# Group 64.13 downloaded from the LMFDB on 15 September 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # The character table is stored as a record chartbl_n_i where n is the order # of the group and i is which group of that order it is. The record is # converted to a character table using ConvertToLibraryCharacterTableNC # Constructions GPC := PcGroupCode(4976513065026618711,64); a := GPC.1; b := GPC.3; c := GPC.5; GPerm := Group( (2,5)(3,7)(6,8)(9,10,11,13,12,14,16,15), (1,2,4,6)(3,8,7,5)(9,10)(11,15)(12,14)(13,16), (1,3,4,7)(2,5,6,8)(9,11,12,16)(10,13,14,15), (9,11,12,16)(10,13,14,15), (1,4)(2,6)(3,7)(5,8), (1,4)(2,6)(3,7)(5,8)(9,12)(10,14)(11,16)(13,15) ); GLFp := Group([[[ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3) ], [ Z(3), Z(3)^0, Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), Z(3)^0, Z(3) ]], [[ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), Z(3)^0, Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0 ], [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ]], [[ Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3) ], [ Z(3), Z(3)^0, Z(3), 0*Z(3) ], [ Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ]], [[ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ]], [[ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3), Z(3), Z(3)^0 ]], [[ 0*Z(3), Z(3), Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3), Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ], [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3) ]]]); # Booleans booleans_64_13 := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, monomial := true, nilpotent := true, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true); # Character Table chartbl_64_13:=rec(); chartbl_64_13.IsFinite:= true; chartbl_64_13.UnderlyingCharacteristic:= 0; chartbl_64_13.UnderlyingGroup:= GPC; chartbl_64_13.Size:= 64; chartbl_64_13.InfoText:= "Character table for group 64.13 downloaded from the LMFDB."; chartbl_64_13.Identifier:= " C4.D8 "; chartbl_64_13.NrConjugacyClasses:= 19; chartbl_64_13.ConjugacyClasses:= [ of ..., f4*f6, f4, f6, f2*f6, f2*f5, f2, f2*f4*f5*f6, f5, f3, f2*f3, f1, f1*f2*f6, f1*f2, f1*f6, f1*f3, f1*f2*f3*f6, f1*f2*f3, f1*f3*f6]; chartbl_64_13.IdentificationOfConjugacyClasses:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]; chartbl_64_13.ComputedPowerMaps:= [ , [1, 1, 1, 1, 2, 3, 2, 3, 4, 3, 3, 7, 7, 7, 7, 8, 8, 8, 8]]; chartbl_64_13.SizesCentralizers:= [64, 64, 64, 64, 32, 32, 32, 32, 16, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16]; chartbl_64_13.ClassNames:= ["1A", "2A", "2B", "2C", "4A", "4B", "4C", "4D", "4E", "4F", "4G", "8A1", "8A-1", "8A3", "8A-3", "8B1", "8B-1", "8B3", "8B-3"]; chartbl_64_13.OrderClassRepresentatives:= [1, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8]; chartbl_64_13.Irr:= [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1], [1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1*E(4), -1*E(4), E(4), E(4), E(4), -1*E(4), E(4), -1*E(4)], [1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, E(4), E(4), -1*E(4), -1*E(4), -1*E(4), E(4), -1*E(4), E(4)], [1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1*E(4), -1*E(4), -1*E(4), -1*E(4), E(4), E(4), E(4), E(4)], [1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, E(4), E(4), E(4), E(4), -1*E(4), -1*E(4), -1*E(4), -1*E(4)], [2, 2, 2, 2, -2, 2, -2, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2, -2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 2, -2, -2, -2, 0, 2, 0, 0, 0, 0, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, 0, 0, -1*E(8)-E(8)^-1, 0, E(8)+E(8)^-1, 0], [2, 2, -2, -2, -2, 0, 2, 0, 0, 0, 0, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, 0, 0, E(8)+E(8)^-1, 0, -1*E(8)-E(8)^-1, 0], [2, -2, -2, 2, 0, -2, 0, 2, 0, 0, 0, 0, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, 0, -1*E(8)-E(8)^3, 0, E(8)+E(8)^3], [2, -2, -2, 2, 0, -2, 0, 2, 0, 0, 0, 0, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, 0, E(8)+E(8)^3, 0, -1*E(8)-E(8)^3], [2, 2, -2, -2, 2, 0, -2, 0, 0, 0, 0, -1*E(8)-E(8)^3, E(8)+E(8)^3, 0, 0, E(8)+E(8)^3, 0, -1*E(8)-E(8)^3, 0], [2, 2, -2, -2, 2, 0, -2, 0, 0, 0, 0, E(8)+E(8)^3, -1*E(8)-E(8)^3, 0, 0, -1*E(8)-E(8)^3, 0, E(8)+E(8)^3, 0], [2, -2, -2, 2, 0, 2, 0, -2, 0, 0, 0, 0, 0, -1*E(8)-E(8)^-1, E(8)+E(8)^-1, 0, E(8)+E(8)^-1, 0, -1*E(8)-E(8)^-1], [2, -2, -2, 2, 0, 2, 0, -2, 0, 0, 0, 0, 0, E(8)+E(8)^-1, -1*E(8)-E(8)^-1, 0, -1*E(8)-E(8)^-1, 0, E(8)+E(8)^-1], [4, -4, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; ConvertToLibraryCharacterTableNC(chartbl_64_13);