/* Group 672.1093 downloaded from the LMFDB on 22 September 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, -2, -2, -2, -3, -2, -2, -7, 58, 12604, 3588, 970, 102, 1531, 2294, 124, 3548, 1203]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.3, GPC.5]); AssignNames(~GPC, ["a", "b", "c", "c2", "d", "d2", "d4"]); GPerm := PermutationGroup< 13 | (2,3)(4,6)(5,7), (8,9)(10,11)(12,13), (8,10)(9,11)(12,13), (10,11)(12,13), (2,4,5)(3,6,7), (8,9)(10,11), (1,2,5,6,4,7,3) >; GLZN := MatrixGroup< 2, Integers(21) | [[15, 14, 7, 15], [1, 3, 0, 1], [13, 0, 0, 13], [8, 0, 0, 1], [8, 0, 0, 8], [15, 16, 7, 6], [1, 0, 0, 4]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_672_1093 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b>,< 2, 1, b*d^14>,< 2, 1, d^14>,< 2, 2, a>,< 2, 2, a*d^21>,< 2, 2, a*b>,< 2, 2, a*b*d^21>,< 2, 7, c^3>,< 2, 7, c^3*d^26>,< 2, 7, b*c^3>,< 2, 7, b*c^3*d^26>,< 2, 14, a*c^3>,< 2, 14, a*c^3*d^13>,< 2, 14, a*b*c^3>,< 2, 14, a*b*c^3*d^13>,< 3, 7, c^2>,< 3, 7, c^4>,< 4, 2, d^7>,< 4, 2, b*d^7>,< 4, 14, c^3*d^27>,< 4, 14, b*c^3*d^27>,< 6, 7, c>,< 6, 7, c^5>,< 6, 7, c*d^2>,< 6, 7, c^5*d^2>,< 6, 7, b*c^2>,< 6, 7, b*c^4>,< 6, 7, b*c>,< 6, 7, b*c^5>,< 6, 7, b*c^2*d^2>,< 6, 7, b*c^4*d^2>,< 6, 7, b*c*d^2>,< 6, 7, b*c^5*d^2>,< 6, 7, c^4*d^10>,< 6, 7, c^2*d^22>,< 6, 14, a*c^2>,< 6, 14, a*c^4>,< 6, 14, a*c>,< 6, 14, a*c^5>,< 6, 14, a*c^2*d>,< 6, 14, a*c^4*d>,< 6, 14, a*c*d>,< 6, 14, a*c^5*d>,< 6, 14, a*b*c^2>,< 6, 14, a*b*c^4>,< 6, 14, a*b*c>,< 6, 14, a*b*c^5>,< 6, 14, a*b*c^2*d>,< 6, 14, a*b*c^4*d>,< 6, 14, a*b*c*d>,< 6, 14, a*b*c^5*d>,< 7, 6, d^8>,< 12, 14, c^2*d>,< 12, 14, c^4*d>,< 12, 14, c*d>,< 12, 14, c^5*d>,< 12, 14, b*c^2*d>,< 12, 14, b*c^4*d>,< 12, 14, b*c*d>,< 12, 14, b*c^5*d>,< 14, 6, b*d^4>,< 14, 6, b*d^2>,< 14, 6, d^2>,< 14, 12, a*d^4>,< 14, 12, a*d>,< 14, 12, a*b*d^4>,< 14, 12, a*b*d>,< 28, 12, d>,< 28, 12, b*d>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1^-1,K.1,1,-1,-1,1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1,-1,1,1,1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,K.1,K.1^-1,1,-1,-1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,K.1,-1,-1,1,1,1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,K.1^-1,K.1,1,-1,1,-1,-1*K.1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,1,-1*K.1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1,-1,1,1,1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,K.1,K.1^-1,1,-1,1,-1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1,K.1^-1,K.1,1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1,-1,1,1,1,-1,-1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,1,-1,-1,1,K.1^-1,K.1,-1,1,1,-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,1,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1,-1,1,1,-1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,1,-1,-1,1,K.1,K.1^-1,-1,1,1,-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1,K.1^-1,K.1,1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1,-1*K.1,-1,-1,1,1,-1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,-1,K.1^-1,K.1,-1,1,-1,1,-1*K.1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1,-1,1,1,-1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,-1,K.1,K.1^-1,-1,1,-1,1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1,-1,-1,1,1,-1,-1,1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,K.1^-1,K.1,-1,1,1,-1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1,-1,1,-1,1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,K.1,K.1^-1,-1,1,1,-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1,K.1,-1*K.1,-1,-1,1,-1,1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,K.1^-1,K.1,-1,1,-1,1,-1*K.1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1,-1,1,-1,1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,K.1,K.1^-1,-1,1,-1,1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1,1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1,-1,-1,1,-1,1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,K.1^-1,K.1,1,-1,-1,1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1,-1,1,-1,-1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,K.1,K.1^-1,1,-1,-1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1^-1,K.1,1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1,K.1,-1,-1,1,-1,-1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,K.1^-1,K.1,1,-1,1,-1,-1*K.1,K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,-1*K.1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1,-1,1,-1,-1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,K.1,K.1^-1,1,-1,1,-1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1,-1,1,-1,-1,1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1^-1,K.1,1,1,-1,-1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,1,K.1,K.1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,1,1,1,-1,-1,-1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,K.1,K.1^-1,1,1,-1,-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,K.1^-1,K.1,1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,1,1,1,-1,-1,-1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,1,1,1,-1,-1,-1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,1,1,1,-1,-1,-1,-1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,-1,K.1^-1,K.1,-1,-1,1,1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,1,1,1,-1,1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,-1,K.1,K.1^-1,-1,-1,1,1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1,K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1,K.1,1,1,1,-1,1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,1,-1,1,1,1,1,1,-1,1,-1,1,K.1^-1,K.1,-1,-1,-1,-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,K.1^-1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,1,1,1,-1,1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,-1,1,-1,1,1,1,1,1,-1,1,-1,1,K.1,K.1^-1,-1,-1,-1,-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,K.1,1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,1,1,1,-1,1,-1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,K.1^-1,K.1,-1,-1,1,1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1^-1,1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,1,1,1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,K.1,K.1^-1,-1,-1,1,1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1,1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1,K.1,1,1,1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,-1,1,-1,1,1,1,1,1,-1,1,-1,K.1^-1,K.1,-1,-1,-1,-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,1,1,1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,-1,1,-1,1,1,1,1,1,-1,1,-1,K.1,K.1^-1,-1,-1,-1,-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1,-1*K.1^-1,-1*K.1,1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,1,1,1,1,-1,1,-1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,1,1,-1,-1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1^-1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,1,K.1,K.1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,1,1,-1,-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1,K.1,K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,1,1,1,1,1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, 0, 0, -2, 2, -2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, -2, -2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, 2, 0, 0, 0, 0, 2, -2, 2, -2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, 2, -2, 2, 2, -2, 2, -2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, 0, 0, -2, 2, 2, -2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, -2, -2, 2, 2, -2, 2, -2, 2, 2, -2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 0, 0, 0, 0, 2, -2, -2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, -2, 2, -2, -2, -2, 2, -2, 2, 2, -2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2,2,-2,2,0,0,0,0,2*K.1^-1,2*K.1,0,0,0,0,2*K.1,-2*K.1^-1,-2*K.1,2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,-2,2,-2,2,0,0,0,0,2*K.1,2*K.1^-1,0,0,0,0,2*K.1^-1,-2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1,2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2,2,-2,0,0,0,0,2*K.1^-1,2*K.1,0,0,0,0,-2*K.1,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1,2*K.1^-1,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1,2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,-2,-2,2,0,0,0,0,2,-2,2,-2,0,0,0,0,2*K.1,2*K.1^-1,0,0,0,0,-2*K.1^-1,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1,2*K.1^-1,2*K.1,-2*K.1,2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,-2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-2,2,2,-2,0,0,0,0,2*K.1^-1,2*K.1,0,0,0,0,-2*K.1,-2*K.1^-1,2*K.1,2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1,2*K.1,-2*K.1,-2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,-2,2,2,-2,0,0,0,0,2*K.1,2*K.1^-1,0,0,0,0,-2*K.1^-1,-2*K.1,2*K.1^-1,2*K.1^-1,-2*K.1,2*K.1,-2*K.1^-1,2*K.1,2*K.1,-2*K.1,-2*K.1^-1,2*K.1^-1,-2*K.1^-1,-2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,0,0,0,0,2*K.1^-1,2*K.1,0,0,0,0,2*K.1,-2*K.1^-1,2*K.1,-2*K.1,-2*K.1^-1,-2*K.1^-1,2*K.1,-2*K.1^-1,2*K.1^-1,2*K.1^-1,-2*K.1,-2*K.1,-2*K.1,2*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |2,2,-2,-2,0,0,0,0,2,-2,-2,2,0,0,0,0,2*K.1,2*K.1^-1,0,0,0,0,2*K.1^-1,-2*K.1,2*K.1^-1,-2*K.1^-1,-2*K.1,-2*K.1,2*K.1^-1,-2*K.1,2*K.1,2*K.1,-2*K.1^-1,-2*K.1^-1,-2*K.1^-1,2*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, -6, -6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, -1, 1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, -6, 6, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 1, 1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, 6, -6, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -6, 6, -6, 6, 6, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 1, 1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, -6, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, -6, 6, -6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, -1, 1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 6, 6, 6, 6, -6, 6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, -12, -12, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[12, 12, -12, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 2, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_672_1093:= KnownIrreducibles(CR);