/* Group 672.421 downloaded from the LMFDB on 11 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, -2, -2, -2, -2, -2, -3, -7, 2360, 4622, 2991, 58, 12323, 7962, 80, 7284, 8131, 102, 17477, 5388, 166, 28230]); a,b,c := Explode([GPC.1, GPC.2, GPC.3]); AssignNames(~GPC, ["a", "b", "c", "c2", "c4", "c8", "c24"]); GPerm := PermutationGroup< 26 | (2,3)(4,5)(6,7)(11,12)(13,17)(14,20)(15,21)(16,19)(18,23)(22,25)(24,26), (9,10)(11,13,16,21)(12,17,19,15)(14,22,24,18)(20,25,26,23), (11,14,17,25,16,24,15,23)(12,18,21,26,19,22,13,20), (11,15,16,17)(12,13,19,21)(14,23,24,25)(18,20,22,26), (11,16)(12,19)(13,21)(14,24)(15,17)(18,22)(20,26)(23,25), (8,9,10), (1,2,4,6,7,5,3) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_672_421 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^84>,< 2, 28, a*c^111>,< 2, 28, a*c^54>,< 2, 42, a*b*c^58>,< 3, 2, c^56>,< 4, 2, c^42>,< 4, 12, b*c^84>,< 4, 12, b*c^133>,< 4, 21, a*b>,< 4, 21, a*b*c^4>,< 6, 2, c^28>,< 6, 56, a*c^55>,< 6, 56, a*c^166>,< 7, 2, c^96>,< 7, 2, c^24>,< 7, 2, c^120>,< 8, 2, c^21>,< 8, 2, c^63>,< 8, 42, a*b*c>,< 8, 42, a*b*c^43>,< 12, 4, c^14>,< 14, 2, c^132>,< 14, 2, c^60>,< 14, 2, c^156>,< 21, 4, c^8>,< 21, 4, c^16>,< 21, 4, c^32>,< 24, 4, c^7>,< 24, 4, c^35>,< 28, 4, c^6>,< 28, 4, c^18>,< 28, 4, c^30>,< 28, 24, b*c^24>,< 28, 24, b*c^2>,< 28, 24, b*c^8>,< 28, 24, b*c>,< 28, 24, b*c^25>,< 28, 24, b*c^9>,< 42, 4, c^4>,< 42, 4, c^20>,< 42, 4, c^44>,< 56, 4, c^3>,< 56, 4, c^9>,< 56, 4, c^15>,< 56, 4, c^27>,< 56, 4, c^39>,< 56, 4, c^51>,< 84, 4, c^2>,< 84, 4, c^166>,< 84, 4, c^10>,< 84, 4, c^158>,< 84, 4, c^22>,< 84, 4, c^146>,< 168, 4, c>,< 168, 4, c^97>,< 168, 4, c^5>,< 168, 4, c^149>,< 168, 4, c^11>,< 168, 4, c^53>,< 168, 4, c^29>,< 168, 4, c^125>,< 168, 4, c^25>,< 168, 4, c^73>,< 168, 4, c^121>,< 168, 4, c^145>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 2, 0, -1, 2, 0, 0, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 0, 0, -1, 2, 2, 2, -1, -1, -1, -1, -1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, 0, -2, 2, -2, 0, 0, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, 2, 2, 2, 2, 2, 2, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 0, 0, 2, 2, -2, 0, 0, -2, -2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, -2, 2, 2, 2, 2, 2, 2, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, -1, 2, 0, 0, 0, 0, -1, 1, 1, 2, 2, 2, 2, 2, 0, 0, -1, 2, 2, 2, -1, -1, -1, -1, -1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 2, 0, -1, 2, 0, 0, 0, 0, -1, 1, -1, 2, 2, 2, -2, -2, 0, 0, -1, 2, 2, 2, -1, -1, -1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, 0, -1, 2, 0, 0, 0, 0, -1, -1, 1, 2, 2, 2, -2, -2, 0, 0, -1, 2, 2, 2, -1, -1, -1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, -1, -1, -1, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,2,2,0,0,2,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,2,2,0,0,2,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,2,2,0,0,2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,-2,-2,0,0,2,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,0,0,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,-2,-2,0,0,2,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,0,0,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,2,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,-2,-2,0,0,2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,2,2,0,0,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,2,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,-2,2,0,0,2,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,-2,2,0,0,2,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,-2,2,0,0,2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,2,-2,0,0,2,0,0,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,0,0,2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,2,-2,0,0,2,0,0,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,0,0,2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-2,-2,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |2,2,0,0,0,2,2,2,-2,0,0,2,0,0,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,-2,-2,0,0,2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-2,-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1+K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3,K.1^2+K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,0,2,0,0,0,-2*K.1^2,2*K.1^2,-2,0,0,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^3,K.1+K.1^3,0,-2,-2,-2,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,-2,-2,-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,0,2,0,0,0,2*K.1^2,-2*K.1^2,-2,0,0,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^3,-1*K.1-K.1^3,0,-2,-2,-2,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,-2,-2,-2,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,0,2,0,0,0,-2*K.1^2,2*K.1^2,-2,0,0,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^3,-1*K.1-K.1^3,0,-2,-2,-2,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,-2,-2,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,-2,0,0,0,2,0,0,0,2*K.1^2,-2*K.1^2,-2,0,0,2,2,2,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^3,K.1+K.1^3,0,-2,-2,-2,2,2,2,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,-2,-2,-2,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, 4, 0, 0, 0, -2, -4, 0, 0, 0, 0, -2, 0, 0, 4, 4, 4, 0, 0, 0, 0, 2, 4, 4, 4, -2, -2, -2, 0, 0, -4, -4, -4, 0, 0, 0, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,4,4,4,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,-4,-4,-4,-2,-2,-2,-1*K.1-K.1^-1,K.1+K.1^-1,0,0,0,0,0,0,0,0,0,2,2,2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,4,4,4,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,-4,-4,-4,-2,-2,-2,K.1+K.1^-1,-1*K.1-K.1^-1,0,0,0,0,0,0,0,0,0,2,2,2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-2,4,0,0,0,0,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,4,4,0,0,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-2,4,0,0,0,0,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,4,4,0,0,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-2,4,0,0,0,0,-2,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,4,4,0,0,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,-4,0,0,0,0,4,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,-4,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,-4,0,0,0,0,4,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,-4,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,4,-4,0,0,0,0,4,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,0,0,0,0,-4,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,0,0,0,0,0,0,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-2,4,0,0,0,0,-2,0,0,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,-4,-4,0,0,-2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,2,2,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^3+K.1^-3]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-2,4,0,0,0,0,-2,0,0,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,2*K.1+2*K.1^-1,-4,-4,0,0,-2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,2,2,2*K.1^2+2*K.1^-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,0,0,0,0,0,0,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1+K.1^-1,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^2+K.1^-2]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |4,4,0,0,0,-2,4,0,0,0,0,-2,0,0,2*K.1+2*K.1^-1,2*K.1^2+2*K.1^-2,2*K.1^3+2*K.1^-3,-4,-4,0,0,-2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,2,2,2*K.1+2*K.1^-1,2*K.1^3+2*K.1^-3,2*K.1^2+2*K.1^-2,0,0,0,0,0,0,-1*K.1^2-K.1^-2,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-2*K.1^2-2*K.1^-2,-2*K.1^2-2*K.1^-2,-2*K.1-2*K.1^-1,-2*K.1^3-2*K.1^-3,-1*K.1^2-K.1^-2,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1-K.1^-1,-1*K.1^3-K.1^-3,-1*K.1^2-K.1^-2,K.1+K.1^-1,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1^2+K.1^-2,K.1^3+K.1^-3,K.1+K.1^-1,K.1^2+K.1^-2,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,0,0,0,-2,-4,0,0,0,0,-2,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,2,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,0,0,0,-2,-4,0,0,0,0,-2,0,0,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,0,0,0,0,2,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,K.1^6+K.1^-6,0,0,0,0,0,0,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,0,0,0,-2,-4,0,0,0,0,-2,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,2,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,0,0,0,-2,-4,0,0,0,0,-2,0,0,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,2*K.1^12+2*K.1^-12,0,0,0,0,2,-2*K.1^18-2*K.1^-18,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,2*K.1^18+2*K.1^-18,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,0,0,0,0,0,0,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,K.1^18+K.1^-18,0,0,0,0,0,0,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,0,0,0,-2,-4,0,0,0,0,-2,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,2,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(84: Sparse := true); S := [ K |4,4,0,0,0,-2,-4,0,0,0,0,-2,0,0,2*K.1^12+2*K.1^-12,-2*K.1^18-2*K.1^-18,-2*K.1^6-2*K.1^-6,0,0,0,0,2,2*K.1^12+2*K.1^-12,-2*K.1^6-2*K.1^-6,-2*K.1^18-2*K.1^-18,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,-2*K.1^12-2*K.1^-12,2*K.1^6+2*K.1^-6,2*K.1^18+2*K.1^-18,0,0,0,0,0,0,K.1^18+K.1^-18,K.1^6+K.1^-6,-1*K.1^12-K.1^-12,0,0,0,0,0,0,-1*K.1^18-K.1^-18,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,K.1^12+K.1^-12,-1*K.1^6-K.1^-6,-1*K.1^18-K.1^-18,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,3*K.1-K.1^5-K.1^7+K.1^11-K.1^13-2*K.1^15-K.1^17+K.1^21+K.1^23,K.1^5-K.1^9+K.1^19+2*K.1^23,K.1+2*K.1^3-K.1^7-K.1^9-K.1^11+K.1^13-3*K.1^17-K.1^19+K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-3*K.1+K.1^5+K.1^7-K.1^11+K.1^13+2*K.1^15+K.1^17-K.1^21-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23,-1*K.1-2*K.1^3+K.1^7+K.1^9+K.1^11-K.1^13+3*K.1^17+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19-2*K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,0,0,0,0,0,-4,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,0,0,0,0,0,-4,0,0,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,0,0,0,0,0,0,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,0,0,0,0,0,-4,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,0,0,0,0,0,0,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,0,0,0,0,0,-4,0,0,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,2*K.1^12+2*K.1^-12,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,0,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,2*K.1^12+2*K.1^-12,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,0,0,0,0,0,0,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,0,0,0,0,0,-4,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1^5-K.1^9+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,0,0,0,0,0,0,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(56: Sparse := true); S := [ K |4,-4,0,0,0,4,0,0,0,0,0,-4,0,0,2*K.1^8+2*K.1^-8,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^7+2*K.1^-7,-2*K.1^7-2*K.1^-7,0,0,0,-2*K.1^8-2*K.1^-8,2*K.1^4+2*K.1^-4,2*K.1^12+2*K.1^-12,-2*K.1^12-2*K.1^-12,-2*K.1^4-2*K.1^-4,2*K.1^8+2*K.1^-8,-2*K.1^7-2*K.1^-7,2*K.1^7+2*K.1^-7,0,0,0,0,0,0,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^4+2*K.1^-4,-2*K.1^8-2*K.1^-8,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1^5+K.1^9-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,0,0,0,0,0,0,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,K.1+K.1^3-K.1^5+K.1^9+K.1^11-K.1^13-K.1^21,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1^5+K.1^9-K.1^19+K.1^23,-1*K.1-K.1^3+K.1^5-K.1^9-K.1^11+K.1^13+K.1^21,-1*K.1-K.1^3+K.1^7-K.1^11+K.1^13-K.1^19+K.1^23,K.1^5-K.1^9+K.1^19-K.1^23,K.1+K.1^3-K.1^7+K.1^11-K.1^13+K.1^19-K.1^23]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1^5-K.1^19+K.1^23-K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^5+K.1^19-K.1^23+K.1^37,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^11-K.1^17-K.1^25-K.1^31,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1^5+K.1^19-K.1^23+K.1^37]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^12+K.1^-12,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^11-K.1^17-K.1^25-K.1^31,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,K.1^11-K.1^17-K.1^25-K.1^31,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,-1*K.1^11+K.1^17+K.1^25+K.1^31,K.1^11-K.1^17-K.1^25-K.1^31,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^5+K.1^19-K.1^23+K.1^37,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^24+2*K.1^-24,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,2*K.1^36+2*K.1^-36,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^36+K.1^-36,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1^36-K.1^-36,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^11-K.1^17-K.1^25-K.1^31,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1^11-K.1^17-K.1^25-K.1^31,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1^11+K.1^17+K.1^25+K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,-2*K.1^21-2*K.1^-21,2*K.1^21+2*K.1^-21,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,-1*K.1^21-K.1^-21,K.1^21+K.1^-21,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^11-K.1^17-K.1^25-K.1^31,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,-1*K.1^5-K.1^19+K.1^23-K.1^37,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,K.1^5+K.1^19-K.1^23+K.1^37,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,K.1^11-K.1^17-K.1^25-K.1^31]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(168: Sparse := true); S := [ K |4,-4,0,0,0,-2,0,0,0,0,0,2,0,0,2*K.1^24+2*K.1^-24,-2*K.1^36-2*K.1^-36,-2*K.1^12-2*K.1^-12,2*K.1^21+2*K.1^-21,-2*K.1^21-2*K.1^-21,0,0,0,-2*K.1^24-2*K.1^-24,2*K.1^12+2*K.1^-12,2*K.1^36+2*K.1^-36,K.1^36+K.1^-36,K.1^12+K.1^-12,-1*K.1^24-K.1^-24,K.1^21+K.1^-21,-1*K.1^21-K.1^-21,0,0,0,0,0,0,0,0,0,-1*K.1^36-K.1^-36,-1*K.1^12-K.1^-12,K.1^24+K.1^-24,K.1-K.1^3-K.1^9-K.1^13+K.1^21-K.1^29-K.1^33+K.1^39+K.1^41,K.1^3+K.1^7+K.1^9-K.1^15+K.1^27+K.1^33-K.1^35-K.1^39,K.1-K.1^13-K.1^15+K.1^27-K.1^29+K.1^41,-1*K.1+K.1^13+K.1^15-K.1^27+K.1^29-K.1^41,-1*K.1+K.1^3+K.1^9+K.1^13-K.1^21+K.1^29+K.1^33-K.1^39-K.1^41,-1*K.1^3-K.1^7-K.1^9+K.1^15-K.1^27-K.1^33+K.1^35+K.1^39,-1*K.1^2-2*K.1^6+K.1^14+K.1^18+K.1^22-K.1^26+3*K.1^34+K.1^38-K.1^46,-1*K.1^10+K.1^18-K.1^38-2*K.1^46,3*K.1^2-K.1^10-K.1^14+K.1^22-K.1^26-2*K.1^30-K.1^34+K.1^42+K.1^46,K.1^10-K.1^18+K.1^38+2*K.1^46,-3*K.1^2+K.1^10+K.1^14-K.1^22+K.1^26+2*K.1^30+K.1^34-K.1^42-K.1^46,K.1^2+2*K.1^6-K.1^14-K.1^18-K.1^22+K.1^26-3*K.1^34-K.1^38+K.1^46,-1*K.1^11+K.1^17+K.1^25+K.1^31,-1*K.1^3+K.1^11-K.1^13+K.1^15-K.1^23-K.1^29+K.1^31+K.1^35-2*K.1^43-K.1^47,-1*K.1^3+K.1^5-K.1^7-K.1^9+K.1^15+K.1^19-K.1^23-K.1^27-K.1^33+K.1^35+K.1^37+K.1^39,-1*K.1^5-K.1^19+K.1^23-K.1^37,K.1^5+K.1^19-K.1^23+K.1^37,K.1^11-K.1^17-K.1^25-K.1^31,K.1^3-K.1^11+K.1^13-K.1^15+K.1^23+K.1^29-K.1^31-K.1^35+2*K.1^43+K.1^47,-1*K.1-K.1^3+K.1^11+2*K.1^15-K.1^23-K.1^27+K.1^31+K.1^35-K.1^41-2*K.1^43-K.1^47,K.1^3-K.1^5+K.1^7+K.1^9-K.1^15-K.1^19+K.1^23+K.1^27+K.1^33-K.1^35-K.1^37-K.1^39,-1*K.1+K.1^3+K.1^9+K.1^11+K.1^13-K.1^17-K.1^21-K.1^25+K.1^29-K.1^31+K.1^33-K.1^39-K.1^41,K.1+K.1^3-K.1^11-2*K.1^15+K.1^23+K.1^27-K.1^31-K.1^35+K.1^41+2*K.1^43+K.1^47,K.1-K.1^3-K.1^9-K.1^11-K.1^13+K.1^17+K.1^21+K.1^25-K.1^29+K.1^31-K.1^33+K.1^39+K.1^41]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_672_421:= KnownIrreducibles(CR);