/* Group 64.56 downloaded from the LMFDB on 30 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, 2, 2, 2, 2, 2, 2, 31, 850, 88]); a,b,c,d := Explode([GPC.1, GPC.2, GPC.4, GPC.5]); AssignNames(~GPC, ["a", "b", "b2", "c", "d", "d2"]); GPerm := PermutationGroup< 14 | (1,2,3,4)(8,11)(12,14), (1,2)(3,4)(7,8,10,12)(9,11,13,14), (1,3)(2,4)(5,6), (1,3)(2,4)(7,9)(8,11)(10,13)(12,14), (1,3)(2,4), (7,10)(8,12)(9,13)(11,14) >; GLFp := MatrixGroup< 5, GF(2) | [[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0], [0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1]] >; GLZq := MatrixGroup< 2, Integers(8) | [[5, 4, 4, 5], [1, 2, 0, 1], [3, 4, 4, 3], [7, 6, 2, 3], [1, 4, 0, 1], [3, 0, 0, 3]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_64_56 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GLZq; C := SequenceToConjugacyClasses([car |< 1, 1, Matrix(2, [1, 0, 0, 1])>,< 2, 1, Matrix(2, [5, 4, 0, 5])>,< 2, 1, Matrix(2, [3, 4, 4, 3])>,< 2, 1, Matrix(2, [5, 0, 0, 5])>,< 2, 1, Matrix(2, [5, 0, 4, 5])>,< 2, 1, Matrix(2, [3, 0, 4, 3])>,< 2, 1, Matrix(2, [7, 0, 4, 7])>,< 2, 1, Matrix(2, [7, 0, 0, 7])>,< 2, 1, Matrix(2, [1, 4, 4, 1])>,< 2, 1, Matrix(2, [7, 4, 4, 7])>,< 2, 1, Matrix(2, [7, 4, 0, 7])>,< 2, 1, Matrix(2, [3, 4, 0, 3])>,< 2, 1, Matrix(2, [3, 0, 0, 3])>,< 2, 1, Matrix(2, [1, 4, 0, 1])>,< 2, 1, Matrix(2, [5, 4, 4, 5])>,< 2, 1, Matrix(2, [1, 0, 4, 1])>,< 4, 2, Matrix(2, [1, 2, 0, 1])>,< 4, 2, Matrix(2, [1, 6, 0, 1])>,< 4, 2, Matrix(2, [7, 6, 2, 3])>,< 4, 2, Matrix(2, [3, 2, 6, 7])>,< 4, 2, Matrix(2, [5, 6, 4, 5])>,< 4, 2, Matrix(2, [5, 2, 4, 5])>,< 4, 2, Matrix(2, [7, 2, 2, 3])>,< 4, 2, Matrix(2, [3, 6, 6, 7])>,< 4, 2, Matrix(2, [7, 4, 2, 7])>,< 4, 2, Matrix(2, [3, 4, 6, 3])>,< 4, 2, Matrix(2, [3, 2, 4, 3])>,< 4, 2, Matrix(2, [3, 6, 4, 3])>,< 4, 2, Matrix(2, [5, 6, 2, 1])>,< 4, 2, Matrix(2, [1, 2, 6, 5])>,< 4, 2, Matrix(2, [7, 0, 2, 7])>,< 4, 2, Matrix(2, [3, 0, 6, 3])>,< 4, 2, Matrix(2, [7, 6, 0, 7])>,< 4, 2, Matrix(2, [7, 2, 0, 7])>,< 4, 2, Matrix(2, [5, 2, 2, 1])>,< 4, 2, Matrix(2, [1, 6, 6, 5])>,< 4, 2, Matrix(2, [5, 0, 2, 5])>,< 4, 2, Matrix(2, [1, 0, 6, 1])>,< 4, 2, Matrix(2, [5, 4, 2, 5])>,< 4, 2, Matrix(2, [1, 4, 6, 1])>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1*K.1,-1*K.1,K.1,-1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,1,1,K.1,-1,-1*K.1,K.1,1,-1,-1,K.1,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,K.1,K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,1,1,-1*K.1,-1,K.1,-1*K.1,1,-1,-1,-1*K.1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1*K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,-1,-1,-1*K.1,1,K.1,-1*K.1,-1,1,1,K.1,K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,K.1,K.1,-1*K.1,1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1,-1,K.1,1,-1*K.1,K.1,-1,1,1,-1*K.1,-1*K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1*K.1,1,K.1,K.1,-1*K.1,1,1,-1*K.1,1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,K.1,1,-1*K.1,-1*K.1,K.1,1,1,K.1,1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,-1*K.1,-1,-1*K.1,-1*K.1,K.1,-1,-1,K.1,-1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,K.1,-1,K.1,K.1,-1*K.1,-1,-1,-1*K.1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1,1,-1,K.1,K.1,1,-1*K.1,-1*K.1,-1*K.1,1,K.1,-1,-1,K.1,-1*K.1,-1*K.1,K.1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1,1,-1,-1*K.1,-1*K.1,1,K.1,K.1,K.1,1,-1*K.1,-1,-1,-1*K.1,K.1,K.1,-1*K.1,1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,1,-1,1,K.1,K.1,-1,-1*K.1,K.1,K.1,-1,-1*K.1,1,1,-1*K.1,K.1,K.1,K.1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,K.1,-1*K.1,K.1,K.1,K.1,1,-1,1,-1*K.1,-1*K.1,-1,K.1,-1*K.1,-1*K.1,-1,K.1,1,1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1*K.1,K.1,-1,-1*K.1,-1*K.1,K.1,1,K.1,1,1,K.1,K.1,-1*K.1,K.1,1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,K.1,-1*K.1,-1,K.1,K.1,-1*K.1,1,-1*K.1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1,1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,1,1,1,-1*K.1,K.1,1,-1*K.1,K.1,-1*K.1,-1,-1*K.1,-1,-1,-1*K.1,-1*K.1,K.1,K.1,-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,1,1,1,K.1,-1*K.1,1,K.1,-1*K.1,K.1,-1,K.1,-1,-1,K.1,K.1,-1*K.1,-1*K.1,-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1*K.1,-1,-1*K.1,K.1,K.1,-1,1,-1*K.1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,-1,-1*K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,K.1,-1,K.1,-1*K.1,-1*K.1,-1,1,K.1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1,K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,-1*K.1,1,K.1,-1*K.1,-1*K.1,1,-1,K.1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,1,K.1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,K.1,1,-1*K.1,K.1,K.1,1,-1,-1*K.1,-1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,1,-1*K.1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1*K.1,K.1,-1*K.1,-1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1,1,-1*K.1,1,-1*K.1,K.1,-1,-1,1,K.1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,K.1,-1*K.1,K.1,-1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1,1,K.1,1,K.1,-1*K.1,-1,-1,1,-1*K.1,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,-1*K.1,K.1,-1*K.1,1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,1,-1,K.1,-1,K.1,-1*K.1,1,1,-1,K.1,-1*K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,K.1,-1*K.1,K.1,1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,1,-1,-1*K.1,-1,-1*K.1,K.1,1,1,-1,-1*K.1,K.1,-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, 2, -2, 2, 2, -2, 2, -2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, -2, -2, -2, 2, 2, 2, 2, -2, -2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, 2, -2, -2, 2, 2, 2, -2, 2, 2, -2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, -2, 2, 2, 2, 2, -2, -2, -2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, -2, 2, 2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, -2, -2, -2, 2, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, -2, -2, -2, 2, -2, 2, -2, -2, -2, 2, 2, 2, 2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; x := CR!\[2, 2, 2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_64_56:= KnownIrreducibles(CR);