/* Group 660.17 downloaded from the LMFDB on 21 November 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([5, -2, -5, -2, -3, -11, 10, 1052, 3682, 42, 2803, 3208, 78, 10504, 3759]); a,b := Explode([GPC.1, GPC.3]); AssignNames(~GPC, ["a", "a2", "b", "b2", "b6"]); GPerm := PermutationGroup< 16 | (2,3)(4,6)(5,8)(7,11)(9,10)(15,16), (15,16), (12,13,14), (2,4,7,8,10)(3,6,11,5,9), (1,2,5,10,4,7,11,6,9,8,3) >; F:=GF(121); al:=F.1; GLFq := MatrixGroup< 2, F | [[al^84, 0], [al^18, al^36]],[[al^119, al^117], [al^93, al^104]],[[al^80, 0], [0, al^80]],[[al^88, 0], [al^94, al^52]],[[al^60, 0], [0, al^60]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_660_17 := rec< RF | Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, b^33>,< 2, 11, a^5*b^36>,< 2, 11, a^5*b^51>,< 3, 1, b^22>,< 3, 1, b^44>,< 5, 11, a^2*b^12>,< 5, 11, a^8*b^24>,< 5, 11, a^4*b^6>,< 5, 11, a^6*b^42>,< 6, 1, b^11>,< 6, 1, b^55>,< 6, 11, a^5*b^58>,< 6, 11, a^5*b^14>,< 6, 11, a^5*b^29>,< 6, 11, a^5*b^7>,< 10, 11, a^6*b^9>,< 10, 11, a^4*b^39>,< 10, 11, a^8*b^57>,< 10, 11, a^2*b^45>,< 10, 11, a^3*b^48>,< 10, 11, a^7*b^42>,< 10, 11, a^9*b^6>,< 10, 11, a*b^24>,< 10, 11, a^3*b^57>,< 10, 11, a^7*b^21>,< 10, 11, a^9*b^3>,< 10, 11, a*b^45>,< 11, 10, b^6>,< 15, 11, a^4*b^50>,< 15, 11, a^6*b^64>,< 15, 11, a^8*b^46>,< 15, 11, a^2*b^56>,< 15, 11, a^6*b^20>,< 15, 11, a^4*b^28>,< 15, 11, a^8*b^2>,< 15, 11, a^2*b^34>,< 22, 10, b^3>,< 30, 11, a^2*b>,< 30, 11, a^8*b^5>,< 30, 11, a^4*b>,< 30, 11, a^6*b^5>,< 30, 11, a^2*b^5>,< 30, 11, a^8*b>,< 30, 11, a^6*b>,< 30, 11, a^4*b^5>,< 30, 11, a*b^2>,< 30, 11, a^9*b^4>,< 30, 11, a^7*b^2>,< 30, 11, a^3*b^4>,< 30, 11, a*b^4>,< 30, 11, a^9*b^2>,< 30, 11, a^3*b^2>,< 30, 11, a^7*b^4>,< 30, 11, a*b>,< 30, 11, a^9*b^5>,< 30, 11, a^7*b>,< 30, 11, a^3*b^5>,< 30, 11, a*b^5>,< 30, 11, a^9*b>,< 30, 11, a^3*b>,< 30, 11, a^7*b^5>,< 33, 10, b^2>,< 33, 10, b^64>,< 66, 10, b>,< 66, 10, b^5>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,K.1^-1,K.1,1,1,1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1,-1,-1,1,1,-1,1,-1,-1,1,-1,-1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1,K.1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,-1,1,K.1,K.1^-1,1,1,1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1,-1,-1,1,1,-1,1,-1,-1,1,-1,-1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,K.1^-1,K.1,1,1,1,1,-1*K.1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,-1,-1*K.1,K.1^-1,K.1,-1*K.1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,K.1,K.1^-1,1,1,1,1,-1*K.1^-1,-1*K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1^-1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1,K.1^-1,1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1,-1*K.1,K.1^-1,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,-1*K.1,K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,-1,-1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1,-1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,-1*K.1^-1,K.1,K.1,-1*K.1,K.1^-1,-1*K.1,K.1^-1,-1*K.1,K.1,-1*K.1,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,1,1,1,1,K.1,K.1^-2,K.1^-1,K.1,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1,1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1,1,K.1^-2,K.1^-2,K.1^-1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^2,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^2,K.1,K.1,K.1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,1,1,1,1,K.1^-1,K.1^2,K.1,K.1^-1,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-1,1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-1,1,K.1^2,K.1^2,K.1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1^-2,K.1^2,K.1^-2,K.1^-2,K.1,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^2,K.1^-2,K.1^2,K.1^-2,K.1^-1,K.1^-1,K.1^-1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,1,1,1,1,K.1^-2,K.1^-1,K.1^2,K.1^-2,K.1,K.1^-1,K.1^2,K.1,K.1,K.1^-1,K.1^2,K.1^-2,1,K.1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,1,K.1^-1,K.1^-1,K.1^2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1,K.1,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1,K.1,K.1^-2,K.1^-2,K.1^-2,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,1,1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,1,1,1,1,K.1^2,K.1,K.1^-2,K.1^2,K.1^-1,K.1,K.1^-2,K.1^-1,K.1^-1,K.1,K.1^-2,K.1^2,1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,1,K.1,K.1,K.1^-2,K.1^-2,K.1^-1,K.1^2,K.1^2,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-2,K.1^-2,K.1,K.1^-1,K.1,K.1^-1,K.1^2,K.1^2,K.1^2,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,-1,-1,-1,-1,1,1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1,K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1,1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1,-1,K.1^-2,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1,K.1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,-1,-1,-1,-1,1,1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1^-1,K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-1,1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-1,-1,K.1^2,-1*K.1^2,-1*K.1,K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1,K.1,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,-1,-1,-1,-1,1,1,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^-2,K.1,-1*K.1^-1,K.1^2,-1*K.1,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^-2,1,K.1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,-1,K.1^-1,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^-2,K.1^-2,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,-1,1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,-1,-1,-1,-1,1,1,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^2,K.1^-1,-1*K.1,K.1^-2,-1*K.1^-1,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^2,1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,-1,K.1,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^-2,K.1^-2,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^2,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,-1,-1,1,1,-1,-1,K.1,K.1^-2,-1*K.1^-1,-1*K.1,-1*K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1,1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1,-1,-1*K.1^-2,K.1^-2,K.1^-1,-1*K.1^-1,K.1^2,K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^2,-1*K.1,K.1,-1*K.1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,-1,-1,1,1,-1,-1,K.1^-1,K.1^2,-1*K.1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^-1,1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-1,-1,-1*K.1^2,K.1^2,K.1,-1*K.1,K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-2,-1*K.1,K.1,-1*K.1^-1,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-1,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,-1,-1,1,1,-1,-1,K.1^-2,K.1^-1,-1*K.1^2,-1*K.1^-2,-1*K.1,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1,-1*K.1^-1,K.1^2,-1*K.1^-2,1,K.1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,-1,-1*K.1^-1,K.1^-1,K.1^2,-1*K.1^2,K.1,K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1,-1*K.1,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^-2,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,-1,1,-1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,-1,-1,1,1,-1,-1,K.1^2,K.1,-1*K.1^-2,-1*K.1^2,-1*K.1^-1,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,-1*K.1,K.1^-2,-1*K.1^2,1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,-1,-1*K.1,K.1,K.1^-2,-1*K.1^-2,K.1^-1,K.1^2,-1*K.1^2,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^-1,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^2,1,1,-1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,K.1^-2,K.1^2,K.1,K.1^-1,1,1,-1,-1,-1,-1,-1*K.1,-1*K.1^-2,K.1^-1,-1*K.1,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,K.1,1,K.1^2,K.1^-2,K.1^2,K.1^-1,K.1^-2,K.1,K.1^-1,K.1,1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1^2,K.1^-2,-1*K.1^2,K.1^2,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^-2,-1*K.1^2,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1,-1*K.1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,K.1^2,K.1^-2,K.1^-1,K.1,1,1,-1,-1,-1,-1,-1*K.1^-1,-1*K.1^2,K.1,-1*K.1^-1,-1*K.1^-2,K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,K.1^-1,1,K.1^-2,K.1^2,K.1^-2,K.1,K.1^2,K.1^-1,K.1,K.1^-1,1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^-2,K.1^2,-1*K.1^-2,K.1^-2,K.1,-1*K.1,K.1^-1,-1*K.1^2,K.1,-1*K.1,K.1^2,-1*K.1^-2,-1*K.1^2,K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,K.1^-1,K.1,K.1^-2,K.1^2,1,1,-1,-1,-1,-1,-1*K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^-2,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1,K.1,-1*K.1^-1,-1*K.1^2,K.1^-2,1,K.1,K.1^-1,K.1,K.1^2,K.1^-1,K.1^-2,K.1^2,K.1^-2,1,-1*K.1^-1,-1*K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-2,K.1^-2,-1*K.1,K.1^-1,-1*K.1,K.1,K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^2,-1*K.1^2,K.1^-1,-1*K.1,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-2,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(5: Sparse := true); S := [ K |1,1,-1,-1,1,1,K.1,K.1^-1,K.1^2,K.1^-2,1,1,-1,-1,-1,-1,-1*K.1^2,-1*K.1,K.1^-2,-1*K.1^2,-1*K.1^-1,K.1,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-2,K.1^2,1,K.1^-1,K.1,K.1^-1,K.1^-2,K.1,K.1^2,K.1^-2,K.1^2,1,-1*K.1,-1*K.1,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^2,K.1^2,-1*K.1^-1,K.1,-1*K.1^-1,K.1^-1,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1,K.1^-2,-1*K.1^-2,K.1,-1*K.1^-1,-1*K.1,K.1^-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,1,1,1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,1,1,K.1^-5,K.1^5,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^5,K.1^3,K.1^-6,K.1^-3,K.1^3,K.1^6,K.1^-6,K.1^-3,K.1^6,K.1^6,K.1^-6,K.1^-3,K.1^3,1,K.1^-4,K.1^4,K.1,K.1^7,K.1^-1,K.1^-7,K.1^2,K.1^-2,1,K.1^-1,K.1^4,K.1^2,K.1^2,K.1,K.1^-7,K.1^-2,K.1^-4,K.1^-1,K.1^-4,K.1,K.1^7,K.1^7,K.1^-7,K.1^4,K.1^2,K.1^7,K.1^4,K.1,K.1^-1,K.1^-4,K.1^-2,K.1^-2,K.1^-7,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,1,1,K.1^5,K.1^-5,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^-5,K.1^-3,K.1^6,K.1^3,K.1^-3,K.1^-6,K.1^6,K.1^3,K.1^-6,K.1^-6,K.1^6,K.1^3,K.1^-3,1,K.1^4,K.1^-4,K.1^-1,K.1^-7,K.1,K.1^7,K.1^-2,K.1^2,1,K.1,K.1^-4,K.1^-2,K.1^-2,K.1^-1,K.1^7,K.1^2,K.1^4,K.1,K.1^4,K.1^-1,K.1^-7,K.1^-7,K.1^7,K.1^-4,K.1^-2,K.1^-7,K.1^-4,K.1^-1,K.1,K.1^4,K.1^2,K.1^2,K.1^7,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,1,1,K.1^-5,K.1^5,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^5,K.1^-3,K.1^6,K.1^3,K.1^-3,K.1^-6,K.1^6,K.1^3,K.1^-6,K.1^-6,K.1^6,K.1^3,K.1^-3,1,K.1^-1,K.1,K.1^4,K.1^-2,K.1^-4,K.1^2,K.1^-7,K.1^7,1,K.1^-4,K.1,K.1^-7,K.1^-7,K.1^4,K.1^2,K.1^7,K.1^-1,K.1^-4,K.1^-1,K.1^4,K.1^-2,K.1^-2,K.1^2,K.1,K.1^-7,K.1^-2,K.1,K.1^4,K.1^-4,K.1^-1,K.1^7,K.1^7,K.1^2,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,1,1,K.1^5,K.1^-5,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^-5,K.1^3,K.1^-6,K.1^-3,K.1^3,K.1^6,K.1^-6,K.1^-3,K.1^6,K.1^6,K.1^-6,K.1^-3,K.1^3,1,K.1,K.1^-1,K.1^-4,K.1^2,K.1^4,K.1^-2,K.1^7,K.1^-7,1,K.1^4,K.1^-1,K.1^7,K.1^7,K.1^-4,K.1^-2,K.1^-7,K.1,K.1^4,K.1,K.1^-4,K.1^2,K.1^2,K.1^-2,K.1^-1,K.1^7,K.1^2,K.1^-1,K.1^-4,K.1^4,K.1,K.1^-7,K.1^-7,K.1^-2,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,1,1,K.1^-5,K.1^5,K.1^-3,K.1^3,K.1^-6,K.1^6,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^5,K.1^-6,K.1^-3,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^6,K.1^3,K.1^3,K.1^-3,K.1^6,K.1^-6,1,K.1^-7,K.1^7,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-4,K.1^4,1,K.1^2,K.1^7,K.1^-4,K.1^-4,K.1^-2,K.1^-1,K.1^4,K.1^-7,K.1^2,K.1^-7,K.1^-2,K.1,K.1,K.1^-1,K.1^7,K.1^-4,K.1,K.1^7,K.1^-2,K.1^2,K.1^-7,K.1^4,K.1^4,K.1^-1,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,1,1,K.1^5,K.1^-5,K.1^3,K.1^-3,K.1^6,K.1^-6,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^-5,K.1^6,K.1^3,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1^-6,K.1^-3,K.1^-3,K.1^3,K.1^-6,K.1^6,1,K.1^7,K.1^-7,K.1^2,K.1^-1,K.1^-2,K.1,K.1^4,K.1^-4,1,K.1^-2,K.1^-7,K.1^4,K.1^4,K.1^2,K.1,K.1^-4,K.1^7,K.1^-2,K.1^7,K.1^2,K.1^-1,K.1^-1,K.1,K.1^-7,K.1^4,K.1^-1,K.1^-7,K.1^2,K.1^-2,K.1^7,K.1^-4,K.1^-4,K.1,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,1,1,K.1^-5,K.1^5,K.1^3,K.1^-3,K.1^6,K.1^-6,K.1^5,K.1^-5,K.1^5,K.1^-5,K.1^-5,K.1^5,K.1^6,K.1^3,K.1^-6,K.1^6,K.1^-3,K.1^3,K.1^-6,K.1^-3,K.1^-3,K.1^3,K.1^-6,K.1^6,1,K.1^2,K.1^-2,K.1^7,K.1^4,K.1^-7,K.1^-4,K.1^-1,K.1,1,K.1^-7,K.1^-2,K.1^-1,K.1^-1,K.1^7,K.1^-4,K.1,K.1^2,K.1^-7,K.1^2,K.1^7,K.1^4,K.1^4,K.1^-4,K.1^-2,K.1^-1,K.1^4,K.1^-2,K.1^7,K.1^-7,K.1^2,K.1,K.1,K.1^-4,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,1,1,K.1^5,K.1^-5,K.1^-3,K.1^3,K.1^-6,K.1^6,K.1^-5,K.1^5,K.1^-5,K.1^5,K.1^5,K.1^-5,K.1^-6,K.1^-3,K.1^6,K.1^-6,K.1^3,K.1^-3,K.1^6,K.1^3,K.1^3,K.1^-3,K.1^6,K.1^-6,1,K.1^-2,K.1^2,K.1^-7,K.1^-4,K.1^7,K.1^4,K.1,K.1^-1,1,K.1^7,K.1^2,K.1,K.1,K.1^-7,K.1^4,K.1^-1,K.1^-2,K.1^7,K.1^-2,K.1^-7,K.1^-4,K.1^-4,K.1^4,K.1^2,K.1,K.1^-4,K.1^2,K.1^-7,K.1^7,K.1^-2,K.1^-1,K.1^-1,K.1^4,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,-1,1,K.1^-5,K.1^5,K.1^-6,K.1^6,K.1^3,K.1^-3,-1*K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^5,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,K.1^3,K.1^6,-1*K.1^-6,K.1^-3,-1*K.1^6,-1*K.1^6,K.1^-6,-1*K.1^-3,-1*K.1^3,1,K.1^-4,K.1^4,K.1,K.1^7,K.1^-1,K.1^-7,K.1^2,K.1^-2,-1,K.1^-1,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1,-1*K.1^-7,-1*K.1^-2,K.1^-4,-1*K.1^-1,-1*K.1^-4,-1*K.1,-1*K.1^7,-1*K.1^7,-1*K.1^-7,K.1^4,-1*K.1^2,K.1^7,-1*K.1^4,K.1,-1*K.1^-1,-1*K.1^-4,K.1^-2,-1*K.1^-2,K.1^-7,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,-1,1,K.1^5,K.1^-5,K.1^6,K.1^-6,K.1^-3,K.1^3,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^-5,-1*K.1^-3,-1*K.1^6,-1*K.1^3,K.1^-3,K.1^-6,-1*K.1^6,K.1^3,-1*K.1^-6,-1*K.1^-6,K.1^6,-1*K.1^3,-1*K.1^-3,1,K.1^4,K.1^-4,K.1^-1,K.1^-7,K.1,K.1^7,K.1^-2,K.1^2,-1,K.1,-1*K.1^-4,-1*K.1^-2,K.1^-2,-1*K.1^-1,-1*K.1^7,-1*K.1^2,K.1^4,-1*K.1,-1*K.1^4,-1*K.1^-1,-1*K.1^-7,-1*K.1^-7,-1*K.1^7,K.1^-4,-1*K.1^-2,K.1^-7,-1*K.1^-4,K.1^-1,-1*K.1,-1*K.1^4,K.1^2,-1*K.1^2,K.1^7,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,-1,1,K.1^-5,K.1^5,K.1^6,K.1^-6,K.1^-3,K.1^3,-1*K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^5,-1*K.1^-3,-1*K.1^6,-1*K.1^3,K.1^-3,K.1^-6,-1*K.1^6,K.1^3,-1*K.1^-6,-1*K.1^-6,K.1^6,-1*K.1^3,-1*K.1^-3,1,K.1^-1,K.1,K.1^4,K.1^-2,K.1^-4,K.1^2,K.1^-7,K.1^7,-1,K.1^-4,-1*K.1,-1*K.1^-7,K.1^-7,-1*K.1^4,-1*K.1^2,-1*K.1^7,K.1^-1,-1*K.1^-4,-1*K.1^-1,-1*K.1^4,-1*K.1^-2,-1*K.1^-2,-1*K.1^2,K.1,-1*K.1^-7,K.1^-2,-1*K.1,K.1^4,-1*K.1^-4,-1*K.1^-1,K.1^7,-1*K.1^7,K.1^2,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,-1,1,K.1^5,K.1^-5,K.1^-6,K.1^6,K.1^3,K.1^-3,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^-5,-1*K.1^3,-1*K.1^-6,-1*K.1^-3,K.1^3,K.1^6,-1*K.1^-6,K.1^-3,-1*K.1^6,-1*K.1^6,K.1^-6,-1*K.1^-3,-1*K.1^3,1,K.1,K.1^-1,K.1^-4,K.1^2,K.1^4,K.1^-2,K.1^7,K.1^-7,-1,K.1^4,-1*K.1^-1,-1*K.1^7,K.1^7,-1*K.1^-4,-1*K.1^-2,-1*K.1^-7,K.1,-1*K.1^4,-1*K.1,-1*K.1^-4,-1*K.1^2,-1*K.1^2,-1*K.1^-2,K.1^-1,-1*K.1^7,K.1^2,-1*K.1^-1,K.1^-4,-1*K.1^4,-1*K.1,K.1^-7,-1*K.1^-7,K.1^-2,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,-1,1,K.1^-5,K.1^5,K.1^-3,K.1^3,K.1^-6,K.1^6,-1*K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^5,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,K.1^-6,K.1^3,-1*K.1^-3,K.1^6,-1*K.1^3,-1*K.1^3,K.1^-3,-1*K.1^6,-1*K.1^-6,1,K.1^-7,K.1^7,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-4,K.1^4,-1,K.1^2,-1*K.1^7,-1*K.1^-4,K.1^-4,-1*K.1^-2,-1*K.1^-1,-1*K.1^4,K.1^-7,-1*K.1^2,-1*K.1^-7,-1*K.1^-2,-1*K.1,-1*K.1,-1*K.1^-1,K.1^7,-1*K.1^-4,K.1,-1*K.1^7,K.1^-2,-1*K.1^2,-1*K.1^-7,K.1^4,-1*K.1^4,K.1^-1,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,-1,1,K.1^5,K.1^-5,K.1^3,K.1^-3,K.1^6,K.1^-6,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^-5,-1*K.1^6,-1*K.1^3,-1*K.1^-6,K.1^6,K.1^-3,-1*K.1^3,K.1^-6,-1*K.1^-3,-1*K.1^-3,K.1^3,-1*K.1^-6,-1*K.1^6,1,K.1^7,K.1^-7,K.1^2,K.1^-1,K.1^-2,K.1,K.1^4,K.1^-4,-1,K.1^-2,-1*K.1^-7,-1*K.1^4,K.1^4,-1*K.1^2,-1*K.1,-1*K.1^-4,K.1^7,-1*K.1^-2,-1*K.1^7,-1*K.1^2,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1^-7,-1*K.1^4,K.1^-1,-1*K.1^-7,K.1^2,-1*K.1^-2,-1*K.1^7,K.1^-4,-1*K.1^-4,K.1,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,-1,1,K.1^-5,K.1^5,K.1^3,K.1^-3,K.1^6,K.1^-6,-1*K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,K.1^-5,K.1^5,-1*K.1^6,-1*K.1^3,-1*K.1^-6,K.1^6,K.1^-3,-1*K.1^3,K.1^-6,-1*K.1^-3,-1*K.1^-3,K.1^3,-1*K.1^-6,-1*K.1^6,1,K.1^2,K.1^-2,K.1^7,K.1^4,K.1^-7,K.1^-4,K.1^-1,K.1,-1,K.1^-7,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^7,-1*K.1^-4,-1*K.1,K.1^2,-1*K.1^-7,-1*K.1^2,-1*K.1^7,-1*K.1^4,-1*K.1^4,-1*K.1^-4,K.1^-2,-1*K.1^-1,K.1^4,-1*K.1^-2,K.1^7,-1*K.1^-7,-1*K.1^2,K.1,-1*K.1,K.1^-4,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,-1,1,K.1^5,K.1^-5,K.1^-3,K.1^3,K.1^-6,K.1^6,-1*K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^5,K.1^5,K.1^-5,-1*K.1^-6,-1*K.1^-3,-1*K.1^6,K.1^-6,K.1^3,-1*K.1^-3,K.1^6,-1*K.1^3,-1*K.1^3,K.1^-3,-1*K.1^6,-1*K.1^-6,1,K.1^-2,K.1^2,K.1^-7,K.1^-4,K.1^7,K.1^4,K.1,K.1^-1,-1,K.1^7,-1*K.1^2,-1*K.1,K.1,-1*K.1^-7,-1*K.1^4,-1*K.1^-1,K.1^-2,-1*K.1^7,-1*K.1^-2,-1*K.1^-7,-1*K.1^-4,-1*K.1^-4,-1*K.1^4,K.1^2,-1*K.1,K.1^-4,-1*K.1^2,K.1^-7,-1*K.1^7,-1*K.1^-2,K.1^-1,-1*K.1^-1,K.1^4,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,1,-1,K.1^-5,K.1^5,K.1^-6,K.1^6,K.1^3,K.1^-3,-1*K.1^5,-1*K.1^-5,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5,K.1^3,K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,K.1^6,-1*K.1^6,-1*K.1^-6,K.1^-3,-1*K.1^3,1,K.1^-4,K.1^4,K.1,K.1^7,K.1^-1,K.1^-7,K.1^2,K.1^-2,-1,-1*K.1^-1,K.1^4,K.1^2,-1*K.1^2,K.1,K.1^-7,-1*K.1^-2,-1*K.1^-4,-1*K.1^-1,K.1^-4,-1*K.1,-1*K.1^7,K.1^7,-1*K.1^-7,-1*K.1^4,-1*K.1^2,-1*K.1^7,-1*K.1^4,-1*K.1,K.1^-1,-1*K.1^-4,-1*K.1^-2,K.1^-2,-1*K.1^-7,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,1,-1,K.1^5,K.1^-5,K.1^6,K.1^-6,K.1^-3,K.1^3,-1*K.1^-5,-1*K.1^5,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5,K.1^-3,K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^-6,-1*K.1^6,-1*K.1^3,K.1^-6,-1*K.1^-6,-1*K.1^6,K.1^3,-1*K.1^-3,1,K.1^4,K.1^-4,K.1^-1,K.1^-7,K.1,K.1^7,K.1^-2,K.1^2,-1,-1*K.1,K.1^-4,K.1^-2,-1*K.1^-2,K.1^-1,K.1^7,-1*K.1^2,-1*K.1^4,-1*K.1,K.1^4,-1*K.1^-1,-1*K.1^-7,K.1^-7,-1*K.1^7,-1*K.1^-4,-1*K.1^-2,-1*K.1^-7,-1*K.1^-4,-1*K.1^-1,K.1,-1*K.1^4,-1*K.1^2,K.1^2,-1*K.1^7,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,1,-1,K.1^-5,K.1^5,K.1^6,K.1^-6,K.1^-3,K.1^3,-1*K.1^5,-1*K.1^-5,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5,K.1^-3,K.1^6,-1*K.1^3,-1*K.1^-3,-1*K.1^-6,-1*K.1^6,-1*K.1^3,K.1^-6,-1*K.1^-6,-1*K.1^6,K.1^3,-1*K.1^-3,1,K.1^-1,K.1,K.1^4,K.1^-2,K.1^-4,K.1^2,K.1^-7,K.1^7,-1,-1*K.1^-4,K.1,K.1^-7,-1*K.1^-7,K.1^4,K.1^2,-1*K.1^7,-1*K.1^-1,-1*K.1^-4,K.1^-1,-1*K.1^4,-1*K.1^-2,K.1^-2,-1*K.1^2,-1*K.1,-1*K.1^-7,-1*K.1^-2,-1*K.1,-1*K.1^4,K.1^-4,-1*K.1^-1,-1*K.1^7,K.1^7,-1*K.1^2,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,1,-1,K.1^5,K.1^-5,K.1^-6,K.1^6,K.1^3,K.1^-3,-1*K.1^-5,-1*K.1^5,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5,K.1^3,K.1^-6,-1*K.1^-3,-1*K.1^3,-1*K.1^6,-1*K.1^-6,-1*K.1^-3,K.1^6,-1*K.1^6,-1*K.1^-6,K.1^-3,-1*K.1^3,1,K.1,K.1^-1,K.1^-4,K.1^2,K.1^4,K.1^-2,K.1^7,K.1^-7,-1,-1*K.1^4,K.1^-1,K.1^7,-1*K.1^7,K.1^-4,K.1^-2,-1*K.1^-7,-1*K.1,-1*K.1^4,K.1,-1*K.1^-4,-1*K.1^2,K.1^2,-1*K.1^-2,-1*K.1^-1,-1*K.1^7,-1*K.1^2,-1*K.1^-1,-1*K.1^-4,K.1^4,-1*K.1,-1*K.1^-7,K.1^-7,-1*K.1^-2,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,1,-1,K.1^-5,K.1^5,K.1^-3,K.1^3,K.1^-6,K.1^6,-1*K.1^5,-1*K.1^-5,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5,K.1^-6,K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^6,K.1^3,-1*K.1^3,-1*K.1^-3,K.1^6,-1*K.1^-6,1,K.1^-7,K.1^7,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-4,K.1^4,-1,-1*K.1^2,K.1^7,K.1^-4,-1*K.1^-4,K.1^-2,K.1^-1,-1*K.1^4,-1*K.1^-7,-1*K.1^2,K.1^-7,-1*K.1^-2,-1*K.1,K.1,-1*K.1^-1,-1*K.1^7,-1*K.1^-4,-1*K.1,-1*K.1^7,-1*K.1^-2,K.1^2,-1*K.1^-7,-1*K.1^4,K.1^4,-1*K.1^-1,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,1,-1,K.1^5,K.1^-5,K.1^3,K.1^-3,K.1^6,K.1^-6,-1*K.1^-5,-1*K.1^5,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5,K.1^6,K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,K.1^-3,-1*K.1^-3,-1*K.1^3,K.1^-6,-1*K.1^6,1,K.1^7,K.1^-7,K.1^2,K.1^-1,K.1^-2,K.1,K.1^4,K.1^-4,-1,-1*K.1^-2,K.1^-7,K.1^4,-1*K.1^4,K.1^2,K.1,-1*K.1^-4,-1*K.1^7,-1*K.1^-2,K.1^7,-1*K.1^2,-1*K.1^-1,K.1^-1,-1*K.1,-1*K.1^-7,-1*K.1^4,-1*K.1^-1,-1*K.1^-7,-1*K.1^2,K.1^-2,-1*K.1^7,-1*K.1^-4,K.1^-4,-1*K.1,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,1,-1,K.1^-5,K.1^5,K.1^3,K.1^-3,K.1^6,K.1^-6,-1*K.1^5,-1*K.1^-5,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5,K.1^6,K.1^3,-1*K.1^-6,-1*K.1^6,-1*K.1^-3,-1*K.1^3,-1*K.1^-6,K.1^-3,-1*K.1^-3,-1*K.1^3,K.1^-6,-1*K.1^6,1,K.1^2,K.1^-2,K.1^7,K.1^4,K.1^-7,K.1^-4,K.1^-1,K.1,-1,-1*K.1^-7,K.1^-2,K.1^-1,-1*K.1^-1,K.1^7,K.1^-4,-1*K.1,-1*K.1^2,-1*K.1^-7,K.1^2,-1*K.1^7,-1*K.1^4,K.1^4,-1*K.1^-4,-1*K.1^-2,-1*K.1^-1,-1*K.1^4,-1*K.1^-2,-1*K.1^7,K.1^-7,-1*K.1^2,-1*K.1,K.1,-1*K.1^-4,K.1^5,K.1^-5,-1*K.1^-5,-1*K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,-1,1,-1,K.1^5,K.1^-5,K.1^-3,K.1^3,K.1^-6,K.1^6,-1*K.1^-5,-1*K.1^5,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5,K.1^-6,K.1^-3,-1*K.1^6,-1*K.1^-6,-1*K.1^3,-1*K.1^-3,-1*K.1^6,K.1^3,-1*K.1^3,-1*K.1^-3,K.1^6,-1*K.1^-6,1,K.1^-2,K.1^2,K.1^-7,K.1^-4,K.1^7,K.1^4,K.1,K.1^-1,-1,-1*K.1^7,K.1^2,K.1,-1*K.1,K.1^-7,K.1^4,-1*K.1^-1,-1*K.1^-2,-1*K.1^7,K.1^-2,-1*K.1^-7,-1*K.1^-4,K.1^-4,-1*K.1^4,-1*K.1^2,-1*K.1,-1*K.1^-4,-1*K.1^2,-1*K.1^-7,K.1^7,-1*K.1^-2,-1*K.1^-1,K.1^-1,-1*K.1^4,K.1^-5,K.1^5,-1*K.1^5,-1*K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,-1,-1,K.1^-5,K.1^5,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^5,K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^3,-1*K.1^-6,K.1^-3,-1*K.1^3,-1*K.1^6,K.1^-6,-1*K.1^-3,-1*K.1^6,K.1^6,-1*K.1^-6,-1*K.1^-3,K.1^3,1,K.1^-4,K.1^4,K.1,K.1^7,K.1^-1,K.1^-7,K.1^2,K.1^-2,1,-1*K.1^-1,-1*K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1^-7,K.1^-2,-1*K.1^-4,K.1^-1,-1*K.1^-4,K.1,K.1^7,-1*K.1^7,K.1^-7,-1*K.1^4,K.1^2,-1*K.1^7,K.1^4,-1*K.1,-1*K.1^-1,K.1^-4,-1*K.1^-2,-1*K.1^-2,-1*K.1^-7,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,-1,-1,K.1^5,K.1^-5,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^-5,K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^-3,-1*K.1^6,K.1^3,-1*K.1^-3,-1*K.1^-6,K.1^6,-1*K.1^3,-1*K.1^-6,K.1^-6,-1*K.1^6,-1*K.1^3,K.1^-3,1,K.1^4,K.1^-4,K.1^-1,K.1^-7,K.1,K.1^7,K.1^-2,K.1^2,1,-1*K.1,-1*K.1^-4,-1*K.1^-2,-1*K.1^-2,-1*K.1^-1,-1*K.1^7,K.1^2,-1*K.1^4,K.1,-1*K.1^4,K.1^-1,K.1^-7,-1*K.1^-7,K.1^7,-1*K.1^-4,K.1^-2,-1*K.1^-7,K.1^-4,-1*K.1^-1,-1*K.1,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^7,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,-1,-1,K.1^-5,K.1^5,K.1^6,K.1^-6,K.1^-3,K.1^3,K.1^5,K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^-3,-1*K.1^6,K.1^3,-1*K.1^-3,-1*K.1^-6,K.1^6,-1*K.1^3,-1*K.1^-6,K.1^-6,-1*K.1^6,-1*K.1^3,K.1^-3,1,K.1^-1,K.1,K.1^4,K.1^-2,K.1^-4,K.1^2,K.1^-7,K.1^7,1,-1*K.1^-4,-1*K.1,-1*K.1^-7,-1*K.1^-7,-1*K.1^4,-1*K.1^2,K.1^7,-1*K.1^-1,K.1^-4,-1*K.1^-1,K.1^4,K.1^-2,-1*K.1^-2,K.1^2,-1*K.1,K.1^-7,-1*K.1^-2,K.1,-1*K.1^4,-1*K.1^-4,K.1^-1,-1*K.1^7,-1*K.1^7,-1*K.1^2,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,-1,-1,K.1^5,K.1^-5,K.1^-6,K.1^6,K.1^3,K.1^-3,K.1^-5,K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^3,-1*K.1^-6,K.1^-3,-1*K.1^3,-1*K.1^6,K.1^-6,-1*K.1^-3,-1*K.1^6,K.1^6,-1*K.1^-6,-1*K.1^-3,K.1^3,1,K.1,K.1^-1,K.1^-4,K.1^2,K.1^4,K.1^-2,K.1^7,K.1^-7,1,-1*K.1^4,-1*K.1^-1,-1*K.1^7,-1*K.1^7,-1*K.1^-4,-1*K.1^-2,K.1^-7,-1*K.1,K.1^4,-1*K.1,K.1^-4,K.1^2,-1*K.1^2,K.1^-2,-1*K.1^-1,K.1^7,-1*K.1^2,K.1^-1,-1*K.1^-4,-1*K.1^4,K.1,-1*K.1^-7,-1*K.1^-7,-1*K.1^-2,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,-1,-1,K.1^-5,K.1^5,K.1^-3,K.1^3,K.1^-6,K.1^6,K.1^5,K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^-6,-1*K.1^-3,K.1^6,-1*K.1^-6,-1*K.1^3,K.1^-3,-1*K.1^6,-1*K.1^3,K.1^3,-1*K.1^-3,-1*K.1^6,K.1^-6,1,K.1^-7,K.1^7,K.1^-2,K.1,K.1^2,K.1^-1,K.1^-4,K.1^4,1,-1*K.1^2,-1*K.1^7,-1*K.1^-4,-1*K.1^-4,-1*K.1^-2,-1*K.1^-1,K.1^4,-1*K.1^-7,K.1^2,-1*K.1^-7,K.1^-2,K.1,-1*K.1,K.1^-1,-1*K.1^7,K.1^-4,-1*K.1,K.1^7,-1*K.1^-2,-1*K.1^2,K.1^-7,-1*K.1^4,-1*K.1^4,-1*K.1^-1,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,-1,-1,K.1^5,K.1^-5,K.1^3,K.1^-3,K.1^6,K.1^-6,K.1^-5,K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^6,-1*K.1^3,K.1^-6,-1*K.1^6,-1*K.1^-3,K.1^3,-1*K.1^-6,-1*K.1^-3,K.1^-3,-1*K.1^3,-1*K.1^-6,K.1^6,1,K.1^7,K.1^-7,K.1^2,K.1^-1,K.1^-2,K.1,K.1^4,K.1^-4,1,-1*K.1^-2,-1*K.1^-7,-1*K.1^4,-1*K.1^4,-1*K.1^2,-1*K.1,K.1^-4,-1*K.1^7,K.1^-2,-1*K.1^7,K.1^2,K.1^-1,-1*K.1^-1,K.1,-1*K.1^-7,K.1^4,-1*K.1^-1,K.1^-7,-1*K.1^2,-1*K.1^-2,K.1^7,-1*K.1^-4,-1*K.1^-4,-1*K.1,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,-1,-1,K.1^-5,K.1^5,K.1^3,K.1^-3,K.1^6,K.1^-6,K.1^5,K.1^-5,-1*K.1^5,-1*K.1^-5,-1*K.1^-5,-1*K.1^5,-1*K.1^6,-1*K.1^3,K.1^-6,-1*K.1^6,-1*K.1^-3,K.1^3,-1*K.1^-6,-1*K.1^-3,K.1^-3,-1*K.1^3,-1*K.1^-6,K.1^6,1,K.1^2,K.1^-2,K.1^7,K.1^4,K.1^-7,K.1^-4,K.1^-1,K.1,1,-1*K.1^-7,-1*K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^7,-1*K.1^-4,K.1,-1*K.1^2,K.1^-7,-1*K.1^2,K.1^7,K.1^4,-1*K.1^4,K.1^-4,-1*K.1^-2,K.1^-1,-1*K.1^4,K.1^-2,-1*K.1^7,-1*K.1^-7,K.1^2,-1*K.1,-1*K.1,-1*K.1^-4,K.1^5,K.1^-5,K.1^-5,K.1^5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |1,1,-1,-1,K.1^5,K.1^-5,K.1^-3,K.1^3,K.1^-6,K.1^6,K.1^-5,K.1^5,-1*K.1^-5,-1*K.1^5,-1*K.1^5,-1*K.1^-5,-1*K.1^-6,-1*K.1^-3,K.1^6,-1*K.1^-6,-1*K.1^3,K.1^-3,-1*K.1^6,-1*K.1^3,K.1^3,-1*K.1^-3,-1*K.1^6,K.1^-6,1,K.1^-2,K.1^2,K.1^-7,K.1^-4,K.1^7,K.1^4,K.1,K.1^-1,1,-1*K.1^7,-1*K.1^2,-1*K.1,-1*K.1,-1*K.1^-7,-1*K.1^4,K.1^-1,-1*K.1^-2,K.1^7,-1*K.1^-2,K.1^-7,K.1^-4,-1*K.1^-4,K.1^4,-1*K.1^2,K.1,-1*K.1^-4,K.1^2,-1*K.1^-7,-1*K.1^7,K.1^-2,-1*K.1^-1,-1*K.1^-1,-1*K.1^4,K.1^-5,K.1^5,K.1^5,K.1^-5]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[10, 10, 0, 0, 10, 10, 0, 0, 0, 0, 10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[10, -10, 0, 0, 10, 10, 0, 0, 0, 0, -10, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,0,0,10*K.1^-1,10*K.1,0,0,0,0,10*K.1,10*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,10,0,0,10*K.1,10*K.1^-1,0,0,0,0,10*K.1^-1,10*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-10,0,0,10*K.1^-1,10*K.1,0,0,0,0,-10*K.1,-10*K.1^-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1,-1*K.1^-1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |10,-10,0,0,10*K.1,10*K.1^-1,0,0,0,0,-10*K.1^-1,-10*K.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1^-1,-1*K.1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_660_17:= KnownIrreducibles(CR);