/* Group 648.717 downloaded from the LMFDB on 20 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([7, 2, 2, 3, 2, 3, 3, 3, 14, 590, 93, 1907, 850, 80, 1824, 851, 21173, 3036, 530, 28230, 10597, 1791]); a,b,c,d,e := Explode([GPC.1, GPC.3, GPC.4, GPC.6, GPC.7]); AssignNames(~GPC, ["a", "a2", "b", "c", "c2", "d", "e"]); GPerm := PermutationGroup< 12 | (1,7)(2,9,3,8)(4,10)(5,12,6,11), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (2,3)(5,6)(8,9)(11,12), (7,8,9)(10,12,11), (1,2,3)(4,6,5)(7,8,9)(10,12,11), (7,9,8)(10,12,11), (1,3,2)(4,6,5)(7,9,8)(10,12,11) >; GLFp := MatrixGroup< 4, GF(3) | [[1, 0, 0, 0, 2, 0, 1, 0, 2, 2, 2, 0, 2, 2, 1, 1], [1, 0, 0, 0, 2, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 1], [1, 0, 0, 0, 1, 2, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 2, 0, 2, 2, 1, 2], [1, 0, 0, 0, 2, 0, 1, 0, 2, 2, 2, 0, 0, 0, 0, 1], [2, 0, 0, 0, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 1], [1, 0, 0, 0, 1, 0, 1, 0, 1, 2, 2, 0, 2, 2, 1, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_648_717 := rec< RF | Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false>; /* Character Table */ G:= GLFp; C := SequenceToConjugacyClasses([car |< 1, 1, Matrix(4, [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1])>,< 2, 9, Matrix(4, [1, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 2, 2, 1, 1])>,< 2, 9, Matrix(4, [1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 2, 0, 1, 0, 0, 2])>,< 2, 81, Matrix(4, [1, 0, 0, 0, 2, 1, 1, 0, 2, 0, 2, 0, 2, 0, 0, 2])>,< 3, 4, Matrix(4, [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1])>,< 3, 4, Matrix(4, [1, 0, 0, 0, 2, 0, 1, 0, 2, 2, 2, 0, 1, 1, 2, 1])>,< 3, 4, Matrix(4, [1, 0, 0, 0, 2, 1, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1])>,< 3, 4, Matrix(4, [1, 0, 0, 0, 2, 0, 1, 0, 2, 2, 2, 0, 0, 0, 0, 1])>,< 3, 8, Matrix(4, [1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 0, 1])>,< 3, 8, Matrix(4, [1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1])>,< 3, 8, Matrix(4, [1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 2, 0, 0, 1])>,< 3, 8, Matrix(4, [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1])>,< 3, 8, Matrix(4, [1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 1, 1, 2, 1])>,< 3, 8, Matrix(4, [1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 1, 2, 1, 1])>,< 3, 8, Matrix(4, [1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 2, 1, 2, 1])>,< 3, 8, Matrix(4, [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 2, 1])>,< 4, 81, Matrix(4, [2, 0, 0, 0, 0, 1, 1, 2, 1, 0, 2, 2, 2, 0, 2, 1])>,< 4, 81, Matrix(4, [2, 0, 0, 0, 2, 1, 0, 1, 0, 0, 1, 1, 2, 0, 1, 2])>,< 4, 81, Matrix(4, [2, 0, 0, 0, 0, 1, 1, 2, 0, 2, 0, 2, 0, 0, 2, 1])>,< 4, 81, Matrix(4, [2, 0, 0, 0, 0, 1, 0, 1, 0, 2, 2, 1, 0, 2, 2, 2])>,< 6, 36, Matrix(4, [1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 1, 1])>,< 6, 36, Matrix(4, [1, 0, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 2, 1, 2, 2])>,< 6, 36, Matrix(4, [1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 1, 1, 2, 1])>,< 6, 36, Matrix(4, [1, 0, 0, 0, 2, 1, 1, 0, 1, 2, 0, 0, 1, 0, 0, 2])>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,K.1,-1*K.1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,-1*K.1,K.1,-1,1,1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,K.1,-1*K.1,K.1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,-1*K.1,K.1,-1*K.1,1,-1,-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[4, 0, 4, 0, 4, -2, 4, 1, -2, -2, -2, 1, 1, -2, 1, 1, 0, 0, 0, 0, 0, 1, -2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 0, 4, 0, 4, 1, 4, -2, 1, 1, 1, -2, -2, 1, -2, -2, 0, 0, 0, 0, 0, -2, 1, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 0, 0, -2, 4, 1, 4, -2, 1, -2, 1, -2, 1, -2, 1, 0, 0, 0, 0, -2, 0, 0, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 4, 0, 0, 1, 4, -2, 4, 1, -2, 1, -2, 1, -2, 1, -2, 0, 0, 0, 0, 1, 0, 0, -2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 0, 0, -2, 4, 1, 4, -2, 1, -2, 1, -2, 1, -2, 1, 0, 0, 0, 0, 2, 0, 0, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, -4, 0, 0, 1, 4, -2, 4, 1, -2, 1, -2, 1, -2, 1, -2, 0, 0, 0, 0, -1, 0, 0, 2]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 0, -4, 0, 4, -2, 4, 1, -2, -2, -2, 1, 1, -2, 1, 1, 0, 0, 0, 0, 0, -1, 2, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[4, 0, -4, 0, 4, 1, 4, -2, 1, 1, 1, -2, -2, 1, -2, -2, 0, 0, 0, 0, 0, 2, -1, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 0, 0, 0, -4, -4, 2, 2, 2, -1, 2, -4, -1, -1, -1, 5, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 0, 0, 0, -4, -4, 2, 2, 2, -1, 2, 5, -1, -1, -1, -4, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 0, 0, 0, -4, 2, 2, -4, -1, -4, -1, -1, 2, 5, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 0, 0, 0, -4, 2, 2, -4, -1, 5, -1, -1, 2, -4, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 0, 0, 0, 2, -4, -4, 2, -1, 2, -1, -1, -4, 2, 5, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 0, 0, 0, 2, -4, -4, 2, -1, 2, -1, -1, 5, 2, -4, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 0, 0, 0, 2, 2, -4, -4, -4, -1, 5, 2, -1, -1, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, 0, 0, 0, 2, 2, -4, -4, 5, -1, -4, 2, -1, -1, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_648_717:= KnownIrreducibles(CR);