/* Group 64.191 downloaded from the LMFDB on 21 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([6, -2, 2, 2, -2, -2, -2, 199, 650, 260, 50, 681, 69, 730, 88]); a,b,c := Explode([GPC.1, GPC.2, GPC.3]); AssignNames(~GPC, ["a", "b", "c", "c2", "c4", "c8"]); GPerm := PermutationGroup< 32 | (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,10,2,9)(3,12,4,11)(5,14,6,13)(7,16,8,15)(17,30,18,29)(19,32,20,31)(21,27,22,28)(23,26,24,25), (17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,7,3,6,2,8,4,5)(9,13,12,16,10,14,11,15)(17,21,20,24,18,22,19,23)(25,31,27,30,26,32,28,29), (1,4,2,3)(5,8,6,7)(9,11,10,12)(13,15,14,16)(17,19,18,20)(21,23,22,24)(25,28,26,27)(29,32,30,31), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_64_191 := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, c^8>,< 2, 2, a>,< 2, 8, b*c>,< 4, 2, a*c^4>,< 4, 2, c^4>,< 4, 8, b>,< 4, 8, a*b>,< 4, 8, a*b*c>,< 8, 2, c^2>,< 8, 2, c^6>,< 8, 4, a*c^2>,< 16, 4, c>,< 16, 4, c^5>,< 16, 4, a*c>,< 16, 4, a*c^5>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, -2, 0, -2, 2, 0, 0, 0, -2, -2, 2, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2, 2, 2, 0, 2, 2, 0, 0, 0, -2, -2, -2, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,0,2,-2,0,0,0,0,0,0,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,-2,0,2,-2,0,0,0,0,0,0,K.1+K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,0,-2,-2,0,0,0,0,0,0,-1*K.1-K.1^-1,-1*K.1-K.1^-1,K.1+K.1^-1,K.1+K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |2,2,2,0,-2,-2,0,0,0,0,0,0,K.1+K.1^-1,K.1+K.1^-1,-1*K.1-K.1^-1,-1*K.1-K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,-2*K.1-2*K.1^-1,2*K.1+2*K.1^-1,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |4,-4,0,0,0,0,0,0,0,2*K.1+2*K.1^-1,-2*K.1-2*K.1^-1,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := -1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_64_191:= KnownIrreducibles(CR);