-K.1^9+K.1^11+K.1^13+K.1^21,K.1^5-K.1^9-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^28,4*K.1^56,0,0,0,0,0,4*K.1^28,-4*K.1^56,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,2*K.1^16+2*K.1^40,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,2*K.1^8-2*K.1^20,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,2*K.1^12-2*K.1^40-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,-2*K.1^16-2*K.1^40,-2*K.1^8+2*K.1^20,-2*K.1^12+2*K.1^40+2*K.1^44,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,0,0,0,0,0,0,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^56,-4*K.1^28,0,0,0,0,0,-4*K.1^56,4*K.1^28,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,2*K.1^12-2*K.1^40-2*K.1^44,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,2*K.1^16+2*K.1^40,2*K.1^8-2*K.1^20,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,-2*K.1^8+2*K.1^20,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,-2*K.1^12+2*K.1^40+2*K.1^44,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,-2*K.1^16-2*K.1^40,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^28,4*K.1^56,0,0,0,0,0,4*K.1^28,-4*K.1^56,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,2*K.1^16+2*K.1^40,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,2*K.1^8-2*K.1^20,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,2*K.1^12-2*K.1^40-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,-2*K.1^16-2*K.1^40,-2*K.1^8+2*K.1^20,-2*K.1^12+2*K.1^40+2*K.1^44,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^56,-4*K.1^28,0,0,0,0,0,-4*K.1^56,4*K.1^28,0,0,0,0,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,0,0,0,2*K.1^12-2*K.1^40-2*K.1^44,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,2*K.1^16+2*K.1^40,2*K.1^8-2*K.1^20,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,-2*K.1^8+2*K.1^20,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,-2*K.1^12+2*K.1^40+2*K.1^44,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,-2*K.1^16-2*K.1^40,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,0,0,0,0,0,0,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^28,4*K.1^56,0,0,0,0,0,4*K.1^28,-4*K.1^56,0,0,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,2*K.1^12-2*K.1^40-2*K.1^44,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,2*K.1^16+2*K.1^40,2*K.1^8-2*K.1^20,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,-2*K.1^16-2*K.1^40,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,-2*K.1^8+2*K.1^20,-2*K.1^12+2*K.1^40+2*K.1^44,0,0,0,0,0,0,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^56,-4*K.1^28,0,0,0,0,0,-4*K.1^56,4*K.1^28,0,0,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,2*K.1^8-2*K.1^20,2*K.1^16+2*K.1^40,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,2*K.1^12-2*K.1^40-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,-2*K.1^12+2*K.1^40+2*K.1^44,-2*K.1^8+2*K.1^20,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,-2*K.1^16-2*K.1^40,0,0,0,0,0,0,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^28,4*K.1^56,0,0,0,0,0,4*K.1^28,-4*K.1^56,0,0,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,2*K.1^12-2*K.1^40-2*K.1^44,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,2*K.1^16+2*K.1^40,2*K.1^8-2*K.1^20,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,-2*K.1^16-2*K.1^40,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,-2*K.1^8+2*K.1^20,-2*K.1^12+2*K.1^40+2*K.1^44,0,0,0,0,0,0,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^56,-4*K.1^28,0,0,0,0,0,-4*K.1^56,4*K.1^28,0,0,0,0,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,0,0,0,2*K.1^8-2*K.1^20,2*K.1^16+2*K.1^40,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,2*K.1^12-2*K.1^40-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,-2*K.1^12+2*K.1^40+2*K.1^44,-2*K.1^8+2*K.1^20,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,-2*K.1^16-2*K.1^40,0,0,0,0,0,0,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^28,4*K.1^56,0,0,0,0,0,4*K.1^28,-4*K.1^56,0,0,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,2*K.1^8-2*K.1^20,2*K.1^12-2*K.1^40-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,2*K.1^16+2*K.1^40,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,-2*K.1^16-2*K.1^40,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,-2*K.1^12+2*K.1^40+2*K.1^44,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,-2*K.1^8+2*K.1^20,0,0,0,0,0,0,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^56,-4*K.1^28,0,0,0,0,0,-4*K.1^56,4*K.1^28,0,0,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,2*K.1^16+2*K.1^40,2*K.1^8-2*K.1^20,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,2*K.1^12-2*K.1^40-2*K.1^44,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,0,0,0,0,0,0,0,0,0,0,-2*K.1^12+2*K.1^40+2*K.1^44,-2*K.1^8+2*K.1^20,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,-2*K.1^16-2*K.1^40,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,0,0,0,0,0,0,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-4*K.1^28,4*K.1^56,0,0,0,0,0,4*K.1^28,-4*K.1^56,0,0,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^7+2*K.1^21+2*K.1^35,2*K.1^7-2*K.1^21-2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,2*K.1^8-2*K.1^20,2*K.1^12-2*K.1^40-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,2*K.1^16+2*K.1^40,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,-2*K.1^16-2*K.1^40,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,-2*K.1^12+2*K.1^40+2*K.1^44,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,-2*K.1^8+2*K.1^20,0,0,0,0,0,0,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,4*K.1^56,-4*K.1^28,0,0,0,0,0,-4*K.1^56,4*K.1^28,0,0,0,0,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^7-2*K.1^21-2*K.1^35,-2*K.1^7+2*K.1^21+2*K.1^35,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,0,0,0,2-2*K.1^8-2*K.1^12+2*K.1^20-2*K.1^28+2*K.1^40+2*K.1^44,2+2*K.1^4-2*K.1^8-2*K.1^12-2*K.1^16+2*K.1^20+2*K.1^24-2*K.1^32+2*K.1^44,2*K.1^16+2*K.1^40,2*K.1^8-2*K.1^20,-2-2*K.1^4+2*K.1^8+2*K.1^12-2*K.1^20-2*K.1^24+2*K.1^28+2*K.1^32-2*K.1^40-2*K.1^44,2*K.1^12-2*K.1^40-2*K.1^44,2*K.1+2*K.1^5-2*K.1^13-2*K.1^17+2*K.1^21+2*K.1^25-2*K.1^33+2*K.1^35-2*K.1^37+2*K.1^45,2*K.1+2*K.1^5+2*K.1^7-2*K.1^13-2*K.1^17+2*K.1^25-2*K.1^33-2*K.1^37+2*K.1^45,-2*K.1-2*K.1^5+2*K.1^13+2*K.1^17-2*K.1^21-2*K.1^25+2*K.1^33-2*K.1^35+2*K.1^37-2*K.1^45,-2*K.1-2*K.1^5-2*K.1^7+2*K.1^13+2*K.1^17-2*K.1^25+2*K.1^33+2*K.1^37-2*K.1^45,0,0,0,0,0,0,0,0,0,0,-2*K.1^12+2*K.1^40+2*K.1^44,-2*K.1^8+2*K.1^20,-2+2*K.1^8+2*K.1^12-2*K.1^20+2*K.1^28-2*K.1^40-2*K.1^44,-2*K.1^16-2*K.1^40,2+2*K.1^4-2*K.1^8-2*K.1^12+2*K.1^20+2*K.1^24-2*K.1^28-2*K.1^32+2*K.1^40+2*K.1^44,-2-2*K.1^4+2*K.1^8+2*K.1^12+2*K.1^16-2*K.1^20-2*K.1^24+2*K.1^32-2*K.1^44,0,0,0,0,0,0,-1*K.1+K.1^13-K.1^15+K.1^27+K.1^29-K.1^41,K.1+K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33-K.1^39+K.1^41,K.1-K.1^13+K.1^15-K.1^27-K.1^29+K.1^41,K.1^3+K.1^7-K.1^9-K.1^15+K.1^27-K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7+K.1^9+K.1^15-K.1^27+K.1^33+K.1^35+K.1^39,-1*K.1-K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33+K.1^39-K.1^41,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^3+K.1^11-K.1^23+K.1^29+K.1^31+K.1^35-K.1^41-K.1^47,-1*K.1-K.1^3+K.1^9+K.1^11+K.1^13+K.1^17-K.1^21-K.1^25+K.1^29+K.1^31+K.1^33-K.1^41-K.1^45,K.1-K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^47,K.1^3+K.1^5+K.1^7-K.1^15+K.1^23+K.1^27-K.1^33-K.1^35-K.1^37-K.1^39+K.1^47,K.1+K.1^3-K.1^9-K.1^11-K.1^13-K.1^17+K.1^21+K.1^25-K.1^29-K.1^31-K.1^33+K.1^41+K.1^45,-1*K.1+K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^47,K.1^11+K.1^17-K.1^25+K.1^31-K.1^39-K.1^45,-1*K.1^11-K.1^17+K.1^25-K.1^31+K.1^39+K.1^45,-1*K.1^5-K.1^9-K.1^23+K.1^37-K.1^47,-1*K.1^3-K.1^5-K.1^7+K.1^15-K.1^23-K.1^27+K.1^33+K.1^35+K.1^37+K.1^39-K.1^47,K.1^5+K.1^9+K.1^23-K.1^37+K.1^47,K.1^3-K.1^11+K.1^23-K.1^29-K.1^31-K.1^35+K.1^41+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_672_809:= KnownIrreducibles(CR);